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General Summary

GENERAL SUMMARY

This PhD thesis is framed within the research field of Ecological Epigenetics,
focused in understanding how complex phenotypes arise from a given
genotype, and how important epigenetic mechanisms and environmental
factors are in shaping this process. The thesis was developed within the
EpiDiverse European Training Network, dealing into the epigenetic
contribution to plant-herbivore interactions in non-model species. The
experimental part focused on two plant species widely distributed in Europe,
with different life histories: Thlaspi arvense, often referred as annual field
pennycress, and Populus nigra cv. 'italica’ or Lombardy poplar. Structured into
four chapters, the thesis begins with a comprehensive review of epigenetics'
role in plant responses to diverse biotic stressors. Subsequent chapters
explore the significance of changes in DNA cytosine methylation after
different treatments of experimental herbivory in the two focal plant species,
using three available techniques that differ in their costs (sample processing,
time and price) and technical requirements (analytical tools, annotated
reference genome), and including a comparison of the output produced by
two Next Generation Sequencing techniques based on the analysis of DNA
treated with bisulfite, the reduced representation epiGBS and the Whole
Genome Bisulfite Sequencing (WGBS). The results show for the two plant
species that changes in cytosine methylation have a population-specific nature
and differed depending the damage is conducted by insect caterpillars
(hereafter, insect herbivory) or experimentally simulated by punching the
leaves and spraying jasmonic acid (hereafter, artificial herbivory). In
particular, the study on T. arense shows that global DNA methylation
decreases after herbivory, with the magnitude of change being greater in the

artificial treatment and varying with seed provenance. Additionally, it
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General Summary

indicates that the reduction of global DNA methylation caused by the
demethylating agent 5-azacytidine applied at the seed stage, also differed in
the magnitude between seed provenances. In P. nigra cv. 'italica', herbivory
induced cytosine methylation changes mainly in the CHH context, in
sequences located at intergenic regions, and with a notable overlap of these
changes with transposable elements. Altogether, the studies presented within
this PhD thesis provide valuable insights, although they also point to the need
for further research (e.g., transcriptome analysis) to confirm the direct links
between DNA methylation changes and gene expression under specific
environmental conditions. The emergence of reference genome-free tools
opens avenues for high-resolution plant epigenetic analysis in non-model
species, demonstrating that some techniques that do not required high-quality
genomic resources, such as epiGBS, can be a cost-effective and useful for
characterizing genome-wide methylation changes in response to herbivory,
and as here demonstrated for poplar. In conclusion, this PhD thesis
significantly advances current understanding of ecological plant epigenetics,
offering a new perspective and deeper molecular understanding on plant-

herbivore interactions.

KEYWORDS: biotic interactions, bisulfite sequencing, DNA methylation,
insect herbivory, jasmonic acid, Lombardy poplar, non-model plants, plant

defense, epigenetics, Thlaspi arvense




Resumen General

Esta tesis se enmarca dentro de un area de conocimiento emergente que se
podria denominar “Epigenética Ecolégica”, que esencialmente busca
entender cémo en la naturaleza a partir de un unico genotipo se pueden
producir maltiples fenotipos, y en qué medida este fenémeno puede estar
regulado por mecanismos epigenéticos y/o factores ambientales. La tesis se
ha desarrollado dentro de la Red Europea de Formacion EpiDiverse, y en ella
en concreto ha contribuido a investigar el papel que juega la epigenética en
las interacciones planta-herbivoro en especies no-modelo. La parte
experimental de esta tesis se ha llevado a cabo usando dos plantas
ampliamente distribuidas por Europa y con diferentes estrategias vitales:
Thlaspi arvese, especie anual cuyo nombre comun es carraspique, y Populus nigra
cv. 'italica’, arbol de crecimiento rapido también conocido como chopo
lombardo o alamo de Italia. La tesis se ha estructurado en cuatro capitulos,
comenzando con un primer capitulo de revision bibiografica que analiza el
papel de la epigenética en las respuestas de las plantas a diferentes factores de
estrés bidtico. Los capitulos subsiguientes exploran los cambios producidos
en la metilacion de las citosinas del ADN en plantas de las dos especies de
estudio sometidas a tratamiento experimental de herbivorfa. Se emplearon
para ello tres metodologias de analisis que difieren considerablemente en sus
costes de ejecucion (por el coste y el tiempo necesario para el procesado de
las muestras), requerimientos técnicos (disponibilidad de herramientas
analiticas y de un genoma bien anotado como referencia), incluyendo una
comparacion de los resultados producidos por dos técnicas de Secuenciacion
masiva de Nueva Generaciéon basadas en el analisis de ADN tratado con
bisulfito, de genomas reducidos (epiGBS) o genomas completos (WGBS).

Los resultados obtenidos muestran que, para las dos especies de estudio, los
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cambios de metilacion son especificos para cada poblacion (o procedencia) y
difieren en funcién de si el dafio es producido por insectos reales (en adelante,
herbivorfa de insectos) o simulado mediante perforacién mecanica de las
hojas con punzén y posterior rociado con una solucion de acido jasmoénico
(en adelante, herbivoria artificial). En concreto, en el estudio de T. arvense
encontramos que los niveles de metilacion global disminuyen tras el
tratamiento de herbivoria, siendo la magnitud del cambio mayor en el caso de
plantas sometidas a herbivorfa artificial y variable en funcién de la
procedencia de las semillas. Asimismo, también se demuestra que cuando se
aplica el agente demetilante 5-azacitidina durante la fase de germinacién de la
semilla, la reduccién en el nivel de metilacién global es variable en su
magnitud segun la poblaciéon de procedencia de las semillas. En P. nigra cv.
'italica', la herbivorfa experimental produce un cambio en la metilacién del
ADN mayoritariamente en el contexto CHH, en secuencias que estan
localizadas en zonas intergénicas de su genoma y que tienen un notable
solapamiento con Elementos Transponibles. En conjunto, los resultados
presentados en esta tesis proporcionan valiosas y nuevas aportaciones a esta
area de conocimiento, aunque también ponen de manifiesto que son
necesarios estudios adicionales (p. e¢j., analisis de transcriptoma) para
confirmar la relacién directa entre los cambios de metilacion del ADN vy los
niveles de expresion génica en determinadas condiciones ambientales. La
publicacién de genomas de referencia de libre acceso y el desarrollo de
herramientas bioinformaticas de cédigo abierto proporciona nuevas
posibilidades para poder realizar analisis epigenéticos de alta resoluciéon en
plantas no modelo, demostrando que algunas técnicas que no requieren
recursos genomicos de alta calidad, como la técnica epiGBS de representacion
reducida, pueden ser una opcion util y asequible para caracterizar cambios del

nivel global de metilacién en respuesta a herbivorfa. Es importante sefalar




aqui que los resultados obtenidos mediante las dos técnicas moleculares
(epiGBS y WGBS) fueron congruentes. En conclusion, este trabajo de tesis
doctoral ha producido un avance significativo en el conocimiento de las
relaciones entre epigenética y ecologia que se producen en la naturaleza en
plantas no modelo, y ofrece una perspectiva innovadora al estudio de las

interacciones entre las plantas y sus herbivoros.

PALABRAS CLAVE: icido jasmoénico, ilamo lombardo, defensas en
J ) )
plantas, epigenética, herbivoria de insectos, interacciones bidticas, metilacién

del ADN, plantas no modelo, secuenciacién bisulfito, Thlaspi arvense
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THEORETICAL BACKGROUND

HERBIVORY: AN ESSENTIAL INTERACTION IN TERRESTRIAL
ECOSYSTEMS

Herbivory, the consumption of any plant tissue by animals, is a main link in
food-webs and a key ecosystem process with a large ecological impact on
plant community composition, population dynamics of plants and
herbivores, nutrient cycling and energy flow (Schmitz, 2008). The effect of
herbivory depends on herbivore feeding type and intensity which can cause
serious damage on plant primary production in both natural communities and
industrial crops (Schowalter, 2022). Herbivores encompass a diverse range of
organisms, such as mollusks, arthropods, and vertebrates. These organisms
have developed specialised metabolism and feeding behaviours that enable
them to consume plants as their primary food source. As a result, almost all
plant species are subject to some degree of herbivory (Bruce, 2015). Insects
are the primary herbivores in some terrestrial ecosystems, and their effect on
primary production can rival or even exceed that of large vertebrates
(Schownalter, 2022). For example, it has been estimated that phytophagous
insects are able to consume over a fifth of all plant biomass produced annually
in natural ecosystems (Turcotte et al., 2014) and are responsible for 18-26 %
of annual crop losses worldwide (Culliney, 2014). Nevertheless, growing
evidence indicates that effects of herbivory on ecosystem processes, including
primary production, are extremely complex. Furthermore, it is possible that
long-term compensatory effects to adjust over time could partially offset

short-term negative effects under certain conditions (Schowalter, 2022).

The relationship between plants and insect herbivores represents one
of most ancient and widespread interactions on the planet (Labandeira, 2007),

it is believed to be a consequence of the conquest of dry land
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(terrestrialization) by plants, and it is one of the classical examples that
illustrates how coevolution does contribute to species diversity on earth
(Cornell & Hawkins, 2003; Zangerl & Berenbaum, 2003). Insect herbivores
are frequently categorized as either generalists or specialists, with generalists
consuming plants from a variety of plant families and specialists consuming
only plants that belong to the same family or genus and, thus, have more
similar chemical composition (Schoonhoven et al., 2005). Plants have evolved
a diverse array of defenses including physical barriers, such as leaf hardness,
trichomes, or hairs, and multifaceted chemical defenses, some of which are
highly dynamic and mainly induced when herbivores are detected (Howe &
Jander, 2008). Predictability of damage both within and across generations
will determine the adaptive potential of a constant investment in defense
versus phenotypic plasticity and bet-hedging defense strategies to overcome
the negative consequences of herbivory (Herman et al., 2014; Mertens et al.,
2021). Defense induction is considered as a cost-saving strategy in the face of
unpredictable and variable herbivory, some responses are able to discriminate
mechanical damage from insect herbivory, and induction is generally
regulated by plant hormones, e.g. in the case of chewing insects typically
involve the activation of the jasmonic acid signaling cascade leading to
prioritization for plant defense when attack is detected (Howe & Jander, 2008;
Zust & Agrawal, 2017). Furthermore, inducible defenses can involve either
increased secondary compounds in plant tissues as direct defense or the
emission of volatile organic compounds (VOCs) that attract the natural
enemies of herbivores that will reduce damage or increased insect resistance
in neighboring plants serving in both cases as indirect defenses (Karban et al.,
1999, 2014). Finally, it is important to consider that in the wild, individual
plants usually live in heterogeneous environments with limited amounts of

resources that should be allocated to growth, reproduction and defense, this
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means that defense is usually costly and, thus, in addition to variation across
species in the nature of defense we should also expect intraspecific
quantitative variation in defense traits (Cornell & Hawkins, 2003; Endara &
Coley, 2011; Karban & Baldwin, 1997; Moore et al., 2014; Vercosa et al.,
2019)

Current understanding of the molecular basis of plant defense
mechanisms and their costs is improving with the development of modern
molecular biology techniques and “omic” tools, and their application to a few
model systems (reviewed in Erb & Reymond, 2019; Kessler & Baldwin,
2002). Yet, in non-model plants, much remains unknown about phenotypic
plasticity and the regulation of gene expression that mediate defense
responses. Epigenetic mechanisms have emerged as another regulatory
system involved in plant defensive responses and plant memory (Colicchio et
al., 2015; Herrera et al., 2019; Holeski et al., 2012; Latzel et al., 2012), although
we still know relatively little about their mode of action. Thus, the main aim
of this thesis is to contribute to uncover the role of epigenetics in the
fascinating interaction between plants and insect herbivores, using
unexplored non-model plants and manipulative approaches, as I explain in

detail below.

PILANT EPIGENETICS: CONCEPT AND MECHANISTIC BASIS

The concepts of “epigenotype” as an intermediate stage between the
observed phenotype and the heritable genotype, and “epigenetics” as the
branch of science studying it, were first introduced by Waddington in 1942,
before DNA was discovered and the complexity of gene expression was
appreciated: “We certainly need to remember that between genotype and phenotype, and

connecting them to each other, there lies a whole complex: of developmental processes. It is
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convenient to have a name for this complex: ‘epigenotype’ seems suitable” (Waddington,
2012). Coined to explain animal development, epigenetic mechanisms
resulted as key to understanding the genome expansion and the proliferation
of transposable elements (TEs) discovered in maize by Barbara McClintock
(Fedoroff, 2012). More recently, the concept has been adapted to refer to
mechanisms that induce heritable changes in gene expression regardless of
nucleotide sequence variation in DNA (Fedoroff, 2012). The relevance of this
field has been gradually disclosed since then and interest in plant ecology and
evolution has increased in the last two decades (Akimoto et al., 2007;
Bossdorf et al., 2008; Jablonka & Raz, 2009; Johannes et al., 2009; Johannes
& Schmitz, 2019).

Epigenetic regulation primarily involves DNA methylation, histone
tail modifications and the action of small non-coding RNAs that together
alter the chromatin structure and determine changes in individual phenotypes
without changing the DNA sequence (Feng, Jacobsen, et al., 2010; Pikaard &
Mittelsten Scheid, 2014). The term DNA methylation refers to the addition
of a methyl group to the DNA base cytosine, forming 5-methylcytosine
(Pikaard & Mittelsten Scheid, 2014). Histone tail modification refers to the
addition of certain chemical marks (methylation, acetylation, ubiquitination,
phosphorylation, biotinylation, and ADP-ribosylation) that can be covalently
introduced at different positions (mostly lysine and arginine residues) of the
histone proteins (H2A, H2B, H3, and H4) involved in DNA structure and
compaction (Sadakierska-Chudy & Filip, 2015; Foroozani et al., 2022). Lastly,
small RNAs are a suite of noncoding RNAs with variable length (mainly 21—
24 nucleotides) that can bind to certain complementary DNA sequences and
suppress sequence-specific gene expression (Simon & Meyers, 2011). In

particular, 24-nt small interfering RNA (siRNA) can lead to de novo DNA
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methylation in the three contexts through a pathway called RNA-directed
DNA methylation (RADM) (Erdmann & Picard, 2020). This pathway is also
self-reinforcing, which could further contribute to transgenerational

transmission of DNA methylation (Erdmann & Picard, 2020).

DNA methylation plays a crucial role in regulating genome stability,
transposon silencing, cell identity, and responses to environmental stress in
plants (Feng, Cokus, et al., 2010; Pikaard & Mittelsten Scheid, 2014). In
plants, it occurs in three sequence contexts (CG, CHG, and CHH; where C
= Cytosine, G = Guanine and H = Adenosine / Cytosine / Thymine). CG
and CHG methylation are symmetrical (they occur on both complementary
DNA strands), while CHH methylation is asymmetrical (Cao & Jacobsen,
2002). Current molecular understanding of plant epigenetic machinery has
been gained mainly by analyzing the model plant Arabidopsis thaliana, a short-
lived annual plant with a small genome and outstanding low DNA
methylation (Alonso et al., 2015). Methylation in CG is maintained by the
MET1 methyltransferase, which uses hemimethylated DNA as a substrate
and recruits the VARIANT IN METHYLATION (VIM) protein family of
SET- and RING-associated domain proteins to the replication complex
(Feng, Cokus, et al., 2010; Saze et al., 2003; Zhang et al., 2018). The chromatin
protein  DECREASED DNA METHYLATION 1 (DDM1) is also
important in maintaining CG methylation (Jeddeloh et al., 1999). Moreover,
chromomethylases are DNA methyltransferases characteristic of plants,
CHROMOMETHYLASE 3 (CMT3) is responsible for maintaining CHG
methylation, while DRM2 or CMT2, depending on the genome location, is
responsible for maintaining CHH methylation (Stroud et al., 2014; Zhang et
al.,, 2018). In particular, DRM2 maintains CHH methylation at RADM target

regions, which are typically found at the margins of transposons,




General Introduction

heterochromatin, evolutionarily immature transposons, and other repetitive
sequences in euchromatic chromosomal arms (Matzke & Mosher, 2014,

Zhang et al., 2018).

I will end up this section highlighting the huge interspecific diversity
of plant epigenomic features (Springer et al., 2016). Genome-wide DNA
methylation, estimated as the percentage of all genome cytosines that are
methylated, ranges approximately between 5 and 45% in different samples of
Angiosperms and shows correlated evolution with genome size (Alonso et
al., 2015; Springer et al., 2016). Further, CG methylation in the transcribed
regions of genes, i.e., gene body methylation, ranges between 2 and 86% in
the group of Viridiplantae analyzed (Bewick & Schmitz, 2017). DNA
methylation exhibits a strong phylogenetic signal (Alonso et al., 2015, 2019;
Bewick & Schmitz, 2017), and some interesting biogeographic divergence
(Alonso et al., 2019) suggesting that epigenetic responses can largely differ
across species in a way shaped by long-term evolution. Noteworthy, the
model species A. thaliana has a very small-genome and almost the lowest
methylation level recorded up today (Alonso et al., 2019). Thus, transferring
the methods developed and the knowledge gained by investigating DNA
methylation in A. thaliana to other non-model species is challenging and
timely to move forwards the field of Plant Epigenetics. This thesis aims to
contribute to this goal and, in particular, the last chapter is devoted to
compare the results of applying two single-base resolution methods to
evaluate methylation changes induced by insect herbivory in the Lombardy

poplar (see below).
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ECOLOGICAL RELEVANCE OF EPIGENETIC REGULATION IN
PILANTS

DNA methylation is highly dynamic and the diversity of methylation variants
is usually significantly larger than the diversity of genetic variants in wild plant
populations (see e.g., Medrano et al., 2020, and references therein). Changes
in methylation, frequently denoted as epimutations, can occur randomly or in
response to environmental factors (Johannes & Schmitz, 2019). Epimutations
have other two characteristics that make them particularly interesting to
understand plant adaptation, they are much more frequent than genetic
mutations and they are transmissible to some extent across generations but
also reversible (Johannes & Schmitz, 2019). Together with the potential
impact of environmental conditions for triggering above mentioned effects,
epimutations could lead to intraspecific geographic variation in DNA

methylation (see e.g., Galanti et al., 2022; Kawakatsu et al., 2016).

In order to play a significant role in the adaptive evolution of plant
populations, epimutations must affect the phenotype, most likely via gene
expression changes, and be at least partially independent of the genome
sequence variation. First, environment-triggered epimutations could transmit
responses to changes in environmental conditions within generations, helping
to explain phenotypic plasticity and priming (Herman et al.,, 2014). At the
same time, this process can reduce or enhance offspring fitness depending on
parental stress leading to transgenerational phenotypic plasticity that would
be selected for depending on the rate of environmental fluctuation (Herman
et al.,, 2014). In addition, heritable epigenetic variants that arise stochastically
can increase phenotypic variation and may be under natural selection
contributing to plant adaptation and population differentiation,

independently from DNA sequence variation (Herrera et al., 2016 and
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references therein), and may be used to track recent evolutionary events on a
scale of years to centuries (Yao et al., 2023). It is also necessary to highlight
that if the expression of environment-triggered epimutations varies between
plant populations which remains largely unknown. Finally, moving to the
smallest hierarchical scale, substantial methylation changes have been also
recorded across modules of plant individuals (Herrera et al., 2022).
Interestingly, module methylation correlated with fitness-related traits and
more importantly the offspring seedlings resemble their maternal-module

methylation characteristics (Herrera et al., 2022).

Altogether, epigenetic variation offers an extra layer of variation
between the genetic features of plant individuals, and the environmental
features of the place in which they live, providing opportunities for
phenotypic variation that could foster adaptation in these sessile and modular
organisms that constitute a key element in all ecosystems. This thesis explores
phenotypic and epigenetic variation elicited in response to insect herbivory
and the extent to which such response could vary geographically. The
evolutionary potential of sub-individual epigenetic variation has been very
recently uncovered and its analysis is out of the scope of this thesis, although

it was controlled when sampling leaf materials for DNA methylation analysis.

EVIDENCE OF EPIGENETIC REGULATION IN PLANT DEFENSE

Epigenetic mechanisms are important regulators of gene expression and have
been involved in plant biotic interactions including plant-herbivore
interactions (Ramos-Cruz et al., 2021). Many plants are able to induce or
rapidly activate specific defenses after an attack is perceived, which can
minimize the damage caused by herbivores, including short-time production

of secondary metabolites and proteins that have toxic, repellent, and/or anti-
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nutritional effects on the herbivores (Zist & Agrawal, 2017) and increased
trichome densities (Colicchio et al., 2015). In some cases, plants can also be
primed to respond more efficiently against future attack via faster and
stronger gene activation (Mauch-Mani et al., 2017; Rasmann et al., 2012) and
they can even pass signatures of attack to the next generation, thus rendering
the progeny more resistant against subsequent herbivory (Akkerman et al.,
2016; Holeski et al., 2012). For instance, a combination of phytohormone
signaling, small RN A-mediated gene silencing and DNA methylation seem to
play a central role in regulating transgenerational plant defense in A. thaliana
(Baldwin, 1998; Holeski et al., 2012; Rasmann et al., 2012; Zist & Agrawal,
2017), whereas both DNA methylation and small RNAs are involved in
Mimunlus guttatus transgenerational defense induction (Colicchio et al., 2015,
2018; Colicchio & Herman, 2020). To corroborate the relevance of epigenetic
variation involved in plant defensive responses more studies of wild plants
are required, including the analysis of natural populations with contrasting

environmental conditions.

A combination of manipulation of DNA cytosine methylation with
controlled herbivory experiments can be a fruitful strategy to uncover the
epigenetic contribution to specific plant responses after herbivory (Herrera et
al., 2019; Latzel et al., 2020). The use of inhibitors of the activity of DNA
methyltransferase enzymes such as 5-azacytidine, 5-aza-2’-deoxycytidine or
zebularine provides a tractable way to modify DNA cytosine methylation in
plants, which could enlarge natural variation in this particular epigenetic
feature, while controlling for relatedness (Alonso et al., 2017; Puy et al., 2018).
Application of these compounds at seed stage can influence on plant
phenotypes, including flowering phenology (Alonso et al., 2017; Fieldes &

Amyot, 2000; Kondo et al., 2006) and might at least partially erase memories
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of past stress (see e.g., Akkerman et al., 20106). 5-azacytidine is a structural
analogue of 5-methyl-cytosine that can be incorporated into DNA where it
establishes a covalent bond with a methyltransferase enzyme that cannot be
easily reversed. The enzyme is trapped reducing the number of active DNA
methyltransferase enzymes in the cells and therefore passively inducing DNA
demethylation (Griffin et al., 2016; Lopez et al., 2016). Current evidence
supports that application of 5-azacytidine at seed stage leads to an overall
reduction of DNA methylation in flowering individuals of Linum usitatissinum
(Fieldes & Amyot, 2000), Thlaspi arvense (Troyee et al., 2022) and Erodium
cientarinm (Balao et al., 2023), supporting the value of this methodology (used
in Chapter 2) to investigate epigenetic regulation that could be transmitted to

offspring.

MATERIALS AND METHODS

STUDY SYSTEMS

This thesis was developed within the EpiDiverse - Marie-Slowodska Curie

European Training Network (www.epidiverse.eu) and therefore the initial

focal systems were the three plant species selected by this network: the annual
herb Thlaspi arvense (Brassicaceae), the perennial herb Fragaria vesca (Rosaceae)
and the woody deciduous tree Populus nigra var. talica’ (Salicaceae). They were
considered appropriate focal species to linking ecology, molecular biology
and bioinformatics in fostering plant epigenetic research because (a) they are
common and widely distributed across Europe; (b) they have manageable
genome sizes; (c) a good quality reference genome already existed —or was
generated by the Epidiverse network based on available draft genomes in

parallel to projected experiments—; and (d) they represented different plant
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life-histories and ecological characteristics. Unfortunately, my studies on F.
vesca had technical problems for obtaining good quality sequencing that could

not be solved on time and have been thus excluded.

Figure 1. Focal study plants in their natural habitat. a) Thlaspi arvense
(Brassicaceae) is a foetid, hairless annual plant with upright branches and
arrow-shaped, narrow, toothed stem leaves. It flowers early in the spring,
producing small white flowers in racemes, each with four sepals and four
petals, and yields heart-shaped, flat seed pods containing up to 14 small
brown-black seeds. b) Populus nigra var. ‘stalica’ (Salicaceae) is a fast-
growing tree with dark gray, deeply fissured bark on mature individuals. It
features diamond-shaped, shiny deciduous leaves with serrated edges that
turn yellow in the fall. This dioecious species flowers early in spring and
has male and female flowers on separate trees. Mature trees grow up to
30 m and can live for > 200 years. The Lombardy clone has been
artificially propagated all over Europe, being suitable for windbreaks and
public gardens.

System 1: Thilaspi arvense (field pennycress), is a weedy annual species with a
short life cycle, that belongs to Brassicaceae family (Figure 1a). This
pennycress is diploid (2n = 14) and has a small genome size (~500 Mb). It is
distributed worldwide and has a high degree of ecotypic variation, including
differences in its life-cycle phenology and the need of vernalization for

flowering induction (Burn et al., 1993; Sedbrook et al., 2014). The European
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populations exhibited moderate genetic variation and epigenetic differences
that are linked to environmental drivers (Galanti et al., 2022). Natural
herbivores of Brassicaceae species are mostly specialist herbivores including
larvae of Lepidoptera (e.g., Trichoplusia, Plutella, Pieris) and some sap-feeding
aphids (Lowenstein & Minor, 2018). We selected the cabbage moth, Pieris
brassicae (L..) (Lepidoptera: Pieridae), with a broad distribution range, which
covers from North Africa all across Europe and Asia, and it is specialized in

feeding on Brassicaceae (Metspalu et al., 2003) Chapter 2).

System 2: Populus nigra (black poplar) is a diploid and fast-growing deciduous
tree of Salicaceae family (Figure 1b) native to Eurasia and with a compact
genome size (~500 Mb). It is an ecologically important, sexually reproducing
pioneer species in riverine areas. Poplars can also propagate vegetatively,
being widely used in tree biology research and grown as cultivars for
commercial purposes. We focused on the Lombardy clone (Populus nigra var.
‘ttalica’ Duroi; P. nigra hereafter), which has been planted massively all over
Europe since the 19th century, because we aimed to reduce genetic variability
across samples to better uncover epigenetic mechanisms. Among potential
herbivores, we selected the larvae of the gypsy moth Lymantria dispar (L.)
(Lepidoptera: Erebidae), with Eurasian origin and a broad distribution range
which covers Europe, Africa, and North America (Boukouvala et al., 2022).
Caterpillars of L. dispar are highly polyphagous including several trees and
shrubs and they have been used as model system to study plant induced
defences and their effect on parasitoid development (Chapters 3 & 4). In
particular, in Chapter 3 we assessed whether methylation changes in response
to herbivory vary across poplars originated from distant geographic
provenances. Chapter 4 takes advantage of the clonal origin of Lombardy

poplar (with @ priorihomogenous genetic background) to compare the outputs
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of two molecular techniques used for the analysis of methylation changes
based on bisulfite conversion and deep sequencing of DNA that could be

useful in ecological studies.

PLLANT AND INSECT MATERIALS

As mentioned above, in this thesis, individuals from natural populations of
field pennycress and Lombardy poplar at distant geographic locations within
Europe were used to evaluate potential geographic variation in the response
to herbivory (Chapters 2 & 3, respectively). Table 1 summarizes the
geographic location and plant materials collected in collaboration with
partners of the EpiDiperse network that were used for experimental studies: T.
arvense seeds - University of Tubingen, Germany, and P. nigra cuttings -
Philipps-Universitit Marburg, Germany and NIOO-KNAW Wageningen,
Netherlands.

Second instar larvae of Lymantria dispar were provided by Dr. Sybille
Unsicker’s lab (Max Planck Institute for Chemical Ecology, Jena, Germany).

Eggs and second instar larvae of Pieris brassicae were obtained from a

commercial supplier (www.lombricesdecalifornia.com)
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Table 1. Summary of the geographic locations, collected plant materials, study design
(including final sample size), technique applied and methylation estimate obtained to
quantify changes in DNA methylation after insect and artificial herbivory in the three
experimental studies of this thesis (Chapters 2 to 4).

Plant species Geographic ~ Plant Study design Technique
(Chapter) location material ~ (sample size) applied /
Methylation
estimate
Thlaspi North Seeds 2 populations * 2-3 HPLC /
arvense Germany, mothers * 3 herbivory ~ Global
(Chapter 2)  Central levels * 2 methylation
Sweden demethylation levels *  changes
3-4 seedlings (N =
113)
Populus  nigra  Spain, Cuttings 3 populations * 2-3 epiGBS /
var.  “Utalica’ Italy, ortets * 3 herbivory Global and
(Chapter 3)  Poland levels * 3 ramets (N =  genome site-
63) specific changes
Populus  nigra  Italy Cuttings 1 population * 3 ortets  epiGBS +
var.  “Gtalica’ * 3 herbivory levels * 3 WGBS
(Chapter 4) ramets Global and

(N =27)

genome site-
specific changes
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EXPERIMENTAL DESIGN AND ANALYTICAL TECHNIQUES

As mentioned above, different plant species can use different strategies in
response to herbivory and the induction of specific defenses can be tailored
according to the magnitude and frequency of damage, and the identity of
herbivore species (Howe & Jander, 2008; Zust & Agrawal, 2017). In
particular, mechanical wounding and insect herbivory are known to induce
distinct responses in some plant species, and jasmonic acid (and related
compounds) is a key regulator of the response (Howe & Jander, 2008;
Rasmann et al., 2012; Zist & Agrawal, 2017). Accordingly, in the three
experimental studies of this thesis (Chapters 2-4) plants were assigned to one
of three herbivory treatments (i) Insect herbivory: defoliation by larvae of
lepidopteran species, (ii) Artificial herbivory: punching holes and spraying a
solution of jasmonic acid (ImM) and (iii) Control undamaged plants that were
sprayed with a similar amount of water. Both insect and artificial herbivory
treatments were performed twice in order to induce a priming effect (first
treatment) and elicit a stronger and/or quicker response during the second
treatment (Mauch-Mani et al., 2017). We were interested in characterizing
systemic changes that occur at not only the local damaged tissue but spread
within plants challenged by herbivory because systemic responses are more
likely to have a priming effect within- and across-generations (Howe &
Jander, 2008; Zist & Agrawal, 2017). Thus, leaf material for DNA
methylation analyses was collected from undamaged and completely

expanded leaves 24 h after the second event and immediately frozen.

After selection of the study systems and experimental treatments, we ought
to decide how to quantify changes in DNA methylation after herbivory
according to the pursued accuracy and available resources. Main

characteristics of the three methods used in this thesis are explained in detail
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in Box 1. In Chapter 2, a high-performance liquid chromatography (HPLC)
was used to estimate changes in global DNA methylation level. In Chapter 3,
context specific changes and their genomic location together with global
methylation were estimated by a reduced representation bisulphite
sequencing technique called epiGBS (Gawehns et al., 2022). In Chapter 4,
both epiGBS and Whole Genome Bisulphite Sequencing (WGBS; Suzuki et
al., 2018) were applied to the same DNA samples in order to compare the

outputs of these two molecular techniques.

&

\ Y Methylated Cytosine
’ - ? Unmethylated Cytosine
Extracted DNA

4
§ Spectrofluorimetric detection
3 Global methylation quantification (%)
HPLC g
Te
epiGBS — Bisulfite sequencing

Reference genome  gin 46 nucieotide resolution for fragmented genome  Restriction enzyme targeted genomic locations

Bisulfite sequencing
wess Non-targeted genome wide location
Reference genome

Single nucleotide resolution for whole genome

Box 1. Methods applied in this thesis for studying changes in DNA methylation after
insect and artificial herbivory. HPI.C: High-Performance Liquid Chromatography estimates
the total amount of cytosines (C) and 5-methyl cytosines (5mC) in a small amount of genomic
DNA (Alonso et al., 20106); epiGBS: epi-Genotyping By Sequencing evaluates methylation at
single base resolution in a reduced portion of the genome, applying bisulfite sequencing to
enzymatically digested genomic DNA (Gawehns et al., 2022); and WGBS: Whole Genome
Bisulfite Sequencing evaluates methylation at single base resolution applying bisulfite
sequencing to genomic DNA mechanically fragmented and comparing the output to a high-
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quality reference genome (Suzuki et al., 2018). Below we summarize the characteristics of wet-
lab protocol, target genomes and output coverage, and their respective technical requirements.

(1) Protocol: HPLC is a chromatographic technique that quantifies DNA methylation levels of fully
digested DNA, using a liquid mobile phase and a solid stationary phase suitable to separate C from 5mC.
Concentration of the two nucleotides is obtained and their relative proportion estimated to provide an
overall global methylation estimate (%). For the two bisulfite sequencing techniques (epiGBS and
WGBS), DNA is chemically treated with sodium bisulfite, which converts C into uracil. DNA strands
are then PCR amplified, converting the uracils into thymines (T). Methylated cytosines (5mC), on the
other hand, remain unconverted. Next generation sequencing of the converted DNA provides
information on the methylation level of individual nucleotides by compatison of C/T proportions of
the converted samples analyzed to the non-converted sequence of good quality reference genome.
epiGBS includes a restriction enzyme digestion of genomic DNA as a first step to reduce the portion
of genome to be sequenced. Finally, WGBS targets analyzing DNA methylation across the complete
genome and requires a high quality reference genome for bisulfite mapping, and genome-wide
methylation calling. Bioinformatic analyses of epiGBS and WGBS data are key to perform quality
control of sequence data, adapter trimming, SNP calling and methylation estimates. The epiGBS2 tool
(Gawehns et al., 2022) describes a pipeline that performs all those steps for species with or without a
reference genome. A consensus protocol for analyses of differential methylation between groups of
samples is not yet available. The epiDiverse toolkit (Nunn et al., 2021) provides bioinformatic pipelines
for mapping, the calling of methylation values and differential methylation between groups, epigenome
wide association studies, and a novel implementation for both variant calling and discriminating between
genetic and epigenetic variation.

