Pre-Installation Verification for High-Strength Bolts

by Lee Pielaet

This presentation covers the essential steps and methods for pre-installation verification of highstrength bolts in structural joints. We'll explore the required testing procedures and various installation methods to ensure proper bolt pretension and structural integrity.

Pioneer Steel Services, Inc.

On-Site Testing

Perform verification at the installation site.

1

2

Timing

Perform verification at the installation site.

On-Site Testing

Complete before placing bolting assemblies in the work

Pioneer Steel Services, Inc.

Timing

2

Complete before placing bolting assemblies in the work

3

Sample Size

On-Site Testing

Test at least three complete assemblies of each combination.

Perform verification at

the installation site.

Pioneer Steel Services, Inc.

2

4

- 1 On-Site Testing Perform verification at the installation site.
 - Sample Size Test at least three complete assemblies of each combination.
- Timing Complete before placing bolting assemblies in the work

Representative Conditions

Use assemblies that reflect actual work conditions.

3

Pioneer Steel Services, Inc.

Table 7.1Minimum Bolt Pretension for Pre-
Installation Verification

	Minimum Bolt Pretension		
	for Pre-Installation		
Nominal Bolt	Verificat	ion, kips	
Diameter,		Group 144 and	
db, in.	Group 120 = old	Group 150 = old	
	A325	A490	
1/2	13	16	
5/8	20	25	
3/4	29	37	
7/8	41	51	
1	54	67	
1 1/8	67	84	
1 1/4	85	107	
1 3/8	102	127	
1 1/2	124	155	

Test Procedure and Equipment

Bolt Tension Measurement Device

Use a calibrated device to verify that the pretensioning method develops a pretension equal to or greater than specified in Table 7.1. Ensure annual calibration of the measurement device for accuracy.

Test Procedure and Equipment

Bolt Tension Measurement Device

Use a calibrated device to verify that the pretensioning method develops a pretension equal to or greater than specified in Table 7.1. Ensure annual calibration of the measurement device for accuracy.

ASTM F436 Washers

Position washers according to current RCSC Specification Section 6.2. This ensures proper load distribution and prevents damage to the joint surface.

AWS American Welding Society

Turn-of-Nut Method

Step 1: Snug-Tightening

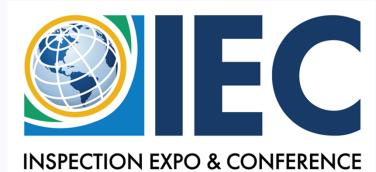
Install the bolting assembly to snug-tight condition using work tools and methods.

Pioneer Steel Services, Inc.

1

Step 1: Snug-Tightening Install the bolting assembly to snug-tight condition using work tools and methods.

Step 2: Matchmarking


If used in work, matchmark the bolting assembly.

Pioneer Steel Services, Inc.

2

Table 0.1 Nut Datation from Cruca Tight Condition				
Table 8.1 Nut Rotation from Snug-Tight Condition				
For Turn-of-Nut Pre-Tensioning ^{a,b} Disposition of Outer Faces of Bolted Parts				1
		•		-
	Both faces	One face normal to bot	Both faces sloped not	
Bolt Length ^c	normal to the	axis, other sloped not	more than 1:20 from	
	bolt axis	more than 1:20 ^d	normal to the bolt axis	
Not more	1/3 turn	1/2 turn	2/3 turn	
than 4d _b				1 –
More than	1/2 turn	2/3 turn	5/6 turn	
4 <i>d</i> _b but not				
more than				
8 <i>d</i> _b			-	_
More than	2/3 turn	5/6 turn	One turn	
8d _b but not				
more than				2 –
12 <i>d</i> _b				
Nut rotation is relative to bolt regardless of the element (nut or bolt) being turned. For all				
required nut rotations, the tolerance is plus 60 degrees (1/6 turn) and minus 0 degrees.				
^b Applicable only to <i>joints</i> in which all material within the <i>grip</i> is steel.				
^b Applicable or	niy to <i>joints</i> in wh	ich all material within the g	rip is steel.	
$^{\circ}$ When the bolt length exceeds 12 d_{b} , the required nut rotation shall be determined				
	•			
by actual testing in a suitable <i>tension calibrator</i> that simulates the conditions of				
solidly fitting steel.				
^d Beveled washer not used				
Both surfaces are perpendicular to the axis of the bolt.				
One surface is perpendicular to the bolt's axis, while the other is inclined at				
a slope not exceeding 1:20d. It's also known as a 5% slope				

Both surfaces are inclined at no greater than a ratio of 1:20 It's also known as a 5% slope from the perpendicular to the bolt axis.

