

#### **Building "Living Soil"—Advanced**

### Warning

# HUGE, BROAD Topic!!!

- We'll just "Scratch the Surface"
- This science is evolving and current "theories" may change

# **Objectives Today**

- Nutrient Density
- Vital Soil/Plant Principles
- Applying the Principles

• (Slides @ Libertytracefarm.com)

#### 2008 and Every Day Since...



#### Let's Start a Farm!





#### A Few Sad Statistics

- 2017: 75% of our youth 17-24 unqualified to join military
- 1965: 4% of our population had a chronic disease
  - Today 46% of our children have a chronic disease
- 2006: MS only state above 30% obesity--today 41 states
- US spent \$4.5 Trillion on healthcare in 2022
  - We spent \$4.1 Trillion on WWII (today's dollars)
  - 5+ times Defense Budget (\$778 Billion in 2020)
- What's a Trillion??? (\$1M/day for how long?)

# MOMS ACROSS AMERICA

#### 100% of Top Twenty Fast Food Brands Positive for Glyphosate Herbicide 76% Positive for Harmful Pesticides

POSTED BY ZEN HONEYCUTT 4006.40GS ON OCTOBER 11, 2023



Top Twenty Fast Food Brands Glyphosate and Pesticide Testing Report

Moms Across America, a nationwide non-profit, has initiated an extensive testing program on the top twenty fast food brands in America, plus one restaurant, California's In-N-Out Burger. Forty-two samples of 21 brands were tested for the most widely used herbicide in the world, glyphosate, 236 agrochemicals, 4 heavy metals, PFAS, phthalates, and mineral content. The top ten brands were additionally tested for 104 commonly used veterinary drugs and hormones, B Vitamins and calories.



#### Dr Weston A. Price



A SHOCKING AND POWERRUL TESTAMENT TO THE ADVERSE EFFECTS OF MODERN PROCESSED DIETS UPON HEALTH PUBLISHED BY PRICE POTTENGER Nutrition and Physical Degeneration



Dr. Price traveled worldwide to discover the secrets of healthy people.

#### WESTON A. PRICE, DDS

"DR. WESTON PRICE was one of the most prominent health researchers of the 20th century... This extraordinary masterpiece of nutritional science belongs in the library of anyone who is serious about learning how to use foods to improve their health." Dr. Joseph Mercola

8th EDITION, 23rd PRINTING

## Health Range (1-10)

#### 

DISEASE

- Chemical Toxins
- Pesticides
- GMOs
- Electromagnetic Radiation
- Stress
- Nutrient Deficiencies

HEALTH

- Nutrient Density
- Vitamins
- Minerals
- Enzymes
- Amino Acids
- Microbiome

#### 2016--Microbiome







### Dr. Elaine Ingham (PhD in 1981)

- Soilfoodweb School
  - Fundamental Courses
  - Certified Lab-Tech
  - Consultant Training Program
    - Microbiome
    - Make **biological** amendments
    - Microscopy
    - Turn dirt to soil

- Korean Natural Farming—Chris Trump
  2000 years of Korean/Japanese farming
- Biology is most important ingredient





#### **Geoff Lawton's**

#### Permaculture Design Certification



# The Soil!

 Injects nutrients & microbiome at bottom of the food chain



# Dirt vs Soil

- Dirt-physical rocks, sand, silt & clay
- Soil—living skin of the planet
  - Handful of healthy soil has more critters in it than people on planet earth
  - Not just there for the "hell of it"





## But, Dirt's Taking Over

- Modern agriculture focused on "chemistry"
- What kills biology?
  - Excessive Tillage
  - Chemical Fertilizers (N, P, K)
  - "icides"...Herbicides & Insecticides



#### Soil to Grass to Beef to Me



### Plants--Energy Accumulators

<u>Chemistry</u>—minerals & chemical reactions
 – Ca, P, K, NO3, NH4

<u>Physics</u>—electrical energy
 Sunlight, moonlight, + ions, - ions

- <u>Biology</u>—microbiome workers
  - Leverage chemistry & physics to care for the plant

#### "Chemistry" Soil Test

Lab Number: 602069

Sample Name: TEST2

Farm Name:

#### Soil Results

|         | рН           | Phosphorus | Potassium | Calcium | Magnesium     | Zinc         | Iron | Manganese | Boron | Sodium |
|---------|--------------|------------|-----------|---------|---------------|--------------|------|-----------|-------|--------|
| Soil pH | Buffer Value | P          | к         | Ca      | Mg            | Zn           | Fe   | Mn        | В     | Na     |
|         |              |            |           |         | Pounds per ac | re - Mehlici | 11   |           |       |        |
| 6.65    |              | 25 M       | 84 L      | 1842 S  | 140 S         | 2.3 S        | 17 S | 20 S      | 0.5   | 12     |