(2) Target genomes and coverage: HPLC does not require any previous genomic information of the target
genome and it can be applied to species with large and polyploidy genomes. It provides an accurate
estimate of genome-wide global DNA cytosine methylation level per sample but it does not provide
cytosine context specific information. Library preparation for bisulfite sequencing requires previous
knowledge of genome size, the design of custom adapters and methylated barcodes suitable to analyze
several samples per sequencing line (to reduce costs), and most of the analyses developed to estimate
genetic variants and methylation estimates presume diploid genomes. In particular, epiGBS provides the
methylation status of specific DNA fragments targeted by using double restriction enzymes while
WGBS analyzes non-targeted fragments, which theoretically cover the entire genome and thus provide
an unbiased view of DNA methylation landscape of organisms (Suzuki et al., 2018). The two methods
provide methylation estimates of C in all sequencing contexts with a higher coverage per position and
price obtained by epiGBS (i.e., the obtained coverage will vary with genome size and budget available).

(3) Technical requirements: Development of the HPLC technique requires an HPLC system equipped with
fluorescence detector, and trained personnel to obtain accurate estimates. Its general maintenance is
moderate to intensive and data analyses can be conducted in a personal computer. Library preparation
for epiGBS should be conducted at home and it requires a well-equipped lab and trained personnel able
to produce equimolar representation of multiplexed samples. After an initial investment for designing
appropriate adapters and methylated barcodes, it can be a more cost-effective technology than WGBS
because it targets a section of the genome and thus a larger number of samples can be sequenced petr
line. Library preparation for WGBS can be ordered to commercial sequencing services. The two
methods further demand bioinformatic infrastructure and training due to its data-intensive nature.
WGBS incurs higher costs compared to alternative techniques, especially when dealing with large
genome species and it is mainly worth if a reference genome with good quality annotation of genes,
transposable elements and repetitive regions is available for accurate functional annotation.
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OBJECTIVES AND THESIS STRUCTURE

This doctoral thesis aims to contribute to gain generality in current
understanding about the epigenetic contribution to plant defense in response
to insect herbivory. The general hypothesis is that plant-herbivore
interactions can cause epigenetic modifications in plants, and these will
contribute to induced plant defense. This hypothesis was examined by
reviewing evidence available in scientific publications and conducting

experimental research with four particular objectives:

O1. - Characterizing DNA methylation variation associated with insect

herbivory in natural plant populations;

O2. - Analyzing the effect of artificially altered DNA methylation induced
by chemical methyltransferase inhibitors (5-Azacytidine) on plant

responses;

O3. - To investigate the changes in phenotypic traits underpinned by

herbivory induction and its correlation with epigenetic variation;

O4. - Comparing the outputs that different methods provide to offer
reliable insight about methylation changes in DNA in response to

insect herbivory.
The results obtained are presented in four chapters:

Chapter 1 (“Epigenetics in plant organismic interactions”), published in
Current Opinion in Plant Biology vol 61, provided an overview of the suite of plant
epigenetic regulatory processes involved in either beneficial interactions or
defense against pathogens and herbivores. We conducted a literature review

published until May 2021 focused on recent studies analyzing DNA
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methylation, histone modifications, and small RNAs that contribute to the
intricate regulatory mechanisms able to adjust molecular processes necessary
for beneficial biotic interactions and defense against pest, pathogens and
herbivores. The review was organized according to the type of epigenetic
modification rather than by organism. The contribution of epigenetic
regulation in plant defense, symbiosis, and parasitism is discussed. This

publication addresses O1.

Chapter 2 (“Variation in DNA methylation and response to short-term
herbivory in Thlaspi arvense”), published in Flora vo/ 293, showed that
experimental seed demethylation with 5-azacytidine altered global
methylation in leaf DNA of early-flowering adult plants. Global DNA
methylation was analyzed by HPLC, a highly precise chromatographic
technique (Alonso et al., 2016). Furthermore, we assessed phenotypic and
defense traits in response to demethylation and herbivory treatments,
including concentration of leaf glucosinolates, final stem biomass, fruit and
seed production, and seed size on T. arvense plants that came from two
European populations with contrasting flowering phenotypes expected to
differ in the response to experimental demethylation. We found that early-
and late-flowering European ecotypes responded differently to the two
treatments, suggesting that plant genetic background and timing of damage
can affect herbivory-induced phenotypic plasticity. This publication addresses
01, O2 and O3.

Chapter 3 (“Epigenomic response to insect herbivory in Lombardy
poplar: assessing geographic variance in modification of DNA
methylation”), unpublished manuscript, assessed the heterogeneity in the
response to herbivory of clonal individuals of the Lombardy poplar obtained

from three distant European populations, conducted under controlled
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experimental conditions. We used epiGBS, a high-resolution approach for
quantifying DNA methylation at single nucleotide level, to evaluate context-
specific responses to insect and artificial herbivory. We found that herbivory
significantly increased methylation in CHH with a stronger effect of insect
herbivory. Less than 30 % of Differentially Methylated Cytosines (DMCs)
were shared between the two herbivory treatments suggesting that the effects
of insect consumption were not perfectly mimicked by mechanical damage
and JA-spraying. Furthermore, the response obtained was not homogenous
across the three populations studied. We found differences in the magnitude
of the response because Polish plants had the highest number of DMCs
induced by artificial herbivory while Spanish plants responded more to insect
herbivory, and in the specific loci whose methylation was altered, because
DMCs induced by any of the two treatments were rarely shared across the
study populations. Across all populations and contexts, most of the “strongly
responding” DMCs showed greater densities within gene bodies. Altogether,
our results suggest that epigenetic response to herbivory can vary according
to plant origin, likely associated to long-term exposure to contrasting climates
and other environment relevant features, even in systems that lack genetic

variation. This unpublished manuscript addresses O1.

Chapter 4 ("Herbivory induced methylation changes in the Lombardy
poplar: a comparison of results obtained by epiGBS and WGBS"),
manuscript published in PLLOS One vo/ 18, compared and validated suitability
of epiGBS technique for analyzing plant response to the specific stress
induced by insect and artificial herbivory in comparison with the gold
standard (but significantly more expensive technique) which interrogates
methylation in Whole Genomes by Bisulphite Sequencing (WGBS). We used

a small number of poplar clones with limited genetic variation and found that
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the two techniques supported the specificity of the differential methylation
elicited by insect and artificial herbivory at interrogated loci, and, overall, a
higher frequency of hypo-methylation in the CG context and hyper-
methylation in the CHH context. Thus, epiGBS succeeded to characterize
global, genome-wide methylation changes in response to herbivory in the
Lombardy poplar. We concluded this technique may be particularly useful for
investigating stress response in non-model plants. This publication addresses

O1 and O4.




GRAPHICAL ABSTRACT

General Introduction

Figure 2. Graphical outline summarizing the study systems and experimental
design of the studies conducted to address the general objective of this thesis.

Hypothesis: Herbivory could cause epigenetic modifications in plants and these will contribute to

improving plant defense

Response to herbivory in non-model plants

Chapter 1: Reviewing role of epigenetic regulation on beneficial interactions and defense against pathogens and herbivores
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ABSTRACT

Plants are hubs of organismic interactions. They constantly engage in
beneficial or competitive interactions with fungi, oomycetes, bacteria, insects,
nematodes and other plants. To adjust the molecular processes necessary for
the establishment and maintenance of beneficial interactions and for the
defense against pathogens and herbivores, plants have evolved intricate
regulatory mechanisms. Besides the canonical plant immune system that acts
as the primary defense, epigenetic mechanisms have started to emerge as
another regulatory entity and as a target of pathogens trying to overcome the
plant’s defenses. In this review, we highlight recent advances in understanding
the contribution of various epigenetic components and of epigenetic diversity

to plant-organismic interactions.

INTRODUCTION

Plants constantly face pressure from their biotic environment and have
evolved multiple layers of defense. Thorns, spikes, and cuticular barriers are
the most obvious physical hurdles that herbivores and pathogens need to
overcome. Beyond those, they often face a highly complex and effective
chemical arsenal of plant specialized (aka secondary) metabolites, which are
designed to deter animals, fungi, oomycetes, bacteria, or other plants
(Hartmann, 2007). Finally, at the molecular level, plants have developed a
broad recognition repertoire to compensate for the lack of an adaptive
immune system. Plant immunity mainly relies on the perception of pathogen-
associated molecular patterns (PAMPs) or of microbial effector proteins.
PAMP-triggered immunity (PTT) involves diverse responses such as stomata

closure, production of reactive oxygen species (ROS) and nitric oxide (NO),
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biosynthesis of antimicrobial compounds, and hormonal defense responses
involving salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) (Bigeard et
al., 2015). Some pathogens can suppress PTI through the production of
effector proteins that translocate into the plant cell; in a second line of plant
defense, such effectors are recognized by R (resistance) proteins, leading to
effector-triggered immunity (ETT), which induces programmed cell death to
prevent the intruder from spreading throughout the plant tissue (Cui et al.,
2015). The signaling cascades of PTI and ETI converge downstream in

activating common immunity-related genes (Peng et al., 2018).

At the same time, plants need to engage in beneficial cross-kingdom
interactions, e.g. with fungi and bacteria, to ensure nutrient uptake and
exchange (Finkel et al., 2017). As a result, diverse strategies evolved to
distinguish friend from foe and to ensure survival and fitness in changing
biotic environments (Holeski et al., 2012). The proper distinction from
wanted and unwanted interactions requires a fine-tuned adjustment of the

regulatory systems.

While the relevance of host genotype for biotic interactions has been known
for a long time, recent studies have highlighted that the plant epigenotype -
the epigenetic configuration of the host genome at one or several genomic
loci - is also part of the equation (Alonso et al.,, 2018). In turn, there is
accumulating evidence that the plant epigenetic machinery is directly involved
in plant defense responses (Deleris et al., 2016) and in the establishment of
memory to environmental stress (reviewed in He & Li, 2018; Ashapkin et al.,
2020). Therefore, both the epigenetic configuration of the host and the effect
of biotic interactions thereon play a role in such responses. The epigenetic
makeup of plants (and of most eukaryotic organisms) consists of the totality

of DNA methylation, histone modifications, and - depending on the
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definition - small RNAs (sSRNAs). Alone or in combination, these epigenetic
marks define local chromatin accessibility, which ultimately determines gene
expression and hence also potentially contributes to plant defence,

establishment of symbiosis, etc.

In this review, we revisit the recent literature on the role of epigenetics in the
establishment and modulation of plant biotic interactions. Readers interested
in the epigenetic contribution to antiviral defense are referred to two recent
reviews on the topic (Prasad et al., 2019; C. Wang et al., 2019). Because the
interaction systems studied so far have been very diverse, we decided to
structure our review by the type of epigenetic modification rather than by
organism. Towards the end, we will elaborate on what we think are future

questions worth addressing in the field.

DNA METHYLATION IN INTERACTIONS WITH PESTS

Among the epigenetic mechanisms that control gene expression in
eukaryotes, the one studied most extensively is DNA methylation (Feng et
al., 2011; Vanyushin & Ashapkin, 2011). Two types of DNA methylation have
been detected in plant genomes: rare N6-adenosine methylation (6mA) (Liang
et al., 2018) and 5-cytosine methylation (5mC). Here, we will use the term
DNA methylation interchangeably with 5mC. In plants, DNA methylation
occurs in the symmetric contexts CG and CHG, and the asymmetric context
CHH (where H is any base but G). CG methylation is the type mainly found
in protein-coding genes, while repetitive sequences and transposable elements
are generally densely methylated in all contexts (Cokus et al., 2008; Lister et
al., 2008; Lopez Sanchez et al., 2016). Symmetric CG and CHG DNA
methylation is maintained by the DNA methyltransferase MET1 and the
plant specific methyltransferase  CHROMOMETHYLASE 3 (CMT3),
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respectively, which also functionally links DNA methylation and
demethylation of lysin 9 of histone H3 (H3K9me2)(Du et al., 2012; Woo et
al., 2008). De novo DNA methylation in all contexts is controlled by the RNA-
directed DNA methylation (RdADM) pathway, involving DOMAINS
REARRANGED METHYLTRANSFERASE 2 (DRM2) (Cao & Jacobsen,
2002). Alternatively, CHH methylation is under the control of CMT2 in
cross-talk with histone H3 methylation (Stroud et al., 2014). Removal of
DNA methylation is carried out by DNA glycosylases of the DEMETER
family via base excision (Gong et al, 2002). In A. thaliana, this family
comprises DME, REPRESSOR OF SILENCING 1 (ROST7), and
DEMETER-LIKE 1 (DML7) and DMIL.2 (Gong et al, 2002). DNA
methylation can change dynamically in response to environmental cues,
including abiotic and biotic stresses (H. Zhang et al., 2018). Moreover,
because DNA methylation patterns can be copied from mother to daughter

cells, it has been postulated as the carrier of heritable epigenetic information.

The role of DNA methylation in plant defense has been extensively
characterized (Hewezi et al., 2018; Ramirez-Prado et al., 2018). The general
trend emerging from many studies is that DNA methylation negatively
regulates plant defense; in other words, loss of DNA methylation correlates
with enhanced resistance (L6épez Sanchez et al., 2016)]. This is illustrated by
the fact that several Arabidopsis mutants depleted in DNA methylation, such
as met1-3 or the drm1 drm2 cmt3 (dde) triple mutant, showed stronger resistance
to the bacterial pathogen Psexdomonas syringae (Pst) and increased expression
of defense-related genes compared with Columbia-0 (Col-0) wild-type plants
(Dowen et al., 2012; Espinas et al., 2016). This is in spite of these mutants
having fundamentally different DNA methylation patterns: while ze#7-3 has

severely reduced global CG methylation, dde is depleted of CHG and - to a
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lesser extent - CHH methylation (Stroud et al., 2013), suggesting that there
might be a hub at which these two DNA methylation pathways converge in
the context of plant defense. In line with this idea, w1 nrpd2 double mutants
(NRPD?2 is a subunit of RNA polymerase IV, a central component of the
RdADM pathway), displayed enhanced resistance to Ps# (Yu et al., 2013). The
same study showed that treatment of Arabidopsis with the bacterial flagellin-
derived peptide FLG22 caused downregulation of key components of the
RdADM pathway (Yu et al., 2013), resulting in decreased CHH methylation
levels. Together, these data indicate that DNA de-methylation - potentially in
combination with the deposition of specific histone marks - might be a
priming signal that predisposes defense-related genes to be rapidly expressed
during an ensuing infection by the same or another pathogen. Following that
rationale, methylation-deficient mutant plants would be “mimicking” this
primed state and thus respond more rapidly and/or more efficiently when
exposed to a pathogen. The same group recently showed that ROS1 is
necessary to prevent gene-silencing RADM from spreading from proximal
TEs into the promoter of the defense-related gene RECEPTOR-LIKE
PROTEIN 43; failure to do so resulted in masking of the binding site of
PAMP-responsive  WRKY transcription factors (Halter et al, 2021;
Zervudacki et al., 2018).

But the relationship might be more complicated than a strict promotion of
defense by hypo- or de-methylation. Lépez Sanchez and colleagues observed
antagonistic effects of Hyaloperonospora arabidopsidis (Hpa; downy mildew)
infection in hyper- and hypo-methylated mutants of A. #haliana: on the one
hand, hypo-methylated #7pe mutants (impaired in RNA Polymerase V and
hence in RdADM) were more tolerant to Hpa, the hyper-methylated 7os7

mutant was more susceptible (Lopez Sanchez et al., 2016). These antagonistic
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responses correlated with opposite expression patterns of SA-dependent
genes, up-regulated in #rpe vs. ros1. However, the effect was inverse for
infections with the necrotrophic pathogen Plectosphaerella cucumerina, with nrpe
being more susceptible and with JA-induced genes down-regulated compared
to ros7. Whether JA-responsive genes are a direct target of DNA methylation
or whether a simultaneous up-regulation of SA-responsive genes, which act

antagonistically to the JA response, requires further investigation.

One might argue that it might be difficult to draw causal relationships by
studying epigenetic pathway mutants with pleiotropic phenotypes. Epigenetic
recombinant inbred lines (epiRILs) were established more than a decade ago
in the model plant A. thaliana by crossing wild-type Col-0 to either metl
(Reinders et al., 2009) or ddm1 (Johannes et al., 2009) (the latter a loss-of-
function mutant of the chromatin remodeler DECREASE IN DNA
METHYLATION 1 with a similarly depleted global methylation as et7).
Descendants of this cross are near-isogenic but show individual mosaic DNA
methylation patterns (Catoni & Cortijo, 2018; Cortijo et al., 2014) epiRILs
responded differently to JA and SA and varied in susceptibility to Pst
infection, suggesting an underlying epigenetic cause (Latzel et al., 2012, 2013;
Y.-Y. Zhang et al., 2018) Compelling evidence came from a recent study by
Furci and colleagues: by measuring infection outcome with the biotrophic
oomycete (Hpa) on more than 100 epiRILs from the Col-0 x ddm1 cross, the
authors identified four epigenetic quantitative trait loci (epiQQTLs) explaining
more than 60% of the variance in susceptibility (Furci et al., 2019; Figure
1A,B). Lines carrying a hypomethylated allele of these epiQTLs displayed a
primed state of many defense-related genes, but few of these genes were
contained in the actual mapping intervals, suggesting regulation 7 #rans by still

unresolved mechanisms (Figure 1C).
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Associations between loss of DNA methylation and plant defense are not
limited to Arabidopsis: hypomethylated rice plants treated with the DNA
demethylating agent 5-azadeoxycytidine (5-aza) showed enhanced resistance
to the bacterial pathogen Xanthomonas (Akimoto et al., 2007). Recently, it was
shown that infection of diploid wheat Aegilops tauschii with the biotrophic
pathogen Blumeria graminis f. sp. tritici (Bgt) reduces ARGONAUTEA4a levels
as well as 24-nt siRNAs and CHH methylation in stress response genes that

are in close proximity to TEs (Geng et al., 2019)].

DNA methylation is not only implicated in the interaction with fungi or
bacteria; several studies have characterized its role in plant-nematode
interactions (for a full review on the topic, see (Hewezi, 2020). Identification
of differentially methylated regions (DMRs) in soybean in response to
infection by the soybean cyst nematode Heterodera glycines revealed mostly
hypo-methylation in the plant root (Hewezi et al., 2017; Rambani et al., 2015).
A recent follow up study showed that some of these methylation changes
affected the expression of plant microRNA (miRNA) genes (Rambani et al.,
2020), of which at least one played a role in the plant’s response to the

nematode.

DNA METHYLATION IN BENEFICIAL INTERACTIONS

Recent studies highlighted the role of DNA methylation in symbiotic and
commensal interactions (Zogli & Libault, 2017). In the legume Medicago
truncatula, the homolog of Arabidopsis DEMETER, MtDME, is expressed in
the differentiation zone of forming nitrogen-fixing nodules that arise from
the symbiosis between M. fruncatula and a  Sinorbizobium bacterium.
Suppression of MtDME prevented the formation of nodules and led to

transcriptional misregulation of several hundred nodulation-related genes,
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including many members of the nodule-specific cysteine-rich (INCR) gene
family that are essential for nodule formation (Satgé et al., 2016). In line with
this, the successive endopolyploidization that is a hallmark of nodule
formation correlated with DNA methylation changes in about half of all NCKR
genes (Nagymihaly et al., 2017); a directional correlation between hyper-
/hypo-methylation and transcriptional down-/up-regulation was not
detectable. Because this study wused reduced-representation bisulfite
sequencing (RRBS), the full extent or directionality of the methylation
changes might have remained unclear. However, a recent study in soybean
elucidated the association between DNA methylation, gene expression and
alternative splicing in soybean nodules development and identified CHH
hyper- and CHG hypo-methylation as prime features of the nodule
methylome (Niyikiza et al., 2020).

Very little and partially contradicting information is available on the role of
epigenetic mechanisms in mycorrhizal symbiosis. According to two reports,
colonization of two Geranium species by arbuscular mycorrhizal fungi (AMF)
caused increased DNA methylation levels in the host (Varga & Soulsbury,
2017, 2019). In contrast, AMF colonization in sunflower (Helianthus annuns)
led to a specific transcriptional activation of certain Copia retroelements,
suggesting a loss of suppressive DNA methylation at these loci (Vangelisti et
al., 2019). All of these studies had limited power to resolve DNA methylation
changes at the genomic level but might serve as a starting point for more

detailed future analyses.

Beyond bilateral interactions, it is interesting to ask whether the epigenetic
setup of the host influences or reacts to the more general state of plant-
microbe associations. The advent of high-throughput sequencing has enabled

the quantitative and qualitative assessment of the holobiont, the combination
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of the host and all of its associated microorganisms (Vandenkoornhuyse et
al., 2015). Even though to date there does not seem to be a systematic
investigation of such associations, first studies in this area provide intriguing
insights that “methylation moulds microbiomes” (Wilkinson & Ton, 2020).
First evidence came from near-isogenic A. thaliana plants that had been
regenerated via somatic embryogenesis and that carried epialleles related to
the regeneration process and the tissue of origin of the embryos (Wibowo et
al., 2018). Plants regenerated from root-derived somatic embryos showed
significantly different association with bacteria, both with regard to natural
communities in soil and after inoculation with synthetic communities
(Wibowo et al., 2018). Vilchez and colleagues were able to establish a more
direct association (Vilchez et al., 2020). Plants often shape the quantitative
and qualitative composition of their microbiota by the release of specialized
(also known as secondary metabolites)(Schandry & Becker, 2020). This study
showed that the synthesis of myo-inositol production is under the
antagonistic regulation of ROS1 and RdDM, and that active demethylation
of biosynthesis genes is required for the establishment of beneficial Bacillus

megaterinm in the rhizosphere of A. thaliana.
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Figure 1. Locus-specific DNA hypomethylation promotes resistance to pathogens.

A) Epigenetic recombinant lines (epiRILs) were derived from a cross of regularly
methylated (blue hairpins) A. thaliana Col-0 wild-type with a methylation-depleted
(white hairpins) ddm1 mutant. For better visibility, methylation is indicated for only
one chromatid of each homologous chromosome. F1 plants were selfed to generate
several hundred F2 lines (Johannes et al 2009). Only lines carrying the homozygous
DDMT1 wild-type allele were maintained. These lines were propagated for several
generations by single-seed descent, resulting in lines with mosaic epigenotypes. B)
In generation F9, resistance of 123 epiRILs to the oomycete Hyalonospera arabidopsidis
(Hpa) was determined and leaves were divided into phenotypic groups based on the
level of Hpa colonization. By statistically testing for associations between infection

levels and the sequenced epigenotype of all lines, Furci and colleagues identified four
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hypomethylated epigenetic quantitative trait loci (epiQTLs) correlating with elevated
resistance; the red box schematically indicates one such epiQTL. C) Mapped
epiQTLs regulate defense-related genes iz trans. Here, three hypothetical ways of
trans regulation are shown: short interfering RNAs (siRNAs) might arise from the
hypomethylated epiallele and trans-regulate heterochromatin formation by sequence
complementarity. By yet unresolved mechanisms, long intergenic non-coding RNAs
(lincRNASs) can similarly change the chromatin configuration 7 frans. Ultimately,
interactions between distant chromosomal loci could be altered by the change in the
epigenetic configuration of one of these loci. Colored boxes are used to indicate

physical loci.

SMALL RNAS IN CROSS-KINGDOM INTERACTIONS

In the context of the very complex defense system that plants have evolved
to protect themselves, non-coding RNAs (ncRNAs) act as key players by
reprogramming host gene expression in response to infection of a wide range
of microbes and pathogens. Besides their role in antiviral defense, which is
outside the scope of this review, ncRNAs of different types have been

implicated in the response to pathogens.

Small RNA (sSRNA) movement between hosts and interacting organisms can
induce gene silencing through cross-kingdom trafficking. One of the most
intriguing recent findings was that 4. #haliana packages SRNAs into exosome-
like vesicles. These vesicles accumulate at sites of infection by the fungal
pathogen Botrytis cinerea. After fusion with the fungal cells, the vesicles deliver
their content and the SRNAs inhibit infection-relevant genes to attenuate or
even prevent the attack (Cai et al., 2018). However, pathogens have learned
to make use of similar strategies by hijacking the plant’s small RNA

machinery. In a mechanism coined cross-kingdom RNA interference
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(ckRNAI), the oomycete Hpa releases sSRNAs into the plant cell (A. #haliana)
and utilizes plant ARGONAUTE1 (AGO1) to suppress plant immunity
(Dunker et al., 2020). A complex sSRNA-mediated interaction was described
between A. thaliana and the hemibiotrophic oomycete pathogen Phytophthora
capsici - (Hou et al., 2019). Infection prompted locus-specific production of
sRNAs that suppressed pathogen genes and thereby infection; however, the
oomycete counteracts this plant defense by interfering with siRNA
biogenesis. Altogether, these studies suggest that SRNAs, long thought to be
exclusive antiviral agents, also act against microorganisms and that cross-
kingdom RNAI is an essential element in plant immunity. Mobile mRNAs
and miRNAs have also been implicated in plant-plant interactions; e.g.,
mobile mRNAs moving between both species were detected in Arabidopsis
and tomato plants parasitised by the dodder species Cuscuta pentagona (Kim et
al., 2014; LeBlanc et al., 2013). MiRNAs transferred from C. campestri to its
host A. thaliana were shown to benefit the parasite (Alakonya et al., 2012). In
the above examples, no altering of the chromatin state in either host or
pathogen has been described, by which they do not fulfill the criteria of
epigenetic regulation sensu stricto. It should be noted, however, that a
systematic analysis of cross-kingdom epigenetic effects is lacking to date.
Finally, while there are examples for sSRNAs acting across exkaryotic kingdoms,

their role in interactions between plants and bacteria remains unclear.

HISTONE MODIFICATIONS AS A REGULATORY ENTITY AND A
TARGET

The third major epigenetic component are post-translational modifications
(PTMs) of histones. Histone acetyltransferases (HATs) and deacetylases
(HDACs), methyltransferases (HMT) and demethylases add or remove PTMs
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at the N-terminal histone tails that protrude from the core histone octamer
(Fan et al., 2015). Depending on the exact position of the amino acid that is
modified and the type of modification, histone PTMs result in relaxed or
condensed chromatin conformations, with the respective consequences for
transcriptional activity. Histone acetylation favours an open chromatin
configuration and therefore is associated with active transcription, while
histone methylation can have an active or repressive effect on transcription
depending on the residues that are modified (Garner et al., 2016). Because of
the dynamic machinery of writers and erasers that set and remove such PTMs,
histone modifications can change very rapidly, inducing global transcriptional
changes (Table 1) or impacting transcription at a given genomic locus in
response to an external signal such as an abiotic or biotic stress (Ashapkin et

al., 2020; Berr et al., 2011)

In the context of biotic stress, both HATs and HDACs have been involved
in plant defense response. For example, the elongator complex subunits
ELONGATOR PROTEIN2 (ELP2) and ELP3, both of which have
acetyltransferase activity, have been involved in the basal defense response
and in ETI. Mutation in ELP3 caused higher susceptibility to P. syringae po.
macnlicola (Psm) in Arabidopsis and a delay of defense gene induction
following SA treatment or pathogen infection (DeFraia et al., 2013). Similarly,
an ELP2 subunit is required for rapid defense gene induction upon infection
with bacterial or fungal pathogens (DeFraia et al., 2010; C. Wang et al., 2015).
Arabidopsis ¢/p2 mutants showed increased susceptibility to the necrotrophic
fungi B. cnerea and failed to induce JA/ET defense pathway marker genes
such as PDF1.2, WRKY33 and ORA59 (C. Wang et al., 2015). GCN5, another
Arabidopsis HAT, regulated SA-mediated defense genes by acetylating
H3K14 at their 5' and 3' ends (Kim et al., 2020). Several studies have explored
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the role of HDACs in plant defense. Generally, HDACs have been described
as negative regulators of SA-mediated defense response, since most of the
plant HDAC mutants studied so far showed increased resistance to diverse
pathogen infections (Ding & Wang, 2015; Espinas et al., 2016). For instance,
Arabidopsis mutant’s hdal9 and hdaG are more resistant to Psz and show
increased expression of SA-related defense genes PR7 and PR2 (Choi et al.,
2012; Y. Wang et al., 2017). Similarly, mutants for the SRT2 deacetylase
showed resistance to Pstinfection and increased PR7 expression (C. Wang et
al., 2010). In rice, silencing of the histone deacetylase 701 (HDT701) also
caused elevated transcription of defense-related genes and a resistant
phenotype to both Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae (Xoo)
pathogens (Ding et al., 2012). Arabidopsis HDA9 negatively regulates plant
defense via the regulation of nucleotide-binding leucine-rich repeat (NLR)
gene expression. Double mutants of HDA9 and its interaction partner
HOS15 (hda9 hos15) showed enhanced resistance to Psz and increased
expression of the NLR gene SCNT under infection conditions (Yang et al.,
2020). In line with the role of HDACs as negative regulators of SA-mediated
defense response, NO-mediated inhibition of HDACs increased acetylation
in many genes involved in plant defense, including several SA defense genes
(Mengel et al., 2017). Recently, another study uncovered a function of histone
H2B in regulating bacterial defense when showing that H2B formed a
regulatory module with the MAP kinase MPK3 that induced global genome
acetylation changes during plant defense signaling (Latrasse et al., 2017). This
study provided a mechanistic model for protein kinase signaling and its direct
impact on chromatin landscape upon pathogen signaling. Contrary to the
described resistance phenotypes of HDAC mutants, /25 mutants presented
increased susceptibility to Psz (Latrasse et al., 2017). In a very different

scenario, HDACs become the target of the organismic interaction:
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benzoxazinoids, plant derived secondary metabolites that are produced in
many grass species, can inhibit the growth of neighbouring species. The
benzoxazinoid-derived compound 2-amino-3H-phenoxazin-3-one (APO)
inhibited not only root growth of A. thaliana but also HDAC activity 7 vitro
and caused global increase of histone H3 acetylation and altered gene

expression (Venturelli et al., 2015).

Histone methylation plays an ambiguous role in plant biotic
interactions. Due to the dynamic role of methylation in regulating
transcription, both histone methyltransferases and demethylases have been
proposed as positive or negative regulators of plant defense. The Arabidopsis
demethylases JUMON]I 27 (AtJM]27), AtJM]J14 and the INCREASE IN
BONSAI METHYLATION 1 (IBM1), as well as the rice demethylase
OsJMJ704 are positive regulators of defense. AtJM27 and OsJM]704
suppress the transcription of master negative defense regulators: AtJM]27
represses  WRKY25 by removing H3K9mel/2; OsJM]J704 represses
OsWRKY66, OsNRR, and Os11N3 via H3K4me2/3 demethylation (Chan
& Zimmerli, 2019; Dutta et al., 2017; Hou et al., 2015; Li et al., 2020), while
AtJMJ14 and IBM1 are required for the expression of several defense genes
involved in local and systemic defense (Chan & Zimmerli, 2019; Li et al.,
2020). The methyltransferases SDG8 and SDG25 have been implicated in
PTI, ETT and systemic acquired resistance (SAR) against bacterial and fungal
pathogens. Sdg§ and sdg25 single as well as sdg8 sdg25 double mutants
displayed increased susceptibility to both B. ¢nerea and Pst (De-La-Pefia et al.,
2012; Lee et al., 2016). This susceptible phenotype was attributed to an altered
global histone methylation profile at the carotenoid CCR2 and CER3 loci,
involved in carotenoid and cuticular wax biosynthesis, respectively (Lee et al.,

2010). Interestingly, H2B ubiquitination was reduced at CCR2, CER3, and at

2 )
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the H2B-monoubiquitinated resistance gene SINCT in sdg mutants, indicating
crosstalk between the histone methylation and ubiquitination (Lee et al.,
2016). Mutations in the methyltransferase gene ATXR7 show reduced H3K4
methylation in SNC7 and compromised resistance to Hpa (Xia et al., 2013).
Another study highlighted the importance of the TE-mediated modulation of
H3K9me?2 levels at the A. thaliana disease resistance gene RPP7. The COPLA-
R7 retrotransposon inserted within this gene recruits the histone mark
H3K9me2 to this locus, affecting the choice between two alternative RPP7
polyadenylation sites in the pre-mRNA and thereby influencing the critical

balance between two distinct transcript isoforms (T'suchiya & Eulgem, 2013).

Several recent studies investigated the role of chromatin remodeling
in plant defence. The Arabidopsis SWI/SNF class chromatin remodeling
ATPase SPLAYED (SYD) is a positive regulator of defense against
necrotrophs. Walley et al. showed that SYD regulates the JA/ET response
during B. cznerea infection and is crucial for the defense response, while it was
not required in defence against Psz (Walley et al., 2008). In A. thaliana, 1oss-
of-function mutations in the PIE (PHOTOPERIOD-INDEPENDENT
EARLY FLOWERING1) and SWC6 (SWR1 COMPLEX 6) subunits of the
chromatin remodeling complex SWR1c compromised basal resistance and
ETI, while subunit ARP6 (ACTIN-RELATED PROTEING) loss of function
enhanced it (Berriri et al, 2016). Another study showed the role of
MICROCHORDIA (MORC) proteins in regulating chromatin accessibility
during plant-pathogen interaction: A. thaliana morc1/2 mutants infected with
Pst showed an enriched proportion of differential DNase hypersensitive sites
(DHS) at TEs, suggesting that MORCs modulate plant immune responses by
binding to TEs, influencing both their expression and that of proximal genes

following pathogen infection (Bordiya et al., 2016).
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Table 1: Post-translational histone modifications in plant-organismic

interactions.

Chemical Histone Observations References

modification modification

Acetylation  H3K9ac/H3Kl4ac Histone acetyltransferase (Kim et al.,
GCN5  regulates H3K14 2020)
acetylation levels at stress
related genes

H3K9%ac HDA9-HOS15 interaction (Yang et al.,

regulates nucleotide-  2020)
binding leucine rich repeat
or Nod-Like Receptor
(NLER) genes expression
thorough H3K9ac
deposition during defense
response. Double mutants
hda9 hos15 showed

enhanced resistance to Pst

H3K9ac and Nitric oxide (NO)  (Mengel et
H3K14ac mediated HDAC al, 2017)
inhibition regulates

expression of defense

related genes.

pan-H3ac Allelopathic (Venturelli
benzoxazinoid-derived etal.,, 2015)
compound 2-amino-3H-

phenoxazin-3-one (APO)
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inhibits HDACs activity
causing global increase of
histone H3 acetylation and

altered gene expression.

H3K9ac

Phytoplasma infection of
Paulownia fortune alters

transcriptional regulation.

(Yan et al,,
2019)

H4K12ac

Differential acetylation
affects transcription of
stress-responsive  genes
including  resistant  (R)
proteins and stress related
transcription  factors in
Phaseolus  vulgaris infected
with rust (Uromyces

appendiculatus).