Turn-of-Nut Method

Step 1: Snug-Tightening

Install the bolting assembly to snug-tight condition using work tools and methods.

Step 2: Matchmarking

If used in work, matchmark the bolting assembly.

Step 3: Pretensioning Apply rotation specified in Table 8.1

🗯 Made with Gamma

Minimu Ins	Table 7.1 m Bolt Pretension stallation Verificat	for Pre- ion	Turn-of-Nut Method
			1 Step 1: Snug-Tightening
Nominal Bolt	for Pre-In	olt Pretension stallation ion, kips	Install the bolting assembly to snug-tight condition using work tools and methods.
Diameter, db, in.	Group 120 = old A325	Group 144 and Group 150 = old A490	2 Step 2: Matchmarking
1/2	13	16	If used in work, matchmark the bolting assembly.
5/8	20	25	
3/4	29	37	Stop 2: Brotoncioning
7/8	41	51	3 Step 3: Pretensioning
1	54	67	Apply rotation specified in Table 8.1.
1 1/8	67	84	
1 1/4	85	107	A Step 4: Final Verification
1 3/8	102	127	T
1 1/2	124	155	Verify pretension meets Table 7.1 specifications. Resolve issues if below specification.

Calibrated Wrench Method

Snug-Tightening

1

2

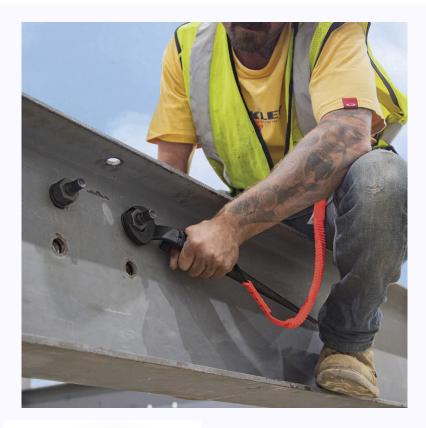
3

4

Install assembly to snug-tight condition using work tools and methods.

Pretensioning

Determine torque required to develop pretension equal to or greater than Table 7.1 specifications.


Torque Application

Apply installation torque to the nut.

Establish Minimum Torque

Use highest torque from three tested assemblies as minimum for work.

🗯 Made with Gamma

Twist-Off Tension Control Bolt Method

Snug-Tightening Install to snug-tight condition using work tools and methods.

Pioneer Steel Services, Inc.

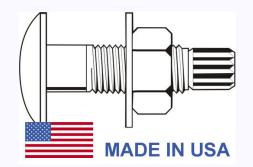
Twist-Off Tension Control Bolt Method

Snug-Tightening

Install to snug-tight condition using work tools and methods.

Pretensioning Use twist-off tension control bolt

installation wrench to sever splined end.


Twist-Off Tension Control Bolt Method

Snug-Tightening

Install to snug-tight condition using work tools and methods.

Pretensioning

Use twist-off tension control bolt installation wrench to sever splined end.

Final Verification

Confirm splined end is severed and pretension meets Table 7.1 specifications.

Table 7.1Minimum Bolt Pretension for Pre-
Installation Verification

	Minimum Bolt Pretension	
Nominal Bolt	for Pre-Installation	
Diameter,	Verificat	ion, кips Group 144 and
db, in.	Group 120 = old	Group 150 = old
	A325	A490
1/2	13	16
5/8	20	25
3/4	29	37
7/8	41	51
1	54	67
1 1/8	67	84
1 1/4	85	107
1 3/8	102	127
1 1/2	124	155

