

Dr. Kathy Glass Associate

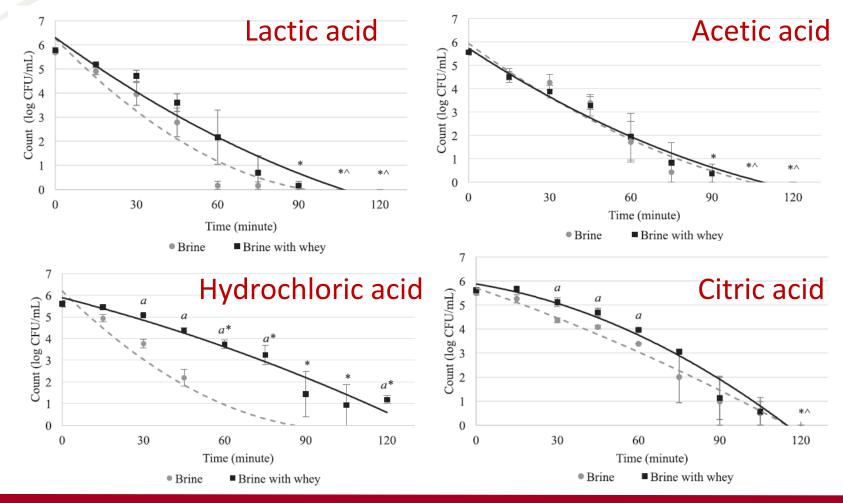
Director, FRI Pathogen control in cheese brines using hydrogen peroxide

Quinn Singer

Kristin Schill, Research Assistant Professor, Food Research Institute University of Wisconsin-Madison Contact: <u>Kristin.Schill@wisc.edu</u>; 608-264-1368

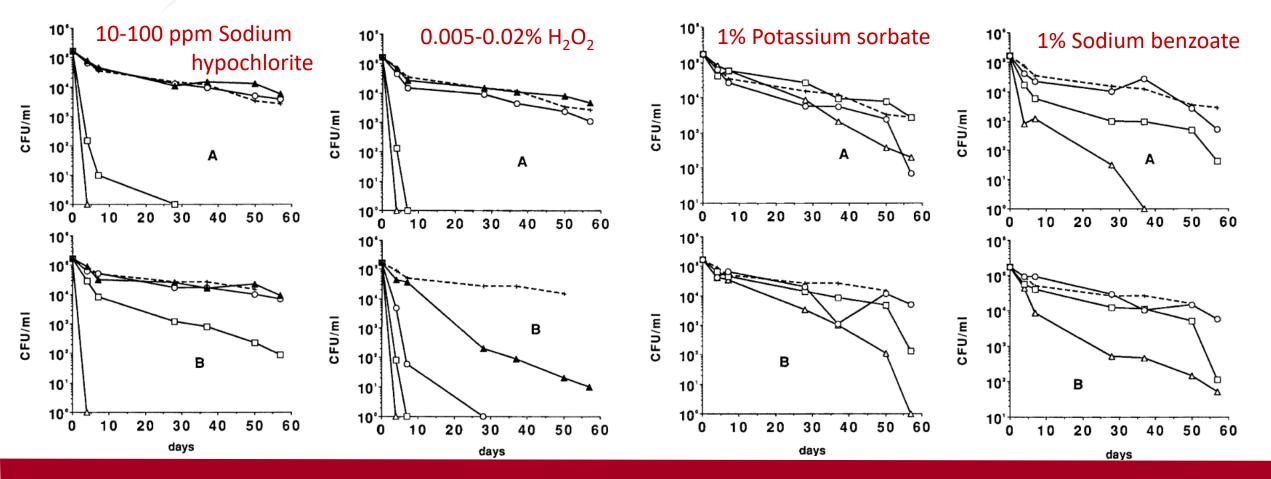
Jie Yin Lim

Background


- Brining/salting important step during cheese manufacturing
 Pure salt solutions: correlation between salt and water activity
- Brine can serve as a reservoir of salt tolerant pathogens
 - Listeria monocytogenes
 - "zero tolerance" pathogen
 - Growth at 13% salt; survive in up to 30% salt; lower limit for growth $a_w 0.92$

