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Abstract

The data from developmental neurotoxicity (DNT) guideline studies present a number of challenges for statistical design and analysis. The
importance of specifying the planned statistical analyses a priori cannot be overestimated. A review of datasets submitted to the US
Environmental Protection Agency revealed several inadequate approaches, including issues of Type I error control, power considerations, and
ignoring gender, time, and litter allocation as factors in the analyses. Since DNT studies include numerous experimental procedures conducted on
the dam and offspring at several ages, it is not unusual to have hundreds of significance tests if each was analyzed separately. Two general
approaches to control experiment-wise Type I inflation are: 1) statistical/design considerations that reduce the number of p-values, including
factorial designs, multivariate techniques, and repeated-measures analyses; and 2) adjustments to the α level, including newer approaches that are
less conservative than, for example, Bonferroni corrections. The design of the DNT study includes testing of both sexes, and gender must be
included in the statistical analysis for the determination of sex-related differences, and, indeed, including both sexes may increase power. The
influence of litter must be taken into account in the allocation of test animals as well as the statistical analyses. This manuscript reviews many key
considerations in the analysis of DNT studies with recommendations for statistical approaches and reporting of the data.
© 2008 Published by Elsevier Inc.
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1. Introduction

Developmental neurotoxicity (DNT) studies typically in-
clude a number of evaluations of both the dam and the offspring.
Appropriate statistical analyses of the behavioral data collected
in the context of these DNT studies can be challenging. The
experimental design often consists of multiple measures for each
animal, as well as repeated testing across time. Other complica-
tions include the use of littermates for the same or different tests,
and the need to account for the influence of such genetic and
maternal factors. The type of data collected varies with the
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behavioral test, including continuous, ordinal, and binary data.
We set out, in this paper, to examine the statistical approaches
currently being used in DNT testing, which most often follows
the US Environmental Protection Agency (US EPA) DNT Test
Guideline [62]. We then provide a discussion of the statistical
approaches to use in such studies, emphasizing the importance
of key issues, especially those which are not currently included.
The purpose of this paper is not to provide or suggest specific
operational procedures for statistical analysis of each type of
DNT test, but rather: 1) to emphasize key issues and concerns
regarding the diverse (and sometimes incorrect) methods that are
currently used as standard practice; 2) to describe in general
terms some of the available methods that might be more appro-
priate for the data being analyzed (e.g., univariate ANOVA,
MANOVA, mixed models, GEE); and 3) to discuss general or
overall considerations that are important to consider when
interpreting data (e.g., hypothesis generating vs. testing,
multiple comparisons, sphericity).

2. Survey of current practice

To determine the current statistical practices, we collect-
ed multiple studies from six different testing laboratories. A
few of these studies were published in the open literature
[1,8,19,42,69,70,72] and the rest were submitted to the US
EPA in support of pesticide registrations. It quickly became
apparent that each of these laboratories adopted the same set
of statistical procedures for all studies they conducted, but
these procedures were different among laboratories. Four of
these five laboratories began with a test for variance
homogeneity, typically Bartlett's test, which determined
whether parametric or nonparametric analyses would be
used. One laboratory made use of transformations (e.g., log,
square root) to achieve normality. Nonparametric methods
were used, such as Kruskal–Wallis, Fisher's Exact Test,
followed by Mann–Whitney U-tests. Parametric data were
analyzed with ANOVAs in half the laboratories, the other
half used some sort of linear trend test, followed by a variety
of post-hoc tests (e.g., Williams, Dunnett's).

In almost all studies evaluated, males and females were
analyzed separately. Some endpoints were not statistically
considered, and a few laboratories stated that the data were
visually inspected before deciding which to analyze. Most
laboratories tried to allocate equally the offspring to the
various behavioral tests, often choosing one male and one
female from each litter for each test; however, the caveat was
always “when possible.” The number used for different tests
varied by the test. Thus, it would not be clear how balanced
the litter allocation actually was. For example, one report
described “one male and/or one female from each litter (13–
16/sex/dose, representing at least 18 litters per dose).” It is
difficult, if not impossible, to know how many of the pups
were actually siblings. Only one laboratory stated that a
nested analysis of variance model was used. While the other
laboratories did not mention this one way or another, there is
evidence from reviews and other reports that at least one
laboratory routinely did not use litter as a nested variable.
Overall, the major deficiencies that were routinely observed
revolve around:

1. Type I and II error considerations,
2. litter allocation and analysis,
3. analysis using sex as a factor,
4. analysis using repeated measures,
5. statistical analysis assumptions.

We identified a number of statistical principles and issues
which were prominent in all these studies. A similar, but more
rigorous, re-examination of endocrine disruption data was under-
taken by Haseman et al. [22]. They identified important guide-
lines regarding appropriate design and analysis of studies which
are as applicable to these studies. Specifically, the issues were
divided into: 1) experimental design issues, such as power, repli-
cation, litter allocation, potential investigator bias, quality control
and control groups, and 2) data analysis issues, such as choice of
statistical methodology, heterogeneity of the data, covariance, and
regression versus ANOVA, biological interpretation and data
selectivity [22]. The following provides background and advice
on these issues with regards to DNT studies.

3. Study design and analysis plan

3.1. General considerations

3.1.1. Hypothesis testing vs. hypothesis generating
Conceptually, two types of experimental studies can be

contrasted: hypothesis testing (confirmatory) and hypothesis
generating studies (exploratory). In the former, a hypothesis (or
a number of them) is (are) stated; in the latter, data are generated
without any specific preconceived hypothesis. In the former, a
conclusion is derived, whereas in the latter, a hypothesis is
proposed and another study (on a new data set) has to be
designed to test it. Other more stringent conditions also define
hypothesis testing vs. generating (see below).

As Muller et al. [45] stated, a hypothesis testing study
practically requires that a detailed written protocol be developed
with a clear statement of purpose, study objectives, research
questions and hypotheses, methods, study design and specific
statistical analysis information. Any deviation from a preset
analysis plan (e.g., different statistical tests, further transforma-
tions, different data grouping or data adjustments, additional
variables, different error rate criteria, new hypothesis evalua-
tion, etc.) will make such a study a hypothesis-generating study
if a decision has been made after examining the data. In the
context of a hypothesis-generating study, the Type I error rate
can be set at higher values (e.g., 0.2) than is conventionally
done. Most re-analyses of existing data fall within the realm of
hypothesis-generating studies (except if a detailed and preset
analysis protocol is available before the data are examined); the
conclusive value of such an analysis would be questionable at
best. To say the least, it is misleading to report a hypothesis-
generating analysis as if it were hypothesis-testing.

Looking at data after the fact in a number of different ways
can often show some unanticipated (and sometimes nonexistent)



Table 1
Example of numbers of potential p-values in a typical DNT test

Dependent
variables

Testing times # Time
points

# p-values a

Dams
Gestation body
weight

GDs 0, 6, 10, 15, 20 5 3

Lactation body
weight

LDs 0, 4, 11, 13, 17, 21 6 36

Observations GDs 10, 18; LDs 6, 13 4 288

Pups
Developmental landmarks
Pup count PNDs 0, 4, 11, 17, 21, 35, 60 7 42
Body weights PNDs 0, 4, 11, 17, 21, 35, 60 7 42
Vaginal patency Between 28 and 42 1 6
Preputial separation Between 35 and 52 1 6

Behavioral tests
Observations PNDs 4, 11, 21, 35, 45, 60 6 432
Auditory startle
amplitude

PNDs 22 and 61 2 12

Auditory startle
habituation

PNDs 22 and 61 2 60

Motor activity
(total counts)

PNDs 13, 17, 21, 60 4 24

Motor activity
adaptation

PNDs 13, 17, 21, 60 4 144

Learning (latency) PNDs 22 and 61 2 60
Memory (latency) PNDs 22 and 61 2 60

Neuropathology
Brain weights PNDs 11 and 60 2 24
(absolute and
relative)

Morphometry PNDs 11 and 60 2 36
Total 1302

Other assumptions:
Observations (# signs) 12.
Auditory startle (# within-session blocks) 5.
Motor activity (# within-session bins) 6.
Learning and memory (# test days) 5.
Morphometrics (minimum # of areas) 3.
a General assumption: 2 sexes and 3 comparisons.