AWS American Welding Society

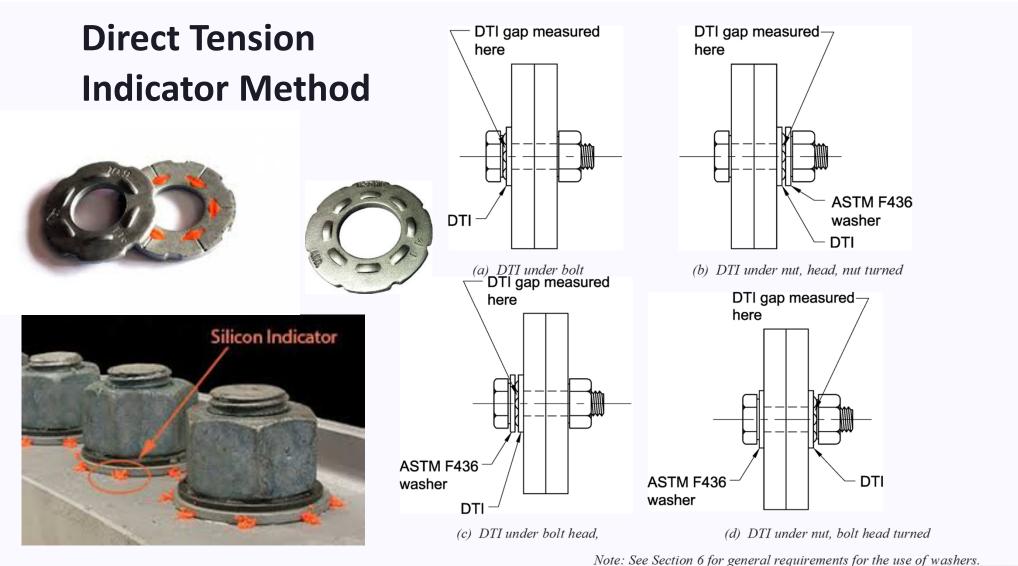
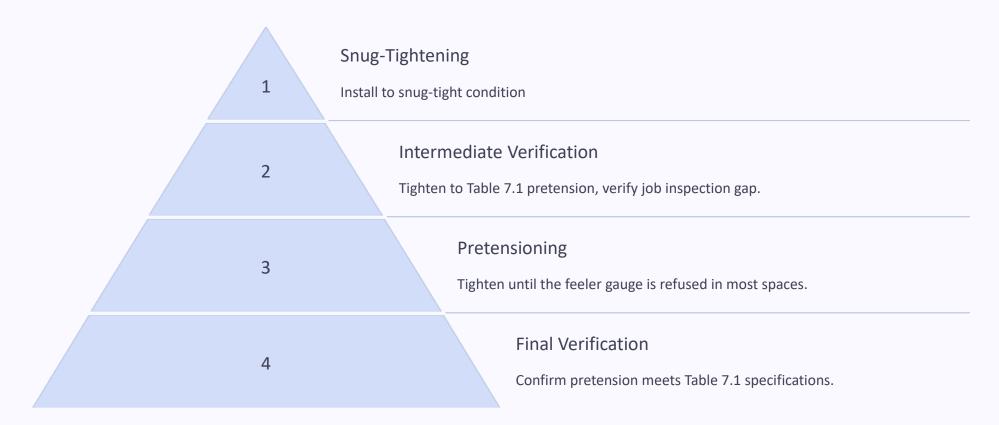



Figure C-8.1. Proper use and orientation of ASTM F959 direct tension indicators de Made with Gamma

Direct Tension Indicator Method

Use a feeler gauge to verify gaps between protrusions of the direct tension indicator at each step.

🗯 Made with Gamma

Bolting Assembly Tensioning: Combined Method

This presentation outlines the steps involved in the Combined Method of bolting assembly tensioning, a critical process for ensuring structural integrity in construction projects.

Pioneer Steel Services, Inc.

Step 1: Initial Tensioning

Initial Tension or Torque Application

The initial tension or torque is applied to the nut; if using a torque wrench, it must be calibrated within +/-10 percent accuracy. The torque value is specified in Tables 7.2 or 7.3. of the RCSC Specification.

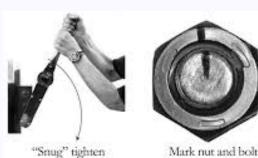
Table 7.2 Minimum Initial Tension for Pre-Installation Verification of Installation in Accordance with Section 8.2.5 (Combined Method)

Nominal BoltDiameter,	Minimum Initial Tension for Pre-Installation Verification, kips		
<i>d</i> _b , in.	Group 120	Group 144 and Group 150	
1/2	5	7	
5/8	9	11	
3/4	13	16	
7/8	17	22	
1	23	29	
1 1/8	29	36	
1 ¹ ⁄4	37	46	
1 ³ /8	44	55	
1 ½	53	66	

Table 7.3 Default Initial Torque Range for Pre-installation Verification of Initial Tension in Accordance with Section 8.2.5 (Combined Method)

Nominal Bolt	Torque Range for Pre-Installation Verification, Ib-ft ^a			
Diameter, d _b ,in.	Grou	p120	Group 144 ^b a	nd Group 150
	Min	Max	Min	Max
1/2	45	50	60	75
5/8	100	120	120	145
3/4	170	205	210	250
7/8	260	310	335	400
1	405	480	510	605
1 1/8	570	680	710	845
1 ¹ /4	810	965	1010	1200
1 ³ /8	1060	1260	1325	1575
1 ½	1390	1655	1735	2065

🟮 Made with Gamma


Step 2: Pretensioning

Matchmarking

If required by the project, matchmarking is applied to the bolting assembly. This is a visual indication of the initial rotation applied to the nut.

