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Synopsis 
The DOM Graph RAG project represents a new, novel approach and a significant advancement in 
artificial intelligence (AI), particularly in Retrieval-Augmented Generation (RAG). The project not 
only addresses the limitations of current vector-based RAG models but also introduces an 
approach that significantly improves the accuracy, reliability, and contextual understanding of AI-
generated content. This reliability and trustworthiness, especially in high-stakes environments, will 
instill confidence in the capabilities of this new model. 

Traditional vector-based RAG models rely heavily on stochastic processes, making them prone to 
inaccuracies, hallucinations, and context loss. These limitations are exacerbated in industries 
where precision, reliability, and trustworthiness are critical. Vector-based models, which typically 
break content into arbitrary chunks for retrieval, often fail to maintain the integrity of the original 
content structure, leading to inefficient and unreliable results. 

Graph-based RAG models, on the other hand, offer a more structured approach by leveraging 
knowledge graphs and structured intelligence. These graphs allow for richer contextual 
understanding, multi-hop reasoning, and explicit entity recognition, overcoming many of the issues 
vector-only systems face. However, constructing and maintaining knowledge graphs at scale has 
traditionally been a resource-intensive task, a significant challenge that this model solves.  

The DOM Graph RAG model employs a Document Object Model (DOM) to structure content and 
uses knowledge graphs to map relationships between topics, elements, and metadata. This graph-
driven approach ensures content is not arbitrarily chunked but retains its original structure and 
context, which is crucial for accurate content retrieval and response generation. The project uses 
the Darwin Information Typing Architecture (DITA) schema to automate the construction of these 
graphs, further simplifying the process of managing complex content. 

In addition to addressing issues of content integrity and accuracy, the DOM Graph RAG model also 
incorporates neuro-symbolic reasoning, which combines the pattern recognition capabilities of 
neural networks with the logical reasoning and fact-checking abilities of symbolic models. This 
hybrid approach enables AI systems to generate responses based on retrieved content and reason 
over the data to ensure logical consistency and factual accuracy. 

A significant advantage of the DOM Graph RAG model is its ability to manage dynamic and evolving 
content, which is challenging for vector-based systems. The DOM-based knowledge graph allows 
continuous updates to quickly changing content, maintaining its relevance and accuracy over time.  

The sample chatbot demonstrates the practical applications of the DOM Graph RAG model. This 
chatbot uses the enriched DOM graph to enhance user queries, providing more accurate, 
explainable, and context-aware answers. The DOM Graph RAG model reduces dependency on 
large language models (LLMs), lowering computational costs while improving performance. 

Overall, the DOM Graph RAG offers a robust, scalable, and cost-effective solution for industries 
requiring high levels of accuracy and trustworthiness. Its hybrid approach, combining graph and 
semantic retrieval with neuro-symbolic reasoning, significantly improves over traditional RAG 
models. 
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The advent of OpenAI’s ChatGPT and other large language models (LLMs) marked a pivotal 
moment, catapulting generative AI into the public consciousness. This sudden rise sparked both 
excitement and fear, leading to a frenzy of investment that, while initially overhyped, has shifted 
towards more practical applications of generative artificial intelligence technology. 

Despite this, corporate leaders were alarmed. Many hastily commissioned generative artificial 
intelligence projects, pressuring engineering teams to produce rapid results out of fear of 
disruption. Such pressure led to a flurry of "solutions looking for problems" as companies 
scrambled to adopt the technology without fully understanding its implications. 

Generative artificial intelligence offers vast potential, but the quickest application for most teams 
was developing generative question-and-answer chatbots. Engineering teams embarked on 
creating domain-specific chatbot applications using their company’s content. However, they 
quickly encountered the limitations of LLMs, particularly the issues of hallucinations and 
inaccuracies. These issues led to the emergence of Retrieval-augmented generative AI. 

Retrieval-augmented generation  
Retrieval-augmented generation (RAG) is a concept in natural language processing (NLP). A RAG 
model first retrieves relevant content or data from an external source and then uses that 
information to generate a response or complete a task. The retrieval step helps improve the quality 
and accuracy of the generated output by grounding responses in specific, relevant information. 

A skilled Python programmer can build a basic RAG model prototype using an LLM API in a few 
hours or days. A full production model can take several months to develop when factoring in 
infrastructure, guardrails, and tuning.  

The standard process involves breaking content into small pieces, storing them in a vector 
database, and processing a user prompt to search the database for relevant chunks. These chunks 
are then fed to the LLM to generate output. Many teams implemented this approach shortly after 
the OpenAI APIs became available, well before the term "RAG" was coined.  
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While RAG models improved over standalone LLMs, most quickly realized that vector databases 
feeding a vector-based LLM had significant limitations. By their nature, LLMs are stochastic 
systems based on randomness or probability, and this inherent characteristic undermines their 
accuracy, precision, reliability, and explainability. We explained these limitations at conferences 
long ago, demonstrating how vector math and cosine similarity work and their vulnerabilities.  

Companies experimenting with generative artificial intelligence soon recognized the need for 
governance and control. Usually, the responsibility for developing AI solutions fell to engineering 
teams, who approached the task almost entirely as a coding problem. However, this perspective 
overlooked the critical roles of content design and knowledge management. The most advanced 
organizations now understand that successful AI development requires a balanced combination of 
engineering, content, and knowledge management. 

In the rush to implement RAG, engineering teams often scraped content from internal sources 
without considering the content's quality, structure, or mission-critical management requirements. 
Technical documentation became a prime target. Content teams, who understood the intricacies 
of the content supply chain, were sidelined and often ignored or dismissed as engineering teams 
took the lead. This behavior leads to subpar results.  

As teams evaluated these RAG solutions, it became evident that better models and content were 
needed to achieve greater accuracy, reliability, and explainability, which are required in industries 
with significant legal liabilities or highly regulated sectors. While some engineering teams began to 
understand the value of taxonomies and labeling content, it was clear that these alone were 
insufficient for the degree of precision needed in critical applications. 

The precision paradox emerges as AI systems become more accurate. The error tolerance 
decreases as the system's precision increases, making even minor mistakes more noticeable and 
impactful. This is particularly crucial as organizations move towards autonomous or semi-
autonomous AI agents. The current vector-based RAG models struggle to meet the required levels 
of accuracy and reliability, necessitating a shift towards more advanced AI models. 