– Staphylococcus aureus	% NaCl	Aw
 Requires growth in high levels to develop enterotoxin 		
 Poor competitor 	0.9	0.995
 Salt growth limits affected by pH 	1.7	0.99
 Tolerance 20% salt; lower limit for growth a_w 0.86 	3.5	0.98
	7.0	0.96
	10.0	0.94
	13.0	0.92
	16.0	0.90
	22.0	0.86

Mitigating Strategies for Brine Safety


- Robust brine management program with effective sanitation and GMPs during the brining process to prevent crosscontamination
 - Environmental monitoring program
 - Zone 1 (Product Contact Surfaces) Indicator organisms (yeast & molds; Enterobacteriaceae; coliforms
 - Zones 2 & 3 (Non-product Contact Surfaces) *Listeria* spp.
 - Monitor salinity, pH, temperature and % solids of the brine
- Physical brine skimming, filtration, lethal antimicrobial

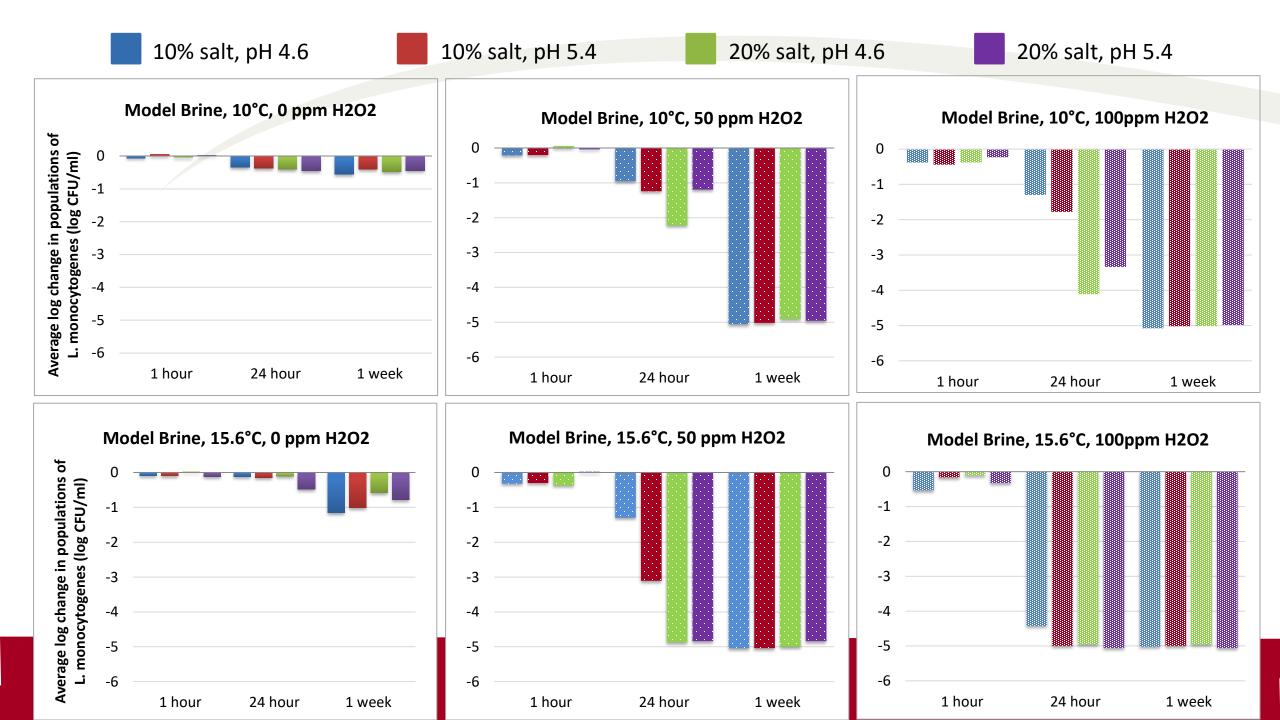
Acidification of model cheese brines (pH 2.0)

Brown, Stephanie RB, et al. "Acidification of model cheese brines to control Listeria monocytogenes." Journal of food protection 81.1 (2018): 79-83.