Rotation Application

The specific rotation, as outlined in Table 8.2, is applied to the bolting assembly. This rotation is critical for achieving the desired pretension.

Desired position achieved (1/3 turn illustrated)

Table 8.2 Nut Rotation from Initial Torque for Combined Method Pretensioning^{a,b}

Bolt Length ^c	Rotation	
Not more than 4db	90° (1/4 turn)	
More than $4d_b$ but not more than $8d_b$	120° (1/3 turn)	

^a Nut rotation is relative to bolt regardless of the element (nut or bolt) being turned. For all required nut rotations, the tolerance is plus 45 degrees (1/6 turn) and minus 0 degrees.

^b Applicable only to joints in which all material within the grip is steel.

^c When the bolt length exceeds 8*db*, the required nut rotation shall be determined by actual testing in a suitable *bolt tension measurement device*; see *combined method* Commentary.

Pioneer Steel Services, Inc.

Step 4: Final Verification

1 2 3

Pretension Measurement

The tension developed in the bolting assembly after pretensioning is measured using the tension measurement device.

Verification

The measured pretension is compared to the target value specified in Table 7.1.

Corrective Action

If the measured pretension is below the target, the cause is identified and resolved before the assembly is used in the work.

Table 7.1 Minimum Bolt Pretension for Pre-Installation Verification

Nominal BoltDiameter,	Minimum Bolt Pretension for Pre-Installation Verification, kips		
<i>d_b</i> , in.	Group 120	Group 144 and Group 150	
1/2	13	16	
5/8	20	25	
3/4	29	37	
7/8	41	51	
1	54	67	
1 ½	67	84	
1 ¹ /4	85	107	
1 ³ ⁄ ₈	102	127	
1 ¹ /2	124	155	

Combined Method Benefits

Accuracy

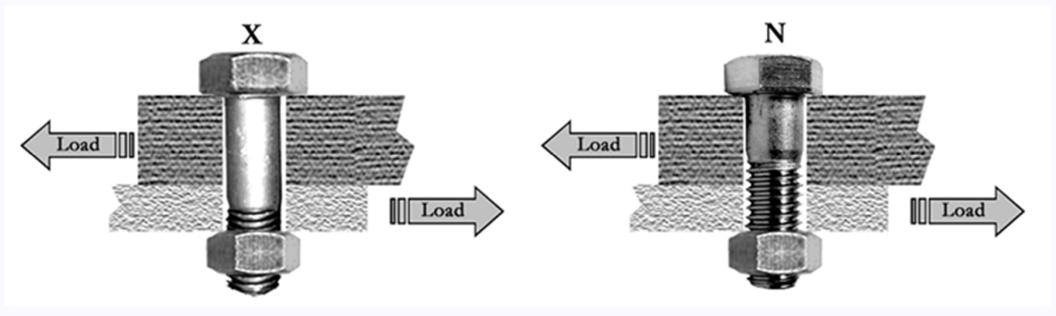
The Combined Method combines torque and tension measurements, providing a more precise and reliable method of achieving the desired tension in bolting assemblies.

Consistency

The multi-step verification process ensures consistent tensioning across multiple assemblies, minimizing the risk of under- or over-tensioning.

Structural Integrity

Properly tensioned bolts are crucial for the long-term structural integrity of the project, preventing loosening, failure, and potential safety hazards.



Pioneer Steel Services, Inc.

Defining "X" and "N" Designations

Threads Excluded: "X"

This designation signifies that the threads of the bolt are not considered to contribute to the shear strength of the connection. The shear plane is assumed to be outside the threaded portion of the bolt.

Threads Included: "N"

This designation indicates that the threads of the bolt are taken into account for the shear strength calculation. The shear plane is assumed to pass through the threaded portion of the bolt.

Storage and Lubrication Guidelines for Bolting Components

1.Protected Storage:

- 1.Bolting components and assemblies must be stored in a protected environment upon arrival at the installation site.
- 2.Only the quantity needed for a single work shift may be removed from storage.
- 3.Unused components must be returned to protected storage after the shift.

Pioneer Steel Services, Inc.