Vector RAG versus graph-driven RAG  
Vector-based retrieval-augmented generation (RAG) models are AI models that rely on similarity 
search and predictive algorithms. These models have strengths in these areas but also critical 
weaknesses, such as inaccuracies and hallucinations, which stem from their inherent randomness 
and probabilistic nature.  

Engineering teams globally are grappling with these issues, attempting to mitigate problems 
fundamentally tied to vector-centric retrieval limitations. Increasing the parameters of large 
language models (LLMs) or building ever more complex infrastructures around vector RAG models 
cannot alter the mathematical reality inherent in these systems. 

Critical Challenges with Vector-Only RAG Models: 

● Lack of neuro-symbolic reasoning and fact-checking: LLMs and vector databases are 
limited in their ability to infer, reason, or fact-check independently. While they may appear 
capable of these tasks, the reality is different. Efforts to integrate these abilities into vector-
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based models have been inadequate. To achieve robust reasoning and independent 
validation, an external source of curated knowledge, such as a knowledge graph that 
provides validated facts and an inference engine, is required to query against. 

● Challenges in building and maintaining knowledge graphs: While knowledge graphs 
offer a powerful alternative to vector databases for retrieval, constructing and maintaining 
them at scale for content, which may include thousands to millions of nodes, is daunting. 
Manual graph construction has been impractical for most organizations, especially those 
managing large volumes of content. There’s a pressing need for innovative, reliable 
methods to automate the creation and updating of curated and validated knowledge 
graphs, especially for complex and specialized knowledge domains. The DOM Graph RAG 
model solves this vexing problem elegantly. 

● Change management and content currency: Content is dynamic and constantly evolving, 
particularly in business and technical domains. Current vector-based models often fail to 
consider or effectively manage frequent and voluminous content updates, retirement, 
versioning, entitlement, reuse, audience, personalization, reuse, and more. The inability to 
manage frequent changes creates significant risks to the business as vector stores struggle 
to manage expired or outdated content. In contrast, graph-based models can embed 
metadata and state information with the graph, enabling sophisticated content 
management and automation of change management processes.  

● Loss of context: Vector-based models often require content to be divided into chunks, 
typically in arbitrary sizes (for example, 4K tokens). This approach can fragment the original 
content, making it difficult to reassemble content correctly and meaningfully in its original 
context during retrieval. Organizations with well-structured content that content 
developers have meticulously chunked over many years into component/topic content 
models find it nonsensical and unnecessary to chunk any further to attempt (poorly) to 
reassemble the content along with its context, losing vital context and relationships. 

● Lack of explicit entity recognition: Vector-based RAG models primarily use dense 
embeddings to represent queries and documents in a high-dimensional vector space. This 
approach works well for semantic similarity but lacks the explicit ability to recognize or 
handle named entities with the same granularity as graph-based approaches. The model 
may identify similar topics or concepts based on their proximity in the vector space, but it 
won't explicitly "know" or "link" entities like a graph does. 

● Limited Multi-hop Retrieval: Vector-based RAG typically retrieves documents or 
knowledge in a single hop—finding the nearest neighbors to a query in embedding space. It 
does not inherently support multi-hop reasoning. While some vector-based systems might 
attempt to perform multi-step reasoning, this process is often less structured and less 
reliable than graph-based methods.  

● Limited recommendations: Vector-based retrieval models cannot capture complex 
relationships between entities. While vector embeddings represent entities, they miss the 
rich contextual connections. Graph-based RAG models excel at generating 
recommendations by integrating knowledge graphs with neural networks. In this approach, 
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entities and their relationships are represented as nodes and edges in a graph, which are 
then converted into vector representations (graph embeddings). The neural network can 
retrieve relevant information based on the query, and the knowledge graph provides rich 
contextual relationships, leading to more accurate and context-aware recommendations. 
Integrating neural retrieval and symbolic graph reasoning enhances the model’s relevance, 
personalization, and logical consistency. 

● Lack of localization management: How would a vector-only RAG model manage multiple 
national language variants (NLVs)? Would such a model translate the content and put the 
NLVs in separate vector DBs for retrieval? That’s one messy option. Use an on-demand MT 
service? That sounds like a nonstarter precision and performance-wise, or should we use 
the LLM to translate on the fly? Possibly, if machine translation accuracy is acceptable 
(there’s a reason why a massive language service provider (LSP) industry exists). With DOM 
Graph RAG, we can translate the content into as many NLVs as we want, using any method 
we want, and carry the language identifier in the metadata of each document object graph 
node. Then, the query can pick which NLVs to retrieve. If NLV retrieval is complex enough 
using a vector-based RAG model, imagine dealing with versioned NLV content. 

● Overfitting: Vector-based models are prone to overfitting. This occurs when teams 
excessively tune models to compensate for the shortcomings of vector-only retrieval. 
Overfitting leads to excellent performance on tested queries but poor generalization for 
new, unanticipated questions or tasks. 

● Efficiency and performance: Graph-based RAG models can offer greater efficiency than 
vector-based models, particularly in structured retrieval, contextual reasoning, scalability, 
and interpretability. While vector databases perform better in multidimensional spaces, 
graph databases excel in handling relationship-based queries. Hybrid models that combine 
these strengths can optimize performance and scalability. 

● Cost-effectiveness: Graph-based RAG models can significantly reduce costs compared to 
vector-based models. This is due to the more efficient retrieval process, which reduces 
dependencies on the LLM for handling voluminous transactions required with fine-tuning 
and embeddings. The graph-based approach reduces computation time and resource 
consumption by providing more concise and relevant inputs to the LLM, leading to overall 
cost savings. 

While vector-based RAG models have their place, they face significant challenges that graph-
driven RAG models address through better reasoning, contextual understanding, efficiency, and 
cost-effectiveness. Graph-based approaches offer a more robust framework for complex, dynamic 
content environments. 

Neuro-symbolic RAG: Enhancing AI with integrated reasoning 
and knowledge 
The next advancement in retrieval-augmented generation (RAG) is neuro-symbolic RAG, which 
integrates neural networks with symbolic reasoning, inferencing, and fact-checking. This approach 
uses the strengths of both neural and symbolic models, allowing AI systems to learn from data and 



6 
 

reason over it using predefined rules and logic. Knowledge graph-based RAG is gaining popularity 
because it effectively addresses the limitations of vector-based retrieval models. 

However, developing and maintaining high-quality knowledge graphs is often human resource-
intensive and prohibitive. Although LLMs can assist in constructing these graphs, relying solely on 
LLMs is risky. A well-designed and managed knowledge model, grounded in a robust ontology, 
remains under the organization's control and governance and becomes a company’s most 
valuable intellectual property and competitive advantage.  

