

Axiom's AC-I-SAUC-xx (15yy.yy) transceivers are Enhanced Small Form Factor Pluggable Auto-Tunable SFP+ transceivers offer self-tuning capabilities designed for use in 10-Gigabit multi-rate linksup to 80km of G.652 single mode fiber. They are compliant with SFF-84311, SFF-84322, SFF-86908, and G.698.1 DS100S1-2Dz(C), and support SONET OC-192, SDH STM-64, 10G Ethernet ZR and 10G Fibre Channel over 80km fiber. Digital diagnostics functions are available via a 2-wire serial interface, as specified in SFF-84723. The transceiver is RoHS compliant and lead free per Directive 2011/65/EU4.

PRODUCT FEATURES

- Hot-pluggable SFP+ footprint
- Supports 8.5 and 9.95 to 11.3 Gb/s
- Up to 80km link length
- 50GHz ITU-based channel spacing (C-Band) with a wavelength locker
- -5 /70°C case temperature range
- Single 3.3V power supply
- Monolithic MZM Tunable TOSA
- Limiting electrical interface receiver
- Duplex LC connector
- Built-in digital diagnostic functions
- RoHS-6 compliant (lead-free)

APPLICATIONS

- DWDM 80km point to point links:
 - 8.5Gb/s Fibre Channel
 - 10Gb/s SONET/SDH
 - 10G Ethernet
 - 10G Fibre Channel
- ITU-T G.698.1 DS100S1-2Dz(C)
- ITU-T G.709

Part Number	Description
AC I SAUC XV	10GBASE-DWDM AUTOTUNE SFP+
AC-I-SAUC-XX	SMF, LC, 80KM, 15XXX.XXNM

I. Pin Descriptions

Pin	Symbol	Name/Description	Ref.
1	V_{EET}	Transmitter Ground	1
2	T _{FAULT}	Transmitter Fault	2
3	T _{DIS}	Transmitter Disable. Laser output disabled on high or open.	3
4	SDA	2-wire Serial Interface Data Line	2
5	SCL	2-wire Serial Interface Clock Line	2
6	MOD_ABS	Module Absent. Grounded within the module	2
7	NA	Not Used	
8	RX_LOS	Loss of Signal indication. Logic 0 indicates normal operation.	4
9	NA	No Used	
10	V_{EER}	Receiver Ground	1
11	V_{EER}	Receiver Ground	1
12	RD-	Receiver Inverted DATA out. AC Coupled.	
13	RD+	Receiver Non-inverted DATA out. AC Coupled.	
14	V _{EER}	Receiver Ground	1
15	V _{CCR}	Receiver Power Supply	5
16	V _{CCT}	Transmitter Power Supply	5
17	V_{EET}	Transmitter Ground	1
18	TD+	Transmitter Non-Inverted DATA in. AC Coupled.	
19	TD-	Transmitter Inverted DATA in. AC Coupled.	
20	V _{EET}	Transmitter Ground	1

Notes:

- 1. Circuit ground is internally isolated from chassis ground.
- 2. T_{FAULT} is an open collector/drain output, which should be pulled up with a 4.7k 10k Ohms resistor on the host board if intended for use. Pull up voltage should be between 2.0V to Vcc + 0.3V. A high output indicates a transmitter fault caused by either the TX bias current or the TX output power exceeding the preset alarm thresholds. A low output indicates normal operation. In the low state, the output is pulled to <0.8V.
- 3. Laser output disabled on $T_{DIS} > 2.0V$ or open, enabled on $T_{DIS} < 0.8V$.
- 4. LOS is open collector output. Should be pulled up with $4.7k 10k\Omega$ on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.
- 5. Internally connected

Figure 1. Diagram of Host Board Connector Block Pin Numbers and Names.

II. Absolute Maximum Ratings

Exceeding the limits below may damage the transceiver module permanently.