Field Lubrication:

•Field lubrication is allowed for easier installation, except for the following, which only the manufacturer may relubricate:

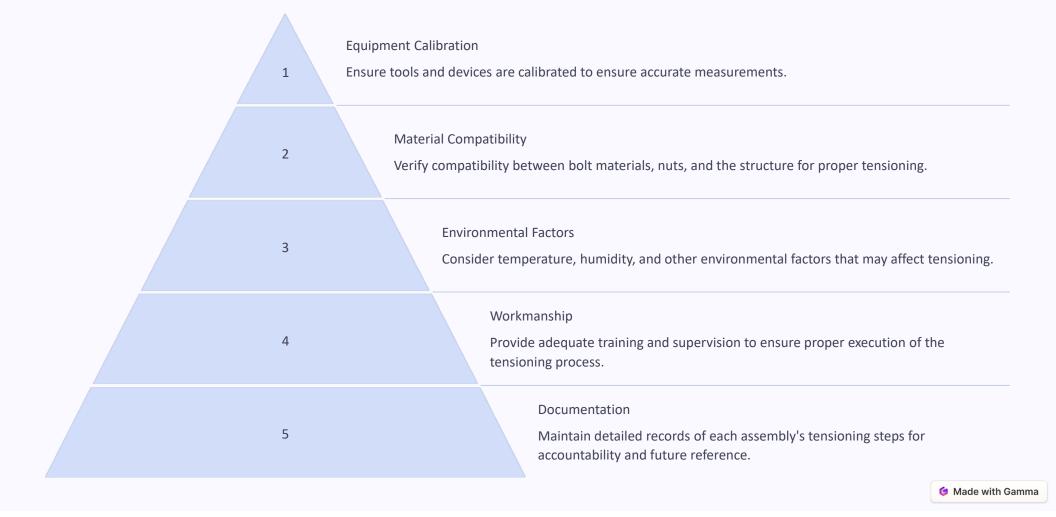
- Spline-end twist-off matched assemblies.
- Matched assemblies used with the combined method or ASTM F3148 Grade 144 spline-end assemblies.
- Alternative-design bolting components (per Section 2.12).

Rust and Dirt Handling:

•For **snug-tightened joints**, rusty or dirty heavy hex head bolts must be cleaned and lubricated (if necessary) before use.

•For pretensioned or slip-critical joints,

components must be cleaned, lubricated (if necessary), and retested as per Section 7. Relubrication restrictions in Section 2.10.4 apply.



Pioneer Steel Services, Inc.

Challenges & Inspection Strategies

As a minimum, bolting inspection tasks shall be in accordance with Tables N5.6-1. N5.6-2, and NS.6-3. In these tables, the inspection tasks are as follows:

•Observe (O): The inspector shall observe these items on a random basis. Operations need not be delayed pending these inspections.

•Perform (P): These tasks shall be performed for each bolted connection.

Table N5.6-1: Inspection Tasks Prior to Bolting

Inspection Tasks Prior to Bolting		QA-3RD PARTY
Manufacturer's certifications available for fastener materials	0	Р
Fasteners marked in accordance with ASTM requirements	0	0
Correct fasteners selected for the joint detail (grade, type, bolt length if threads excluded)	0	0
Correct bolting procedure selected for joint detail	0	0
Connecting elements, including appropriate faying surface condition and hole preparation, as specified	0	0
Pre-installation verification testing by installation personnel observed and documented	Ρ	0
Protected storage provided for bolts, nuts, washers, and other fastener components	0	0

Table N5.6-2: Inspection Tasks During Bolting

Inspection Tasks During Bolting	QCI	QA- 3RD PARTY
Fastener assemblies placed in all holes, and washers and nuts are positioned as required	0	0
Joint brought to the snug-tight condition prior to the pretensioning operation	0	0
Fastener component not turned by the wrench prevented from rotating	0	0
Fasteners are pretensioned in accordance with the RCSC Specification, progressing systematically from the most rigid point toward the free edges	0	0

Pioneer Steel Services, Inc.

Table N5.6-3: Inspection Tasks After Bolting

Inspection Tasks After Bolting	QA-3RD PARTY
Document acceptance or rejection of	D
bolted connections	۲

Pioneer Steel Services, Inc.

Follow Procedures

Adhere strictly to the specified steps for each method to ensure proper bolt pretension.

Key Takeaways

Use Proper Tools

Employ calibrated and appropriate tools for each method to achieve accurate results.

Link to the RCSC Specification

Verify Results

Always perform final verification to ensure pretension meets or exceeds specifications.

Proper pre-installation verification is crucial for structural integrity and safety in high-strength bolting applications.

Pioneer Steel Services, Inc.

End of Presentation

Pioneer Steel Services, Inc.

This American Welding Society educational session was created by Lee A. Pielaet, President/CEO of Pioneer Steel Services, Inc. Exclusively for the 2025 Inspection, Expo, and Conference held in Saint Louis, MO.

🗯 Made with Gamma