With its GraphRAG and similar models, companies like Microsoft have explored automating 
knowledge graph generation from text using LLMs. While these automatically generated graphs can 
be helpful, especially for monolithic unstructured content sources, they often need more accuracy 
to avoid pitfalls like the precision paradox. A more effective approach combines traditional and 
hybrid models, emphasizing deliberate and strategic development.  

The cornerstone of a reliable knowledge graph is an intentionally constructed and human-validated 
ontology. An ontology defines the concepts and relationships within a specific domain. Once 
developed, the ontology can be loaded into a graph database, where physical or logical content 
objects are mapped against it to create a comprehensive knowledge graph. This graph can then be 
queried to retrieve relevant content objects and feed them into the LLM, ensuring that outputs are 
accurate and trustworthy. Models like Microsoft GraphRAG, which attempt to automatically 
generate graphs from text or models that automatically generate ontologies from text, often result 
in weak and error-prone substitutes for carefully constructed and validated schema and domain-
specific knowledge models.  

AI models must evolve beyond traditional RAG approaches to achieve the high precision and 
reliability required for critical applications. The Document Object Model Graph RAG (DOM Graph 
RAG) represents a novel, sophisticated, more straightforward, and elegant method for integrating 
componentized content with AI. By harnessing the combined strengths of engineering, content 
design, and knowledge engineering, DOM Graph RAG delivers more accurate and trustworthy 
generative AI solutions, setting a new standard in the field. 

Knowledge graphs and DITA: Structured content synergy 
Knowledge graphs are a form of structured content, meaning they organize and categorize 
information in a clearly defined way, simplifying processing, retrieval, and analysis. In a knowledge 
graph, data is represented in a structured format where entities (nodes) and their relationships 
(edges) are clearly defined, often following a specific blueprint in the form of an ontology or 
schema. This structured approach allows for efficient querying, reasoning, and data integration 
within and between domains, making knowledge graphs a powerful tool for organizing and 
understanding complex information. 

DITA (Darwin Information Typing Architecture) is an XML architecture and an open OASIS industry 
standard for structured documents. DITA's well-defined schema makes it easy to convert into the 
Ontology Web Language (OWL) format. OWL represents complex knowledge about entities, groups 
of entities, and their interrelations, making it a crucial component of semantic solutions. 
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OWL ontologies use the Resource Description Framework (RDF), representing information as 
triples (subject-predicate-object). RDF provides the basic structure for representing data in a 
graph. At the same time, OWL extends RDF’s capabilities by allowing for the definition of more 
complex relationships and constraints, such as classes, properties, hierarchies, and rules. This 
makes OWL ideal for creating ontologies that formally represent knowledge within a domain. RDF 
graphs are exceptionally well suited over other technologies, such as property-based graphs 
representing hierarchical content and linked data. 

 

Figure 1. A visual representation of an RDF triple 

 
In Figure 1, a triple represents a relationship between three entities: a subject, predicate, and 
object. For example, relating VAT tax to Europe: 

Triple: 

● Subject: Value-Added Tax (VAT) 
● Predicate: is implemented in 
● Object: European Union (EU) 

This expresses the fact that VAT is a tax system that is widely implemented across the European Union. 
Here's a breakdown: 

● Subject: "Value-Added Tax (VAT)" — the tax being discussed. 
● Predicate: "is implemented in" — the relationship between VAT and the entity. 
● Object: "European Union (EU)" — the geographic or political entity where VAT is applied. 

This structure could easily be adapted for other relationships or countries with VAT tax systems. 
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Figure 2. Relationships between entities using classes, individuals, and properties in OWL 

 

In Figure 2, The OWL representation formalizes the relationship between VAT and the European 
Union in a machine-readable format. 

● Classes: Tax and Region are declared as classes. VAT is a type of tax, and the European 
Union is a type of region. 

● Individuals: ValueAddedTax belongs to the Tax class, and EuropeanUnion is an individual 
of the Region class. 

● Object Property: isImplementedIn is the predicate that connects a tax (domain) to a region 
(range). 

● Assertion: It declares that the individual ValueAddedTax is implemented in the individual 
European Union. 
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Like other XML languages, DITA is based on a Document Object Model (DOM). The DOM is a 
programming interface representing a document's structure as a tree of objects, with each node 
representing a part of the document. This hierarchical tree structure allows scripting and query 
languages to dynamically interact with and manipulate the document’s content, structure, and 
styling. DITA brings several principles of object orientation to content, including containment and 
inheritance. 

In a DOM, the topic collection file, a DITAMap, is the tree's root, branching into various 
subcomponents, including sub-maps, topics, elements, and sub-elements. With a DOM, 
everything in a document instance is a container or sub-container, and the containers are self-
describing with meaningful tags. Every XML element can carry metadata about its container. A 
graph represents elements as nodes, including map nodes, topic nodes, text nodes (containing the 
text within these elements), and attribute nodes (representing the attributes of elements). This 
structure is fundamental to how DITA documents are organized and processed. See 
https://groups.oasis-open.org/communities/tc-community-home2?CommunityKey=c2c11e3a-
c9cd-43d9-840b-018dc7cd5db9 for more information about the open DITA standard. 

 

Figure 3. Example of a top-level DITAMap that references topics or sub-maps 

Knowledge graphs and XML are structured models with a powerful and natural affinity. DITA’s 
inherent structure, implied and explicit relationships, content type classification, and extensibility 
make it well-suited to be represented, explored, and mined as a knowledge graph. It also opens up 
a world of advanced content management and retrieval possibilities. 

https://groups.oasis-open.org/communities/tc-community-home2?CommunityKey=c2c11e3a-c9cd-43d9-840b-018dc7cd5db9
https://groups.oasis-open.org/communities/tc-community-home2?CommunityKey=c2c11e3a-c9cd-43d9-840b-018dc7cd5db9
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Using schemas as the basis to automatically map content into a knowledge graph is not new; it has 
been common practice in representing relational databases (RDBs) that use schemas. AI 
engineers, who have long recognized the efficiency of working with structured content over 
unstructured content, have found this approach far simpler and more effective.  

