

Orchestrating the Grid to Enhance Reliability and Unlock Grid Resources

to the 2025 TGO Fall Summit

We will begin promptly at 8:30am

Tier 1 Sponsors

Landis+Gyr

Tier 2 Sponsors

uplight

Tier 3 Sponsors

Time	Activity	Description		
7:30 - 8:30am	Breakfast & Check-In	Check-in, breakfast buffet, and networking		
8:30 - 9:00am	Welcome	Co-Chair welcome and overview of summit agenda		
9:00 - 9:30am	Keynote Address	Forward-looking address from Mark Ortiz of Schneider Electric highlighting how emerging technologies are transforming utility operations		
9:30 - 10:15am	TGO Alignment	Intro to TGO and alignment on Alliance focus areas		
10:30 - 11:30am	TGO Framework	Review working group progress to advance TGO focus areas		
11:30 - 12:00pm	Case Study	National Grid Case Study: Flexible Connections		
12:00 - 1:00pm	Lunch	Catered lunch provided on-site		
1:00 - 3:00pm	Localized Grid Flexibility	Review working group progress and assess your organization's LGF maturity level		
3:00 - 3:30pm	Case Study	Rappahannock Electric Cooperative: Innovative Distribution Planning		
3:45 - 4:45pm	Digital & Data Readiness	IT/OT implications for TGO capabilities and tools		
6:00 - 8:00pm	Social Event	Dinner and networking event at Flight Club Atlanta		

Alliance in Action

Today's Agenda

TGO Alliance 2025 Fall Summit

Welcome and Opening Remarks

8:30 - 9:00

Co-Chair, TGO Alliance Infrastructure Advisory Markets Group Leader

Allie Broussard

Market Specialist, Electric Markets

Tier 1 Sponsors

Landis+Gyr

Tier 2 Sponsors

uplight

Tier 3 Sponsors

Time	Activity	Description		
7:30 - 8:30am	Breakfast & Check-In	Check-in, breakfast buffet, and networking		
8:30 - 9:00am	Welcome	Co-Chair welcome and overview of summit agenda		
9:00 - 9:30am	Keynote Address	Forward-looking address from Mark Ortiz of Schneider Electric highlighting how emerging technologies are transforming utility operations		
9:30 - 10:15am	TGO Alignment	Intro to TGO and alignment on Alliance focus areas		
10:30 - 11:30am	TGO Framework	Review working group progress to advance TGO focus areas		
11:30 - 12:00pm	Case Study	National Grid Case Study: Flexible Connections		
12:00 - 1:00pm	Lunch	Catered lunch provided on-site		
1:00 - 3:00pm	Localized Grid Flexibility	Review working group progress and assess your organization's LGF maturity level		
3:00 - 3:30pm	Case Study	Rappahannock Electric Cooperative: Innovative Distribution Planning		
3:45 - 4:45pm	Digital & Data Readiness	IT/OT implications for TGO capabilities and tools		
6:00 - 8:00pm	Social Event	Dinner and networking event at Flight Club Atlanta		

Alliance in Action

Today's Agenda

Facilitate collaboration and cooperation

Drive continuous improvement and technology advancement

Promote the development of requirements and best practices

Enable the adoption of innovative technologies and practices

Radical Transparency

Better Questions

Active Listening

Enjoy the Process

TGO Alliance 2025 Fall Summit

Keynote

9:00 - 9:30

Mark Ortiz

Senior Director and Chief Architect, Power and Grid

> Schneider Electric

TGO Alliance 2025 Fall Summit

TGO Alignment

9:30 - 10:15

Joe Zhou

Co-Chair, TGO Alliance
VP of Infrastructure Advisory

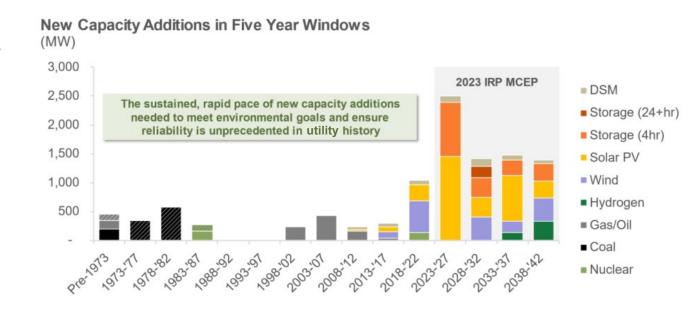
Background

The Carbon Free Journey – Representative Utility

2040 Carbon Free Commitment through sustained retirements of rotating mass

2.5 GW Summer Peak against 4 GW DER by 2025

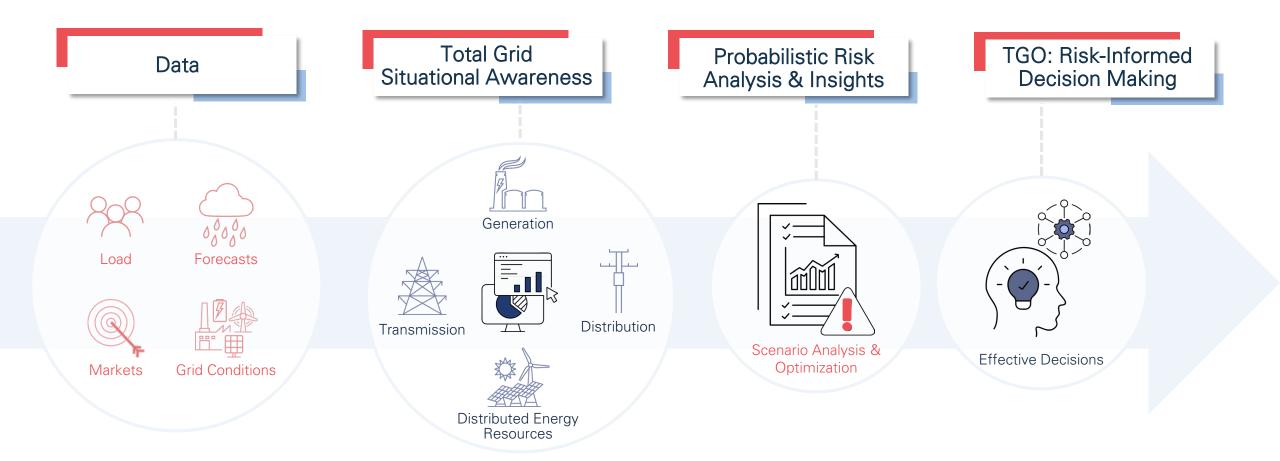
Addressed through 900 MW of bulk, 700 MW of Distribution storage



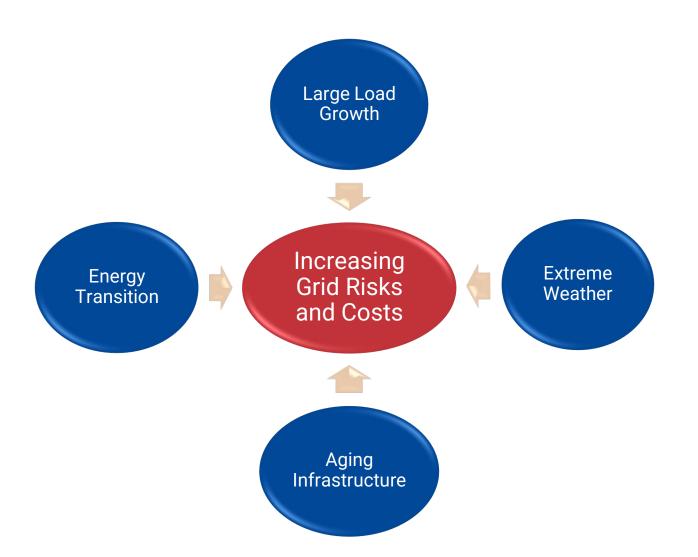
Combined with base load retirements, creates new system risks:

- Dependence on energy limited resource pool
- Coordination of many small resources to meet local and grid level needs
- Increasing susceptibility to climate related events

Increasing complexity of grid operation requires a more empowered, better coordinated workforce


The Concept of "Total Grid Orchestration" (TGO)

TGO is a coordinated approach to manage the risks across the entire grid, thereby optimizing the performance of the energy grid, especially in extreme reliability and resiliency situations.


TGO's aims to inform and improve situational awareness and provide risk-informed decision-making capabilities for grid operations across G, T, D and BTM assets, such that distributed and variable energy supply and demand optimization can be maximized.

Evolution of Total Grid Orchestration

Bridging the Gap between Planning and Operation to Unlock Grid Capacity and Reduce Risks

Why TGO is Even More Critical Today?

- Our industry is driving towards an affordability crisis
- Soaring cost of the service will make other options more attractive (DER/VPP, onsite generation, large scale demand response, etc.)
- Utilities investing the TGO solutions can get ahead of the challenges

The Strategic Value of TGO

TGO, through system- & risk- based planning and operation approach, can increase capacity, reduce grid risks, while keeping the services affordable.

Orchestrating the Grid to Enhance Reliability and Unlock Grid Resources

TGO Alliance Launch Mobilize Working Groups Working Group Progression

1.TGO Framework

2. Localized Grid Flexibility

What will be our key priorities?

 Focus will be key for us to make meaningful progress and contribution to the industry

TGO Alliance 2025 Fall Summit

TGO Framework
Working Group 1

10:30 - 11:30

Paul Moran

Integrated Solutions Strategist

Discussion Topics

TGO Working Group Members

Joe Barile

Essex Power

Nick Bennett
CPS Energy

Kevin Brannan ^{Evergy} Justin Eisfeller Unitil

Nils Frenkel
Uplight

Laurie Huff Hydro Ottawa Gautam Kakaiya CPS Energy Mitchell Paradis

Manuel Sanchez PNM Resources

Marcelo Sandoval Landis & Gyr Ngo Young
Survalent

Paul Moran Black & Veatch

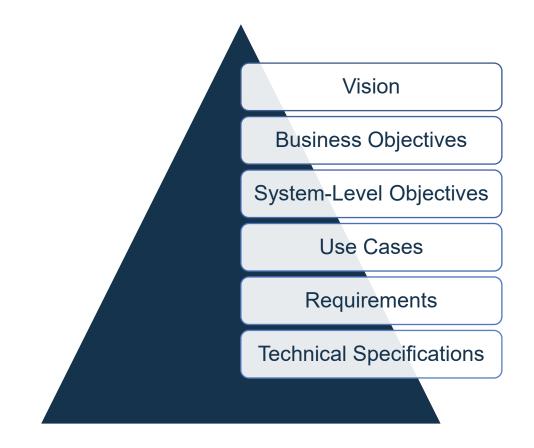
Marty Glose
Black & Veatch

What is Total Grid Orchestration?

System of Systems approach to drive new Grid
Architecture to bridge gaps between legacy systems and modern grid needs

Comprehensive
Management of Real Time
Operational Risks cross the
grid hierarchy

Integrated Framework to align operations, short-term, and long-term planning


Enable **Optimization** across all layers to improve reliability, flexibility and resilience

Foster **new solutions** and **shared direction** for addressing today's grid challenges through enhanced visibility, coordination, and integration

Why Develop a TGO Framework?

The value of a framework: Bringing Order to Complexity and Guiding Systematic Problem Solving

The TGO framework organizes complexity, guides problem solving, fosters clear communication, and enables actionable recommendations.

If something is hard, the first step is not small enough

TGO Framework Components

Framework Summary: Defined business objectives, boundaries, system-level objectives, solution market analysis.

Value Proposition: TGO value, benefit map, measurement methodology.

Maturity Model: Pre-conditions, benefit scenarios, maturity model template.

To be Developed: Deployment Playbook: Playbook templates, framework playbook, WG1 closeout.

TGO Framework Hierarchy

In Scope for Working Group 1 **Concept Definition**

Business Objectives

System Level Objectives

Use Cases

Non-Functional Requirements

Technical Requirements Vision (aspiration) and Goal (specific outcomes)

Description of specific needs or conditions necessary to achieve the Concept

Functions, features, and constraints of the system

Defines how users interact with the system to achieve specific outcomes

Specifies operational constraints and performance metrics

Provides detailed implementable specifications

Framework Hierarchy and Personas

Framework Hierarchy Structure

The hierarchy translates vision into actionable components, from concept to technical requirements ensuring clarity and alignment.

Key Personas in Framework

Operator, Planner, and Prosumer personas have distinct roles and financial biases within the framework.

Orchestration for Coordination

Orchestration balances persona biases to enable coordinated decision-making and enhance framework applicability.

TGO Business Objectives and Value Proposition

Core Business Objectives

TGO Framework defines eight objectives aimed at optimizing grid control, flexibility, resilience, and market coordination.

Value Proposition Benefits

TGO delivers improved reliability, cost efficiency, safety, decarbonization support, and inertia balancing benefits.

Stakeholder Value Mapping

Benefits are aligned with multiple stakeholder personas for broad impact and enhanced decision-making.

TGO Business Objectives

Total Grid Orchestration (TGO) TGO is a coordinated approach to manage the risks across the entire grid, thereby optimizing the performance of the energy grid, especially in extreme reliability and resiliency situations.

WG 1 identified 8 core objectives of Total Grid Orchestration

Holistic Visibility and Control: Achieve comprehensive and secure situational awareness and real-time control of all grid assets.

Integrated Planning & Operations:

Foster collaboration across generation, transmission, distribution and customer (as applicable) for synchronized planning and operations.

Localized Grid Flexibility: Utilize flexible resources to balance supply and demand, ensuring grid stability.

Ability for Enhanced Resilience and Reliability: Strengthened ability to respond to disturbances and support grid resilience.

Customer and Prosumer Integration:

Empower consumers and distributed energy resources to participate in grid services while respecting their preferences.

Asset Optimization Capabilities: Enable optimization of grid assets.

Market Enablement and Coordination:

Support and incentivize flexible and reliable behavior in grid services markets.

Risk-Informed Decision-Making Capabilities: Quantified and predictive grid analysis to inform near real-time operational actions.

System Level Objectives

Concept Definition

Business Objectives

System Level Objectives

Use Cases

Non-Functional Requirements

Technical Requirements Vision (aspiration) and Goal (specific outcomes)

Description of specific needs or conditions necessary to achieve the Concept

Functions, features, and constraints of the system

Defines how users interact with the system to achieve specific outcomes

Specifies operational constraints and performance metrics

Provides detailed implementable specifications

System Level Objectives

Defining the functions feature of the constraints of the system that would enable the vision of Orchestration.

Operations & Analytics
Planning & Capital Improvement

Leaend

Market & Policy Design

Data Collection & Situational Awareness

Risk-Informed Decision-Making

Situational Analytics & Modeling

Quantified and coalesced operating envelope influences within each business objective value measure.

Risk Framework

A common quantitative scale to measure, weigh, assess, and prioritize risk for determining action.

Decision Support Systems

The platform to act on the outputs of situational awareness based on quantifiable risk.

Holistic Visibility and Control

Real-time Data Acquisition

Implemented sensors and IoT devices across the grid for continuous data collection.

Unified Monitoring Platform

Developed centralized system for real-time visualization.

Interoperability

Ensure compatibility with grid components, including DERs, electric vehicles, and flexible loads, as well as control of these grid assets.

Integrated Planning & Operations

Data Integration

Shared data platform for TSOs and DSOs to access and exchange information seamlessly.

Coordinated Control Systems

Implemented systems that allow synchronized control actions across transmission and distribution networks.

Joint Planning Tools

Developed tools for collaborative forecasting, planning, and decision-making.

Localized Grid Flexibility (WG2)

Demand Response Mechanisms

Established protocols for activating demand response and other flexible resources.

Energy Storage Integration

Incorporated energy storage systems to manage supply and demand fluctuations.

Advanced Forecasting

Use of predictive analytics to anticipate demand and supply variations.

Ability for Enhanced Resilience and Reliability

Automated Fault Detection

Deployed advanced analytics and machine learning for early detection of grid disturbances.

Self-Healing Networks

Implemented automation for rapid isolation and restoration of grid sections.

Resilience Planning

Develop strategies for islanding, black start, and microgrid operations.

Customer and Prosumer Integration

Dynamic Pricing Models

Created pricing structures that incentivize consumer participation in grid services.

Virtual Power Plant

Enabled aggregation of distributed resources to act as single entities in the grid.

User-Friendly Interfaces

Developed platforms that allow consumers to easily engage with grid services.

Asset Optimization Capability

Advanced Analytics

Utilize emerging technologies for proactive and predictive maintenance and optimization.

Data Interoperability

Ensure seamless data exchange between different platforms and stakeholders.

Scenario Analysis Tools

Developed tools for simulating and analyzing various grid scenarios.

Market Enablement and Coordination

Real-Time Market Platforms

Created platforms for realtime trading of grid services.

Incentive Structures

Designed market mechanisms that reward flexible and reliable behavior.

Regulatory Compliance

Ensure alignment with regulatory requirements and standards.

TGO Market Analysis

Identifying Solutions, Platforms, and/or Standards of the Industry for each respective System Level Objective.

1. Holistic Visibility and Control	Real-time Data Acquisition: EMS/RTU, PI Data, MD-90 Metering, AMI		
	Unified Monitoring Platform: SCADA, EMS, OMS, DERMS		
	Interoperability: ADMS, IEEE 2030.5		
	Data Integration: Enterprise Service Bus (ESB), Data Lakes, ETL Tools, CIM-based integration platforms		
2. Integrated Planning & Operations	Coordinated Control Systems: ADMS, DERMS, EMS, Microgrid Controllers		
Operations	Joint Planning Tools: Integrated Resource Planning (IRP) software, Grid Simulation Tools (e.g., PSS®E, CYME), Load Flow and Contingency Analysis Tools		
	Demand Response Mechanisms: DRMS, Smart Thermostats, Aggregator Platforms		
3. Localized Grid Flexibility	Energy Storage Integration: BESS Management Systems, EMS with storage modules, Inverter Control Systems		
	Advanced Forecasting: Al/ML-based Load and Renewable Forecasting Tools, Weather Data Integration, Predictive Analytics Platforms		
	Automated Fault Detection: Fault Location, Isolation, and Service Restoration (FLISR), Smart Sensors, Line Monitoring Systems		
4. Enhanced Resilience and Reliability	Self-Healing Networks: ADMS with self-healing algorithms, Reclosers with automation, Grid Edge Intelligence		
	Resilience Planning: GIS-based Risk Assessment Tools, Scenario Planning Software, DERMS with resilience modules		
	Dynamic Pricing Models: TOU (Time-of-Use) Pricing Engines, Real-Time Pricing Platforms, Customer Portals		
5. Customer and Prosumer Integration	Virtual Power Plants (VPPs): VPP Platforms, DER Aggregation Software, Blockchain for Peer-to-Peer Energy Trading		
	User-Friendly Interfaces: Mobile Apps, Web Portals, Home Energy Management Systems (HEMS), IEEE 2030.5		
	Advanced Analytics: APM (Asset Performance Management), Predictive Maintenance Tools, AI/ML Platforms		
6. Asset Optimization Capability	Data Interoperability: Digital Twins, IoT Platforms, CIM/IEC 61970/61968 Standards		
	Scenario Analysis Tools: Grid Simulation Software, Risk Modeling Tools, Planning and Forecasting Suites		
	Real-Time Market Platforms: ISO/RTO Market Interfaces, Energy Trading Platforms, Blockchain Marketplaces		
7. Market Enablement and Coordination	Incentive Structures: DRMS, Customer Engagement Platforms, Billing and Settlement Systems		
Condition	Regulatory Compliance: NERC CIP Compliance Tools, Reporting Automation Software, Audit Trail Systems		
	Situational Analytics & Modeling: RTCA		
8. Risk-Informed Decision- Making	Risk Framework:		
	Decision Support Systems: RTCA		

TGO Value Proposition

The Total Grid Orchestration (TGO) framework offers a comprehensive approach to optimizing grid control, flexibility, resilience, and market coordination.

