Orbital Elements

• Defining an orbit in the plane required 2 elements, typically \((h, e)\) or \((a, e)\).

• Adding a third element, \(\theta\), identified spacecraft location in the orbit.

• Everything else needed could be found from these 3 parameters (3DOF).

• Determining an orbit in 3D will require us to identify 5 parameters, with a total of 6 parameters needed for position information (6DOF).

The remaining information can be found from the process needed to transform GEF \((G)\) into the perifocal frame \((P)\)
Orbital Elements

- Defining an orbit in the plane required 2 elements, typically \((h, e)\) or \((a, e)\).
- Adding a third element, \(\theta\), identified spacecraft location in the orbit.
- Everything else needed could be found from these 3 parameters (3DOF).
- Determining an orbit in 3D will require us to identify 5 parameters, with a total of 6 parameters needed for position information (6DOF).

The remaining information can be found from the process needed to transform GEF \((G)\) into the perifocal frame \((P)\).

\[
G \rightarrow P \text{ is a 3-1-3 Euler angle transformation}
\]
• Two planes of importance in these frames, the equatorial plane (\(XY\)) and the orbit plane (\(x\bar{y}\))

• Any two planes that share a point must intersect, and these share the center of the Earth (the focus of the orbit)

• Unless the planes are the same, an intersection among two planes takes place along a line in space.

• We call this line the **node line**.

• The orbit crosses the node line at two points, the **ascending node** and the **descending node**.
• Let \(\mathbf{N} \) be a vector in the direction of the ascending node.
• \(\mathbf{N} \) is in the equatorial plane, so \(\mathbf{N} \perp \mathbf{Z} \)
• We can compute a vector in this direction using \(\mathbf{N} = \mathbf{Z} \times \mathbf{h} \)

\[
\Rightarrow \mathbf{N} = v_Z \mathbf{r} - r_Z \mathbf{v}
\]

where \(\{\mathbf{r}\}_G = [r_X, r_Y, r_Z]^T \)

\(\{\mathbf{v}\}_G = [v_X, v_Y, v_Z]^T \)

The right-handedness of the cross product will automatically give us the correct (ascending) direction.
• The first Euler angle of the $G \rightarrow P$ transformation is the **right ascension of the ascending node**, Ω, often abbreviated RAAN (pronounced “Ran”)

• This angle is a rotation about the 3 axis of the G coordinate frame (\mathbb{Z})

• Ω can be computed as the angular displacement from the old 1 axis (\mathbb{X}/\mathbb{Y}) to the new 1 axis (\mathbb{N}):

$$\cos \Omega = \frac{\mathbb{N} \cdot \mathbb{X}}{|\mathbb{N}|} = \frac{N_X}{N}$$

where $\{\mathbb{N}\}^G = [N_X \ N_Y \ N_Z]^T$; $N = |\mathbb{N}|$

Ω has a value from [0,2\pi) radians ([0,360) deg)
Most implementations of $\cos^{-1}()$ (ACOS) return values between $[0, \pi]$ radians, so the ACOS function is multi-valued on the domain of Ω.

Could use the Y component of the node vector to check if we are in the range $(\pi, 2\pi)$ radians:

$$\sin \Omega = \frac{N \cdot Y}{|N|} = \frac{N_Y}{N}$$

So, a hand algorithm could be:

$$\Omega^* = \cos^{-1}(N_X/N)$$

if $(N_Y > 0)$; $\Omega = \Omega^*$

otherwise; $\Omega = 2\pi - \Omega^*$
Most implementations of $\cos^{-1}()$ \textbf{(ACOS)} return values between $[0,\pi]$ radians, so the ACOS function is multi-valued on the domain of Ω.

Could use the Y component of the node vector to check if we are in the range $(\pi,2\pi)$ radians:

$$\sin \Omega = \frac{\mathbf{N} \cdot \mathbf{Y}}{|\mathbf{N}|} = \frac{N_Y}{N}$$

So, a hand algorithm could be:

$$\Omega^* = \cos^{-1}(N_X/N)$$

if $(N_Y > 0)$; $\Omega = \Omega^*$

otherwise; $\Omega = 2\pi - \Omega^*$

or

$$\Omega = \tan^{-1}\left(\frac{\sin \Omega}{\cos \Omega}\right) = \text{ATAN2}(N_Y, N_X)$$
The dihedral between the orbital plane and the equatorial plane forms the second Euler angle of the $G \rightarrow P$ transformation.

