

OC48 SFP 15km SMF Optical Transceiver

Product Features

- Supports up to 2.67Gbps bit rates
- Hot-pluggable SFP footprint
- 1310nm DFB laser and PIN photo detector, Up to 15km for SMF transmission
- Compliant with SFP MSA and SFF-8472 with duplex LC receptacle
- · Compatible with RoHS
- Single +3.3V power supply
- Real Time Digital Diagnostic
 Monitoring
- Operating case temperature: 0 to $+70^{\circ}$ C

Applications

- 2.5Gbps Optical systems
- Fiber Channel
- Other Optical links

The Axiom AC-B-SFPO48-xx is a high performance, cost effective modules supporting data rate of 2.67 Gbps and 15km transmission distance with SMF.

The transceiver consists of three sections: a DFB laser transmitter, a PIN photodiode integrated with a trans-impedance preamplifier (TIA) and MCU control unit. All modules satisfy class I laser safety requirements.

The transceivers are compatible with SFP Multi-Source Agreement and SFF-8472 digital diagnostics functions.

Ordering Information

Part Number	Description
AC-B-SFPO48-xx	SFP OC48 1310nm 15km optical transceiver with full real-time digital diagnostic monitoring

Regulatory Compliance

Feature	Standard	Performance
Electromagnetic Interference (EMI)	FCC Part 15 Class B	Compatible with
	EN 55022:2010, Class B	standards
Electromagnetic susceptibility (EMS)	EN 55024:2010	Compatible with
		standards
Laser Eye Safety	FDA 21CFR 1040.10 and 1040.11	Compatible with Class I
	EN60950, EN (IEC) 60825-1,2	laser product

Absolute Maximum Ratings

The operation in excess of any absolute maximum ratings might cause permanent damage to this module.

Parameter	Symbol	Min	Max	Unit	Notes
Storage Temperature	TS	-40	85	°C	
Power Supply Voltage	Vcc	-0.5	4.5	V	
Relative Humidity (non-condensation)	RH	0	85	%	
Input Voltage	Vin	-0.3	Vcc+0.3	V	

Recommended Operating Conditions and Power Supply Requirements

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Operating Case Temperature	ТОР	0		70	°C	
Power Supply Voltage	V _{CC}	3.135	3.3	3.465	V	
Power Supply Current				300	mA	
Data Rate	DR			2.67	Gbps	

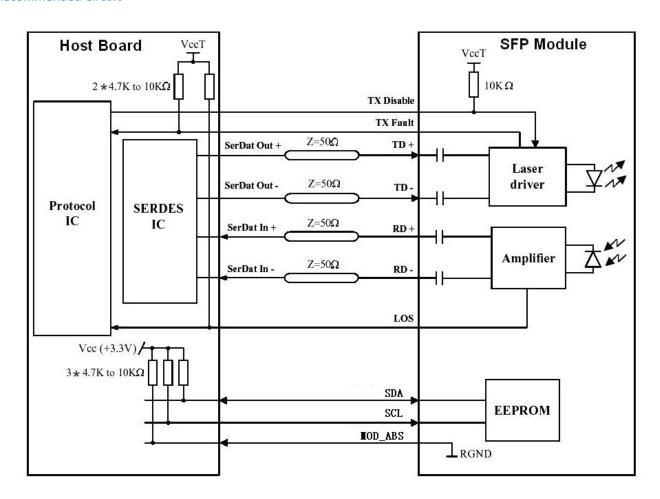
Optical Characteristics

All parameters are specified under the recommended operating conditions unless otherwise specified..

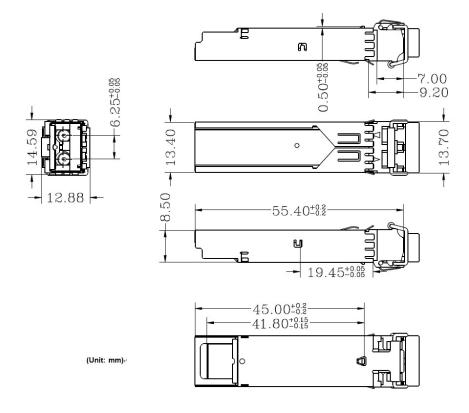
Parameter	Symbol	Min	Typical	Max	Unit	Notes
		Transm	itter			
Centre Wavelength	λς	1260	1310	1360	nm	
Spectral Width(-20dB)	Δλ			1	nm	
Side-Mode Suppression Ratio	SMSR	30	-	-	dB	
Average Output Power	Pout	-5		0	dBm	1
Extinction Ratio	ER	9.0		1 1 1 1 1 1 1 1 1 1 1	dB	