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Maximum Supply Voltage	Vcc	-0.5		4.0	V	
Storage Temperature	Ts	-40		85	°C	
Relative Humidity	RH	0		85	%	1
Receiver Optical Damage Threshold	Rx_{Damage}	5			dBm	

Notes:

1. Non-condensing

III. Electrical Characteristics ($T_{OP} = -5$ to 70 C)

Parameter	Symbol	Min	Тур.	Max	Unit	Ref.
Supply Voltage	V _{cc}	3.14		3.46		
Supply Current	Icc			650	mA	1
Module total power dissipation	Р			2.0	W	2
Transmitter						
Input differential impedance	R _{in}	80	100	120	Ω	
Differential data input swing	Vin,pp	200		850	mV	3
Transmit Disable Voltage	VD	V _{cc} -0.8		V _{cc}	V	
Transmit Enable Voltage	V _{EN}	V _{ee}		$V_{ee} + 0.8$	V	
Receiver						
Output differential impedance	R _{out}	80	100	120	Ω	
Differential data output swing	V _{out,pp}	100		850	mV	4
Output rise time and fall time	T_r, T_f	28			ps	4,5
LOS asserted	V _{LOS A}	V _{cc} -0.8		V_{cc}	V	
LOS de-asserted	V _{LOS D}	V _{ee}		V_{ee} +0.8	V	
Power Supply Noise Tolerance	V_{ccT}/V_{ccR}	Per S	FF-8431 F	Rev 4.1	mV_{pp}	

Notes:

- 1. Compliant with the SFP+ Module Power Supply Requirements defined in [1], Tab. 8.
- 2. Maximum total power value is specified across the full temperature and voltage range.
- 3. Connected directly to TX data input pins.
- 4. Into 100Ω differential termination.
- 5. 20 80%. Measured with Module Compliance Test Board and OMA test pattern. Use of four 1's and four 0's sequence in the PRBS 9 is an acceptable alternative. SFF-8431 Rev 4.1.

IV. Optical Characteristics (TOP = -5 to 70 C, VCC = 3.14 to 3.46 Volts)

Parameter			Symbol	Min	Тур	Max	Unit	Ref.	
Transmitter	(Tx)								
Average Launch Power			P _{AVE}	-1		+3	dBm		
Optical Wave	length				As pe	r ITU-T	694.1,		
				λ_{c}	500	GHz spac	eing	nm	
					1528.	.77 to 15	63.86		
Side-Mode Su	appress	ion Rati	io	SMSR	30			dB	
Optical Extine	ction R	atio		ER	8.2			dB	
Average Laur	nch pov	ver whe	n Tx is OFF	P _{OFF}			-30	dBm	
Tx Jitter 20kH	Iz - 80	MHz		Tx _{j1}			0.3	UI	
Tx Jitter 4MH	Iz - 801	MHz		Tx _{j2}			0.1	UI	
Relative Inter	sity No	oise		RIN			-128	dB/Hz	
Center Wavel	enoth	Begini	ning of Life	$\lambda_{c BOL}$	z-1.5	Z	z+1.5	GHz	
	engen	End of	f Life	λ_{c} EOL	z-2.5	Z	z+2.5	GHz	
Path Penalty	over 8	0km							
Bit rate	Disp	ersion	BER						
8.5 Gb/s				DP_1			1	dB	
9.95 Gb/s	1450	os/nm	<1E-12	DP ₂			1	dB	
10.7 Gb/s				DP ₃			2	dB	
11.1 Gb/s	1300	os/nm	<1E-4	DP ₄			2	dB	
11.3 Gb/s	1100	os/nm	<1E-4	DP ₅			2	dB	
Receiver (Rx) at 0p	s/nm							
Bit	rate		BER						
8.5, 9.95			<1E-12	R _{SENS1}			-24.0	dBm	1,2
10.7 Gb/s			<1E-12	R _{SENS2}			-23.0	dBm	1,2
11.1 Gh/s			<1E-12	R _{SENS3}			-23.0	dBm	
11.1 00/8			<1E-4	R _{SENS4}			-27.0	dBm	
11.3 Gb/s <1E-4		R _{SENS5}			-27.0	dBm			
Overload (Average Power)		P _{AVE}			-7	dBm			
Optical Center Wavelength		λ_{C}	1260		1600	nm			
LOS De-Assert		LOSD			-25	dBm			
LOS Assert				LOSA	-34		-27	dBm	
LOS Hysteres	sis			LOS _H	0.5			dB	
Receiver Refl	ectance	2		R _{rx}			-27	dB	