This angle is called the inclination of the orbit, i.

The second rotation (around the new 1 axis, N) moves the 3 axis from Z to normal to the orbit plane (parallel to h).

The value of inclination runs from $[0, \pi]$ radians ($[0, 180]$ deg) with angles less than $\pi/2$ radians (90°) being prograde and angles larger than $\pi/2$ being retrograde.
• The dihedral between the orbital plane and the equatorial plane forms the second Euler angle of the $G \rightarrow P$ transformation.
• This angle is called the **inclination** of the orbit, i
• The second rotation (around the new 1 axis, N) moves the 3 axis from Z to normal to the orbit plane (parallel to h)

The value of inclination runs from $[0, \pi]$ radians ($[0,180]$ deg) with angles less than $\pi/2$ radians (90°) being **prograde** and angles larger than $\pi/2$ being **retrograde**

Orbits with inclinations exactly $\pi/2$ radians (90°) are called **polar**

Orbital Elements

Diagram of the 3 Euler Angles for the Perifocal Frame
Orbital Elements

• The third Euler angle is the angular separation from the ascending node to periapsis, known as the argument of periapsis, ω.

• ω can range from $[0,2\pi]$ radians ($[0,360)$ deg).

• Since \mathbf{e} points towards periapsis, it satisfies:

$$\cos \omega = \frac{\mathbf{N} \cdot \mathbf{e}}{Ne}$$

• Due to ambiguity of ACOS, this is not sufficient to compute ω.
We begin to measure ω at the ascending node and sweep through the orbital plane.

Thus, if $\omega \in [0, \pi)$ radians we reach periapsis before we reach the descending node, and \mathbf{e} lies above the equatorial plane ($e_Z > 0$). Otherwise, it is below the equatorial plane and $\omega > \pi$ radians.

So, a hand algorithm could be:

$$\omega^* = \cos^{-1}\left[\mathbf{N} \cdot \mathbf{e} / (N e)\right]$$

if $(e_Z > 0);$ $\omega = \omega^*$

otherwise; $\omega = 2\pi - \omega^*$
• Some computer algorithms prefer to reduce branching (no “if-then”s).
• To do this for ω requires an expression for its sine. Let’s define a vector advanced $\pi/2$ radians from \mathbf{N} in the orbit plane as \mathbf{s}.
• Since $\mathbf{s} \perp \mathbf{N}$ and $\mathbf{s} \perp \mathbf{h}$ we can compute a unit vector in the correct direction as

$$\mathbf{s} = \left(\mathbf{h} / h \right) \times \left(\mathbf{N} / N \right) = \frac{1}{hN} \mathbf{h} \times \mathbf{N}$$

and then $\sin \omega = \frac{\mathbf{e} \cdot \mathbf{s}}{e}$
Some computer algorithms prefer to reduce branching (no “if-then”s).

To do this for ω requires an expression for its sine. Let’s define a vector advanced $\pi/2$ radians from \mathbf{N} in the orbit plane as \mathbf{s}.

Since $\mathbf{s} \perp \mathbf{N}$ and $\mathbf{s} \perp \mathbf{h}$ we can compute a unit vector in the correct direction as

$$
\mathbf{s} = \left(\frac{\mathbf{h}}{h} \right) \times \left(\frac{\mathbf{N}}{N} \right) = \frac{1}{hN} \mathbf{h} \times \mathbf{N}
$$

and then

$$
\sin \omega = \frac{\mathbf{e} \cdot \mathbf{s}}{\mathbf{e}}
$$

$$
\Rightarrow \omega = \tan^{-1}\left(\frac{\sin \omega}{\cos \omega} \right) = \text{ATAN2} \left[\mathbf{e} \cdot \mathbf{s}, (\mathbf{N} \cdot \mathbf{e})/N \right]
$$
Orbital Elements

Diagram of the 3 Euler Angles for the Perifocal Frame
• The 3 Euler angles define the orientation of the orbit with respect to inertial space
• With the addition of 2 parameters (for an elliptical or hyperbolic orbit) defining the orbit size/shape, an orbit can be specified completely in 3 dimensions.
• To specify a position along the orbit, we typically add an angular measure from periapsis (such as θ) though time since periapsis would work as well.
The 3 Euler angles define the orientation of the orbit with respect to inertial space.