328 R.R. Holson et al. / Neurotoxicology and Teratology 30 (2008) 326–348
relationship among variables. An interesting illustration is given
by Freedman [18] who ran a multiple regression on 51 columns
of random data (one of them being arbitrarily designated as the
“dependent variable”) and a p-value of 0.53 was obtained. After
selected columns with small regression coefficients were
removed, a multiple regression was rerun and provided a p-
value of 0.0005. This paper illustrates one example of the
potential danger of creating something from nothing when data
are reanalyzed in light of previous analyses. If this practice is
acceptable in hypothesis-generating studies where no conclu-
sion is drawn, it is not acceptable in hypothesis-testing studies.

One could wonder whether the DNT study run as per
guideline is a hypothesis-generating or a hypothesis-testing
study. On one side, it can be argued that there can be no
hypotheses, given that the same standard testing is conducted
irrespective of the chemical; on the other side, the DNT
proposes areas of study and asks standard questions about a
fixed number of endpoints (e.g., motor activity, learning and
memory). The crux of the problem lies in the definition of
“hypothesis”. In the present context, it is argued that the DNT
qualifies under hypothesis-testing studies, as far as all the
criteria stated above are ascertained [45].

3.1.2. Multiplicity
The US EPA DNT study guideline requires the use of a

number of procedures (15 or more). In each of these procedures,
a number of dependent variables can be identified (e.g., number
of brain areas to be examined for morphometrics). Some of
these variables are in turn examined on a number of occasions,
whether within or across test sessions (e.g., motor activity). The
data collection takes place in two sexes and generally four dose
groups (including control). Finally, all of these data are analyzed
and a large number of p-values are generated (simple main
effects and interaction terms). Table 1 illustrates the “multiplic-
ity” problem by assuming that each treated group is compared
with the control group for each variable at each time point. The
number of 1302 derived p-values is only given as an example,
and does not imply that it constitutes a recommended analysis
method.

The multiplicity problem can be encountered at several
levels. It is present in the context of group comparisons; for
example, a number of papers have reported multiple t-tests in the
evaluation of the statistical significance of a difference between
treatment groups, where the accepted Type I error was set to 0.05
for each comparison. Multiple comparison procedures that
maintain the overall Type I error rate are discussed below.

At a higher level, the analysis of variance (e.g., main effect of
treatment, treatment-by-sex interaction) also controls the Type I
error rate across the different groups and across factors
(multiway ANOVA). This procedure contributes to a decrease
in the number of generated p-values. At a still higher level, the
multiplicity problem also originates from the fact that the
previous analyses can be repeated over a number of dependent
variables. Multiple ANOVAs present the same challenge as
multiple t-tests. Most often, however, no correction is made for
the numerous p-values that are generated by the repeated use of
statistical analyses. This problem is also considered below.
One of the consequences of the “multiplicity” problem is that
it increases the probability of false declarations of an effect.
Controlling the Type I error rate at α=0.05 per comparison
indicates that there are 5 chances out of 100 that an effect be
declared when it is not present, given that one comparison is
made. When the number of derived p-values increases, the
probability of a false positive increases. If all the data were
independent, the overall error rate (also referred to as αew for
experiment-wise error rate) could be calculated with the
following formula:

aew ¼ 1� 1� acð Þn

where αc is the accepted error rate per comparison (e.g., 0.05)
and n is the number of derived p-values [23], p. 611. For 10 and
100 p-values, the overall probability of falsely declaring at least
one effect (αew) statistically significant is 0.40 and 0.99,
respectively, under conditions of independence, while an αc of
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0.05 is maintained per comparison. Because of the lack of
independence of data, the actual error rate falls somewhere
between the per-comparison error rate and the theoretical
experiment-wise error rate. It is very important to provide the
reader with the total number of derived p-values when reporting
the results of a study; e.g., if three statistically significant p-
values are reported in a study, their meaning will be very
different whether a total of 5 or 50 p-values had been derived in
the study. It is therefore misleading to report only the significant
p-values without at least giving the reader a very good estimate
of the total number of derived p-values, whether significant or
not.

It is important to recognize that looking summarily over a data
set to see if there appears to be any effect constitutes ipso facto an
implicit analysis. For example, with an ordinal dataset of
observations (e.g., scores of 1–5), it is easy to survey the results
and see that the individual scores of the control and experimental
groups are mostly 3's, and the investigator might conclude by
experience that the results would not be significant, were they to
be statistically analyzed, and therefore the investigator may
decide not to formally “analyze” them. However, if a number of
1's were to be detected in the high-dose group to a slightly greater
proportion than in the control group, the investigator might
initiate a formal statistical analysis and find out that the difference
between control and high-dose groupwas (or was not) statistically
significant. In both cases, an analysis had been conducted, either
implicitly or explicitly.

3.1.3. p-values
The null hypothesis can always be rejected. Such a statement is

meant to reflect the fact that, in a randomized study designed to
compare multiple treatment groups, a statistically significant p-
value can always be obtained if the sample size is large enough. A
statistically significant p-value simply indicates that some relation
exists between two or more variables, but does not provide any
indication about the strength of association between these
variables, no matter how low the p-value is. For example, it is
not unusual to see a low correlation coefficient (e.g., 0.12)
associated with a significant p-value of 0.001 in studies with large
sample sizes. In other words, a low p-value per se does not mean
that a useful degree of association exists. In such a situation, the
investigator should realize that great importance should not be
attributed to the significant p-value in light of the low correlation
coefficient. A number of indices of strength of association have
been proposed (e.g., R2, η2,ω2) [23], pp. 413–422 and should be
considered to evaluate the degree of relation between variables.
Confidence intervals and prediction intervals can also be useful,
especially in a graphical context.When the strength of association
is low (no matter what the p-value might be), it indicates that little
can be predicted from the independent variable to the dependent
variable, i.e., that the variation in X does not explain much of the
variation of Y.

For historical reasons, p-values have been expressed as
inequalities by reference to a criterion (α), typically as
pb0.05. Now that exact p-values can be provided for the
majority of procedures by most standard statistical packages, it
is suggested that they be reported as such, e.g., p=0.08 [67].
To help the reader better understand what has actually been
done in an analysis, it is also very helpful to report the F value
and its associated degrees of freedom in addition to the exact
p-values, as appropriate.

3.2. Controlling experiment-wise Type I error rate

The multiplicity problem (i.e., analysis of a large number of
dependent variables), though not always clearly recognized,
results in the false declaration of effects and can be addressed at
the level of the design and of the analysis of the study, e.g., by
decreasing the total number of p-values, and/or by adjusting the
α-criterion. A few miscellaneous examples are offered below
for consideration (see also Section 3.8.5).

One should always define the questions in specific terms
for each procedure and carefully choose the dependent
variables that are going to answer them. It is important to
distinguish between “primary” variables specifically collected
to answer the question under investigation, and “ancillary”
variables collected to help interpret some aspects of the
results. Ancillary variables may be collected to assure that the
test is functioning properly, but will not by themselves answer
the question of interest. Consider, for example, a delayed
matching-to-position procedure for the evaluation of short-
term memory. The operant chamber has two retractable levers
and a feed cup on the opposite wall. The rat is trained to press
the extended lever which is then retracted, and the rat has to
spend a variable delay with the snout in the feed cup on the
opposite wall. After a delay is over, both levers are extended
into the cage and the rat has to press the previously extended
lever. Occasionally, the rat leaves the feed cup during the
delay and presses the retracted (but still accessible) lever. This
behavior, referred to as “rehearsal”, typically increases the
probability of correct responding, but should not be in-
terpreted as reflecting improved memory. Such rehearsals are
ancillary variables in the sense that they do not measure the
endpoint of interest, but they can help in the interpretation of
the primary retention data. These ancillary data need not be
statistically analyzed if the focus of the test is to make a
statement about the effects of a test substance on “memory”.
Whereas primary data should normally be statistically
analyzed, ancillary data should not necessarily be.