TGO Maturity Model

Four Maturity Levels

The model defines Foundational, Integrated, Orchestrated, and Adaptive levels showing progressive sophistication.

Business Objective Mapping

Each business objective is aligned with maturity levels to detail key features and value realization.

Holistic Visibility Evolution

Visibility develops from siloed data to Al-driven real-time control, enhancing operational insight.

Customer Integration Progression

Customer roles evolve from passive consumers to active prosumer orchestration within the ecosystem.

1. Foundational

 Awareness, manual processes, siloed systems 2. Integrated

 Data sharing, early automation, partial coordination 3. Orchestrated

 Real-time control, dynamic optimization, DER integration 4. Adaptive

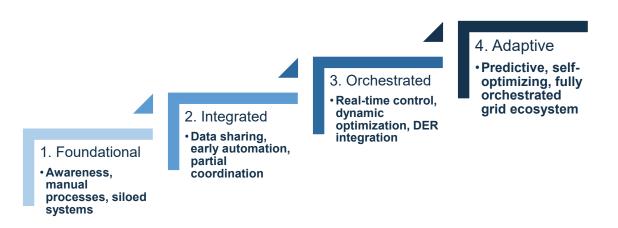
 Predictive, selfoptimizing, fully orchestrated grid ecosystem

TGO Maturity Model Definitions

	Maturity Level	Description	Key Characteristics	Value Realization
	1. Foundational (Awareness & Enablement)	Basic capabilities and awareness of orchestration potential.	Manual processesSiloed systemsLimited visibilityMinimal DER integration	Initial reliability improvementsBasic O&M cost savings
	2. Integrated (Data-Driven Coordination)	Systems and data begin to integrate across domains.	 Shared data platforms Early-stage DERMS, ADMS Some demand response Basic forecasting & analytics 	 Improved asset utilization Moderate O&M and capital efficiency Early resilience planning
	3. Orchestrated (Dynamic Optimization)	Real-time orchestration across grid layers and actors.	 Real-time/locational situational awareness Coordinated TSO/DSO operations Automated fault detection Virtual Power Plants (VPPs) Risk-informed decision-making 	 High reliability & resilience Capital deferral via non-wires solutions Enhanced market participation
⊗ \(\sigma \) \(4. Adaptive (Predictive & Proactive Ecosystem)	Fully adaptive, self- optimizing grid ecosystem.	 AI/ML-driven analytics Self-healing networks Dynamic pricing & incentives Full prosumer integration Regulatory-aligned orchestration 	 Maximum grid flexibility Decarbonization & sustainability Resilient, affordable, secure grid

TGO Maturity Model Expanded Definitions

	Maturity Level				
Objective	Foundational	Integrated	Orchestrated	Adaptive	
Holistic Visibility & Control	Basic SCADA, siloed data, limited DER visibility	Unified dashboards, partial DERMS, AMI integration	Real-time situational awareness, DERMS + ADMS, IoT sensors	Predictive grid state modeling, Aldriven control, full DER orchestration	
Integrated Planning & Operations	Separate TSO/DSO planning, manual coordination	Shared data lakes, joint planning sessions	Coordinated control systems, integrated forecasting	Al-assisted co-optimization, dynamic planning with real-time feedback	
Localized Grid Flexibility	Manual DR programs, limited BTM visibility	Aggregator platforms, early VPP pilots	Automated DR, storage dispatch, flexible load orchestration	Fully modular flexibility, AI- optimized dispatch, prosumer-led balancing	
Enhanced Resilience & Reliability	Manual outage response, basic redundancy	FLISR, automated switching, resilience planning tools	Self-healing networks, microgrid integration, black start readiness	Predictive failure analytics, adaptive islanding, climate risk mitigation	
Customer & Prosumer Integration	TOU pricing, basic portals, passive consumers	Real-time pricing, DER enrollment, mobile apps	VPPs, DER aggregation, active market participation	Full prosumer orchestration, dynamic incentives, sustainability dashboards	
Asset Optimization Capability	Time-based maintenance, siloed asset data	Predictive maintenance, digital twins, APM tools	Scenario-based planning, cross- platform analytics	Al-driven optimization, real-time asset orchestration, lifecycle extension	
Market Enablement & Coordination	Manual settlements, limited DR markets	Real-time trading platforms, DRMS integration	Dynamic pricing, flexible market rules, DER market access	Fully transactive energy markets, blockchain-enabled P2P trading	
Risk-Informed Decision- Making	Qualitative risk logs, manual assessments	Quantitative scoring, early modeling tools	Real-time risk dashboards, decision support systems	Predictive risk optimization, Al- driven orchestration under uncertainty	


TGO Framework

Defining the Vision: From Business Objectives to a Scalable Maturity Model – WG1 identified eight core business objectives and their supporting system requirements—then developed a maturity model to guide progressive capability building and value realization across the orchestration journey

TGO Objectives

- 1. Holistic Visibility and Control
- 2. Integrated Planning & Operations
- 3. Localized Grid Flexibility
- 4. Enhanced Resilience and Reliability
- **5. Customer and Prosumer Integration**
- 6. Asset Optimization Capability
- 7. Market Enablement and Coordination
- 8. Risk-Informed Decision-Making

TGO Maturity Model Definitions

TGO Utility Reference Model

The TGO Utility Reference Model organizes the **essential capabilities** for grid orchestration into **four core domains**—spanning from planning through operations. These domains are **enabled by five key supporting functions**, which together ensure utilities can deliver a resilient, flexible, and optimized grid. This integrated approach brings together planning, operations, market coordination, customer engagement, regulatory compliance, IT infrastructure, and risk management, all underpinned by robust cyber and physical security.

We identified four domains that span from planning to operations supported by five supporting functions

TGO Utility Reference Model

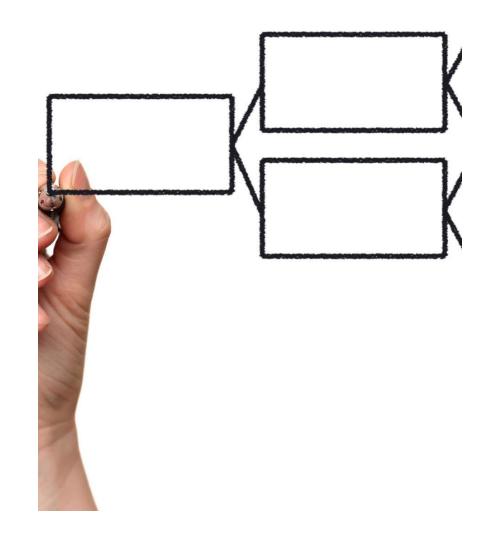
Grid Engineering, Planning & Generatio		Generation Op	erations	Transmis	ssion Operations	C	Distribution Operations	
Integrated resource and systems		Generation dispatch optimization		Congest	ion management	Real-	time and day-ahead dispatch	Indicates existin
planning	planning						•	capability
Asset investment prioritizati	on	Unit availability forecasting		Grid stab	oility and reliability		Outage Response	
Hosting capacity and load forecasting	Hosting capacity and load forecasting		Fuel mix and emissions tracking		constraints modeling	D	ERMS/ADMS integration	Indicates neede
Resource Procurement	ocurement Inertia balancing a			Coordination with IS system ope		Situa	ational awareness and DER control systems	TGO
Scenario modeling and probab risk assessment	ilistic	Risk-informed dispa	tch decisions		ormed Constraint anagement	Ris	sk-Informed Localized grid flexibility	
Market Design & Coordination	Cust	omer & Prosumer Engagement	Regulato	ory & Policy	IT & Communication Infrastructure	ons	Risk & Decision Support	
Dynamic pricing and bidding mechanisms		R onboarding and ible grid connection		e with evolving egulations	Substation and field a networks	area	Scenario analysis and modeling	+ Cyber & Physica
		+				*		security
Real-time energy markets	Demand response programs			ent proposal iteria	Edge computing an telemetry		AL& ML Driven Digital twin simulations /	+ Change
÷	•						÷	Management & Workforce
Bilateral and programmatic flexibility services	Pe	eer-to-peer energy trading	Risk-informed decision frameworks		Data interoperabilit analytics & governar		Value realization frameworks	Enablement
Measurement, verification, and settlement		stomer portals and oice mechanisms			Integrated network management	<	Resilience planning and operational risk profiling	
								38

TGO Framework Summary

Core Business Objectives

WG1 identified eight key business objectives critical for advancing the TGO Framework.

Scalable Maturity Model


A scalable maturity model guides capability building from foundational to adaptive orchestration stages.

Framework Components

The framework includes hierarchy, strategic components, reference models, and market analysis to support TGO vision.

Positioning for Success

This comprehensive framework positions the TGO Alliance to engage on needed capabilities to activate TGO

TGO Alliance 2025

TGO Alliance 2025 Fall Summit

Flexible Connections
Case Study

11:30 - 12:00

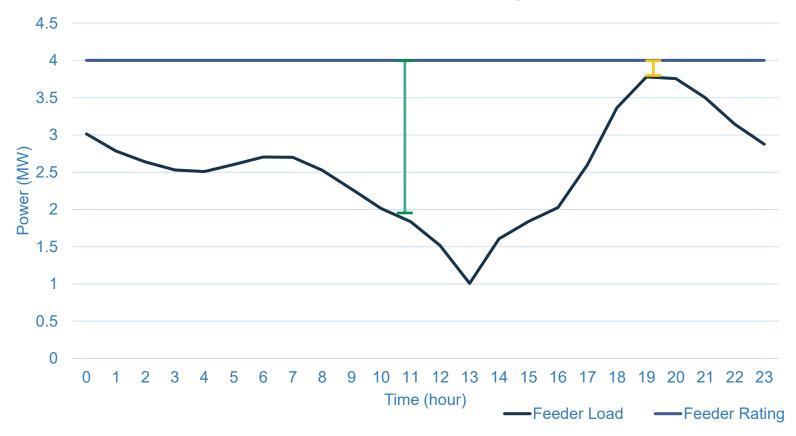
Joe Ciccarello

Lead Engineer Electrical Planning and Design

nationalgrid

EV Flexible Connections – Why?

Private Fleet customers were not satisfied with National Grid's service offerings for their large load needs


Customer Engagement

- Customers were coming to National Grid looking for large loads to charge their electric vehicles, some upwards of 7MW
- Connection costs and timelines were beyond customer's means
 - School Districts were unable to afford upgrade costs
 - Trucking Companies were unwilling to accept connection timelines

Experience with Flexible Interconnections

- National Grid is piloting:
 - Two Solar Flexible Interconnection sites in New York
 - One collocated Solar / BESS Flexible Interconnection site in Massachusetts
 - One BESS Flexible Interconnection site in New York (early stages)

EV Flexible Connections – Example Feeder Peak Day

- Traditional services would need to plan for the worst-case scenario, only allowing additional 250kW of new customer load
- There is a lot of additional capacity available on the feeder, but the customer needs grid visibility and control measures to safely access it

EV Flexible Connections – High Level Requirements

A variety of use cases show a benefit to providing customers a choice in solution-type:

Scheduled Solution

Targeted customer has the same routes and hours of operation each day (example: School buses)

Load is limited at the same hours every day

- System must be able to monitor site load
- System must be able to ingest a pre-determined schedule
- System must be able to communicate the site load limit to the customer based on the schedule
- Contract must be agreed upon by NG & Customer to define expectations
- System must be able to mitigate customer noncompliance (notification, curtailment, disconnect)

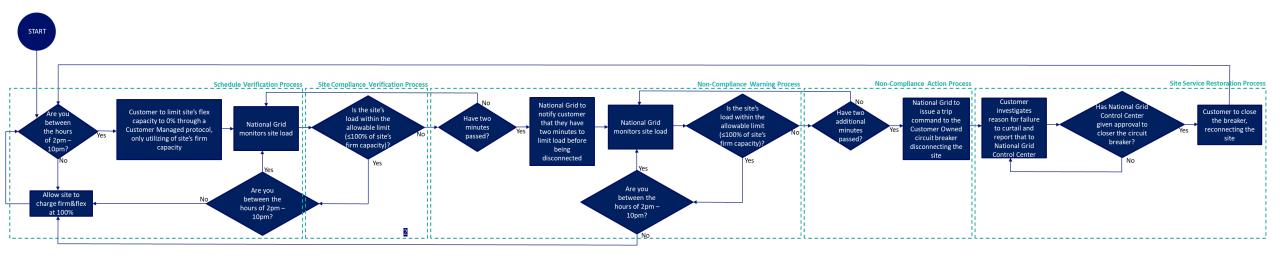
Dynamic Solution

Targeted customer has varying routes and hours of operation each day (example: delivery trucks)

Load is limited based forecasted constraints

- System must be able to monitor site load
- System must be able to ingest hourly Short Term Forecasting data
- System must be able to calculate the allowable site load limit from the STF data
- System must be able to communicate the allowable site load limit to the customer based on the STF data
- Contract must be agreed upon by NG & Customer to define expectations
- System must be able to mitigate customer noncompliance (notification, curtailment, disconnect)

EV Flexible Connections


Dynamic Limiting Process Map

TGO Alliance 2025

EV Flexible Connections

Scheduled Limiting Process Map

EV Flexible Connections – Customer Compliance

To ensure customer compliance, a control cabinet is required at the customer location and a contract must be signed

On-Site Controls

- A Remote Terminal Unit (RTU) will have awareness of allowable charging limits, and will send these to the customer's Fleet Manager
 - For Scheduled, these limits will be pre-programmed
 - For Dynamic, these limits will be sent daily from National Grid
- Monitoring equipment is required to measure the site's load
- A disconnect device will be tripped should a customer be non-compliant for any reason

Customer Agreement


- The allowable charging limits are agreed up within this contract
 - For Scheduled, the contract states the maximum limit for each hour of the day
 - For Dynamic, the contract states the maximum total site capacity and the guaranteed load limit
- A Fleet Electrification Plan is shared
 - The customer outlines a yearly plan of vehicle purchases to reach full site capacity

TGO Alliance 2025

EV Flexible Connections – Dynamic Heatmap

	_			_	_	•	_		•	40		40
Month	1	2	3	4	5	6	7	8	9	10	11	12
Hour												
0	100.00%	100.00%	100.00%	100.00%	100.00%	94.79%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
1	100.00%	100.00%	100.00%	100.00%	100.00%	98.34%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
2	100.00%	100.00%	100.00%	100.00%	100.00%	99.11%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
3	100.00%	100.00%	100.00%	100.00%	100.00%	99.53%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
4	100.00%	100.00%	100.00%	100.00%	100.00%	99.49%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
5	100.00%	100.00%	100.00%	100.00%	100.00%	98.99%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
6	100.00%	100.00%	100.00%	100.00%	100.00%	95.68%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
7	100.00%	100.00%	100.00%	100.00%	100.00%	93.52%	99.73%	100.00%	100.00%	100.00%	100.00%	100.00%
8	100.00%	100.00%	100.00%	100.00%	100.00%	90.78%	98.93%	100.00%	100.00%	100.00%	100.00%	100.00%
9	100.00%	100.00%	100.00%	100.00%	100.00%	86.05%	95.79%	99.60%	100.00%	100.00%	100.00%	100.00%
10	100.00%	100.00%	100.00%	100.00%	100.00%	85.48%	90.70%	97.79%	100.00%	100.00%	100.00%	100.00%
11	100.00%	100.00%	100.00%	100.00%	100.00%	85.25%	86.12%	95.90%	100.00%	100.00%	100.00%	100.00%
12	100.00%	100.00%	100.00%	100.00%	100.00%	81.54%	77.48%	93.24%	100.00%	100.00%	100.00%	100.00%
13	100.00%	100.00%	100.00%	100.00%	100.00%	83.08%	69.63%	91.96%	100.00%	100.00%	100.00%	100.00%
14	100.00%	100.00%	100.00%	100.00%	100.00%	79.96%	61.18%	91.04%	100.00%	100.00%	100.00%	100.00%
15	100.00%	100.00%	100.00%	100.00%	100.00%	80.18%	56.00%	88.07%	100.00%	100.00%	100.00%	100.00%
16	100.00%	100.00%	100.00%	100.00%	100.00%	72.35%	55.12%	88.73%	100.00%	100.00%	100.00%	100.00%
17	100.00%	100.00%	100.00%	100.00%	100.00%	62.78%	55.48%	91.29%	100.00%	100.00%	100.00%	100.00%
18	100.00%	100.00%	100.00%	100.00%	100.00%	57.98%	60.35%	94.01%	100.00%	100.00%	100.00%	100.00%
19	100.00%	100.00%	100.00%	100.00%	100.00%	56.69%	65.23%	96.38%	100.00%	100.00%	100.00%	100.00%
20	100.00%	100.00%	100.00%	100.00%	100.00%	58.23%	74.40%	97.38%	100.00%	100.00%	100.00%	100.00%
21	100.00%	100.00%	100.00%	100.00%	100.00%	61.45%	81.41%	99.10%	100.00%	100.00%	100.00%	100.00%
22	100.00%	100.00%	100.00%	100.00%	100.00%	71.92%	93.83%	99.98%	100.00%	100.00%	100.00%	100.00%
23	100.00%	100.00%	100.00%	100.00%	100.00%	84.22%	98.96%	100.00%	100.00%	100.00%	100.00%	100.00%
								3.06% of annual MWh			Wh	
							Limiting Events:		536 hours limited			
								6.12% hours of the ye			year	

EV Flexible Connections — Scheduled Heatmap

First Line = Flexible Capacity (MW) Second Line = Annual Capacity (MWh)

EV Flexible Connections – Where are we today?