Chemical treatments that have reduced the survival of *L. monocytogenes* in commercial cheese brines

Larson, A.E., Johnson, E.A., Nelson, J.H., 1999. Survival of Listeria monocytogenes in Commercial Cheese Brines. Journal of Dairy Science 82, 1860-1868.. https://doi.org/10.3168/jds.s0022-0302(99)75419-6

Objective


Determine the interactive effect of pH, salt, hydrogen peroxide (H_2O_2) , temperature and background microbial populations on the inactivation of pathogens in cheese brine.

Phase 1: Inactivation of L. monocytogenes in Fresh Model Brines

Hydrogen peroxide	 0 ppm 50 ppm 100 ppm
Model brines (filtered)	 10% salt pH 4.6 10% salt pH 5.4 20% salt pH 4.6 20% salt pH 5.4
Temperatures	 10°C (50°F) 15.6°C (60°F)

- Inoculated with 5.5-log CFU/mL of 5 – strain cocktail of acid adapted *L. monocytogenes*
 - LM301 (Cheddar Isolate,1/2a)
 - LM108M (low moisture, low pH salami isolate, 1/2b)
 - LM310 (Feta cheese isolate, 4b)
 - FSL-R2-500 (Hispanic style soft cheese isolate, 4b)
 - FSL J1-110 (Jalisco cheese isolate, serotype 4b)
- Assayed at t=0, 24 h and 7 days (1 week)

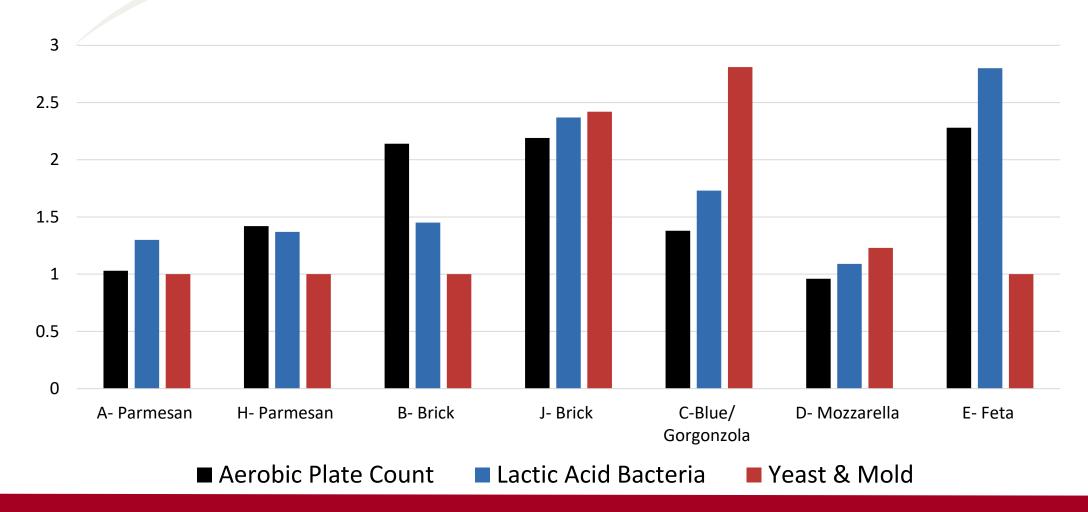
Summary: Phase 1

- No growth of *L. monocytogenes* in any brines
 pH 4.6-5.4; 10-20% NaCl
- Inactivation of *L. monocytogenes* was effective with 100 ppm of H₂O₂ (>4 log reduction) in all brines in a week.
- Factors that accelerate the inactivation of *L. monocytogenes* in cheese brines
 - Higher salt
 - Warmer brine temperatures

