

Overview

Axiom Connectivity Digital Return SFPs are designed for superior flexibility and adaptability. By integrating numerous technical innovations, this Digital Return SFP Series ensures prolonged support for evolving network architectures.

1. Features

- Up to 2.5Gb/s Optical Transceivers
- LC/UPC Receptacle (9/125um, SMF)
- Compliant with SFP(Small Form Factor Pluggable) MSA
- Digital Diagnostic Monitoring compliant
- Supports Serial ID functionality
- Class 1 Laser Safety products
- Single +3.3 V power supply with Hot-pluggable Interface
- ROHS compliant

2. Applications

- SONET/OC-48 : 2.488Gb/s
- CPRI LINE : 2.4576Gb/s
- Digital repeater and Base station

3. Regulatory Compliance

Items	Standard	Performance		
Electrostatic Discharge (ESD)	IEC 61000-4-2	Class 1		
Electromagnetic Interference (EMI)	FCC Part 15 Class B	Compliant with standards(FCC)		
Electromagnetic Compatibility (EMC)	Directive 89/336/EEC	Compliant with standards(CE)		
Laser Eye Safety	FDA 21CFR 1040.10 and 1040.11 EN (IEC) 60825-1,2	Class I laser product.		
RoHS	2002/95/EC 4.1&4.2 2005/747/EC	Compliant with RoHS		

4. Absolute Maximum Ratings

Parameters	Symbol	Ratings	Units	Conditions
Storage Temperature	T _{stg}	-40 ~ +85	°C	Ambient
Power Supply Voltage	Vcc	< +4.0	V	-
Ambient Humidity	H _{op}	5 ~ 95	%	w/o dew

5. Operating conditions

Parameters	Symbol		١	Conditions		
T drameters	Gymbol	Min.	Тур.	Max.	Units	Conditions
Power supply voltage	Vcc	+3.135	+3.30	+3.465	V	-
Power supply current	Icc	-	-	550	mA	-
Power Supply Noise Rejection	PSNR	-	-	100	mV _{p-p}	from 100Hz to 1MHz
Operating Temperature	Tc	-	-	+85	°C	with Airflow
	TA	-40	-	-	U	

6. Optical Characteristics

Parameters		Symbol		Valu	ues		Conditions	
		Cymbol	Min.	Тур.	Max.	Units	Conditions	
Transmitter								
Optical Transmit Power		Pavg	0	-	+7	dBm	-	
Transmitter Disable(Off) Power	Poff	-	-	-35	dBm	@Tx_Disable is High	
Peak Wavelength		λρ	λ _c -6.5	-	λ _c +6.5	nm	CWDM, DFB-LD, Note 1	
Side Mode Suppressior	n Ratio	SMSR	-	-	30	dB	-	
Spectral Width		Δλ	-	-	1	nm	@-20 dB	
Extinction Ratio		ER	7	-	-	dB	@2.4576Gb/s,	
Eye pattern Mask		IEEE802.3/2008 section4/Figure53.8 or FC-PI-4					PRBS 2 ⁷ -1	
Receiver								
Optical Sensitivity		S	-	-	-26	dBm	PRBS 2 ⁷ -1,BER1x10 ⁻¹² ,	
Maximum Input Power		Рмах	2	-	-	dBm	Source ER:7[dB]	
Operating Wavelength		λο	1260	-	1620	nm	-	
	Assert	PA	-36	-	-	dBm	Squelch function enable	
Rx_LOS (Loss of signal)	De-assert	PD	-	-	-26	dBm	-	
	Hysteresis	P _A -P _D	0	-	5	dB	-	
RSSI Calibration		RCAL	Internal Calibrated (The host side can be read by an external way)					

Note 1) The transmitter center wavelength

 λ_{c} (127'1,1291,1311,1331,1351,1411,1431,1451,1471,1491,1511,1531,1551,1571,1591,1611nm)

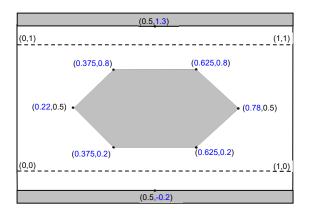
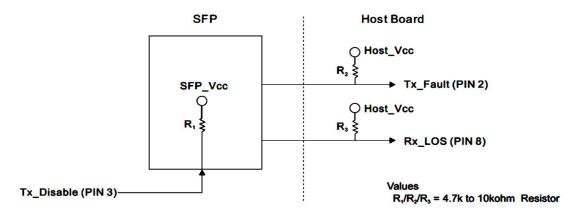
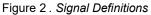


Figure 1. Mask of eye diagram for optical output (filtered)