Challenges

- "Goldilocks Solution" If a circuit has too much capacity available, the solution is not needed. If a circuit has too little capacity available, the infrastructure upgrades will be necessary regardless.
- Disappearing EV incentives are resulting in slowed interest

Customer Engagement

- Ongoing conversations detailing specific service offerings
- Seeing customer interest from Trucking Companies, School Districts, and Municipal Services across New York and Massachusetts

Technology Testing

- On-Site cabinet is built and ready for testing
- Software vendor contract is being finalized
- Testing beginning this month

TGO Alliance 2025 Fall Summit

Localized Grid FlexibilityWorking Group 2

1:00 - 3:00

Andrew Fawcett

Supervisor, Distribution Systems Integration

Allie Broussard

Market Specialist, Electric Markets

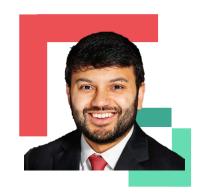
Working Group 2 Team Members

Joe Ciccarello
Lead Engineer, Integrated
Planning & Solutions
National Grid

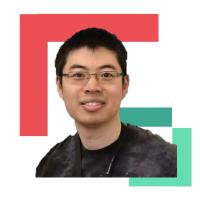
AJ Biron
Electrical Engineer,
Electrical Engineering
PUC Services, Inc.

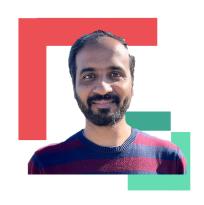
Andrew Fawcett
Supervisor, Distribution
Systems Integration
Hydro Ottawa

Allie Broussard


Market Specialist, Electric

Markets


Black & Veatch


Matt Seibert
Principal Consultant,
Operational Technology
Black & Veatch

Karan Patel
Managing Director, Energy
Solutions & Clean Energy
Rappahannock Electric
Coop

Kevin Chen
Co-Founder & Chief
Technology Officer
Gridient

Chaitanya Baone Head of Product ThinkLabs Al

Working Group #2: Localized Grid Flexibility

Our Mission

Develop a framework for tools, processes, and governance for developing and deploying Localized Grid Flexibility solutions. Document best practices and guard rails for TGO members to develop and implement Localized Grid Flexibility solutions.

Key Objectives (workstreams)

- Finalize definition & scope of Localized Grid Flexibility.
- Define Localized Grid Flexibility value proposition or business case for implementation.
- Develop maturity model for Localized Grid Flexibility to enable incremental benefits.
- Develop deployment playbook that provides guidance to implement Localized Grid Flexibility.

Target Outcomes

- Present draft deliverables to TGO Alliance for review and feedback to support future operationalism.
- Enable member utilities (with vendor support) to drive innovation for new tools or collective application of existing tools to develop and pilot LGF.

Localized Grid Flexibility Defined

The orchestration of multiple Grid Services to alleviate constraints in the distribution network to balance energy supply and demand at the local level by providing real-time reporting and analytics and control on localized Grid Services to evaluate effectiveness and optimize dispatch.

→ GOALS

- Alleviate localized constraints by orchestrating Grid Services and resources in the most efficient way possible.
- ✓ Effectively prepare grid resources based on constraints identified in the short-term forecast.
- ✓ Leverage a single platform to plan and orchestrate all available Grid Services in the short-term (operational) time horizon (<10 days).
- ✓ Orchestrate solutions for a single or set of constraints to support local solutions and enable more granular usage of Grid Services.

→ IN SCOPE

Distribution system from the distribution service transformer, up to the sub-transmission (34.5 - 100kV) level.

Grid Services

- Volt Var Optimization (VVO)
- Conservation Voltage Reduction (CVR)
- Load Balancing (Grid Reconfiguration)
- Demand Response Programs
- Flexible Interconnections
- BESS
- Asset Optimization
- Virtual Power Plant

OUT OF SCOPE

- System Planning
- Multiple Violations (System-wide grid management)

→ PRE-CONDITIONS

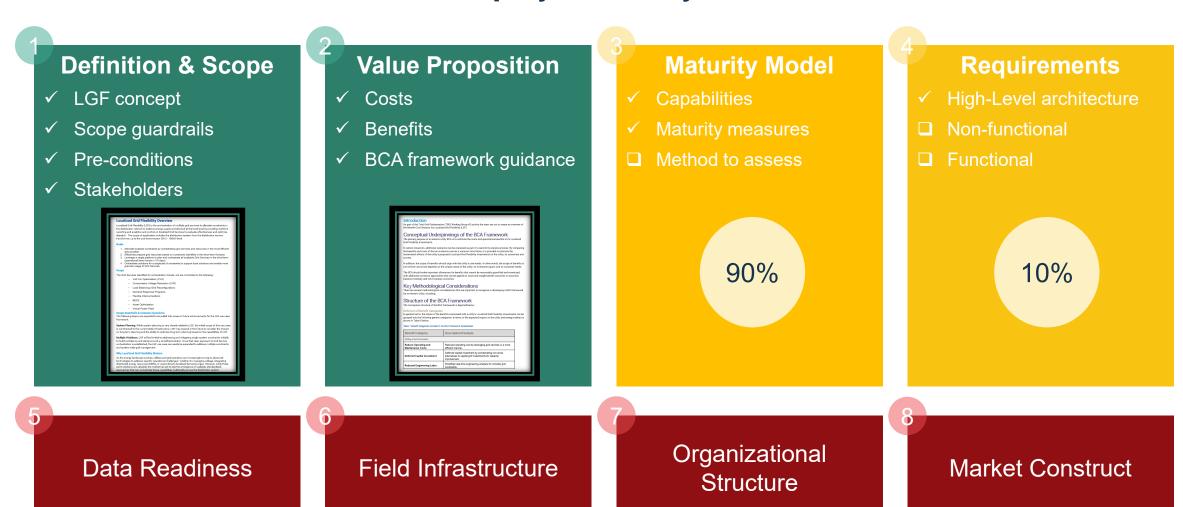
#1 – Multiple Grid Services

2 or more Grid Services must be available for orchestration.

#2 - Organization Structure

- ✓ Visibility to real-time grid constraints
- Access to multiple services that can be managed to alleviate constraints
- ✓ Ability to directly manage Grid Services in real-time

#3 – Regulation and Market Structure

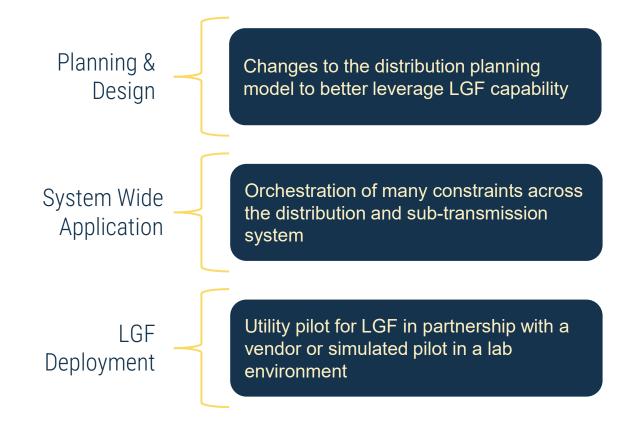

Contract or rate recovery mechanisms that allow multiple Grid Services to be used to remediate reliability or power quality issues on the localized system.

#4 – Available Flexibility

Knowledge of location and amount of flexibility available to alleviate grid constraints across different time scales.

Working Group #2 Progress To Date

What should be included in a Deployment Playbook?

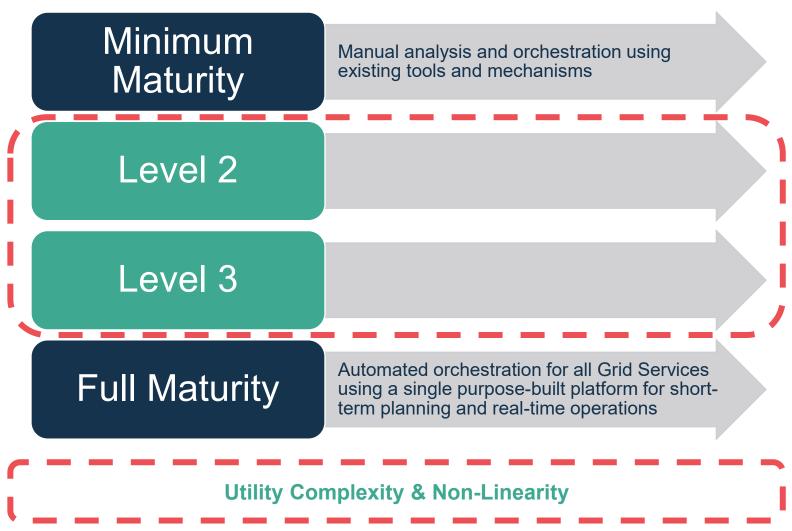


Localized Grid Flexibility Moving Forward

LGF Working Group Guardrails

Expanding LGF Scope Moving Forward

IN SCOPE	OUT OF SCOPE
Current State	Long Term System
Infrastructure	Planning
Single System	System-Wide Grid
Constraints	Orchestration



Scoping the Maturity Model

Maturity Measures

System Visibility Integration Control Local vs Capability **System Control Grid Service Load Prediction Prediction and** and Forecasting **Forecasting Analysis Analysis Orchestration Network Model Analysis and Optimization** Data Management

Sample Progression

TGO Alliance 2025

Localized Grid Flexibility Maturity Measures

CAPABILITY / MEASURE	LEAST MATURE LEVEL		MOST MATURE LEVEL			
System Integration	Data from Grid Services is siloed; requires manual extraction and analysis.		Data flows seamlessly across systems into a single operational interface with full automation.			
Visibility	Minimal or no real-time monitoring through SCADA, field sensors, or Grid Service monitoring.		Sensors have high penetration providing clear view of the telemetered state of the system and Grid Services.			
Control Capability	No centralized dispatch; Grid Services may require manual field operation.	>	Centralized platform can issue automated, secure dispatch commands to all Grid Services at any scale.			
Local vs. System Control	Grid Services can only be dispatched at a systemwide level.	▶	Grid Services are dispatchable at any level of granularity, from system-wide to individual device.			
Grid Service Prediction & Forecasting Analysis	Service availability is estimated manually with limited accuracy.		Grid Services data in a single platform automatically shows current state, predicted capacity and availability.			
Load Prediction & Forecasting Analysis	Constraints are assessed using historical data and manual calculations.		Ability to accurately predict and identify expected local system constraints within the short-term planning period.			
Orchestration Analysis and Optimization	Manual analysis using spreadsheets; no optimization across services.	▶	Automated, closed-loop optimization of multiple grid services within a single platform.			
Network Model	No detailed distribution model; connectivity and asset attributes are incomplete.	▶	High-fidelity, continuously updated network model enabling confident forecasting and control.			
Data Management	Data is fragmented, error-prone, and difficult to access across systems.	>	Data is accurate, current, and seamlessly integrated using industry-standard practices.			

Why Localized Grid Flexibility Matters to TGO

TGO ALLIANCE INSIGHTS

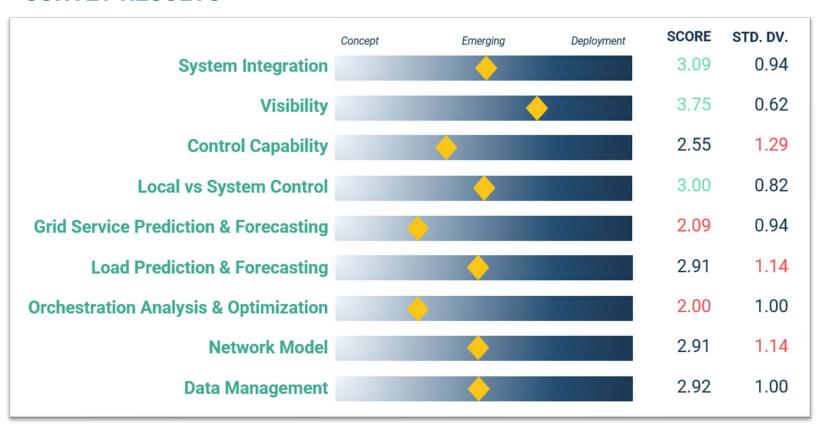
Survey Approach

Provided list of LGF key capabilities at the most mature levels

Respondents asked to provide perspectives on the current state of the market:

- The solution is widely available and mature
- The solution is being deployed at multiple utilities
- The solution exists in pilots or unique deployments
- I know of developing solutions
- Solution is immature or utilizing legacy capabilities

Survey Responses



50 Alliance Members Surveyed

12 Responses Received

Response Rate

SURVEY RESULTS

Results varied widely, suggesting a lack of common frameworks, shared language, and interoperable LGF solutions \rightarrow an **opportunity for TGO**.

LGF Benefit and Cost Analysis Journey

Set out to develop a BCA workbook

- Develop methodology to measure benefits
- Include sample calculations
- Test/validate calculations with sample data

Reduction in Maintenance Costs

Asset Type: Distribution Transformer

MX_{Annual Reduction} = (COST Avg. PRVM DXFMR - COST Avg. PRDM DXFMR) DXFMR_{Pop.}

DXFMR_{Pop.} = Distribution transformer population size

COST AVG. PRIVIN DIXFMR = Annual average cost of preventative maintenance program per distribution transformer

COST AND, PRIOM DIFFIRM = Annual average cost of predictive maintenance program per distribution transformer (Taking into account the reduced annual maintenance required per transformer, reduced number of maintenance events required due to a lack of overload situations)

MX_{Annual Reduction} = Annual reduction in maintenance costs

Identified limitations to measuring

- Quantifying and comparing individual Grid Services programs against LGF
- Utility variability in systems, data, and approaches
- Difficult to predict until LGF criteria, design, and configurations is fully developed
- Need to develop an understanding of LGF behavior to predict costs and benefits

Developed a high-level framework

- Establish expected costs and benefits with qualitative justification
- Create a lightweight, high-level framework that utilities can leverage to develop their own calculations
- Provide guidance on considerations for measuring

TGO Alliance 2025

Localized Grid Flexibility Benefits

Localized Grid Flexibility (LGF) enables utilities to orchestrate grid services at the distribution level to alleviate constraints, optimize dispatch, and improve system performance. By leveraging real-time visibility and control, LGF supports more resilient, cost-effective, and scalable grid operations.

Value Offered

- Orchestrates non-wires alternatives
- Targeting location-specific load reductions
- Optimize asset performance
- Real-time dispatch of multiple Grid Services
- Dynamically balance supply and demand
- Ability to island and reroute energy flows

Reliability & Resiliency

Capital Investment Deferral

Extends asset lifecycle

- ✓ Real time stabilization of operations
- ✓ Minimizes outages and load-shed events
- ✓ Flexibly mitigate weather, security, and system threats

✓ Reduce need for traditional infrastructure upgrades

Defer or avoid investments in distribution capacity

- Targeted, localized dispatch
- Prioritizes lower-cost local Grid Services
- Ability to island and reroute energy flows

$\rangle\rangle\rangle$

Lower Customer Program Costs

- ✓ Reduce payouts and customer fatigue
- ✓ Preserving program cost-effectiveness and relief
- Optimize compensation and reduce overhead

LGF Utility Maturity Self-Assessment Overview

Maturity Assessment Objectives

- Help utilities evaluate readiness for implementing LGF across 9 capabilities areas.
- 2 Benchmark your current capabilities against LGF maturity framework and industry best practices.
- 3 Provide a clear view of the current state, gaps, and areas for improvement to deploy LGF.

Utility Maturity Self-Assessment Activity

1 Answer a set of targeted questions on Orchestration Analysis & Optimization.

- This is not a data collection survey but a tool to independently gauge LGF maturity.
- 3 Allow for open feedback to help guide Working Group tool refinement and finalization.

Standardize LGF readiness criteria and provide actionable feedback for utilities considering LGF deployment.

TGO Alliance 2025

Localized Grid Flexibility Readiness & Maturity Assessment

Score	Maturity
0 – 9	Not Ready - Foundational
10 – 29	Ready – Integrated
30 – 50	In-Flight – Orchestrated
51+	Mature – Adaptive

- 1. Can your organization dispatch two or more of the following Grid Services in real-time or near real-time conditions?
 - a. No, services can only be dispatched based on pre-set schedules or conditions
 - b. Yes, two or more services can be dispatched in real-time
 - c. No, only one or none can be dispatched in real-time
- 2. Do all Grid Services have clearly defined triggers, cost/market impact, and grid impact (reliability, efficiency, customer)?
 - a. Yes, all services have defined triggers and impacts.
 - b. No, some or none have defined triggers and impacts.
- 3. Are objective functions (cost, reliability, emissions, customer impact) and constraints (thermal/voltage, limits, contracts) explicitly modeled for grid services being considered for Orchestration and Optimization?
 - a. No, they are not explicitly modeled.
 - b. Yes, objective functions and constraints are explicitly modeled.
- 4. Do you have a tool or platform that can compare candidate actions across multiple services (e.g., DR vs. VVO vs. BESS) for a single grid constraint?
 - a. No, such a tool/platform is not available.
 - b. Yes, a comparison tool/platform is available.
- 5. Does the tool produce coordinated dispatch plans (sequence, timing, magnitude) and execute them automatically?
 - a. No, plans are not coordinated or not executed automatically.
 - b. Yes, coordinated plans are produced and executed automatically.
- 6. Are post-event analyses run to measure realized impact vs. plan and to tune strategies (closed-loop optimization)?
 - a. No, post-event analyses are not performed.
 - b. Yes, post-event analyses and closed-loop optimization are performed.
- 7. Can you run what-if scenarios (e.g., if DR isn't available, how much VVO + reconfiguration covers the gap)?
 - a. No, what-if scenarios cannot be run.
 - b. Yes, what-if scenarios can be run.
- 8. Is there integration between grid flexibility tools and other utility systems (e.g., outage management, asset management, customer information)?
 - a. Yes, integration exists between grid flexibility and utility systems.
 - b. No, integration does not exist.
- 9. Is there a process or mechanism for updating grid service models and dispatch strategies? (ex: Can you adjust how/when you dispatch Demand Response?)
 - a. Yes, there is a mechism or process for updating grid service dispatch strategies or models?
 - b. No, there is no documented update process.
- 10. Are customer program rules (e.g., comfort, cost, participation) explicitly considered in grid operations short-term planning?
 - a. No, customer impacts are not explicitly considered.
 - b. Yes, customer impacts are explicitly considered.