Crop/plant Interpretation ranges on last sheet

L = Low, M= Medium, H=High, V= Very High, S = Sufficient

|          |                 |              |               | Addit     | ional test:        | s, if they were | requested                                  |           |           |           |              |
|----------|-----------------|--------------|---------------|-----------|--------------------|-----------------|--------------------------------------------|-----------|-----------|-----------|--------------|
| Sulfur   | Sulfur Nitrogen |              | Carbon C/N Ra | C/N Ratio | tio Organic Matter | Soluble Salts   | Particle Size Analysis - Hydrometer Method |           |           |           |              |
| LBS/ACRE | NH4-N<br>ppm    | NO3-N<br>ppm | Total N<br>%  | %         | %                  | %               | dS/m                                       | %<br>Sand | %<br>Silt | %<br>Clay | Soll Texture |
|          |                 |              |               |           |                    | 3.3             | 0.03                                       | 20        | 64        | 16        | Silt Loam    |



#### A BIOLOGICAL APPROACH TO AGRICULTURE

PHONE 507-235-6909 FAX 507-235-9155 P.O. BOX 788 FAIRMONT, MN 56031

| NAME:       | Kevin Krause        | DATE:            | 02/12/24                 |
|-------------|---------------------|------------------|--------------------------|
|             |                     | SAMPLE TESTED:   | TA1 Bottom               |
| ADDRESS:    | 4447 Dry Fork Road  |                  | Bio/Clean                |
|             |                     | Plot Size:       | 1 Acre Sq. Ft.           |
| CITY/STATE: | Hampshire, TN 38461 | 2023 CROP GROWN: | Very Little Bermuda      |
|             |                     | 2024 CROP:       | Mix Clover, Chicory, Bro |
|             |                     | LAB TEST#        | 299                      |

#### SOIL ANALYSIS REPORT

|              |                  | DESIRED     | DESIRED | LAB        | Soil Index               |
|--------------|------------------|-------------|---------|------------|--------------------------|
|              | UNIT             | RATIO       | LEVEL   | RESULTS    |                          |
|              |                  |             | 20.40   | 2          |                          |
|              |                  |             | 30-40   | 3          |                          |
| NITRATES     | lbs. / Acre      |             | 40      | 8          |                          |
| AMMONIA      | lbs. / Acre      |             | 40      | 6          |                          |
| PHOSPHORUS   | lbs. / Acre      | 1P:1K       | 174     | 7          | 0.03 : 1 P to K Ratio    |
| POTASSIUM    | lbs. / Acre      |             | 167     | 214        |                          |
| CALCIUM      | lbs. / Acre      | 7 Ca : 1 Mg | 3000    | 1104       | 16.24 : 1 Ca to Mg Ratio |
| MAGNESIUM    | lbs. / Acre      |             | 429     | 68         |                          |
| SODIUM       | PPM              |             | <35     | 6          |                          |
| ERGS         | $\mu S$ / Centim | ieter       | 200     | 144        |                          |
| ORP          |                  |             | 28      | 22         |                          |
| рН           |                  |             | 6.5     | 5.7        |                          |
| COPPER       | PPM              |             | 0.8-2.5 | 0.5        |                          |
| IRON         | PPM              |             | 10 50   | 69.2       |                          |
| ZINC         | PPM              |             | 1-6     | 2.1        |                          |
| MANGANESE    | PPM              |             | 10 50   | 21.5       |                          |
| BORON        | PPM              |             | 0.8-1.2 | Not Tested |                          |
| SULFUR       | PPM              |             | 30      | Not Tested |                          |
| ORGANIC MATT | TER %            | 6           | 4%      | Not Tested |                          |
| FORMAZAN     | PPM              |             | 600     | Not Tested |                          |

#### Broadcast:

1 ton Soft Rock Phosphate 1 ton Low Magnesium Limestone 500 lbs. Gypsum 125 lbs. 11-25-0 125 lbs. Ammonium Sulfate 50 lbs. Magnesium Sulfate 40 lbs. Copper Sulfate

#### When Cattle Are Removed in Fall Apply:

2 qt. Z-Hume 2 lbs. Dextrose 20 gallons water **Note:** This will help jump start trash decomposition.