Representing DITA as a knowledge graph is also not a novel idea. In 2013, Colin Maudry initiated an 
open-source project called The DITA RDF Project, which used the DITA schema to develop an RDF 
knowledge graph of the DITA model. The project aimed to provide detailed metrics to authors and 
streamline processes such as content translation and document status consistency checks. 
Maudry's work, presented at the 10th Summer School on Ontology Engineering and the Semantic 
Web and presented at the 2013 DITA Europe conference, remains available online and on 
SourceForge. His project was rediscovered years later during explorations of using DITA’s structure 
as a basis for a graph-based RAG model. 

In summary, knowledge graphs and DITA offer structured approaches to content organization, 
making them highly compatible. DITA's robust structure lends itself well to knowledge graph 
representation, enabling advanced content management and retrieval capabilities that use both 
technologies' strengths. 

 

 

 

Figure 4. A visual representation of an RDF model of DITA 

 

Chunked versus componentized content in RAG models 
In most vector-centric RAG models, content is preprocessed and divided into smaller units, or 
"chunks," before being stored in a vector database. When a user enters a prompt, the system 
searches the vector database to retrieve the most relevant chunks combined and passed to the 
LLM to generate a response. This chunking serves two primary purposes: to ensure efficient 
storage and retrieval of relevant information.  

First, chunking allows the embedding model to effectively capture the essence of the text within its 
short context windows. By breaking the content into smaller chunks, the vector database can more 
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accurately represent and retrieve the semantic meaning of the text. Second, chunking addresses 
the limited input context length of transformer-based Large Language Models (LLMs). For instance, 
OpenAI’s GPT-3.5 model has a token limit of 4K tokens. Therefore, it is crucial to provide only the 
most relevant parts of the content and minimize unnecessary information. 

However, far too many AI/ML engineering teams make a deeply flawed assumption from the outset 
that all documents are unstructured blobs. Then, they build convoluted RAG models based on that 
fundamental and erroneous assumption. Over the past two decades, thousands of organizations 
have transitioned from book/chapter-oriented content models to component-based topic models. 
They have adopted reusable, topic-oriented information architectures, often using XML formats 
like DITA to facilitate this shift. Other formats used to componentize content include Markdown, 
AsciiDoc, ReStructuredText, and custom SGML/XML schema. The DOM Graph RAG model also 
supports these topic/component-based document formats. 

In many content environments today, document source content is already properly segmented into 
components with the correct context intact. When using DITA Maps as topic collectors, the 
Document Object Model and other relational constructs declare the relationships between topics. 
Therefore, it is counterproductive and entirely counterintuitive to break down these well-structured 
topics any further into random chunks, discarding the carefully designed context and relationships. 
Doing so only leads to using an inefficient and error-prone process in a futile attempt to correctly 
reassemble and restore original context and re-establish contextual relationships using a vector-
based retrieval model—a process inherently flawed in all vector-based RAG models, including 
models based on text-generated knowledge graphs. 

A more effective approach is to use the existing topic-component DOM model, allowing it to 
manage the relationships and context. This approach eliminates the deficiencies and weaknesses 
associated with content retrieval from vector databases, providing a more straightforward, more 
accurate, and elegant solution and architecture for content management and retrieval in RAG 
systems. 

Constructing the enriched DOM knowledge graph  
The image below shows how to build a high-level DOM-based knowledge graph. A prerequisite is 
having the DOM ontology in place. The content graph is created in the first step, and domain 
taxonomies and ontologies can enrich it in the second step. 
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Figure 5. Creating the DOM Graph 

 

Prerequisite: Converting the DITA schema into an ontology 

The first step and key to automatically generate a graph using DITA is to convert the DITA schema 
into an ontology and then load that ontology into a graph database. For this project, we used 
Ontotext’s GraphDB as the graph database. The ontology serves as a schema the model uses to 
map the DITA (or other non-DITA) source topics and automatically create a knowledge graph. This 
process also allows updates to the knowledge graph when content is changed. 

Our implementation used the open-source DITA ontology created by Colin Maudry. For this project, 
we used Semantic Web Company’s PoolParty Semantic Suite to import and complement the DITA 
ontology to automate the transformation process.  

The DITA ontology represents the content structure for the graph (for example, Task is a child of 
DITAMap, Element x is a child of Element y, and so on). OWL classes, properties, and constraints 
represent the semantics of DITA concepts and relationships. The ontology can be output as 
RDF/XML, Turtle, OWL/XML, or JSON/LD and imported into a graph database. The ontology 
captures the relationships of top-level topic collectors (DITAMaps) and their subtrees of child 
maps, topics, and elements.  



13 
 

 

Figure 6. A visual representation of a document object model (DOM) graph 

 

DITA provides a default set of topic types: Topic, Concept, Task, Reference, Troubleshooting, Q&A, 
and Learning and Training. The DITA topic architecture is also extensible, allowing organizations to 
create new topic types that are inherited from these basic topic types (a process called 
specialization). DITA specializations can also be added as custom ontology, extending the default 
DITA ontology. The ontology reflects these topic types and cascades down the DOM tree, 
representing content elements within topics as graph nodes. The structure looks something like 
this: 
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Figure 7. Logical components of a DITA topic 

 

Note: DITA is not the only structure content schema for creating a DOM graph-mapping ontology. 
Other structured DOM content models can be used, such as DocBook, S1000D, TEI (Text Encoding 
Initiative), and custom XML dialects. You can also create your own content model and content 
ontology. We recommend implementors build on top of widely used standards such as DITA. Other 
standards, such as iiRDS (International Standard for Intelligent Information Request and Delivery), 
can be used as a superset of DITA to extend the interchange and interoperability between 
organizations. In a sense, iiRDS can be an optional top-level ontology (TLO) for structured content 
interchange. 
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Step 1: Automating the content graph construction 
The model then uses the ontology to automatically create and maintain a content or DOM graph 
from the DITA document instances or other content formats. The DITAMap, topics, elements, and 
child maps are represented as nodes in the DOM graph with a persistent URI linking to the actual 
content files. As for the ontology, Ontotext’s GraphDB is used as a graph database to store the 
content graph for this project.  
 

 

Figure 8. Document component graph nodes 

 

We used the DITA Open Toolkit (available on SourceForge) to automate the transformation of the 
content instances represented by top-level DITAMaps. The transform converts source topic files to 
RDF for ingestion into the graph database. When the RDF is imported into the graph database, the 
graph database automatically builds the graph based on the DITA ontology. The depth of the 
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resulting DOM tree represented as nodes in the resulting graph can be controlled through the XSLT 
transformation process. For example, you might optionally choose to include topics encoded in 
formats like Markdown or AsciiDoc as DITAMap TopicRefs, treating them as whole topics for 
retrieval while providing more granular subtopic element retrieval for highly structured DITA and 
other XML-encoded documents. 