(Ayyappan
et al., 2015)

H3K9ac

Rice roots infected with
nematode Meloidogyne
graminicola show increased
levels of H3K9ac at genes
associated with defense

response.

(Atighi et
al., 2021)

Methylation H3K4mel/2/3
and

H3K36mel/2/3

Histone methyl
transferases SDG8  and
SDG25  regulate global
defense gene expression

affecting  H3K4  and

(De-La-
Pefia et al.,
2012; Lee et
al., 2016)
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H3K36 methylation. Single
and double mutants show
increased susceptibility to

both Botrytis cinerea and Pst.

H3K4me2/3

Rice histone lysine
demethylase  Jumonji704
(JMJ704) controls defense
response to bacterial blight
disease. JM]J704 suppresses
transcription of defense
negative regulators genes
such as NRR,
OsWRKY62, and Os11N3
by reducing levels of the
activating marks

H3K4me2/3

(Hou et al,,

2015)

H3K4me3
H3K36me3

and

Altered transcriptional
regulation of genes
involved in metabolic

pathways, biosynthesis of

secondary metabolites,
phenylpropanoid
biosynthesis, plant-

pathogen interaction, and
plant  hormone  signal

transduction during

(Yan et
2019)

al.,




Chapter 1

phytpolasma infection in

Panlownia fortune

H3K4me2

Differential ~ methylation
affects transcription of
stress-responsive  genes
including  resistant  (R)
proteins, detoxifying
enzymes, and  genes
involved in ion flux and
cell death in  Phaseolus
vulgaris infected with rust

(Uromyces appendicnlatus).

(Ayyappan
et al., 2015)

H3K27me3

Loss of the polycomb
repressive complex protein
LHP1 induces reduction in
H3K27me3  levels at
jasmonic acid (JA) and
abscisic  acid  (ABA)-
induced TFs ANAC019
and ANACO055 as well as
some of their targets. Lhpl
mutants show increased
aphid  resistance, ABA

sensitivity, and increased

(Ramirez-

Prado et al.,

2019)
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susceptibility to
Psendomonas syringae

(continued in next page)

H3K9me2/3

Dynamic histone
regulation in root-knot
nematode (M. graminicola)
infection in rice.
H3K27me3 is strongly
enriched while H3K9me?2
is generally depleted in
galls formed in root upon
infection. Differential
histone peaks are
associated ~ with  plant

defense  genes.  Plants

overexpressing two
histone lysine
methyltransferases

(OsSDG729, OsSDG740)
show contrasting
susceptibility  to M.

graminicola.

(Atighi et
al., 2021)
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CONCLUSION

Besides host genotype (G), environment (E) and the interaction of both
(GxE), host epigenotype is emerging as another component to be taken into
consideration when investigating the relationship between plants and their
biotic interactors. The examples provided here indicate that epigenetic
regulation contributes to the outcome of plant defense, symbiosis, and
parasitism. Future studies will be necessary to understand the molecular
dependencies of the different layers of regulation and the impact of naturally
occurring plant epigenetic variation on biotic interactions. Moreover, most
studies to date have focused on the epigenetic configuration of the host, while
there is limited data on epigenetic mechanisms or variation in the interactors,
and how these might influence infection outcome. For example, in a rare
investigation of epigenetic polymorphisms on the pathogen side, Wang et al
showed that epiallelic H3K27me3 caused silencing of the Phytophthora sojae
avirulence effector gene Avrlb and allowed evasion of the host immune
recognition (Wang et al., 2020). Another major current limitation is that study
systems have not been standardized in the field and often make it difficult to
compare studies, either because different biotic interactors were chosen or
because the general setup was different. Both of these hurdles can be
overcome by future collaborative efforts between the fields of microbiology,

plant immunity, and epigenetics.
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ABSTRACT

Plant metabolic pathways and gene networks involved in the response
to herbivory are well-established, but the impact of epigenetic factors as
modulators of those responses is less understood. Here, we use the
demethylating agent 5-azacytidine to uncover the role of DNA cytosine
methylation on phenotypic responses after short-term herbivory in
Thlaspi arvense plants that came from two BEuropean populations with
contrasting flowering phenotypes expected to differ in the response to
experimental demethylation. The experimental design followed a 2x3
factorial design that was replicated for each flowering-type. First, half
the seeds were submerged in a water solution of 5-azacytidine and the
other half only in water, as controls. Then, we assigned control and
demethylated plants to three herbivory categories (i) insect herbivory,
(ii) artificial herbivory, and (iii) undamaged plants. The effects of the
demethylation and herbivory treatments were assessed by quantifying
genome-wide global DNA cytosine methylation, concentration of leaf
glucosinolates, final stem biomass, fruit and seed production, and seed
size. For most of the plant traits analysed, individuals from the two
flowering-types responded differently. In late-flowering plants, global
DNA methylation did not differ between control and demethylated
plants but it was significantly reduced by herbivory. Conversely, in early-
flowering plants, demethylation at seed stage was still evident in leaf
DNA of reproductive individuals whereas herbivory did not affect their
global DNA methylation. In late-flowering plants, artificial herbivory
imposed a stronger reduction than insect herbivory in global DNA
methylation and final stem biomass, and induced higher concentration

of aliphatic glucosinolates. In early-flowering plants, the effects of
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herbivory were non-significant for the same traits. Finally, the effect of
herbivory on reproductive parameters varied with the level of
demethylation and the plant flowering-type. Although further
investigations with more populations and families are required to
confirm our results, they suggest that the genetic background of
experimental plants and timing of damage can affect the response to
herbivory and point towards multifaceted genetic-epigenetic

interactions in determining herbivory-induced phenotypic plasticity.
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INTRODUCTION

Interactions between plants and herbivorous insects are ubiquitous and
these associations are diverse among biomes, communities and species
(see e.g., (Fornoni et al., 2004; Moreira et al., 2018). Plants have evolved
multiple traits to reduce herbivory, including mechanical and chemical
defences and poor nutritional quality (Carmona et al., 2011). Some plant
species also show the capacity to respond to herbivory through
phenotypic plasticity. Such responses involve the activation of defence
signalling pathways regulated by plant hormones such as jasmonic acid
(JA), salicylic acid and ethylene (Pieterse & Dicke, 2007) and vary with
timing, salivary factors associated to certain consumers, and amount of
damage (see e.g.(Agrawal, 2000b; Bossdorf et al., 2004; Ziist & Agrawal,
2017). In order for a response to become evolutionarily successful, it
should reduce the impact on fitness even when incurring some costs
(Cipollini et al., 2003; Douma et al., 2017). The magnitude of plastic
phenotypic change varies across and within species and such variation
could stem from both genetic and environmental factors (Josephs,

2018; Ogran et al., 2020; Wagner & Mitchell-Olds, 2018).

Besides genetic and environmental components, epigenetic
factors such as DNA methylation, small RNAs and post-translational
histone modifications have emerged as relevant modulators of plant
responses to biotic challenges (Herrera et al., 2018; Ramos-Cruz et al.,
2021). DNA methylation is the best studied epigenetic mechanism in
plants and experimental evidence suggests its link to phenotypic
plasticity. Experimental approaches to uncover the role of DNA
methylation on ecologically relevant plant traits have often used DNA

demethylating agents such as 5-azacytidine or zebularine (Alonso et al.,
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2017; Fieldes et al., 2005; Latzel et al., 2020; Puy et al., 2018; Richards
et al, 2010; Verhoeven & van Gurp, 2012). A combination of
manipulation of DNA methylation with controlled herbivory
experiments can be a fruitful strategy to elucidate the contribution of
DNA methylation to specific plant responses after herbivory (Alonso
et al,, 2018, 2019). Although we focused on DNA methylation, it might
be worth to indicate that 5-azacytidine is able to reduce cytosine
methylation also in RNA. This aspect is out of our scope but it might

contribute to plant response to stress (see e.g., (Tang et al., 2020).

Here, we studied the effects of 5-azacytidine and controlled
herbivory on the performance and defence of the annual plant Thlaspi
arvense L. (Brassicaceae) to evaluate the relationships between herbivory,
phenotypic plasticity and epigenetic changes in plants. We selected this
fast growing and widespread annual plant because many studies
contributing to the molecular understanding of inducible defenses have
been performed in the Brassicaceae (Rasmann et al, 2012; Lucas-
Barbosa et al., 2017). This plant family is well characterized by the
presence of specific specialized (or secondary) compounds, the
glucosinolates (Halkier, 2016). These compounds are classified as
aliphatic, indole and aromatic and, together with their breakdown
products that are released upon tissue disruption, play an active role in
plant defence (Wittstock et al., 2016; Zust et al., 2012). In particular,
aliphatic glucosinolates are found in higher concentrations after
herbivory or JA application, have a role in resistance against pest insects
(Guo et al., 2013; Mikkelsen et al., 2003; Textor & Gershenzon, 2009)
and their relative abundance can vary geographically within a species

(e.g., Zust et al., 2012). Furthermore, T. arvense has agronomic value as

T o
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potential biofuel crop and it shows contrasting phenotypic traits
associated to geographic origin and length of life-cycle that may be
relevant to better understand variation in induced responses (Best &
Mclntyre, 1975; Moser et al., 2009; Royo-Esnal et al., 2015; Dorn et al.,
2015; Claver et al., 2017).

Our experimental approach included demethylation with 5-
azacytidine at seed stage (Alonso et al, 2017) and three different
herbivory treatments: artificial leaf damage combined with JA-spraying,
consumption by caterpillars of Pieris brassicae (Lepidoptera: Pieridae) and
undamaged controls. The two herbivory treatments were expected to
elicit analogous responses by dint of JA addition and the artificial one
aimed to mimic consumption by any insect that could provide insight
on generality of the observed responses (Zust & Agrawal, 2017). We
estimated the genome-wide global DNA methylation level in leaves of
reproductive adult plants and measured concentration of leaf
glucosinolates, final stem biomass, fruit and seed production, and seed
mass to test whether seed-stage demethylation influenced plant
responses to short-term herbivory stress. As we were uncertain which
plant-type would be more responsive to herbivory, we used seeds
collected from two European populations that exhibited contrasting
phenotypes, which roughly correspond to two formerly described
strains and commercial varieties, namely early- and late-flowering types
that differ in foliar and ecological traits (Royo-Esnal et al., 2015), and
belonged to two different genetic clusters (Galanti et al., 2022). Our

specific postulations were:

T s
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Experimental demethylation at seed germination will reduce
leat DNA methylation levels of reproductive adult plants of T.
arvense, at least in late flowering phenotypes (Burn et al., 1993)
Under controlled conditions, short-term herbivory will increase
glucosinolates and can reduce plant fitness or not depending
on tolerance (Nufnez-Farfan et al., 2007; Textor & Gershenzon,
2009).

Also, herbivory can alter DNA methylation, although the
magnitude and sign of this latest effect is uncertain

Altering DNA methylation will impair plant inducible defences
(Latzel et al., 2020) and modify at least some of the plant

responses after herbivory.
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MATERIALS AND METHODS

STUDY SYSTEM

Thlaspi arvense L. (Brassicaceae) is a diploid annual species with a small
genome size (1C = 539 Mb) (Johnston et al., 2005) and has a high degree
of ecotypic variation, including variance in its life-cycle phenology and
the need of previous vernalization to induce flowering (Burn et al.,
1993). The wild population exhibit significant genetic diversity,
phenotypic differentiation (Frels et al., 2019; Sedbrook et al., 2014) and
epigenetic variation associated to environmental drivers (Galanti et al.,
2022). Plants initially grow as a vegetative rosette, then bolt and produce
racemes of flowers at the apices of the terminal and axillary branches.
Plants of the eatly-flowering spring-type produce only a few leaves
before internodes begin to elongate and individuals switch to
reproductive growth, whereas the late-flowering winter-type forms a
rosette of large leaves and requires vernalization to start flowering
(Moser etal., 2009). The two flowering types have genetic and ecological
differences (Mclntyre & Best, 1978; Dorn et al., 2018). The species
mainly self-pollinates and produces abundant siliques, each containing

10-20 seeds.

We used plants collected from two European populations with
contrasting flowering phenotypes (Supplementary Material S1) and
genetic backgrounds (Galanti et al., 2022). Plants collected near Uppsala
(59°49'N, 17°39'E, 26 m a.s.l, in central Sweden) were late-flowering
SE winter-type. Plants collected from Bossdorf (52°00° N 12°35’E, 151
m a.s.l, in north Germany) were early-flowering DE spring-type. The

two populations occurred in roadsides and field margins, with a soil
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depth of >50 cm. In the field, all the mature fruits from available
individuals (N = 12-15) were collected from each population in July-
August 2018 and stored in darkness for 3-4 months at room
temperature. In the lab, we counted fruits and seeds of each sampled
individuals and randomly selected three fruiting individuals per
population, each having at least 30 mature fruits containing dark-brown

seeds to obtain enough seeds for our experimental design (see below).

Insect herbivory assays were conducted by larvae of Pieris brassicae
(L.), a specialist herbivore that feeds only on plants in the Brassicaceae
(Lucas-Barbosa & Lucas-Barbosa, 2016). We obtained L2 instar larvae
from a commercial supplier (www.lombricesdecalifornia.com), reared
them on leaf cabbage and 1-2 days before the beginning of our

experiments they were fed with leaves of T. arvensis.

EXPERIMENTAL DESIGN, GROWING CONDITIONS, AND
TREATMENTS

We investigated the effects of experimental demethylation with 5-
azacytidine at seed stage and leaf herbivory on plant performance,
concentration of leaf glucosinolates, and epigenetic features of T.
arvensis plants using an experimental design in which the two factors
were crossed. More specifically, the leaf herbivory treatment had three
levels: insect herbivory (hereafter named “INSH?”), artificial herbivory
(“ARTH”) and undamaged controls (“CONH?”) and it was performed
on young plants grown from seeds that were previously assigned to each
of the two levels of the demethylation treatment: control (hereafter

named “CON”) and azacytidine-treated (“AZA”).
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Germination and plant growth were conducted in a growth
chamber (Aralab CLIMAPLUS 400) at Dofiana Biological Station, with
long-day (LD) conditions: 16h of light at 22 °C, and 8 h of darkness at
18 °C, and 55% humidity. Chamber shelves were at a short distance (<
35 cm) to a combination of fluorescent cool-white and purple light
tubes. Plants were regularly watered every 2 days during the germination
period (the first 3 weeks), and every 3-5 days during the rest of the
experiment. No fertilizer was applied during the whole experiment. In
total, plants were grown during 14 weeks and first herbivory
experiments were performed when plants were between 7 and 8 weeks
old, closely before flowering for late-flowering SE and at the time of

flowering onset for early-flowering DE.

Seed demethylation treatment. We selected 48 well-formed brown seeds per
study plant (hereafter families). In total, 240 seeds were used to begin
this experiment (2 population x 2-3 mother per population x 48 seeds
per mother family). Seeds were surface-sterilized with a 5% bleach
solution, washed with distilled water, individually scarified using clean
sandpaper and placed in distilled water for 48 h at room temperature.
For the demethylation treatment a 100 mM stock solution of 5-
azacytidine (Sigma A2385-100mg) in dimethyl sulfoxide (DMSO;
Sigma, St. Louis, MO, USA) was prepared, stored at —20 °C, and diluted
in water to 0.25 mM just before treatment (AZA). This nucleoside
analogue incorporates into the genome of proliferating cells during
DNA synthesis and traps DNA methyltransferases, targeting them for
degradation and resulting in genome-wide demethylation (Lopez et al.,
20106). In late-flowering SE T. arvense, this concentration has been

reported as optimum to induce changes in methylation levels without
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other nonspecific toxic effects (Burn et al., 1993). As a control, a mock
solution of DMSO in water (3:97; v: v) was used (CON). Half of the
seeds of each family were immersed respectively in AZA and CON

solutions during 48 h at 4 °C in darkness.

Seeds were then individually sown on commercial soil (Sustrato
Universal El Clavel de Martinez SL) on 10 cm diameter pots. Groups
of 14-15 pots were placed in trays and were randomized by the
provenance of the seeds (families and populations). After three weeks,
all emerged seedlings were subjected to vernalization at 5 °C during 21
d, with short day conditions (6 h of light and 16 h of darkness, watering
once a week), to shorten the period of vegetative growth and
synchronize flowering. We applied this protocol to all study plants
because vernalization was known to reduce DNA methylation in A.
thaliana (Burn et al., 1993). Thus, if applied only to late-flowering plants
we could blur the consequences of vernalization and demethylation
treatments applied to different sets of plants. For not having enough
seeds per family, we could not include further replicated study factors.
After vernalization, all the seedlings were re-transplanted into different
pots using an enriched soil brand (Sustrato Universal Gramoflor
Blumenerde) because of unsuitable quality of the previous one.
Seedlings were allowed to grow during 2-3 weeks under LD conditions

before further treatment.

Herbivory treatments. When plants were 7-8 weeks old, we selected up to
12 similar sized plants from each family and demethylation treatment,
and randomly assigned four of them to each of the three herbivory
treatments. Due to reduced germination rates such design was barely

possible for two families in late-flowering SE and three families in early-
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flowering DE. Altogether, we began this second part of the experiment
with a total of 113 plants (46 from SE and 67 from DE, allocating 3-4
replicates per family in every group of treatment). In plants assigned to
the ARTH treatment, simulated herbivory was induced by punching
holes in two similar sized and well-developed leaves, and spraying a JA
(Sigma J2500- 100MG) solution all over the leaves. JA was solubilized
in ethanol, then diluted in distilled water to a 1 mM JA solution, and
0.1% triton-x 100 was added as a surfactant to increase penetration
through the cuticle (Arnold & Schultz, 2002). In the INSH treatment,
we selected two well-developed leaves of the plant and used small nylon
mesh bags to individually encage two L4 instar larvae on each leaf. We
let the larvae consume leaves for approximately 1-2 days, and then all
the larvae were removed when 60-80% of each leaf was consumed. In
the control treatment, two well-developed leaves were selected in each
plant and sprayed with a control solution with the same composition as
the JA solution except that it contained no JA. To ensure that all plants
received a comparable amount of solution, each treated leaf was first
sprayed with two pumps of a mechanical sprayer, and then the third
pump was sprayed over the whole plant. After 10 days, a second bout
of the same herbivory treatment was conducted on each plant to enable
a priming effect and finally get a stronger and/or faster response
(Rasmann et al., 2012; Mauch-Mani et al., 2017). Treated leaves of this
second herbivory treatment were selected as close as possible to the first
ones and from the same developed stage. During all the treatment
phases, all plants including controls were covered with individual nylon
mesh bags that were removed 48 h after the end of the treatment. Also,
to avoid any interference of volatile compounds between plants with

different treatments, plants subjected to either INSH or ARTH
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treatments were stored in two separate chambers with identical
conditions as controls (germinator MiniDiGiTII, Rabider) in LD

conditions for 48 h.

Sample collection. Unwounded leaves from all individuals were collected
and immediately frozen in liquid nitrogen 24 h after second artificial
herbivory or larvae removal. Vials were kept at -80 °C until further
processing. The experiment was finished in total 14 weeks after seed
sowing, when fruits were mature, and individuals started to become
senescent. All the aboveground biomass of each plant, including
senescent leaves, fruits and stems, was collected in individually labelled
paper bags and placed in well-aerated room until measuring stem

biomass, and fruit and seed numbers.

DATA COLLECTION AND SAMPLE PROCESSING

Global DNA cytosine methylation

For each individual an aliquot of 30 mg leaf frozen material was
homogenized to a fine powder using a Retsch MM 200 mill. Total
genomic DNA was extracted using Bioline ISOLATE II Plant DNA
Kit, which contain RNAse A to remove RNA from the samples, and
quantified using a Qubit fluorometer 2.0 (Thermo Fisher Scientific,
Waltham, MA, USA). 100-ng aliquot of DNA extract was digested with
3 U of DNA Degradase PlusTM (Zymo Research, Irvine, CA, USA), a
nuclease mix that degrades DNA to its individual nucleoside
components. Digestion was carried out in a 40 ul volume at 37 °C for 3
h, and terminated by heat inactivation at 70 °C for 20 min. Three

independent replicates of digested DNA per sample were initially
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processed to estimate global cytosine methylation more precisely; the
number of replicates was increased for some individual samples to
reduce inconsistencies; altogether 376 vials were processed in
randomized order. Selective derivatization of cytosine moieties with 2-
bromoacetophenone under anhydrous conditions and subsequent
reverse phase high performance liquid chromatograph (HPLC) with
spectrofluorimetric detection were conducted. The percentage of total
cytosine methylation on each replicate was estimated as 100*5mdC/
(bmdC + dC), where 5mdC and dC are the integrated areas under the
peaks for 5-methyl-2’-deoxycytidine and 2’-deoxycytidine, respectively
(see Alonso et al., 2016 for further details).

Germination, seedling emergence and early developmental traits

Germination of field collected seeds from the two populations was
monitored after planting for every two days during three weeks. After
that time, germination was extremely rare. For each individual seed we
recorded the dates of germination (radicle visible, i.e., at least Imm
long), seedling emergence (both cotyledons fully opened) and
appearance of the first two leaves (completely expanded). Time to
seedling emergence and appearance of the first leaf for each seedling
was calculated from date of sowing. Germination probability was
calculated as the total number of seeds germinated from the total
number of seeds planted after three weeks of sowing. Flowering
phenology was monitored with two censuses per week during 8-9
weeks, after that all plants were in bloom. Plant height (in cm) at the
onset of flowering was measured as the length from cotyledon insertion

to the apex of the main inflorescence.
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Individual size and fecundity

. After harvesting, each plant was carefully separated into three different
components: stems, leaves and reproductive organs (including fruits,
seeds, perianth segments and bracts). Dry weight of each component
was separately determined after oven-drying plants to a constant mass
during at least 48 h at 40 °C using a digital balance to the nearest 0.01
mg. The stem biomass constituted the biggest portion of total biomass
and was selected as the most informative trait because some old dry

leaves and dry fruits were eventually detached from plants at harvesting.

Fruit production was estimated by taking each raceme individually
and all mesocarps and bare pedicels attached to the plant were counted
as fruits. Additionally, ten fully developed and mature fruits from each
plant were randomly selected, including always fruits produced both in
the main flowering stem and in its lateral branches. For each fruit we
counted the number of sound seeds (fully developed and well-shaped)
and unripe seeds (shrunken and markedly smaller in size) and then mean
seed number per fruit was calculated. The total mass of all the sound
seeds produced per fruit was weighed collectively in a digital balance to
the nearest 0.01 mg and the average seed mass for each fruit was then

estimated as group mass/no. seeds.
Glucosinolates

For glucosinolate (GLS) analyses, leaf material of two
individuals per group of treatment and mother (N = 49) was shock-
frozen in liquid nitrogen and lyophilized. The material was weighed and
used for extraction of GLS, following the protocol by Abdalsamee and
Miller (2012) (Abdalsamee & Miiller, 2012). The dried material was
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extracted threefold with 80 % methanol, adding p-hydroxybenzyl GLS
(glucosinalbin, Phytoplan, Heidelberg, Germany) as internal standard at
the first extraction. After centrifugation, supernatants were applied onto
ion-exchange columns containing diethylaminoethyl (DEAE) Sephadex
A25 (Sigma Aldrich, St.Louis, MO, USA) in 0.5 M acetic acid buffer,
pH 5. Purified sulfatase was added to convert GSs to desulfoGLSs
overnight. DesulfoGLSs were eluted in water and analyzed on a HPLC
coupled to a DAD detector (HPLC-1200 Series, Agilent
Technologies,Inc., Santa Clara, CA, USA). A gradient of water to
methanol was used to elute desulfoGSs from a Supelcosil LC 18 column
(3 pm, 150%3 mm, Supelco, Bellefonte, PA, USA). The gradient started
at 5 % methanol, which was kept for 6 min and then increased fromb5
% to 95 % within 13 min with a hold at 95 % for 2 min, followed by
column cleaning. GLSs were identified based on their retention times
and UV spectra in comparison to respective standards (Fahey et al.,
2001). Peak areas were integrated at 229 nm and the concentration of
each of the four identified GLS compounds was calculated in relation
to sample dry mass, using the following glucosinolates response factors:
1 for 2-propenyl-glucosinolate (sinigrin), 0.95 for benzyl-glucosinolate
(glucotropaeolin), and 0.26 for both indol-3-ylmethyl-glucosinolate
(glucobnsicin)  and  4-methoxy-indole-3-yl ~ glucosinolate  (4-
methoxyglucobrassicin). Total GLS concentration was estimated by
summing all the concentrations for the four measured GLS

compounds.

DATA ANALYSES
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All statistical analyses were carried out using the R environment (R
Development Core Team, 2020).Data distributions were visually
inspected and absence of obvious outliers was confirmed. As a rule, we
used linear or generalized linear mixed models to assess the sign,
magnitude and statistical significance of the effects of demethylation
and herbivory (fixed factors), accounting for the appropriate grouping
random effects as defined in Imer and glmer functions of the Ime4
library (Bates et al., 2015). Although a three-way factorial analysis that
included population as a fixed factor would have been statistically more
robust, we split the dataset by population to improve resolution because
two reasons: firstly, graphical exploration of data distributions and
model outputs suggested contrasting patterns that were not detected as
significant interactions due to large variances and reduced sample sizes
within groups, constraining greatly our statistical power; and secondly,
some of the variables were far from a continuous normal distribution,
actually they were nearly bimodal or had important discontinuities
between populations, and therefore splitting the data improve models
adjustment. Below we describe the models applied to each response

variable type, which passed model diagnostic tests and were selected

according to lower AIC (Bolker, 2015).

The model for the replicated global DNA cytosine methylation
data was applied using /zer, it included demethylation, herbivory (with
three levels) and their interaction as fixed effects, and plant as a random
effect to correctly identify all replicates of the same sample. For
germination analyses, every germinated seed was coded as 1 and every
non-germinated seed coded as 0. Germination probability was modelled

in glmer as a binomial process using logit as the link function, the model
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included demethylation as the only fixed factor, and families (seeds
coming from the same mother plant) as a random effect, which ensured
that any possible influence of family heterogeneity in genetic
background were adequately accounted for (i.e., blocked; Mead, 1988).
Count variables such as days to seedling emergence and days to
appearance of the first leaf were modelled as Poisson processes in glwer
with logit link function. As these variables were measured before
herbivory, models included only demethylation as fixed factor and
families as random effect. Total fruit number was modelled also as a
Poisson process with demethylation and herbivory as fixed factors and
families as random effect using logit link function. Stem biomass,
average seed number and average seed mass were modelled as Gaussian

response variables in /Zzer including the same fixed and random factors.

We  visualized glucosinolates  profiles as  nonmetric
multidimensional scaling (NMDS) plots using Bray-Curtis dissimilarity
index matrices. Difference in total glucosinolate profiles was analysed
for herbivory and demethylation treatment using ANOSIM (function
adonis2) with 9999 permutations in zegan (Oksanen et al., 2020).
Further, variance in concentration of total glucosinolates, sinigrin and
4-methoxyglucobrassicin was analysed with /Jzer, models included
demethylation and herbivory as fixed factors, and families as a random

effect.

For each analysis, significance of fixed factors and their
interaction was tested using the function Anova (package car; Fox &
Weisberg, 2018), with type II sum of squares and the Kenward-Roger
approximation to calculate the residual degrees of freedom. Estimated

marginal means and associated confidence intervals for the response

L &

111



Chapter 2

variable at each factor level were obtained with the ‘emmeans’ function
of the ‘emmeans’ library (Lenth R., 2018). Post hoc analyses were done
by conducting multiple pairwise comparisons of the estimated marginal
means with Tukey adjustment. Marginal means from generalized linear
models were back transformed to the original scale of measurement.

Mean * SE will be shown unless otherwise stated.

RESULTS

GLOBAL DNA CYTOSINE METHYT.ATION

The percentage of cytosine methylation in leaf DNA of untreated T.
arvense adult plants averaged 15.1 % (£ 0.20, standard error). DNA
methylation ranged between 13.8 and 16.5 % in control individuals (N
= 15) and between 13.0 and 16.6 % in the full dataset (N = 91). The
results of the full factorial ANOVA for global DNA methylation, stem
biomass, reproductive traits and chemical defences are provided in the

supplementary material Table S1.

The effect of demethylation and herbivory treatments on leaf DNA
methylation at adult stage varied among the two study populations (Fig
1). In late-flowering SE, leaf DNA methylation did not differ between
CON and AZA treated plants. In contrast, leaf DNA methylation was
significantly affected by herbivory (y* =6.52, df = 2, P = 0.038),
methylation being higher in CONH plants (15.3 % £ 0.2) and more
significantly reduced in plants assigned to ARTH (14.5 % % 0.2) than
those consumed by insect herbivores (14.8 % % 0.2). In early-flowering
DE, leat DNA of AZA treated plants had slightly lower methylation
levels than the CON plants (14.4 % £ 0.2 »5. 14.9 % £ 0.2, respectively;

T
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x° = 3.48, df = 1, P = 0.06), whereas herbivory did not affect DNA

methylation levels of collected leaves.
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Figure 1. Variation in global cytosine methylation levels for plants (N = 374
data points, 3-6 replicates in 91 plants) of the two study populations (late-
flowering SE and early-flowering DE), the three levels of our herbivory
treatment (control, insect and artificial herbivory) and the two levels of our
demethylation treatment (controls —in dark blue-, and azacytidine —in dark red-
). Solid squares with bars show estimated marginal means and standard errors
(from  linear  mixed-effects = models,  with  the  interaction
“herbivoryXdemethylation” effect included, and “plant” as a random effect)
across each level of the two treatments in the two study populations. The only
contrast with significant P-value obtained for the comparison between
artificial herbivory and control plants in late-flowering SE population, is
shown. In early-flowering DE population, the contrasts obtained for every

azacytidine »s control comparison were marginally significant (P = 0.06).

GERMINATION, SEEDLING EMERGENCE AND EARLY
DEVELOPMENTAL TRAITS

»&-‘
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Germination probability was similar in the two study populations (0.732
1 0.06 and 0.764 £ 0.05, for SE and DE respectively). Demethylation
treatment did not affect it (SE: > = 0.21, df = 1, P = 0.646; DE: y* =
1.01,df =1, P = 0.314).

On average, seedlings treated with AZA emerged one day
later and needed 2.5 days more to produce their first leaf than CON
seedlings (Table 1). But, the effect of the demethylation treatment was
slightly different in the two populations. The effect of AZA was not
statistically significant for seedling emergence of the late-flowering SE
plants (y* = 0.75, df = 1, P = 0.39) and showed only a near significant
effect on first leaf development time (y* = 3.15, df = 1, P = 0.060).
Whereas, in early-flowering DE plants the delay was statistically
significant for both seedling emergence (y* = 5.36, df = 1, P = 0.020)
and the appearance of the first leaf (y* = 9.76, df = 1, P = 0.001).

At the onset of flowering, just before herbivory treatment,
again only in early-flowering DE plants the demethylation treatment
produced a significant effect, being AZA treated plants almost 2 cm
shorter than control ones (y*> = 4.45, df = 1, P = 0.04). The same
treatment had no effect on plant height of late-flowering SE plants
(Table 1).
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Table 1. Time (in days) from seed sown to seedling emergence and to the

appearance of the first two leaves (first leaf emergence), and height (in cm) of plants at

the onset of flowering (height at flowering) from control and 5-azacytidine treated seeds

of the two T. arvense populations studied (late-flowering SE and early-flowering DE).

Values shown are model estimated marginal means and their standard errors (in

brackets). Only significant differences (P < 0.05) between controls and azacytidine

treated plants are shown (P values).

Trait Population Control Azacytidine P value
Seedling SE 5.85 (0.72) 6.50 (0.706)
emergence (d)

DE 5.00 (0.51) 6.35 (0.60) 0.02
First leaf SE 12.25 (0.78) 14.34 (0.79)
emergence (d)

DE 14.96 (0.81) 18.20 (0.92) 0.002
Height at flowering  SE 13.00 (0.67) 12.80 (0.67)
(cm)

DE 14.60 (0.83) 13.00 (0.82) 0.04
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FINAL STEM BIOMASS

Final stem biomass in untreated (non-demethylated and undamaged)
plants of late-flowering SE was on average two-fold higher than those
of eatly-flowering DE (1.06 g + 0.04 and 0.46 g £ 0.05, for SE and DE
respectively), with almost no overlapping in figures obtained for each
population (Fig. 2), and this difference was statistically significant (t-test:
t = 8.03, df = 18, P < 0.001).

In late-flowering SE, variance in the final stem biomass was
explained by a significant effect of herbivory (x> = 10.25, df = 2, P =
0.005), there was no effect of demethylation and the interaction
between main factors was also not significant (Table S1). Specifically,
ARTH treated plants had a strong and significant reduction in the stem
biomass when compared to CONH and INSH plants, regardless of
their initial seed demethylation treatment (Fig. 2). Further, stem biomass
was higher in AZA treated plants without herbivory but lower in those

which were subjected to insect herbivory.

In early-flowering DE, there was no significant effect of
demethylation or herbivory treatment or their interaction on the final

stem biomass (Fig. 2; Table S1).

117



Demethylation treatment:

SE: Late-flowering

Stem biomass (g)

Chapter 2

B control [l Azacytidine

DE: Early-flowering

Insect Artificial

P =0.017
2.0 f
P =0.028

15

; J | + n* |

0.51 ° #b *

B *9
0.0
Control Insect Artificial Control
Herbivory treatment

Figure 2. Variation in stem biomass for plants (N = 113 individual plants) of
the two study populations (late-flowering SE and early-flowering DE), the
three levels of our herbivory treatment (control, insect and artificial herbivory)
and the two levels of our demethylation treatment (controls —in dark blue-,
and azacytidine —in dark red-). Solid squares with bars show estimated
marginal means and standard errors (from gaussian general linear mixed-
effects models, with the interaction “herbivoryXdemethylation” effect
included, and “plant” as a random effect) across each level of the two
treatments in the two study populations. Contrasts with significant P-values
(P < 0.05), obtained only for control »s artificial and insect »s artificial
comparisons in late-flowering SE population, are also shown.
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TOTAL FRUIT NUMBER

Thlaspi arvense plants grown in pots produced between 57 and 176 fruits
for untreated plants (N = 20) and ranged between 23 to 198 in the full
data set (N =112). Total fruit number in untreated plants of late-
flowering SE was on average higher by ten fruits than those of early-
flowering DE (108.75 £ 35.59 and 98.66 £ 29.15, for SE and DE

respectively).