The multivariate analysis also constitutes a way of reducing
the total number of derived p-values by analyzing at the same
time different dependent variables. It also has the advantage of
being sensitive to trends among the different variables. The data
can also be analyzed following a conditional scheme so that, for
example, some analyses are only performed when some
previous analysis is statistically significant. Since such uses of
multivariate analyses are fraught with both design and
interpretation issues, it is recommended that this option only
be adopted with the help of a qualified statistician.

Violating some statistical assumptions can also contribute to
the false declaration of effects, for example, when the sphericity
assumption (see Section 3.4.2) is violated in a repeated-
measures ANOVA [44,63] or when the litter is not used as the
unit of statistical analysis (see Section 3.6).
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3.3. Power and Type II error rates

Power is defined as the probability of not committing a Type
II error, also known as a false negative error. That is, power is the
statistical probability of correctly identifying a real effect, such
as some side effects of a drug under development. Conversely, a
Type II error involves not detecting the real drug effect or side
effect, when one exists.

Power has long been a severely neglected aspect of hypothesis
testing and experimental design. This is a rather mystifying
oversight, since it incorporates a bias which is especially harmful
for regulatory research.

Introductory statistics courses teach the convention of
αb0.05. Setting the probability of a Type I error (α) at this
level is simply a practice not dictated by the cost of such errors,
and of course varies according to many factors. Despite the
general acceptance of αb0.05, there is no general convention
governing the protection levels desirable for Type II errors (β);
however, committing a Type II error in regulatory research can
have results which are devastating. It is clear that marketing
drugs or environmental products which later turn out to have
negative health consequences can have severely injurious
human, environmental and economic consequences.

One might expect that companies, academia and regulatory
agencies would agree that protection levels against Type II
errors should be set at least equal to the αb0.05 levels used to
protect against the arguably less-costly Type I errors. This
would require experimental designs with a power (1−β) of
0.95. It is possible that such power levels are almost never
achieved in animal research, even in a regulatory context. The
reason is simple — this degree of protection against Type II
errors is simply impractical, in that it requires more animals per
treatment group than is normally affordable or acceptable.
Consequently, it is becoming common practice to set power at
or about 0.80, an error level 4 times higher than that tolerated for
Type I errors [10,31,46].

If cost factors and animal use are potential explanations for the
lack of a consensus on desirable power levels, the problem of
effect sizes is certainly another explanation. Protection against
Type I errors is conceptually rather simple: we assume that in
reality there are no experimental effects, hence effect size is
always set at zero. Power calculations are more demanding. A
given power relates not just to some (hopefully plausible) β level.
It is also based on some “adequate” effect size, selected more or
less arbitrarily from an infinite range of possible effect sizes. Like
β itself, there is no general answer to the question of how large an
“adequate” effect size should be. Furthermore, it must be
emphasized that decisions regarding “meaningful” effect sizes
are not statistical questions, left to consulting statisticians. Rather,
adequate effect size must be based on knowledge of the
physiology of the test system. For example, a 30% drop in
body weight can be lethal, and is of greater concern than a 30%
drop in open field activity. Consequently, a test laboratory might
choose different effect sizes for power calculations for different
variables, based on such considerations.

It is practically unlikely that we set effect sizes according to a
specific research problem. Instead, there are numerous pub-
lished attempts to define “small”, “medium” and “large” effect
sizes. The most familiar of these utilizes Cohen's d [10]. In a
simple t-test, 2-sample example with equal n, d is just the
difference between the two means divided by the standard
deviation of the population rather than the sample (thus dividing
by n rather than n−1). Cohen's d is thus essentially a z score.
In a simple t-test situation with two samples and equal n, Cohen
suggests that a “small”, “medium” and “large” effect would be
in the neighborhood of d=0.2, 0.5, and 0.8, respectively. To
anchor this in concrete examples, a d of 0.5 is the difference in
height between 14- and 18-year-old girls [10].

Regrettably, effect sizes are less intuitive when the concept is
applied to the typical DNT design. Here we commonly deal
with complex factorial designs, with at least a single untreated
control and three increasing dose groups. In this case Cohen [6]
calculates a slightly different measure of effect size, the f ratio
(in the limiting case of 2 conditions, f=d / 2). Cohen's f (not to
be confused with Fisher's F ratio) is defined as the square root
of the between-groups variance σm (but divided by k, the
number of groups, not k−1 as in the traditional ANOVA), and
divided by the square root of the ANOVA mean square error
(σ).That is, f=σm/σ. Here Cohen defines an f of less than 0.1,
0.25 and 0.4 as small, medium and large, respectively [10].

To further complicate matters, in this situation the concept
of effect size is dependent on how some “true” experimental
effect increases with increasing dose. That is, for a given
dependent variable we can have several different patterns of
effects and each of which will produce a different value for σm.
For example, one could wish to detect a difference between
control and high-dose group, or a step-wise dose-response
relationship, such as controlN lowNmediumNhigh dose, or
another pattern. Each of such patterns will have a slightly
different σm and hence effect size. Thus we are practically
concerned with a range of effect sizes, depending on the
precise pattern of dose effects.

As an example, assume a standard DNT design, with a control
group and three increasing dose groups. Assume further that we
are measuring the body weight of young adult male rats. Mean
weight of controls in this example is 360 g. Body weights are
tightly controlled physiologically, with coefficients of variation
(CV) seldommore than 10%. This implies a standard deviation of
36, and we will also assume homogeneity of variance and equal n
in each of the four groups. Then σ=36, but σm and hence f will
vary according to the precise pattern of results.

Table 2 presents possible outcomes according to a range of
effect sizes and any of four possible effect patterns. Assuming
σ=36, effect size involves either a “medium”, “large” or
“very large” effect with a 0.5, 1.0 or 1.5 σ difference between
controls and high-dose groups (corresponding respectively to
18, 36 and 54 g of body weight). For all three effect sizes, the
low and middle doses can independently differ or not differ
from control values. Note that σm, Cohen's effect size, varies
substantially according to the precise pattern of results. A step-
wise dose-response decrease in body weight in equal increments
from control to high-dose produces the smallest Cohen's effect
size, while decreases restricted to the two highest doses produce
a substantially larger σm. Since power is a function of effect



Table 2
Power and sample sizes (at β=0.80 or 0.95) for different patterns of effects and
effect sizes, using a simple 1-way ANOVA test for treatment effects on rat body
weight (assuming standard deviation of 36 for all four treatment levels, C = control,
L = low, M = mid, and H = high)

Effect size Mean weights Cohen's σm Effect Power Sample
size

C L M H 0.80 0.95

Medium 360 354 348 342 6.708 0.186 0.24 80 125
360 360 351 342 7.462 0.207 0.30 65 101
360 360 360 342 7.794 0.217 0.32 60 93
360 360 345 342 8.318 0.231 0.36 53 82

Large 360 348 336 324 13.416 0.373 0.79 21 32
360 360 342 324 14.925 0.415 0.87 16 24
360 360 360 324 15.588 0.433 0.90 16 24
360 360 330 324 16.636 0.462 0.94 14 22

Very large 360 342 324 306 20.125 0.559 0.99 10 15
360 360 333 306 22.387 0.622 ∼1.0 9 13
360 360 360 306 23.383 0.650 ∼1.0 8 12
360 360 315 306 24.954 0.693 ∼1.0 7 10

“Medium”, “Large” and “Very large” refer to effect size with 0.5, 1.0 and 1.5 SD
difference between control and high dose, respectively.
σm: equivalent to the square root of the between-groups mean square error.
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size, power also depends appreciably on the precise pattern of
obtained results.