Likewise, using the same method, you can automate the reingestion of new or updated 
documents. You can also automate RDF transformation and content updating from a content 
management system or repository to any degree of frequency. 

Metadata associated with maps and topics, whether embedded within them or sourced externally, 
provides state metadata to automate sophisticated AI content operations and change 
management that traditional RAG models universally lack. For instance, we can designate content 
by node as updated, expired, retired, internal use only, unreleased, confidential, versioned, 
entitled, localized, and more. Proper content management ensures organizations can deliver the 
right content, to the right person, at the right time, and in the right experience.  

If the topics are in DITA format, you can include such metadata directly in the topic or element 
containers. For non-DITA topics, such as Markdown, ASCIIDoc, and other topical formats, you can 
apply metadata to the TopicRef elements in the DITAMap. The TopicRef element is itself a 
container. Most vector-based RAG models lack this crucial content management capability, 
making them vulnerable to inaccuracies over time as content is rarely static; additions, changes, 
deletions, and modifications to the content corpora are often constant and voluminous.  

Step 2: Enriching the DOM graph 
While the DITA structure and intelligent content are beneficial, incorporating Named Entity 
Recognition (NER) and Named Entity Extraction (NEE) along with classifying maps and topics (and 
even elements) with domain taxonomies and ontologies further enhances the graph’s utility for 
accuracy, inferencing, and reasoning. 

Authors can manually apply taxonomy to the content, assist with recommenders, or completely 
automate it with autoclassifiers. While our enriched DITA DOM-Graph can be used for retrieval 
without an inference engine, extending the graph with a domain-specific knowledge model 
ontology adds powerful inferencing, reasoning, and fact-checking capabilities that LLMs and 
vector-based RAG models lack. 

Step 3: Leveraging the graph database 
With the knowledge graph in place, we can now mine the graph for retrieval, interrogate the content 
corpus, and use SPARQL, a graph query language, to query the knowledge graph. The choice of the 
graph database is critical for scalability, performance, and inferencing capabilities. 

In addition, the graph model is perfect for data integration when you want to go beyond the DITA 
content and integrate other content sources like e-learning data, product information, and so on. 
Based on the graph model, it is easy to create a semantic search index or a vector database on top 
of the knowledge graph and use the most appropriate model for your application's purpose. 

This approach allows us to harness the full potential of the DITAMap structure, combining the 
strengths of XML, taxonomies and ontologies, and graph databases to deliver a more robust and 



17 
 

precise content retrieval and reasoning system than what traditional vector-based RAG retrieval 
models can offer. 

Building a DITA GraphRAG application - A working chatbot 
To illustrate the power and viability of the DOM Graph RAG model, we built a Graph RAG 
application on top of the enriched DOM graph to assess whether this approach can significantly 
improve the results compared to a traditional RAG approach. The image below outlines the high-
level architecture and data flow of this application.  

 

Figure 9. DOM graph reference architecture 

 

Why we included a vector DB 
Including a vector database in this graph-driven retrieval model might initially appear confusing 
and need clarification. We’ve emphasized that we don’t want to break our contextually accurate 
topics and self-describing elements into smaller fragments arbitrarily only to attempt to piece them 
back together using unreliable, probabilistic vector retrieval—an approach we’ve criticized for its 
lack of precision and context preservation - and we’re not.  

Since vector databases excel at similarity search, we applied their power and created a hybrid 
model. The system can manage well-defined and more open-ended or unclear questions by 
combining a vector database (for flexible, meaning-based semantic search) and a graph database 
(for precise, structured search). This combination makes the system more accurate and can 
provide better answers, regardless of how users phrase prompts. 

The vector database is populated by converting text chunks extracted from the structured RDF 
content into vector embeddings. These embeddings allow for semantic similarity searches, linking 
to the original RDF triples stored in the Ontotext GraphDB. The similarity search relies on only the 
vector database; the LLM is not involved. The similarity engine receives the user’s request and 
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performs a search and a re-rank of similar content using a local embedding model. From that 
result, the model collects the DITA document references and uses them to query the graph for the 
actual content to be sent to the LLM. This hybrid approach ensures that structured (RDF) and 
unstructured (semantic similarity) content retrieval can work together, making the system more 
robust and flexible. 

The system can still discover and perform multi-hop retrieval without the vector database. It relies 
on the graph's structure and conceptual knowledge model relationships, which work well for clear 
and precise questions but can struggle with more vague or complex ones. It might miss out on 
related content where the structure and knowledge model concept relationships do not connect 
and could slow down when managing large amounts of information. Semantic retrieval is critical 
when including a mix of structured and unstructured content formats in the same model, such as 
Markdown or AsciiDoc, alongside DITA. 

Let’s break this down in more detail. 

Vector database as a semantic helper 
In standard vector-based RAG, models break content into random chunks, vectorize them, and 
store them in a vector database. Standard vector-based RAG models employ similarity search to 
directly retrieve relevant chunks from the vector database fed to the LLM.  

The vector database plays a different and complementary role in a DOM Graph RAG model. It isn’t 
used to feed chunks of content directly to the LLM. Instead, the vector DB is a semantic helper that 
helps identify contextually correct and relevant topics or elements. The DOM graph model retrieves 
content objects from the graph database using a SPARQL query. 

The vector database in this architecture contains embeddings (vector representations) of the 
logical components of the documents as represented by the document structure. The model 
derives embeddings from the graph, not the source XML files or other document encodings. The 
model does not randomly chunk the content for the vector database as would be done when using 
a vector database in a conventional RAG model. Instead, the vector database content retains the 
original context of the local components of the original topics, as illustrated in Figure 4.  

The similarity search in the vector database helps identify related or similar topics and elements 
based on the semantic meaning of the user query, even if those topics or elements are not directly 
connected through the graph structure or the taxonomy and ontological relationships. 

After the vector database identifies similar topics or elements, it tells the system which specific 
nodes (topics or sub-elements) in the graph database to retrieve. The content used to generate 
answers or respond to queries comes from the graph database using SPARQL queries. 

Graph database for structure-based retrieval: 
As mentioned, the graph database remains the primary source for retrieving the content. The 
content is stored in RDF format, with structured relationships, hierarchies, and taxonomies. This 
structured content (like DITA topics and elements) is retrieved through SPARQL queries. 
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The graph database manages structured queries where the relationships (hierarchies, taxonomies, 
direct links between topics) are clearly defined. It is ideal for retrieving content explicitly linked in 
the structure, like parent-child or ontological concept relationships. 