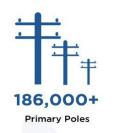
TGO Alliance 2025 Fall Summit

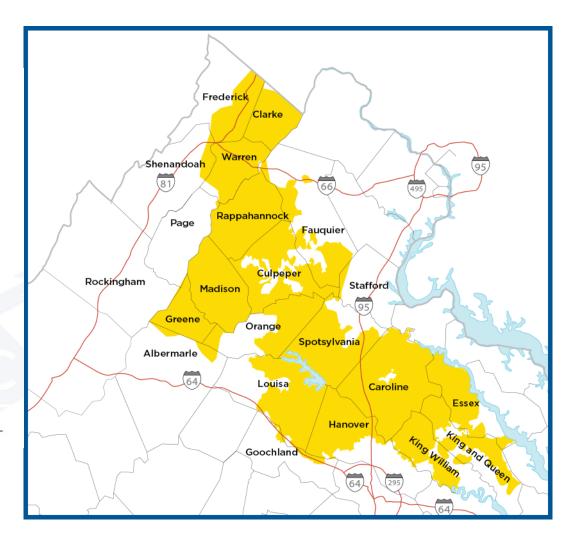
Innovative
Distribution
Planning
Case Study

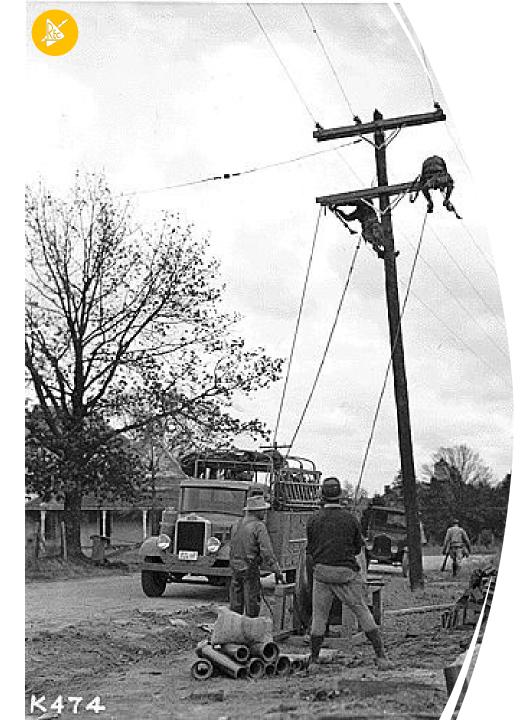
3:00 - 3:30

Karan Patel

Managing Director - Energy Solutions and Clean Energy



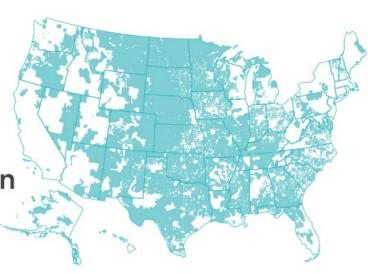




450+ 820 Miles of Dedicated **Employees** Backbone Fiber

Electric Cooperative Background

- Not-for-profit organization owned by the members that we serve
- Governed by a locally member-elected Board of Directors
- Rural Electrification Act (REA) was established in 1936
 - Provided loans and assistance to rural organizations to set up their own power systems
 - REA was absorbed by the Rural Utility Services (RUS) under USDA as part of the 1994 Department of Agriculture Reorganization Act
- REC is predominately an RUS borrower



Electric Cooperative Stats

- 13.5% of the nation's electric customers are served by electric co-ops
- Co-ops added over 394,000 new consumers in 2023

Cooperatives power

56% of the American landscape.

Our co-ops ...

poverty counties.

... SERVE
42 million people, including 92% of persistent

... POWER over

22 million
businesses, homes,
schools and farms
in 48 states.

... RETURN more than
\$1 billion
to their consumer-members
annually as not-for-profit

830 distribution cooperatives

are the foundation of the electric cooperative network. They were built by and serve co-op members in the community by delivering electricity and other services.

generation & transmission cooperatives

organizations.

provide wholesale power to distribution co-ops through their own electric generation facilities or by purchasing power on behalf of the distribution members.

electric.coop @NRECANews June 2025

System Planning Studies

Long Range System Studies (LRSS) / Long Range Plans (LRP)

- Determines major system improvements needed to serve the 20-30 year projected load growth
- > System upgrades would like include:

> Required by RUS to have an in-effect and approved LRSS but not submitted

Construction Work Plans (CWP)

- Major component of integrated system planning (ISP) details the system improvement projects needed to serve the 2-5 year projected load growth
- > Specifies T&D plant investment the Cooperative can expect to make
- Must be approved by the Cooperatives' Board and submitted to RUS in order to secure loans
- > RUS provides a framework for what the CWP must include
- Projects are influenced directly by the LRSS / LRP
- > Goal is to get at least 2-3 CWP's out of 1 LRSS / LRP

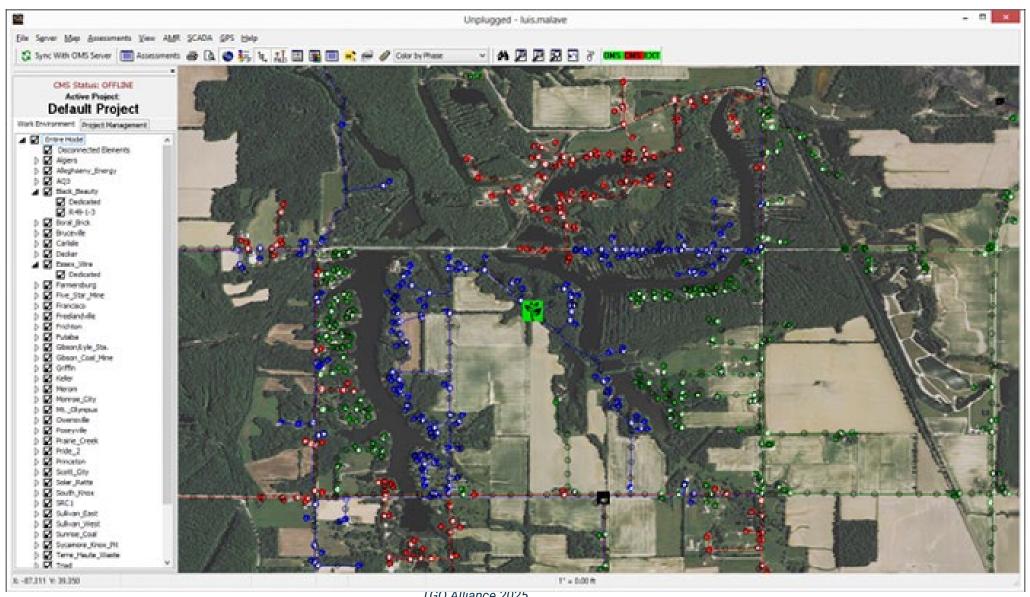
Current Distribution Planning Methods

Load Forecasting

- Usually 10-year forecasts provided by the Generation and Transmission (G&T)
 Cooperative
- REC utilizes historic loading to trend and project future peak demands
- Loading is generally correlated with weather
- With climate change and extreme weather unpredictability, it's becoming more difficult to use the past to predict the future

Metering and SCADA Data

- > SCADA data: Non-coincident seasonal peaks at the feeder level
 - > Sets the Load Control Points (LCP) in power flow model
 - > Do not receive feeder-level power factor information
- Metering data exported from Meter Data Management (MDM) system for the month in which the system peak occurred
 - Usually December, January, February or June, July, August
 - Residential: 1 hour kWh interval reads with no kW demand
 - C&I: kW demand available
 - > Reduction from residential demand response becomes negligible
 - > Multiple billing cycles


Power Flow Modeling Software

- Power flow models created from GIS extracts
- Metering data imported into each consumer-element
- > SCADA data imported into each feeder protection device and assigned as LCPs
- "Load Allocation" analysis pushes load into each individual consumer-element based the LCP values
 - > Residential: load is ratioed using the monthly kWh information
 - C&I: kW demand allocated 1x1
- > Load zones based on where the growth is expected
 - > C&I is typically assigned little-to-no growth
- Known spot loads are added into the model
- Model is then grown match the Load Forecast

Power Flow Modeling Software

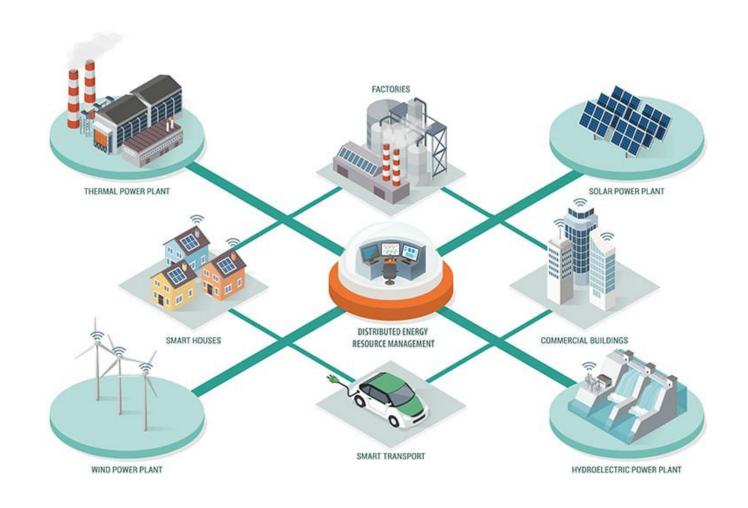
IGU Alliance 2025

Future of Distribution Planning

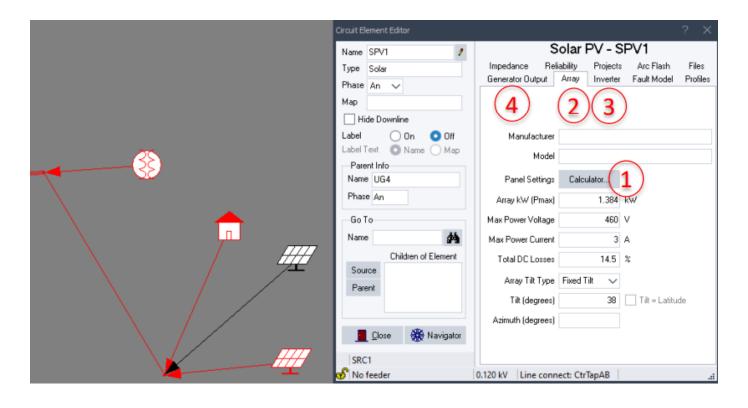
Dynamic Load Forecasting

- Utilize both historical values and weather forecasting models to better predict load
- Accurately forecast 20-30 years
- Adaptive as conditions or data sources change/update
- Model climate risk at a localized level
 - System improvement projects can then be prioritized accordingly

Metering Data – AMI 2.0



Source: Deloitte analysis. For a more in-depth analysis, see Enabling the clean energy transition: Planning for next-generation advanced metering infrastructure and grid technologies.


- Feeder-level snapshot of each meter's actual demand during the seasonal feeder non-coincident peak
 - Demand response reflected in metering data
- Additional data points voltage and power factor (PF)
 - Depends on communication and MDM system's capabilities
 - Helps analyze power quality issues
- Near real-time energy usage information
- DER detection and monitoring
 - Potentially lead to system improvement deferrals
- Predicative Analytics

Distributed Energy Resources Management System (DERMS)

Power Flow Modeling – Software Enhancements

- Milsoft's new Behind-the-Meter (BTM) module
 - Currently limited to solar & batteries + inverters
 - Future could include EVs, smart thermostats, and other DERs
- DERs will need to be modeled in GIS

QUESTIONS? Alliance in Action

TGO Alliance 2025 Fall Summit

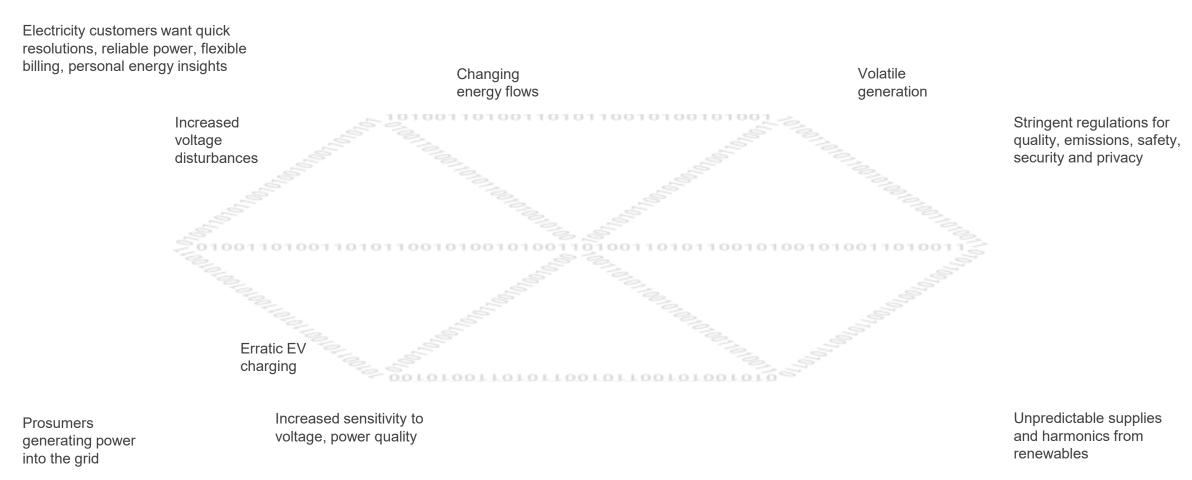
Digital & Data Readiness

3:45 - 4:45

Marcelo Sandoval

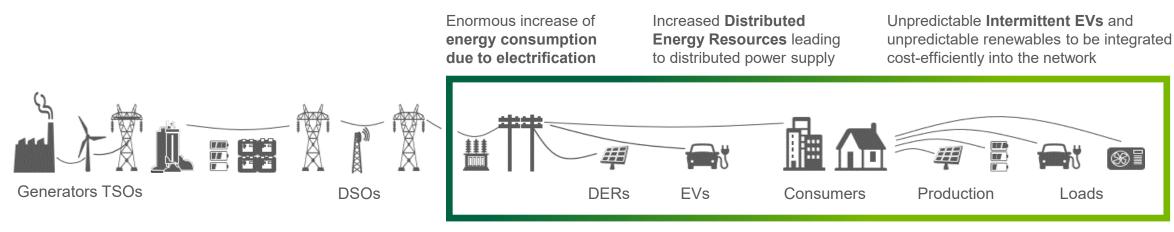
Director of Innovation and Technology Strategy

Landis+Gyr



Paul Moran

Integrated Solutions Strategist


Why Become Digital and Data Ready now? The Energy Transition

Datacenter Load Growth, DERs, Digitalization, Decarbonization, & Deregulation are Transforming the Industry

The Grid Data Explosion: Millions of Smart Meters, Sensors, and Resources Interconnected to the Grid

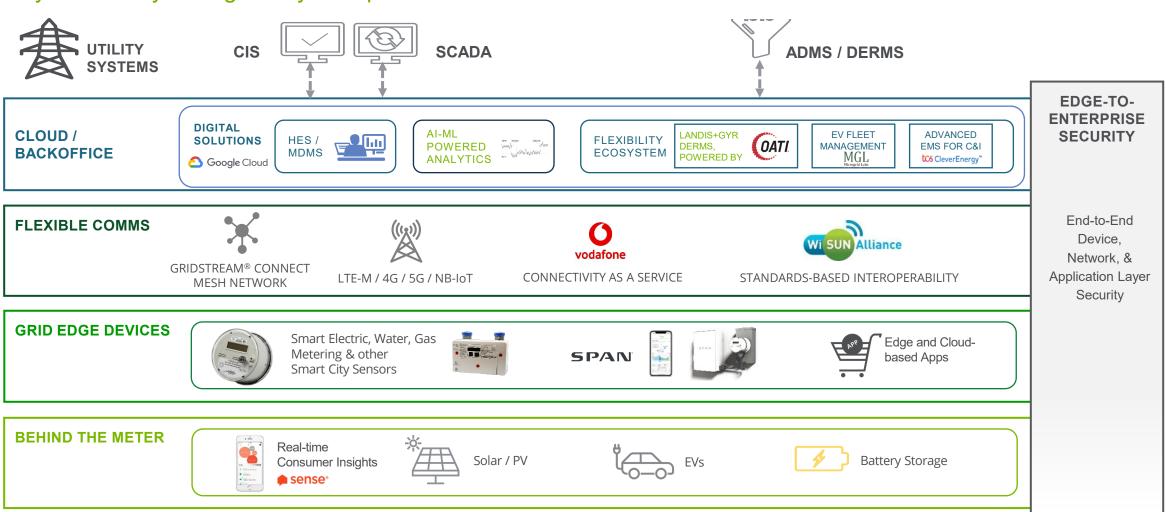
...bringing a number of new challenges for utilities

Low Voltage Grid

To deal with these new challenges, electric utilities need to **model**, **monitor**, **analyze their impact and plan for solutions** from the grid edge to the enterprise level to achieve **reliability**, **resiliency**, **sustainability and economic objectives**.

Current Challenges

Foundational data sensing and communication, Siloed legacy systems, data quality, limited analytics maturity, workforce skill gaps and cybersecurity and compliance risks.



Data Sensing	Model	Monitor	Identify	Impact Analysis	Solutions
Data Acquisition and Communication: How to manage meter data ingestion and flow?	Data integration: How to integrate models from different systems (GIS, CIS, AMI, SCADA)?	Data latency, frequency, granularity: What is the power quality of the network?	Descriptive Analytics: What Distributed Energy Resources (EVs, solar, heat pumps) are connected, when and where?	Predictive Analytics: What (thermal, voltage, power) impacts are created by Distributed Energy Resources, when and where?	Prescriptive Analytics: Can flexibility management be used to mitigate grid impacts?
Customer Engagement: How to utilize data to drive decision making that improves reliability and resiliency?	Data Management & Governance, Security: What is your data strategy, governance, security? Data Validation: How to validate the models?	What substations, feeders, transformers have power quality issues?	How to identify losses and energy diversion? What meters are suspicious of energy theft?	What if analysis? How to generate more accurate and granular load & DER forecasts?	How to reduce long interconnection analysis times and increase customer satisfaction? How to use insights to create work orders for field crews?

