Unit 2 Practice Problems

1. A satellite is injected into orbit at an altitude of 487 km, with a total vehicle speed of 9.6 km/s. If the altitude is increasing at a rate of 932 m/s, determine
 a) The specific mechanical energy of the orbit;
 b) The eccentricity of the orbit;

\[
\begin{align*}
\mu &= 3.986 \times 10^5 \text{ km}^3/\text{s}^2 \\
R_E &= 6378 \text{ km} \\
\varepsilon &= 487 \text{ km} \\
V &= 9.6 \text{ km/s}
\end{align*}
\]

\[
\begin{align*}
V_r &= 0.932 \text{ km/s} \\
r &= R_E + \varepsilon = 6865 \text{ km}
\end{align*}
\]

\[\alpha = \frac{\varepsilon^2}{2} - \frac{\mu}{r} = -11.98 \text{ km}^3/\text{s}^2 \quad \Rightarrow \quad \varepsilon \approx -11.98 \text{ km}^3/\text{s}^2\]

\[\begin{align*}
\varepsilon &= \frac{-\mu}{2a} \Rightarrow a = \frac{-\mu}{2\varepsilon} = 16632.4 \text{ km}
\end{align*}\]

\[\begin{align*}
\varepsilon &= V_r^2 + V_\perp^2 \Rightarrow V_\perp = \sqrt{\varepsilon - V_r^2} = 9.55465 \text{ km/s} \\
\ell &= rV_\perp = 65.5927 \text{ km/s}
\end{align*}\]

\[\begin{align*}
\frac{\beta}{\mu} &= a(1 - \varepsilon^2) \Rightarrow \varepsilon = \left[1 - \frac{\beta^2}{\mu a}\right]^{1/2} = 0.59249 \quad \Rightarrow \quad \varepsilon \approx 0.592
\end{align*}\]

2. Consider an object at an altitude of 600 km above the surface of the Earth. Assume the Earth to be a sphere of radius 6378 km.
 a) If the object followed a path that maintained a constant altitude, determine the radial acceleration required to maintain a tangential speed of \(v\). (HINT: what is the acceleration on a path of constant radius of curvature, \(r\), and constant speed, \(v\)?)
 b) What speed, \(v\), is required such that this radial acceleration exactly balances the gravitational acceleration at this altitude?

\[\begin{align*}
a &= \frac{v^2}{r}
\end{align*}\]

\[\begin{align*}
\alpha &= \frac{GM_E}{r^2} \Rightarrow \frac{v^2}{r} &= \frac{GM_E}{r^2} \Rightarrow v^2 &= \frac{GM_E}{r} \Rightarrow v = \sqrt{\frac{GM_E}{r}}
\end{align*}\]

\[\begin{align*}
\Rightarrow v &= \sqrt{\frac{M_E}{r}} \Rightarrow v = \sqrt{\frac{3.986 \times 10^5 \text{ km}^3/\text{s}^2}{\left(6378 \text{ km} + 600 \text{ km}\right)}} = 7.5579 \text{ km/s}
\end{align*}\]

\[\Rightarrow v \approx 7.56 \text{ km/s}\]
3. The position and velocity of an Earth satellite at a given instant are

\[\mathbf{r} = 2.5\mathbf{I} + 2.5\mathbf{J} + 3.75\mathbf{K} \text{ (Distance Units)} \]
\[\mathbf{v} = -0.5\mathbf{I} + 0.25\mathbf{J} + 0.5\mathbf{K} \text{ (Distance Units per Time Unit)} \]

Where \(\mathbf{IJK} \) is a nonrotating geocentric coordinate system. Find the specific angular momentum relative to the origin of \(\mathbf{IJK} \) and the specific total mechanical energy of the satellite. Assume that \(\mu = 1 \) (DU\(^3\)/TU\(^2\))

\[
\mathbf{L} = \mathbf{r} \times \mathbf{p} = \begin{vmatrix} \mathbf{I} & \mathbf{J} & \mathbf{K} \\ 2.5 & 2.5 & 3.75 \\ -0.5 & 0.25 & 0.5 \end{vmatrix} \text{ DU/TU} = 0.3125\mathbf{I} - 3.125\mathbf{J} + 1.875\mathbf{K} \text{ DU}\(^2\)/TU
\]

\[\mathbf{v} = \mathbf{L}/m = 0.3125\mathbf{I} - 3.125\mathbf{J} + 1.875\mathbf{K} \text{ DU}/TU
\]

\[E = \frac{v^2}{2} - \frac{\mu}{r} = \frac{(0.75 \text{ DU}/\text{m})^2}{2} - \frac{(1 \text{ DU}^3/\text{m}^2 \text{ DU}/\text{m})}{(5.1539 \text{ DU})} = 8.72 \times 10^{-2} \text{ DU}^2/\text{m}^2
\]

4. Two particles of identical mass \(m \) are acted on only by the gravitational force of one upon the other. If the distance \(d \) between the particles is constant, show that the angular velocity of the line joining them is \(\omega = \sqrt{2Gm/d^3} \).
5. After engine cut-off (ECO) a spacecraft has the following position and velocity vectors:

\[
\mathbf{r} = [-6131.1 \quad 4309.2 \quad 303.8]^T \text{ km} \\
\mathbf{v} = [-7.6156 \quad -5.5785 \quad 0.9036]^T \text{ km/s}
\]

a) **Determine the specific angular momentum, \(h \), and the specific mechanical energy, \(\epsilon \), of the resulting orbit.**
 - Using the definition of the specific angular momentum vector, \(\mathbf{h} \), as the cross product of the state vectors, we find its magnitude \(h = |\mathbf{h}| \). We also compute the magnitudes of \(\mathbf{r} \) and \(\mathbf{v} \) to get \(r \) and \(v \), respectively. The energy equation (2.8) can then be used to compute specific mechanical energy, \(\epsilon \).
 Answer: \(h = 67,329 \text{ km}^2/\text{s} \), \(\epsilon = -8.18 \text{ km}^2/\text{s}^2 \)

b) **Determine the radial velocity, \(v_r \), and the perpendicular velocity, \(v_\perp \), components.**
 - The radial velocity is the dot product of the two state vectors divided by the distance \(r \).
 The perpendicular component can then be found using the overall velocity magnitude.
 Answer: \(v_r = 3.06 \text{ km/s} \), \(v_\perp = 8.98 \text{ km/s} \)

c) **Determine the eccentricity, \(e \), and the true anomaly, \(\theta \), at this point in the orbit.**
 - Several strategies would work. One is to use the same approach as Example 2.5.
 Answer: \(\theta = 0.785 \text{ rad} (45.0^\circ) \), \(e = 0.7303 \)

6. For a certain Earth satellite, the observed velocity and radius at a true anomaly of \(\theta = \pi/3 \) radians are 5.610 km/s and 14,602 km, respectively. Find the eccentricity of the orbit for this satellite.
 Answer: \(e = 0.2329 \)