The role of the vector database in this hybrid model: 
The vector database's role is to help identify similar or related topics that might not be linked in the 
graph. It provides semantic guidance that suggests content that could be relevant based on the 
meaning of the query, even if graph relationships don’t connect those topics. 

Once the vector database helps identify these relevant nodes, the graph database retrieves the 
actual content (topics, sub-elements, and so on) to generate the answer. 

Native graph query without a vector database: 
The native graph queries also use named entity recognition and retrieval to extract nouns and noun 
strings to search for related topics. In a pure graph-based-only model, we can build queries based 
on these extracted entities or labels and rely on inference and reasoning to find related content. 

However, this approach might miss some semantic connections the vector database can capture. 
The vector database helps overcome limitations where the graph doesn’t explicitly connect 
specific topics but where semantic similarity still exists. It adds a layer of flexibility that purely 
graph-based queries might lack, especially for handling ambiguous or more loosely structured 
queries. 

To sum it up: 

● Graph database: This database retrieves content from the structured RDF graph (such as 
DITA topics and elements) using structured SPARQL queries. 

● Vector database: Acts as a semantic helper, identifying related content that may not be 
linked in the graph but is semantically similar. It helps guide the graph DB on which 
additional content should be retrieved. 

● Final content: The graph database, not the vector database, contains all the content used 
to generate answers. 

While the vector database aids the graph database by suggesting semantically related content, the 
model always retrieves the final payload of content sent to the LLM. The hybrid approach ensures 
flexibility and precision by combining the strengths of both systems. 

How the DOM Graph RAG application works 
We’ll explain step-by-step what happens in this application when the user asks a question and 
include images of the results that the user receives based on sample questions. This working 
prototype illustrates integrating generative AI capabilities into a search experience. The 
possibilities are endless. Also, note that the success of graph-driven generative AI applications 
depends heavily on a good user experience and user interface design. 

Step 1: Prompt refinement and assist:  
As the user inputs a prompt, the knowledge graph assists the user in writing the prompt by making 
dynamic suggestions to formulate and improve the question as they type. The knowledge graph 
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enriches (grounds) the prompt, significantly reducing the burden on the user with prompt 
engineering. 
 

 
 

Figure 10. A sample DOM Graph RAG application 

 
 

Step 2: Determining user intent: 
The model sends the prompt to the LLM for intent recognition. That way, the model can tailor the 
content that best fits to answer the question to the user's intent, such as determining whether the 
user is seeking only conceptual information, obtaining reference information such as comparing 
functionality, obtaining a specific set of steps to perform a task, or how to fix a problem with 
troubleshooting instructions. You might recall that the topic model includes self-describing typed 
topics that categorize their purpose. 

Step 3: Leveraging the vector database for semantic similarity search: 
In addition to the LLM processing the user prompt for intent recognition (Step 2), the prompt is also 
sent to the vector database to identify semantically similar chunks of information. This step plays a 
crucial role in handling unstructured or less structured content and addressing queries where 
semantic similarity is important but direct links between concepts in the knowledge graph may not 
exist. As described earlier, the vector database is a semantic helper for the graph, not for direct 
content retrieval. Notice that there is no direct connection in Figure 9 between the vector database 
and the LLM. 

Step 4: Query the graph to retrieve the content to send to the LLM: 
Based on the user intent and the DITA elements suggested by the similarity search, the model 
selects the relevant DITA elements from the enriched DOM Graph via a dynamically generated 
SPARQL query to the graph database. The structure and traversal of this query adapt to the user’s 
intent, targeting different and specific elements, such as whole topics, particular elements (for 
XML topics), or a combination of both. The query may also retrieve additional content associated 
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with the initial elements. The user request is then sent with the DITA elements to the LLM to 
generate a preliminary answer. The system augments the response by highlighting concepts from 
the knowledge model found in the answer. That way, we improve the user experience by providing 
contextual information. 

 

Figure 11. Summarized response 

 

Step 5: The user request and the reply from the LLM are further expanded by the knowledge model 
and sent to Poolparty’s Recommender engine to perform a lexical-weighted search and identify the 
additional documents most relevant to the user prompt. This process is highly configurable. Teams 
can add a domain ontology to the recommendation algorithm to identify content based on the user 
intent or context. 
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Figure 12. Recommended content 

 

Step 6: Finally, the user prompt, the preliminary answer from the LLM, and the recommended 
documents are sent to the LLM to generate an answer to the user's question summarizing all the 
provided information. 
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Figure 13. Main takeaway - generated summary 

 

The application also generates follow-up questions that the user can ask to go into more detail as a 
next step. 

 

Figure 14. Suggested follow-up questions 
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The knowledge model guides the user from beginning to end throughout the search process. Since 
it is not a black box like the LLM algorithm, it allows tailoring of the request, gives context to the 
prompts sent to the LLM, and augments the answer that you get back to make the answer more 
explainable. In that sense, it allows you to tailor the answers you get to the specific domain of the 
users without training the model. It increases the precision of the answers, makes them 
explainable, and assists the user in better prompt engineering.  

That also means that the quality of the knowledge model (taxonomy and ontology) plays an 
important role. Again, LLMs can help suggest new concepts and labels for the taxonomy and 
suggest classes and relations relevant to the ontology. However, this was not part of building this 
DOM GraphRAG application on top of an enriched DOM graph. 

Links to referenced web pages 
You might wonder how the model provides links to published and related content with answers. 
Generating those links was simple. We used IDs in the source topics to match the identical IDs 
carried through to the published web pages. Therefore, we can easily refer to or match 
corresponding XML files, knowledge graph resources, web pages, and elements within web pages. 

Dependencies 
Building a DOM Graph RAG solution requires time and investment, as with any custom RAG 
solution. Requirements to consider:   

Topic-oriented content: The model can accommodate a variety of topic/component-oriented 
content formats, assuming you either have content in a component/topic model or are open to 
converting your content to a topic model. It can support topics written in many formats. Structured 
formats like DITA, other XML, or JSON-encoded topics can enhance content object retrieval. 
Suppose you need to manage monolithic sources of unstructured content or data. The DOM graph 
model can be combined with a separate vector database or graph solution in a hybrid 
configuration.  

Domain knowledge model: The DOM Graph Model forms the structural basis for automating the 
construction and updating of a knowledge graph. Incorporating concepts related to your business, 
product, or services significantly enhances reasoning and inference to uncover indirectly 
connected content. 