Table 2 shows that when there is a difference between
control and high-dose groups of 0.5σ, effect sizes are just
slightly less than Cohen's “medium” effect, while differences of
a full σ give us a “large” effect size around Cohen's value of
fN0.4. Thus a 5% drop in body weight between control and
high dose is close to a “medium” effect, while a 10% drop is a
“large” effect in this example. Note also that even if we accept a
power of 0.80 as, if not optimal, at least minimally acceptable,
then the common n=20/cell never achieves adequate power to
detect “medium” effects, as defined by Cohen. In contrast,
n=20 does achieve such power levels, but only for “large” or
“very large” effect sizes. If we further assume that the usual
high-dose level is set far above expected population exposure
levels, thus guaranteeing very large effect sizes, we can be
satisfied with the DNT study design from the narrow standpoint
of power. A first conclusion, then, is that the DNT suggestion of
n=20 animals per cell is adequate if not generous, while lower
sample sizes provide acceptable protection against Type II
errors only for very large differences.

Further to this discussion, Table 2 also provides estimates of
sample sizes per cell required to attain power of 0.80 and 0.95,
for the above effect patterns and sizes. Again it is obvious that
detection of medium effects is not possible with anything like
n=20 animals per cell, and that a power of 0.95 is approached
but never quite attained even with large effects restricted to the
highest dose groups. These data further illustrate that for
practical reasons, it is improbable that we will achieve
protection from Type II errors at less than β=0.2 except for
very large effects.

To complicate matters, the experimental designs actually
used in DNT studies are more complex than those shown in
Table 2. This additional complexity is a consequence of the
presence of sex in the experimental design. The DNT guidelines
correctly specify that chemical effects be tested on both sexes,
with up to 20 treated litters per dose group without specifying
how sex should be included in this design.

Practically, three options have been utilized. One is to test
one male and one female from each of, say, 20 litters per dose.
Given the conventional four treatment levels, this means testing
40 animals per treatment level, or a total of 160 animals. A
second alternative is to test just one animal per litter, with 10 of
the 20 litters per treatment level contributing only one male
each, and the other ten litters contributing one female each. In
this design there are only 10 animals per cell, with 8 cells
(2 sexes×4 treatment levels), or 80 animals total to be tested.
The third alternative has been to use only ten litters per
treatment level, with each litter again contributing one male and
one female. Here also a total of 80 animals are tested.

Statistically, the simplest of these three designs uses just one
animal per litter, with half the litters contributing one male each,
and the other half one female each. This is a classical 2-way
ANOVAdesign,with both sex and treatment as fixed effects. There
is a single error term, with (in our example of 20 litters/dose) 72
degrees of freedom, a main effect of sex (1 df) and treatment (3 df),
and of course a sex-by-treatment interaction, also with 3 df. Again,
a total of 80 animals are tested.

When each litter contributes two animals, one male and one
female, the design is a more complex “split-plot” or mixed
model. Sex must be treated as a correlated variable within litter
(comparable to a repeated-measures design, where the subject
rather than the litter is the unit of analysis), and tested by using
the residual within-litters error term. The treatment effect, on the
other hand, is a between-groups effect, and is tested using the
between-litters error term. This has complex and sometimes
surprising effects on statistical power. In this example, taken
from the third alternative, again we test 80 animals, but we now
have 10 and not 20 litters per treatment, with two animals (one
of each sex) per litter. This model too has a total of 80 animals.
However, there are now two error terms (one for testing
treatment effects, the second for testing the correlated sex and
sex by treatment effect). Each error term has 36 degrees of
freedom.

Hence, while such mixed designs can be very powerful for
detection of the correlated measure, in this case the effect of sex,
they are generally less powerful for detecting treatment effects.
Note, for example, that the degrees of freedom in the error term
for the simpler 2-way sex-by-treatment ANOVA (72) is twice
the degrees of freedom for either error term in the mixed model
[39], although both designs contain an identical total of 80
animals. For this reason alone, the mixed model will provide
lower power for the detection of treatment effects than does the
2-way model. Further discussion of these options is beyond the
scope of this paper, but again it must be stressed that when litters
contribute both sexes, the sex and the sex by treatment effect
must be analyzed as a correlated variable.

Multiple tests have serious consequences for experiment-wise
Type I protection; matters are more complex where Type II errors
are involved. Increasing the number of statistically independent
tests where there are true population differences between controls
and some high-dose level has the paradoxical effect of both
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increasing and decreasing power. Assume that there are three
independent “real” effects in a DNT study, significant at αb0.05,
and that the power of our DNT study to detect a real effect of this
size is 0.80. Then it is obvious that our ability to detect all three
effects is low, being (0.80)3 or 0.512. Thus conducting multiple
independent tests of true effects actually substantially reduces our
ability to detect all such effects. In this narrow sense, then,
multiple tests can reduce power. On the other hand, our ability to
detect at least one of the three independent true effects is
increased. This power is simply 1 minus the probability of
detecting no effects, or 1−β3. In the case of a power of 0.8 to
detect a single effect, our ability to detect at least one (or more) of
three effects now goes up to 1−0.008, i.e. 0.992.

This is a heartening result, since presumably detection of even
one such effect would be sufficient to raise some sort of warning
flag. However, it is by no means certain that we would ever have
three truly independent treatment effects in a DNT study. For
example, typically all 15 or so assessment procedures (e.g., body
weights, morphometric measurements and a range of behavioral
variables) are conducted on animals from the same 20 litters. It is
likely that under these circumstances truly independent effects are
impossible, even if the treatment produces different effects, via
different mechanisms, on three different dependent variables. We
can conclude that, unlike Type I errors, power (defined as our
ability to detect at least one real effect) does not go down with
increasing test number, and indeed may increase substantially, to
the degree that such tests are truly independent.

One cannot discuss power without mentioning test variability.
While high variability is not good, matters are never that simple.
As we have seen, effect size is generally measured in z scores
(recall that correlations too are simply the mean cross-product of
two z scores). This removes all variability differences between
dependent variables, by normalizing for such variability. Thus the
dispute about whether a more variable measure is “worse” than a
less variable measure does not pertain to power calculations when
effect size is normalized. However, this normalized approach can
be contrastedwith the criterion-related approach, which expresses
the effect of interest not in terms of standard deviations, but in
terms of percentages. In such a case, variability matters. It is
important to recall that all power calculations require estimation
of two parameters, variance and difference frommean (criterion).
Z-scores combine both measures. The criterion-related approach
does not, and hence use of criteria (e.g., 20% change from
baseline) is meaningless for power considerations without also
tabulating a range of possible variances, an extremely clumsy
approach which necessitates huge tables.

In any case, when the high variability is due to high measure-
ment error, there is a problem.Wemust ever strive tominimize such
error. On the other hand, in many cases high variability may not be
due to measurement errors. Biologically, some variables must be
keptwithin very narrow ranges, or survival is imperiled. Thus organ
and body weights have relatively low variability, because a 50%
drop in body weight is lethal. On the other hand, many variables do
not require such precise control, and hence are physiologically free
to vary widely. This may be true for some behavioral variables, for
instance. The point is that in either case the practice of measuring
effect size in standard deviation units may have biological validity.
Presumably one can alter loosely controlled variables more
substantially than tightly-controlled variables, and hence treatment
effects can be expected to be proportional to standard deviations in
both cases. Thus, inherent variability is of little consequence in the
way power is often calculated.

As shown above, n=20 litters per treatment group is near a
maximum practically feasible level, and does provide adequate
protection against Type II errors where large effects are involved.
However, in many DNTs (especially where time-consuming
neuropathology examination is involved), all available litters are
not always used, with sample size below 10 litters. Furthermore,
there is often no clear explanation of how these litters were
chosen. Based on the above power considerations, the current
practice of sampling less than the full number of 20 litters is
generally discouraged. Indeed, conducting analyses at such
insufficient power levels may be worse than not conducting
analyses at all, since it is all but sure to lull us into a sometimes
unwarranted false sense of security.

