Nine Element Watershed Plan: A Blueprint for Watershed Restoration and Protection of the Maple Watershed 04050005

Introduction

3 Zones of

Watershed Challenges

Major

Watershed:

North:

- Characterized by numerous lakes

Central:

- Home of Maple River

South:

 Primarily where streams converge and drain

- ➤ Agriculture
- Road-stream crossings
- ➤ Low Forested
 Riparian Buffers

Overview of the Nine Elements

- Identify pollution sources.
- 2. Estimate pollutant load reductions.
- 3. Describe management measures.
- 4. Estimate financial needs.
- **5.** Develop outreach and education strategies.
- 6. Develop an implementation schedule.
- 7. Describe measurable milestones.
- 8. Develop criteria to measure progress.
- 9. Create a monitoring plan.

HUC 12s with the:

- 1a. Highest Erosion (Highest slope)
 - 1b. Highest Population density
 - 1c. Least forested riparian buffer
 - 1d. Most Agriculture
 - 1e. Most road-stream crossings
- 1f. Stream segments on the 303(d) list

Pollution Sources

Highest Erosion Per HUC12

Spatial Reference Name: NAD 1983 Michigan GeoRef Meters PCS: NAD 1983 Michigan GeoRef Meters

GCS: GCS North American 1983 Datum: North American 1983 Map Metadata

WSIO HUC 12 Indicator Data for EPA Region 5 (2023) [download], EPA, https://www.epa.gov/wsio/wsio-indicator-data-library

1a.

Slope and Reclassified Slope Per HUC 12

Credits: R Demond, December 2024

Legend

Watershed Boundary

Zonal Statistics Per HUC 12

Value

18357 111

Slope Reclassed

Value (1 = >5%)

Ground Surface Elevation

Value

336.797 192.679

Spatial Reference

Name: NAD 1983 Michigan GeoRef Meters PCS: NAD 1983 Michigan GeoRef Meters

GCS: GCS North American 1983

Man Metadata

WSIO Geodatabase with Hydrologic Unit (HUC12) polygons (2024) [download], EPA, https://www.epa.gov/wsio/wsio-indicator-data-library

0 3.25 6.5 13 Miles

Population Density in HUC12 of Maple Watershed

1b.

Spatial Reference

Name: NAD 1983 Michigan GeoRef Meters PCS: NAD 1983 Michigan GeoRef Meters

GCS: GCS North American 1983 Datum: North American 1983 Map Metadata

WSIO HUC 12 Indicator Data for EPA Region 5 (2023) [download], EPA, https://www.epa.gov/wsio/wsio-indicator-data-library

Least Forested Riparian Buffer in HUC12

Least Forested Riparian Buffer in HUC12

Name: NAD 1983 Michigan GeoRef Meters PCS: NAD 1983 Michigan GeoRef Meters GCS: GCS North American 1983

Datum: North American 1983

Map Metadata
WSIO HUC 12 Indicator Data for EPA Region 5 (2023) [download], EPA,
https://www.epa.gov/wsio/wsio-indicator-data-library

1c.

Most Agriculture Per HUC12

Agriculture Per HUC12 of Maple Watershed

1d.

Spatial Reference Name: NAD 1983 Michigan GeoRef Meters PCS: NAD 1983 Michigan GeoRef Meters GCS: GCS North American 1983

Datum: North American 1983

Map Metadata
WSIO HUC 12 Indicator Data for EPA Region 5 (2023) [download], EPA,
https://www.epa.gov/wsio/wsio-indicator-data-library

Most Road Stream Crossings

Road-Stream Crossings Per HUC12

Spatial Reference Name: NAD 1983 Michigan GeoRef Meters PCS: NAD 1983 Michigan GeoRef Meters GCS: GCS North American 1983 Datum: North American 1983

Projection: Hotine Oblique Mercator Azimuth Natural Origin

Map Metadata Road and Stream Crossings WSIO Geodatabase with Hydrologic Unit Code (HUC12) polygons (2024)[download], EPA, https://www.epa.gov/wsio/wsio-indicator-

Road-Stream Crossings in HUC12s of Maple Watersheds

Created by: R. Demond, December 2024

Legend

Road-Stream Intersections

Streams and Rivers

Watershed Boundary

Maple Watershed

Spatial Reference

Name: NAD 1983 Michigan GeoRef Meters PCS: NAD 1983 Michigan GeoRef Meters GCS: GCS North American 1983 Datum: North American 1983 Projection: Hotine Oblique Mercator Azimuth Natural Origin

WSIO HUC 12 Indicator Data for EPA Region 5 (2023) [download],

https://www.epa.gov/wsio/wsioindicator-data-library

Stream segments on the 303d list

Stream Segments on the 303d List in HUC12

1f.

