

DATASHLLI

A Low-Resolution Dual Vision Module

Latest Modified	Oct 13 th , 2020
Version	V1.0_201013
Contributor	
Check	
Approver	

Shenzhen Median Technology Co., Ltd. reserves the right to make changes without further notice to any product herein to improve reliability, function or design. Median does not assume any liability arising out of the application or use of any project, circuit described herein, neither does it convey any license under its patent nor the right of others.

This document contains information of a proprietary nature. None of this information shall be divulged to persons other than Shenzhen Median Technology Company Limited. employee authorized by the nature of their duties to receive such information, or individuals or

Contents

1. Syst	tem Overview	2
2. Mec	hanical Specification	3
2.1. F	PCB Dimensions	3
2.2. F	Product ID Dimensions	4
3. Inte	rface Description	5
4. Com	nmunications Protocol	6
4.1. F	Firmware Design	6
4.2. 9	SDK Description	6
4.2.1.	Binary File Download Guide	7
4.3. 9	Software Description	10
4.3.1.	Installation Procedure of SenXor Viewer	10
4.3.2.	Design of UI	11
4.3.3.	Demonstration	12
4.3.4.	Setting	13

1. System Overview

	Sensor Type	Thermopile far-infrared sensor		
Module	Available Spectrum	8-14µm		
	Resolution	32 (H) × 32 (V)		
	Pixel Size	90µm		
	Maximum Frame Rate	7~9Hz		
	Typical Target Temp.	-10~150℃		
	Target Temp. Range	-20~500℃		
	Maximum Temp. Range	-40~1000℃		
Environment	Working Environment Temp.	-20~65℃		
	Storage Environment Temp.	-40~85℃		
Interface	Power Supply	USB 5.0V (±10%)		
	Power Consumption	200mW (Typical)		
		(Android) Male USB-C		
	Signal Interface	(IOS) Male Lightning (available at Q4, 2018)		
	Output	RGB (Image) /Temp. Array		
	Size	57 x 29.5 x 11.7 (mm)		
Layout	Thermal FOV (Field Of View)	33°(H)		
	CIS FOV	47°(H)		

2. Mechanical Specification

2.1. PCB Dimensions

2.2. Product ID Dimensions

3. Interface Description

PIN_1	USB_5V
PIN_2	USB_GND
PIN_3	USB_D-
PIN_4	USB_D+
PIN_5	SWD_IO
PIN_6	SWD_CLK
PIN_7	UART_TX
PIN_8	UART_RX

4. Communications Protocol

4.1. Firmware Design

Now there are two versions of Firmware(FW) for Mobile phone application and PC use respectively. FW for mobile phone application will fully support the Android software for Xcam. It's not suggested to use specified FW on a different platform as there may be some imaging issue under this case. The default working environment is declared in the FW files in the product package.

4.2. SDK Description

The XCAM SDK basically contains fundamental functions which supports for Nuvoton MCU N329- series library to control XCAM.

XCAM SDK is now available on GitHub.

Prerequisites

- Install Keil uVision IDE with license, suggested MDK-ARM Professional V5.14+
- SDK project folder
- C Compiler (armcc)
- Support chip Toshiba TMPA900CMXBG

Getting Start

You can either open the project by Keil and compile to get binary file, otherwise the default binary file is also provided (MI_XCAM_N329_SW_I2C_Dual.bin).

If build successful, the binary file can be found at (.\[Project URL]\XCAM_Dual\example\HTPA32\KEIL\HTPA32\MI_XCAM_N329_SW_I2C\)

MI_XCAM_N329_SW_I2C	29/5/2018 3:56 PM		ARM executabl	e file 444 KB
MI_XCAM_N329_SW_I2C	29/5/20)18 3:56 PM	BIN File	216 KB
MI_XCAM_N329_SW_I2C.build_log	29/5/2018 3:56 PM		HTM File	9 KB
XCAM > N32901-3_Non-OS_KEIL_Release			~ Ū	Search N32901-3_Non-OS_KEI 🔎
Name	Date modified	Туре	Size	
🔒 gpio	29/5/2018 11:33 AM	File folder		
I2C	29/5/2018 11:33 AM	File folder		
N32901	8/2/2018 1:34 PM	File folder		
SYSLIB	29/5/2018 11:33 AM	File folder		
ThermalAPI_inC	29/5/2018 11:33 AM	File folder		
UDC	29/5/2018 11:33 AM	File folder		
Videoln	29/5/2018 11:33 AM	File folder		
VPOST	29/5/2018 11:33 AM	File folder		
XCAM_Dual	29/5/2018 11:33 AM	File folder		
KCAM_Single	29/5/2018 11:33 AM	File folder		
MI_XCAM_N329_SW_I2C	29/5/2018 11:45 AM	BIN File	194 KB	
MI_XCAM_N329_SW_I2C_Dual	29/5/2018 11:50 AM	BIN File	216 KB	
XCAM_Documentation	29/5/2018 11:27 AM	Microsoft Word Do	ос 1,341 KB	

Figure 3 Location of default binary file

The XCAM_Documentation.doc provides library structure, project setting and API in details.