3.4. Statistical analyses and assumptions

Statistical tests are typically designed to be used under a
specified set of assumptions, and violations of these assumptions
may have more or less severe consequences. One assumption
that is paramount and common to all statistical analyses is that of
randomness (or independence of observations). This assumption
specifies that every sample is made of cases randomly chosen.
For example, selecting the smallest or the heaviest pups for
testing procedures would violate one of the most important and
general assumptions of statistical practice, and very serious
errors in inference could be made. It is important that analysis
methodology be determined a priori based on historical data and
knowledge rather than reliance on preliminary tests of assump-
tions that may prove to be overly sensitive.

3.4.1. Analysis of variance
Several studies from Box [6,7] on the analysis of variance

(ANOVA) demonstrated that violation of the assumption of
homogeneity of variance is not very serious when the number of
cases in each group is similar. The author [5] stated:

“Tomake a preliminary test on variances is rather like putting
to sea in a rowing boat to find out whether conditions are
sufficiently calm for an ocean liner to leave port!” (p. 333).

More recently, Hays [23] also wrote:

“… a test for homogeneity of variance before the analysis of
variance has rather limited practical utility, and modern
opinion holds it that the analysis of variance can and should
be carried on without a preliminary test of variances,
especially in situations where the number of cases in the
various samples can be made equal.” (p. 484).

One rule of thumb regarding heterogeneity of variance in theF
test is that, so long as group sizes are reasonably similar, one can
useANOVAmethods based on the assumption of homogeneity of
variance with confidence so long as the largest standard deviation
is less than twice the smallest standard deviation [43], p. 752.
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As far as the normality of the distributions is concerned,
Box [5] showed that the ANOVA is also robust against
“general” departure from normality as far as the distributions
have about the same shape, i.e. same skewness. If the skewness
differs from one group to another, false declarations of an
effect increase.

Parametric techniques are usually robust against departure
from normality and equality of variances, except in severe
cases. Norton (pp. 78–86) [34] looked at what happens to F in
the case of non-normal distributions and when variances are not
equal. She showed that, unless form and variance heterogeneity
are extreme among treatment populations, the F test is not
markedly affected (with sample sizes ranging from 3 to 10 used
in the simulations), but, in general, to address a potential effect
on the F ratio, allowance can be made to operate at a lower α
level due to the increased false positive rate. Transformations
can also be considered (Section 3.4.4.1). A thorough discussion
of the consequences of assumption violations on Type I and
Type II errors can be found in Glass et al. [20].

3.4.2. Repeated-measure analyses
Analysis methods designed to take into account repeated

measurements on the same animal introduce unique data
characteristics and additional analysis assumptions. In addition
to random error attributable to between-animal variation, repeated
measures include random error attributable to within-animal
variation. The within-animal variation across time may influence
the statistical analysis. For example, a univariate repeated-
measures analysis of variance assumes sphericity (also known as
circularity) of the variance–covariance structure and deviations
thereof can result in increased false positives [63]. The “sphericity”
condition is said to be fulfilled when the variances of the
differences across repeated levels are equal. One means by which
to address the lack of sphericity issue is through the Greenhouse–
Geisser or Huynh–Feldt corrections which have been recom-
mended by Tamura and Buelke-Sam [59]. The multivariate
approach to repeated-measures analysis represents another
alternative that is free from this circularity assumption [48]. A
third approach is to employ mixed-model methodology. The
appeal of this approach is that, while the aforementioned
techniques address specific assumptions about the covariance
structure, mixed-model methodology allows for the evaluation of
multiple structures in order to construct a model that best fits the
data. Recent computer software development has made mixed-
model methodology more readily available (see Section 3.7 for
more details about repeated-measures analysis).

3.4.3. Analysis of covariance
The analysis of covariance (ANCOVA) enables removal of the

effects of an uncontrolled source of variation in one variable
(called “covariate”) from the analysis of another variable. For
example, a test compound may affect nerve conduction velocity,
which is known to be affected by temperature. If the test
compound does not itself affect temperature, the ANCOVAwill
allow for the removal of the normal temperature variations
(covariate) from the combined effects of temperature and test
compound. Other examples may include using a baseline as a
covariate to adjust for any pre-existing differences in one variable,
or using litter size to adjust pup weight.

The analysis of covariance has additional important
assumptions compared to the ANOVA [13], such as:

a. linearity of regressions: the standard covariance analysis
assumes that the relationship between covariate x and
criterion variable y is linear. Simply, an x–y scatter plot for
each treatment group could be generated; or a test for linearity
of regression could be performed [23], pp. 684–686;

b. homogeneity of slopes: the slopes of the regressions are parallel
(i.e., same for all treatment groups). In other words, there are no
statistically significant treatment-by-slope interactions;

c. covariate independence of treatment: covariate x is statistically
independent of criterion variable y; in other words, treatment
does not affect the covariate. If it does, part of the treatment
effectmay be removed by the regression adjustment or produce
spurious meaningless results. An ANOVA of the covariate will
help decide whether the covariate is affected by treatment.

Haseman et al. [22] provides an excellent example of the
latter issue in which body weight is used as an adjustment in the
analysis of organ weights. A comparison is made of the analysis
of organ/body weight ratios vs. the analysis of organ weights
using body weight as a covariate in an ANCOVA. While
showing a preference for the ANCOVA approach, the authors
caution against the potential difficulties when the test chemical
affects both organ and body weight. When this is the case, the
relative impact on organ weight of the test chemical and reduced
body weight may be confounded. That is, it may be difficult to
distinguish whether a chemical reduces organ weight simply by
making the animal smaller or it has a direct effect on the organ
itself. Shirley [54], on the other hand, argues that the use of
relative organ weights has its own (often violated) assumptions
and that this analysis is often misleading. The author continues
by stating that, after simulations, the analysis of covariance was
greatly superior to the analysis of relative organ weights. As
noted by the authors, the investigator should be aware of this
when interpreting organ weight changes using either an
ANCOVA or an analysis of relative body weights.

Overall, the conclusions about the consequences of violating
the ANOVA assumptions carry over to the ANCOVA [20]. But
ANCOVA does not appear to be robust against violations of
equal slope and normality with groups of unequal sample sizes
[32]. Lord [38] also cautioned that errors of measurement in the
covariate may either create the appearance of an effect or hide it.
Nevertheless, ANCOVA can still often be a tool of choice, but
considerable care is needed in applying ANCOVA procedures
and in interpreting them. Because of the intricacies and the
complexity of its assumptions, ANCOVA should not be used
without expert advice.

3.4.4. Other considerations

3.4.4.1. Transformations. As appropriate, transformations can
be used to stabilize variances and/or normalize distributions,
and to linearize regressions. They are best used a priori, for
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example, when the data are expected to follow a non-normal
distribution: for example, Pryor et al. [49] used a square root
transformation for motor activity data. Such a transformation
has both a variance stabilizing and normalizing effect. Data that
present a large proportion of values in the low or high ranges
(e.g., 0–30% or 70–100%) usually benefit from an arcsine
transformation (also known as angular transformation) that
stretches both tails of the distribution. A very general trans-
formation to achieve normality is the Box–Cox transformation,
which allows selection of an optimal normality transformation
based on any particular non-normal distribution [47]. Transfor-
mations, however, should not be chosen a posteriori on the
basis of the statistical significance of the results. A far better
approach is for laboratories to develop and routinely apply
appropriate transformations for those DNT tests that reliably
generate distributions that violate assumptions such as normal-
ity or homogeneity of variance.

It should be realized that, in the acoustic startle test, for
example, some “raw” data are themselves transformations; e.g.
the sound pressure level (SPL) of an auditory stimulus is often
characterized as dB(SPL), where the reference sound pressure is
20 μPa. It can also be expressed as dB(A) when the “A
weighting filter” is used to express the sound level. In any case,
these relative dBs are really a measure of ratios on a logarithmic
scale, i.e. a transformation. Decibels (without a reference) are
dimensionless units, however, and cannot be used to express the
sound level of an auditory stimulus.