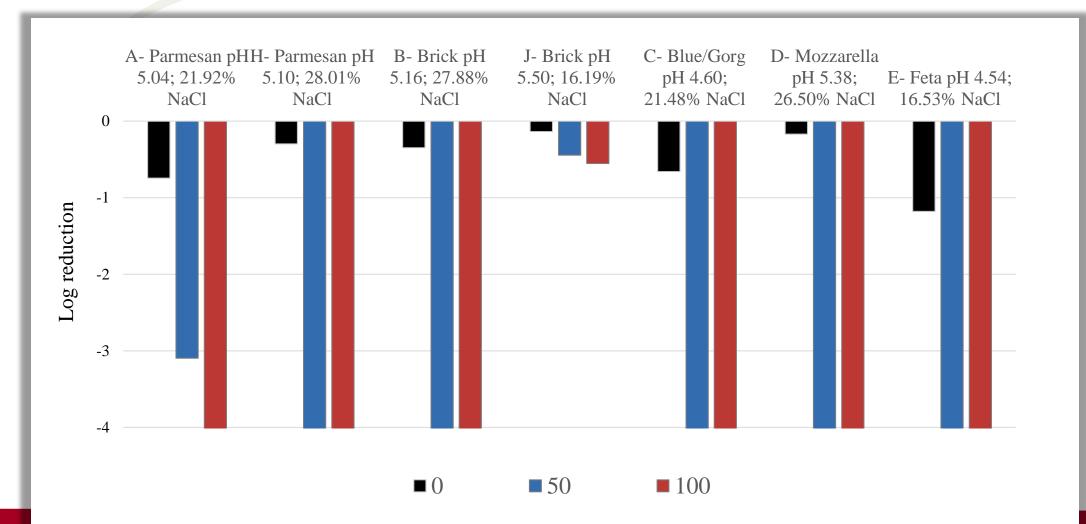
Objective – Phase 2

 To determine the effectiveness of hydrogen peroxide (H₂O₂) to reduce microbial loads in commercial cheese brines of varying cheese type, pH, and salt level while stored at different temperatures in one day and 1 week

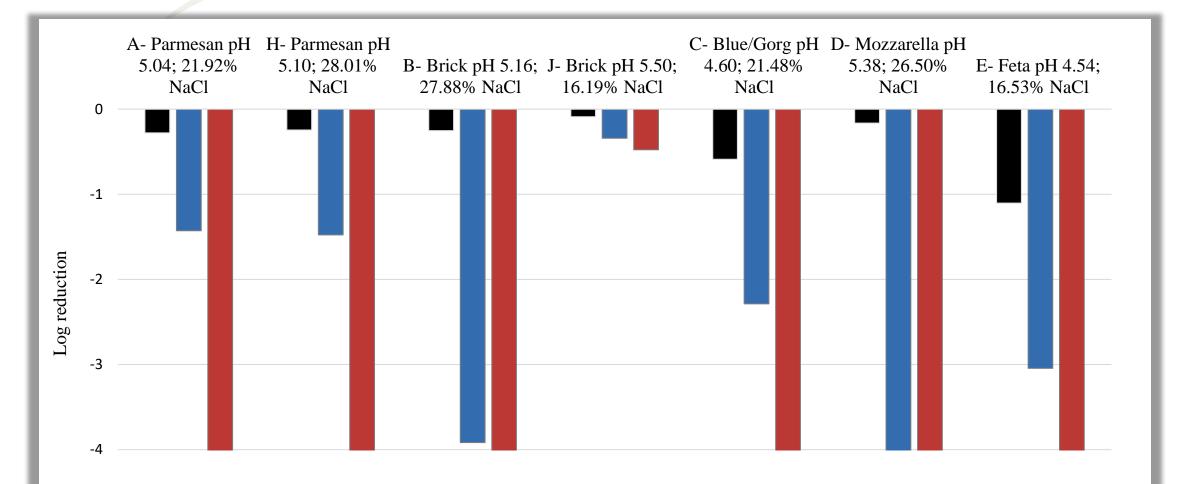
Seven Commercial Brines


Designation	Cheese type	Use temperature	pH range	Salt range
А	Parmesan	50-53 F	5.00-5.10	21-22%
В	Brick	71-73 F	5.05-5.25	27-29%
С	Gorgonzola	50-60 F	4.55-4.75	20-23%
D	Mozzarella	30-32 F	5.30-5.40	25-28%
E	Feta	55 F	4.50-4.60	15-18%
Н	Parmesan	53-55 F	5.05-5.20	27-29%
J	Brick	No data	5.40-5.55	10-19%