Data Input Swing Differential		Vin	180		1200	mV	2
Input Differential Imp	pedance	Zın	90	100	110	Ω	
TX Disable	Disable		2.0		Vcc	V	
TA Disable	Enable		0		0.8	V	
TV F ! !	Fault		2.0		Vcc	V	
TX Fault	Normal		0		0.8	V	
			Receiv	er	1	I	
Centre Wavelength		λс	1260		1610	nm	
Receiver Sensitivity					-18	dBm	3
Receiver Overload			-1			dBm	3
LOS De-Assert		LOS _D			-19	dBm	
LOS Assert		LOSA	-30			dBm	
LOS Hysteresis			0.5		4	dB	
Data Output Swing Differential		V _{out}	600	800	1000	mV	4
LOS		High	2.0		Vcc	V	
		Low			0.8	V	

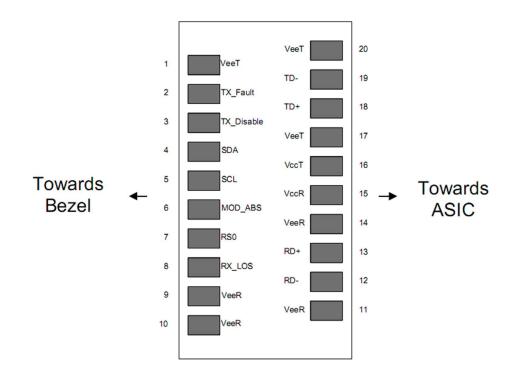
Notes:


- 1. The optical power is launched into SMF.
- 2. PECL input, internally AC-coupled and terminated.
- 3. Measured with a PRBS 223-1 test pattern @2500Mbps, BER $~ \leqslant 1 \times 10$ -12.
- 4. Internally AC-coupled.

Digital Diagnostic Functions


Parameter	Symbol	Min	Max	Unit	Notes
Temperature monitor absolute error	DMI_Temp	-3	+3	$^{\circ}$	
Supply voltage monitor absolute error	DMI_VCC	-3%	+3%	V	
TX power monitor absolute error	DMI_RX	-3	+3	dB	
RX power monitor absolute error	DMI_RX	-3	+3	dB	
Bias current monitor	DMI_lbias	-10%	+10%	mA	

Recommended Circuit



Mechanical Dimensions

Pin Assignment and Description

Pin Assignment

Pin	Signal Name	Description	Plug Seq.	Notes
1	V _{EET}	Transmitter Ground	1	
2	TX FAULT	Transmitter Fault Indication	3	Note 1
3	TX DISABLE	Transmitter Disable	3	Note 2
4	SDA	SDA Serial Data Signal	3	
5	SCL	SCL Serial Clock Signal	3	
6	MOD_ABS	Module Absent. Grounded within the module	3	

7	RS0	Not Connected	3	
8	LOS	Loss of Signal	3	Note 3
9	V _{EER}	Receiver ground	1	
10	V _{EER}	Receiver ground	1	
11	VEER	Receiver ground	1	
12	RD-	Inv. Received Data Out	3	Note 4
13	RD+	Received Data Out	3	Note 4
14	V _{EER}	Receiver ground	1	
15	Vccr	Receiver Power Supply	2	
16	V _{CCT}	Transmitter Power Supply	2	
17	VEET	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 5
19	TD-	Inv. Transmit Data In	3	Note 5
20	VEET	Transmitter Ground	1	

Notes:

Plug Seq.: Pin engagement sequence during hot plugging.

- 1. TX Fault is an open collector output, which should be pulled up with a $4.7k^{\sim}10k^{\Omega}$ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; Logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.
- 2. Laser output disabled on TDIS >2.0V or open, enabled on TDIS <0.8V.
- 3. LOS is open collector output. Should be pulled up with $4.7k^{\sim}10k \Omega$ on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.
- 4. RD-/+: These are the differential receiver outputs. They are internally AC-coupled 100 differential lines which should be terminated with 100 Ω (differential) at the user SERDES.
- 5. TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differential lines with 100 Ω differential termination inside the module.