In late-flowering SE, variance in total fruit number was explained
by a significant effect of herbivory treatments (y* = 13.36, df = 2, P <
0.001). Demethylation and the interaction between the two factors were
not significant (Table S1). In particular, plants that experienced INSH
produced a significantly lower number of fruits than plants that
experienced no herbivory and ARTH, although these differences seem
to be significant only for plants without AZA treatment (CON) (Table
2).

In early-flowering DE, total fruit production differed for
demethylation (y*= 9.56, df = 1, P < 0.001) and herbivory treatments
(x’= 5.89, df = 2, P = 0.052). The AZA treated plants produced more
fruits, the impact being stronger in both ARTH and INSH plants (Table
2).

AVERAGE SEED NUMBER PER FRUIT

The average number of seeds per fruit ranged between 4.5 and 11.6 for
untreated individuals (N = 20) and it was between 3.1 and 11.7 in the
full data set (N = 112). a Untreated late-flowering SE plants produced
more seeds per fruit than early-flowering DE plants (9.81 * 1.87 and

o 119




Chapter 2

6.89 * 1.05, for SE and DE respectively; t-test: t = 3.99,df = 9.96, P =
0.002).

In late-flowering SE, the demethylation treatment had a
significant effect on average seed number per fruit (> =7.45, df = 1, P
= 0.0006). Herbivory and the interaction between the two factors were
not significant (Table S1). AZA treated plants produced significantly
lesser number of seeds per fruit and this effect was particularly large in

the group of undamaged controls (Table 2).

In early-flowering DE, average seed number per fruit varied
significantly with demethylation (y*= 12.45, df = 1, P<0.001), herbivory
treatment (y° = 7.88, df = 2, P = 0.02) and there was no significant
interaction between the two experimental factors (Table S1). In this
case, AZA treated plants produced higher number of seeds per fruit
than their controls in all the three herbivory treatments, but the effect

was particularly large in artificially damaged individuals (Table 2).

AVERAGE SEED MASS

In T. arvense, average seed mass ranged between 0.65 mg to 1.11 mg in
untreated individuals (N = 20) and it ranged between 0.09 mg to 1.32
mg for entire data set after removing individuals with outlier values (N
= 113). Average seed mass in untreated plants was similar in the two
study populations (0.82 * 0.08 mg and 0.90 £ 0.15 mg, for SE and DE

respectively).

In late-flowering SE, a significant demethylation treatment effect
was observed (y* = 3.88, df = 1, P = 0.048). But herbivory treatment or

interaction between two factors had no significant effect on average
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seed mass (Table S1). Initial demethylation reduced the average seed
mass per fruit in all the levels of our herbivory treatment, this effect was

particularly large in insect consumed plants (Table 2).

In early-flowering DE, a significant and stronger effect of
demethylation (x> = 10.81, df = 1, P < 0.001) and a near significant
interaction between the two experimental factors (y* = 5.61, df = 2, P

= 0.06) were found.
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Table 2. Total fruit number, average seed number per fruit and average seed mass
(mg) produced by control and 5-azacytidine treated plants after each of the three
levels of herbivory treatment (undamaged control, insect herbivory, artificial
herbivory) of the two T. arvense populations (late-flowering SE and early-flowering
DE). Values shown are model estimated marginal means and their standard errors
(in brackets). Only significant differences (P < 0.05) for each of the contrasts
between controls and 5-azacytidine treated plants are shown (P values). Values with
different letters indicate significant differences (P < 0.05) between the three levels of

the herbivory treatment for each population and each level of demethylation

treatment.
Trait Population Herbivory Control Azacytidine P value
Total SE Control 106.75 103.35
fruit (15.03)2 (14.62)
number Insect 88.59 95.83 (13.54)
(12.55)b
Artificial 100.62 94.97 (13.42)
(14.25)2b
DE Control 99.85 104.30 (8.15)
(7.76)
Insect 90.37 99.58 (7.87) 0.032
(7.12)
Artificial 95.06 104.67 (8.18) 0.027
(7.49)
Average  SE Control 9.81 7.01 (0.84) 0.018
seed (0.78)
number
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Insect 8.74 7.00 (0.78)
(0.78)
Artificial 9.00 8.21 (0.78)
(0.84)
DE Control 0.89 7.58 (0.39)
(0.39)
Insect 5.69 06.63 (0.41)
(0.45)
Artificial 0.04 7.84 (0.41) 0.002
(0.41)
Average SE Control 0.82 0.70 (0.08)
seed 0.07)
mass
(mg)
Insect 0.92 0.74 (0.07)
(0.07)
Artificial 0.76 0.70 (0.07)
(0.08)
DE Control 0.90 (0.08)=  0.99 (0.08)
Insect 0.71 1.02 (0.08) 0.0003
(0.08)b
Artificial 0.87 (0.08)=  0.94 (0.08)

In contrast to SE, the AZA treated plants produced heavier

seeds than their controls, and again this effect was stronger for insect

consumed plants (Table 2).

123



Chapter 2

LEAF GLUCOSINOLATES

Total glucosinolate concentration in unwounded leaves collected 24 h
after the second herbivory event varied between 1.2 umol.g—1 d.w. to
1.7 wmol.g—1 d.w. in untreated individuals (N = 8) and it ranged
between 1.2 umol.g—1 d.w. to 39.4 pmol.g—1 d.w. for the entire data
set (N = 49). The glucosinolate profiles were studied by NMDS using
the concentrations of the two indole and two aliphatic compounds that
were most abundant. The ANOSIM test showed that herbivory
treatments exhibited a significant effect for late-flowering SE plants
(P <0.005) and not significant for -early-floweirng DE plants
(P = 0.07). The effect of demethylation was not statistically significant
to explain variance in multidimensional glucosinolate profile. In late-
flowering SE, variance in total GLS concentration was significantly
explained by demethylation (y* = 5.14, df = 1, P = 0.02), herbivory (y*
= 40.37, df = 2, P <0.001) and interaction (x> = 7.73, df = 2, P = 0.02).
The total GLS concentration was higher in leaves of ARTH plants,
intermediate in INSH and significantly lower in undamaged CONH
plants, specifically for plants which had undergone seed-stage AZA
treatment (Table 3). In eatly-flowering DE, no significant effect of

herbivory or demethylation was observed.
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Figure 3. Nonmetric multidimensional scaling (NMDS) plots for
glucosinolate profiles in Thlaspi arvense leaves in the two study populations
(late-flowering SE and early flowering DE, N=49 individual plants). Colors
denote herbivory treatments (controls -in blue-, insect herbivory -in green-,
and artificial herbivory -in red-) and shapes denote demethylation (CON -
triangle- and AZA -round-). The composition and concentration of the main
four glucosinolate were analysed to distinguish their clustering patterns among

herbivory and demethylation treatments.

The aliphatic GLS sinigrin was predominant and accounted for
more than 98% of total GLS amount. The effect of experimental
treatments on concentration of sinigrin, and the most abundant indole
glucosinolate, 4-methoxyglucobrassicin, were also analyzed. In late-
flowering SE, variance in leaf sinigrin concentration among individual
plants was significantly explained by herbivory (y* =38.95,df = 2, P <
0.001), demethylation (x* = 5.06, df = 1, P = 0.02), and the interaction

between the two experimental factors (y* = 7.77, df = 2, P = 0.02). In
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regards of herbivory, we found that the sinigrin concentration in leaves
of ARTH plants were on average 3-10 fold higher than in leaves of
plants assigned to INSH and CONH (Table 3). The AZA treatment led
to a higher concentration of sinigrin, although the difference was only
significant in leaves of ARTH plants (Table 3). In eatly-flowering DE,

no significant effect of herbivory or demethylation was observed.
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Table 3. Concentrations (expressed in umol/g of dry weight) of total
glucosinolates (Total GLS), 2-propenyl-glucosinolate (sinigrin), and 4-
methoxy-indole-3-yl glucosinolate (4-methoxyglucobrassicin) detected in
samples collected from leaves of control and 5-azacytidine treated plants of
the two T. arvense populations (late-flowering SE and early-flowering DE)
24 h after the end of our herbivory trial. Values shown are model estimated
marginal means and their standard errors (in brackets). Only significant
differences (P < 0.05) for each of the contrasts between controls and 5-
azacytidine treated plants are shown (P values). Values with different letters
indicate significant differences (P < 0.05) between the three levels of the

herbivory treatment for each population and each level of demethylation

treatment.
Trait Population Herbivory Control Azacytidine P
value
Total GLS SE Control  1.68 1.55 (2.08)2
(2.08)ab
Insect 097  3.20 (2.08)
(2.26)
Artificial  7.35 16.28 0.004

226 (2.52)p

DE Control 124  2.04 (4.32)
(4.32)

Insect 582  4.80 (4.07)
(4.32)

Artificial  7.82 10.87
475) (475
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Sinigrin SE Control  1.64 1.50 (2.14)a
(2.14)
Insect 0.88 3.07 (2.14)
(2.31)
Artificial  7.18 16.25 0.004
(2.31)  (2.58)p
DE Control  1.20 2.03 (4.32)
(4.32)
Insect 5.77 4.78 (4.07)
(4.32)
Artificial  7.81 10.82
4.75)  (4.75)
4- SE Control  0.03 0.04 (0.04)
methoxyglucobrassicin (0.04)
Insect 0.06 0.13 (0.04)
(0.04)
Artificial  0.09 0.04 (0.04)
(0.04)
DE Control  0.03 0.01 (0.01)
(0.01)
Insect 0.03 0.02 (0.01)
(0.01)
Artificial  0.01 0.04 (0.02)
(0.03)
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Variation in concentration of the most abundant indole GLS, 4-
methoxyglucobrassicin  was only explained by the experimental
treatments in SE population. The effects of herbivory treatment (y* =
6.20, df = 2, P < 0.04) and interaction of demethylation and herbivory
(x> = 6.18,df = 2, P = 0.04) were statistically significant in late-flowering
SE (Table 3). Leaves of AZA treated plants had a significantly lower
concentration of 4-methoxyglucobrassicin after artificial herbivory but
a higher concentration in those plants consumed by insects (Table 3).
In early-flowering DE, similar to the response of other GLS, the effects
of experimental treatments did not significantly explained variance in

concentration of 4-methoxyglucobrassicin (Table 3).

DISCUSSION

In this study, we combined experimental herbivory with experimental
demethylation in T. arvense aiming to elucidate the role of epigenetic
variation on short-term defence and plant performance of this annual
herb under controlled conditions. This approach has been successfully
applied to other study systems although mainly to analyze the responses
to abiotic stress (see e.g., (Herman & Sultan, 2016; Latzel et al., 2012).
To better interpret the obtained results it is important to emphasize that
the two study populations exhibited contrasting phenotypes
(Supplementary material, S1) and belonged to different genetic clusters
within Europe (Galanti et al., 2022). Phenotypic differences were
reduced because all individuals were vernalized as seedlings and, thus,
SE plants flowered earlier than usual for the late-flowering morph (at
week 8-9 vs. 18-21 weeks reported by Moser et al. 2009), although still

about two weeks later than the DE plants. As expected, early-flowering
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DE plants had longer stems at flowering, reached lower final size (stem
biomass) and tended to produce less fruits and seeds. Thus, although
our results are preliminary and need to be confirmed with further
investigations including more populations of the two flowering types
and more families within populations, they suggest that the genetic
background of the assayed plants and even variance between individuals
of the same family can affect the responses to experimental treatments
(see also Herman and Sultan, 2016). In the following paragraphs, we
discuss the main observed effects of the two treatments on the two
provenances and further steps required to better interpret their

contrasting responses.

EFFECTS OF SEED DEMETHYTL.ATION TREATMENT

Use of 5-azacytidine in earlier studies showed impaired plant growth
(see e.g., (Fieldes & Amyot, 1999; Finnegan et al., 1996; Kondo et al,,
20006). Our 48 h treatment did not affect seed germination and was
applied with a moderate concentration to avoid survival-related
problems and any serious developmental effects (see also,(Akimoto et
al., 2007; Bossdorf et al., 2010; Burn et al.,, 1993). Importantly, the
treatment induced a moderate, statistically significant reduction in
global DNA cytosine methylation only in plants from the early-
flowering DE population and regardless of subsequent herbivory
treatment. Such results were somehow unexpected according to
previous studies conducted only in late-flowering plants (Burn et al.,
1993). The novelty of this result stands in showing that the effect of
seed-stage experimental demethylation can last to adulthood in short-
lived plants, and not only in seedling leaf DNA as assessed previously
(Alonso et al., 2017; Griffin et al., 2016; Puy et al., 2018). Also, the
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magnitude of the effect varied with seed provenance and this might be
due to small differences in permeability of seed coat and the
physiological status of T. arvense seeds from different populations that
would condition penetrance of 5-azacytidine during the short period of
seeds imbibition we applied (see also Burn et al. 1993). Alternatively, we
cannot discard that restoration of methylation marks in adult plants
after 12-14 weeks since demethylation might change with provenance
(Fieldes & Amyot, 1999; Kumpatla & Hall, 1998). Advanced
methylome analyses based on deep sequencing after bisulfite conversion
(see e.g., (Becker et al., 2011; Colicchio et al., 2018) would be required
to fully understand the observed differences, e.g. a null change in global
methylation can arise from similar frequency of additions and drops of

methyl groups to cytosines in different genomic locations.

Immediately after demethylation, time to first leaf appearance
delayed similarly for azacytidine treated plants from the two plant-types
supporting that the treatment indeed altered the initial development in
all of them (see also Burn et al., 1993; Finnegan et al., 1996; Kondo et

al., 2000). The phenotypic response of the two populations to

azacytidine treatment diverged after 7-8 weeks shortly after
vernalization. Azacytidine reduced early growth more strongly in early-
flowering DE plants that were shorter than their control relatives
immediately before herbivory treatments started. However, at flowering
onset, the effect of azacytidine did not significantly reduce plant height
in the late-flowering SE plants, partially due to their different plant
architecture of large rosette, but was still evident in early-flowering DE

plants. Such finding suggests that late-flowering plants were able to

recover faster from the initial delayed growth.
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FFECTS OF HERBIVORY TREATMENT AND INTERACTIONS
WITH SEED DEMETHYT.ATION

Our herbivory treatments were repeated twice to prime plants and
elicit a stronger and fast defence response (Mauch-Mani et al., 2017,
Sobral et al.,, 2021). However, we did not analyse the priming effect
itself. We searched for the molecular systemic consequences in
unwounded leaves collected after 24 h of the second event that could
be detected as changes in DNA global methylation levels (Kellenberger
et al, 2016), increased glucosinolate concentration (Textor &
Gershenzon, 2009) or both. The herbivory simulation treatment
included JA-spraying, a plant hormone involved in regulation of plant
growth and defence (Zust & Agrawal, 2017) whose exogenous
application is able to increase glucosinolates concentration in
Brassicaceae plants and reduce subsequent insect consumption (Textor
& Gershenzon, 2009; Fritz et al., 2010; Kellenberger et al., 2016; Jeschke
et al., 2017). Accordingly, our artificial herbivory treatment increased
sinigrin concentration. Further, it decreased final size (stem biomass) of
late-flowering SE plants supporting a negative impact on plant
performance that has not been frequently reported in studies that used
just hormone application in other Brassicaceae species (Van Dam et al.,
2004). This indicates that JA application together with a mild
defoliation, induced the jasmonate cascade and changed the growth—
defense prioritization more strongly than P. brassicae consumption in
late-flowering SE plants (Ziust & Agrawal, 2017). In regards to
reproductive output, previous studies reported larger effects on seed
mass and seed production after mechanical leaf defoliation conducted

at flowering time compared to earlier and later treatments (Akiyama &

X
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Agren, 2012; Barto & Cipollini, 2005). In our study, artificial herbivory
did not alter fruit or seed number likely due to lower defoliated surface
and performance at an earlier developmental stage than the referred

studies.

Interestingly the magnitude of the effects of insect and artificial
herbivory on leaf DNA methylation and glucosinolate concentration,
and their interaction with previous seed demethylation treatment varied
with plant-type and were not significant in the early-flowering type. In
the late-flowering SE population, that did not show differences in global
DNA cytosine methylation after AZA treatment, DNA global
methylation level of artificially damaged and insect-consumed plants
were reduced significantly compared to undamaged control plants.
Furthermore, an overall upsurge of glucosinolates was observed after
herbivory in this population, although the effect was somehow
herbivore-type specific and varied with demethylation treatment.
Sinigrin, the most abundant aliphatic glucosinolate, increased more in
artificially damaged plants, whereas insect eaten plants got higher
concentration  of  indole  glucosinolates  such  as = 4-
methoxyglucobrassicin, when treated with AZA at seed-stage.
Furthermore, seed stage demethylated individuals undergoing artificial
herbivory treatment had the highest sinigrin concentration, suggesting
that DNA demethylation can regulate the jasmonate signaling cascade
towards sinigrin biosynthesis (Textor & Gershenzon, 2009). This is
relevant for commercial purposes because sinigrin is a precursor of
mustard oil glucoside in seeds of T. arvense (Warwick et al., 2002) and
we found surge in sinigrin after demethylation and artificial herbivory is

better predicted for late-flowering SE plants. In the early-flowering DE
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plants, global DNA methylation did not differ between any of the two
herbivory treatments and controls. On average, artificial but not insect
herbivory led to higher leat glucosinolates concentration, despite the
observed large variance among treated individuals from this population.
Again, advanced methylome analyses could help to elucidate whether
the observed population specific responses are mainly due to genetic
divergence (see e.g., (Aller et al., 2018) for glucosinolate production),
and/or epigenetic variation among them (see e.g., Latzel et al., 2012 for

response to JA).

As regards plant performance, previous herbivory studies on the
Brassicaceae family have showed contrasting results for artificial
defoliation, hormone application and insect herbivore damage
(Agrawal, 2000a; Tucker & Avila-Sakar, 2010; Sotelo et al., 2014;
Kellenberger et al., 2016). Some eatlier studies also showed reduction in
seed production when insects consume leaf of young plants and
suggested that tolerance levels increase from earlier to later
developmental stages in crops and Brassicaceae plants (Boege et al.,
2007; Tucker & Avila-Sakar, 2010; Sobral et al., 2021). Here, we have
found contrasting responses to herbivory between the two study plant-
types, similar to previous studies conducted with several accessions or
provenances in other Brassicaceae (Manzaneda et al., 2010; Tucker &
Avila-Sakar, 2010). Although further studies with more populations and
families are needed before more robust conclusions can be drawn, our
findings suggest that the two flowering ecotypes of T. arvense may have
evolved different anti-herbivore strategies. We hypothesize that the
eatly-flowering ecotype, that has a fast-growing cycle, may be more

tolerant against herbivores since after damage plants did not alter their
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chemical defenses but tended to increase reproductive output. Whereas,
plants of the late-flowering ecotype, that need much more time to
complete its growing-cycle, could be more resistant and less tolerant to
herbivory after damage as they tended to invest more resources in
increasing their chemical defenses while reducing seriously their growth

and reproduction.

In our study, we can speculate also that despite being conducted
on the same dates, both the priming and herbivory treatments reached
plants at different stage of their life-cycle, more close to bolting in early-
flowering DE type, and that could reduce the impact of insect herbivory
(see Sobral et al., 2021 for an analysis of age effect). Such finding
emphasizes the relevance of using multiple provenances to gain
generalization in understanding plant responses to herbivory, and the
lack of studies addressing so. Moreover, seed-stage demethylation
treatment altered fruit production and seed mass after herbivory
suggesting that the two treatments had contrary effects on the two
plant-types. In particular, late-flowering SE plants that were azacytidine
treated produced significantly less number of seeds per fruit and smaller
seeds. In early-flowering DE, plants treated with 5-azacytidine at seed-
stage tend to produce more fruits, more seeds per fruit, and heavier
seeds and some of the differences become even larger in plants
experiencing herbivory. As long as late-flowering winter type of T.
arvense is currently emerging as a new winter biofuel crop (Sedbrook et
al., 2014; Dorn et al., 2015, 2018; Garcia Navarrete et al., 2022), our
findings could be relevant somehow for future research towards
improvement of seed yield and reduction of glucosinolate content in

potential new crop varieties.
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CONCLUSION

Opverall, this study illustrates the importance of DNA methylation
variation in plant performance and short-term chemical defence after
herbivory, supports experimental demethylation as a useful approach to
investigate epigenetic regulation of plant-herbivory interactions and
reveals the value of including different modes of herbivory and plant
provenances to avoid oversimplification. According to our initial
predictions we can conclude: i. Seed-stage demethylation is suitable to
alter DNA methylation levels in leaves of reproductive adult plants of
T. arvense, although the magnitude of the effect can vary between
populations of origin and flowering ecotypes. A longer treatment could
perhaps produce stronger effects. ii. Herbivory had different effects
depending on provenance. In SE late-flowering plants it increased
glucosinolates concentration, and reduced final size and fruit
production. However, the effects were non-significant in DE early-
flowering type except for seed production. iii. Herbivory reduced DNA
methylation only in plants of late-flowering SE type, the effect being
stronger for the artificial treatment. iv. For early-flowering DE type
demethylation increased reproductive output mainly in plants
experiencing herbivory somehow reducing its detrimental effect (i.e.,
increased tolerance). Such effect was not observed, however, in late-
flowering plants, in which the two treatments reduced reproductive
output. Altogether, such findings indicated that variation in DNA
methylation had subtle interactions with plant response to short-term
herbivory and the responses depend largely on plant ecotype associated
to geographic origin, genetic background and the life-cycle phenology.

Deeper methylome and transcriptome analyses need to be conducted
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for a more comprehensive understanding of molecular epigenetic

mechanisms that regulate plant responses to herbivory.
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SUPPLEMENTARY MATERIAL

Supplementary Figure S1. Phenotypic features of typical individual adult
plants from the two provenances at the time of harvesting. (A) a late-flowering
SE plant with short internodes within the flowering/fruiting shoot, note that
still some fruits were green; (B) an early-flowering DE plant with longer
internodes within the flowering/fruiting shoot that initiates from the bottom-

most section, note that all fruits were dried.
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Supplementary Figure S2. Experimental timeline indicating treatments,

vernalization, sampling and harvesting of Thlaspi arvense

Demethylation

Azacytidine
Control

0 week old

Seedling Growth .

2-3 weeks - Artificial (JA)
- Undamaged

First Induction

- 2 insect

7-8 weeks old

Recovery
Period
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Plant Harvest
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14 weeks old

Sample
Collection

Unwounded
leaves

Second Induction

- 2insect
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- Undamaged

10 weeks old
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Supplementary Table S1

Table S1 Summary of the ANOVA results of the full factorial design conducted in
a growth chamber to analyze the effects of demethylation, herbivory and their
interaction on global DNA cytosine methylation, final stem biomass, total fruit
number, average seed number per fruit, average seed mass and leaf glucosinolates in
plants of Thlaspi arvense from Swedish (late-flowering SE) and German (eatly-
flowering DE) populations. The design included 2-4 replicates per family and family

was included in the model as a random effect. Significant effects are shown in bold.

Late-flowering Early-flowering
Source of SE DE
Response variable 1 ariation . D P- . D Zl-
X F value | ¥ F VY e“
Demethylat ) 1 0877 | 348 1 0002
Global DNA lon :
cytosine Herbivory  6.52 2 0.038 | 0.25 2 0.881
methylation
Demetx 06 5 0960 |0.86 2 0.650
Herb
Demethylat  0.00 955 1107 1 0301
ion 1
Final Stem Herbivory 102 2 0.005 | 413 2 0.126
Biomass (g) 5
Demetx 16 5 0560 [203 2 0362
Herb
<0.
Demethylat )2 1 gg72 |956 1 <00
ion 01
Total Fruit Hetbivory 100 2 <000 1509 5 0052
number 6 1
Demetx 50 5 0137 |1.04 2 0595
Herb
Demethylat 745 1 0.006 12.4 1 <0.0
Sced ion 5 01
Average Seed Ty oy 103 2 0597 | 7.88 2 0.020
number per fruit 5
CMELX 456 2 0459 1227 2 0321
Herb

i &
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Demethylat 388 1 0.048 10.8 <0.0
ion 1 01
Average seed Herbivory  1.69 2 0431 | 2.19 0.335
mass (mg)
Demetx 6 5 0712 | 5.62 0.060
Herb
gﬁmethylat 514 1 0.023 | 0.06 0.801
Total GLS . 40.3 <0.00 0.094
(umol.g—1 d.w.) Herbivory 7 2 o1 4.73
Demet x
o 773 2 0.02 | 034 0.847
Demethylat 5 ¢ 1 902 | 0.06 0.801
0on
Sinigrin . 38.9 <0.00
(molg—dy)  Hebvory  ToT 20 To U472 0.094
Demetx 700 5 0020 | 0.33 0.847
Herb
n gﬁmethylat 02 1 0655|037 0.541
methoxyglucobra 4 o0 o 62 2 0.04 | 061 0.739
ssicin (umol.g—1
d.w.) Demetx 618 2 0.04 | 2.03 0.363
Herb
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ABSTRACT

As a key epigenetic mechanism in plants, DNA methylation is responsive to
environmental cues and may contribute to tailor individual responses to
stress, being particularly beneficial for long-lived trees and clonal plants. The
risk for insect outbreaks is predicted to increase in temperate areas, thus,
understanding to what extent changes in DNA methylation can help forest
trees to develop locally adapted responses across different geographical
backgrounds could be particularly useful for assessing the fate of trees and
forests under global change. Here, we study the responses of the cultivar
ttalica of the long-lived woody tree Populus nigra (Lombardy poplar), a fast-
growing variety that has been asexually propagated (by division) with
economic purposes. Cuttings were collected from three distant geographical
locations (Spain, Italy, Poland), clonally replicated and grown in a common
environment. We used reduced representation bisulfite sequencing, epiGBS,
to assessing changes between three plant categories: (i) insect herbivory, (ii)
artificial herbivory and (i) undamaged plants, across populations. Our
quantitative results indicate that genome-wide DNA methylation in
Lombardy poplars from different geographical provenance responded
differently to experimental herbivory, with origin of plants accounting for
17.2 % of the variation in DNA methylation across CG, CHG, and CHH
contexts. Both insect and artificial herbivory induced a significantly higher
response in the CHH context, suggesting that CHH methylation was the most
plastic. When we pay attention to those loci with contrasting methylation
levels (Differentially Methylated Cytosines, DMCs) between undamaged
plants and the two types of herbivory assayed we found some mixed results:
Spanish ramets were most responsive to insect herbivory, Polish ramets to

artificial herbivory, and Italian ramets were the least responsive in both cases.
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Within the genome, DMCs were primarily located in gene bodies and their
flanking regions (CG, CHG) or intergenic regions (CHH). Further, about
one-third of DMCs obtained in CHH context were associated with
transposable elements (TEs), suggesting a strong association between
changes in non-CG methylation and TEs in response to leaf damage. Support
for a geographically variable DNA methylation in response to herbivory in a
clonal tree with reduced genetic variation highlight the importance of
epigenetic mechanisms in shaping both tree plantations and natural forests to

their environmental challenges.

Keywords: bisulfite sequencing, clonal propagation, differentially methylated
cytosine (DMC), DNA cytosine methylation, forestry, insect herbivory,
jasmonic acid, Populus nigra cv. ‘italica’, transposable elements, tree

provenance.

INTRODUCTION

Forests occupy large areas in Europe, where canopy trees provide food and
shelter for numerous animals, fungi, and microorganisms; act as valuable
understory habitats for a diverse community of plants; are key actors in
interspecific interactions; and provide multiple ecosystem services. (See e.g.,
Basile et al., 2020; Ebetl et al., 2020). Climate change is predicted to impact
on FBEuropean forests but the magnitude of such effects will vary
geographically, because bioclimatic zones in Europe differ both in their
limitations for tree growth and in the expected shifts in temperature and
drought risk (Intergovernmental Panel On Climate Change (IPCC), 2023;

Lindner et al, 2010). Changes in climate are also causing shifts in the
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distribution range of insect species and the risk for insect outbreaks is
predicted to increase (Lindner et al., 2010; Bebber, 2015; Canelles et al., 2021).
The consequences of those outbreaks will depend on both intrinsic and
extrinsic factors. For instance, it is well-established that some plants are able
to change leaf quality in response to herbivory (e.g., Havill & Raffa, 1999)
and, undergoing both within-generation plasticity and/or transgenerational
defence induction. That in turn, improve either growth or defence against
herbivory and thus being able to at least in part buffer the consequences of
defoliation (Holeski, 2007, Holeski et al., 2012; Holeski et al., 2013).
Understanding the mechanisms underlying the induced response to herbivory
in trees, with their characteristically longer life spans, and how they may vary
geographically could be particularly useful for assessing the fate of trees and
forests under global change (Aitken et al., 2008).

Epigenetic regulation has emerged as a significant element in plant
adaptation to heterogeneous environments and stress response (Richards et
al., 2017). In particular, DNA cytosine methylation is an epigenetic mark that
is involved in determining to what extent plants can modify their features in
response to biotic and abiotic stresses (Chang et al., 2020; Ramos-Cruz et al.,
2021; Zhang et al., 2018). In plant genomes, DNA cytosine methylation
occurs in three sequence contexts (CG, CHG, and CHH, where H = A, C,
or T), each one maintained or established de novo through different
enzymatic pathways, and featuring distinct genomic locations, inheritance
patterns and reversibility (Hofmeister et al. 2020; Zhang et al., 2018).
Symmetric methylation in the CG sequence context is maintained during
DNA replication because hemi-methylated CG sites are recognized by
enzymes that catalyze CG methylation on the newly synthesized strand by

way of ‘template copying’, it is often located in gene bodies (gbM), and it has
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been reported to be stable across generations (Dubin et al., 2015; Niederhuth
et al., 2016; Yao, Schmitz, et al., 2021). In Arabidopsis, gbM is typically found
in moderately and constitutively expressed housekeeping genes, although its
biological significance in other species is still uncertain (Niederhuth et al.,
2016; Muyle et al., 2022). DNA methylation in the CHG and CHH sequence
contexts is preferentially targeted by de novo methylation pathways —with
CHH being less stable along cell division, it is predominantly found in
repetitive sequences and transposable elements (TEs), which are more
abundant in species with larger genomes (Zemach et al., 2010; Bewick &
Schmitz, 2017a; Kenchanmane Raju et al., 2019; Ramakrishnan et al., 2021a;
Yao, Zhang, et al, 2021). It is important to remark that spontaneous
methylation gains and losses at individual cytosine positions in any sequence
context occur at rates four to five orders of magnitude higher than genetic
point mutations per unit time, whereas inheritance of such spontaneous
methylation changes is mainly restricted to CG sites and to some extent to
CHG (Yao et al., 2021). Thus, in long-lived plants divergence in methylation
profiles can occur within individual plants (Herrera et al., 2021; Hofmeister
et al., 2020; Yao et al,, 2021).

Previous studies have demonstrated that individual plants can have
functional stress memory, that is, pre-exposure to a certain stress generates a
more pronounced and/or faster response against subsequent events, and that
defence priming in response to herbivory is linked to epigenetic processes
(Kim & Felton, 2013; Mauch-Mani et al., 2017). For example, in Thlaspi
arvense, plants that have been primed and elicited a second herbivory event
exhibited changes in terms of chemical defense and global DNA methylation
levels compared to undamaged plants, and the magnitude of change varied

between two ecotypes (see Chapter 2 of this thesis and Troyee et al., 2022).
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A genotype specific phenotypic response to insect herbivory and artificial
demethylation in Brassica rapa further substantiates the complexity of DNA
methylation changes after insect herbivory (Kellenberger et al., 2016).
Transgenerational effects of herbivory, where the offspring of damaged
plants have altered levels of defence relative to the offspring of control plants,
have been also related to epigenetic changes. For instance, Rasmann et al.
(2012) showed that Arabidopsis and tomato plants with insect-damaged
parents exhibited significantly enhanced resistance against herbivory by the
same insect species. More interestingly, Arabidopsis mutants defective in the
RNA-directed DNA methylation (RADM) pathway did not show the
inheritance of resistance, indicating involvement of DNA methylation in
transgenerational priming of defence. Also, in Mimulus guttatus parental
damage produces a strong and consistent defensive response, increasing
trichome production, that varies geographically according to natural levels of
herbivory (Akkerman et al., 2010), it is transmitted directly to the progeny
and seems to be strongly associated with the inheritance of altered
methylation profiles and differentially expressed genes (Colicchio et al., 2018;
Monnahan et al., 2021). Moreover, both the sequence context and genomic
location of stress-induced methylation changes seems to be relevant in
developing a response, likely related to the contrasting patterns of inheritance
of spontaneous methylation changes mentioned above. For instance,
interactions between methylation in promoters and gbM at CG and CHG are
relevant to understand gene expression in Mimulus (Colicchio et al., 2015) but
also heritable DNA hypomethylation at selected TE-rich regions causes
genome-wide priming of defence genes and high levels of disease resistance

in Arabidopsis (Cooper & Ton, 2022).
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Epigenetic mechanisms should be particularly valuable for long-living
organisms such as trees although current knowledge on their contribution to
herbivory is still scarce (Briautigam et al., 2013). Also, as mentioned above,
most of our current knowledge on the relationships between epigenetic marks
and plant response to herbivory refers to annual model plants and crops
(Rasmann et al., 2012; Kim & Felton, 2013; Kellenberger et al., 2016;
Colicchio et al., 2018). In this study, we analyse DNA methylation changes in
response to herbivory in leaves of the Lombardy poplar (Populus nigra cv.
italica' Duroi). Our study species, is a cultivated vatiety of the fast-growing
tree Populus nigra L., originated from a single male mutant that has been
propagated by artificial vegetative reproduction (cuttings) through Europe
and worldwide since the beginning of eighteen century (Elwes & Henry,
1913). These characteristics, namely clonal propagation and widespread
distribution, make the species ideal to study the epigenetic mechanisms
involved in response to herbivory for several reasons. First, European
populations exhibit low levels of genetic variation (Diez Rodriguez et al.,
2022a), thus, it is more likely that Lombardy poplar trees would rely on
epigenetic mechanisms to adapt and respond to geographic differences in
environmental challenges (Vanden Broeck et al., 2018). Second, previous
studies in poplars have demonstrated the induction of defences after
herbivory (Havill & Raffa, 1999; Mccormick et al, 2014) and distinct
transcriptional responses to insect and artificial herbivory (Major &
Constabel, 2006; Babst et al., 2009; Philippe et al., 2010; Miller et al., 2019).
Finally, its wide distribution allows us to study whether the methylation
changes in response to herbivory may vary across geographic regions with

contrasting environmental conditions, provided that lineage-specific and
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environmental-driven epigenetic marks contribute to define locally adapted
ecotypes (Vanden Broeck et al., 2018).