With the addition of 2 parameters (for an elliptical or hyperbolic orbit) defining the orbit size/shape, an orbit can be specified completely in 3 dimensions.

To specify a position along the orbit, we typically add an angular measure from periapsis (such as θ) though time since periapsis would work as well.

The position information is meaningless for most applications unless we specify the time an object was in that position, known as the *epoch*.
• Since θ is measured from periapsis, it can be computed from inertial state vectors using its relationship to \mathbf{e}:

$$\cos \theta = \frac{\mathbf{r} \cdot \mathbf{e}}{re}$$

• Due to the ambiguity with ACOS this isn’t sufficient. However, we know that for $\theta \in (0, \pi)$ radians we are moving away from the body while for $\theta \in (\pi, 2\pi)$ radians we are moving inward, which can be expressed using v_r.

• If $\theta > \pi$ we have $\mathbf{r} \cdot \mathbf{v} < 0$
A suitable hand algorithm could be:

\[
\theta^* = \cos^{-1}\left[\frac{\mathbf{r} \cdot \mathbf{e}}{re}\right]
\]

if \((\mathbf{r} \cdot \mathbf{v}) > 0\); \(\theta = \theta^*\)

otherwise; \(\theta = 2\pi - \theta^*\)
A suitable hand algorithm could be:

\[
\theta^* = \cos^{-1}\left[\mathbf{r} \cdot \mathbf{e} / (re)\right]
\]

if \((\mathbf{r} \cdot \mathbf{v} > 0)\); \(\theta = \theta^*\)

otherwise; \(\theta = 2\pi - \theta^*\)

- Again, if we want to avoid branching we will want the sine.
- \(\sin \theta\) would give us a projection along the \(\hat{q}\) direction in the \(P\) frame, so one method is to get a vector along that direction (\(\hat{q} \perp \mathbf{e}\) and \(\hat{q} \perp \mathbf{h}\))
• A unit vector in the correct direction (but not necessarily associated with the P frame) would be:

$$q = \left(\frac{\mathbf{h}}{h}\right) \times \left(\frac{\mathbf{e}}{e}\right) = \frac{1}{he} \mathbf{h} \times \mathbf{e}$$

and then

$$\sin \theta = \frac{r \cdot q}{r}$$

• So

$$\theta = \tan^{-1} \left(\frac{\sin \theta}{\cos \theta}\right) = \text{ATAN2}[r \cdot q, (r \cdot e)/e]$$
6 Classical Orbital Elements:

- \(h \), specific angular momentum
- \(i \), inclination [0°, 180°). (>90° is retrograde)
- \(\Omega \), RAAN, [0°, 360°)
- \(e \), eccentricity
- \(\omega \), argument of periapsis, [0°, 360°)
- \(\theta \), true anomaly, [0°, 360°)

First 5 fix the orientation and shape of orbit, true anomaly fixes our position in the orbit.

Some common substitutions are \((a, p) \rightarrow h\) or \((M_e, \Delta t_p, t_0) \rightarrow \theta\)
Algorithm: Compute the Classical Orbital Elements (COE) set given state vectors, \(r \) and \(v \), and \(\mu \):

1. Compute the position magnitude \(r = |r| \)
2. Compute the position magnitude \(v = |v| \)
3. Compute the radial velocity \(v_r = \frac{v \cdot r}{r} \)
4. Compute the angular momentum vector: \(h = r \times v \)
5. Compute the momentum magnitude \(h = |h| \)
6. Compute the radial velocity \(v_r = \frac{v \cdot r}{r} \)
7. Compute the angular momentum vector: \(h = r \times v \)
8. Using Eq. (4.3) compute the eccentricity vector:

\[
\mathbf{e} = \left(\frac{v^2}{\mu} - \frac{1}{r} \right) \mathbf{r} - \left(\frac{r v_r}{\mu} \right) \mathbf{v}
\]
9. Compute the eccentricity magnitude \(e = |e| \)
10. (OPTIONAL) Compute \(a \) if required \((e \neq 1)\):

\[
a = \frac{h^2}{\mu(1 - e^2)}
\]
11. (OPTIONAL) Compute \(p \) if desired:

\[
p = \frac{h^2}{\mu}
\]
12. Compute the ascending node vector from Eq. (4.22):

\[
\mathbf{N} = \mathbf{Z} \times \mathbf{h} = v_2 \mathbf{r} - r_2 \mathbf{v}
\]

