

Features

- QSFP-DD MSA compliant
- Parallel 4 Optical Lanes
- IEEE802.3bs Specification compliant
- Up to 500m transmission on single mode fiber (SMF) with FEC
- Operating case temperature: 0 to 70°C
- 8x53.125Gb/s electrical interface (400GAUI-8)
- Data Rate 106.25Gbps (PAM4) per channel.
- Maximum power consumption 12W
- MPO-12 connector
- RoHS compliant

C FEEDOMARK	AND THE REAL PROPERTY OF

Applications

- 400G Ethernet
- Infiniband interconnects
- Datacenter Enterprise networking

Part Number Ordering Information

AC-E-QDD4DR4-xx	400G QSFP-DD DR4 500m with FEC optical transceiver with full
	real-time digital diagnostic monitoring and pull tab

1. General Description

This product is a 400Gb/s Quad Small Form Factor Pluggable-double density (QSFP-DD) optical module designed for 500m optical communication applications. The module converts 8 channels of 50Gb/s (PAM4) electrical input data to 4 channels of parallel optical signals, each capable of 100Gb/s operation for an aggregate data rate of 400Gb/s. Reversely, on the receiver side, the module converts 4 channels of parallel optical signals of 100Gb/s each channel for an aggregate data rate of 400Gb/s into 8 channels of 50Gb/s (PAM4) electrical output data.

An optical fiber cable with an MTP/MPO-12 connector can be plugged into the QSFP-DD DR4 module receptacle. Proper alignment is ensured by the guide pins inside the receptacle. The cable usually cannot be twisted for proper channel to channel alignment. Electrical connection is achieved through an QSFP-DD MSA-compliant edge type connector.

The product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP-DD Multi-Source Agreement (MSA) Type 2. It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference.

2. Functional Description

The module incorporates 4 parallel channels on 1310nm center wavelength, operating at 100G per channel. The transmitter path incorporates a quad channel EML driver together with 4 parallel EMLs. On the receiver path, a PD array is connected with a quad channel TIA to convert the parallel 400Gb/s optical input into 4 channels of parallel 100Gb/s (PAM4) electrical signals. A DSP basis gearbox is used to convert 8 channels of 25GBaud PAM4 signals into 4 channels of 50GBaud PAM4 signals and also an 8-channel retimer and FEC block are integrated in this DSP. The electrical interface is compliant with IEEE 802.3bs and QSFP-DD MSA in the transmitting and receiving directions, and the optical interface is compliant to QSFP-DD MSA with MPO-12 connector.

A single +3.3V power supply is required to power up this product. All the power supply pins are internally connected and should be applied concurrently. As per MSA specifications the module offers seven low speed hardware control pins (including the 2-wire serial interface): ModSelL, SCL, SDA, ResetL, InitMode, ModPrsL and IntL.

Module Select (ModSelL) is an input pin. When held low by the host, this product responds to 2-wire serial communication commands. The ModSelL allows the use of this product on a single 2-wire interface bus – individual ModSelL lines must be used.

Serial Clock (SCL) and Serial Data (SDA) are required for the 2-wire serial bus communication interface and enable the host to access the memory map.

The ResetL pin enables a complete reset, returning the settings to their default state, when a low level on the ResetL pin is held for longer than the minimum pulse length. During the execution of a reset the host shall disregard all status bits until it indicates a completion of the reset interrupt. The product indicates this by posting an IntL (Interrupt) signal with the Data_Not_Ready bit negated in the memory map. Note that on power up (including hot insertion) the module should post this completion of reset interrupt without requiring a reset.

Initialize Mode (InitMode) is an input signal. It is pulled up to Vcc in the QSFP-DD module. The InitMode signal allows the host to define whether the QSFP-DD module will initialize under host software control (InitMode asserted High) or module hardware control (InitMode deasserted Low). Under host software control, the module shall remain in Low Power Mode until software enables the transition to High Power Mode, as defined in the QSFP-DD Management Interface Specification. Under hardware control (InitMode de-asserted Low), the module may immediately transition to High Power Mode after the management interface is initialized. The host shall not change the state of this signal while the module is present. In legacy QSFP applications, this signal is named LPMode. See SFF-8679 for LPMode signal description.