Here, we investigate DNA methylation variation in response to
herbivory in clones of P. nigra cv. 'italica' from three geographically distant
provenances with contrasting environmental conditions (Spain, Italy and
Poland). We applied two herbivory treatments, including true consumption
by caterpillars of Lymantria dispar (Lepidoptera: Erebidae), and artificial leaf
damage conducted by manual wounding combined with jasmonic acid
spraying. We compared these treatments with undamaged control plants
using epiGBS, a reduced representation bisulfite sequencing tool that is able
to identify the sequence context and genomic location of DNA methylation
at single base resolution (Gawehns et al., 2022; Troyee et al., 2023 and
Chapter 4 in this thesis). Our main objective was to elucidate if and how DNA
methylation responds to herbivory, with a focus on discerning common and
distinct epigenetic alterations induced by the two herbivory treatments, and
if the response depends on the geographical (environmental) origin of the
tree. We tested the following specific questions: (1) Does genome-wide DNA
methylation of Lombardy poplars originated from contrasting geographic
provenances respond differently to herbivory? (2) Do insect and artificial
herbivory induce comparable methylation changes? (3) Where within the

genome are herbivory-induced DNA methylation variations most prevalent?
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MATERIALS AND METHODS

EXPERIMENTAL PROCEDURE

Plant Materials and Growth Conditions

Cuttings of 2-3 field growing adult trees from each of three distant European
populations of P. nigra cv. ‘italica’ with contrasting climates (see graphical
abstract at General Introduction in this thesis) were collected in spring 2018
and transplanted into a common garden in the Marburg Botanical Garden
(Germany; 50° 48 02.7” N, 8° 48’ 24.8” E) for 10 months (Diez-Rodriguez
et al., 2022b). These three natural populations were located in the north of
Spain (41°31'45.7"N 4°42'22.1"W), the north of Italy (44°35'22.0"N
11°03'25.8"E), and the center of Poland (52°40'17 "N 19°04'16 "E). From
each of the garden grown trees (“ortet”) we selected and cut six to nine similar
sized branches (ramets herafter), that were ~30 cm long and ~15 weeks old
(N = 63 ramets in total). Therefore, “ortets” are the garden grown trees
originated from cuttings collected in the field (F0), and “ramets” are the
clonally generated descendants (F1) that we use in the current herbivory
experiment. Ramets were stored in the dark at 4°C for two weeks, afterwards
they were soaked overnight in a rooting solution (50 mg/L Rhizopon AA 50
mg tablets) and planted in 2L pots, three per pot, containing a 1:1 sand:peat
mixture (30% coarse sand, 20% fine sand, and 50% nutrient-poor potting
soil) and 5 ml of rooting solution. Two weeks later, rooted cuttings were
transplanted into individual 2L pots with the same 1:1 sand:peat mixture and
regularly watered every three days. The slow-release fertilizer Osmocote
Exact Mini (16+8+11+2MgO+TE) was added to each pot, three grams per

pot, two weeks before the start of the experiment. The greenhouse conditions
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during the experiment were as follows: temperature (day/night) 22/18°C
(£2°C), relative humidity: 60% (+5%), light (day/night): 16/8 h. Each of the
experimental levels of treatment included three ramets per ortet. To avoid
volatile organic compound (VOC) exchange, we did not group plants from
various treatments together (Mccormick et al., 2014; Moreira et al., 2016). The
ramets assigned to each treatment level were split in two trays (flood tables),
randomized within the tray (once per week) and watered regularly every three

days.

Herbivory Treatments

We employed two herbivory treatments, including true consumption by
Lymantria dispar (Lepidoptera: Erebidae) caterpillars and artificial leaf damage
conducted by simulated wounding combined with jasmonic acid (JA)-
spraying, and compared them with undamaged control plants. Lywantria dispar
is a highly polyphagous herbivore that can cause severe damage in European
mixed forests (Boukouvala et al., 2022). Mechanical wounding with addition
of JA and L. dispar consumption were expected to elicit significant responses,
and by using simulated herbivory we gained precision in the application of
damage and control over the introduction of material from foreign and
unidentified organisms (e.g., pathogens) by live insects (Havill & Raffa, 1999;
Zust & Agrawal, 2017; Waterman et al., 2019).

To control for potential positional effects, damage was always
inflicted on leaves of the lower half of the main branch of each ramet, and
methylation analyses were done in tissue taken from the most adjacent
undamaged leaves grown in the branch's apical half (see graphical abstract at
General Introduction in this thesis). Both insect and artificial herbivory

treatments were performed twice in order to induce a priming effect (first

o 163



Chapter 3

treatment) and elicit a stronger and/or quicker response during the second
treatment (Mauch-Mani et al., 2017). A more detailed description of the
experimental procedure and set up can be found at Chapter 4 in this thesis
(see also General Introduction and Troyee et al., 2023). For insect herbivory,
the plants were primed with ten L. dispar 1.2 caterpillar larvae that were placed
on the fully expanded leaves of the main branch of our experimental poplar
ramets, which were encaged in 75*100 cm nylon mesh bags. After five days,
the larvae were removed from the plants for three days to allow them to
recover. For the second insect herbivory event, seven L2 instar and five L4
instar larvae were placed on lower main branch leaves, encaged in the same
nylon mesh bag, and allowed to feed freely for seven days prior to the
collection of leaf samples (see below).

Artificial herbivory was also conducted in the main branch and in
similar locations than insects were encaged. In the priming phase, three to
four leaves of the lower half of the main branch were punched with 6 to 8
holes (approximately 3 to 5 mm in diameter) per leaf. Immediately following
the artificial wounding, two pumps (150 uL. per pump) of a JA solution were
sprayed onto the damaged leaf and three pumps were sprayed throughout the
plant. This procedure was repeated three days later for the second artificial
herbivory treatment by punching a total of 10-12 punched leaves per ramet.

In the control group, similarly positioned, well-developed leaves from
each ramet's main branch were sprayed with an equivalent aqueous solution
containing no JA and covered with nylon mesh bags in the same manner as
the herbivory treated leaves. The experiment was concluded 17 weeks after

clonal propagation.
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Sample Collection

The tissue of undamaged and completely expanded leaves of the adjacent
apical half of each ramet was collected 24 hours after the second herbivory
event in treated plants, or after the aqueous spraying in controls, seeking to
characterize systemic changes (sensu Babst et al., 2009). Throughout the
duration of the experiment, these leaves were left unbagged. Five-6 discs of
leaf tissue (approximately 3-5 mm in diameter) were removed using a cork
borer and promptly frozen in liquid nitrogen. The vials were stored at -80 °C
until DNA extraction. The order of sampling and DNA extraction was
determined by randomly selecting one sample per treatment (regardless of
ortet) at a time. Frozen leaf material was grinded and homogenized using a
Qiagen TissueLyser II equipped with two stainless steel balls (45 seconds at
a frequency of 30.00 1/s). The NucleoSpin Plant II reagent from Macherey-
Nagel was used for DNA extraction, and cell lysis Buffer PL1 (CTAB
method) was used to obtain the highest possible DNA quality.

LIBRARY PREPARATION AND SEQUENCING

With a few adjustments, we followed the new EpiGBS2 optimized protocol
(Gawehns et al., 2022). First, the samples were randomized, and 1000 ng of
DNA from each sample were digested with the restriction enzymes Asel and
Nisil. The digested DNA was then ligated with hemi-methylated adapter pairs
encoding barcodes of sample-specific 4-6 nucleotides. These barcodes also
included three random nucleotides (NNN), used during bioinformatic
analysis to identify PCR duplicates as well as an unmethylated cytosine, used
to annotate the Watson and Crick strands and in order to determine the

bisulfite conversion rate. The samples were then multiplexed, concentrated,
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and smaller fragments (60 bp) removed using the NucleoSpin Gel & PCR
cleaning Kit. SPRIselect™ magnetic beads (Beckman Coulter™) were used
to select 300 bp DNA fragments (and lower). To get fully ligated and
methylated adapters, deoxynucleoside triphosphates (dNTPs) containing 5-
methylcytosine were used to repair the nicks caused by hemi-methylated
adapters. We followed the protocol from the EZ DNA Methylation-
Lightening kits to convert the unmethylated cytosines in the DNA to uracils,
which were then substituted by thymines during the amplification stage. The
transformed DNA was PCR-amplified, followed by a final clean-up and size
selection. The library was then paired-end (PE 2x150bp) sequenced in one
lane of an Illumina HiSeq 4000 sequencer with a 12% phiX spike.

epiGBS Data Processing

The epiGBS2 pipeline's 'reference’ branch was used to process the sequencing
data (Gawehns et al., 2022). All steps were implemented into a Snakemake
6.1.1 workflow (Koster & Rahmann, 2012). First, PCR duplicates were
removed based on the 3-random nucleotide sequence (NNN) inserted into
the adapter sequences. The purpose of this step was to confirm true PCR
clones so that they could be removed from the sequencing data, but not
biological duplicates. Using Stacks2 software (Catchen et al., 2013; Rochette
et al., 2019) the samples were demultiplexed according to the barcodes,
followed by adapter removal using cutadapt (Martin, 2011). Our 63-sample
library generated 740,184,096 raw sequencing reads, of which 475,316,207
(64.2%) were successfully demultiplexed and assigned to individual samples.
These data are stored in ENA projects: PRJEB51623 and PRJEB51853. The
bisulfite conversion rate (94.9 %) was calculated by estimating the number of

correctly bisulfite-converted control cytosines within the adapters (see
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Gawhens et al., 2022). Next, the pipeline mapped the sequencing reads of
experimental data to the reference genome of P. mzgra cv. ‘italica’ (available at
ENA project: PRJEB44889) using the default parameters of BISMARK
v0.19.0 (Krueger & Andrews, 2011). Finally, strand-specific methylation and
nucleotide calling were performed within the pipeline to obtain one single
methylation polymorphism bed file per sample (containing rows with
chromosome/scaffold name, genomic position, strand information,
methylated cytosine number, unmethylated cytosine number, cytosine
context (CG/CHG/CHH), and trinucleotide context information where H

are indicated by true A, T, C in the sequence).

Data Quality Filtering

First, we filtered methylation data by removing the samples with low read
coverage, that is, samples that had less than 50 % of the average number of
cytosines present across samples. All 63 samples passed this filtering. Next,
cytosine positions covered with less than 10 reads (10x) were removed and
resulting files for each sample stored as flat file databases in R package
methylKit (Akalin et al., 2012). The coverage of the Cs per sample was

— ¢

normalized using the normalizeCoverage function (method = “median”) in
methylKit. For each population, individual databases were then merged using
the unite function of methylKit including all Cs present (with minimum 10x
coverage) in at least 2 out of 3 of the samples per treatment group. The final
methylation call dataset contained a total of 5,717,923 cytosine reads
(1,630,832, 2,207,164, and 1,879,927 for Spain, Italy and Poland respectively).
As the presence of C>T SNPs can impact the accuracy of detected
methylation levels, we also excluded 5,691 Cs that overlapped with SNP

positions that were present in the epiGBS SNP file. After removing cytosines
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with at least one missing value across all samples, we obtained 108,724
positions (1.9 % of total) without any missing value. The overall multivariate

analyses were performed on this dataset (see below).

EPIGENETIC ANALYSES

All the following statistical analyses were carried out using the R environment
(R Core Team, 2022). At every sequenced cytosine locus in a sample,
methylation level (%) was calculated as: (methylated cytosine read count)/
(methylated cytosine read count + unmethylated cytosine read count) * 100.
Likewise, for each sample, we obtained genome-wide methylation levels as
the average methylation levels of all cytosine loci sequenced for that sample.
Given that in plants DNA methylation can occur within three cytosine
contexts (CG, CHG, CHH) and that on each context has distinct properties
and functions, statistical analyses were conducted also for each context

separately (see details below).

Multilocus Redundancy Analysis (RDA)

To asses and quantify the contribution of population of origin and herbivory
treatment to the variation in cytosine methylation levels, we used a
multivariate method called redundancy analysis (RDA) as implemented in the
package vegan 2.6 using the function rda (Oksanen et al.,, 2022). RDA is a
constrained ordination method analogous to linear regression for cases that
have multiple-dependent variables (in our case, DNA methylation values for
each cytosine site) and several independent variables (in our case, population
of origin and herbivory treatment). The significance of the models was tested
using the function anova () of the package stats that uses type-1I sum of

squares. These analyses were conducted using as the response matrix the
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DNA methylation data shared by all the samples of the three populations, i.e.
without any missing values, that had 108,724 cytosine positions (11,462 in

CG; 17,043 in CHG; and 80,219 in CHH).

First, we assessed to what extent variation in methylation levels
among samples can be explained by differences between populations and
ortets using only the group of control samples (N = 21). We run two different
models that allowed us to test for (i) epigenetic differentiation among
populations, and (ii) differentiation among ortets after adjusting for the

variance explained by the populations, as follows:

1) DNA methylation matrix ~ population;
ii) DNA methylation matrix ~ ortet + Condition (population).

Next, to assess the effect of herbivory on DNA methylation variation
and test whether this effect differed among populations, we ran the following
model for each herbivory type separately (control ss. insect herbivory and
control zs. artificial herbivory) in order to detect a potential divergence in the

strength of the methylation response elicited:

iif) DNA methylation matrix ~ population + herbivory

Differentially Methylated Cytosines (DMCs)

Since a large number of positions were not shared among the three study
populations, differential methylation analysis in response to experimental
treatments was conducted for each population separately by using the
methylation call datasets, that included Cs with a minimum coverage of 10x
and present in at least 2 out of 3 of the samples per treatment group (see
above). On each population data, we searched for differentially methylated

cytosines (DMCs) i.e., cytosines with a statistically significant minimum
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methylation difference of 10 % between ramets assigned to any of the two
herbivory groups in comparison to the control group. DMCs were called
using a generalized linear model as implemented in the R package methylKit,
including herbivory (insect or artificial) as the fixed factor and ortet as
covariate. The method assumes that the methylated and unmethylated counts
follow a binomial distribution and the effect of the fixed factor can be
estimated with a log-likelihood test for logistic regression. MethylKit allows
parameter adjustment to correcting by multiple testing based on ¢-value (¢-
value < 0.05), the minimum methylation difference (fixed = 10 %), and
direction of methylation shift respect to control (hyper or hypo). We also
looked for “stress-specific” DMCs, present in only one of the two herbivory

b

treatments, and “non-specific” DMCs, ie., those shared by insect and
artificial herbivory treatments.

Finally, we annotated all the herbivory induced DMCs from the
former analyses to different genomic features to explore the distribution of
methylation changes across the genome. We overlapped DMC location with
the P. nigra cv. “italica” genome (ENA project: PRJEB44889) that reports
41.7754.133 bp, and provides annotation for 40,988 gene models, with an
average length of 3175.5 bp (including exons and introns) which collectively
represent 31.15% of the sequenced genome (Dubay, 2024). We distinguished
the following genomic features: i. the gene body, defined as the entire gene
from the transcription start site to the transcription termination site, so that
it includes exons and introns; ii. The promoter, defined as the region < 2 kb
up-stream of the transcription start site, and iii. The downstream region,
defined as the region located < 2 kb down-stream of the transcription

termination site. DMCs located out of those three features were classified as

intergenic regions that, after accounting for the average gene length and the
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assigned fixed length of the two flanking regions, would be estimated as ca.
29.6% of the sequenced genome. We followed the approach used by Lin et
al. (2022) to avoid assigning sites to multiple overlapping genomic features.
We annotated sites following the order: gene body > 2 kb upstream of genes
> 2 kb downstream of genes > intergenic regions, where a site annotated to
a former feature would be excluded from subsequent annotation. In this
order, if a site was annotated to “2 kb downstream of genes,” it would not be
annotated to the “intergenic region”. Coordinates of each DMC were used to
perform the BEDTools intersect command and a custom R script for
annotating each genomic feature. To explore the methylation dynamics on
Transposable Elements (TEs), we also searched for DMCs annotated within
TEs. Transposable elements were annotated based on the TE prediction
available in ZENODO (https://zenodo.org/deposit/7193978). Following
the classification proposed by Pefia-Pontén et al. (2024) based on TE
predictions for P. nigra cv. italica reference genome, TEs were grouped into
eleven of the most important superfamilies, namely Class I LTR (copia, gypsy,
unknown, SINE), or retrotransposons, and Class I DNA transposons (DTA,
DTC, DTH, DTM, DTT, Helitron, mite) that collectively represent ca. 34.8%
of the sequenced genome (Dubay 2024). In particular, Class I LTR Gypsy
elements accounted for the greatest proportion of projected TE (38%),
followed by Class I LTR Copia (14%), Unknown Class I LTR (8%), Class 11
DNA/DTC (8%), Class II Helitron (7%) and Class II DTM (6%), other
categories accounting for < 4% (Dubay, 2024). A cytosine was associated
with a TE when it was located inside the TE, and only the shortest predicted
TE was retained. If a DMC was annotated within a TE, hereafter, it will be
referred to as a DMC-TE. Gene models and TE predictions used in this study

were generated as part of the ongoing P. nigra cv. ‘italica’ reference genome
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project (PRJEB44889). With the annotation result for each population, we
developed Venn diagrams to illustrate to what extent DMCs and DMC-TEs
were exclusively found in one population. Additionally, we ranked the DMCs
and DMC-TEs and extracted the top 5% with highest
hypo/hypermethylation difference between experimental groups and

controls, which we termed as 'strongly responding' DMCs.

RESULTS

Average DNA methylation level across the 63 study samples ranged between
~28.7-32.6 % in CG, ~15.1-17.8 % in CHG and ~7.4-8.2 % in CHH.
Overall, genome-wide DNA methylation exhibited a right-skewed
distribution, with many cytosines showing very low methylation levels (close
to 0 %) and fewer showing high methylation levels (close to 100 %), except
for CG methylation whose distribution was nearly bimodal (i.e., more

cytosines with high methylation levels; Figure 1).
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Figure 1. Frequency distribution of methylation levels per cytosine (%) in CG,
CHG and CHH contexts across all the samples coming from the three studied
populations (N = 18, 27 and 18 samples from Spain, Italy and Poland,
respectively). Note that vertical axes have different scales according to the number

of total Cs recorded for each context and population.

GENOME-WIDE DNA METHYIL.ATION VARILATION AMONG
POPULATIONS AND EXPERIMENTAL TREATMENTS

Figure 2 shows variation in the average genome-wide DNA methylation per
context recorded across samples from the three study populations assigned
to each of the three levels of herbivory treatment. The RDA analysis including
only the control samples (N = 21) revealed that: i. population of origin

significantly explained 17.2 % of the genome-wide methylation variation
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across samples (F = 1.87, df = 2, P = 0.001); and ii. Ortet explained up to
29.5% of methylation variation (F = 1.94, df = 4, P = 0.001).

Moreover, the RDA analysis used to test for the effect of population
and herbivory treatments on genome-wide DNA methylation showed that
population explained a significant proportion of the variation in DNA
methylation in all sequence contexts and both herbivory types (Table 1).
Finally, only in the CHH context, herbivory explained a significant
proportion of the DNA methylation variation in both insect herbivory and
artificial herbivory samples (Table 1) with the methylation level of control
plants being, on average, lower than in plants that experienced insect or

artificial herbivory (Figure 2).
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Figure 2. Box-plots showing variation in average genome-wide DNA cytosine
methylation (%) between ramets from the three study populations assigned to each
of the three levels of herbivory treatment (control, insect and artificial herbivory).
Each dot represents a ramet (N = 18, 27, and 18 for Spain, Italy and Poland,
respectively). Lower and upper box boundaries are the 25th and 75th percentiles,
respectively, line inside box the median, lower and upper error lines the 10th and

90th percentiles.
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Table 1. Results of redundancy analysis carried out to test for the effect of
population of origin and herbivory treatment on genome-wide DNA methylation
separately for the three contexts (CG, CHG, CHH) and for insect and artificial
herbivory. The results of the permutation test (n = 999) for the significance of each

of the predictors are shown. Values are in bold when P =< 0.05.

Herbivory Context Predictors daf Variance F  Pr(>F)
Insect CG Population 2 97383 5.39 0.001
Herbivory 1 5454 0.60 0.94

CHG Population 2 56698 3.81 0.001

Herbivory 1 6882 0.93 0.60

CHH Population 2 44459 1.14 0.001

Herbivory 1 22817 1.17 0.001

Artificial CG Population 2 96845 5.39 0.001
Herbivory 1 5115 0.57 0.96

CHG Population 2 57282 3.83 0.001

Herbivory 1 6317 0.84 0.78

CHH Population 2 45292 1.15 0.001

Herbivory 1 20338 1.03 0.05

o

¥
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DIFFERENTIALLY METHYTI.ATED CYTOSINES (DMCS)
INDUCED BY HERBITVVORY

The total numbers of DMCs, as well as the proportions of DMCs out of the
total number of cytosines tested, found for each context, population and
contrast (insect herbivory »s. control and artificial herbivory »s. control) are
shown in Table 2. Overall, across all sequence contexts and populations, the
total number of DMCs captured for insect and artificial herbivory was almost
identical (11,339 and 11,319, respectively). When split by sequence context,
Spanish samples had always a higher number of DMCs in response to insect
herbivory in all contexts, whereas Italian and Polish samples showed higher
numbers in response to artificial herbivory mainly in CG and CHG, but not
in CHH. The number of DMCs captured in CHH context for both herbivory
treatments was much lower than in the other two contexts. The proportion
of hyper and hypomethylated DMCs was rather similar and close to 50% for
CG and CHG in all three populations and both herbivory treatments (Table
2, Figure 3a). In the CHH context, however, DMCs from all populations were
relatively more hypermethylated (methylation level increased) in response to
the two herbivory treatments, except for the insect herbivory treatment from
Spain that showed a greater proportion of hypomethylated DMCs (Figure
2a).
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Table 2. Number of cytosines tested (Cs Tested), total number of differentially
methylated cytosines (DMCs) detected (and percentage), and number of them that
were hypermethylated and hypomethylated in samples experiencing insect or
artificial herbivory compared to control samples in the three studied populations and

for each sequence context.

Context  Population  Herbivory Cs Tested DMCs
Total (%) Hypermethylate — Hypomethylated
d

CG Spain Insect 138,407 2971 2.2) 1442 1529
Artificial 89,888 1,101 (1.2) 577 524
Ttaly Insect 171,002 1,072 (0.6) 580 492
Artificial 175,989 1,681 (0.9) 739 942
Poland Insect 117,597 992 (0.8) 524 468
Artificial 152,122 2,459 (1.6) 1459 2000
CHG Spain Insect 214,576 2,071 (0.9) 939 1132
Artificial 138,552 718 (0.5) 391 327
Ttaly Insect 265,992 1,035 (0.4) 632 403
Artificial 274,209 1,676 (0.6) 836 840
Poland Insect 182,779 724 (0.3) 408 316
Artificial 235,699 1,684 (0.7) 972 712
CHH Spain Insect 1,138,341 637 (0.00) 243 394
Artificial 724,963 352 (0.05) 218 134
Ttaly Insect 1,440,489 1,095 (0.08) 868 227
Artificial 1,492,684 977 (0.07) 728 249
Poland Insect 956,131 742 (0.08) 610 132
Artificial 1,253,171 671 (0.05) 444 227
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Figure 3. Differentially methylated cytosines (DMCs; minimum coverage of 10x,
10 % methylation change and g-value < 0.05) induced by insect and artificial
herbivory in the three populations studied (Spain, Italy, and Poland) and the three
sequence contexts (CG, CHG, and CHH). a) Proportion of DMCs (%) whose

methylation level significantly increased (hypermethylated; red) or decreased
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(hypomethylated; blue) in herbivory samples compared to control samples; b)
Proportion of DMCs (%) that were specific to each herbivory treatment (stress-
specific; light green) or common to the two herbivory treatments (non-specific; dark
green); ¢) Venn diagram showing overlap of stress-specific DMCs between
populations for insect and artificial herbivory (jointly for the three sequence

CONtexts).

The vast majority of DMCs (between 60 and 92 %) captured in the
three sequence contexts across all populations were stress-specific, that is,
were induced either by insect or artificial herbivory (Figure 2b). This was
especially true in the CHH context that showed the highest values of stress-
specific DMCs in both contrasts (= 83 %; Figure 3b). In the CG context,
populations showed slightly diverging trends, with ~ 50 % non-specific
DMCs induced by artificial herbivory in Spanish samples and ~ 40 % in
response to insect herbivory in Polish samples (Figure 3b). Interestingly, most
of the stress-specific DMCs across the three sequence contexts were
exclusively found in one population, i.e., were stress- and population-specific,
and only ~ 0.1 % were shared by the three populations (6 and 12 respectively

for insect and artificial herbivory; Figure 3c).

STRUCTURAL ANNOTATION OF DMCS INDUCED BY
HERBIIVORY

The relative distribution of the four genomic regions distinguished in the
genome was estimated as ca. 31.15% for gene body, 19.6% for each of the
two fixed flanking regions (promoter and downstream) and 29.65 for the
intergenic regions (Dubay 2024). We found that the relative distribution of

DMCs across them was rather similar across populations and contexts for the
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two herbivory treatments (Table 3, Figure 4). In CG relative distributions of
DMCs across the four genomic regions was overall similar to expected
according to their relative abundance, DMCs induced by insect and artificial
herbivory were predominantly located in gene body (> 27 %) and intergenic
regions (> 30 %), whereas = 19 % DMCs were mapped to either promoters
or downstream regions. This pattern was rather consistent among the three
populations studied, except for the fact that the proportion of DMCs in gene
bodies seemed to be slightly overrepresented in ramets from Spain compared
to the other two populations (Table 3, Figure 4a). In CHG, we found a lower
representation in promoter and downstream regions (10-15 %) that was
preferently shifted to gene bodies in Spanish ramets, intergenic regions in
Italian ramets and equally to both features in Polish ramets. As regards the
CHH context, a larger proportion of DMCs (= 48 %) were associated with
intergenic regions for the two herbivory treatments, while DMCs mapped to
gene bodies were variable among populations and overall less frequent (12-

26 %) than in the other two sequence contexts (Table 3).
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Table 3. Relative fraction (%) of DMCs associated to different genomic features
(promoters, gene body, downstream, and intergenic regions), respect to total number
of DMCs induced by insect and artificial herbivory in samples from Spain, Italy and

Poland for the three sequence contexts.

Context  Population  Herbivory Genomic feature

Promoter  Gene  Downstream — Intergenic

body

CG Spain Insect 14.7 36.3 17.7 31.3
Artificial 15.6 35.5 19.4 29.5

Italy Insect 15.7 27.6 18.6 38.1

Artificial 17.0 282 19.0 35.8

Poland Insect 18.7 32.8 12.9 35.6

Artificial 19.3 33.5 15.5 33.7

CHG Spain Insect 11.7 43.4 11.3 33.6
Artificial 10.4 454 14.2 29.9

Italy Insect 12.6 33.2 13.5 40.7

Artificial 12.8 36.3 11.2 39.7

Poland Insect 12.8 39.0 11.2 37.0

Artificial 15.0 37.2 9.7 38.1

CHH Spain Insect 12.6 20.1 12.2 49.1
Artificial 13.4 239 15.1 47.7

Italy Insect 12.2 12.0 9.9 65.9

Artificial 11.9 14.3 11.0 62.8

Poland Insect 13.7 26.0 10.9 49.3

Artificial 18.6 17.7 11.8 51.9
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Frgure 4. Structural annotation of differentially methylated cytosines (DMCs, N =
22,658) induced by insect and artificial herbivory according to the four genomic
features distinguished (promoters, gene body, downstream, and intergenic

regions) in samples from Spain, Italy and Poland for the three sequence contexts.

DMCS INDUCED BY HERBITVVORY ASSOCLATED TO
TRANSPOSABLE EILLEMENTS

We also explored the association with transposable elements that collectively
represent ca. 34.8% of the sequenced genome and found a total of 7,408
DMC-TEs (32.7% of the total number of DMCs found across populations
and treatments), including 2,470 CG-, 2,570 CHG-, 2,368 CHH-DMCs
(Table 4). As a general trend, in CG and CHG contexts DMCs were less
frequently annotated as TEs (~21-37%) compared to CHH context (with
~ 43-60 % of DMC-TEs). On average, 58.9 % of the DMC-TEs were
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hypermethylated and 42.1 % were hypomethylated. Interestingly, DMC-TEs
in the CHH context tended to be slightly more hypermethylated regardless of
the type of herbivory experienced, except for insect herbivory samples from

Spain (Table 4).

Compared to the whole set of DMCs, a much smaller fraction of
DMC-TEs were located into gene bodies (~ 14 %; Figure 5a). Moreover, in
all populations, we found that most DMC-TEs overlapped (> 50 %) with
DNA/Helitron and LTR/Gypsy TEs (Figute 5b). The LTR/Gypsy DMC-
TEs were also highly represented in all three populations, especially in the
CHG and CHH contexts. Specifically, DMCs in LTR/Gypsy TEs wete found
in higher ratio (~ 22 %) than reported in the P. njgra cv. italica reference

genome (~ 15 %).

Table 4. Number of DMCs mapped to transposable elements (DMC-TEs) and their
percentage respect to total number of DMCs induced by insect and artificial

herbivory in samples from Spain, Italy and Poland for the three sequence contexts.

Context  Population  Herbivory DMC-TEs

N %  Hypermethylated Hypomethylated
(%) (%)
CG Spain Insect 627 21.1 305 (48.7) 322 (51.3)

Artificial 235 21.3 119 (50.6) 116 (49.4)

Ttaly Insect 285 26.6 155 (54.4) 130 (45.6)

Artificial 453 26.9 206 (45.5) 247 (54.5)
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Poland  Insect 261 263 118 (45.2) 143 (54.8)
Artificial 609 24.8 326 (53.5) 283 (46.5)

CHG Spain  Insect 591 285 298 (50.4) 293 (49.6)
Artificial 202 281 106 (52.5) 96 (47.5)

Ttaly Insect 363 35.1 245 (67.5) 118 (32.5)
Artificial 620 37.0 340 (54.8) 280 (45.2)

Poland  Insect 250 345 134 (53.6) 116 (46.4)
Artificial 544 323 271 (49.8) 273 (50.2)

CHH Spain  Insect 333 523 144 (43.2) 189 (56.7)
Artificial 150 42.6 95 (63.3) 55 (36.7)

Ttaly Insect 652 59.5 525 (80.5) 127 (19.5)
Artificial 588 60.2 455 (77.4) 133 (22.6)

Poland  Insect 321 433 248 (77.3) 73 (22.7)
Artificial 324 483 202 (62.3) 122 (37.7)
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Figure 5. Characteristics of DMCs mapped to transposable elements (DMC-TEs,

N = 7408) induced by insect and artificial herbivory in samples from Spain, Italy

and Poland for the three sequence contexts. a) Structural annotation according to

the four genomic features distinguished (promoters, gene body, downstream, and

intergenic regions). b) Family identification of the DMC-TEs. Following the

classification proposed by Pefia-Pontén et al. (2024) based on TE predictions for

P. nigra cv. italica reference genome, TEs were grouped into eleven of the most

important superfamilies. In green class I TEs, or retrotransposons, and in purple

class II elements, known as DNA transposons. Class I LTR: copia, gypsy, unk,
SINE, Class II DNA: DTA, DTC, DTH, DTM, DTT, Helitron, Mite
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‘STRONGLY RESPONDING” DMCS

The distribution of “strongly responding” DMCs (i.e., top 5 % DMCs with the
highest absolute methylation change across populations and treatments)
along genic regions ranging from 4 kb upstream the transcription start site
(TSS) to 4 kb downstream the transcription termination site (T'TS) is shown
in Figure 5. The abundance of these “stromgly responding’ DMCs across
populations and treatments is quite uneven, with insect and artificial
herbivory treated ramets from Spain, and artificial herbivory treated ramets
from Poland accounting for most of them (Figures 6 and 7). The Italian
population had the least number of DMCs with strong methylation
differences between damaged ramets and controls, with almost 85% of
DMCs having less than 20% methylation change (Figure 6). Moreover,
“strongly responding” DMCs showed more hyper- than hypomethylation in
artificial herbivory ramets from Poland, but tended to be more
hypomethylated in artificial herbivory ramets from Spain (Figure 6). When
split by context, in CG the number of “strongly responding” DMCs was slightly
higher for insect herbivory ramets from Spain and for artificial herbivory
ramets from Poland. Whereas, in CHH the strongest response was found in
ramets from Spain after artificial herbivory (Figure 5). Across all populations
and contexts, most of these “strongly responding’ DMCs showed greater
densities within gene bodies (i.e., they were located more frequently between
TSS and TTS). Interestingly, all “strongly responding” DMC-TEs were located
in gene bodies (Figure 6). Finally, across treatments, none of these “strongly

responding” DMCs were shared among the three populations (Figure 7).
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Figure 6. Detailed genomic distribution along genic regions of the “strongly responding”
differentially methylated cytosines (top 5% DMCs with the highest absolute
methylation change across populations and treatments), per sequence context (CG:
blue, CHG: brown, CHH: green), population (Spain, Italy, Poland) and herbivory
treatment (insect, artificial). Upper panel shows DMCs not associated to
transposable elements (non DMC-TEs). Lower panel shows DMCs associated to
transposable elements (DMC-TEs). Vertical dashed lines delimit gene transcription
start sites (TSS) and transcription termination site (I'TS). The area between TSS and

TTS represents the gene body. Gene lengths were normalized to 2 kb.
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Figure 7. Venn diagram showing overlap of “strongly responding” DMCs (N =
173) between populations for insect and artificial herbivory (jointly for the three

sequence contexts).