Digital Readiness: Ability to adopt and scale new digital platforms and applications, Data Readiness: Ensuring data is accurate, accessible, governed, and secure

Key Pillars of Digital Readiness

End-to-End Orchestration is Enabled by Establishing Sensors, Actuators, AMI, IoT, Communication Data foundation, Data Management and Governance, Analytics & AI, Digital Platforms, Workforce & Culture, Cybersecurity & Regulatory Compliance

Example: Landis+Gyr's Analytics & Grid Edge Apps

Next generation Al-powered, Edge to Cloud Analytics Software

Turn data from disparate systems...

SCADA

Edge App Data

MDM

Landis+Gyr

Data Integration, Visualization, & Exploration

Integrated Grid and Edge Data Dashboard

Data **Validation**

Meter to **Transformer** Mapping

Phase Identification

Grid Location Awareness

Full GIS Model Validation

Revenue **Protection**

> Pattern Detection

Energy Diversion

Planning

EV & DER Detection Capacity Contribution **Loading Performance** Transformer Loss of Life

Operations

Power Quality Intelligent Voltage Monitoring Voltage Performance Reliability Performance

Modernization

DER Planning & Scheduling Traditional & Non-Wires **Alternatives Project** Prioritization

...into actionable insights and outcomes

Continously Integrated and Validated Model

Descriptive Analytics

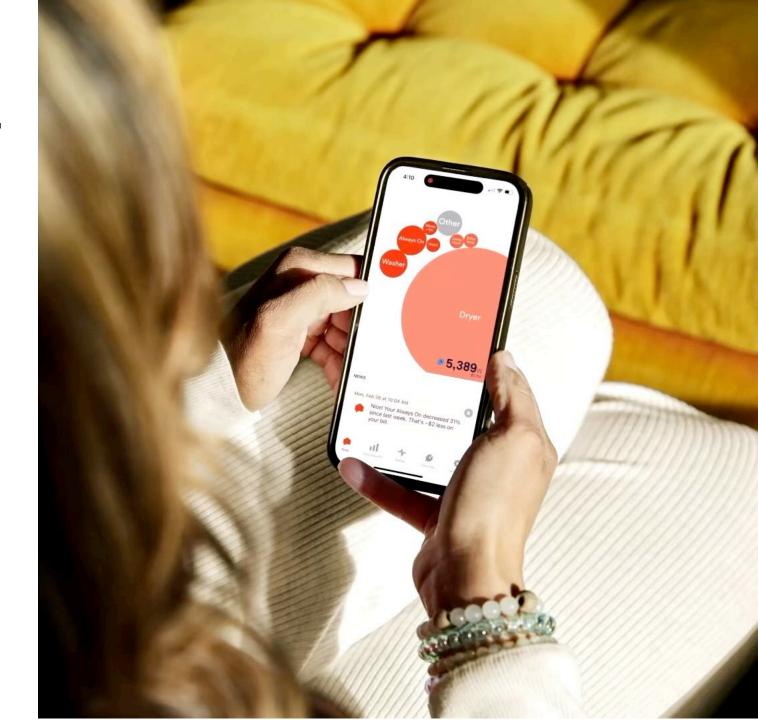
Predictive and **Prescriptive Analytics**

Example: Cloud Analytics – How Does It Work?

Turn data from disparate systems...

AMI Landis+Gyr **Cloud Analytics** CONSUME **PROCESS ANALYZE OMS** SCADA Pub/Sub BigQuery ML SFTP EDGE APP Cloud Storage Microservices Vertex AI **DATA** BigQuery BigQuery Looker Embedded Dataflow Dataform Custom UI Composer Composer API Services **MDM** Google Cloud

...into actionable insights and outcomes


Use Case: Grid Location Awareness

Provide updates of meter-totransformer mapping and meter phase to source systems like CIS and GIS. Meter-to-transformer mappings can also be provided to other systems like ADMS or DERMS.

Use Case: Realtime energy usage at the grid edge

Revelo is the only grid sensor on the market running the full real-time consumer experience app, offering improved efficiency and enhanced reliability for utilities & consumers with a never-before-seen view of real-time energy usage.

Use Case: NWAs and Home Energy Management

The SPAN® Edge Intelligent
Service Point™ is an at-the-meter
device designed for utilities to better
manage the distribution grid and
rapidly enable home electrification.
SPAN mobile app facilitates whole
home energy management and
creates an intuitive interface for the
consumer.

SPAN Edge

Use Case: Advanced Local Flexibility Management

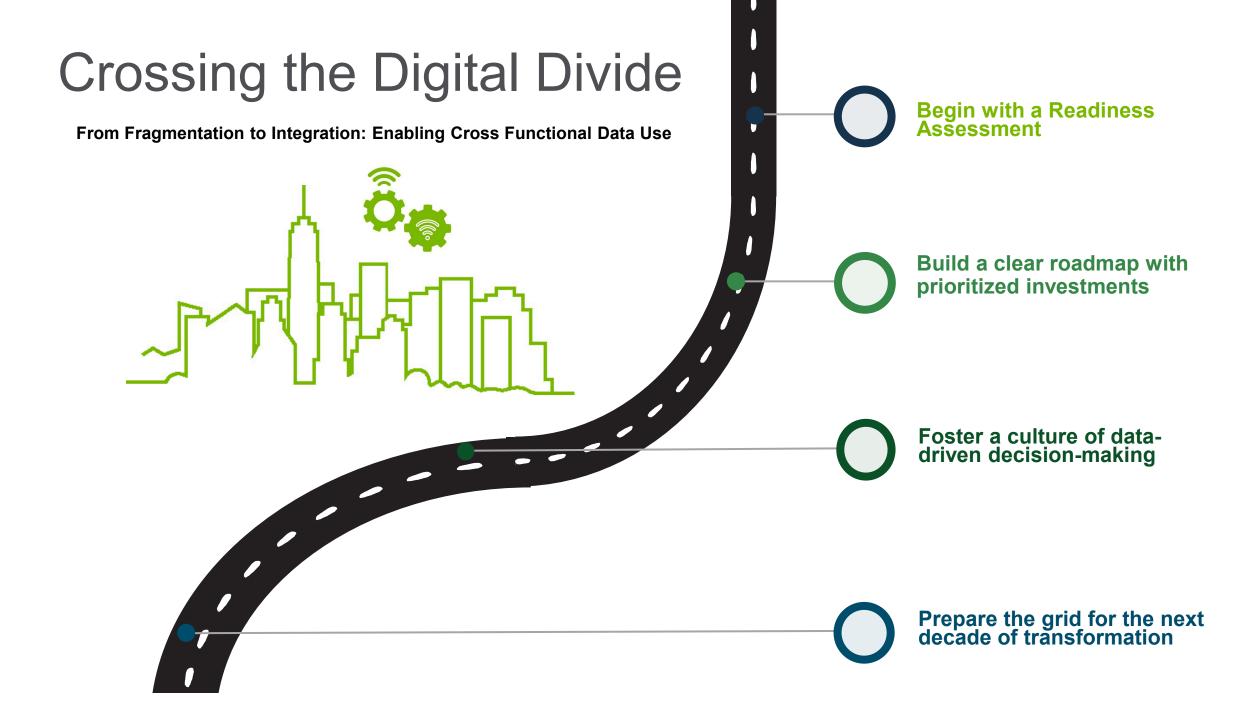
Leverage AMI network and connected grid edge devices for enhanced visibility and control, including DER Management and Advanced Demand Response

DERMS

NoATI


Residential Loads

Pool Pumps Thermostat


EV Water Charging Heaters

Organizational Barriers to Effective Data Utilization

Challenge Type	Example/Description		
Data Silos	AMI data owned by customer group, needed by planning/operations		
Data Quality	Inaccurate mappings, missing intervals, outdated asset info		
Real-Time Processing	Millions of devices, latency, legacy infrastructure		
Cybersecurity/Privacy	Sensitive customer data used for operational analytics		
Standardization	Different formats, lack of interoperability		
Data Ownership	Data managed by one group, needed by another (e.g., customer vs. planning)		
Access Controls	Permissions restrict cross-group data access		
Governance	No clear policies for sharing, stewardship, or accountability		
Cultural Resistance	Reluctance to share, concerns about data misuse		
IT Fragmentation	Separate systems/vendors/support across groups		

TGO Alliance 2025

Digital & Data Readiness Use Cases & Challenges

Top Use Case

Grid Location Awareness

Real-time energy usage at the grid edge

NWA and Home Energy Management

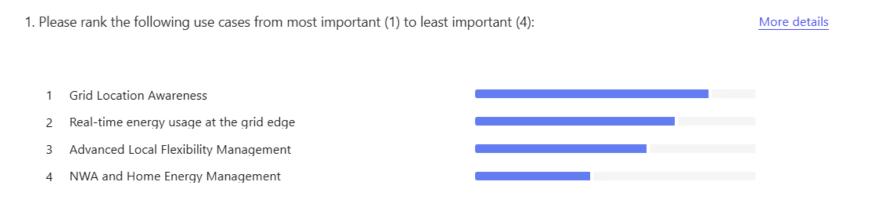
Advanced Local Flexibility Management

Top Data Challenges

Data Acquisition

Data Utilization & Analytics

Data Integration

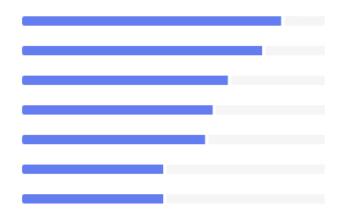

Data Management, Governance & Security

Data and Model Validation

Data Latency, Frequency and Granularity

Organizational Barriers

Results and Discussion



2. Based on your use case preferences, consider each data challenge below and how it impacts your organization. Then, r ank the data challenges from biggest challenge/priority (1) to least challenging/priority (6):

More details

- 2 Data integration
- 3 Data acquisition
- 4 Data utilization & analytics
- 5 Organizational barriers
- 6 Data management, governance & security
- 7 Data latency, frequency, and granularity

Why This Matters

Your input will help the TGO Alliance

- Focus on the most relevant use cases for digital and data readiness.
- Target the most pressing data challenges for future solutions and investments.
- Align priorities across the group for maximum impact.

Daily Wrap-Up

with Allie Broussard

TGO Alliance

Time	Title	Description	
7:30 - 8:30am	Breakfast & Check-In	Check-in, breakfast buffet, and networking	
8:30 - 8:45am	Welcome	What to expect for the day and logistics	
8:45 - 9:05am	Industry Rising Trends	Introduction to pressing issues affecting TGO needs and upcoming breakout session	
9:05 - 10:00am	Rising Trend Breakout	Evolving Energy Models (DSO) AI for Grid Operations Data Centers as Flexible Load	
10:00 - 10:45am	Rising Trend Regroup	Regroup to summarize rising trends and issues discussed	
11:00 - 12:00pm	Case Study	PNM: Transmission Real-Time Contingency Analysis and Applications for TGO	
12:00 - 1:00pm	Lunch	Catered lunch provided on-site	
1:00 - 1:45pm	Case Study	Schneider Electric: One Digital Grid Platform	
1:45 - 2:45pm	Working Group Planning	Plan for future work phases and mobilizing TGO vision	
2:45 - 3:15pm	Debrief	Summit debrief and Alliance next steps	
4:00 - 5:00pm	Social Event	Happy Hour at Dos Bocas, Hilton Garden Inn Atlanta Downtown	

Join us!

6:00 - 8:00

1055 Howell Mill Rd Ste 140, Atlanta, GA 30318

Food and Drinks Provided

Welcome

to the 2025 TGO Fall Summit

We will begin promptly at 8:30am

Orchestrating the Grid to Enhance Reliability and Unlock Grid Resources

Landis+Gyr

uplight

Thank you to our sponsors!

TGO Alliance

Time	Title	Description
7:30 - 8:30am	Breakfast & Check-In	Check-in, breakfast buffet, and networking
8:30 - 8:45am	Welcome	What to expect for the day and logistics
8:45 - 9:05am	Industry Rising Trends	Introduction to pressing issues affecting TGO needs and upcoming breakout session
9:05 - 10:00am	Rising Trend Breakout	Evolving Energy Models (DSO) AI for Grid Operations Data Centers as Flexible Load
10:00 - 10:45am	Rising Trend Regroup	Regroup to summarize rising trends and issues discussed
11:00 - 12:00pm	Case Study	PNM: Transmission Real-Time Contingency Analysis and Applications for TGO
12:00 - 1:00pm	Lunch	Catered lunch provided on-site
1:00 - 1:45pm	Case Study	Schneider Electric: One Digital Grid Platform
1:45 - 2:45pm	Working Group Planning	Plan for future work phases and mobilizing TGO vision
2:45 - 3:15pm	Debrief	Summit debrief and Alliance next steps
4:00 - 5:00pm	Social Event	Happy Hour at Dos Bocas, Hilton Garden Inn Atlanta Downtown

Alliance in Action

Today's Agenda

TGO Alliance 2025 Fall Summit

Welcome and Todays Logistics

8:30 - 8:45

Co-Chair, TGO Alliance Infrastructure Advisory Markets Group Leader

Allie Broussard

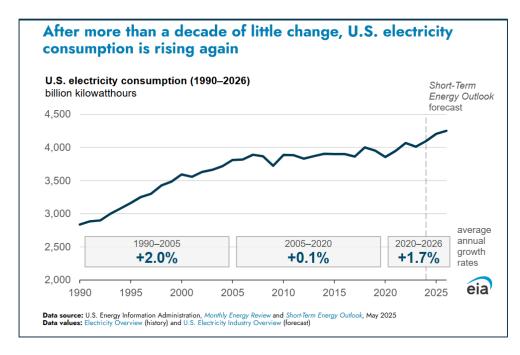
Market Specialist, Electric Markets

Time	Title	Description
7:30 - 8:30am	Breakfast & Check-In	Check-in, breakfast buffet, and networking
8:30 - 8:45am	Welcome	What to expect for the day and logistics
8:45 - 9:05am	Industry Rising Trends	Introduction to pressing issues affecting TGO needs and upcoming breakout session
9:05 - 10:00am	Rising Trend Breakout	Evolving Energy Models (DSO) AI for Grid Operations Data Centers as Flexible Load
10:00 - 10:45am	Rising Trend Regroup	Regroup to summarize rising trends and issues discussed
11:00 - 12:00pm	Case Study	PNM: Transmission Real-Time Contingency Analysis and Applications for TGO
12:00 - 1:00pm	Lunch	Catered lunch provided on-site
1:00 - 1:45pm	Case Study	Schneider Electric: One Digital Grid Platform
1:45 - 2:45pm	Working Group Planning	Plan for future work phases and mobilizing TGO vision
2:45 - 3:15pm	Debrief	Summit debrief and Alliance next steps
4:00 - 5:00pm	Social Event	Happy Hour at Dos Bocas, Hilton Garden Inn Atlanta Downtown

TGO Alliance 2025 Fall Summit

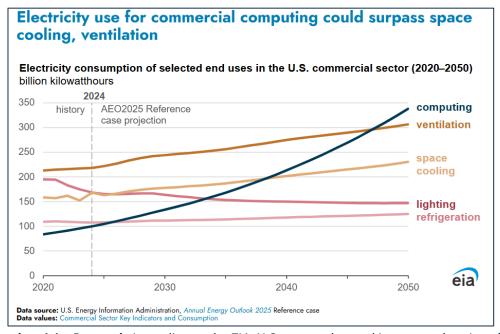
Industry Rising Trends

8:45 - 9:05

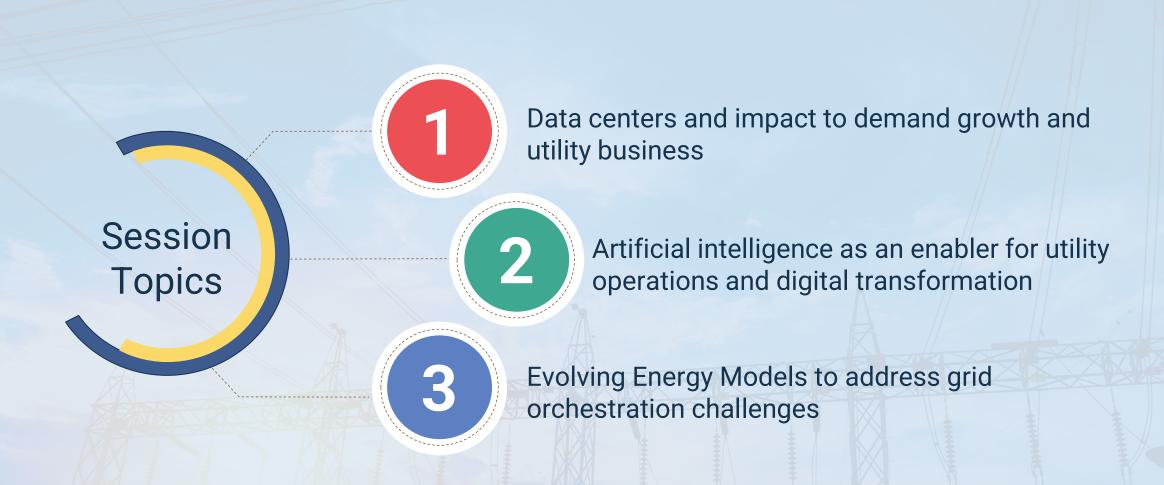


Eric Seiter

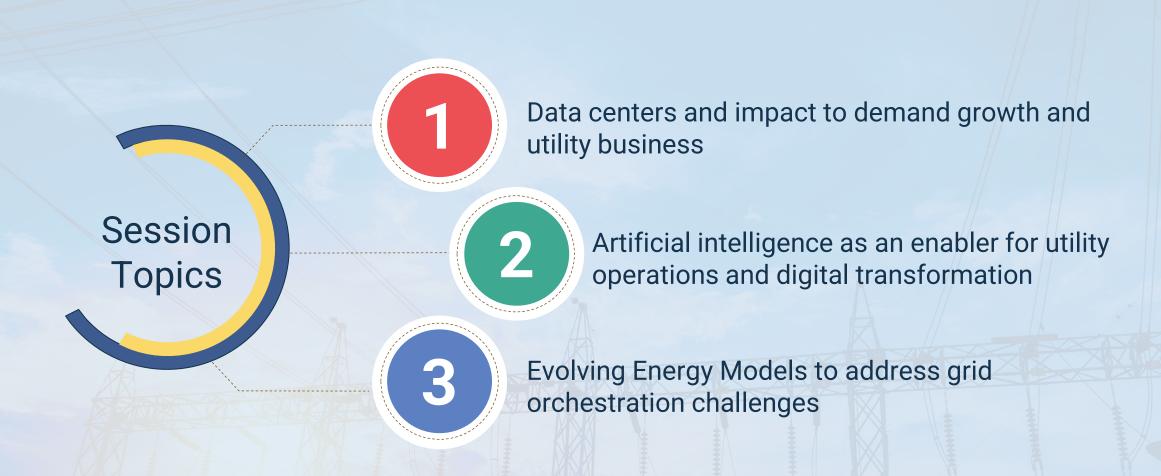
Client Account Partner



TGO Rising Trends Introduction


Canadian Provinces and US States with TOU or Dynamic Pricing Electric Rates

- **Growing electricity Demand:** According to the EIA, U.S. energy demand is expected to rise after experiencing a prolonged phase of sluggish growth between 2005 and 2025
- Commercial computing is the driver of growth: The 2025 EIA annual energy outlook projects electricity consumed for commercial computing will increase faster than any other end use in buildings. Computing accounted for an estimated 8% of commercial sector electricity consumption in 2024 and grows to 20% by 2050.
- Increasing adoption of time-variable pricing: 42 US states and Canadian provinces offer dynamic pricing or TOU rates (including specific TOU rates for EV charging) indicates growing momentum for grid flexibility.
- Enhanced Load Flexibility: TOU rates incentivize consumers to shift usage to off-peak periods, enabling grid operators to better balance supply and demand without relying on costly peaker plants.
- Accelerated DER Integration: Time-based pricing supports the economic case for distributed energy resources (DERs) like solar, storage, and smart appliances, which can respond dynamically to price signals and grid needs.
- Data-Driven Grid Optimization: Utilities and system operators will need to gain access to granular consumption data, enabling predictive analytics, real-time control, and more precise orchestration of grid assets across transmission and distribution.


