Contaminant	MCL	MCLG	LEVEL	VIOLATION	UNIT	Likely Source of
			DETECTED	Y/N	MEASUREMENT	Contamination
Chlorine (C12) 4.0 mg/L	4.0 mg/L	0.50-0.1.2	-	-	Water additive to
						control microbes

Microbial Contaminants

Total Coliform	0	0	-	N	-	Naturally present in
Bacteria						environment

Inorganic Contaminants 9/25/19 - SOURCE 1

Nitrates S1	10.0	-	< 0.20	N	Mg/L	Runoff from
09/25/19						fertilizer use;
						leaching from septic
						tanks, sewage;
						erosion of natural
						deposits

Inorganic Contaminants 9/25/19 - SOURCE 2

Nitrates S2	10	10	<0.20	N	Mg/L	Runoff from
09/25/19						fertilizer use;
						leaching from septic
						tanks, sewage;
						erosion of natural
						deposits

Inorganic Contaminants 9/25/19 - SOURCE 3

Nitrates S3	10	10	< 0.20	N	Mg/L	Runoff from
09/25/19						fertilizer use;
						leaching from septic
						tanks, sewage;
						erosion of natural
						deposits
Iron S3						Naturally Occurring
	0.3	_	<0.10	N	Mg/L	
Manganese S3	0.3	-	0.014	N	Mg/L	Naturally Occurring

Inorganic Contaminants 9/25/19 SOURCE 4

Nitrates S4	10	10	< 0.20	N	Mg/L	Runoff from
						fertilizer use;
						leaching from septic
						tanks, sewage;
						erosion of natural
						deposits

Inorganic Contaminants 9/5/19 SOURCE 5

Nitrates S5	10	10	< 0.20	N	Mg/L	Runoff from
						fertilizer use;
						leaching from septic
						tanks, sewage;
						erosion of natural
						deposits
Iron S5	0.3	_	0.52	N	Mg/L	Naturally Occurring
Manganese S5	0.3	-	0.012	N	Mg/L	Naturally Occurring

Chloride S5	250	_	10.9	N	Mg/L	
Sulfate S5	250	_	8.9	N	Mg/L	
SodiumS5	-	_	22.1	N	Mg/L	
Hardness S5	-	_	171.0	N	Mg/L	
Conductivity S5	700	_	316.7	N	μmhos/com	Ability of water to
						conduct electrical
						current
Turbidity S5	-	_	4.27	-	_	

Volatile Organic Contaminants Disinfection By-Products 09/25/19 – SOURCE 3

TTHM (Total Trihalomethanes)	80 depending on size/treatment	-	0.92	N	Ug/L	By-product of drinking water chlorination
HAA5 (Haloacetic Acid)	60	-	ND	N	Ug/L	By-product of drinking water chlorination
Arsenic	0.010		0.0068	N	Mg/L	Naturally Occurring
Chloroform	0.5	0.5	0.92	N	μg/L	By-product of drinking water chlorination

LEAD AND COPPER

Primary	Year	MCLG	UNITS	ACTION	90 TH	SAMPLES	VIOLATION	Major Sources in
Contaminants	Tested			LEVEL	PERCENTILE	> AL	Y/N	Drinking Water
Copper	2017	1.3	ppm	1.3	0.44	0 of 5	N	Corrosion of
								household
								plumbing systems;
								erosion of natural
								deposits
Lead	2017	0	ppm	0.015	0.002	0 of 5	N	Corrosion of
								household
								plumbing systems;
								erosion of natural
								deposits

The maximum contaminant level goal (MCLG) is the level of a contaminant in drinking water below which there are no known or expected risks to health. MCLGs allow for a margin of safety. The regulatory limits for lead and copper are called action levels. An exceedance occurs when the concentration of the lead or copper in more than 10 percent of the tap water samples exceeds an action level.

- The MCLG for lead is "0" and the action level is 15 ppb (or .015 mg/L).
- The MCLG and action level for copper is 1,300 ppb (or 1.3 mg/L).

Lead or copper action level exceedances will trigger corrosion control treatment or other requirements. We will notify all water users if our system exceeds the lead action level.