#### **Chemistry--Minerals**

- Dr Carey Reams (1903-1985)
  - Calcium: 2000 (lbs/acre)
  - Phosphorus: 400
  - Potassium: 200
  - Sulphur: 200
  - Nitrates: 300
  - Ammonium: 40
  - Iron: 40



### **Mineral Sources**

- Rock--Sand, Silt, Clay
- Rock dust (Soft Rock Phosphate, Basalt, Azomite)
- Blood meal & Bone meal
- Sea salt (90 minerals)
- Organic matter (leaves, wood chips, etc)
- Commercial products—Good & Bad (N, P, K)

– Potash (Potassium Chloride)

• 60-125 lbs/acre = 15-31 ppm Chlorine (2-4 ppm pool)

#### Sea Water Minerals



Nature's Ideal Trace Element Blend for Farm, Livestock, Humans

MAYNARD MURRAY, M.D.

- Redmond or Sea 90
- 200-2200 lbs/acre

- HighBrixGardens.com
  - 43 lbs/acre
  - 43 oz/acre (water)

# Physics

- Sunlight, Moonlight, Starlight
- Earth's Magnetic Field (Trees N/S)
- Song birds
- Music
- Your energy



New York Times Bestseller The Secret Life of Plants

A Fascinating Account of the Physical, Emotional, and Spiritual Relations Between Plants and Man

"The cult favorite, which hypothesized that plants may be sentient." —New York Times

Peter Tompkins and Christopher Bird

# Biology

#### Plants have Microbiome Too!!

- Caretakers of the plants
  - Live on and inside
  - Recycle nutrients (dead plants/animals)
  - Harvest minerals from sand, silt, clay
  - Make Vitamins & Enzymes plant can't
  - Create humus
  - Diversity keeps all "in check"
- Inject Nutrient Density at bottom of food chain

#### **Nutrient Density**





#### Photo Source: Soil Science Society of America

#### Bacteria

- Recycle simple organic matter
  - Manure, alfalfa, green grass (Green, high nitrogen)
  - Fix nitrogen





# Fungi

- Recycle more complex organic matter
  - Wood chips, leaves, straw, etc (woody, high

Carbon)







#### ROOTS WITH MYCORRHIZAL FUNGI

Photo Source: Israel Chemicals Limited Growing Solutions



#### Protozoa--Predator



#### Nematodes--Predator


## Industrial Mindset

- Plants attract insects and pathogens
  - Root cause—lack of pesticide(s)
- Weeds always grow
  - Root cause—lack of herbicide(s)
- Humans feed plants
  - Root cause—lack of chemical fertilizer (N, P, K)
- Farmer paid for quantity

– Quality doesn't really matter!

## Your Mindset

- Sick plants attract insects and pathogens

   Root cause—poor soil health
- Weeds grow best in "poor" soil
  - Root cause—"poor" soil health
- Biology feeds plants
  - Recycled plants & animals
  - All 90 natural minerals—sand, silt, clay
- Quality is all that matters
  - It's FOOD—your health depends on it!

### Insects

- Nature's garbage collectors
  - Sick plants radiate off-frequency
  - Get Brix ≥ 12





Infrared Radiation and the Insect Communication System

HILPS. CALLAHAM, Ph.B.

25TH ANNIVERSARY EDITION

Copy Intel Materia

## Weeds

- Workers preparing the ground
  - Building up what's missing (ie Ca)
  - Manage for what you want vs what you have



## Weeds



# WEEDS CONTROL WITHOUT POISONS



**CHARLES WALTERS** 

## Do This! Regenerative Agriculture

- Farming & grazing principles:
  - Limit Disturbance
  - Armor the Soil Surface
  - Build Diversity
  - Keep Living Roots in Soil
  - Integrate Animals
- Urban Landscaping Too!!



Gabe Brow

### Microbe Farmer

- Become a MICROBE FARMER!!
- Microbiome Needs...
  - Air
  - Water
  - Food
  - Comfort (Shelter)

## Bread Dough

• You've been a MICROBE FARMER!!

- Microbes +
  - Air
  - Water



- Food (Sugar & Flour)
- Comfort (Warm Place to rise)

# Sources of Microbes (Yeast)

- Livestock & Manure
- Earth Worms
- Static Composting (Leaves, grass clippings)
- Vermicomposting (Red Wiggler Worms)
- Thermophilic Composting
- Dr David Johnson/Su Bioreactor
- Korean Natural Farming
- Raw Milk
- Commercial Products