DISCUSSION

DNA methylation is a key player of many important biological cell processes,
including genomic stability, euchromatin-heterochromatin distinction, gene
expression regulation, and TEs silencing (Bucher et al, 2012; Law &
Jacobsen, 2010; Zhang et al., 2018). It is also well-established that within plant
species, individuals from distant geographic locations usually exhibit distinct
DNA methylation profiles (see e.g., Briautigam et al., 2013; Gugger et al.,
2016; Galanti et al., 2022a). Particularly, in poplars, changes in DNA
methylation occur during bud formation, dormancy and break associated to
the seasonal leaf deciduous habit (Nunez-Martinez et al., 2024) and at a
certain phenological stage, methylation profiles in leaf DNA can differ
geographically (Diez-Rodriguez et al., 2022a), between nearby stands after
controlling for genetic variation (see e.g., (Ahn et al., 2017) and even between
branches of a single individual (Yao et al., 2021). Furthermore, individual
exposure to stressful conditions caused by local climate change and/or
antagonistic biotic interactions, can induce epigenetic changes in a short

amount of time that can be relevant for both phenotypic adaptation and

L i 189




Chapter 3

genome evolution (Bucher et al., 2012; Zhang et al., 2018; Jueterbock et al.,
2020; Lloyd & Lister, 2022). In particular, plant species with long generation
times can undergo stress-induced changes in methylation patterns at specific
genomic loci or across the entire genome, which aid in their defense
mechanisms and adaptation potential (Thiebaut et al., 2019). Still, it is unclear
how homogeneous is the epigenomic response to a certain environmental
stress factor across individuals of a certain plant species (but see e.g., Chapter
2 this thesis; Herman & Sultan, 2016; Pefa-Ponton et al., 2024). In this study,
we investigate DNA methylation changes in response to experimental insect
consumption and artificial leaf damage in young clones of P. nigra cv ‘italica’
propagated from trees found in three geographically distant European
populations. Although we did not have previous information on
defoliation records at the three tree provenances studied, we can expect
some heterogeneity in past defoliation events between strands located in
Spain, Italy and Poland (Charles et al., 2014). Thus, clonal propagation and a
widespread distribution were ideal features to characterize genome-wide
epigenetic variability in response to experimental stress in absence of
genetic variation. In the following paragraphs, we will discuss our findings
as regards common and distinct epigenetic alterations induced by either
insect or artificial herbivory treatments across the three tree provenances
and present the genomic location of those cytosines with extreme

differential methylation between damaged and control ramets.

GENOME-WIDE DNA METHYTL.ATION IVARLATION IN
GEOGRAPHICALLY DISTANT LLOMBARDY POPI.ARS

In trees, both micro-environment and local herbivory can determine
functional phenotypic variation in absence of genetic variation which is most

likely associated to either transient or stable epigenetic variants (Diez
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Rodriguez et al., 2022b; Herrera and Bazaga 2013). In poplar, DNA
methylation was transmitted to the next clonal generation, but a fraction of
the methylome changed relatively fast when comparing the parental
individuals (i.e., ortets) with the clonal offspring (i.e., ramets) grown in a
common environment (Diez Rodriguez et al. 2022b). A Europe-wide
landscape analysis, including our three study populations, confirmed limited
genetic diversity and absence of genetic population structure in the Lombardy
poplar, whereas epigenetic divergence was larger and to some extent
correlated with geographic distance (Diez Rodriguez et al., 2022a). Our RDA
analysis showed a distinct population structure of DNA methylation in all
sequence contexts, indicating a substantial epigenetic variation between the
three European P. nigra populations here studied, and additional variance
between ramets in methylation levels of loci in the CG, CHG, and CHH
contexts. Such methylation variability might appear stochastically, by random
epigenetic changes accumulated in plants at different origins (Diez Rodriguez
et al., 2022b) and may contribute to increase phenotypic plasticity in asexuals
under contrasting or stressful environments (Jueterbock et al., 2020; Rapp &
Wendel, 2005; Verhoeven et al., 2010; Verhoeven & Preite 2014). In addition,
exposures to similar stress or environmental conditions in the population of
origin can result in epigenetic population structure that could influence how
plant responds to a certain stress such as herbivory in subsequent seasons and
generations (Bruce et al., 2007; Conrath et al., 2015; Dowen et al., 2012; Hilker
& Schmulling, 2019). Altogether, in our study, we had reduced genetic
variability and significant variation in DNA methylation across poplar clones

obtained from Spain, Italy, and Poland.
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INSECT AND ARTIFICLAL HERBITVVORY INDUCED
METHYTL.ATION CHANGES SIMII.AR IN SIGN BUT RECORDED
AT DIFFERENT GENOMIC LLOCATIONS

As regards the genome-wide effect of our experimental herbivory, we found
that only methylation in CHH was responsive to herbivory treatments (see
also Pena-Pontén et al., 2024; Xiao et al., 2021), and changes were more
significant in response to insect herbivory than artificial mimicking. DNA
methylation in CHH context is established de 7#ovo and it is typically transient
(Boyko & Kovalchuk, 2010; Wibowo et al., 2016). Previous experimental
studies also suggested that methylation in CHH is more plastic in response to
several stress factors and in a variety of plant species including P. #igra (see e.
g., Dubin et al,, 2015; Lopez et al., 2022; Pena-Ponton et al.,, 2024 and
references therein). In our study, DNA in leaves of damaged ramets on
average exhibited higher methylation levels than DNA of control ramets,
although both increased and decreased methylation was frequently found at
different loci (see below).

The epiGBS methodology allowed us to explore methylation changes
at single nucleotide resolution and, thus, determine not only the sign of
recorded changes but also the genomic location and potential association with
genes or transposable elements that might help to link mechanistic
understanding in the response to the experimental factors with the ecological
and evolutionary consequences (Richards et al., 2017). This technique was
particularly useful in a large experimental design as the one here presented
because it produces similar output than whole-genome analysis, but then at
only a small part of the genome and with an affordable cost (Chapter 4 this
thesis; Gawehns et al., 2022; Troyee et al., 2023). Altogether, ca. 2 % of all
cytosines tested were captured as DMCs, which roughly correspond to 300 —

3000 DMCs depending on the sequence context and paired comparison, that
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are within the usual range of loci detected for experimental studies conducted
with reduced representation analyses in other study systems (see e.g., Van
Antro et al., 2023; van Gurp et al,, 2010).

In any of the study populations, less than 30 % DMCs were shared
among the two herbivory treatments suggesting that the effects of insect
consumption were not perfectly mimicked by mechanical damage and JA-
spraying (Hilker & Meiners, 2010) as previously observed at transcription
level in black poplar (Babst et al., 2009; see also Major & Constabel, 20006).
Furthermore, in the two symmetric contexts (CG, CHG) the Spanish samples
had always a higher number of DMCs in response to insect herbivory,
whereas Italian and Polish samples showed higher numbers of DMCs in
response to artificial herbivory. This was, to some extent, unexpected,
because the artificial herbivory treatment aimed to uncover the association
between priming of defenses, frequently elicited by JA (see e.g., Zust &
Agrawal, 2017), and changes in DNA methylation across study systems (see
also Chapter 2 of this thesis). However, the response obtained in poplars was
not homogenous across the three tree provenances, either in magnitude or

in the specific loci whose methylation was altered (see next section).

GENOMIC LLOCATIONS LLINKED TO HERBIIVVORY-INDUCED
METHYTLATION

Compared to other organisms, plants show broader variance in global DNA
methylation levels, with non-CG methylation being frequent and
predominantly found out of genes (Kenchanmane Raju et al., 2019). Thus,
not surprisingly, functional consequences of methylation changes have been
associated to genomic location, sequence context and the sign of change
(Lloyd & Lister, 2022). According to previous studies, mainly in Arabidopsis

thaliana, TEs are highly methylated in all sequence contexts when silent and,
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thus, a reduction in methylation may activate TEs. However, reduced
methylation in genes may increase transcription or the opposite effect
depending on the sequence context and whether it is nearby the starting
transcription site (CG) or at gene body for CG and CHG context (Lloyd &
Lister, 2022). In our study, DMCs induced by insect and artificial herbivory
in CG and CHG were predominantly located in gene bodies and their 2 kb
flanking regions, and increased and decreased methylation was similarly
frequent. Further, DMCs in CHH were predominantly found at intergenic
regions, frequently associated to TEs and overall tended to exhibit increased
methylation in damaged plants, again supporting that methylation at CHH
was the most responsive in our study system (see also Pefia-Ponton et al.,
2024) for the effect of drought). Congruently, differential non-CG
methylation was found to be more strongly associated with TEs in response

to leaf damage in Mimulus (Colicchio et al., 2018).

Altogether, our differential methylation analyses suggested that
epigenetic regulation after herbivory may involve changes not only in gene
expression but in TEs activity as well (Mirouze & Paszkowski, 2011), as
expected for the relevance of TEs in plant genomes (Springer et al., 2016). In
Populus species, TEs make up 35-40% of the genome with class I or RNA
(retroelements) making up 10% and class II or DNA transposon making ca.
2-3 % (Ramakrishnan et al., 2021b). Our study showed that a large proportion
of DMCs overlapping with TEs were associated to the LTR-Gypsy and
Helitron families, mostly in the CHH context This is partly due to the
abundance of these TE superfamilies in the P. nigra genome, although
provisional, hypergeometric tests with our data pointed to significant
enrichments for the LTR-Gypsy, LTR-Copia, and Helitron superfamilies

(results not shown). The LTR-Gypsy are retrotransposons (class I) that
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mobilize through an RNA intermediate via a "copy-and-paste" mechanism
(Bucher et al., 2012), and they appear to be activated by stressful conditions
such as high salinity and heat in other plant species (Liu et al., 2021,
Miryeganeh et al., 2022; Wang et al., 2018). The Helitron mobilize by a "cut-
and-paste" method (class 1I) and are very changeable under stress, directly
affecting neighboring gene transcription (stress-responsive genes) when

inserted (Zhao et al., 2022).

If we pay attention to “strongly responding’ loci, no overlapping
existed in DMCs obtained in samples from different provenances, and
very few were obtained in ramets from Italy. In CG, we found a similar
tendency to increased and reduced methylation mainly associated to gene
bodies either in response to insect (Spain) or artificial herbivory (Poland).
In CHH, decreased methylation was frequently observed in Spanish
ramets after artificial herbivory both in gene bodies and in their flanking
regions. While the functional relevance of gbM in response to stress remains
unclear, it has been associated with gene expression flexibility in some studies
(Bewick & Schmitz, 2017b; Wang et al., 2021) and, other studies suggest that
gbM may be a passive byproduct of other epigenetic processes within genes
(Wendte et al., 2019). Here, we showed that all “strongly responding” DMCs
associated to TEs were located within gene bodies suggesting that changes
elicited by herbivory might be related to de/activation of TEs inserted within
genes. Thus, an integrative analysis of transcriptome and small RNAs
might be required to better interpret our results and improve current
understanding of the epigenetic mechanisms behind heterogeneous
systemic induced defenses both within and across different plant species
(see e.g., Babst et al., 2009; Colicchio et al., 2018; Colicchio & Herman, 2020;
Dugé de Bernonville et al., 2020)
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CONCLUSION

To sum up, our experimental study in Lombardy poplar showed that (i) in
the control samples, a significant amount (17.2%) of variation in DNA
methylation at all three contexts (CG, CHG, CHH) was explained by the
population of origin; (ii) a significant increase on DNA methylation of
undamaged and completely expanded leaves produced after the first priming
event appeared only in CHH contexts, when the effects of insect and artificial
herbivory were analyzed independently across populations. Furthermore, the
combination of those two elements suggests that the response to the specific
herbivory experienced may vary with plant origin because (iii) in response to
insect herbivory, ramets from Spain responded more than those from the
other two populations, whereas for the artificial herbivory, ramets from
Poland were the most responsive, and Italian plants exhibited the least
response in the two cases. Finally, we explored the genomic location of main
changes and found that (iv) DMCs were predominantly recorded in gene
bodies and their flanking regions (CG, CHG) or associated to intergenic
regions (CHH). Around one third of DMCs were in TEs, with > 50 % of
these ovetlapping with DNA/Helitton and LTR/Gypsy TEs for both
herbivory types. Overall, these results suggest that systemic response to insect
herbivory involves changes in DNA methylation that are widespread along

the genome, relatively specific and geographically heterogeneous.
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ABSTRACT

DNA cytosine methylation is an epigenetic mechanism involved in
regulation of plant responses to biotic and abiotic stress and its ability to
change can vary with the sequence context in which a cytosine appears (CpG,
CHG, CHH, where H = Adenine, Thymine, Cytosine). Quantification of
DNA methylation in model plant species is frequently addressed by Whole
Genome Bisulfite Sequencing (WGBS), which requires a good-quality
reference genome. Reduced Representation Bisulfite Sequencing (RRBS) is a
cost-effective potential alternative for ecological research with limited
genomic resources and large experimental designs. In this study, we provide
for the first time a comprehensive comparison between the outputs of RRBS
and WGBS to characterize DNA methylation changes in response to a given
environmental factor. In particular, we used epiGBS (recently optimized
RRBS) and WGBS to assess global and sequence-specific differential
methylation after insect and artificial herbivory in clones of Populus nigra cv.
italica'. We found that, after any of the two herbivory treatments, global
methylation percentage increased in CHH, and the shift was detected as
statistically significant only by epiGBS. As regards to context-specific
differential methylation induced by herbivory (cytosines in epiGBS and
regions in WGBS), both techniques indicated the specificity of the response
elicited by insect and artificial herbivory, together with higher frequency of
hypo-methylation in CpG and hyper-methylation in CHH. Methylation
changes were mainly detected in gene bodies and intergenic regions in CpG
and CHG and in transposable elements and intergenic regions for CHH.
Thus, epiGBS succeeded to characterize global, genome-wide methylation
changes in response to herbivory in the Lombardy poplar. Our results

support that epiGBS could be particularly useful in large experimental designs
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aimed to explore epigenetic changes of non-model plant species in response

to multiple environmental factors.

INTRODUCTION

DNA methylation is an epigenetic modification found in the genomes
of most living organisms, from bacteria to plants, animals and fungi (S. Feng
et al, 2010; Law & Jacobsen, 2010). Cytosine methylation is the most
common form of DNA methylation and it indicates the addition of a methyl
group (CH3) at 5-carbon pyrimidine ring of cytosine nucleotide (Law &
Jacobsen, 2010), hereafter referred to as DNA methylation. The frequency
and location of DNA methylation vary drastically among animals and plants.
In animals, it predominantly occurs on guanine- and cytosine-rich regions of
the genome, specifically in CpG context, while in plants, DNA methylation
is more extensive and can also be found in CHG and CHH (H = Adenine,
Thymine, Cytosine) contexts, catalyzed by a diverse set of methyltransferase
enzymes (Law & Jacobsen, 2010; Niederhuth et al.,, 2016). Plants exhibit
widespread variation in DNA methylation among and within plant families.
Specifically, the global DNA methylation level in angiosperms has been
linked to variance in genome size (Alonso et al., 2015; Niederhuth et al., 2010)
and to some extent to other intrinsic and extrinsic factors such as life history
traits and regional provenance (Alonso et al.,, 2019; Verhoeven & Preite,
2014). Regarding the relative frequency of DNA methylation in different
sequence contexts, methylation is ubiquitous and relatively frequent in CpG
context for the majority of plant species, whereas methylation levels in CHG
are reduced in species of the Brassicaceae family, and tend to be low for CHH

in the Poaceae family (Niederhuth et al., 2016). As regards the location within
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genomes, methylation in the three contexts is highly enriched in repetitive
DNA, transposons, and pericentromeric regions, whereas genic methylation
tends to occur mainly in the CpG context (Muyle et al., 2022; H. Zhang et al.,
2018).

At the intraspecific level, variation in DNA methylation has been
linked to geographic and environmental gradients in wild plant populations
(see e.g., (Alonso et al., 2016; De Kort et al.,, 2021; Galanti et al., 2022;
Kawakatsu et al., 2016)). Furthermore, sound evidence for changes in DNA
methylation associated to abiotic stress (Alonso et al.,, 2016; Herman &
Sultan, 2016) and biotic interactions have been predominantly recorded in
model or crop plants (reviewed in (Ramos-Cruz et al., 2021)). In particular,
DNA methylation variation has been associated with plant defense against
herbivores in several species (Herrera & Bazaga, 2011; Rasmann et al., 2012;
Rendina Gonzalez et al., 2018; Sobral et al., 2021; Troyee et al., 2022). For
example, in Brassica rapa, foliar herbivory is associated with both DNA
demethylation and changes in pollinator-relevant floral traits that decrease the
attractiveness of the plants to their main pollinators (Kellenberger et al.,
2016). Most of the referred studies above have used either global estimates of
methylation or anonymous markers to detect overall changes in species
lacking a reference genome, impeding the ability to infer the genomic location
and potential function of observed methylation changes in response to insect
or artificial herbivory (but see for instance (Colicchio et al., 2018; Scoville et

al., 2011).

Whole Genome Bisulfite Sequencing (WGBS) and Reduced
Representation Bisulfite Sequencing (RRBS) are two methods for studying
DNA methylation, with RRBS being a cost-effective method for quantifying

methylation that targets a small and restriction enzyme site-associated fraction
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of the genome (Paun et al., 2019). Bisulfite sequencing (BS-seq) includes pre-
treating DNA with sodium bisulfite, which converts cytosine to uracil while
5-methylcytosine remains unchanged, followed by sequencing and data
processing to identify methylation at single cytosine site resolution (Gu et al.,
2011; Lister & Ecker, 2009). WGBS can cover entire genome and is regarded
as the gold standard for studying DNA methylation because its single-base
resolution provides information about the sequence context and offers the
possibility for mapping to entire genomes. The quality of the output will vary
with genome features (e.g., genome size, frequency of repeats), sequencing
depth reached and the quality of the annotated reference genome, which
limits its application to non-model plants with unknown genome features
(Paun et al, 2019). RRBS, in contrast, targets a reduced fraction of the
genome using restricted digestion that allows studying species with varying
genome sizes and species that lack a reference genome at a lower cost. Among
the various RRBS techniques available, epiGBS (Paun et al., 2019; van Gurp
et al., 2016) is a method with specific barcoded adapters that uses genotyping
by sequencing of bisulfite-converted DNA . Its bioinformatics analyses
provides a reliable de novo reference for the genomic loci that are targeted
by the method, or use an existing reference genome, for inferring both
methylation quantification and single nucleotide polymorphism detection
(Gawehns, Postuma, Antro, et al., 2022; van Gurp et al., 2016). EpiGBS has
been successfully used to estimate overall DNA methylation variation in a
variety of non-model species, including mosses, snails, birds, and plants
(Boquete et al., 2021; Luviano et al., 2021; Mcnew et al., 2021; Mounger et al.,
2021; van Gurp, 2017). Furthermore, estimation of DNA methylation by
epiGBS correlates well with estimates obtained by WGBS for several
accessions of the model species Arabidopsis thaliana (Gawehns, Postuma,

Antro, et al.,, 2022). Nonetheless, since epiGBS inherently captures only a
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certain fraction of the genome, it is unknown how effective the method is at
capturing the methylation response to specific stress factors (Paun et al.,
2019). Therefore, to move forward in analyzing the epigenetic contribution
to plant responses to stress, it is crucial to corroborate how similar are the
outputs of epiGBS and WGBS to comprehend specific stress responses in
non-model plants. If the two techniques identify similar global and context-
specific methylation shifts and point to similar genomic location of most of
the observed methylation changes in response to a certain level of
environmental stress, the epiGBS analyses could be useful to explore the links
between epigenetic variation and plant functional phenotypic traits, with
typical ecological designs involving large sample sizes and multiple levels of
variation that have mainly used anonymous markers (Herrera & Bazaga, 2011;
Rendina Gonzalez et al., 2018; Troyee et al., 2022) or indirect evidence of

epigenetic contribution to stress response (Herman & Sultan, 2016).

In this study, we used both WGBS and epiGBS techniques to evaluate
changes in DNA methylation in cuttings of the Lombardy poplar, Populus
nigra cv. ‘italica’, in response to insect herbivory and artificial herbivory.
Lombardy poplars are fast-growing trees that have a clonal origin and
widespread distribution, which makes this cultivated variety an excellent study
system to investigate epigenetic responses to specific factors with reduced
variation at the genetic level. Furthermore, in long-lived plants, rapid and
reversible methylation changes can contribute to plant phenotypic plasticity
(Brautigam et al., 2013; Carb¢ et al., 2019; Sow et al., 2021) and could perhaps
be associated with transcription changes observed after insect and artificial
herbivory in poplar (Babst et al., 2009). Specifically, here we addressed the
following questions: i. To what extent genome-wide methylation changes

induced by herbivory can be similarly detected using epiGBS and WGBS
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outputs? ii. How frequent and strong are these methylation changes in the
three sequence contexts according to the two techniques? iii. Are there
technical/biological biases between the two techniques with regard to the
frequency of herbivory-induced methylation variations in specific genomic
sites (gene body, gene promoter, transposable element, etc.)? iv. Can the two
techniques identify functional changes associated with the plant methylation

response to herbivory?

METHODS

STUDY SYSTEM

Plant species

Poplar is a suitable genus for genome-wide investigations due to its
compact genome size (~500 Mb) and availability of reference genomes
(Pinosio et al., 2016). Black poplar, Populus nigra L. (Salicaceae), is a diploid
deciduous tree native to north-west Europe that grows in floodplain woods
and riparian environments (Dickmann & Kuzovkina, 2014). We used the
clonal Lombardy cultivar (Populus nigra cv. ‘italica’ Duroi) because it can be
easily propagated by cuttings and has low genetic variation (Rodriguez et al.,
2022). We did not require any special permit for sample collection because

our study plants came from the Marburg Botanical Garden (Germany).

Herbivory types

We used two forms of tissue damage: true insect herbivory and
simulated artificial herbivory to decipher the changes induced by herbivory in
terms of DNA methylation. Larvae of the gypsy moth, Lymantria dispar (L.)

(Erebidae), were used for insect herbivory treatment. This polyphagous insect
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is a major pest of northern hemisphere hardwood forests, fruits, and
ornamentals, that has over 500 host plant species including poplars
(Mccormick et al., 2014), it has a short generation time with precisely defined
developmental stages and larvae that are easy to manipulate. We obtained L.2
instar larvae from Dr. Sybille Unsicker's lab (Max Planck Institute for
Chemical Ecology, Jena, Germany) and kept them in a climate chamber
(14/10 h light/dark, 20 C, 60% humidity) feeding on artificial diet (MP
Biomedicals LLC) until the experiment was conducted. Two-three days
before the start of the herbivory treatment, larvae were fed poplar leaves to
get them adapted to this food source. For the insect treatment, larvae were
always placed on fully expanded leaves (see below for further details). The
artificial herbivory treatment was performed by mechanically punching holes
in the leaves and spraying them with a solution of Jasmonic Acid (JA), which
is known to be an important chemical elicitor of many plant defense
responses (Thaler et al., 1996). These two complementary treatments were
selected because Populus species develop secondary defense chemicals in
response to jasmonates (Babst et al, 2009). Also, when black poplar is
attacked by gypsy moth caterpillars, it produces a variety of direct and indirect
defenses, including an increase in JA on damaged leaves and several volatile
organic compounds that attract herbivore enemies (Fabisch et al., 2019;

Mccormick et al., 2014).

EXPERIMENTAL DESIGN

Plant Materials and Growth Conditions

Lombardy poplar clones were generated through vegetative
propagation by rooted cuttings from three adult parent trees located in Italy

and grown in a common garden in the Marburg Botanical Garden (Germany)
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for 10 months (Rodriguez et al., 2022). Fach garden planted tree from which
all the members of a clone have descended will be denoted hereafter as an
ortet. Cuttings of approximately 30 cm in length were sampled from the
common garden trees and stored at 4 °C and dark conditions for 2 weeks.
Cuttings were soaked (2 cm bottom) in a rooting solution (50 mg/L
Rhizopon AA 50 mg tablets) overnight and planted in 2L pots (3 cuttings per
pot) with 1:1 sand:peat mixture (30% coarse sand, 20% fine sand, and 50%
nutrient-poor potting soil) and 5 ml of rooting solution. Pots were maintained
in a flood table with regular watering to pot capacity for 2 weeks and then
rooted cuttings were transplanted to individual 2 L pots with the same 1:1
sand:peat mixture and watering regime. Cuttings were fertilized with slow-
release fertilizer Osmocote Exact mini (15-9-11+2MgO+TE) after two
weeks (2 g) and 10 weeks (1 g) of transplanting. Greenhouse conditions
during the experiment included: temperature: (day/night) 22/18 °C (£2°C),
relative humidity: 60% (£5%), light: (day/night) 16/8 h.

A total of 27 similar-sized and 15-week-old cuttings (ramets hereafter)
originated from the three ortets (i.e., nine ramets per ortet) were used in the
experiment. Ramet is defined as an individual obtained clonally from an ortet,
and thus, the nine ramets derived from a certain ortet should be genetically
identical individuals. Three ramets per ortet were included in each of the three
experimental treatments: control, insect herbivory, and artificial herbivory.
We did not assort the plants from different treatments together in order to
avoid volatile organic compounds exchange (Mccormick et al., 2014). Per
treatment, the ramets were randomly distributed in two trays (flood tables)

and were randomized regularly.

Herbivory Treatments Procedure
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To control for potential positional effects, damage was always
inflicted on leaves of the basal half of the main branch of each ramet and
methylation changes will be determined from material taken from the most
adjacent undamaged leaves grown in the apical half of that branch. Both
insect and artificial herbivory treatments were repeated twice to enable a
priming effect to finally get a stronger and/or faster response (Mauch-Mani
et al.,, 2017; Rasmann et al., 2012). For priming the plants in insect herbivory
treatment, ten L. dispar L2 instar caterpillar’s larvae were placed on full
expanded leaves of the main branch of our experimental poplar ramets, which
were enclosed using nylon mesh bags (75¥100 cm). After five days, the larvae
were removed for three days so the plants could recover. For second
herbivory induction event, seven L2 instar and five L4 instar larvae were
placed on leaves of the lower part of the main branch, enclosed within a nylon
mesh bag (75%100 cm) and allowed to feed freely for seven days before the

collection of leaf samples (see below).

Artificial herbivory was conducted in the main branch and in a similar
location as insect herbivory. In the priming phase, 6-8 holes per leaf (ca. 3-5
mm diameter) were punched in three to four leaves of the basal half of the
main branch. Immediately after the artificial wounding of the leaves, two
pumps (150 puL/pump) of a JA solution were sprayed on the damaged leaf
and three pumps all over the plant, repeating this procedure two times.
During the second herbivory event similar number of holes as for priming
were punched in each of 10-12 leaves and JA solution was sprayed four-times
and enclosed within nylon mesh bags as described above. The JA was
solubilized in ethanol and diluted in deionized water to a 1-mM JA (Sigma
J2500- 100MG) solution with 0.1% Triton-x 100 as a surfactant to increase

cuticle penetration (Babst et al., 2009).
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In the control group, similar-positioned, well-developed leaves from
the main branch of each ramet were sprayed with an equivalent
aqueous solution in which no JA was added and covered with nylon mesh
bags in a similar manner as the herbivore treated ones. The experiment

finished 17 weeks after clonal propagation.

LABORATORY METHODS AND I[LIBRARY PREPARATION

Sampling and DNA Exctraction

We collected tissue from undamaged and fully expanded leaves of the
adjacent apical half of each ramet, either 24 hours after the second herbivory
event in treated plants or after the aqueous spraying in controls. We kept
these leaves without any bag cover throughout the duration of the
experiment. A cork borer was used to take 5-6 discs of leaf tissue (ca. 3-5 mm
diameter), that were stored in labelled vials and immediately frozen in liquid
nitrogen. Vials were kept at -80 °C until DNA extraction. Sampling and DNA
extraction order were determined by randomly selecting one sample per
treatment (irrespective of the ortet) at a time. Frozen leaf material was
disrupted and homogenized using a Qiagen TissueLyser 11 with two stainless
steel beads (45 seconds at a frequency of 30.00 1/s). Macherey-Nagel
NucleoSpin Plant II kit was used to do DNA extraction and cell lysis Buffer
PL1 (CTAB method) was used to get optimum DNA quality. For each
sample, an aliquot of 35 ul at 30 ng/ul was used for epiGBS and at least 1 pg
of DNA from a stock solution at minimum 20 ng/ul was used for WGBS. It
is important to remark that this is the first time that plant DNA from identical

plant individuals has been analyzed using these two techniques.
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epiGBS' Library Construction, Sequencing and Pre-Processing

We followed the epiGBS2 protocol with few modifications
(Gawehns, Postuma, van Antro, et al., 2022). Samples were randomized and
DNA digested using restriction enzymes Asel and Nsil. Hemi-methylated
adapter pairs containing barcodes of sample-specific 4-6 nucleotides were
then ligated to the digested DNA and the barcodes are usually followed by
three random nucleotides. Additionally, an unmethylated cytosine is added at
the end to annotate Watson and Crick strands to estimate the bisulfite
conversion rate. Next, the samples were multiplexed, concentrated and
smaller fragments (<60 bp) were removed by NucleoSpin Gel & PCR cleanup
Kit. SPRIselect magnetic beads were used to select DNA fragments of 300
bp (and lower). Deoxynucleoside triphosphates (ANTPs) that contain 5-
methylcytosine were used to repair the nicks produced by hemi-methylated
adapters to obtain completely ligated and methylated adapters. We used the
EZ DNA Methylation-Lightening kits protocol for converting the
multiplexed samples. PCR-amplification of converted DNA was done
followed by a final clean-up and size selection. The obtained library was then
sequenced paired-end (PE 2x150bp) in one lane of an Illumina HiSeq 4000
sequencer with a 12% phiX spike.

Both the ‘reference’ branch and ‘de novo’ branch epiGBS2 pipeline
were used to analyze sequencing data (Gawehns, Postuma, Antro, et al,
2022). All the steps were embedded in a Snakemake (version 6.1.1) workflow
(Koster & Rahmann, 2012). Firstly, removal of PCR duplicates was
performed based on the inserted 3-random nucleotide sequence in the
adapter sequences. This step was done to confirm true PCR clones so it can
be removed from the sequencing data but not the biological duplicates. Then

Stacks 2 software (Rochette et al., 2019) was used to demultiplex the samples
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in accordance with the barcodes followed by adapter trimming using Trim
Galore! (version 0.5.0) and cutadapt (data stored in European Nucleotide
Archive (ENA) project: PRJEB51853). The bisulfite conversion rate,
estimated based on the number of correctly bisulfite-converted control
cytosines within the adapters (see Gawehens et al.,, 2022 and above), was
found globally satisfactory (= 94.88 %). The pipeline then maps the sequence
fragments of experimental data with the reference or consensus genome using
Bismark v0.19.0 (Krueger & Andrews, 2011) with the default settings. In the
epiGBS2 reference branch (epiGBS-R hereafter), the P. migra cv ‘italica’
reference genome (available at ENA project: PRJEB44889) was used for
mapping with default parameters (sequence identity in the last clustering
step). In epiGBS de novo branch (epiGBS-D hereafter) the genome generated
from consensus clusters was used to map the fragments. The final output was
a Bismark report file for each sample that contains lines with
chromosome/scaffold name, genomic position, strand information,
methylated cytosine number, unmethylated cytosine number, cytosine
sequence context name (CG/CHG/CHH) and trinucleotide context
information (where H are indicated by true Adenine, Thymine, and Cytosine
in the sequence). For the epiGBS library, 240 million (243,507,2306) reads were
successfully demultiplexed and assigned to individual samples (N = 27
ramets). In epiGBS-D, a de novo assembly produced 106,267 clusters of 32-
290 bp in length (mean = 224 bp), with an average of 1.4 fragments per

contiguous cluster (minimum = 1 and maximum = 437).
WGBS Library Construction, Sequencing and Pre-Processing
Preparation of DNA libraries for bisulfite sequencing was performed

by IGA Technology Services (Italy) using the Ovation Ultralow Methyl-Seq
System (NuGEN, Redwood City, CA) following the manufacturer’s
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instructions. Library preparation order followed the same randomized sample
design as for DNA extraction. Libraries were sequenced paired-end (PE
2x150bp) at approx. 25X coverage on an Illumina NovaSeq6000 sequencing
system. Libraries were randomized and sequenced in two lanes. The sodium
bisulfite non-conversion rate was calculated as the percentage of cytosines
sequenced at cytosine reference positions in the chloroplast genome and it

was found globally satisfactory with conversion 96.37%.

Sequenced reads were processed using the EpiDiverse Toolkit

(WGBS pipeline v1.0,_https://github.com/HEpiDiverse/wgbs) (Nunn et al,,

2021). Briefly, low-quality read-ends were trimmed (minimum base quality:
20), sequencing adapters removed (minimum overlap: 5 bp), and short reads
(<36 bp) discarded. The remaining high-quality reads were aligned to the P.

nigra cv. ‘italica’ reference genome mentioned above using erne-bs5 alignment

package (http://erne.sourceforge.net) allowing for 600-bp maximum insert
size, 0.05 mismatches, and unique mapping. Per-cytosine methylation metrics
were extracted using MethylDackel
(https://github.com/dprvan79/MethylDackel). Three bedGraph files per

sample were produced, corresponding to cytosines on each sequence context:
CpG, CHG and CHH. Each of these files contained a matrix where each line
consists of six columns that indicated the scaffold name, start coordinate, end
coordinate, methylation percentage, number of alighments reported
methylated bases and unmethylated bases. For the WGBS library, after
adaptor trimming and quality control 200 million (200,660,447) reads per
sample were processed, and a total of 52 million (52,885,999) reads were
demultiplexed, assigned to individual samples and mapped for further

analysis.

epiGBS and WGBS Data Filtering
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The downstream analyses required to estimate changes in methylation
status between study groups were conducted with methylKit (Akalin et al.,
2012) based on Bismark report files. Bismark file of every sample was checked
for global low read coverage based on the retained positions and approved
since more than 50% of total positions had sufficient read depth in all cases.
Next, cytosine loci with five or fewer sequencing read depths for WGBS (6x)
and nine or fewer reads for epiGBS-D and epiGBS-R (10x) were removed
and stored as flat file databases. We applied different minimum read coverage
because data from the two sequenced libraries indicated that epiGBS got
higher coverage than WGBS for the captured cytosines (S1 Fig). Individual
databases were later merged using the unite function of methylKit that kept
bases covered by 2/3 of the samples per treatment group (i.e., in six out of
nine samples). We retained a total of 1,823,024 (epiGBS-R), 1,148,755
(epiGBS-D) and 116,785,713 (WGBS). Furthermore, in order to compare
only positions with methylation calls that were common to all samples, a
dataset was built without any missing values (i.e., data available in 100% of
samples). The number of cytosine positions in the three sequence contexts
captured by each technique after read coverage filtering and the two sample

representation options are shown in Table 1.
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Table 1. Total number of cytosines captured by epiGBS-R , epiGBS-D and

WGBS techniques in the three sequence contexts (CpG, CHG and CHH)

according to the sample representation threshold applied.