Note that \(\mathbf{N} = 0 \) for an equatorial orbit \((i = 0 \text{ or } i = \pi)\).
13. Compute the magnitude \(N = |\mathbf{N}| \)
14. Compute RAAN using the hand procedure from Eq. (4.23) or

\[
\Omega = \text{ATAN2}(N_Y, N_X)
\]

If \((N \approx 0)\), define \(\Omega = 0 \)
15. Compute inclination using Eq. (4.24):

\[
i = \cos^{-1}(h_Z/h)
\]
16. Compute argument of periapsis using the hand procedure from Eq. (4.25) or

\[
\omega = \text{ATAN2}[\mathbf{e} \cdot \mathbf{q}, (\mathbf{r} \cdot \mathbf{e})/e]
\]

If \((e \approx 0), \text{ use } \mathbf{N} \text{ instead of } \mathbf{e}.\)
If \((N \approx 0)\), use \(\mathbf{X} \) instead of \(\mathbf{N} \).
If additional anomalies or time since periapsis are required, these can be computed using the equations of Chapter 6.
17. Compute true anomaly using the hand procedure from Eq. (4.27) or

\[
\theta = \text{ATAN2}[(\mathbf{r} \cdot \mathbf{q}, (\mathbf{r} \cdot \mathbf{e})/e)]
\]

If \((e \approx 0), \text{ use } \mathbf{N} \text{ instead of } \mathbf{e}.\)
If \((N \approx 0), \text{ use } \mathbf{X} \text{ instead of } \mathbf{N} \).
If additional anomalies or time since periapsis are required, these can be computed using the equations of Chapter 6.
• As mentioned, 3 of the orbital elements describe a 3-1-3 Euler angle transformation from Geocentric Equatorial coordinates \((G)\) to perifocal coordinates \((P)\).

• We can use elementary transformations to both visualize the rotations that these angles specify, and to transform state vectors from one system to another.
Orbital Elements

- First stage of transformation: Rotate \(P \) relative to \(G \) around the 3-axis (\(Z \)) by angle \(\Omega \).

\[
C_3(\Omega) = \begin{bmatrix}
\cos\Omega & \sin\Omega & 0 \\
-\sin\Omega & \cos\Omega & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

Rotation about the Z-axis.
• Second stage of transformation:
 Rotate P relative to G around the new 1-axis (N) by angle i

\[
C_1(i) = \begin{bmatrix}
 1 & 0 & 0 \\
 0 & \cos i & \sin i \\
 0 & -\sin i & \cos i
\end{bmatrix}
\]

Rotation about the X-axis.
• Last stage of transformation: Rotate P relative to G around the new 3-axis (\mathbf{h}) by angle ω.

$$C_3(\omega) = \begin{bmatrix} \cos \omega & \sin \omega & 0 \\ -\sin \omega & \cos \omega & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Rotation about the Z-axis.
Orbital Elements

• To convert orbital elements to state vectors, we first compute the positions and velocity relative to the P frame, then transform into the inertial frame.

• Recall: $\mathbf{r} = \bar{x}\hat{\mathbf{p}} + \bar{y}\hat{\mathbf{q}}$

$$\mathbf{v} = \bar{x}\hat{\mathbf{p}} + \bar{y}\hat{\mathbf{q}}$$

From the Euler angle transformation (313) $G \rightarrow P$:

$$C_{P/G} = C_3(\omega)C_1(i)C_3(\Omega)$$

$$C_{G/P} = \left[C_{P/G} \right]^T$$

$$\{\mathbf{r}\}_G = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = C_{G/P} \{\mathbf{r}\}_P$$

$$\{\mathbf{v}\}_G = \begin{bmatrix} v_X \\ v_Y \\ v_Z \end{bmatrix} = C_{G/P} \{\mathbf{v}\}_P$$

SO

$$\{\mathbf{r}\}_P = \frac{h^2 / \mu}{1 + e \cos \theta} \begin{bmatrix} \cos \theta \\ \sin \theta \\ 0 \end{bmatrix}$$

$$\{\mathbf{v}\}_P = \frac{\mu}{h} \begin{bmatrix} -\sin \theta \\ e + \cos \theta \\ 0 \end{bmatrix}$$