TGO Alliance 2025

Rising Trend Breakout Sessions

9:05 - 10:00

Rising Trend Regroup

10:15 - 11:00

TGO Alliance 2025 Fall Summit

Real-Time
Contingency
Analysis (RTCA)
Case Study

11:00 - 12:00

Cesar Miron

Manager of Operations Engineering

About PNM

Powering New Mexico Homes and Businesses Since 1917

PNM serves more than 550,000 New Mexico customers in Albuquerque, Rio Rancho, Los Lunas, Belen, Santa Fe, Las Vegas, Alamogordo, Ruidoso, Silver City, Deming, Bayard, Lordsburg and Clayton PNM also serve the New Mexico tribal communities of the Tesuque, Cochiti, Santo Domingo, San Felipe, Santa Ana, Sandia, Isleta and Laguna **Pueblos**

Power mix

 On average about 50% renewables and 70% carbon-free

Transmission

~ 3500 miles of transmission circuits

Workforce

 ~1,600 employees who work for PNM across New Mexico and Texas

What is RTCA?

Real-time Contingency Analysis is a tool used to monitor the transmission system for unexpected events (contingencies) and analyze their impact if they occur.

RTCA enables operators to implement corrective action precontingencies to prevent or reduce the impact of these events

What is a Contingency?

A contingency refers to an unplanned event, such as a transmission line, transformer, or generator tripping offline that can disrupt the normal operation of a Power System

PNM monitors N-1 conditions in RTCA

N-1 refers to a single element tripping off-line

Data Acquisition: Continuous collection of real-time data such as Breaker and Disconnect status, MWs, MVARs, and Voltages. This data provides the current state of the system

How does RTCA Works?

Network Modeling: A detailed equivalent electrical model that represents all components of the transmission network such as generators, transformers, transmission lines, loads, and voltage control devices (Capacitors, Reactors, Static Var Compensator), and using their electrical characteristics such as voltage limits and conductor ratings

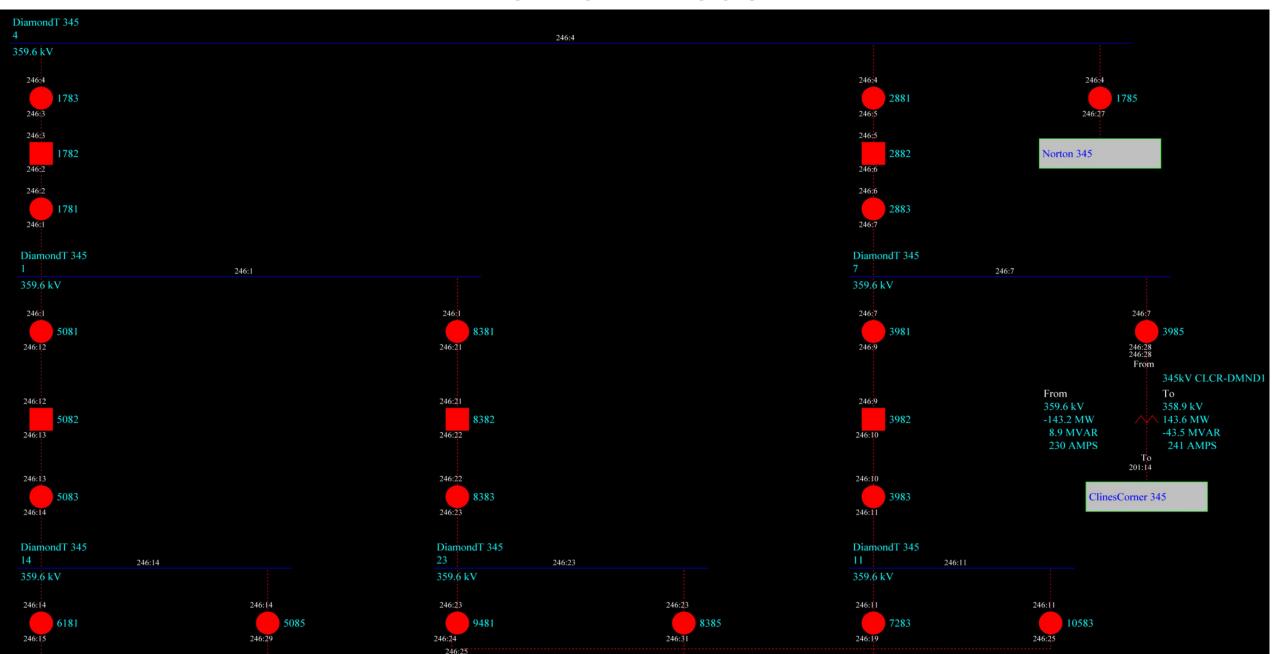
Contingency Definition: A comprehensive list of potential contingencies is defined

Simulation and Analysis: When a potential contingency is identified (or even proactively simulated), the system model is used to predict the consequences. This involves running simulations to see how the system would react to the contingency. At PNM RTCA runs every 6 minutes

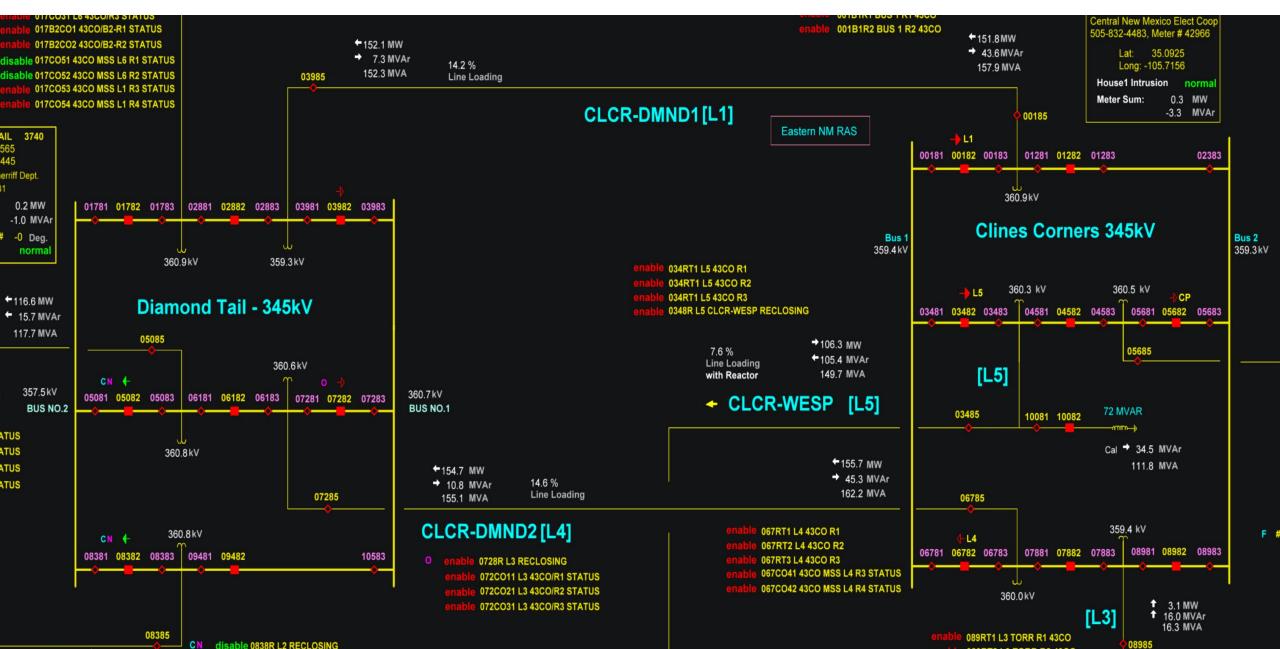
How does RTCA Works?

Impact Assessment: The analysis determines the severity of the impact, such as low or high voltages or high limit rating violation on a transmission line or transformer

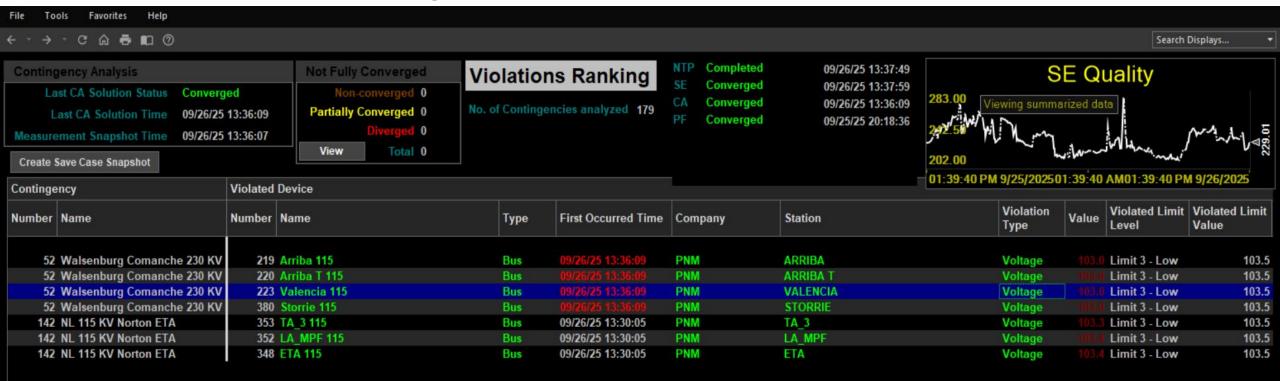
Visualization and Alerting: Operators are provided with real-time dashboards, alerts, and visualizations to quickly understand the situation and make informed decisions

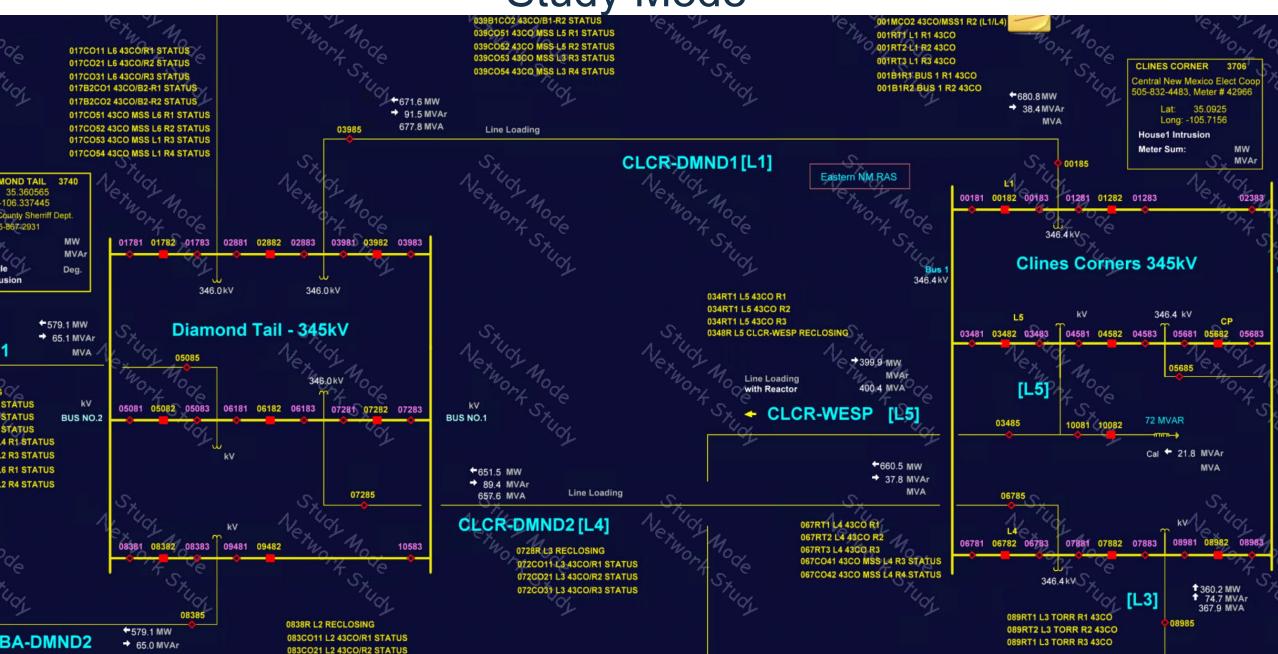

Energy Management System Applications Needed for RTCA

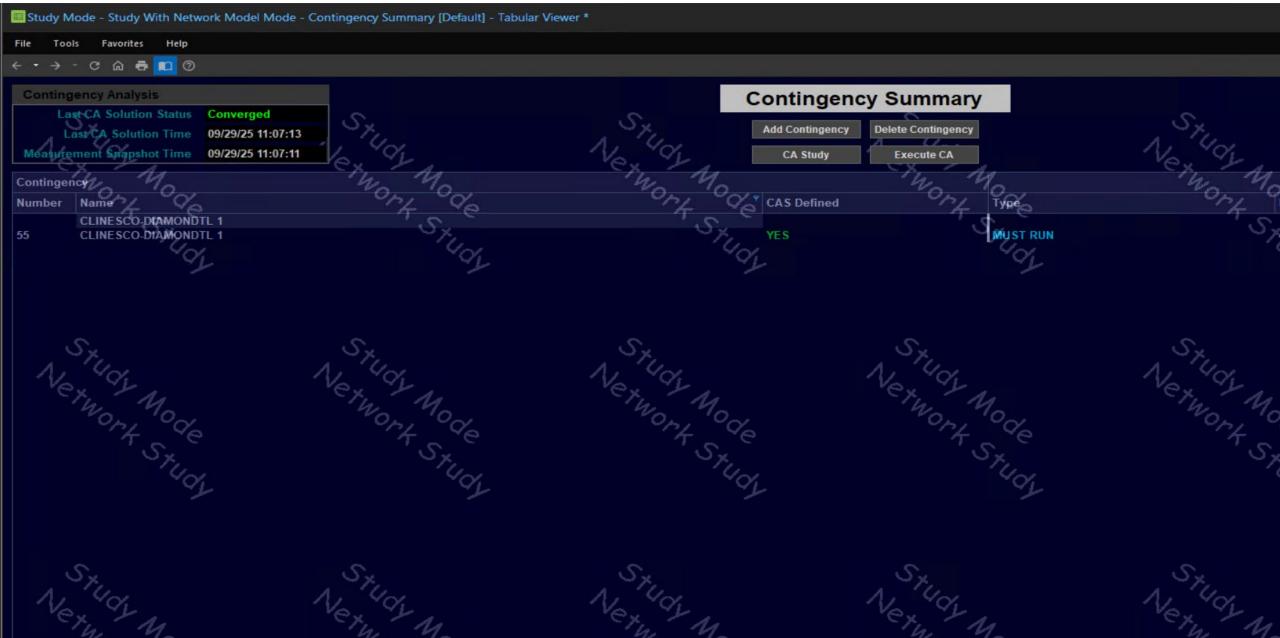
SCADA	Supervisory Control and Data Acquisition: A system used for real-time monitoring and control of the transmission system. Scans data every 2 seconds monitoring and control of the Transmission System and Generation resources
Inter-Control Center Communications Protocol (ICCP)	A standard protocol that enables secure and reliable exchange of real- time data between different control centers EMS systems
Network Application	EMS application for modeling the equivalent electrical model