Sample representation

2/3 samples all samples
Technique Sequence context No. cytosines* No. cytosines* %
epiGBS-R  CpG 167,193 24,126 14.43
CHG 260,884 36,033 13.81
CHH 1,394,947 172,631 12.37
epiGBS-D CpG 108,462 62,456 57.58
CHG 162,351 92,952 57.25
CHH 877,942 457,165 52.07
WGBS CpG 10,530,726 210,014 1.99
CHG 16,019,281 330,541 2.06
CHH 90,235,706 963,809 1.07

* Values indicate the total number of cytosines

included in each dataset after doing the minimum read

coverage filtering (=5 sequencing coverage in WGBS;

210 in epiGBS-R and epiGBS-D), taking into account

their presence in at least 2/3 of study samples per

group or being common to all study samples.
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DATA ANALYSES

Methylation Levels in epiGBS and WGBS

Estimates of methylation levels in the three sequence contexts (CpG, CHG,
CHH) and genomic features (promoters, gene bodies, intergenic region and
corresponding transposable elements) were calculated for positions that were
common to all samples using epiGBS-R, epiGBS-D and WGBS data.
Methylation level (%) of a particular site was calculated as: (methylated
cytosine read count)/(methylated cytosine read count + unmethylated
cytosine read count) * 100. The average methylation was subsequently
estimated as the mean of all sequenced cytosines in a sample. Average
methylation percentage in each context was compared among epiGBS-D,
epiGBS-R and WGBS by Pearson's Chi-square test using chisq.zest function of
stats R package v3.6.2). Divergence in average methylation (%0) between study
samples was evaluated independently for each technique with a linear model
including herbivory (with three levels) and ortet (with three levels) as fixed
factors. Significance of fixed factors and their interaction was tested using the
function ANOVA (package car, v3.0.12) (J. Fox & S. Weisberg, 2019).
Additionally, we have conducted a technical analysis with the common
fragments obtained by both epiGBS-R and WGBS, ie. using only the
subgroup of fragments that had identical coordinates when mapped to the
reference genome (average fragment size of 204 bp). But since the results of
this technical comparison are very specific and does not change substantially
our main conclusions, to improve readability and conciseness, they are

provided as a supplementary material (S1 Appendix).
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DIFFERENTIALLY METHYT.ATED CYTOSINES (DMCS)

In addition to individual locti filtering, we removed all positions where
the sum of methylated reads across all samples was less than 10 (i.e., very low
methylated positions) from the merged file (see epiGBS and WGBS data
filtering section in Methods). Monomorphic positions in our dataset, i.e.
those that were always unmethylated or fully methylated were removed. The
filtered dataset was analyzed with generalized linear models as implemented
in the R package methylKit that assumes that the methylated to unmethylated
counts follow a binomial distribution and the effect of the fixed factors can
be estimated with a log-likelihood test for logistic regression (Akalin et al.,
2012). MethylKit allows parameter adjustment to identify DMCs corrected
by multiple testing based on g-value (g-value <0.05), the minimum
methylation difference (fixed = 10 %), and direction of methylation shift
(hyper or hypo). DMCs were called separately for insect and artificial
herbivory treated plants in comparison with control plants, each model
included herbivory (control »s treated) as fixed factor and ortet as covariate.
Finally, we searched for “stress-specific”” DMCs that were present only in one
type of herbivory and “non-specific” DMCs that were common to both
herbivory treatments. The same criteria and statistical model were applied to
epiGBS-D, epiGBS-R and WGBS filtered data if not stated otherwise.
Furthermore, Pearson's Chi-square test (x = 0.05) was used to test similarity
in number of DMCs obtained between two methods (¢chisg.fest funtion stats R

package v3.0.2).
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DIFFERENTIALLY METHYILATED REGIONS (DMRS)

In WGBS analyses is frequent to adopt a regional approach that
considers the non-independence of DMCs that are close to each other within
the genome, and combines them into regions (DMRs) to study DNA
methylation differences between groups of samples (Laine et al., 2022). We
call DMRs based on the following procedure: BedGraph files from
EpiDiverse/WGBS pipeline wete used as input for differential methylation
analysis using the EpiDiverse/DMR pipeline v1.0

(https://github.com/EpiDiverse/dmr), each treatment group was compared
to the control group and the three cytosine sequence contexts were analyzed
separately.  Briefly, = DMRs  were  identified by  metilene

(https://www.bioinf.uni-leipzig.de/Software/metilene), using the following

parameters: minimum read depth per position: 6; minimum cytosine number
per DMR: 10; minimum distance between two different DMRs: 146 bp; per-
group minimal non-missing data for estimating missing values: 0.8; adjusted
p-value (Benjamini-Hochberg) to detect significant DMRs: 0.05. Only
significant DMRs with methylation difference >10 % between control and
treatment group were retained for analysis. Due to the short nature of epiGBS
fragments (average length 207 nucleotides in the filtered data set), no formal

DMR tests were performed.

STRUCTURAL ANNOTATION OF DMCS AND DMRS

We overlapped DMCs and DMRs from the former analyses with P.
nigra cv. ‘italica’ (ENA project: PRJEB44889) genome to identify genomic
features with differential methylation. We defined three genomic features:
gene body, i.e. between transcriptional start and termination sites, the < 2 kb

up-stream of transcriptional start (promoter region) and < 2 kb down-stream
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of termination sites (downstream region). DMCs or DMRs located out of
those three features were assigned to intergenic. Coordinates of DMC or
DMRs were used to perform the BEDTools intersect command and a custom
script for annotating each genomic feature including Transposable Elements
(TE). Visualization of the distribution of DMCs for the treatment groups was

carried out using custom R scripts (R Development Core Team, 2020).

FUNCTIONAL ANALYSIS OF GENES ASSOCLATED TO HERBIT'ORY-
INDUCED DMRS

Each DMR was associated with its ovetlapping gene and/or with the
closest gene (maximum 2kb upstream from TSS). Genes associated with
either insect or artificial herbivory DMRs were subjected to gene ontology
(GO) enrichment analysis. The gene set background (universe) was built with
the closest Arabidopsis (A. thaliana) homologue of each P. nigra cv ‘italica’ gene,
which was determined using BLAST best reciprocal hits (RBH) of the protein
sequences (R package orthologr). Best hits were filtered by keeping
alignments covering at least 60% of both Arabidopsis and P. nigra proteins, and
minimum 60% similarity. Arabidopsis sequence proteins were extracted from
phytozome V13, and functional annotations were retrieved from the PLAZA

5.0 dicots database (https://bioinformatics.psb.ugent.be/plaza/). GO

enrichments were performed using clusterProfiler v4 (Wu et al., 2021). P-
values were adjusted for multiple testing controlling the positive false

discovery rate (q-value).
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RESULTS

METHYILATION LEVELS ESTIMATED BY EPIGBS AND WGBS

As regards to methylation percentage recorded per cytosine, we found
consistent outputs between the three techniques, with cytosines in CpG and
CHG contexts showing a bimodal distribution with a much higher frequency
in methylation levels < 25 %, while cytosines in CHH context showed
unimodal distribution skewed towards low methylation and almost no case
with methylation levels > 50 % (Fig 1). The average cytosine methylation level
among all the poplar samples studied (N = 27) ranged from 8.1% to 28.2%
according epiGBS-R, from 7.5% to 35.2% according to epiGBS-D, and from
8.0% to 38.79% according to WGBS.
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Fig 1. Histogram of DNA methylation percentage of cytosines

captured by epiGBS-R, epiGBS-D and WGBS in CpG, CHG and CHH

contexts. Methylation percentage was calculated as the mean value across all

samples of per-cytosine methylation level.
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Methylation percentage was higher in CpG, intermediate in CHG,
and lower in CHH, regardless of the technique used for estimation. In
epiGBS-R, methylation percentage across all samples averaged 27.8 = 0.1%,
15.6 £ 0.1%, and 8.4 * 0.1% for CpG, CHG, and CHH contexts,
respectively. In epiGBS-D, average methylation obtained were similar to
those in reference branch: 32.4 = 0.1%, 19.0 = 0.1%, and 5.7 £ 0.1% for
CpG, CHG, and CHH context, respectively. In WGBS, average methylation
percentage was 38.0 £ 0.5%, 34.9 £ 0.5%, and 9.5 £ 0.8% for CpG, CHG,
and CHH contexts, respectively. The chi-squared tests conducted for each
context indicated that average DNA methylation per context (i.e., interpreted
as a relative proportion) was not statistically different among the three
methods for CpG and CHH (Pearson's Chi-square test, CpG X* = 1.61, df =
2, P =0.45 and CHH: X* = 0.99, df = 2, P = 0.60) but significantly different
for the CHG context (X*= 9.12,df = 2, P = 0.01).

For each context, the linear model and ANOVA test applied to
evaluate the effect of herbivory treatment and ortet indicated that average
methylation percentage was significantly different among the three ortets for
CpG and CHG according to epiGBS-R and epiGBS-D (Table 2). In CHH
context, average methylation percentage was significantly different among
levels of the herbivory treatment according to epiGBS-R and epiGBS-D
(Table 2), methylation being lower in control plants (Fig 2). In WGBS,
however, neither the ortet nor treatment had a significant effect on average
DNA methylation recorded in any sequence contexts (Table 2). Given the
similarities between epiGBS-D and epiGBS-R, only comparisons between
WGBS and epiGBS-R are discussed further.
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Table 2. Effect of ortet, herbivory treatment, and their interaction (Ortet X
Herbivory) on genome wide average methylation percentage obtained by
epiGBS-R, epiGBS-D and WGBS techniques for each of the three sequence
contexts (CpG, CHG, and CHH).

Source of

variation

Ortet Herbivory Ortet X

Herbivory

Technique Sequence “F,;3 P F,i3 P F,is P
context

epiGBS-R  CpG 69.36 <0.0001 1.50 025 056 0.69

CHG 3.35 0.05 1.99 0.16 049 0.75

CHH 0.47  0.63 7.90 0.003 1.22 0.34

epiGBS-D CpG 70.80 <0.0001 1.26 030  0.63 0.64

CHG 4.72  0.02 200 016 056 0.69

CHH 0.38  0.68 9.56 0.001 1.46 0.206

WGBS CpG 0.38  0.69 050 0.62 0.82 0.53

CHG 0.55 0.59 023 0.8 0.72  0.59

CHH 037 0.7 0.08 092  0.65 0.64

*F, degrees of freedom (subscript for “F”) and P values are provided.
Values are in bold when P = 0.05.
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Fig 2. Average methylation levels (%) captured by epiGBS-R,
epiGBS-D and WGBS in the three sequence contexts (CpG, CHG and CHH)
in leaves of P. nigra cv. italica after insect and artificial herbivory treatment
and in non-damaged controls. The boxplots depict medians +1.5 x interquartile
range of n =9 replicates. Each dot denotes a replicate (ramet), and different symbols

were used for the three ortets.
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METHYTLATION CHANGES INDUCED BY HERBIVVORY DETECTED AS
DMCS AND DMRS IN EPIGBS-R AND WGBS

In total, epiGBS-R captured 10,675 DMC, whereas WGBS was able
to detect only 4,746 DMCs (S1 Table) for the two herbivory treatments
combined. Such a difference between the two techniques was mainly due to
a lack of captured DMCs at CHH context when analyzing WGBS data, likely
due to reduced statistical power associated to multiple-testing correction
requirements associated to the large number of CHH positions detected by
WGBS (see Table 1). Still, the number of DMCs captured in the CpG and
CHG contexts was similar in the two techniques (Pearson's Chi-squate test:
X*=0.02,df = 1, P = 0.88 for CpG context; X*= 2.12,df = 1, P = 0.15 for
CHG context). Furthermore, WGBS captured more DMCs in the CpG
context than in the CHG context, but a similar number of DMCs were
obtained in the two contexts with epiGBS (S1 Table). Overall, the number of
DMC:s identified in response to artificial herbivory was always greater than
those induced by insect herbivory (2794 »5s 1952 for epiGBS, and 5961 »5s 4714

for WGBS, respectively, in artificial and insect herbivory).

Using the WGBS data, we identified a total of 1,057 DMRs, of which
500 DMRs (CG: 6, CHG: 29; CHH: 465 DMRs) were obtained for insect
herbivory and 557 DMRs (CG: 9, CHG: 47; CHH 501) for artificial

herbivory, and none was shared by the two treatments.

SIGNS OF METHYIL.ATION SHIFTS AFTER HERBIVVORY AND STRESS
SPECIFICITY

In CpG context, the proportion of cytosines that shifted to a
significantly lower methylation (hypo-methylated DMCs) and those that
shifted to a significantly higher methylation (hyper-methylated DMCs) in
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artificial herbivory was similar as detected either by epiGBS-R and WGBS
(Pearson's Chi-square test: X*= 1.3, df = 1, P = 0.24), indicating a higher
frequency of hypo-methylation (Fig 3A). For the insect herbivory
comparison, the relative frequency of hypo-methylated and hyper-DMCs was
rather similar, regardless of the technique (Fig 3A). In CHG context, for both
herbivory treatments the relative frequencies of hypo and hyper methylated
loci varied depending on the applied technique, slightly more hyper-
methylated DMCs were obtained by epiGBS and more hypo-methylated
DMCs by WGBS and there appear to be significant differences between
DMC numbers (P < 0.05; Fig 3A). Finally, in CHH context, a significantly
higher number of hypermethylated DMCs was observed in response to insect
and artificial herbivory treatments in epiGBS-R (Fig 3A; P < 0.05). As
mentioned above, WGBS technique was largely inefficient for capturing

DMCs in CHH context using the standard DMC calling parameters.
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sequence contexts. DMCs were defined by a minimum coverage of 10X for

epiGBS and 6X for WGBS, 10 % change in methylation percentage and g-value

* & 239




Chapter 4

<0.05. (A) Sign of methylation shifts after herbivory relative to the methylation
status in controls, represented as hyper-methylated DMCs (in red) or hypo-
methylated DMCs (in blue). (B) Specificity of the response to insect or artificial
herbivory (stress specific DMCs, in pink; and non-specific DMCs, in yellow).

For either insect or artificial herbivory, treatment-specific DMCs (i.e.,
DMC:s that only appear in one of the two herbivory treatments) were by far
more abundant than non-specific ones (i.e., DMCs that appear in the two
herbivory treatments) in all analyzed contexts, and this trend was found in
both epiGBS-R and WGBS (Fig 3B). In particular, the relative frequency of
stress specific DMCs was higher in WGBS (92.5% for CpG and 95.5% for
CHG) than in epiGBS-R (71.1% for CpG, 75.6% for CHG, 90.1 % for
CHH).

STRUCTURAL ANNOTATION OF DMCS AND DMRS INDUCED BY
HERBIIVORY

The overall results of structural annotation analyses of epiGBS-R data
showed that DMCs induced by each of the two herbivory treatments in CpG
and CHG contexts were present in all the distinct genome features identified.
TEs that overlapped with the genomic features were indicated and we
predominantly found DMCs within the gene body and the intergenic regions
which were not TEs (Fig 4). However, in the CHH context much more
DMCs were found in the intergenic regions and particularly overlapping with
TEs. In WGBS data, a similar pattern was observed for CpG and CHG
contexts and DMCs were predominantly found in gene bodies. As previously
stated, no genomic feature was annotated in CHH context because of the
failure to detect DMC with WGBS. In general, the amount of TEs detected
by WGBS was lower than in epiGBS in most genomic features (Fig 4).
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Fig 4. Genomic location of DMCs detected by epiGBS-R and WGBS in the
three sequence contexts. DMCs mapped within genomic features were classified
as being within the gene body (green), promoter (red), and 2 kb down-stream of
termination sites (blue). DMCs located out of those regions were assigned to
intergenic regions (purple). Information on location within Transposable Elements

(TE) is also indicated, where darker colors indicate TE and lighter colors are no TE.
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SIGNS OF METHYT.ATION SHIFTS AFTER HERBIVVORY IN THE
DIFFERENT GENIC REGIONS

In both CpG and CHG contexts, and in all the different genic
features, the two techniques captured similar proportions of cytosines that
shifted towards lower or higher methylation in response to herbivory (S2
Table). Specifically, in gene bodies not associated with TEs, a higher
proportion of hypo-methylated DMCs were detected by epiGBS and WGBS
in the two contexts, especially after artificial herbivory (Fig 5A). Also, the two
techniques revealed that DMCs tended to be more hypo-methylated after
artificial herbivory in intergenic regions that were not in TEs in CpG context.
Finally, in CHG the two herbivory treatments tend to produce more hyper-
methylation in intergenic regions both in TE and no TE, as detected mainly

by epiGBS (Fig 5A).

In CHH context, DMCs captured by epiGBS in all genic features
were predominantly hyper-methylated regardless of the type of herbivory
experienced, being highest at intergenic regions in both TEs and non-TEs
(Fig 5B). Consistent with these results, the largest number of DMRs detected
by WGBS in response to the two herbivory treatments were also located at
intergenic regions and they were predominantly hyper-methylated (Fig 5B),
suggesting that the two techniques were able to detect similar biological

response when properly analyzed.
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Fig 5. Methylation shifts in response to insect and artificial herbivory
(relative to the methylation status in controls) captured by epiGBS-R and
WGBS in the three different contexts that were located in gene bodies and in
intergenic regions and their association with TE and non-TE regions. Hyper-

methylated DMCs or DMRs were represented in red, and hypo-methylated in blue.
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For WGBS due to a lack of captured DMCs at CHH context, bars represent DMRs.
(A) DMCs obtained for CpG and CHG contexts. (B) DMCs obtained for epiGBS-
R and DMRs for WGBS in CHH con-text. DMCs/DMRs had at least a 10 %

difference in methylation compared to controls and g-value < 0.05.

FUNCTIONAL ASSOCLATION OF DIFFERENTIAL METHYILATION
CHANGES OBSERVED IN RESPONSE TO HERBITVORY

None of the GO terms associated to DMCs or DMRs identified by
epiGBS and WGBS showed enrichment after multiple testing correction (q-
value < 0.05), however GO terms selected with uncorrected p-values < 0.05
suggested a functional association. In epiGBS, GO terms with uncorrected p
< 0.05 indicated that insect herbivory-DMCs enriched genes in biological
processes (S2A Fig) related to organelle organization (GO:0006996),
phosphorylation (GO:0016310) and some other metabolic processes, while
artificial herbivory-DMCs enriched genes in biological processes related to
cellular response to stress (GO:0033554), and negative regulation to
biological process (GO:0048519).

In WGBS, insect herbivory-DMRs enriched genes in biological
processes (S2B Fig) related to defense response (GO:0006952), response to
external biotic stimulus (GO:0043207) and defense response to other
organism (GO:0098542), while artificial herbivory-DMRs enriched genes in
biological processes (S2B Fig) related to response to abscisic acid
(GO:0009737) and abscisic acid-activated signaling pathway (GO:0009738).
However, neither of the treatments using epiGBS DMCs enriched GO terms
in biological processes similar to WGBS. See additional S3 Table for a full list
of enriched gene sets from the DMC and DMR analyses.
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DISCUSSION

In this study, we analyzed DNA methylation in the genomes of
Lombardy poplar clones that were either consumed by larvae of the gypsy
moth (insect herbivory), hand-defoliated together with application of JA
(artificial herbivory) or remained undamaged (control) growing under
common conditions. We selected a clonal plant to obtain genetically uniform
replicates that could facilitate the identification of independent epigenetic
variation, sensu (Richards, 2006). Two single-base resolution methodologies
were applied and their outputs compared, the WGBS approach which
covered methylation in the entire genome and epiGBS which uses restriction
enzymes to reduce the costs of sequencing by interrogating methylation in a
portion of the genome (Paun et al., 2019). In the following paragraphs, we
discuss the extent to which the genome-wide herbivory-induced methylation
changes in undamaged leaves grown after treatment were comparable
between the two types of herbivores assayed and how epiGBS and WGBS
outputs detected these changes in terms of global methylation and

differentially methylated loci.

OVERALL DNAMETHYLATION CHANGES INDUCED BY HERBIVVORY

Our WGBS analysis provided methylation information on > 116
million cytosines whereas epiGBS was able to analyze between 1.8 and 1.1
million cytosines depending on the use or not of the reference genome
available (i.e., for epiGBS-R and epiGBS-D, respectively). In order to
understand DNA methylation changes after herbivory, we paid attention to
sequence context as cytosine methylation is introduced and maintained by
different methyl-transferase and demethylase systems in the CpG, CHG and
CHH contexts of DNA, that might respond differently to external stimuli
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(Law & Jacobsen, 2010; Niederhuth et al., 2016). We found that DNA
methylation was higher in CpG, intermediate in CHG, and lower in CHH,
regardless of the technique used for estimation, with estimates at CHG being
lower according to epiGBS. Furthermore, all techniques showed a bimodal
distribution of cytosine methylation in the CpG context, with either
unmethylated or methylated at very high levels, whereas the frequency of
highly methylated positions was lower in the CHG and almost absent in

CHH, similar to what is typically found in Arabidopsis (Cokus et al., 2008).

Variation in average methylation percentages after either artificial or
insect herbivory estimated by epiGBS-R and epiGBS-D indicated a
significant increased methylation in the CHH context, which is also the
context more responsive to short-term stress in other plant species (Dowen
et al., 2012; Lu et al., 2021). Methylation percentage in CpG and CHG did
not change in response to herbivory but significant variation between the
study ortets was observed in these two contexts, likely reflecting
intrapopulation variance in methylomes of poplar trees retained after grafting
(Perrin et al., 2020; Rodriguez et al., 2022). Methylation estimates based on
WGBS did not significantly differ between herbivory treatments or ortets
suggesting that the changes associated to the study factors, likely occurring in
a small fraction of positions, were not reflected as an overall global
methylation change with this technique. A higher sequencing depth in WGBS
could circumvent the limitation observed here (Beck et al., 2022; Becker et
al., 2011; Liu et al., 2012). Summing up, in our study epiGBS seemed to be
efficient for identifying the global methylation changes associated to
herbivory, suggesting that the genome sampling accomplished was
representative to detect so, although differential methylation analyses should

be more informative (see below).
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DIFFERENTIAL METHYTLATION ANALYSES: STRESS AND CONTEXT
SPECIFIC CHANGES

The main purpose of applying single base resolution BS-seq methods
is to capture differential methylation loci and their location according to
genomic features that could be instrumental to understanding responses to a
certain factor (H. Feng & Wu, 2019; Lister et al., 2008). These analyses require
subsequent data filtering because reliable estimates of methylation for single
evaluated positions need to be represented in most if not all samples (e.g., we
required that every analyzed position was present in at least six out nine
samples per group). In our filtered dataset, epiGBS and WGBS obtained
comparable numbers of DMCs in CpG and CHG contexts for a change in
methylation between control and treated plants larger than ten percent. In
these two sequence contexts, all methods revealed that most captured DMCs
were specific to one of the two herbivory treatments assayed, a result that
contrasts somehow with a shared response in CpG and CHG contexts
induced by pathogen infection and salicylic acid exposure in A. thaliana
(Dowen etal., 2012). Artificial herbivory produced a higher number of DMCs
than insect herbivory. Looking at the three sequence contexts we found that
in CpG context, the proportion of cytosines that shifted to a significantly
lower methylation (hypo-methylated DMCs) and those that shifted to a
significantly higher methylation (hyper-methylated DMCs) were similar after
insect herbivory whereas a higher number of hypo-methylated DMC were
observed after artificial herbivory. In CHG context the ratio of hyper and
hypo-methylated DMCs was not captured analogously by different methods,
artificial and insect herbivory tended to show more hyper-methylated DMCs
according to epiGBS and the opposite trend was obtained in WGBS. Previous

studies showed that in rice, heavy metal treatment induced hypo-methylation
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in CHG, whereas in Arabidopsis, hypo- and hyper-methylation modifications
in CHG context were produced by an avirulent strain or the defense hormone

Salicylic acid (Dowen et al., 2012; Ou et al., 2012).

Interestingly, in CHH context, epiGBS found the highest number of
DMCs, with a clear prevalence of hyper-methylated DMCs, whereas WGBS
obtained only a negligible number of DMCs, likely due to the reduced
statistical power (because of multiple testing correction) to detect changes in
methylation at positions that usually have very low methylation level when
the number of evaluated positions is large (Beck et al., 2022; Becker et al.,
2011; Liu et al, 2012).This pattern was observed in our study where
90,235,706 CHH sites were present in WGBS compared to the 877,942 in
epiGBS raw data, but a minor percentage was retained by WGBS when only
positions properly covered in all samples were selected (Table 1). For this
reason, in WGBS, detection of differentially methylated regions (DMRs), ze.
contiguous stretches of DNA sequence in the genome that show differing
levels of DNA methylation between groups of samples, has become a much
frequent approach , provided that variation in DMR has been also associated
with phenotypic plant variation (e.g.,(Becker et al., 2011; Cortijo et al., 2014)).
When we applied the standard DMR identification method for WGBS, we
found that they were most frequently found in CHH context and hyper-
methylated DMRs were more frequent after either insect or artificial
herbivory. Thus, in CHH context, the DMR output of WGBS showed similar
relative frequency and sign than obtained by DMCs in epiGBS. A response
characterised by hyper-methylated DMRs suggested that de novo methylation
in CHH islands would be a suitable response associated to herbivory in the
Lombardy poplar (see e.g., (Y.-Y. Zhang et al., 2013)). This is an interesting

finding and may have implications for gene transcription as CHH hyper-
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methylation in the proximity of a gene reduced the level of transcription of

that particular gene in the apple tree (Perrin et al., 2020).

Overall, the epiGBS technique, which can be applied to any species
in the absence of a reference genome at a lower cost per sample, was
successful in demonstrating that methylation changes induced by insect and
artificial herbivory occurred at distinct loci and indicated that increased
methylation in the CHH context was the most frequently observed response.
Thus, epiGBS could be particularly useful for non-model plant species and
large experimental designs, such as those intended to search for species-
specific epigenetic responses in plants typically damaged by a diverse array of
antagonistic animals or pathogens, or the impact of multiple levels of abiotic
conditions (e.g., temperature, water availability, and their combination) that

could better simulate the different scenarios of climate change.

STRUCTURAL ANNOTATION AND FUNCTIONAL ASSOCLATION OF
DMCS AND DMRS INDUCED BY HERBITVORY

Despite the fact that epiGBS usually covers a small percentage of the
study genome (in our case 1.5%), our study found no apparent bias or
preference for specific genomic features in the DMCs observed after artificial
and insect herbivory in Lombardy poplar clones supporting that the method
provided a sound genome-wise analysis (Gawehns, Postuma, Antro, et al.,
2022). In particular, DMCs detected in CpG and CHG contexts were more
frequently associated to hypo-methylation in gene bodies regardless of the
method applied, an interesting finding provided that in P. #richochocarpa
methylation in gene bodies had a more repressive effect on transcription than
promoter methylation (Vining et al., 2012) and therefore the observed hypo-

methylation might be associated with genes transcription. Conversely, the
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most frequent change observed in CHH was hyper-methylation in TEs and
intergenic regions. Such findings are consistent with response after pathogen
infection in which increased CHH methylation levels along TE region were
found in A. thaliana (Dowen et al., 2012). Additionally, hyper-methylation was
suggested to be a general defense mechanism against pathogen stress in
tobacco plants, and radiation-induced hyper-methylation in Scots pine was
attributed to the activation of the Tes (Boyko et al., 2007; Volkova et al.,

2018).

As a further step to better understand the potential consequences of
methylation changes observed, we conducted gene enrichment analyses
associated to DMRs from WGBS and DMCs from epiGBS to compare their
outputs, provided there is currently no unified method for performing
enrichment analyses of DMRs from both approaches. Gene enrichment
analysis from WGBS-DMR revealed that most changes associated with
herbivory were related to the Gene Ontology (GO) category associated to
Biological Processes, but enrichment in specific GO categories differed
between insect herbivory and artificial herbivory. Insect herbivory was more
related to responses to biotic stimuli, defense responses and immune system
processes, whereas changes associated with artificial herbivory were more
related to abscisic acid stimulus, ligase and cell cycle process, and mRNA
processing. The genes associated to epiGBS-DMCs were equally associated
to biological process, molecular function and cellular components categories,
mainly related to catabolic processes or organelle organization within the cell.
Therefore, epiGBS is useful for understanding the localization and direction
of differential methylation, but it does not directly reveal specific functional

response in genes associated to DMCs, a constraint that is an inherent
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limitation of epiGBS (and RRBS in general) because the majority of genes in

the genome are not included in the fraction of the genome analyzed.

CONCLUSION

To sum up, we found that epiGBS offered reliable insight about
methylation changes in DNA of Lombardy poplar clones experiencing insect
and artificial herbivory. The results offered by epiGBS and WGBS were
consistent as regards (i) the context dependent response, mainly associated to
increased methylation in CHH, (ii) the specificity of the response elicited by
insect and artificial herbivory indicated by the few shared DMCs, and (iii) the
structural annotation of those changes, mainly associated to TEs and
intergenic regions for CHH, and to gene bodies and their flanking regions in
CpG and CHG. Thus, epiGBS succeeded to characterize global, genome-
wide methylation changes in response to a certain stress, being particularly
useful for investigating species lacking a reference genome, whereas WGBS
performed better in the functional analysis. The functional interpretation (at
the level of GO term enrichment) of the observed methylation changes
remained unclear and additional transcriptome analyses might be
instrumental to characterize the epigenetic regulation of stress-specific

responses in non-model plants with limited genomic resources.
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SUPPORTING INFORMATION
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S1 Fig. Mean coverage distribution for each position across all samples

obtained with epiGBS and WGBS.
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S2 Fig. Gene ontology (GO) clustering and selected significantly enriched

GO terms of DMCs and DMR-associated genes.’
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S1 Table. Total number of differentially methylated cytosines for insect and

artificial treated plants captured by WGBS and epiGBS-R (reference branch)

in the three cytosine contexts. In all the comparisons the filtering criteria was g-

value<0.05 and methylation difference >10%.

Context Insect Artificial
# Y% # Y%

epiGBS-R CpG 1316 27.9 1822 30.6

CHG 1378 29.2 1991 334

CHH 2020 42.9 2148 36.0
WGBS CpG 1346 69.0 1847 66.1

CHG 593 30.4 941 34.0

CHH 13 0.6 6 0.9
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S2 Table. Total number of differentially methylated cytosines (DMC)
captured by epiGBS-R (reference branch) and WGBS in the three sequence
contexts (CpG, CHG and CHH) in each genomic feature (promoter, down-
stream of transcriptional sites, gene body and intergenic region), within
transposable elements (TE) or outside (no TE) also indicated. DMCs wete
defined by a minimum coverage of 10X for epiGBS and 6X for WGBS, 10 % change
in methylation percentage and g-value <0.05. Higher and lower methylation shifts
after herbivory relative to the methylation status in controls are represented

respectively as hyper-methylated and hypo-methylated DMCs.

Technique Context Herbivory Genomic TE no TE

feature

hype hyp hype hyp

r o r o
epiGBS-R CpG insect promoter 22 27 79 90
down 46 33 85 80

gene body 20 22 164 171

intergenic 87 81 169 140

artificial promoter 32 70 84 120

down 52 39 115 122

gene body 24 29 219 259

intergenic 104 128 156 269

CHG insect promoter 44 22 66 61

down 56 29 65 42

gene body 45 32 189 171

intergenic 181 104 169 102

artificial promoter 73 56 90 59

down 83 36 56 60

w5 B
/5‘
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gene body 58 44 241 289
intergenic 249 192 207 198
CHH insect promoter 100 24 84 34
down 92 24 76 28
gene body 77 17 97 36
intergenic 633 222 367 109
artificial promoter 123 37 84 38
down 88 45 70 31
gene body 76 30 92 53
intergenic 709 185 386 101
WGBS CpG insect promoter 21 23 44 45
down 50 20 52 70
gene body 20 23 245 380
intergenic 112 59 90 92
artificial promoter 17 50 60 103
down 24 54 58 147
gene body 16 45 334 384
intergenic 162 114 90 189
CHG insect promoter 8 18 7 9
down 11 5 11 13
gene body 13 11 94 236
intergenic 46 35 38 38
artificial promoter 6 17 16 25
down 7 19 9 32
gene body 15 31 202 333
intergenic 98 41 32 58
CHH insect promoter 2 2 2 1
intergenic 3 3 - -
artificial intergenic 6 -
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Chapter 4

Appendix A

Technical analysis of global methylation with fragments shared by WGBS
and epiGBS

Methods

We searched for the common fragments obtained in epiGBS-R and WGBS (Table
Al). Only those fragments with substantial methylation information: = 5 cytosines
for CpG or CHG, and 210 cytosines for CHH were retained and their average
methylation level calculated. Linear models were applied to fragment methylation
data to test for the effects of herbivory treatment (with three levels), ortet (with three
levels), and technique (epiGBS-R vs WGBS) as fixed factors. Significance of fixed
factors and their interaction was tested using function ANOVA (package car, v3.0-
12.) (Fox et al.,2019) The frequency of the average methylation percentage of shared
fragments for each herbivory among ortets was compared between two methods by

Pearson's Chi-square test, using chisq.test function of stats R package v3.0.2).

Finally, principal components analyses were run to detect multivariate patterns of
DNA methylation variation among ramets assigned to different herbivory
treatments and the effect of technique applied. The analysis was conducted on
average methylation of the shared fragments obtained by epiGBS-R and WGBS,
using the correlation matrix and the built-in R function "prcomp" of the stats

package with default parameters.
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Table Al. Total number of common methylated positions captured by epiGBS-R
(reference branch) and WGBS in the three sequence contexts (CpG, CHG and
CHH) with and without missing values (With NAs and Without NAs). Values were
obtained using methylkit and taking into account positions with methylation
information of 25 cytosines for CpG or CHG, and =10 cytosines for CHH in
WGBS; and 210 cytosines for all contexts in epiGBS-R.

With NAs Without NAs
Technique Context # # %
CpG 28,826 2,243 7.78
epiGBS-R CHG 30,954 3,771 12.18
CHH 35,375 6,781 19.17
CpG 32,459 1,569 4.83
WGBS CHG 35,209 3,246 9.22
CHH 38,907 7,222 18.56
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Results

For the subset of shared fragments, the estimates of global cytosine
methylation level in the leaf genomes of the poplar ramets studied ranged
from 3.9% to 26.1% according to WGBS and from 6.1% to 24.2% according
epiGBS-R. The ANOVA tests detected that methylation levels obtained by
the two techniques were significantly different in the three contexts (Al Fig;
P < 0.005) for these common fragments. Average methylation was relatively
higher in WGBS for CpG and CHG, whereas CHH methylation percentage
was higher in epiGBS-R (A1l Fig), differences being statistically significant
only in CHG and CHH contexts (Table A2). Furthermore, global methylation
in leaf genomes did not differ between ortets, or the three herbivory levels,
or the interaction between the study factors was never statistically different
but were always significantly different in the three cytosine sequence contexts

between the techniques (Table A2).