7. Electrical Characteristics


Parameters		Currench al		Val	ues	Conditions	
		Symbol	Min.	Тур.	Max.	Units	Conditions
Transmitter							
Data Rate		DR⊤	-	2.5	-	Gb/s	-
Differential Input V	oltage	VINpp	150	-	1000	mV	-
Differential Input In	npedance	Zin	75	100	125	ohm	-
	Input_Low	VIL	0	-	0.8	V	LVTTL,Normal at Low,
Ty Disable	Input_High	VIH	2.0	-	Vcc+0.3	V	High is Shutdown(P _{off})
Tx_Disable	Assert Time	t _{OFF}	-	-	10	us	High
	Negate Time	t _{ON}	-	-	1	ms	Low
Tx fault reset		t _{reset}	10	-	-	us	High
Time to Initialize		t _{start_up}	-	-	300	ms	-
	Output_Low	VFOL	0	-	0.4	V	LVTTL, Low is Normal
Tx_Fault -	Output_High	VFOH	2.0	-	Vcc	V	LVTTL, LOW IS NOTHIAL
Receiver							
Data Rate	Data Rate		-	2.5	-	Gb/s	-
Differential Output	Voltage	Vout	370	-	1005	mV	-
Differential Output	Impedance	Zout	90	100	110	ohm	-
	Output_Low	VLOSL	0	-	0.8	V	LVTTL, Low is normal
Rx_LOS (Loss of signal)	Output_High	VLOSH	2.0	-	Vcc	V	LVTTL, LOW IS NOTTIAL
	Assert time	tlos-on	-	-	100	us	Low >> High
	Deassert time	tLOS-OFF	-	-	100	us	High >>Low
DS(Data Salast)		VIL	0	-	0.8	V	Not used
RS(Rate Select)		VIH	2.0	-	Vcc+0.3	V	

8. Recommended Circuit Schematic

- Tx Disable : Transmitter Disable, logic high, 4.7k to 10kohm pull up to Vcc on SFP
- Tx_Fault : Transmitter Fault, logic high, 4.7k to 10kohm pull up to Vcc on Host
- Rx_LOS : Receiver Loss of Signal, logic high, 4.7k to 10kohm pull up to Vcc on Host

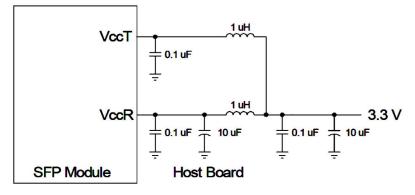


Figure 3 . Power Coupling

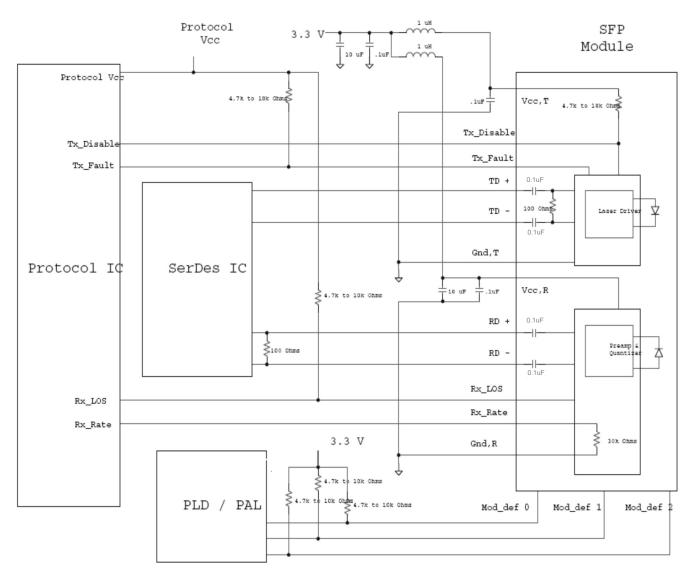


Figure 4 . Example SFP Host Board Schematic

9. Pin Information

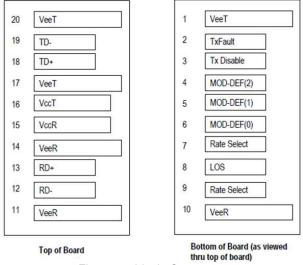


Figure 5 . 20-pin Connector

Pin No.	Symbol	Descriptions	Sequence
Pin 1	TGND(VeeT)	Ground	1
Pin 2	Tx_Fault	Status Out	3
Pin 3	Tx_Disable	Control In	3
Pin 4	MOD_DEF(2)	Input/Output(SDA, I ² C data)	3
Pin 5	MOD_DEF(1)	Input/Output(SCL, I ² C clock)	3
Pin 6	MOD_DEF(0)	Indicates that the module is present, Grounded internally	3
Pin 7	Rate Select1	Rate Select In, Not used(Internally pull-down)	3
Pin 8	RX_LOS	Status Out	3
Pin 9	Rate Select2	Rate Select In, Not used(Internally pull-down)	3
Pin10	RGND(VeeR)	Ground	1
Pin 11	RGND(VeeR)	Ground	1
Pin 12	Rx_Data bar	Data Out Negative	3
Pin 13	Rx_Data	Data Out Positive	3
Pin 14	RGND(VeeR)	Ground	1
Pin 15	Rx_Vcc(VccR)	Power	2
Pin 16	Tx_Vcc(VccT)	Power	2
Pin 17	TGND(VeeT)	Ground	1
Pin 18	Tx_Data	Data In Positive 3	
Pin 19	Tx_Data bar	Data In Negative 3	
Pin 20	TGND(VeeT)	Ground 1	

© 2020 Axiom. Specifications subject to change without notice.