Receiver Sensitivit	ty ³				
Data rate (Gb/s)	BER	Dispersion (ps/nm)	Sensitivity back-to- back at OSNR>30dB (dBm)	Dispersion Penalty at OSNR>30dB (dB)	Threshold Adjust Required
9.95	1e-12	-300 to 1450	-23	2	No ⁵
10.3	1e-12	-300 to 1450	-23	2.5	No ⁵
10.7	1e-4	-300 to 1300	-27	3	Yes ⁶
11.1	1e-4	-300 to 1300	-27	3	Yes ⁶
OSNR Performa	ance ⁴				
Data rate (Gb/s)	BER	Dispersion (ps/nm)	Min OSNR Back- to-back at Power: -18dBm to -7dBm (dB)	Max OSNR Penalty at Power: -18 to -7dBm (dB)	Threshold Adjust Required
9.95	1e-12	-300 to 1450	24	4	Yes ⁶
10.3	1e-12	-300 to 1450	24	4	Yes ⁶
10.7	1e-4	-300 to 1300	16	4	Yes ⁶
11.1	1e-4	-300 to 1300	16	4	Yes ⁶

Notes:

- 1. Measured with worst ER=8.2dB; BER $<10^{-12}$; $2^{31} 1$ PRBS.
- 2. For 10GE thernet application, -24dBm is equivalent to an OMA of -22.09dBm for an ER = 8.2 dB.
- 3. Measured at 1528-1600nm with worst ER; PRBS31.
- 4. All OSNR measurements are performed with 0.1nm resolution.
- 5. Linecard SerDes input threshold adjustment required (set to 50%) at 9.95 and 10.3Gb for AGC ROSA only
- 6. Linecard SerDes input threshold adjustment required for AGC ROSA. RxDTV control required for Limiting ROSA

V. General Specifications

Symbol	Min	Тур	Max	Units	Ref.
BR	8.5		11.3168	Gb/s	1
L _{MAX}			80	km	2
	Symbol BR L _{MAX}	SymbolMinBR8.5L _{MAX}	SymbolMinTypBR8.5L _{MAX}	Symbol Min Typ Max BR 8.5 11.3168 L _{MAX} 80	Symbol Min Typ Max Units BR 8.5 11.3168 Gb/s L _{MAX} 80 km

Notes:

1. Tested with a $2^{31} - 1$ PRBS pattern at the BER defined in Table IV.

2. Over G.652 single mode fiber.

VI. Timing Parameters

Parameter	Symbol	Min	Max	Units	Ref.
Time to initialize cooled module	t_start_up_cooled		90	S	

VII. Environmental Specifications

Axiom AC-I-SAUC-xx transceivers have an operating temperature range from -5° C to $+70^{\circ}$ C case temperature.

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Case Operating Temperature	T _{op}	-5		70	°C	
Storage Temperature	T_{sto}	-40		85	°C	

VII. Regulatory Compliance

Axiom transceivers are Class 1 Laser Products and comply with US FDA regulations. These products are certified by TÜV and CSA to meet the Class 1 eye safety requirements of EN (IEC) 60825 and the electrical safety requirements of EN (IEC) 60950.

VIII. Digital Diagnostic Functions

Axiom Tunable SFP+ transceivers support the 2-wire serial communication protocol as defined in the SFP MSA¹. It is very closely related to the memory map defined in the GBIC standard, with the same electrical specifications.

The standard SFP serial ID provides access to identification information that describes the transceiver's capabilities, standard interfaces, manufacturer, and other information. Additionally, Axiom T-SFP+ transceivers provide a enhanced digital diagnostic monitoring interface, which allows real-time access to device operating parameters such as transceiver temperature, laser bias current, transmitted optical power, received optical power and transceiver supply voltage. It also defines a sophisticated system of alarm and warning flags, which alerts end-users when particular operating parameters are outside of a factory set normal range.

The SFP MSA defines a 256-byte memory map that is accessible over a 2-wire serial interface at the 8 bit address 1010000X (A0h). The digital diagnostic monitoring interface makes use of the 8 bit address 1010001X (A2h), so the originally defined serial ID memory map remains unchanged. The interface is identical to, and is thus fully backward compatible with both the GBIC Specification and the SFP Multi Source Agreement.

The operating and diagnostics information is monitored and reported by a Digital Diagnostics Transceiver Controller (DDTC) inside the transceiver, which is accessed through a 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL, Mod Def 1) is generated by the host. The positive edge clocks data into the SFP transceiver into those segments of the E²PROM that are not write-protected. The negative edge clocks data from the SFP transceiver. The serial data signal (SDA, Mod Def 2) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially.

IX. Digital Diagnostic Specifications

Axiom T-SFP+ transceivers can be used in host systems that require either internally or externally calibrated digital diagnostics.