Taxonomy and ontology management: Applying taxonomy labels to your content significantly 
improves named entity recognition and retrieval, semantic and neuro-symbolic inferencing, and 
reasoning. Developing and maintaining taxonomy takes time, effort, and governance. Taxonomy 
labels can be applied to content manually, semi-automatically (using a recommender), or 
automatically using an autoclassifier provided by many taxonomy management tools. Creating 
taxonomies and ontologies requires knowledge of your business and design skills. 

Designing a process or system that manages changes to the applied taxonomies and ontologies is 
essential. We recommend using semantic platforms such as PoolParty Semantic Suite to develop, 
maintain, manage, and govern taxonomies and ontologies and apply them to your content. Some 
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content management systems integrate or have out-of-the-box connectors with commercial 
taxonomy/ontology management platforms, or you can establish a custom integration via API. 

Transforms: The DITA Open Toolkit on SourceForge contains a transform engine. Creating or 
modifying transforms requires expertise in XSLT or similar skills. In addition, a text-mining tool is 
needed to enrich the DOM graph with taxonomies and ontologies. In our case, the respective 
component of PoolParty Semantic Suite was used for this task. 

Application building: This model requires you to develop a user-facing application, such as a 
chatbot, and connect it with one or more delivery channels, such as your help website, technical 
support site, and in-product help. The application we built in our case was built on Poolparty’s 
GraphSearch and Recommender components, which provide APIs to build such applications. 

Automating content updates: Most production systems will not have static content. By that, you 
need to plan for continuous content updates, and your taxonomies and ontologies will change over 
time. This can be achieved by integrating automation tools to automate and schedule content 
source transforms between the involved content management system or source repository of the 
used semantic platform and its component, the graph database, and other indexes (e.g., vector 
database) that must be created and continuously updated. PoolParty’s automation component 
was used for our project UnifiedViews. 

State metadata: The paper discusses using state metadata to fulfill advanced content 
management requirements, including entitlement, multilingual support, version control, content 
retirement, and more. State metadata can be embedded within content nodes in a graph, in 
DITAMaps, and optionally within individual topics. State metadata can be included for non-DITA 
files using the OtherProps or custom attributes on DITAMap TopicRef elements. Ideally, 
maintaining a separate electronic system of record (SoR), such as a publishing plan or agenda, can 
track the status and information about all content and interface with the graph to populate and 
maintain state metadata automatically. 

Summary and Conclusions 
The development of large language models has revolutionized AI by bringing generative models to 
the forefront. While initial applications led to a frenzy of investments, the limitations of LLMs—
especially in accuracy and reliability—became apparent, spurring the adoption of retrieval-
augmented generation (RAG) models. However, vector-based RAG models still face critical 
challenges, such as hallucinations, loss of context, and lack of precision due to their reliance on 
probabilistic methods.  

Moreover, critical content management capabilities are virtually absent from most vector-based 
RAG models. One can argue that the lack of vital content management capabilities in current 
models, such as those outlined in this paper, is tantamount to professional content management 
malpractice, exposing a company’s reputation, if not liability.  

The Document Object Model GraphRAG (DOM Graph RAG) model was developed to overcome 
these limitations by integrating structured content and neuro-symbolic reasoning. Unlike vector-
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based models, which struggle with preserving context and managing dynamic content, DOM Graph 
RAG utilizes a graph database to maintain the original structure, relationships, and metadata. This 
ensures more accurate, reliable, and explainable outputs. It also automates graph construction 
from existing structured content, supporting frequent updates without loss of context and 
significantly improving change management. 

We evaluated the DOM Graph RAG prototype model against a mature traditional vector-based RAG 
model using the same content corpora. We achieved reliable neuro-symbolic and semantic 
retrieval even with a minimal domain knowledge model. The DOM Graph RAG model effectively 
answered test questions and provided accurate recommendations. The results showed significant 
improvement when domain knowledge concepts were integrated, with continued gains as the 
concept model became more mature and robust. As the content was further enhanced with 
taxonomy, the model's performance improved even further. 

Key benefits of the DOM Graph RAG model include enhanced accuracy through knowledge graphs, 
the ability to manage complex relationships and multi-hop retrieval, and superior efficiency in 
managing large-scale content. Reducing dependence on LLMs for retrieval also lowers 
computational costs. The model further supports advanced personalization and 
recommendations, improving the user experience by providing precise, context-aware outputs. 

The DOM Graph RAG model is scalable, can integrate with hybrid approaches (combining vector 
and graph databases), and supports critical capabilities like version control, reuse, entitlement, 
and localization. Using a graph-based approach, DOM Graph RAG provides a more robust, cost-
effective solution for AI-driven content management, offering substantial advantages in high-
stakes environments requiring accuracy, trustworthiness, and efficiency. 

The DOM Graph RAG project was developed as an industry model using open standards without 
intending to sell products or services. While the tools and providers used in its development are 
recommended, organizations can choose their technology partners and tools. The key benefit of 
adopting DOM Graph RAG is complete control over your solution and knowledge model, avoiding 
dependency on external providers and the risks of obsolescence or vendor lock-in in this rapidly 
evolving space.  

DOM Graph RAG - a sustainable model that adds content and knowledge in the loop.  
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Glossary 
 

AI (Artificial Intelligence) 
 AI refers to machines or software that can 
perform tasks typically requiring human 
intelligence. These include problem-solving, 
understanding natural language, and 
decision-making. For example, AI powers 
virtual assistants like Siri or Alexa. 

Chunking 
 In RAG models, content is often broken into 
smaller pieces, or "chunks," to make it easier 
to process. For example, a long article might 
be split into segments paragraphs, storing 
each segment separately to make retrieval 
faster. 

Componentized Content 
Componentized content breaks down large 
documents into smaller, reusable 
components or topics. Unlike "chunking," 
componentization ensures that content is 
structured and organized to retain context 
and relationships between sections, which 
can be efficiently retrieved and reused. 

Content Ontology 
A content ontology formally represents the 
structure and relationships between various 
content components. It defines how content 
types relate, enabling better management, 
retrieval, and reuse of structured content. 
Content ontologies are vital for creating 
efficient and scalable content management 
systems in industries requiring precision and 
organization. 

Content State Management 
Content state management involves tracking 
and maintaining content's various statuses, 
such as whether it is published, expired, in 

draft mode, or versioned. In structured 
content systems, this metadata ensures that 
only the appropriate content is retrieved and 
displayed, reducing errors and ensuring 
compliance with content governance 
policies. 