Module Present (ModPrsL) is a signal local to the host board which, in the absence of a product, is normally pulled up to the host Vcc. When the product is inserted into the connector, it completes the path to ground through a resistor on the host board and asserts the signal. ModPrsL then indicates its present by setting ModPrsL to a "Low" state.

Interrupt (IntL) is an output pin. "Low" indicates a possible operational fault or a status critical to the host system. The host identifies the source of the interrupt using the 2-wire serial interface. The IntL pin is an open collector output and must be pulled to the Host Vcc voltage on the Host board.

3. Transceiver Block Diagram

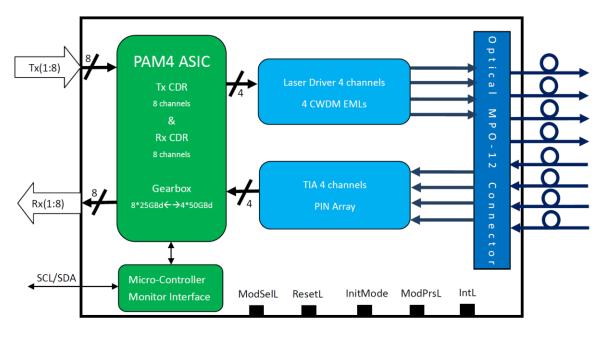
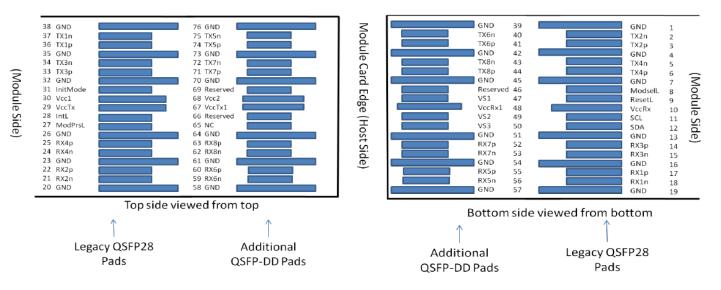



Figure 1. Transceiver Block Diagram

4. Pin Assignment and Description

The electrical pinout of the QSFP-DD module is shown in Figure 2 below.

Pin Definition

Pin # Logic Symbol Descrip on Plug Seque								
	Logic	Symbol	Descrip on	Plug Sequence				
1		GND	Ground	1B				
2	CML-I	Tx2n	Transmi er Inverted Data Input	3B				
3	CML-I	Tx2p	Transmi er Non-Inverted Data Input	3B				
4		GND	Ground	1B				
5	CML-I	Tx4n	Transmi er Inverted Data Input	3B				
6	CML-I	Tx4p	Transmi er Non-Inverted Data Input	3B				
7		GND	Ground	1B				
8	LVTTL-I	ModSelL	Module Select	3B				
9	LVTTL-I	ResetL	Module Reset	3B				
10		VccRx	+3.3V Power Supply Receiver	2B				
11	LVCMOS- I/O	SCL	2-wire serial interface clock	3B				
12	LVCMOS- I/O	SDA	2-wire serial interface data	3B				
13		GND	Ground	1B				
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	3B				
15	CML-O	Rx3n	Receiver Inverted Data Output	3B				
16	GND	Ground	1B					
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	3B				
18	CML-O	Rx1n	Receiver Inverted Data Output	3B				
19		GND	Ground	1B				
20		GND	Ground	1B				
21	CML-O	Rx2n	Receiver Inverted Data Output	3B				
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	3B				
23		GND	Ground	1B				
24	CML-O	Rx4n	Receiver Inverted Data Output	3B				
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	3B				
26		GND	Ground	1B				
27	LVTTL-O	ModPrsL	Module Present	3B				
28	LVTTL-O	IntL	Interrupt	3B				
29		VccTx	+3.3V Power supply transmi er	2B				
30		Vcc1	+3.3V Power supply	2B				
31	LVTTL-I	InitMode	Ini aliza on mode; In legacy QSFP applica ons, the InitMode pad is called LPMODE	3B				
32		GND	Ground	1B				
33	CML-I	Тх3р	Transmi er Non-Inverted Data Input	3B				
34	CML-I	Tx3n	Transmi er Inverted Data Input	3B				
35		GND	Ground	1B				
36	CML-I	Tx1p	Transmi er Non-Inverted Data Input	3B				
37	CML-I	Tx1n	Transmi er Inverted Data Input	3B				