Spatial Reference

Name: NAD 1983 Michigan GeoRef Meters PCS: NAD 1983 Michigan GeoRef Meters GCS: GCS North American 1983 Datum: North American 1983 Map Metadata 303d Streams Section 303d List (2022) [downloaded], EGLE, https:// www.michigan.gov/egle/about/Organization/Water-Resources/ GLWARM/integrated-report

Pollutant Load Reductions

- Reducing Nutrient Runoff in Agricultural Areas
 - Improve and decrease areas
- Minimizing impact of road-stream crossing
 - Decrease number and area of crossings
- Increasing the percentage of forested riparian buffers
 - Restore and Expand
- Limit impaired streams
 - TDMLS from 303(d) list

To reduce pollutant loads and improve the health of watershed

3.

Management Measures

Fencing

 Around farms and agricultural lands to decrease animal interference and nutrient runoff

Plant native trees:

Restore forested riparian buffer

Replace culverts:

Decrease road and stream crossing

TDMLS:

 Total Daily Maximum Load for 303(d) impaired streams

Financial Analysis

\$19.51 billion

Fencing: about \$10 per foot.

Approximately \$19 billion for 177.35 sq km.

Vegetation Restoration: \$100 per tree.

Approximately \$50.6 million for four HUC 12.

Culvert Replacements: \$1,500 per culvert.

Approximately \$1 million for 687 culverts.

Funding Sources:

- Grants and financial assistance programs.
- Contributions from local stakeholders.

- Fundraising campaigns and
 - community events.
- Volunteer support to offset costs.

Outreach & Education

Work with Friends of the Maple River to educate and inspire action and promote collective responsibility for the health of the Maple Watershed:

- Host community workshops to educate and involve residents.
- Launch social media campaigns to broaden outreach and engagement.
- Distribute educational pamphlets to inform the public about watershed challenges and solutions.

https://www.facebook.com/FriendsoftheMapleRiver

Friends of the Maple River

Implementation Schedule

Educate the Public

- Raise Awareness
- Secure financial and volunteer support (Few months)

Acquire Resources

Trees, culverts, fencing

(Few months)

Hands-On Restoration Activities

- Volunteers planting trees and constructing fences
- Professionals installing culverts with volunteer support

(1-2 years)

Financial Resource Acquisition

- Fundraisers
- Stakeholders
- Volunteer support (1-2 years)

Overall: 1-2 years in total for implementation.

Measurable Milestones

1

Achieve 20% reduction in the number of roadstream crossings.

2

Decrease the total area of road-stream crossings by 40%.

3

Plant over

1,000 trees in

riparian

buffers

4

Fence in more than 50% of farms

5

Reduce overall pollution sources and evaluate the plan's success

Success Indicators

- Noticeable decrease in nitrogen and phosphorus levels around agricultural zones.
- Increase in forested riparian buffers.
- Reductions in both the number and area of road-stream crossings.
- Meeting water quality standards.
- Increase biodiversity in aquatic habitats.

Evaluation Criteria

Objective

Regularly evaluate progress and adapt strategies to ensure the ongoing effectiveness of the restoration plan.

Monitoring Methods:

1. Water Sampling

- Conduct consistent sampling at key locations (e.g., Central Zone around Maple River).
- Track changes in nutrient levels, sedimentation, soil quality, and overall water quality.

Purpose

- Collect critical data to assess restoration success.
- Inform adjustments to strategies and guide future actions.

2. Biological Assessments

- Perform macroinvertebrate surveys to measure stream health.
- •Identify trends in biodiversity and ecological conditions.

References:

Cost to Install a Fence - 2021 Average Prices. (2016, July 19). Inch Calculator. https://www.inchcalculator.com/cost-to-install-fence/
Increase resilience of stream crossings, culverts, and bridges to higher peak flows | USDA Climate Hubs. (2014). Usda.gov.

https://www.climatehubs.usda.gov/approach/increase-resilience-stream-crossings-culverts-and-bridges-higher-peak-flows-0

National Oceanic and Atmospheric Administration. (2019, June 16). What is a Watershed? NOAA.gov.

https://oceanservice.noaa.gov/facts/watershed.html

Pricing | Flint, MI: Michigan Culverts. (2024). Flint, MI: Michigan Culverts. https://michiganculvert.com/pricing/
US EPA. (2015, September 18). Benefits of Healthy Watersheds | US EPA. US EPA. US EPA. https://www.epa.gov/hwp/benefits-healthy-watersheds
Water Quality Practices and Resources. (2020, September 25). Farmers.gov. https://www.farmers.gov/conservation/water-quality
Willis, K. (2015, April 17). How Much Does It Cost to Plant a Tree? Angi. https://www.angi.com/articles/how-much-do-trees-cost.htm

Conclusion

• The Nine-Element Plan

- O Emphasizes the importance of addressing pollution, restoring natural buffers, and enhancing water quality.
- O Provides a strategic framework for the long-term health and sustainability of the watershed.
- O I urge stakeholders, local communities, and funding partners to contribute resources and support.
- O As well as, the collective responsibility to achieve shared restoration goals.
- O The Friends of the Maple River and other partners are how we can make this happen through their role in raising awareness and driving action for watershed restoration.
- O The Nine Element Plan promotes a sustainable and resilient future for the Maple Watershed through shared commitment and effort.