Cosine Similarity 
 Cosine similarity is a mathematical measure 
used to compare the similarity between two 
pieces of text, represented as vectors, by 
calculating the angle between them. If two 
vectors point in the same direction, they are 
considered similar. For example, two 
documents discussing "Paris" and "France" 
might have a high cosine similarity because 
they contain related concepts. 

DITA (Darwin Information Typing 
Architecture) 
 DITA is a standard for creating structured 
documents. It's widely used for writing 
technical content, and its structured nature 
makes it easy to manage, reuse, and 
transform content. For instance, technical 
manuals are often written in DITA format. 

DITA Specialization 
DITA Specialization refers to extending the 
Darwin Information Typing Architecture 
(DITA) to create custom topic types tailored 
to specific industry or organizational needs. 
These specializations inherit properties from 
basic DITA types and allow for greater 
flexibility in structured content authoring. 

Document Object Model (DOM) 
 DOM is a programming structure that 
represents a document (like an HTML or XML 
file) as a tree of objects. Each part of the 
document (for example, a paragraph or 
heading) is a node in this tree, which 
programs can manipulate. For example, 
JavaScript uses the DOM to dynamically 
change a webpage’s content. 
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Fact-Checking in AI 
 Fact-checking involves validating the 
information generated by an AI system 
against a reliable external source, like a 
knowledge graph, to ensure accuracy. 

Generative AI 
 Generative artificial intelligence refers to 
models that can create new content, like text, 
images, or music. An example is DALL·E, 
which generates images based on textual 
descriptions. 

GraphDB 
 GraphDB, from Ontotext, is a graph database 
management system designed to store and 
manage large amounts of data as a 
knowledge graph. It allows users to query and 
infer relationships between data points using 
SPARQL, making it ideal for complex data 
retrieval applications. For example, a 
company might use GraphDB to store 
product information, customer data, and 
their interrelations, which can then be 
queried to provide tailored recommendations 
or insights. 

These tools are essential in building AI and 
knowledge-based systems. They allow for the 
structured and dynamic management of large 
datasets and enhance the capabilities of 
content retrieval, reasoning, and decision-
making. 

Graph Embeddings 
 Graph embeddings represent the nodes and 
edges of a graph as numerical vectors, 
making it easier for AI models to work with 
graph data. For example, in a social network 
graph, each person could be a node, and 
their relationships would be edges. 

Hybrid Model (Graph and Vector) 
 A hybrid model uses graph databases 
(structured retrieval based on relationships) 

and vector databases (semantic similarity 
search). This makes the system more flexible, 
handling both well-defined and ambiguous 
queries. 

Inference Engine 
An inference engine is a component of a 
knowledge system that applies logical rules 
to the data within a knowledge graph to 
derive new information or conclusions. In 
neuro-symbolic AI, inference engines help 
validate the information, provide fact-
checking capabilities, and enable more 
accurate and logical responses from AI 
models. 

Knowledge Graph 
 A knowledge graph is a database that stores 
information in a structured format where 
each piece of data is linked to others, forming 
a network. It helps machines understand 
relationships between data. For example, a 
knowledge graph might link "Paris" to 
"France" as the capital city. 

LLM (Large Language Models) 
 LLMs are an AI model that can understand 
and generate human language based on vast 
amounts of text data. Examples include 
OpenAI’s ChatGPT, which can generate 
coherent text based on prompts. 

Multi-Hop Retrieval 
 Multi-hop retrieval is an AI method in which 
multiple pieces of information are connected 
to answer a complex question. For example, 
to answer "Which country is the president of 
Apple from?" the AI needs first to find "Tim 
Cook" (the president of Apple) and then 
search for "Tim Cook's nationality." 

Neuro-Symbolic Reasoning 
 Neuro-symbolic reasoning refers to AI 
models that combine neural networks (which 
learn patterns) with symbolic reasoning 
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(which uses logical rules). Symbolic 
reasoning helps AI systems reason about 
data, check facts, and infer new information 
rather than just relying on patterns. 

NER (Named Entity Recognition) 
 NER is a process where AI identifies and 
classifies proper nouns (like names of 
people, organizations, dates, or places) in a 
text. For example, in the sentence "Steve Jobs 
founded Apple," NER would identify "Apple" 
as a company and "Steve Jobs" as a person. 

Ontology 
 An ontology is a formal representation of 
knowledge in a domain. It defines the 
categories, properties, and relationships 
between concepts. For example, in 
healthcare ontology, concepts like "Doctor," 
"Patient," and "Hospital" would be defined, 
along with their relationships. 

PoolParty Semantic Suite 
 PoolParty Semantic Suite, from Semantic 
Web Company, is a semantic technology 
platform for building and managing 
knowledge graphs, ontologies, taxonomies, 
and linked data. It helps organize and link 
data meaningfully, enabling better content 
retrieval and reasoning. For example, 
PoolParty can be used by businesses to 
categorize and structure large datasets, 
improving searchability and decision-making 
by connecting related concepts. 

Precision Paradox 
 This is a phenomenon where improving a 
system's precision (accuracy) makes any 
errors more noticeable and impactful. For 
example, if a system becomes particularly 
good at answering questions, even a tiny 
mistake becomes more glaring. 

RAG (retrieval-augmented generation) 
 RAG is an AI technique in which a model 
retrieves relevant information from external 
sources. For instance, when you ask a RAG 
model a question, it might search a database 
for relevant documents and then use that 
information to create an accurate response. 

RDF (Resource Description Framework) 
 RDF is a framework for representing 
information about resources on the web. It 
represents data as triples: subject-predicate-
object, which describe relationships. For 
example, "Paris is the capital of France" can 
be an RDF triple. 

SPARQL 
 SPARQL is a query language that retrieves 
and manipulates data stored in knowledge 
graphs. It works like SQL for databases but is 
designed for graphs. For example, it could be 
used to find all the cities in France using a 
knowledge graph. 

Vector Database 
 A vector database stores data in numerical 
form (vectors) based on their meaning. It 
allows for similarity searches. In AI, it helps 
find content that is "similar" to a query. For 
example, if you search for "cat," it might 
return information on "felines" as well. 

XML (Extensible Markup Language) 
 XML is a markup language that defines rules 
for encoding documents in a human-
readable and machine-readable format. 
Websites often use XML to store data that 
needs to be shared between different 
systems.

 