38		GND	Ground	1B
39		GND	Ground	1A
40	CML-I	Tx6n	Transmi er Inverted Data Input	3A
41	CML-I	Тх6р	Transmi er Non-Inverted Data Input	3A
42		GND	Ground	1A
43	CML-I	Tx8n	Transmi er Inverted Data Input	3A
44	CML-I	Tx8p	Transmi er Non-Inverted Data Input	3A
45		GND	Ground	1A
46		Reserved	For future use	3A
47		VS1	Module Vendor Specific 1	3A
48		VccRx1	3.3V Power Supply	2A
49		VS2	Module Vendor Specific 2	3A
50		VS3	Module Vendor Specific 3	3A
51		GND	Ground	1A
52	CML-O	Rx7p	Receiver Non-Inverted Data Output	3A
53	CML-O	Rx7n	Receiver Inverted Data Output	3A
54		GND	Ground	1A
55	CML-O	Rx5p	Receiver Non-Inverted Data Output	3A
56	CML-O	Rx5n	Receiver Inverted Data Output	3A
57		GND	Ground	1A
58		GND	Ground	1A
59	CML-O	Rx6n	Receiver Inverted Data Output	3A
60	CML-O	Rx6p	Receiver Non-Inverted Data Output	3A
61		GND	Ground	1A
62	CML-O	Rx8n	Receiver Inverted Data Output	3A
63	CML-O	Rx8p	Receiver Non-Inverted Data Output	3A
64		GND	Ground	1A
65		NC	No Connect	3A
66		Reserved	For future use	3A
67		VccTx1	3.3V Power Supply	2A
68		Vcc2	3.3V Power Supply	2A
69		Reserved	For Future Use	3A
70		GND	Ground	1A
71	CML-I	Тх7р	Transmi er Non-Inverted Data Input	3A
72	CML-I	Tx7n	Transmi er Inverted Data Input	3A
73		GND	Ground	1A
74	CML-I	Tx5p	Transmi er Non-Inverted Data Input	3A
75	CML-I	Tx5n	Transmi er Inverted Data Input	3A
76		GND	Ground	1A

5. Recommended Power Supply Filter

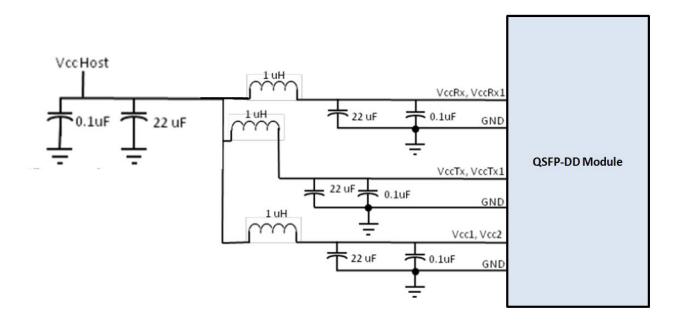


Figure 3. Recommended Power Supply Filter

6. Absolute Maximum Ratings

It has to be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.

Parameter	Symbol	Min	Мах	Units	Notes
Storage Temperature	Ts	-40	85	degC	
Operating Case Temperature	T _{OP}	0	70	degC	
Power Supply Voltage	Vcc	-0.5	3.6	V	
Relative Humidity (non-condensation)	RH	0	85	%	

7. Recommended Operating Conditions and Power Supply Requirements

Parameter	Symbol	Min	Typical	Мах	Units	Notes
Operating Case						
Temperature	T _{OP}	0		70	degC	
Power Supply Voltage	Vcc	3.135	3.3	3.465	V	
Data Rate, each Lane			26.5625		GBd	PAM4
Data Rate Accuracy		-100		100	ppm	
Pre-FEC Bit Error Ratio				2.4x10 ⁻⁴		
Post-FEC Bit Error Ratio				1x10 ⁻¹²		1
Link Distance	D	0.5		500	m	2

Notes:

- 1. FEC provided by host system.
- 2. FEC required on host system to support maximum distance.