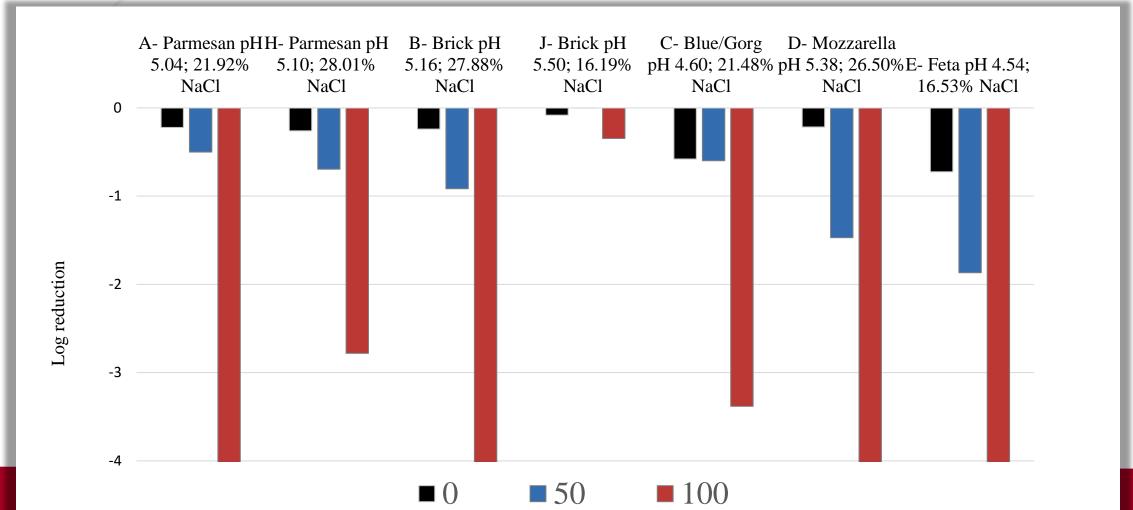
Experimental Design

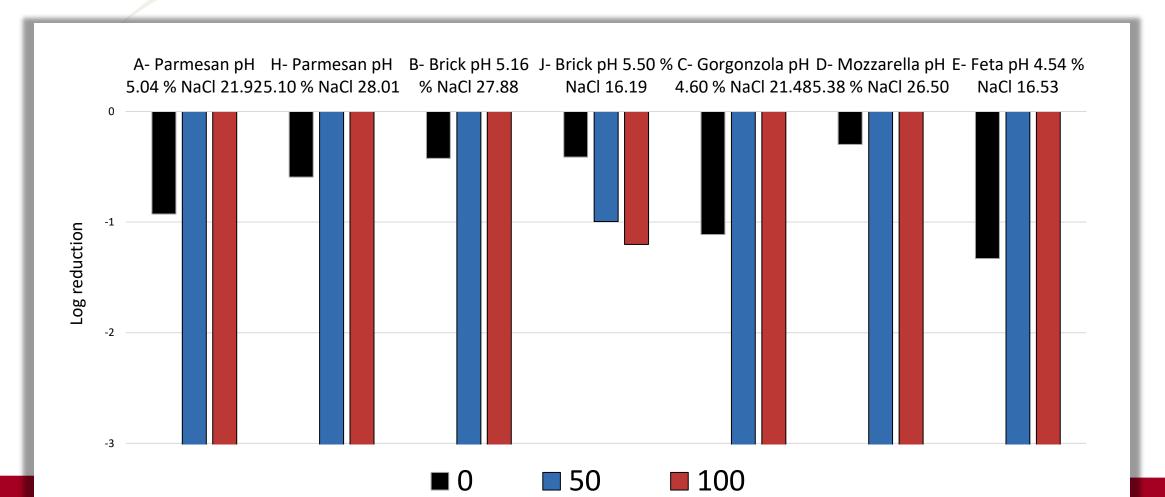

- 7 brines (see previous slide)
 - Each trial used brines from a different season (Summer/August 2020, Autumn/October 2020, Winter/January 2021)
- *L. monocytogenes* acid adapted, 5-strain cocktail 5.5-log CFU/mL
- S. aureus acid adapted, 3-strain cocktail (FRI196E, whipped butter isolate, SEA; FRI S6, shrimp isolate, SEA&B; FRI 952, ham isolate, SEA&D) 4.5-log CFU/mL
- H₂O₂ levels: 0 ppm, 50 ppm, 100 ppm
- Temperatures: 12.8°C, 7.2°C, 0°C (only 12.8°C for *S. aureus*)
- Testing at: Time 0, 1 day, 1 week
- Uninoculated samples tested for
 - Total aerobic plate count; Plate Count agar (PCA, 35C for 2 days)
 - Lactic acid bacteria; De Man, Rogosa, and Sharpe agar (MRS, 35C for 2 days, anaerobic)
 - Yeast/mold; acidified Potato Dextrose agar (PDA, 25C for 3-5 days)

Formulation	Typical brine temperature	Season	% Moisture	% Solids	рН	% NaCl	a _w
Parmesan A 10-11.7°C (50-53°F)	Summer	76.1	23.9	5.03	21.8	0.819	
	Autumn	77.9	22.1	5.05	22.0	0.838	
	Winter	77.1	22.9	5.05	21.9	0.825	
			77.03+0.90	22.94 <u>+</u> 0.90	5.04 <u>+</u> 0.01	21.90 <u>+</u> 0.10	0.827 <u>+</u> 0.010
Parmesan H	Parmesan H 11.7-12.8°C (53-55°F)	Summer	74.0	26.0	5.10	27.8	0.765
		Autumn	73.0	<u>27.0</u>	5.11	28.1	0.768
		Winter	73.3	26.7	5.10	28.15	0.761