Parameter	Symbol	Units	Min	Max	Accuracy	Ref.
Accuracy						
Transceiver temperature	$\Delta_{ m DDTemp}$	°C	-10	+75	±5°C	1
Transceiver supply voltage	$\Delta_{\mathrm{DDVoltage}}$	V	2.8	4.0	±3%	
Transmitter bias current	$\Delta_{ m DDBias}$	mA	0	127	±10%	2
Transmitter output power	$\Delta_{\text{DDTx-Power}}$	dBm	-1	+5	±2dB	
Receiver average optical input		dBm	-28	-5	+2dB	
power	△DDRx-Power	GDIII	20	5	⊥2uD	

Notes:

1. Internally measured

2. The accuracy of the Tx bias current is 10% of the actual current from the laser driver to the laser

X. Start-Up Sequence

The AC-I-SAUC-xx modules adhere to MSA SFF-8690 for wavelength / channel selection of these tunable modules. The module behavior is described in the flowchart below:

© 2020 Axiom. Specifications subject to change without notice.

Address	Parameter	Threshold Values	UNITS
00-01	Temn High Alarm	80	С
02-03	Temp Low Alarm	-15	C C
04-05	Temp High Warning	75	C
06-07	Temp Low Warning	-10	С
08-09	Voltage High Alarm	3.56	V
10-11	Voltage Low Alarm	3.04	V
12-13	Voltage High Warning	3.46	V
14-15	Voltage Low Warning	3.14	V
16-17	Bias High Alarm	130	mA
18-19	Bias Low Alarm	5	mA
20-21	Bias High Warning	120	mA
22-23	Bias Low Warning	10	mA
24-25	TX Power High Alarm	6.5	dBm
26-27	TX Power Low Alarm	-3	dBm
28-29	TX Power High Warning	6	dBm
30-31	TX Power Low Warning	-1.5	dBm
32-33	RX Power High Alarm	-4	dBm
34-35	RX Power Low Alarm	-31	dBm
36-37	RX Power High Warning	-5	dBm
38-39	RX Power Low Warning	-25	dBm
40-55	Reserved		

Alarm and Warning Threshold Values (A2h)

XI. The AC-I-SAUC-xx SFP+ modules do not contain Internal CDRs.

XII. SFF-8431 Power-up Sequence

The typical power consumption of the AC-I-SAUC-xx exceeds the limit of 1.5W specified in the SFF-8431 for the Power Level II device, for which the SFF-8431 recommends a power-up sequence. Per the SFF-8431, at the power-on a Power Level II transceiver can stay in Power Level I until the host enables the transceiver to complete its power-up sequence, reaching its operating power consumption into Power Level Mode II. Please, refer to SFF-8431 for additional details.

The AC-I-SAUC-xx is factory set to power-up directly to its operating conditions in Power Level Mode II. Upon request, it can be factory set to follow the above power-up sequence at the power-on. In power level I, the AC-I-SAUC-xx does not carry traffic, but the 2-wire serial communication is active.

XIII. Mechanical Specifications

Axiom AC-I-SAUC-xx SFP+ transceivers are compatible with the SFF-8432 specification for improved pluggable form factor, and shown here for reference purposes only. Bail color is green.

ITEM	DIM (mm)	TOL (mm)
А	9.00	±0.3
в	9.60	± 0.5
С	11.90	± 0.5
D	13.85	± 0.15
E	13.65	± 0.15
F	2.80	±0.2
G	1.00	±0.2
н	4.00	REF
J	2.00	± 0.2
к	56.50	REF
L	1.60	± 0.5
М	2.25	± 0.1
N	1.80	± 0.1
Р	37.10	±0.3
Q	9.15	± 0.15
R	1.00	± 0.1
S	8.55	± 0.15
Т	47.50	±0.2
V	2.55	± 0.1
W	43.00	±0.2
Х	14.70	± 0.5
Z	0.55	±0.15

2.55±0.10-

Figure 2. Mechanical Dimensions

Connector Recommendations

AC-I-SAUC-xx 10GBASE-DWDM AUTOTUNE SFP+ 80km C-Temp Specifications

Adatum and Basic Dimension Established by Customer ARads and Vias are Chassis Ground, 11 Places A Through Holes are Unplated

Figure 3. PCB Layout and Bezel Recommendations, as per [9]

Figure 4