8. Electrical Characteristics

The following electrical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

Parameter	Test Point	Min	Typical	Мах	Units	Notes				
Power Consumption				12	W					
Supply Current	lcc			3.64	А					
	Transmitter (each Lane)									
Signaling Rate, each Lane	TP1	26.5625 ± 100 ppm			GBd					
Differential pk-pk Input Voltage Tolerance	TP1a	900			mVpp	1				
Differential Termination Mismatch	TP1			10	%					
Differential Input Return Loss	TP1	IEEE 802.3- 2015 Equation (83E-5)			dB					

 $\ensuremath{\mathbb{C}}$ 2020 Axiom. Specifications subject to change without notice.

[r	ſ	r	
	IEEE				
754	802.3-			15	
IP1	2015			dВ	
	Equation				
	(83E-6)				
TP1a	See IEEE	802.3bs 12	0E.3.4.1		2
IPId	-	0.4 to 3.3		V	
754					_
IP1	-350		2850	mV	3
Recei	ver (each Lar	ne)			
TP4	26.56	25 ± 100 p	pm	GBd	
1P4			900	mVpp	
1P4			17.5	mV	
TDA					
1P4			10	%	
	IEEE				
	802.3-				
TP4	2015				
	Equation				
	-				
	IEEE				
TP4	2015				
	-				
TP4	9.5			ps	
		0.0.5-			
124		0.265		UI	
TDA	70				
114	70			IIIV	
	TP1a TP1 Recei TP4 TP4 TP4 TP4 TP4	TP1 802.3- 2015 Equation (83E-6) TP1a See IEEE See IEEE (33E-6) TP1a	802.3- 2015 Equation (83E-6) TP1a See IEEE >2.3bs 12 TP1a See IEEE >2.3bs 12 TP1a See IEEE >2.3bs 12 TP1a -350 TP1 -350 TP4 26.55 ± 100 g TP4 20.5 Equation 20.5 E	802.3- 2015 Equation (83E-6) a TP1a See IEEE 802.3bs 12UE3.4.1 TP1a -0.4 to 3.3 TP1a -0.4 to 3.3 TP1 -350 2850 TP4 TP4 TP4 26.5625 ± 100 UT TP4 26.562 ± 100 UT TP4 26.561 ± 100 UT TP4 20.5 Equation (83E-2) 10 TP4 2015 Equation (83E-3) 14 TP4 9.5 TP4 9.5 TP4 9.5	TP1802.3- 2015 Equation (83E-6)dBTP1aSee IEEE >.3bs I >ITP1aSee IEEE >VTP1a-3502850mVTP426.56 > 100 >GBdTP426.56 > 100 >GBdTP426.56 > 100 >mVpTP426.56 > 100 >GBdTP426.56 > 100 >mVpTP420.56 > 100 >mVpTP420.56 > 100 >mVpTP420.51 >100 %TP420.52 >100 %TP4IEEE 802.3- 2015 Equation (83E-2)IIIEEE 802.3- 2015 Equation (83E-3)IIIITP49.5IIIITP49.5IIIITP49.5IIIITP49.5IIIITP49.5IIIITP49.5IIIITP49.5IIIITP410.265IIIITP49.5IIIITP49.5IIIITP49.5IIIITP49.5IIIITP410.265IIIIIITP410.265IIIIIITP410.265IIIIIITP410.10IIIIITP410.10IIIIIITP410.10IIIIIITP410.10IIIIIITP4 <td< td=""></td<>

 $\ensuremath{\mathbb{C}}$ 2020 Axiom. Specifications subject to change without notice.

Far-end Eye Symmetry Mask Width (ESMW)	TP4		0.2		UI	
Far-end Eye Height, Differential	TP4	30			mV	
Far-end Pre-cursor ISI Ratio	TP4	-4.5		2.5	%	
Common Mode Output Voltage (Vcm)	TP4	-350		2850	mV	3

Notes:

- 1. With the exception to IEEE 802.3bs 120E.3.1.2 that the pattern is PRBS31Q or scrambled idle.
- 2. Meets BER specified in IEEE 802.3bs 120E.1.1.
- 3. DC common mode voltage generated by the host. Specification includes effects of ground offset voltage.

9. Optical Characteristics

Parameter	Symbol	Min	Typical	Max	Units	Notes				
Center Wavelength	λc	1304.5	1310	1317.5	nm					
Transmitter										
Data Rate, each Lane		53.1	25 ± 100 p	pm	GBd					
Modulation Format			PAM4							
Side-mode Suppression Ratio	SMSR	30			dB	Modulated				
Average Launch Power, each Lane	P _{AVG}	-2.9		4	dBm	1				
Outer Optical Modulation Amplitude (OMA _{outer}), each Lane	Рома	-0.8		4.2	dBm	2				
Launch Power in OMA _{outer} minus TDECQ, each Lane		-2.2			dB					
Transmitter and Dispersion Eye Closure for PAM4, each Lane	TDECQ			3.4	dB					
Extinction Ratio	ER	3.5			dB					

© 2020 Axiom. Specifications subject to change without notice.