			73.43 <u>+</u> 0.51	26.57 <u>+</u> 0.51	5.10 <u>+</u> 0.01	28.02 <u>+</u> 0.19	0.765 <u>+</u> 0.004
Brick B	21.7-22.8°C (71-73°F)	Summer	74.3	25.7	5.19	<u>28.6</u>	<u>0.766</u>
		Autumn	74.4	25.6	5.08	27.6	0.777
		Winter	74.6	25.4	5.20	27.5	0.775
			74.43 <u>+</u> 0.15	25.57 <u>+</u> 0.15	5.16 <u>+</u> 0.07	27.91 <u>+</u> 0.62	0.773 <u>+</u> 0.006
Brick J	4.4-7.2°C (40-45°F)	Summer	84.7	<u>15.3</u>	5.43	<u>12.5</u>	<u>0.909</u>
		Autumn	81.5	18.5	<u>5.54</u>	17.9	0.867
	Winter	81.2	18.8	<u>5.54</u>	18.2	0.869	
			82.47 <u>+</u> 1.94	17.53 <u>+</u> 1.94	5.50 <u>+</u> 0.06	16.20 <u>+</u> 3.21	0.882 <u>+</u> 0.024
Blue/	10-15.6°C (50-60°F)	Summer	76.5	23.5	4.59	20.76	0.827
Gorgonzola C	Gorgonzola C	Autumn	76.5	23.5	4.60	22.14	0.822
		Winter	76.6	23.4	4.60	21.55	0.823
			76.53 <u>+</u> 0.06	23.47 <u>+</u> 0.06	4.60 <u>+</u> 0.01	51.48 <u>+</u> 0.69	0.824 <u>+</u> 0.003
Mozzarella D	-1.1-0°C	Summer	76.7	23.3	5.40	25.89	0.797
(30-32°F)	(30-32°F)	Autumn	75.4	24.6	5.34	26.99	0.789
	Winter	75.4	24.6	5.40	26.62	0.788	
			75.83 <u>+</u> 0.075	24.17 <u>+</u> 0.75	5.38 <u>+</u> 0.03	26.50 <u>+</u> 0.56	0.791 <u>+</u> 0.005
Feta E 12.8°C (55°F)	12.8°C (55°F)	Summer	78.7	21.3	<u>4.51</u>	16.04	0.872
		Autumn	78.9	21.1	4.56	15.63	0.874
		Winter	77.8	22.2	4.54	17.92	0.858
			78.47 <u>+</u> 0.59	21.53 <u>+</u> 0.59	4.54 <u>+</u> 0.03	16.53 <u>+</u> 1.22	0.868 <u>+</u> 0.009