10. 2-Wire Serial-Port Operation

The 2-wire serial-port interface supports a bi-directional data transmission protocol with device addressing. Connections to the bus are made through MOD_DEF2 and MOD_DEF1. Timing diagrams for the 2-wire serial port can be found in Figures 6. Within the bus specifications, a standard mode (100kHz clock rate) and a fast mode (400kHz clock rate) are defined. The Module works in both modes.

• The following bus protocol has been defined:

Data transfer may be initiated only when the bus is not busy. During data transfer, the data line must remain stable whenever the clock line is high. Changes in the data line while the clock line is high will be interpreted as control signals.

- Bus not busy: Both data and clock lines remain high.
- Start data transfer: A change in the state of the data line from high to low while the clock is high defines a START condition.
- Stop data transfer: A change in the state of the data line from low to high while the clock line is high defines the STOP condition.
- **Data valid**: The state of the data line represents valid data when, after a START condition, the data line is stable for the duration of the high period of the clock signal. The data on the line can be changed during the low period of the clock signal. There is one clock pulse per bit of data. Figures 6 detail how data transfer is accomplished on the 2-wire bus.
- Clock and Data Transitions: The MOD_DEF2 pin is normally pulled high with an external resistor or device. Data on the MOD_DEF2 pin may only change during MOD_DEF1 -low time periods. Data changes during MOD_DEF1 -high periods will indicate a START or STOP condition depending on the conditions discussed below.
- **START Condition**: A high-to-low transition of MOD_DEF2 with MOD_DEF1 high is a START condition that must precede any other command. See the timing diagrams in Figures 6 for further details.
- **STOP Condition**: A low-to-high transition of MOD_DEF2 with MOD_DEF1 high is a STOP condition. After a read or write sequence, the stop command places the condition into a low-power mode.
- Acknowledge: All address and data bytes are transmitted through a serial protocol. The DDM Controller pulls the MOD_DEF2 line low during the ninth clock pulse to acknowledge that it has received each word.

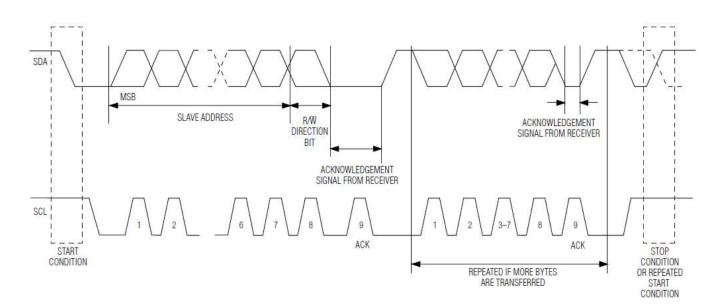
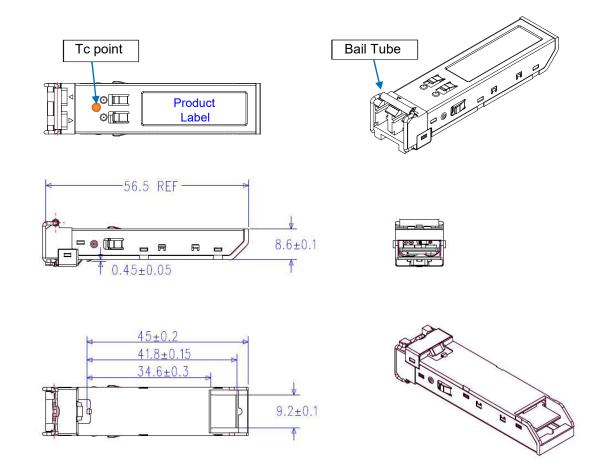
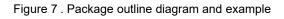



Figure 6. 2-Wire Data Transfer Protocol



11. Package Description & Outline Diagram

12. Ordering Information

Part No	Wavelength [nm]
AC-B-DR2TC80-I27-yy	1271
AC-B-DR2TC80-I29-yy	1291
AC-B-DR2TC80-I31-yy	1311
AC-B-DR2TC80-I33-yy	1331
AC-B-DR2TC80-I35-yy	1351
AC-B-DR2TC80-I37-yy	1371
AC-B-DR2TC80-I39-yy	1391
AC-B-DR2TC80-I41-yy	1411
AC-B-DR2TC80-I43-yy	1431
AC-B-DR2TC80-I45-yy	1451
AC-B-DR2TC80-I47-yy	1471
AC-B-DR2TC80-I49-yy	1491
AC-B-DR2TC80-I51-yy	1511
AC-B-DR2TC80-I53-yy	1531
AC-B-DR2TC80-I55-yy	1551
AC-B-DR2TC80-I57-yy	1571
AC-B-DR2TC80-I59-yy	1591
AC-B-DR2TC80-l61-yy	1611