				[[]
RIN _{21.4} OMA	RIN			-136	dB/Hz	
Optical Return Loss Tolerance	TOL			21.4	dB	
Transmitter Reflectance	T _R			-26	dB	
Average Launch Power of OFF Transmitter, each Lane	P _{off}			-15	dBm	
		Receive	er			
Data Rate, each Lane		53.	.125 ± 100 p	pm	GBd	
Modulation Format			PAM4			
Damage Threshold, each Lane	TH _d	5			dBm	3
Average Receive Power, each Lane		-5.9		4	dBm	4
Receive Power (OMA _{outer}), each Lane				4.2	dBm	
Receiver Sensitivity (OMA _{outer}), each Lane	SEN			-4.4	dBm	5
Stressed Receiver Sensitivity (OMA _{outer}), each Lane	SRS			-1.9	dBm	6
Receiver Reflectance	R _R			-26	dB	
LOS Assert	LOSA	-30			dBm	
LOS De-assert	LOSD			-12	dBm	
LOS Hysteresis	LOSH	0.5			dB	
Stressed C	onditions fo	or Stress R	eceiver Sens	itivity (Not	e 7)	
Stressed Eye Closure for PAM4 (SECQ), Lane under Test			3.4		dB	
OMA _{outer} of each Aggressor Lane			4.2		dBm	

 $\ensuremath{\mathbb{C}}$ 2020 Axiom. Specifications subject to change without notice.

Notes:

- 1. Average launch power, each lane (min) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 2. Even if the TDECQ < 1.4 dB, the OMA_{outer} (min) must exceed the minimum value specified here.
- 3. The receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having this average power level.
- 4. Average receive power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 5. Receiver sensitivity (OMAouter), each lane (max) is informative and is defined for a transmitter with SECQ of 0.9 dB.
- 6. Measured with conformance test signal for BER = 2.4×10^{-4} .
- 7. These test conditions are for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

10. Digital Diagnostic Functions

The following digital diagnostic characteristics are defined over the normal operating conditions unless otherwise specified.

Parameter	Symbol	Min	Max	Units	Notes
Temperature monitor absolute error	DMI_Temp	-3	3	degC	Over operating temperature range
Supply voltage monitor absolute error	DMI_VCC	-0.1	0.1	V	Over full operating range
Channel RX power monitor absolute error	DMI_RX_Ch	-2	2	dB	1
Channel Bias current monitor	DMI_Ibias_Ch	-10%	10%	mA	
Channel TX power monitor absolute error	DMI_TX_Ch	-2	2	dB	1

Notes:

1. Due to measurement accuracy of different single mode fibers, there could be an additional +/-1 dB fluctuation, or a +/- 3 dB total accuracy.

11. Mechanical Dimensions

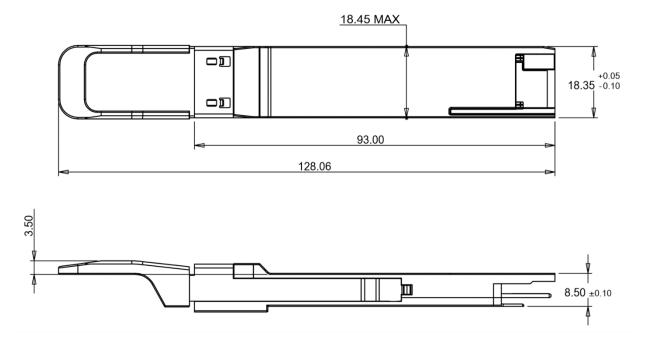


Figure 4. Mechanical Outline

12. ESD

This transceiver is specified as ESD threshold 1kV for high speed data pins and 2kV for all other electrical input pins, tested per MIL-STD-883, Method 3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and handled only in an ESD protected environment.

13. Laser Safety

This is a Class 1 Laser Product according to EN 60825-1:2014. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007).

Caution: Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.