4.2.1. Binary File Download Guide

1) Copy the new FW binary file into the AutoWriter folder. The content of AutoWriter folder is similar Figure 4 as shown below.

AutoWriter V006_N32901 ►	AudioRecord_N32901.bin
	a AutoWriter User Guide.pdf
	AutoWriter.exe
	AutoWriter.ini
	FA93_musb_FullSpeed.bin
	FA93_musb.bin
	N32901_HT2_HW_I2C.bin
	N32901_HTI2C_L5GE.bin
	N32901_HTSW_I2C-3.bin
	N32901_HT2_SW_I2C.bin
	N32901_Spi1006D0.bin
	N32901_SpiLoader.bin
	NAND ID.ini
	NANDLoader_192MHz.bin
	NuvotonLogo_320x240.bin
	ResetByWDT.BIN
	SDLoader_192MHz.bin
	SPIFLASH ID.ini
	Target.ini
	TurboWriter.ini

Figure 4 The AutoWriter folder

2) Modify the AutoWriter.ini with the new binary file's name and save the modification. The name of the binary file shall be covered exactly the same in the AutoWriter.ini.

Figure 5 The AutoWriter.ini file

3) Open the AutoWriter.exe and make sure the setting is in the SPI mode; the software shall be running before the hardware connected to the PC. The setting is as below:

Status : Plug USB and power-on to start pr	ogramming
Current Target : 💌	Cance. Save
Post Processing	
Burn disk images NAND1-1/SD1-1	
NAND1-2/SD1-2	
Copy the files and subfolders of selected folder NAND1-1/SD1-1	r
NAND1-2/SD1-2	

Figure 6 Setting SPI mode in AutoWriter.exe

4) Short the modifying mode pads on the board first then connect the module to PC through the USB interface. You can short these two pins with a metal tweezer or anything stable enough to short the two pins on board, or even solder them together. But remember to separate the pins afterwards so that the module can work as an attaching device to PC or phone. The Mode-Switch pads are shown as below:

5) The AutoWriter will burn the binary into the module automatically. Be reminded that during this period the modifying mode pads should be kept short. Please wait until the AutoWriter status is *Burn Success* as shown as below:

Current	SPI 💌	Canc
	· —	Sav
Post Proce	ssing	
🗌 Post P	rocessing	
🙃 Burn	disk images	
NAND1	-1/SD1-1	
NAND1	-2/SD12	
C Copy	the files and subfolders	s of selected fold
NAND1	-1/SD1-1	
NAND1	-2/SD1-2	

Figure 8 Burning the binary codes into the module

6) Disconnect the USB interface and end the shorting of the two pads. When you connect the module to phone or PC again, the module will run the New FW.

4.3. Software Description

SenXor Viewer is a simple software on mobile application to run with XCAM. Main function is to overlay the thermal image on the CIS image during video streaming in order to provide thermal information with or without showing thermal color by tapping on screen.

4.3.1. Installation Procedure of SenXor Viewer

Figure 9 Installation steps of SenXor Viewer

4.3.2. Design of UI

				_			
	ThermalViewer	•			r Fi∢ T	hermalViewer	\$
Selec	t USB Web Camera	a			Select U	SB Web Came	era
Camera No USB c	amera found				Camera UVC Came usb/002/0	era:(416:9393:/de 02)	ev/bus/
Cance	el Refresh	ок			Cancel	Refresh	ок
N	o device plugged into USE			_	XCA	M plugged into USE	5
		DO NOT F	ORGET TC	ENABLE (otg !		
in tha	viou	- M	ThermalVi	ewer 💠			
p the prizon	tally		and HULD Banners due			S	etting
	Video Streamir window	ng					
Open						Stre	aming
galler	= Y	Take pie	cture for		ı.	Mo	de
		video w	indow	Reco	raing		
		Figure	10 Screen d	aptures or	01		

4.3.3. Demonstration

Temperature check: Tap any point on video window

Horizontal flip : Use depends on XCAM facing direction Overlay adjustment : Fine tune the thermal image position

Figure 11 Screen captures of SenXor Viewer control

4.3.4. Setting

Temperature Display Unit: Color Filter: Face Detection:

Celsius / Fahrenheit RGB / Black and White On / Off

Figure 12 Settings of Display