#### **Extract Demo**





| AFExtractDrenchResults_2022-04-11                                  |                |
|--------------------------------------------------------------------|----------------|
|                                                                    |                |
| Beneficial Microorganisms                                          | Sample Results |
| Bacterial Biomass ( μg/g )                                         | 724.142        |
| Bacterial Standard Deviation Biomass ( μg/g )                      | 87.835         |
| Bacterial Standard Deviation as Percentage of Mean                 | 12.10%         |
| Actinobacterial Biomass ( μg/g )                                   | 0.167          |
| Actinobacterial Standard Deviation Biomass ( μg/g )                | 0.16           |
| Actinobacterial Standard Deviation as Percentage of Mean           | 95.90%         |
| Fungal Biomass ( μg/g )                                            | 851.77         |
| Fungal Standard Deviation Biomass ( μg/g )                         | 882.451        |
| Fungal Standard Deviation as Percentage of Mean                    | 103.60%        |
| Fungal Average Diameter - Weighted Mean ( um )                     | 6.881          |
| F:B Ratio                                                          | 1.176          |
| Total Beneficial Protozoa ( number/g )                             | 136953         |
| Flagellates ( number/g )                                           | 61629          |
| Flagellates Standard Deviation ( number/g )                        | 19519          |
| Flagellates Standard Deviation as Percentage of Mean               | 31.70%         |
| Amoebae ( number/g )                                               | 75324          |
| Amoebae Standard Deviation ( number/g )                            | 22968          |
| Amoebae Standard Deviation as Percentage of Mean                   | 30.50%         |
| Bacterial-feeding Nematodes ( number/g )                           | 21             |
| Fungal-feeding Nematodes ( number/g )                              | 0              |
| Predatory Nematodes ( number/g )                                   | 0              |
| Detrimental Microorganisms                                         |                |
| Oomycetes Biomass ( μg/g )                                         | 0              |
| Oomycetes Standard Deviation Biomass ( μg/g )                      | 0              |
| Oomycete Standard Deviation as Percentage of Mean                  | 0.00%          |
| Oomycetes Average Diameter - Weighted Mean ( um )                  | 0              |
| Ciliates ( number/g )                                              | 3424           |
| Ciliates Standard Deviation ( number/g )                           | 4688           |
| Ciliates Standard Deviation as Percentage of Mean                  | 136.90%        |
| Root-feeding Nematodes ( number/g )                                | 0              |
| Total Beneficial Protozoa Standard Deviation ( number/g )          | 35807          |
| Total Beneficial Protozoa Standard Deviation as Percentage of Mean | 26.10%         |



### Garden Repair



### Garden Repair









## Dr Arden Andersen

- (All per 1000 ft<sup>2)</sup>
- Soft Rock Phosphate 12 lbs
- High-calcium lime
- Ammonium sulphate 2.3
- Compost

23-46 lbs

e 2.3 lbs

12-184 lbs



### Foliar Sprays--KNF













## From Scratch

- Build soil from ground up!
- Easy Recipe: Carbon (microbiome food)
  - Wood chips, old hay, straw, bedding, etc
  - Inoculate with biology
  - Cover plants







## From Scratch—David Yarrow (Article: Soil Carbon Sink)

- Better Recipe: Lasagna—alternating layers
  - 1. Rough biomass (wood chips as much as 12")
  - 2. Manure
  - 3. Biochar & Minerals
  - 4. Soil or dirt
  - 5. Finer biomass (leaves or hay)
  - 6. Repeat Layer 2
  - 7. Repeat Layer 3
  - 8. Repeater Layer 4
  - 9. Water and inoculate top layers (Boron, bone & blood meal, volcanic rock dust, Azomite, Sea Salt)

## Biochar

- Like charcoal, but pyrolysis process
- Not a fertilizer but a facilitator

- "Coral Reef" for microbes & minerals

Terra Preta soils in the Amazon Basin





#### Cardboard, Log Chunks (Hugelkultur)



#### Wood Chips, Chicken Manure





#### Biochar, Compost & Topsoil



#### Leaves, Manure, Compost & Topsoil, Water



#### Biology, Compost & Topsoil, Meals/Dust/Salt


#### Biology, Compost & Topsoil, Meals/Dust/Salt





#### **Richard Cleve's Pasture Garden**







## **Caution for Materials**

- Gather "organic" foods
  If it's lived once, it can live again!
- Bacteria & Fungi take it from there!

• CAUTION—Persistent Herbicides

 NC State "Herbicide Carryover in Hay, Manure, Compost, & Grass Clippings"

## Persistent Herbicides

Corteva's Grazon<sup>®</sup> (Aminopyralid)
 Broadleaf weed control in pasture





JADAM Organic Farming

The way to Ultra-Low-Cost agriculture

Youngsang Cho



INNOVATIVE ORGANIC FARMING TECHNOLOGY ESTABLISHED IN KOREA.