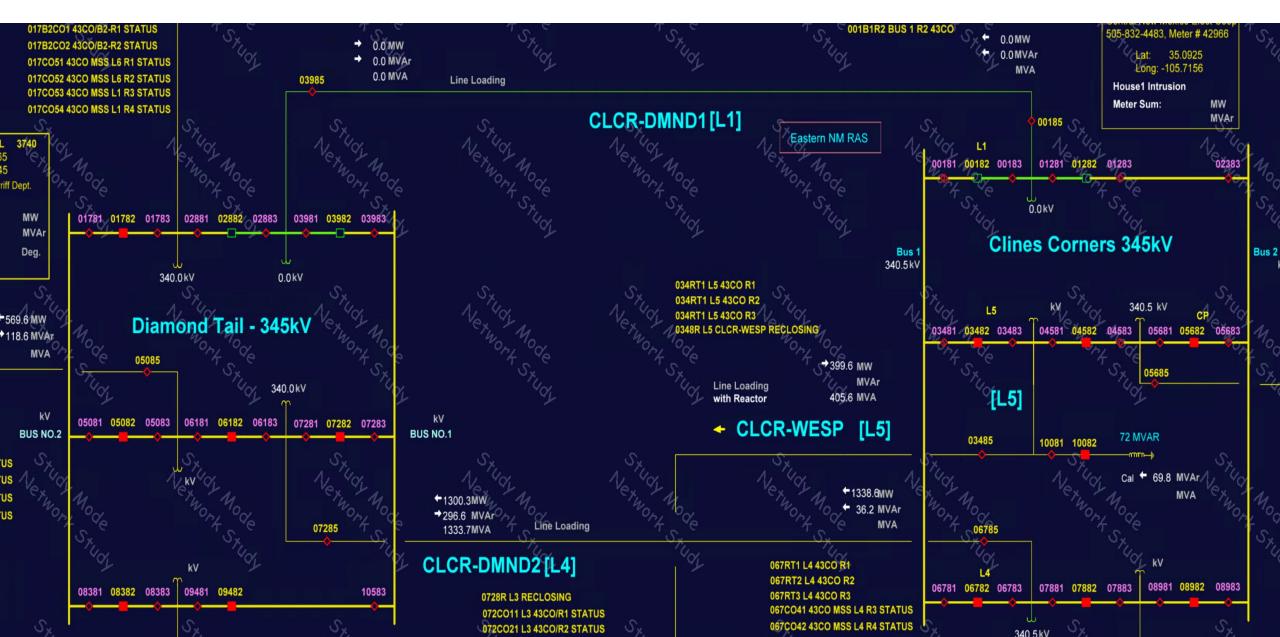

Operations Engineering Role

System Modeling	 Develop the electrical model of the transmission system Nodes (Buses): Represent connection points for generators, loads, transformers, and transmission lines Branches: Transmission lines and transformers Generators: Modeled with max and min MW control limits Loads Voltage Control Devices: Capacitors, Reactors, and Static Var Compensator (SVC)
SCADA/ICCP	 Program all real-time points (Analogs/Status) for the model

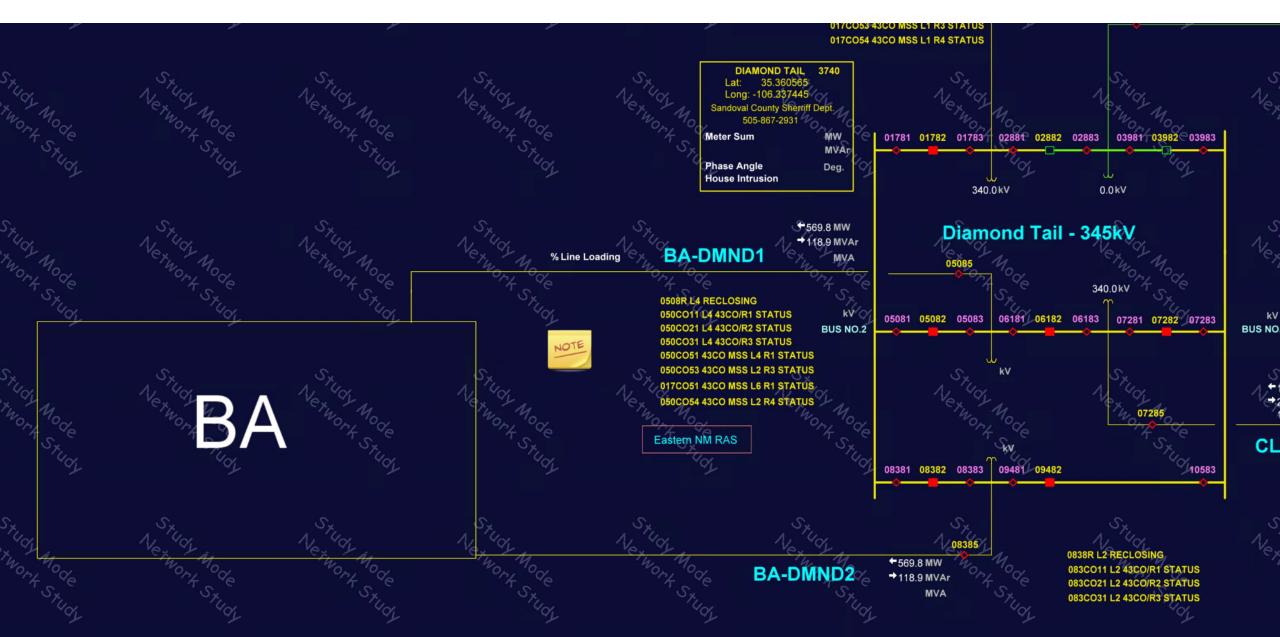

Network Model




Operator One-Line Display



Operators Rtca Screen



Engineers:

Used to perform Next-Day studies

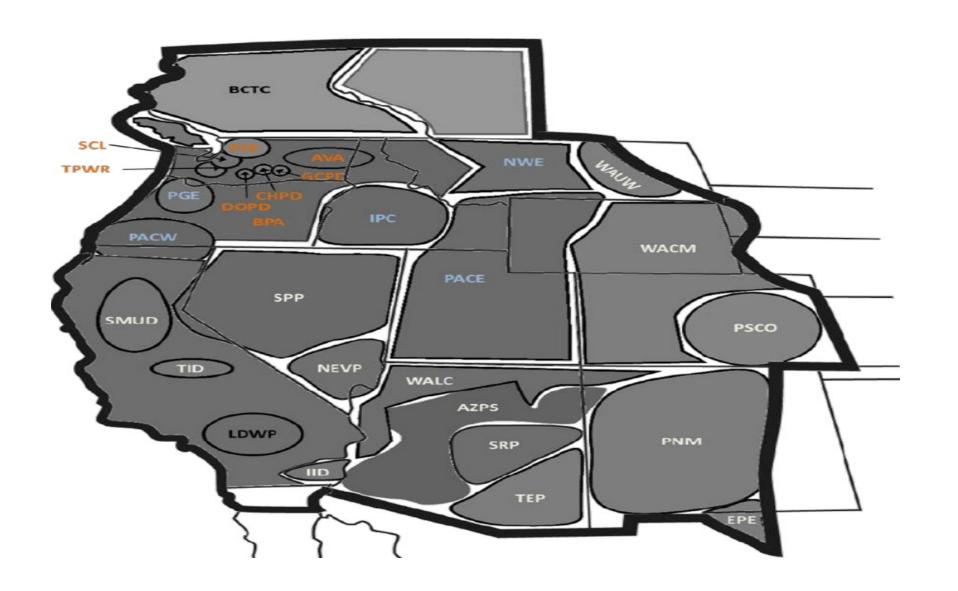
Who uses Study Mode?

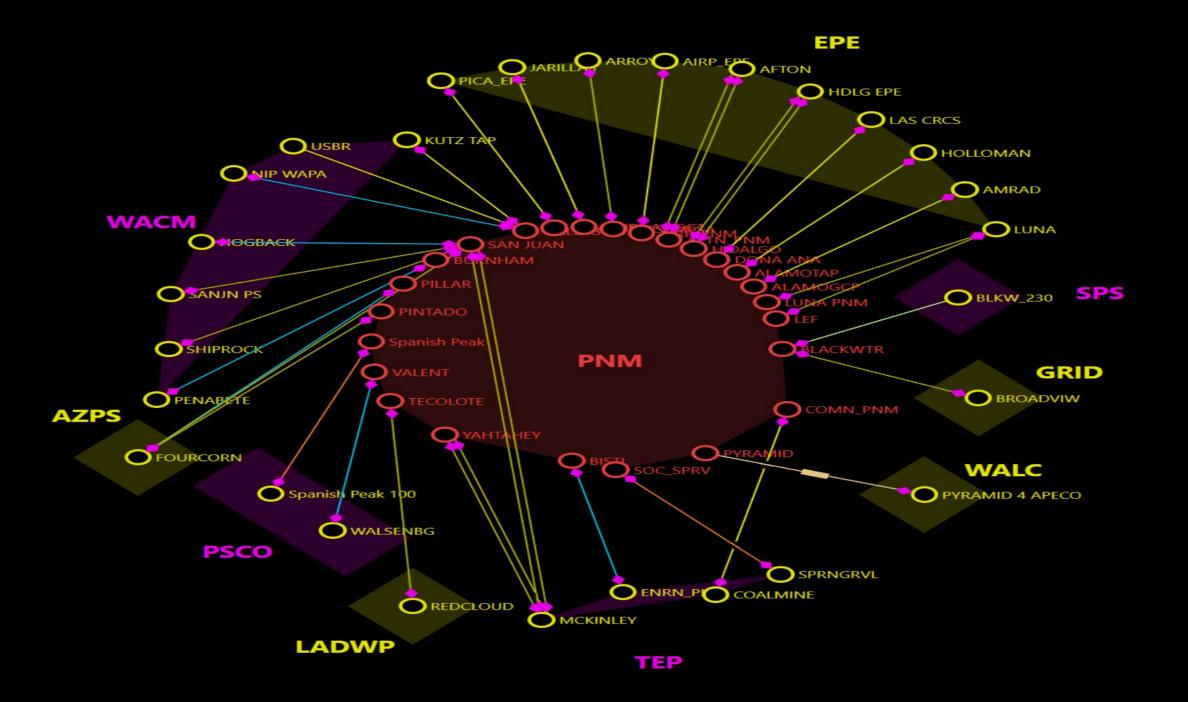
Transmission Operators:

Used to perform simulation of emergency outages

External Network Data:

Incorrect data provided by external Transmission Provider For example, incorrect topology diagrams


Challenges


External ICCP Data:

Dependency on other Balancing Authorities or Transmission Providers

Maintenance of the external network model:

Developing a new reduced equivalent external network model is a very time-consuming task

QUESTIONS? Alliance in Action

TGO Alliance 2025 Fall Summit

2026 One Digital
Grid Platform
Case Study

1:00 - 1:45

Gio Herazo

Head of Solution Architecture
- Digital Grid

Schneider Electric

Schneider Electric – Global Industrial Technology Leader with Strong Local Presence

440M tons

of avoided CO₂ emissions to our customers since 2018

\$40.0B

in 2024 revenue

#1

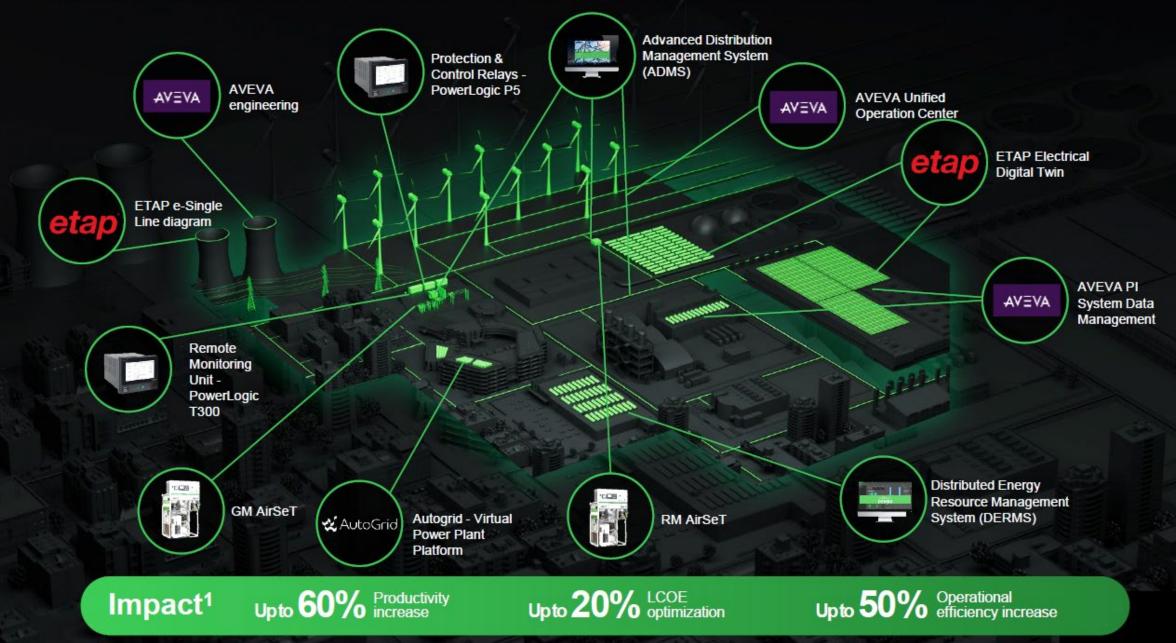
most sustainable company

650k+

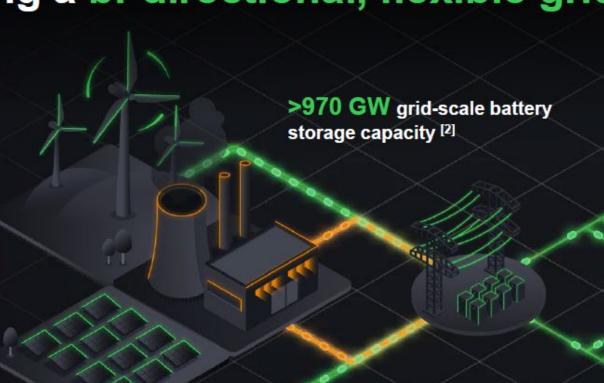
service providers and partners

6%

of sales to R&D annually

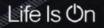


135,000+


employees across 100+ countries

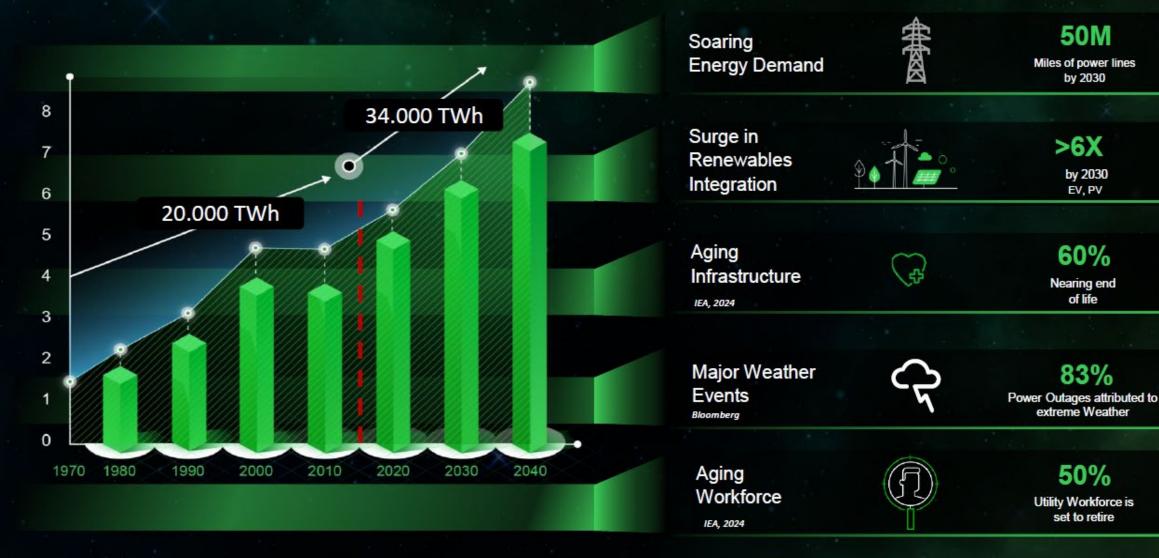
Power & Grid Offers for a Smart Grid

By 2030, a more complex grid with actors and prosumers feeding a bi-directional, flexible grid



70% of the energy mix is supplied by renewables [1]

325,000 – 580,000 GWh US data center will use per vear^[3]


- IEA Net Zero by 2050 A roadmap for the global energy sector
- Woodmackenzie
- 3. Lawrence Berkley National Laboratory 2024 Report on U.S> Data Center Energy Use

More than 100
million households
will be connected to
rooftop solar PV [1]

A Stressed Grid Needs Transformation

Accelerating Grid Modernization

System-wide coordination

Ensuring all parts of the grid work together seamlessly to balance supply and demand in real-time

Holistic situational awareness

Utilizing advanced monitoring and analytics to understand the current grid state and predict future conditions.

Elevated risk management

Identifying and mitigating potential issues before they impact grid stability and reliability

Integrated planning and operations

Bridging the gap between long-term planning and operations for optimal investments and decisions

By implementing these strategies utilities can create a more holistic and efficient approach to grid management, ultimately benefiting both the utility and its customers.

Step-change in managing the grid is inevitable

Planners

Must manage the greater uncertainly of future demand caused by technology, DER adoption, electrification etc.

Need a holistic approach to planning, leveraging greater extents of operational data.

Designers

Must create & maintain highly accurate network models from HV to LV and even customerowned BTM assets.

Need a to develop a fully digitised modelling & asset registry process at a vast scale.

Asset Teams

Must manage the impact of more volatile & unpredictable storms exacerbated by an ageing asset base.

Leverage IoT data to improve decision making & coordinate with control rooms

Operators

Must manage huge data volumes & embrace automation to manage DERs & improve operational performance.

'Operators' must become 'Analysts', configuring, assessing & tuning grid systems rather than operating it themselves.

Customer Teams

Must embrace customers as critical players in the energy system, integrating them & their assets into utility processes.

Need to build 'customer journeys' with the capacity to inform, enroll & control customers & their assets.