3.4.4.2. Measurement scales. Treating data at a higher
measurement level than warranted has also some potential
consequences. The type of data represented by an analysis
endpoint can be defined in several different ways. In a very broad
sense, variables can be classified as continuous or discrete. A
continuous variable can assume any value within a reasonable
range defined by the limits of a measurement instrument. Body
weights are classic examples of continuous variables. By contrast,
discrete variables can only assume a limited number of values.
Most observational endpoints are discrete in that an observer
chooses from a short, predefined list of possible outcomes to
categorize an observation (e.g., ranking of rat's reactivity).

There are several levels of measurement scales from the most
limited to the most complex. Classification of data types can be
refined by considering the amount of information or detail
represented by the data [56,64].

a. Nominal (unordered categorical, descriptive): this scale
distinguishes between categories. The values are unique
identifiers, but do not reflect numerical relationships, e.g.,
presence or absence of eye opening, description of abnormal
movements categorized into gait disturbance, tremors, and
convulsions. If numbers are assigned to any of these
categories, they are arbitrary.

b. Ordinal (ordered categorical, graded, rank-ordered): the
classes are ordered along some continuum and eventually
assigned a numerical rank or order. For example, five
categories (numbered 1 through 5) from completely
constricted to completely dilated pupils. An equal difference
between assigned numbers does not represent an equal
difference in the magnitude of the observation.

c. Interval: this scale ranks the relative order of the measure and
contains equal units, but does not have an absolute zero, e.g.,
temperature, but 30 °C is not twice as warm as 15 °C.

d. Ratio: this scale is an interval scale with an absolute zero
which may be used as a reference point. For example, motor
activity counts or body weights range from zero to x, and x /
2 is twice as many counts or grams as x / 4.

Different types of statistical methods have been designed to
analyze different types of data (Section 3.9). The same statistical
test can, however, be eventually used with different types of
data; however, many potential pitfalls and limitations must be
recognized by the investigator. For example, analyzing nominal
data with techniques designed to treat ratio data may either
affect the power of the test, or generate uninterpretable results.
Expert advice should be sought in the analyses of these data
types.

3.5. Analyses of sex effects

One important aspect of the DNT guideline is the
requirement that treatment effects be assessed in both sexes.
With today's knowledge of sex differences in disease and
toxicity, much clinical and animal research should be conducted
in both sexes. Still, while mandating the inclusion of both sexes
in toxicity testing, the DNT guideline does not stipulate how
experiments should be designed and analyzed to derive
maximum benefit from the inclusion of both sexes.

There are many advantages to properly including sex as a
factor in the statistical analyses. This reduces the number of
significance tests by half, while conferring substantial benefits
in interpretation of the study findings. The main effects of
treatment are measured across sex, not simply by sex. Not
infrequently we find significant treatment effects in one sex,
with trends in the opposite sex. Testing of the sex-by-treatment
interaction will reveal whether there actually is a sex difference
in treatment effects.

There are currently three approaches within conventional
analysis of variance to the measurement of sex differences in
response to potentially toxic compounds. The first, and by far
the most problematic, of these approaches is to simply analyze
each sex independently for dose effects. This is also the
approach universally conducted in DNT studies. A second
approach is to draw at least one male and one female from each
exposed litter, while the third approach draws each sex from
exactly half of all exposed litters, so that litter contributes
subjects of only one sex (Section 3.3).

While the current DNT practice is to analyze the data from
each sex separately, that approach is fraught with problems.
First, in some studies it is unclear how sexes are drawn within
litters. Thus this design may not always respect the litter as the
fundamental unit of statistical analysis in all prenatal exposure
designs. Second, analyzing the sexes separately fails to address
the fundamental question, which is whether there are sex
differences in treatment effects. The only way this important
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question can be answered is by testing for the presence of a
statistically significant sex-by-dose interaction. A third problem
created by the practice of analyzing each sex independently is
that this doubles the number of experiment-wise statistical tests
for the main effect of treatment. Since as we have seen the alpha
inflation caused by conducting hundreds of such significance
tests is one of the greatest problems in DNTstudies, this practice
should be discouraged on the grounds of alpha inflation alone.
A fourth problem is that the practice of analyzing exposure
effects independently by sex does not provide any measure of
the effects of sex itself on dependent variables. These sex effects
are frequently sizeable, and hence provide a convenient internal
measure of the reliability of the dependent variable.

In summary, in analyses of DNT data, sex must be included
as a fixed effect variable in all analyses of treatment effects. The
current practice of analyzing results separately by sex is simply
not appropriate.

3.6. Litter effects

Treating multiple offspring from the same litter as indepen-
dent subjects is a fundamental violation of assumptions that can
severely inflate alpha levels [26,55,66]. The current DNT
practice sometimes recognizes this principle in young prewean-
ing animals, but not always in adults, on the false assumption
that litter effects do not extend beyond infancy or weaning. This
is, however, a mistaken assumption. Litter effects, which is to
say correlations across littermates, exist and are large in young
adult rats [22]. Indeed, if humans are any measure, “litter
effects” (sib–sib or parent–child correlations) exist throughout
life, and increase with advancing age.

As to the existence of litter effects in adult rats, Table 3 shows
litter effects seen in a recent experiment (Sobrian, personal
communication). The study design included both males and
females, drawn from separate litters. Each litter contributed three
same-sex siblings, and these animals were reared under different
conditions until testing began at an age≥PND 110. Rearing and
sex effects were removed by converting all scores to within-
group z scores prior to analysis of litter effects. As the table
shows, organ and body weights and a range of behavioral mea-
sures showed significant litter effects in these adult males and
females. The obvious recommendation, then, is that litter must
be tracked over time, and treated appropriately in statistical
analyses.
Table 3
Litter correlations for adult rats (N110 days of age) using sample data (Sobrian,
personal communication)

Dependent variable F p

Plus maze: entries into lighted arms F(23,48)=2.56 0.003
Radial 8-arm maze: latency over

3 weeks of testing
F(23,48)=1.93 0.028

Morris water maze: latency over
3 weeks of testing

F(23,48)=0.95 0.535

Open field: mean square entries,
4 consecutive daily sessions

F(23,48)=2.47 0.004

Body weight F(23,48)=2.17 0.012
Brain weight F(23,48)=3.70 0.0001
Undeniably, then, litter effects are real, and often large, even
in adult rats. Consequently, it is necessary to track litter
throughout all stages of the DNT, and to adjust statistical data
analyses accordingly. This is hardly an onerous requirement, but
here, too, one caveat is in order. Some seem to have gone
overboard in their respect for this principle, to the degree that
there have been attempts to track the litter from the supplier of
experimental animals. While there is no harm in such a practice,
it is not essential, especially if potential dams are assigned to
conditions under sound matching or randomization procedures.

Finally, we add a very brief word regarding recent reports on
the use of the litter as the basic unit of analysis in toxicology
studies. In an excellent paper, Elswick and colleagues [15] have
analyzed the effects of using 1 or more ventral prostate weights
per litter on experimental outcome and power. This paper
correctly used litter as a random factor in all analyses, and not
surprisingly concluded that drawing ventral prostate weights
from more than one pup per litter was preferable to the use of a
single pup per litter. Hence this paper does not in any way
question the use of the litter as the fundamental unit in analysis;
it only shows that litter means based on a larger n are more
accurate, an inarguable conclusion. A second result, published
as a recent abstract [16], is more problematic. This abstract
appears to report that drawing data for spontaneous motor
activity from 3 mice from each of three litters and treating this as
an n of 9 has the same power as using animals from 9 litters,
evidently one animal per litter. It would appear that this was not
a true Monte Carlo study, because statistically this conclusion is
inaccurate, and would not be obtained in a true Monte Carlo
simulation when, as is generally the case (see Table 3), there are
litter effects on spontaneous motor activity (Monte Carlo
analysis is a statistical method used for simulating reality that
takes into account randomness by testing a very large number of
scenarios).