COMPLETELY OVERCOME THE TECHNICAL AND PRACTICAL CHALLENGES OF ORGANIC AGRICULTURE. MAKE YOUR OWN ALL POWERFUL NATURAL PESTICIDES, MICROBIAL INPUTS, AND FERTILIZERS.

enjadam.kr

JADAM

The Regenerative Grower's Guide to Garden Amendments

Using Locally Sourced Materials to

Nigel Palmer

Make Mineral and Biological Extracts and Ferments



A New Layering System for Bountiful Gardens: No Digging, No Tilling, No Weeding, No Kidding!



#### JADAM Organic PEST and DISEASE CONTROL

POWERFUL DIV Solutions to 167 Common Garden Pests and Diseases

Written by Youngsang Cho | Photograph by Deogleer Park.



### Is it Nutrient Dense?

20

15

- Taste
- \$20 Brix Meter/Refractometer
- Dr Carey Reams (1903-1985)







#### Refractive Index of Crop Juices -- Calibrated In % Sucrose Or °Brix

VEGETABLES Asparagus

|              | Poor | Average | Good | Excellent |
|--------------|------|---------|------|-----------|
| FRUITS       |      |         |      |           |
| Apples       | 6    | 10      | 14   | 18        |
| Avocados     | 4    | 6       | 8    | 10        |
| Bananas      | 8    | 10      | 12   | 14        |
| Blueberries  | 8    | 12      | 14   | 18        |
| Cantaloupe   | 8    | 12      | 14   | 16        |
| Casaba       | 8    | 10      | 12   | 14        |
| Cherries     | 6    | 8       | 14   | 16        |
| Coconut      | 8    | 10      | 12   | 14        |
| Grapes       | 8    | 12      | 16   | 20        |
| Grapefruit   | 6    | 10      | 14   | 18        |
| Honeydew     | 8    | 10      | 12   | 14        |
| Kumquat      | 4    | 6       | 8    | 10        |
| Lemons       | 4    | 6       | 8    | 12        |
| Limes        | 4    | 6       | 10   | 12        |
| Mangos       | 4    | 6       | 10   | 14        |
| Oranges      | 6    | 10      | 16   | 20        |
| Papayas      | 6    | 10      | 18   | 22        |
| Peaches      | 6    | 10      | 14   | 18        |
| Pears        | 6    | 10      | 12   | 14        |
| Pineapple    | 12   | 14      | 20   | 22        |
| Raisins      | 60   | 70      | 75   | 80        |
| Raspberries  | 6    | 8       | 12   | 14        |
| Strawberries | 6    | 8       | 12   | 14        |
| Tomatoes     | 4    | 6       | 8    | 12        |
| Watermelons  | 8    | 12      | 14   | 16        |
| GRASSES      |      |         |      |           |
| Alfalfa      | 4    | 8       | 16   | 22        |
| Grains       | 6    | 10      | 14   | 18        |
| Sorghum      | 6    | 10      | 22   | 30        |

Average

Poor

Good Excellent

Within a given species of plant, the crop with the higher refractive index will have a higher sugar content, higher mineral content, higher protein content and a greater specific gravity or density. This adds up to a sweeter tasting, more minerally nutritious food with lower nitrate and water content, lower freezing point, and better storage attributes.





#### Scale Up to Pasture





## Dr Ream's 80/20 Rule

- 80% of plant mass comes from the air
- 20% from the soil



Organic Matter: 100 lbs above & 100 lbs below - 160 lbs air & 40 lbs soil

#### **Cover Plant Diversity**

**U** Extension

PB 378

FORAGE & FIELD CROP SEEDING GUIDE FOR TENNESSEE

> Gary Bates, Professor, Plant Sciences Craig Harper, Professor, Forestry, Wildlife and Fisheries Fred Allen, Professor, Plant Sciences







#### Photo Source: Soil Science Society of America

## My Favorites

- Cool Season
  - Hairy Vetch, Austrian Winter Peas
  - Red & White Clover (4 & 2 lbs/acre)
  - Cereal Rye & Wheat
  - Orchardgrass
- Warm Season
  - Sorghum/Sudan
  - Buckwheat



• Green Cover (Greencover.com)

### **Rotational Grazing**











#### Before: Broomsedge Bumper Crop





### Scale Up to Row Crops

• Rick Clark in Indiana (7000 acres)



# More Info

- www.Libertytracefarm.com
  - Book/Resource Tab
  - Classes on website & Social Media

## Conclusion

- Recipe for Nutrient Density
  - Microbes + (Air, Water, Food, Comfort)
  - Plants + (Chemistry, Physics, Biology)
  - Nature takes care of the rest
- Go produce Nutrient Dense Food or support someone who does!