Table A2. Summary of the ANOVA results carried out to test the effect of ortet,
herbivory treatment, technique and their interaction on genome wide DNA
methylation for each of the three cytosine contexts performed with the common
fragments of epiGBS-R and WGBS techniques.

Context Source of variation d.f. F P

CpG ortet 2 0.03 0.97
herbivory 2 0.53 0.61
technique 1 107.36 <0.0001
ortet X herbivory 4 0.67 0.01
ortet Xtechnique 2 0.51 0.60
ortet X herbivory X 4 0.84 0.50
technique

CHG ortet 2 0.34 0.71
herbivory 2 0.35 0.70
technique 1 185.08 <0.0001
ortet X herbivory 4 0.61 0.65
ortet X technique 2 0.16 0.85
ortet X herbivory X 4 0.82 0.52
technique

CHH ortet 2 0.78 0.46
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herbivory 2 0.19 0.82
technique 1 117.63 <0.0001
ortet X herbivory 4 0.56 0.56
ortet X technique 2 0.90 0.89
ortet X herbivory X 4 0.69 0.69

technique

Heatmap representation (A2 Fig) of average fragment methylation showed
congruency between the two techniques for all three contexts across all 27
ramets (x-axis) and scaffolds (y-axis) and a large difference in the patterns
observed for each context. Fragments had frequently very high or very low
methylation in CpG and CHG contexts, with a lack of cases with intermediate
methylation in those two contexts, whereas in CHH average methylation per
fragment varies between low and intermediate but almost never reach a

methylation > 50 %.
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A2 Fig: Heatmap visualization of per-fragment average methylation based on
common fragments in the three sequence contexts for each of the 27 samples that
are shown ordered in the x-axis (left: epiGBS-R, right: WGBS). Hierarchical
clustering (Ward’s method) was performed on the fragments’ methylation estimate
(Manhattan distance). A scale is shown on the right, in which blue and red
correspond to a lower and a higher methylation status, respectively.
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As expected, principal component analysis showed that the primary source
of variation in average methylation per fragment (PC1) was associated with
the technique applied in all three contexts (29.8%, 30% and 21.1% for CG,
CHG and CHH, respectively). Samples from each technique clustered
together more closely along the PC1 principal component (A3 Fig). The
second and third components (PC2 and PC3) explained only between 3.9%
and 8.0 % of the variance in average methylation per fragment for the three
different contexts. In CpG and CHG contexts, samples from each of the
three study ortets clustered separately along the PC2 and PC3 axes, indicating
that fragment methylation patterns differ between ortets, with ortetl being
the most distinct in both CpG and CHG contexts. However, in CHH context,
PC2 and PC3 did not reveal any differences between ortets, treatments or
techniques, and a larger variation among WGBS samples was observed when

compared to variation among epiGBS-R samples.
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GENERAL DISCUSSION

As sessile organisms, plants are constantly exposed to a wide range of
environmental fluctuations in abiotic conditions (e.g., temperature, drought,
precipitation, nutrients) and biotic interactions (e.g., herbivores, pathogens,
mycorrhiza) that can have effect on their growth, reproduction and survival.
When fluctuation in abiotic or biotic factors become extreme, plants
experience stress and their response would vary according to life-history traits
(e.g., lifespan, individual size, reproductive mode, and other demographic
traits), physiological traits (e.g., photosynthetic capacity, stomatal
conductance) and the environmental context (Mosa et al., 2017). This PhD
Thesis addresses the role of epigenetic regulation in modulating plant biotic
interactions (Alonso et al.,, 2019; Ramos-Cruz et al.,, 2021), a topic that
remains understudied in comparison with the much more frequently
addressed plant epigenetic response to osmotic and heat stress, heavy metals
contamination or light and resource availability (see e.g., Alonso et al., 2016
and references therein). As discussed in Chapter 1, several epigenetic
mechanisms including DNA cytosine methylation, histone modification and
small non-coding RNA production might be relevant in this ecological
context because they function in combination rather than independently in
regulating gene expression, genome stability and phenotypic plasticity (Liu &
Chang, 2021; Talbert et al., 2019; J. Wang et al., 2016).

The Thesis was developed within the Ep/Diverse Marie-Curie
Innovative Training Network that contributed to generate improved genomic
resources (see e.g., Dubay 2024 for Populus nigra ‘italica’; Nunn et al., 2022 for
Thiaspi arvense) and new bioinformatic tools (see e.g., Nunn et al., 2021;

Gawehns et al., 2022) that were used within this Thesis. This consortium, that
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joined with 12 research groups from ecology, molecular (epi)genetics and
bioinformatics, also provided new insights into the ecological significance of
epigenetic variation in non-model plant species (see e.g.,Galanti et al., 2022;
Diez Rodriguez et al.,, 2022a, Troyee et al., 2023; Van Antro et al., 2023;
Sammarco et al., 2024). This has contributed to fill the gap between deep
molecular understanding, traditionally reserved for a few model plant species,
and the broader ecological perspective required to better understand the
complex relationships among genetics, epigenetics, phenotype and

environment in natural plant populations (Richards et al., 2017).

This Thesis investigates the general hypothesis that herbivory can
cause epigenetic modifications in plants, and these will contribute to activate
plant defense mechanisms. To test it, we analyzed DNA methylation
variations in response to leaf consumption by Lepidopteran larvae (i.e., insect
herbivory) and manual defoliation together with jasmonic acid application
(i.e., artificial herbivory), in individuals collected from geographically distant
European populations of two species with contrasting features: the ruderal
annual pennycress, Thlaspi arvense (Brassicaceae), and the Lombardy poplar,
Populus nigra ‘italica’ (Salicaceae), a clonally propagated variety of this fast
growing deciduous tree. As the secondary compounds present on each plant
species conditioned the insect herbivores that could be used, we selected
larvae of Pieris brassicae and Lymantria dispar tor T. arvense and P. nigra,
respectively. The artificial herbivory was incorporated following the tradition
in ecological studies aimed to assess the impacts of herbivory on plants (see
e.g., Lehtild & Boalt, 2008; Waterman et al., 2019), due to the experimental
advantage of accurately controlling both the amount of physical leaf damage
and the chemical effect provided specifically by jasmonic acid (as a surrogate

of the more complex insect saliva), that could be uniformly applied to the two
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study systems in order to gain generality. In the following sections, I will
discuss differences and similarities between results obtained for the two study
systems in the patterns of change in DNA methylation recorded and lessons
learned from applying different techniques to estimate those methylation

changes in DNA in response to herbivory.

DNA METHYLATION LANDSCAPE AND CHANGES AFTER
HERBIVORY

Opver evolutionary time scales, cytosine DNA methylation has been involved
in genome stability and the regulation of gene expression, facilitating
phenotypic plasticity in plants and therefore contributing to the potential
adaptability of plant populations (as reviewed by Briutigam & Cronk, 2018).
Changes in DNA methylation (also called epimutations) are known to emerge
more rapidly than genetic changes, and they can be transmitted to offspring,
although some of them are transient (as demonstrated by Becker et al., in
2011 and discussed in a review by Johannes & Schmitz in 2019). Thus,
epimutations may serve as a bridge between short-term plastic phenotypic
responses and long-term genetic mutations, operating at intermediate time
scales that might be relevant to understand microevolutionary process linked
to intraspecific variation (Becker et al., 2011; Johannes & Schmitz, 2019;
Noshay & Springer, 2021). Also important, DNA methylation is associated
with cell and organ differentiation, and other developmental processes related
to seasonality and individual aging (see e.g., Alonso et al., 2024 and references
therein; Nunez-Martinez et al., 2024). With that background knowledge, we
focused on methylation changes observed in DNA of non-damaged leaves of
plants which were developed after a first priming event, and fully expanded

at collection time (24 h. after second herbivory event), searching for those
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epimutations that could be stable enough to be transmitted to offspring (Fitz-

James & Cavalli, 2022).

THE COMPARISON BETWEEN INSECT AND ARTIFICLAL HERBITVORY

The two focal species of this Thesis belong to plant families characterized by
their ability to produce secondary compounds that are involved in plant
defense system against insects and other herbivores, glucosinolates in the
Brassicaceae (Mitreiter & Gigolashvili, 2021) and phenolic glycosides in the
Salicaceae (Boeckler et al.,, 2011). These two groups of chemical molecules
are highly diverse; thus, the structural complexity and toxicity of different
compounds are largely variable (Boeckler et al, 2011; Mitreiter &
Gigolashvili, 2021). Plant hormones, particularly the jasmonic acid and its
derivatives, have been directly related to the regulation of defense production
and individual growth according to environmental conditions and damage
recorded (Zust & Agrawal, 2017). In particular, exogenous application of
jasmonic acid is able to upregulate the glucosinolate metabolic pathway,
altering both composition and concentration of some of those secondary
compounds in leaves of some Brassicaceae (Mitreiter & Gigolashvili, 2021;
Textor & Gershenzon, 2008). Similar effects have been found in Salicaceae

too (Havill & Raffa, 1999).

In this Thesis, we found that artificial damage together with jasmonic
acid application can have an impact in leaf DNA methylation in plants with
contrasting life-history features and distinct chemical defenses. Furthermore,
in T. arvense, the effect of insect herbivory was milder in terms of changes in
global DNA methylation, glucosinolate concentrations and functional

phenotypic traits related to growth and reproductive output (Chapter 2),
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whereas in P. nigra the magnitude of changes in response to insect and
artificial herbivory varied geographically (see below and Chapter 3). As
regards the effects of artificial herbivory, global DNA methylation level in
leaves of artificially damaged 1. arvense plants was reduced compared to
methylation level in DNA of undamaged control plants, and an overall
upsurge of glucosinolates was observed mainly in late-flowering phenotypes
(Chapter 2). In the Lombardy poplar, we found that methylation percentage
in leaf DNA increased after artificial herbivory mainly in CHH, the sequence
context in which many more hyper-methylated cytosines compared to
undamaged plants were recorded, frequently associated to transposable
elements (TEs) and intergenic regions (Chapter 3 and 4). Indeed, we
identified 32.7% of differentially methylated cytosines (IDMCs) in response to
herbivory in TEs, and more than 50% of them overlapped with two TEs
families widely abundant in poplar genome, the DNA/Helitron and
LTR/Gypsy. These results are congruent with previous studies reporting that
non-CG methylation at TEs and repeat intergenic regions are the most
dynamic DNA methylation changes in response to stress, and thus, TEs and
TE methylation can be a source of hidden variation that conditionally affect
the expression of nearby genes (Fitz-James & Cavalli, 2022). Also important,
in Chapter 4, hypo/hyper DMCs for insect or artificial herbivory were
similarly frequent, and treatment-specific DMCs were by far more abundant
than non-specific ones (similar output obtained by epiGBS and WGBS).
Thus, even though the responses of insect herbivory and artificial herbivory
did not provide identical responses per se, this PhD Thesis confirms that
artificial herbivory can be a valuable tool to gain further mechanistic and

epigenetic understanding of plant-herbivore interactions.
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Our results pointed to the relevance of distinguishing the sequence
context in which methylation varied the most and highlighted that the
significance of the effect can vary according to the resolution of the method
applied (see below and Chapter 4). Indeed, an independent study conducted
with P. migra ramets from multiple European provenances that applied
WGBS, found that biotic stress, including the exogenous application of
salicylic acid and leaf consumption by Lymantria dispar caterpillars, reduced
methylation in CG and CHG contexts and it had no significant effect in CHH
(Pefia-Ponton et al.,, 2024). In that study, drought was the stress with the
highest impact in DNA methylation, inducing hyper-methylation at CHH,
particularly in TEs located close to drought-responsive genes (Pefia-Ponton
et al., 2024). Altogether, we can conclude that absence of an overall shift (or
little overall variation) in genome-wide DNA methylation levels in response
to a certain experimental treatment, may emerge from distinct sign of
methylation changes recorded at different sequence contexts and genomic
locations (see also Balao et al., 2024). Still, when recorded, the magnitude and
sign of change in global DNA methylation can be highly informative because
it shows a positive correlation in parent-offspring comparisons (Herrera et
al., 2018) and it is frequently related with multiple plant phenotypic traits (see
e.g., Chapter 2; Alonso et al., 2014, 2018; Herrera & Bazaga, 2013).

THE EFFECT OF ARTIFICIALLY ALTERING DNA METHYIL.ATION
WITH 5-AZACYTIDINE IN THIL.ASPI ARVENSE

Experimental alteration of DNA methylation by using 5-Azacytidine (5-
AzaC), an inhibitor of the activity of a DNA methyltransferase enzyme, has
contributed to uncover the effect of this element of epigenetic regulation on

phenotype, development and fitness in different species (see e.g., Herman &
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Sultan, 2016; Rendina Gonzilez et al., 2016; Puy et al., 2018; Minzbergova et
al., 2019; Herrera et al., 2021; Alonso et al., 2024). As a general rule, 5-AzaC
applied at high concentration during seed germination may be toxic and
seriously impair individual growth (Puy et al., 2018). However, when used at
low concentration and during short time, 5-AzaC slows individual growth,
delays leaf production and flowering, and may incur some negative impact on
titness (Alonso etal., 2017, 2024 and references therein; Bossdorf et al., 2010).
It can also modify the patterns of phenotypic plasticity helping to understand
the links between genetics, epigenetics and functional phenotype (Bossdorf
et al., 2010; Herman & Sultan, 2016; Verhoeven & van Gurp, 2012). In T.
arvense, the effect 5-AzaC was still evident as a reduction of DNA methylation
in leaves of reproductive individuals but only in the early-flowering ecotype
(Chapter 2), suggesting that the genetic background of experimental plants
can affect the response to this enzymatic inhibitor and the subsequent
phenotypic changes (delayed growth and reduced size). Thus, a significant
and homogeneous effect of seed demethylation treatments cannot be
presumed across individuals, populations or species. A better molecular
understanding of the effects 5-AzaC in different plant species and tissues
could help to understand the observed heterogeneity (see Balao et al., 2024,

Griffin et al., 2016 and references therein).

THE EPIGENETIC RESPONSE CAN IVARY WITH PLANT
PROVENANCE

As mentioned above, the response to experimental herbivory was not
uniform in any of the two study systems. In T. arvense (Chapter 2), the two
flowering ecotypes (Mulligan & Kevan, 1973) collected from distant
European populations in Germany (early-flowering) and Sweden (late-

flowering), which belonged to different genetic clusters according to Galanti
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et al. (2022), were not equally affected by herbivory and 5-AzaC. In the group
of non-treated seeds, early-flowering plants were the least affected by
herbivory, whereas late-flowering plants reduced DNA methylation level in
leaves, increased leaf glucosinolate concentration (particularly sinigrin) and
reached reduced final stem size after damage. In contrast, early-flowering
plants were the most responsive to 5-AzaC, significantly reducing DNA
methylation and growth. Differential epigenetic response after experimental
stress treatments of plant genotypes, lines or provenances have been
previously reported (see e.g., Bossdorf et al., 2010; Herman & Sultan, 2016;
Minzbergova et al., 2019); although a deeper understanding of the
mechanisms behind is still missed. For instance, the observed variation in
epigenetic response and phenotypic consequence could be attributed to either
the parental generation's experience (Latzel et al., 2023), together with
difference in functional traits and flowering time among populations, which
are integral to local adaptation mechanisms and may be influenced by
variations in the climate of the native habitat (Bussotti et al., 2002; Ramirez-
Valiente et al., 2010; Kaluthota et al., 2015; Ramirez-Valiente & Cavendet-
Bares, 2017).

The identification of origin-specific, intraspecific epigenetic
modifications triggered by herbivory in the clonal P. #igra was an unexpected
finding (Chapter 3). We found that the methylation changes in response to
herbivory of near-isogenic poplars from three European populations (Spain,
Italy, Poland) were not homogeneous. Random epigenetic mutations could
be a relevant source of epigenetic variation in this clonally propagated tree as
suggested by a parallel common garden study conducted with multiple
European provenances of Lombardy poplar (Diez Rodriguez et al., 2022b)

and could be likely related to the epigenetic differentiation observed in
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control undamaged plants (Chapter 3). Furthermore, studies conducted to
explore natural epigenetic variation along climatic gradients in this and other
tree species, suggest that population epigenetic differentiation may be
correlated to some extent with climatic conditions of the study plants or their
provenances (Gugger et al., 2016; Diez Rodriguez et al. 2022a, Galanti, et al.,
2022; Guevara et al.,, 2022), and highlighted the significance of epigenetic
variation in natural plant populations with contrasting environmental
conditions (Gao et al., 2010; Herrera & Bazaga, 2011; Raj et al., 2011,
Richards et al., 2012; Guevara et al., 2022). This source of epigenetic variation
could be also relevant in our study because we selected source populations
with contrasting climates and methylation in CHH varied geographically in P.
nigra, mainly associated to extreme temperatures (e.g., Tmax warmest month,
Tmin coldest month) and seasonality (Diez Rodriguez et al. 2022a; see also
Galanti, et al., 2022 for pennycress). Altogether, the results presented in this
Thesis indicated that notable intraspecific divergence in the response to
herbivory were detected in two plant species differing in life history, genetic
variance and chemical defense system. Further studies (e.g., epiQTL) are
needed to gain insight on the underlying molecular mechanisms which could
lead to identify potential (epi)genomic targets for enhancing herbivore

tolerance in crop plants or forest management (Springer & Schmitz, 2017).

PROGRESS AND CHALLENGES IN REVEALING DNA
METHYLATION VARIATION IN COMPLEX PLANT
GENOMES

Plant genomes are outstandingly variable in size and complexity. Such
diversity is largely related to the abundance of TEs and the frequency of
whole-genome duplication and hybridization events that largely characterize

the evolution of the youngest and currently most diverse group of land plants,
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the Angiosperms (Springer et al., 20106; Soltis & Soltis, 2021). As mentioned
above, several interrelated epigenetic mechanisms play regulatory roles in
providing stability to plant genomes, including DNA methylation, histone
modifications and small RNAs (Matzke & Mosher, 2014; Pikaard &
Mittelsten Scheid, 2014; Saze et al., 2012). This Thesis focused on DNA
methylation, a key element that is largely variable among plant species, with a
strong phylogenetic signal and correlated evolution with haploid genome size
(Alonso et al., 2015, 2019; Bewick & Schmitz, 2017), and has been very
frequently studied in Ecological Epigenetics (Richards et al., 2017).

For the experimental part, I have used three different methods for
estimating changes in DNA methylation: a global estimation based on
chromatography (Chapter 2); and two high-resolution sequencing techniques
after bisulfite conversion of extracted DNA (Chapters 3 and 4), which
provide single nucleotide methylome information in reduced genomes
(epiGBS) or entire genomes (WGBS). Methods were selected according to
my questions and available resources, with resources meaning (i) time and
budget to process samples, (ii) training and time required for obtaining sound
results and (iii) public availability of necessary bioinformatic tools and
genomic resources (see Box 1 at General Introduction for details). Getting
high-resolution data for ecological studies was challenging seven years ago
when this project was conceived, particularly if working with plants lacking a
fully annotated reference genome (that was the case of 1. arvense when we
started) or in experimental settings that required a large number of replicates
(Richards et al., 2017). Indeed, in some cases it remains challenging, as we did
not succeed in producing good-quality libraries for epiGBS analysis of
Fragaria vesca grown from seeds under controlled conditions with a factorial

design that, similar to the one applied to T. arvense, included two treatments:

®

301



General Discussion

seed demethylation with 5-AzaC (control and demethylated) and herbivory
(natural herbivory, artificial herbivory and control plants). Such failure could
be likely due to the high polysaccharide and polyphenol content in F. vesca
leaves, which increases sample viscosity and reduces DNA quality, ultimately
interfering with PCR performance (Nunes et al., 2011).

Earlier studies in Ecological Epigenetics were mainly based on the
analysis of methylation sensitive amplified fragment length polymorphisms
(MS-AFLP or MSAPs) that are anonymous markers (Richards et al., 2012;
Alonso et al,, 2016) and offered the possibility to generate numerous
polymorphic bands per reaction without prior knowledge of the genomic
sequence. This technique can be applied to a large number of individuals and
populations, producing individual fingerprints and accurate estimates of
epigenetic variation within plant populations, suitable to investigating
patterns of spatial differentiation of non-model organisms growing in the wild
(see e.g., Herrera & Bazaga, 2010 for 17ola cazorlensis; Medrano et al., 2020 for
a comparison involving many endemic and non-endemic plant species).
These methods contributed to uncover that some plant species with minimal
genetic variation exhibited a high degree of methylation variation, which
could enhance fitness (e.g., in Pinus pinea, Saez-Laguna et al., 2014) and be
linked to habitat differentiation (e.g., in Spartina alterniflora, Foust et al., 2016).
Furthermore, MSAPs were able to distinguish between changes occurring in
CG and CHG sequence contexts and were frequently used to exploring
changes induced by abiotic stress (reviewed in Alonso et al., 2016). Although
MSAPs have limitations to quantify the magnitude of methylation change and
do not provide information as regards the genomic features involved (Alonso
et al., 2010), they are still in use and can be particularly suitable to investigate

the relationships between genetic and epigenetic variation in natural plant
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populations (Herrera et al., 2016; Valverde et al., 2024). Similar to MSAPs,
global DNA methylation estimates obtained by HPLC do not provide
information of the context or genomic location where methylation occurred.
However, these estimates can be very useful in comparative approaches (see
e.g., Alonso et al., 2019) and to offer insight into intraspecific variation in the
effect of experimental demethylation that can be otherwise overlooked (see
Chapter 2, and Alonso et al., 2024). The technique requires some expensive
equipment and technical expertise to run it that was available in my host
institution making it affordable for my studies.

In Chapter 4, I addressed a long-standing issue for ecologists,
examining suitability of emerging bioinformatics tools to study DNA
methylation changes in response to a certain stress factor at single-nucleotide
resolution, even in species for which no reference genome is available (Schield
et al., 2016; Trucchi et al., 2016; van Gurp et al., 2016; Gawehns et al., 2022),
in comparison to the gold standard and more expensive option of WGBS,
which strictly required a reference genome (Suzuki et al., 2018). We
experimentally evaluated the outcome and biological interpretation of
epiGBS (with and without using reference genome) and WGBS techniques,
in experimental herbivory experienced by a plant with limited genetic
variation, the ‘italica’ clone of P. nigra. We concluded that epiGBS offered
reliable insight into methylation changes in the DNA of poplar clones
experiencing insect and artificial herbivory. The two techniques showed
increased methylation mainly in CHH and agreed on the specificity of the
response elicited by insect and artificial herbivory. DMCs captured by the two
techniques were mainly associated to TEs and intergenic regions for CHH,
and to gene bodies and their flanking regions in CG and CHG. Thus, epiGBS

succeeded to characterize genome-wide methylation changes in response to
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herbivory and could be, thus, useful for investigating responses to stress
factors in species lacking a reference genome. Still, geographic variation in the
output obtained by epiGBS, suggested this method might bear some
limitations in providing functional interpretation of recorded methylation
changes (at the level of Gene Ontology terms), a drawback to characterize
the epigenetic regulation of stress-specific responses in non-model plants,

that could be relieved by simultaneous transcriptome analyses.

IMPLICATIONS FOR FUTURE RESEARCH

This PhD Thesis focused predominantly and purposefully on DNA cytosine
methylation due to its well-known immediate and long-term effects in
response to stress (Bossdorf et al., 2010; Herman & Sultan, 2016). However,
it does not rule out that other epigenetic mechanisms along with genetic
variation may play a role in shaping plant-herbivore interactions (Colicchio et
al., 2018; Colicchio & Herman, 2020). Thus, analyzing the response of other
epigenetic processes such as histone modification, chromatin configuration
and small RNAs, as reported in Chapter 1, could offer new insight in
understanding induced plant defenses and plant-herbivore interactions
(Matzke & Mosher, 2014; Saze et al., 2012). Although these mechanisms were
not studied in this dissertation, they may provide valuable insights for future

research.

Furthermore, we have not assessed the adaptive significance of
transgenerational transmission of the epigenetic response to herbivory in
plants due to time constraints. Changes in DNA methylation, as indicated by
several studies on different stress factors (Johannes et al., 2009; Verhoeven et

al., 2010; Van Antro et al., 2023), can be passed across plant generations,
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suggesting their potential role in plant adaptation to different biotic and
abiotic stresses and long-term evolution (Burggren, 2016). Analyzing not only
epigenetic variation but also transgenerational inheritance behind variation in
specific plant defense traits can help us understand and predict evolution by
connecting methylation variation and phenotypic variation (Colicchio et al.,
2015, 2018; Colicchio & Herman, 2020). Along with incorporating
epigenetics into evolutionary models (Geoghegan & Spencer, 2012;
Kronholm & Collins, 2016), more empirical data from natural plant
populations is required for accurate modelling the epigenetic dynamics

associated to plant-herbivory interactions.

In summary, the compendium of the studies presented in my PhD
Thesis suggest that future research on epigenetic contribution to plant-
herbivore interactions should take five key factors into account. (i) Assessing
multiple species, including a range of families, genotypes and populations
experiencing contrasting regimes of herbivory in nature. (i) Analyzing
progenies of plants experiencing contrasting herbivory damage derived both
as seeds or clones to understand the intergenerational effects. (iit) Designing
studies integrating several "omic" techniques (e.g., methylome, transcriptome,
proteome) to gain a comprehensive understanding of the molecular
mechanisms that regulate plant responses to herbivory. (iv) Creating new
epigenetic resources such as epialleles, epigenetic recombinant inbred lines
(epiRILs), epigenetic quantitative trait loci (epiQQTLs), and epigenetic hybrids
(epihybrids) in other species than Arabidopsis to understand stress tolerance
which could be beneficial in crop breeding or forest management. (v)
Evaluating the relevance of epigenetic variation within individual plants in

response to herbivory.
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General Conclusions

GENERAL CONCLUSIONS

This thesis combined a literature review with novel experimental

contributions to investigate the epigenetic contribution to plant defense in

response to insect herbivory and reached the following conclusions:

Previous publications highlighted the role of epigenetics in regulating
plant-biotic interactions but there is limited evidence regarding insect
herbivory compared to the more frequently studied interactions with
bacteria and fungi.

Changes in DNA methylation induced by insect and artificial
herbivory were not identical. Artificial herbivory treatments including
exogenous application of jasmonic acid, can have an impact in leaf
DNA methylation in plants with contrasting chemical defenses and
life-history features.

Global DNA methylation in leaves of the annual Thlaspi arvense
decreased after experimental herbivory. The magnitude of change was
bigger for artificial herbivory and varied with seed provenance
associated to genetic background and life-cycle phenology.

The two ecotypes of Thilaspi arvense showed divergent patterns of
phenotypic plasticity to cope with herbivory. Late-flowering plants
increased aliphatic glucosinolates concentration and reduced
individual biomass, whereas early-flowering plants were less affected
except for a reduction in seed mass.

The effects of demethylation with 5-azacytidine applied during seed
germination can vary with seed provenance and, thus, it cannot be

presumed uniform across studies.
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10.

General Conclusions

In Lombardy poplar trees, herbivory induced context- and herbivory-
type specific methylation changes in leaf DNA. Cytosine methylation
was significantly increased in the CHH context, with Differentially
Methylated Cytosines in this context being predominantly located at
intergenic regions.

Almost one third of Differentially Methylated Cytosines induced by
herbivory in poplars overlapped with transposable elements,
particularly with the gypsy retrotransposons (LTR-Gypsy) and the
DNA-Helitron families.

Differential methylation in response to experimental herbivory was
heterogeneous among poplar tree provenances, suggesting that
random epigenetic mutations could be a relevant source of epigenetic

variation in clonally propagated trees.

Genome-wide methylation alterations in response to herbivory can
be appropriately characterized by different methods. Distinguishing
the sequence context and genomic location of the changes recorded

helps to better interpret the results.

Reduced Representation Bisulfite Sequencing (RRBS) techniques
should be particularly useful for large-scale ecological epigenetic
studies of species lacking a reference genome. Functional

interpretation might require complementary transcriptome analyses
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CONCLUSIONES GENERALES

Esta Tesis Doctoral combind una revision de la literatura cientifica con el
desarrollo de una parte experimental original para investigar la contribucion
epigenética a la defensa de las plantas en respuesta a la herbivoria por insectos

y llegd a las siguientes conclusiones:

1. Publicaciones anteriores destacaron el papel de la epigenética en la
regulaciéon de las interacciones bidticas entre plantas y otros
organismos. Sin embargo, la evidencia es mas limitada para las
interacciones de herbivorfa por insectos, en comparaciéon con las
interacciones con bacterias y hongos.

2. Los cambios en la metilacién del ADN inducidos por la herbivoria
realizada por insectos y la herbivoria artificial no fueron idénticos. Los
tratamientos de herbivoria artificial que incluyen la aplicacién exbgena
de acido jasmonico logran tener un impacto en la metilacion del ADN
de las hojas, en especies con historias de vida y defensas quimicas
diferentes.

3. La metilacién global en el ADN de las hojas de Thlaspi arvense
disminuy6 después de la herbivorfa experimental. La magnitud del
cambio fue mayor para la herbivoria artificial, y vari6 con la
procedencia de las semillas, en ecotipos con divergencia en factores
genéticos y fenologia del ciclo de vida.

4. Los dos ecotipos de Thlaspi arvense mostraron patrones divergentes de

plasticidad fenotipica para hacer frente a la herbivorfa. Las plantas de



Conclusiones Generales

floraciéon tardia aumentaron la concentraciéon de glucosinolatos
alifaticos y redujeron la biomasa individual, mientras que las plantas
de floraciéon temprana se vieron menos afectadas, excepto por una
reduccion en el tamafio de sus semillas.

Los efectos de la desmetilacién con 5-azacitidina aplicada en la etapa
de germinacién de la semilla pueden variar segin la procedencia de la
semilla y, por lo tanto, no se puede asumir que sean uniformes en
todos los estudios.

En Populus nigra ‘italica’, la herbivorfa indujo cambios de metilacién en
el ADN de las hojas que son especificos del tipo de herbivoria y de
diferente magnitud segun el contexto de secuencia analizado. La
metilacion aumenté especialmente en el contexto CHH, y
predominantemente en regiones intergénicas.

En esta misma especie, casi un tercio de las citosinas con cambios
significativos de metilacién inducidos por herbivoria se superpusieron
con elementos transponibles, particularmente con dos familias muy
abundantes en el genoma, los retrotransposones LTR-Gypsy y los
DNA-Helitron.

La metilacion diferencial en respuesta a la herbivorfa experimental fue
heterogénea entre las procedencias de los dlamos lombardos, lo que
sugiere que las epimutaciones aleatorias podrian ser una fuente
relevante de variaciéon epigenética en arboles propagados
clonalmente.

Las alteraciones de la metilacién en respuesta a la herbivoria que
suceden a lo largo del genoma pueden caracterizarse adecuadamente

mediante diferentes métodos. Distinguir el contexto de secuencia y la
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ubicaciéon genémica de los cambios registrados ayuda a interpretar
mejor los resultados.

. Las técnicas de representacion reducida basadas en secuenciacion con
bisulfito (en inglés RRBS) se encontraron particularmente ttiles para
analizar cambios de metilacion en estudios ecolégicos a gran escala y
cuando implican especies que carecen de un genoma de referencia. La
interpretacion funcional podria requerir analisis de transcriptoma

complementarios.




CONTRIBUTION TO SCIENCE COMMUNICATION

I did my PhD on the role of epigenetics in plant-herbivore interactions. There are
limited resources for this topic because it is at the heart of a very new area of
ecological plant epigenetics. PhD science outreach is crucial because science
outreach improves public scientific knowledge. It not only improves communication
skills, helps but also helps early stage researchers to communicate knowledge, and
instills a feeling of public participation, which scientists increasingly value. Therefore,
it is more important than ever that I disseminate the skills and knowledge I learned
throughout my PhD to help this subject develop. Because of this, I have participated
in a number of scientific outreach activities, such as contributing a chapter to a
textbook on ecological plant epigenetics and doing public outreach about my PhD

research (https://www.youtube.com/watch?v=BYXRxdrXwRs).

I co-authored this textbook with other members of the EpiDiverse Training
Network in order to disseminate the information and resources that we lacked when
we first began our work. As a new growing fields, comprehensive theoretical
knowledge and bioinformatics resources are obtainable for scientists. This textbook
covers a wide range of topics from a variety of angles, including ecological,
molecular, and bioinformatics. In order to have a complete picture of the plant
defense response, I wrote the second chapter of the Ecology part, titled "Plant
Defense Response,” for which I am mostly responsible (accessible at:
https://epidiverse.gitbook.io/project/-MfxkdBDZggX_vec_sG51/, accessed on 20
May 2023).As part of the MSCA ITN project EpiDiverse, I also received training
and experience in a professional scientific communication setting at a company in
Berlin, Germany called Wissenschaft im Dialog ¢gGmbH. Markus Weillkopf and

Jona Adler served as the supervisors.

As a part of the European Project EpiDiverse and Estacién Biologica de Doana-

CSIC, I helped to organize and develop the content of an online Kahoot quiz for
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kids entitled "EpiDiver: Play with epigenetics and leatn about plants" for the
European Researchers Night on November 27, 2020 (virtually) where 500 People
took part. Furthermore, I gave a talk at the CEIP Pedro Garfias in Sevilla, Spain, on
11-February-2020 (4 hours) in honor of "International day for women and girls in
science - 11th February." The Estacion Bioldgica de Doana-CSIC hosted a children's
workshop titled "Bryophytes: those little strangers" as part of the European
Researchers Night on September 28 (for an hour) in Sevilla. 2019: Take part in an
outreach video interview to be posted on the YouTube channel for CSIC Andaluca

y  Extremadura (https://www.voutube.com/watch?v=_Ns BrvvinQ)) and

participated on the "Yo investigo and was a finalist for the "Yo soy CSIC" 2019
Award given by the DPE of the CSIC (Consejo Superior de Investigaciones
Cientficas) (https://voutu.be/IACgkyiZyfk)
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