In summary, ignoring litter effects in the statistical analysis
of DNT studies is simply not an acceptable practice. Standard
ANOVAmodels make inclusion of litter as a correlated variable
straight-forward, and failures to use such models risk
unacceptable levels of alpha inflation.

3.7. Repeated measures

Common among many DNT designs are multiple measure-
ments of the same endpoint on the same animal at different time
points. For example, motor activity might be tested in the same
group of animals on PND 13, 17, 21 and 60. Likewise, auditory
startle might be tested in the same group of animals on PND 22
and 61. In such cases, the data present “repeated measures” on
the same experimental unit (individual animal) and the
statistical analysis should reflect that aspect of the study design.

The motor activity and auditory startle examples described
above are ones in which the repeated measures represent sessions
conducted on different days of the study (across-sessions). In both
these endpoints, repeated measures are often artificially created
for the statistical evaluation of within-session data. For example,
data from a one-hour motor activity session is often broken down
into 10 or 15-minute intervals for presentation and statistical
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analysis. Likewise, 50 trials of auditory startle are often broken
down into blocks of 10 trials each. The objective of the within-
session evaluation is to assess adaptation that normally occurs
during the test session. The objective of the across-session
evaluation is to assess changes that occur over days across
sessions. In both cases, a repeated-measures analysis provides the
means by which to evaluate the changes in motor activity over
two time frames (session and days).

Technically, repeated measures imply multiple measure-
ments on the same experimental unit and therefore may occur in
many different forms. For example, repeated measures may
occur as dose level (many pharmacological studies are designed
such that the same animal receives different dose levels) or
within-session activity (several consecutive bins of motor
activity recorded within a one-hour session). For simplicity's
sake, the following discussion assumes a typical DNT study
design in which parallel groups of animals are administered
different dose levels (treatment groups) and measured at
multiple time points (time).

From a statistical standpoint, the repeated-measures design
introduces an additional dimension to the analysis. The primary
evaluation of interest is that of the different treatment groups.
Treatment groups are considered to be a between-subject
(between-animal or, more commonly, between-litter) effect
because the treatments are administered to the individual animal
(or dam), i.e., each animal (or litter) is contained in one, and
only one, treatment group. Time is considered a within-subject
effect because the same animals are measured at the different
time points. Animals (or dams) are randomly assigned to the
treatment groups and therefore it can be assumed that
measurements made on the different animals (between-animal
or between-litter) are independent. However, the repeated
measurements on the same animal (time) are not randomly
assigned and therefore are not independent. That is, the
measurements taken on the same animal are correlated and
this must be taken into account in the analysis. As a result, there
are two sources of random variation: between-animal (or litter)
and within-animal."

There are numerous statistical techniques for analysis of
repeated-measures design. One approach utilizes a univariate
analysis of variance. If correlations between responses from the
same animal are the same regardless of time proximity, then the
univariate approach provides a valid method for repeated-
measures analysis. However, this assumption may not always
be realistic. For example, in an across-session motor activity
analysis it may not be reasonable to assume that measurements
taken on days 13 and 17 have the same correlation as those
taken on days 13 and 60. Likewise, in a within-session motor
activity analysis one might expect measurements taken in the 0–
10 minute interval to be more highly correlated with those in the
11–20 minute interval than with those in the 51–60 minute
interval when adaptation may have occurred.

The Huynh–Feldt condition (sphericity) refers to the
differences between each pair of responses having equal
variances and is a necessary condition for the univariate
approach to repeated-measures analysis. If the Huynh–Feldt
condition is not met, the test statistics for the within-subject
effects (time and treatment-by-time interaction) will be over-
estimated, thus increasing the Type I error rates. There are
analysis adjustments available (e.g., Greenhouse–Geisser and
Huynh–Feldt) to account for the within-subjects correlations
but some consider them inadequate in that they simply make
general adjustments to degrees of freedom. Other more
advanced alternatives may be preferable (see below).

A multivariate approach to repeated measures provides an
alternative approach to evaluating within-subject factors when
the Huynh–Feldt condition is not met. Although this approach
may be preferred when the Huynh–Feldt condition is not met, it
also makes assumptions that may be too general. For example,
the multivariate approach assumes that the correlation between
all pairs of responses for an animal is unique. As a result, the
power of the multivariate approach is reduced if this assumption
is not true. In addition, if for some reason a response for an
animal is missing for a single time point, the multivariate
methodology excludes all data from that animal in the analysis if
an implied value cannot be supplied for the missing information.

More recent software and statistical methodology develop-
ment provides the mixed-model approach to repeated-measures
analysis. The name “mixed-model” refers to the mix of fixed
effects (treatment group) with random effects (time) in the
statistical model. The advantage of this approach is that it
provides flexibility in modeling the correlated data presented by
within-animal measurements (the covariance structure of the
statistical model). The method involves a sequential approach to
the repeated-measures analysis:

1. define the statistical model,
2. evaluate various covariance structures to determine the “best

fit”,
3. make statistical inferences based on the model determined in

step 2.

What makes the mixed-model approach unique is its
flexibility to evaluate various covariance structures to determine
a model that best describes the within-subject correlations.
Covariance structures range from very simple (compound
symmetric: correlations between responses from the same
animal are the same regardless of time proximity) to very
complex (unstructured: within-subject correlations are unique
for every pair of time points). The multivariate approach
assumes an unstructured covariance structure and can therefore
be less powerful when some correlation between observations
does indeed exist. The univariate approach assumes the Huynh–
Feldt condition (a general form of compound symmetry) and
can lead to inflated Type I error rates when in fact the
correlations are more complex. In truth, the correlation patterns
may fall somewhere between these two extremes. For example,
the first-order autoregressive structure assumes that the time
points are equally spaced and the correlation between observa-
tions is a function of their distance in time. This seems intuitive
in that one might expect a higher correlation between
measurements that are closer together in time than those that
are further apart. There are many other structures making
different assumptions (e.g., unequally spaced time points).



Fig. 1. Interpreting interactions: statistically significant main effect of treatment
and significant time-by-treatment interaction. This figure (illustrating a plausible
but fictitious outcome for a control and a treated group) shows a failure of motor
activity to adapt in the treated group after the first 15 min, giving the appearance
of hyperactivity and a significant main effect of treatment when activity is
collapsed over trials.

Fig. 2. Interpreting interactions: statistically significant time-by-treatment
interaction without significant main effect of treatment. In this example, there
is still a significant interaction between time and treatment, but it takes the form
of lower initial activity, again as in Fig. 1 without adaptation. Clearly in this
instance the significant interaction is not accompanied by a significant overall
main effect of treatment.
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In practice, various structures can be evaluated and, over
time, the structure that best describes the within-subject
correlations may be narrowed down to one or two for specific
endpoints. For example, over the course of several studies it
may be determined that the compound symmetric and first-
order autoregressive structures consistently provide a better fit
for the equally spaced time points over the narrow time frame of
the within-session motor activity data. Likewise, one or two
other structures might consistently provide better fits for the
unequally spaced time points of the wider time frame provided
by the between-session motor activity data. The historical
evidence would suffice for narrowing the covariance evaluation
to two specific structures for each endpoint. A thorough
discussion of the advantages and disadvantages of the
univariate, multivariate, and mixed-model repeated-measures
analyses are provided by Littell and colleagues [35–37].

The advantage of repeated-measures analysis, regardless of
the approach utilized, is that it allows for the evaluation of
treatment group effects across time. For this evaluation it must
first be determined if the treatment group effects remain
constant across time. That is, are the observed effects of the
different treatment groups dependent on the time point at which
they were observed or are they basically the same at all time
points? This question is addressed by the interaction of
treatment group and time (treatment-by-time). A nonsignificant
treatment-by-time interaction indicates that the treatment group
effect remains constant across the time points and, therefore, it
is reasonable to draw conclusions across the pooled time points
by evaluating the treatment main effect. A significant treatment-
by-time interaction indicates that the treatment group effect
differs depending on the time point. In the presence of a
treatment-by-time interaction, it is necessary to evaluate the
nature of the interaction to determine if conclusions can be
drawn across the pooled time points or if the individual time
points should be considered individually.