Procurement

ΙT

Business Intelligence

The future of Grid management is an ecosystem

To enable growth of this ecosystem a modular, inclusive, Al-enabled software platform providing secure, end-to-end connectivity and digitization from grid to prosumer is required

Interoperability with external systems in a standardized way

Advanced cybersecurity to ensure safe operations

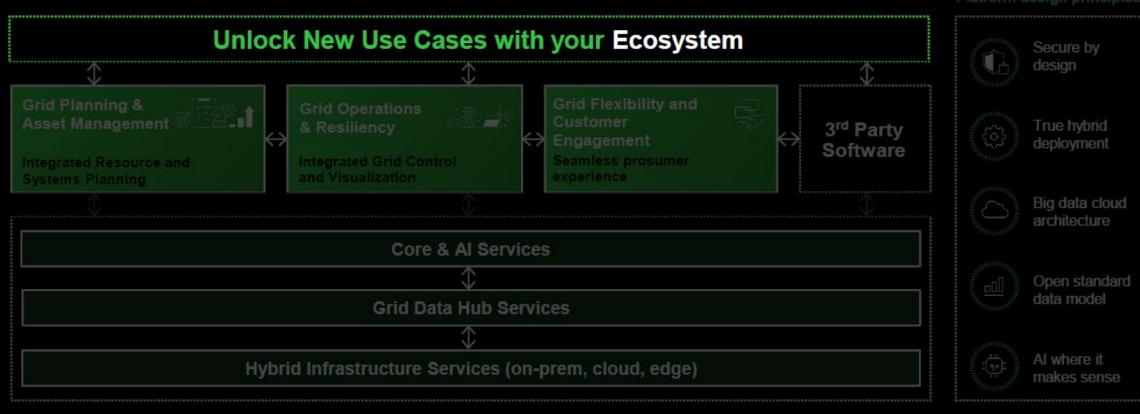
Plug-and-play Digital Grid product integration

Simplified deployment for new workloads

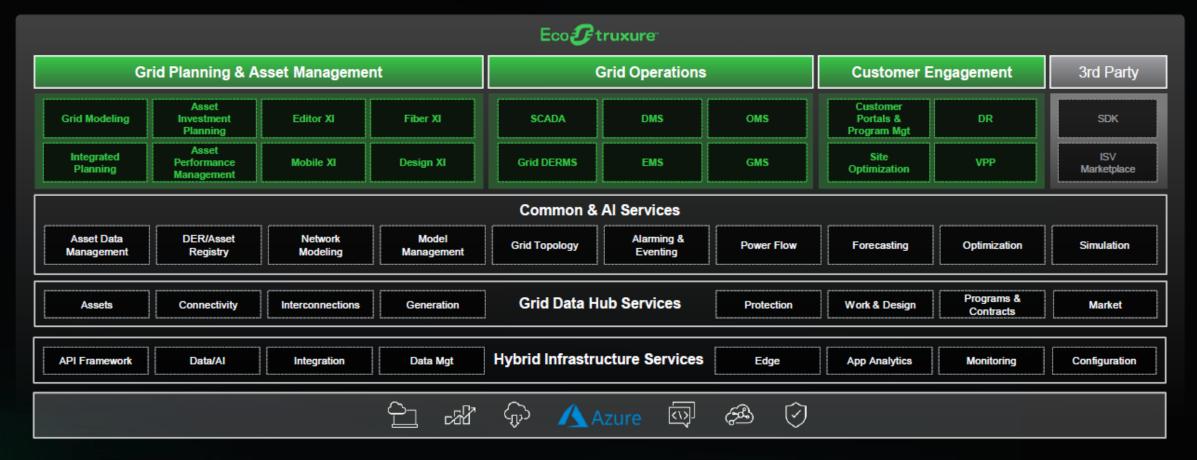
Strong tech partner and ISV support

Commitment to Platform Evolution

Common Data Hub


Software Lifecycle Improvements

Unlock the Ecosystem


One Digital Grid Platform

One Digital Grid Platform Enables **Unprecedented Grid Management Capabilities**

Grid Management Platform with Data-Centric Architecture

Unified Communication & Collaboration

Simplified Engagement & Packaging

Services & Support Clarity

Certified Partner Ecosystem

Modern Network Management Readiness

Innovative & Elevated Functionality

Forward-looking features gathered directly from customers to improve productivity & efficiency

Enabled for Ease of Implementation

Resources and tools built to add flexibility and agility to our products to improve implementation

Well-Architected for Reliability & Security

Technology advancements and architectural improvements aimed at improving the security and reliability of our software.

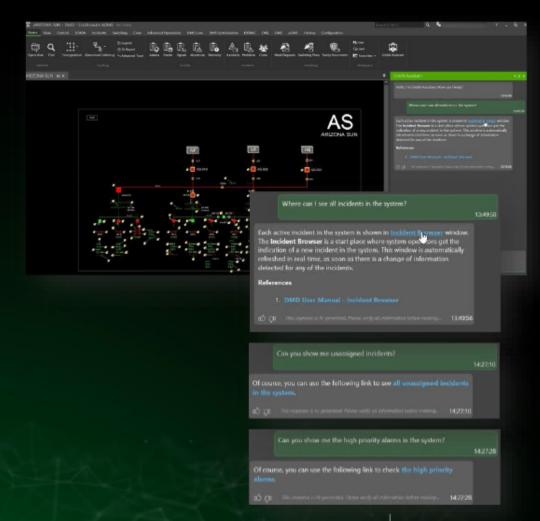
- Advanced Network Intelligence
- √ 13+ Certified EcoXperts
- ✓ Performant Data Model
- ✓ Unlock Holistic Major Event Management

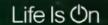
Strategic Al Integration

Enable DG Intelligence

 Leverage AI to secure high(er) data quality, to enable intelligent apps to deliver value

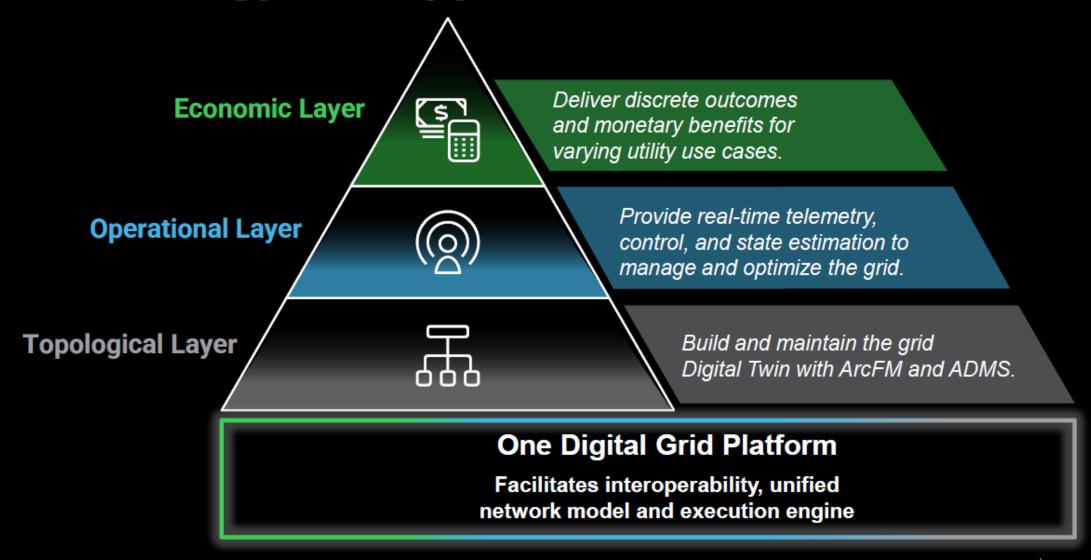
Boost Simplicity

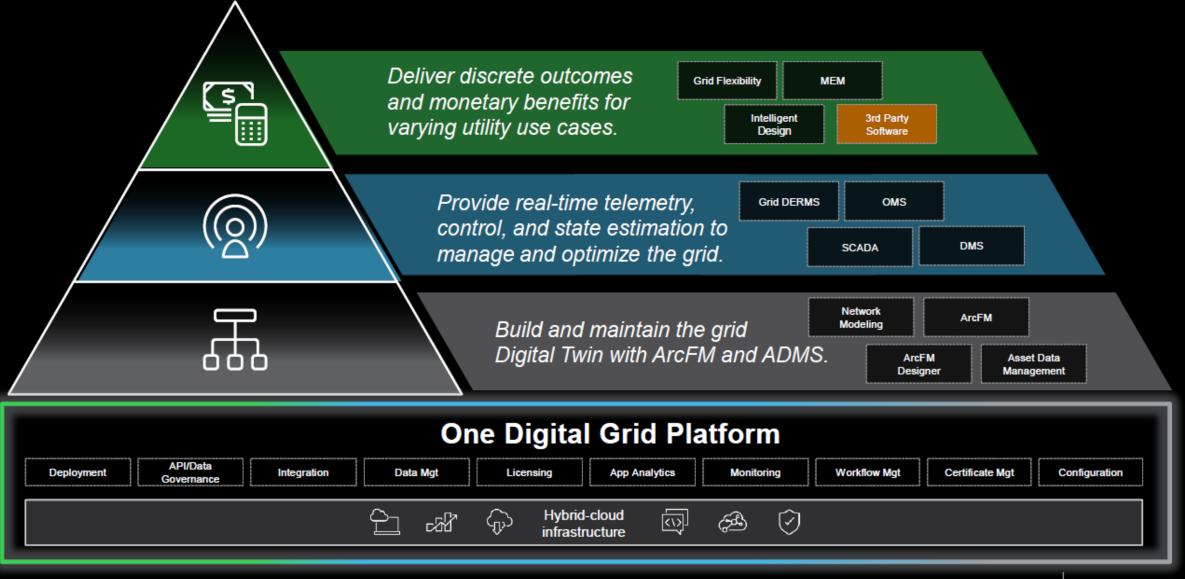

 Leverage AI to make easier use of SW i.e. faster onboard of new users to grid management paradigms


Enhance Resilience

 Leverage AI to unlock power of predictive major event management & accelerate restoration

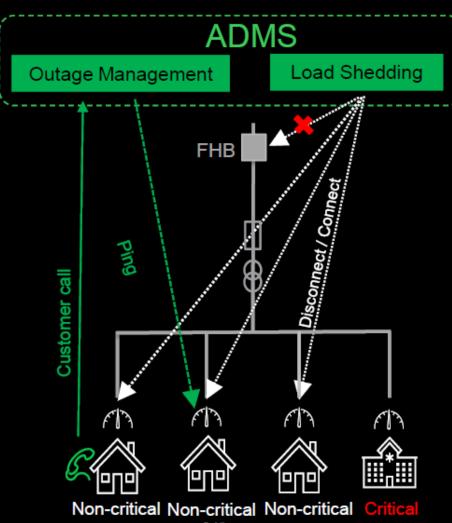
Increase Flexibility


 Leverage AI to enable intelligent grid flexibility management

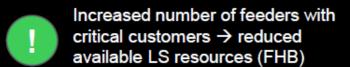


Technology to Support Your Business Needs

Unlock New Use Cases



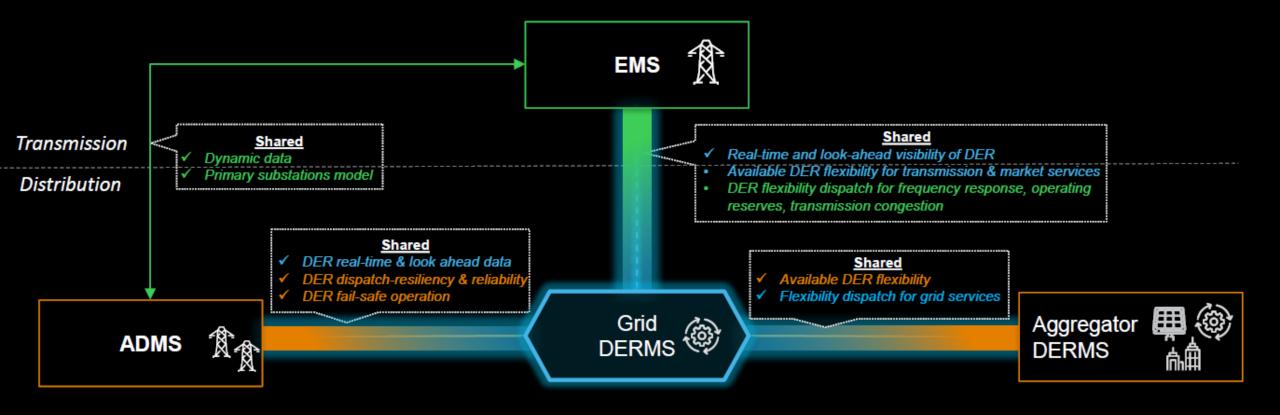
Enhancing Reliability and Resiliency


AMI 2.0: Improved Outage Management & Load Shedding

Improved outage mgmt.

- Fast detection of outage extent through Intelligent automatic ping
- Validation of customer interruptions times
- New types of AMI events\requests
 - Disconnect/reconnect request
 - Partial power (Wire down) event
 - 3-phase open neutral & high impedance faults
 - Voltage problem event
 - Non-outage events (tamper, temperature, etc.)
 - Unlocated event

More resources for LS



Shedding only non-critical customers through AMI's "remote disconnect/connect" capability

T&D coordination – Grid DERMS at the center

Grid DERMS: An Interoperable Coordinator delivering valuable insights across systems

Our Offers Deliver Tangible Economic Benefits

Return on Investment

Forrester TEI Report

184%

Payback

16 months

Leading the Way with Analyst Recognition of our Grid Technology

#1 Vendor

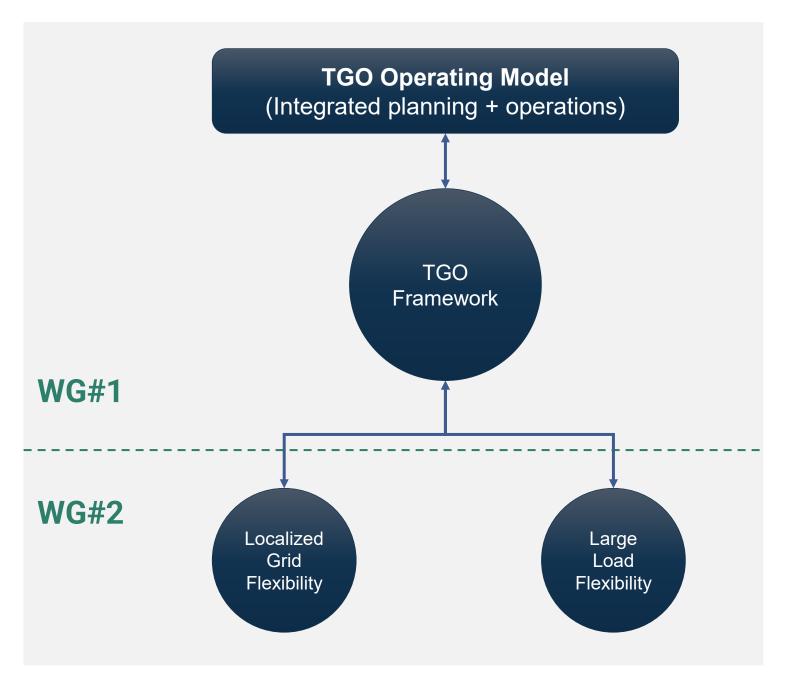
2025 ABI Research for Grid Digitalization

TGO Alliance 2025 Fall Summit

Working Group Planning

1:45 - 2:45

Market Specialist, Electric Markets



Paul Moran

Integrated Solutions Strategist, Electric Markets

TGO Alliance 2025 155

Start from Member Pull Brightize topics eligned with

Prioritize topics aligned with utility pain points and/or funding

Stay Narrow, Ship Fast

Define 1–2 shippable deliverables per Working Group per quarter

Working Group Rapid Lessons

Design Principles to Carry Forward

Artifact-First Agendas

Every working group session drives a specific named deliverable

Asynchronous by Default

Convert big work into small tasks and use live time for decisions not drafting

Make it Easy to Contribute

Provide templates/examples and consider additional stakeholder support needs

TGO Alliance 2025 156

Potential 2026 TGO Areas of Focus

Defining and validating the risk model

- Risk Model Parameters
- Telemetry Requirements
- Asset Inventory
- Risk Profile/Confidence Interval

Operationalizing TGO as a tool to help Grid Operations

- Distribution Planning
- Near Real Time Operations Support (LGF)

Create the TGO Operational Model, defining how business units or entities can coordinate using the tool and framework

Considerations for Vertically Integrated or Non-Vertically Integrated Utilities

TGO Alliance 2025 157

Translating Areas of Focus into Action

TGO Member Artifact-Driven Problem Rapid **Asynchrous** Statements Deliverables **Priority Driven** Work Prioritize Translate • Use Encourage Apply rapid, each area of focused templates and asynchronous memberdriven topics focus into a working group artifact-first contributions and feedback and utility specific principles to agendas to each area of to maintain pain points to problem ensure every maximize statement to focus—define session momentum auide solution clear. produces and engagement and impact. development shippable tangible resilience. deliverables and working outputs. and assign group activities. ownership.

From Focus Areas to Actionable Solutions: Rapid, Member-Driven Problem Solving for TGO Progress"

Developing a 2026 Plan

Development of Problem Statements

Defining and validating the risk model

Risk Model Parameters _____

Telemetry Requirements

Asset Inventory

Risk Profile/Confidence Interval

Risk Model Parameters

Problem Statement:

How can we identify and standardize the parameters that accurately represent grid operational risk across diverse assets and conditions, ensuring they remain adaptable to evolving regulatory and operational requirements?

Telemetry Requirements

Problem Statement:

What telemetry data is essential to feed the risk model for real-time accuracy, and how do we ensure data completeness and integrity given heterogeneous systems and legacy infrastructure?

Asset Inventory

Problem Statement:

How do we maintain a comprehensive, up-to-date inventory of grid assets that integrates with the risk model and supports dynamic risk scoring?

Risk Profile / Confidence Interval

Problem Statement:

How can we quantify uncertainty in risk assessments and define confidence intervals that operators can trust for decision-making under varying grid conditions?

Problem Statements

Operationalizing TGO as a Tool for Grid Operations

- Distribution Planning
 - Problem Statement:
 - How can TGO be embedded into distribution planning workflows to optimize asset utilization and investment decisions while balancing reliability and cost?
- Near Real-Time Operations Support
 Problem Statement:
 What mechanisms are needed for TGC

What mechanisms are needed for TGO to provide actionable insights in near real-time, enabling operators to respond to emerging risks without overwhelming them with data?

Creating the TGO Operational Model

Coordination Across Business Units or Entities

Problem Statement:

How do we design an operational model that enables seamless coordination between planning, operations, and risk management teams, ensuring consistent use of TGO outputs across organizational silos?

Considerations for Vertically Integrated vs. Non-Vertically Integrated Utilities

Problem Statement:

How can the TGO framework accommodate structural differences between vertically integrated utilities and those operating in deregulated environments, without compromising interoperability or scalability?

Keys to Success

- Who do we need? What skill sets are necessary?
 - Wider representation across generation, transmission and distribution
 - More Planning resources?
- How can the vendor community best support us?
- What tools or technologies are required to realize the 2026 Plan?

TGO Alliance 2025 Fall Summit

Session Closeout & Debrief

2:45 - 3:15

Joe Zhou

Co-Chair, TGO Alliance Infrastructure Advisory Markets Group Leader



Join us!

6:00 - 8:00

Downstairs on the second floor

Food and Drinks Provided