Populations of background microbiota in cheese brines treated with 100 ppm H_2O_2

L. monocytogenes inactivation in 7 brines over 1 week with differing levels of H_2O_2 addition at **12.8°C (55°F)**


L. monocytogenes inactivation in 7 brines over 1 week with differing levels of H_2O_2 addition at **7.2°C (45°F)**


0

00

L. monocytogenes inactivation in 7 brines over 1 week with differing levels of H_2O_2 addition at **0°C (32°F)**

Staphylococcus aureus inactivation in 7 brines over 1 week with differing levels of H_2O_2 addition at **12.8°C (55°F)**

Summary Phase 2 – Commercial Brines

- No Seasonality observed with brine from different trials
- All Brines EXCEPT BRICK J
 - At <u>12.8°C and 7.2°C (*L. mono only*)</u>, a >4-log (*L. mono*) or 3-4 log (*S. aureus*) reduction was observed <u>after 1 week</u> when <u>100 ppm of H₂O₂</u> was added
 - At 0°C, the reduction after 1 week varied between brines when 100 ppm of $\rm H_2O_2$ was added
- Only 1 day after 100 ppm H₂O₂ was added, pathogen reduction varied between brine types and was not significant
- When only 50 ppm of H₂O₂ was added, there was variation in reduction between brine types after both 1 day and 1 week (all temperatures)

Brine J- Brick (pH 5.40-5.55, 10-19% salt)

- This brine did not show a reduction of *L. monocytogenes* with the addition of 100 ppm H_2O_2 .
- This phenomenon was not seen with the other Brick brine tested
- Large populations of yeast (and sometimes lactic acid bacteria and other aerobic bacteria) were detected in uninoculated samples of this brine
- Our theory is that catalase+ yeasts can inactivate H₂O₂ and prevent
 L. monocytogenes inactivation

Overall Conclusions

- Fresh/Commercial brines without hydrogen peroxide pathogens survived well for 7 days (<1 log decrease) (pH 4.6, 20% salt, 15.6°C)
- At a given pH, fresh brines with higher salt concentration (20%) accelerated inactivation when 50 or 100 ppm H₂O₂ was added.
- Pathogen inactivation in stressful conditions is likewise enhanced by higher storage temperature.

Log reduction of Listeria monocytogenes in brine with 50 ppm H_2O_2			
12.8°C	3-4		
7.2°C	1.4-4.3		
0.0°C	0.5 -1.9		

Overall Conclusions

- Other brine components (whey, fat, protein, microbiota) can potentially impact inactivation
 - Fresh, filtered brine: >4.8 log reduction of *L. monocytogenes* with 50 ppm
 v.s. 100 ppm to achieve similar reduction in commercial brines
- Type of background microbes present in brine is important
 High catalase activity can reduce efficacy of hydrogen peroxide in brine
- Monitoring hydrogen peroxide levels after addition and at sufficient intervals to ensure target activity is maintained is critical

Additional Considerations

- Evaluate the effect of hydrogen peroxide on the organoleptic properties of cheese during brining
- Hydrogen peroxide is an oxidizing agent
 - May cause corrosion of low-grade stainless steel especially at high concentrations.
 - Suggested use of high grade 316 stainless steel, fiberglass or sealed concrete
 - Low dosage of 100 ppm as used in this study would minimize the potential for vessel corrosion.

Acknowledgements

 Funding – National Dairy Council, Dairy Farmers of Wisconsin, Wiconsin Cheesemakers Association, Wisconsin Center for Dairy Research

> FOOD RESEARCH INSTITUTE University of Wisconsin-Madison

- Technical expertise
 - Jieyin Lim, Quinn Huibregtse
 - Sarah Engstrom
 - Brandon Wanless, Max Golden,
- Consultants/helpful discussions
 - Larry Bell, Jim Mueller for securing brine
 - Bob Wills
 - Tim Stubbs, Chad Galer
 - Dennis Seman
 - Wendy Bedale

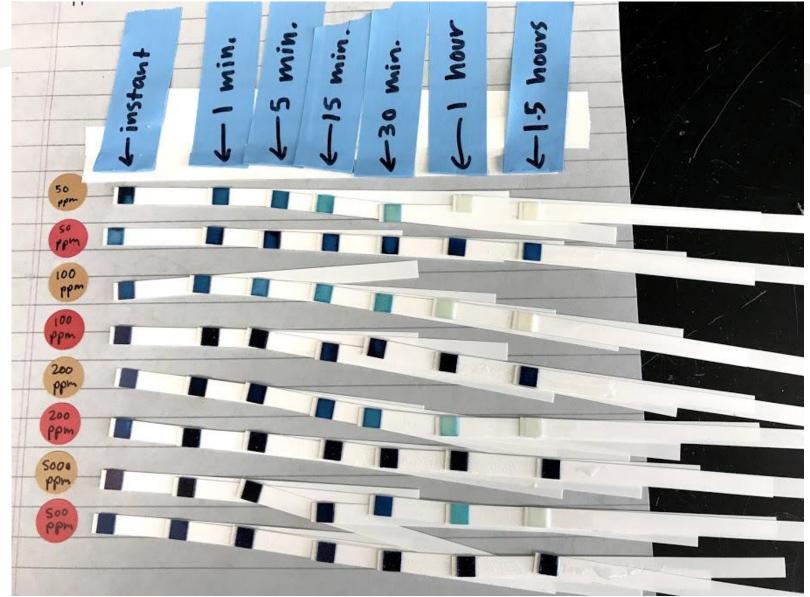
DAG DAIRY MANAGEMENT INC."

NATIONAL DAIRY COUN

DAIR

STRONG

EADMO


Take-home messages

- No "seasonality" observed with brine from different trials
- Each brine is unique
 - The two gorgonzola and two brick brines did not behave in the same way
- pH and salt level were not the only driving factors influencing *L. monocytogenes'* ability to survive/thrive
- 100 ppm of H_2O_2 can be an effective way to reduce *L*. monocytogenes in one week as long as tests are performed to ensure the 100 ppm level of H_2O_2 persists

H₂O₂ Testing

A comparison between how long H2O2 stays active in each of the 2 brick brines

Red= Brine B Brown= Brine J

Methods

- Each brine inoculated with 5-6 log *L. monocytogenes or* 4-6 log *S. aureus* and dispensed into 14 ml tubes
- Samples were incubated at the appropriate temperature (12.8C, 7.2C, or 0C)
- Three inoculated samples were tested for each brine for each temperature (2 samples for 0C) at time 0, 1 day, and 1 week
- Two uninoculated samples were tested for each brine for each temperature at the time 0, 1 day, and 1 week
- pH was also measured at each sampling point for both inoculated and uninoculated samples

Methods continued

- Inoculated samples were plated on Modified Oxford agar with Trypticase Soy agar overlay (T-MOX, 35C for 2 days) or Baird Parker agar with Trypticase Soy agar overlay (T-BP, 35C for 2 days)
- Uninoculated samples were plated on:
 - Total plate count- Lactic acid bacteria-
 - Yeast/mold-