Fig. 1 illustrates a significant treatment-by-time interaction
for a within-session motor activity test. (For illustrative
purposes only a control and one treated group are shown.)
There is very little treatment effect in the first 15 min following
dose. However, while the control group shows adaptation
(“habituation") by 60 min after dose, the high-dose group
remains very active. That is, there is no treatment effect at the
first time point but a very large treatment effect thereafter.
Because this treatment effect is monotonic (nondecreasing or
nonincreasing), one could evaluate the treatment effect across
the pooled time points and come to the conclusion that there was
a significant treatment effect for the one-hour session.

However, simply ignoring the treatment-by-time interaction
can adversely affect the interpretation of results. Consider the
motor activity session depicted in Fig. 2. While the expected
adaptation has occurred in the control group, the treated group
has maintained a constant level of activity that is below that of
the control at the 15- and 30-minute intervals, but above that of
the control at the 45- and 60-minute intervals. Again, this
illustrates a significant treatment-by-time interaction in that the
treatment effect depends on the time point. However, to ignore
the significant interaction and evaluate the treatment effect
across the pooled time points would lead one to the false
conclusion that there is no treatment effect for the one-hour
session. That is, the true effect of treatment on adaptation is
“masked” because, on average, the treated group's activity was
about equal to that of the control group for the entire session as a
whole.

There are different approaches on how to proceed in light of
a significant treatment-by-time interaction. For some, the
presence of a significant interaction is sufficient statistical
evidence that there is a treatment effect on motor activity during
the 60-minute session. That is, in the examples above the
response curve of the treated group differs from that of the
control group. From this point, one would examine graphical
displays and individual data in order to determine the scientific
relevance of the treatment effect.

For others, a significant treatment-by-time interaction would
trigger statistical evaluations at each individual time point. In
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the first example above this would lead to the conclusion that
the treatment effect was statistically significant at the 30-minute
time interval and continued through the rest of the session. In
the second example, this would lead to the conclusion that,
relative to control, the treatment effect was a significant
decrease in activity at the 15-minute time interval and a sig-
nificant increase at the 45- and 60-minute intervals. From this
point, one would determine the scientific relevance of the
statistical findings.

Both approaches have merit and are valid from a statistical
standpoint. The important concept that they share is the
recognition that there is a statistically significant treatment
effect that is dependent on the time point. The basic difference
in the approaches, as with any formal statistical analysis, centers
on the point at which one abandons statistical inference in favor
of scientific interpretation. As discussed in Section 4, statistical
analysis must be viewed as a supplemental tool rather than an
end in itself. As such, the scientist must decide how best to
utilize the repeated-measures analysis tool to interpret the data.

3.8. Multiple pairwise comparison procedures

This section emphasizes control of inflation of Type I errors
through the use of complex multifactorial experimental designs.
Clearly in such complex multifactorial designs, the overall
experimental objective determines where to halt the analysis, and
sometimes simply obtaining a main effect of treatment will
suffice. Yet undeniably the use of fewer, more complex statistical
analyses can create substantial analytical problems. Foremost
among these is the likelihood that, following overall multifactorial
analyses, experimenters may well want to conduct many multiple
comparisons between treatment means in a manner which
adequately protects alpha levels and power. By way of example,
a single procedure, such as brain morphometrics, can produce
separate measures of treatment effects for each brain slice at every
age. Thus, if thickness of six brain layers is assessed at two ages
(PND 11 and 60) in a DNT with one control, three treatment
groups and two sexes, there is a total of 72 possible pairwise
comparisons between control and treatment means. Clearly this
produces substantial problems for control of Type I and Type II
errors. These problems are only accentuated by the dizzying
multiplicity of multiple comparison techniques in the literature,
leading to lack of adequate guidance on these problems by most
statistics texts, and equally a lack of agreement among experts in
this area.

It is also true that analysis of treatment effects in DNT studies
may want to concentrate not on multiple pairwise comparisons,
but rather on trend analyses across dose levels. Tukey et al. [61]
provides an approach for evaluating response trends in an
increasing dose design. One concern that investigators have
with a trend analysis is that it may overlook meaningful responses
which may not follow a dose-response pattern (e.g. U-shaped or
inverted U-shaped response curves). However, trend analyses are
easily adapted to evaluate such responses. For example, the trend
analysis can be designed to evaluate both linear and quadratic dose
responses. Another approach is to combine a linear trend analysis
with pairwise comparisons to evaluate non-linear responses.
Planned trend analyses are certainly a viable alternative to
multiple pairwise comparisons. The primary advantage, relative to
alternative methods that test for homogeneity of groups (e.g.,
ANOVAor pairwise group comparisons), is that trend analyses are
more powerful when the response truly does follow a dose-
response trend.However, for the sake of brevity, trend testswill not
be discussed herein in any greater detail. To properly tailor trend
analyses to address study design and objectives, the investigator
should employ the assistance of a knowledgeable statistician.

3.8.1. Terminology
Several distinctions need to be made at the outset of this

discussion. Perhaps first is the distinction between planned and
post-hoc tests. Planned multiple comparison procedures
(MCPs) are a part of the experimental design, and must be in
place before the first data are analyzed. Conversely, post-hoc
tests are MCPs conducted after the fact, which is to say
following at least a preliminary analysis of the data. This is an
important distinction for scientific research. Planned compar-
isons can deal adequately with problems of power and alpha
inflation. Post-hoc measures are often applied to data which
appear “trendy”, and hence are some subset of a large and
uncontrolled family of multiple comparisons. Whatever the
choice of multiple comparison procedures, we emphasize that in
DNTstudies, all such comparisons must be planned at the outset
of the study, i.e., during the design stage, prior to any
experimental interventions. In such cases planned pairwise
comparisons are not “post-hoc”, although we often incorrectly
so refer to multiple pairwise planned comparisons.

A second distinction is that of pairwise comparisons between
treatment levels and other comparisons. Perhaps the most
important planned comparison will be unweighted pairwise
comparisons between means of the treatment levels and the
control group mean. Here we will refer to these pairwise
comparisons as multiple pairwise comparison procedures, or
MPCPs. This section will consider MPCPs, and especially those
between control and all dose levels. This is in no way to
discourage trends analyses, for example, but the topic is simply
too vast to consider every possible planned comparison.

Still another important distinction is between protected and
unprotected MPCPs. A protected MPCP is conducted only if the
overall F test for treatment effects, or perhaps an interaction of
some other factor(s) with treatment, is found to be statistically
significant. Conversely, an unprotected MPCP is conducted
regardless of overall F tests for significant treatment effects.

3.8.2. Choice of MPCPs
As always with inferential statistics, the choice of MPCP

involves considerations of both alpha protection and power. For
DNT purposes, two attractive alternatives appear to be either
Dunnett's or Fisher's Least Significant Difference (LSD)
[9,28,52,53], although as usual not all authorities are in agreement
on this as on every other aspect of this topic [50,60]. Both tests
have high power combined with reasonable Type I error rates,
both are readily available in standard statistics packages, and both
are extremely simple. Two other choices, neither quite as
attractive, are Newman–Keuls and Duncan's. Newman–Keuls
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tends to be more conservative than the Fisher's LSD, while
Duncan's has exceptionally high Type I error rates. Other choices,
including Bonferroni's, Tukey's HSD and Scheffé's, trade
excellent alpha protection for substantial reductions in power,
and generally cannot be recommended for DNT studies.

It is imperative that the study objective be the driving force in
the selection of an MPCP. What makes Dunnett's test unique
among the array of available MPCP is that it is designed to
control alpha specifically for the subset of pairwise comparisons
that consist of each individual treated group vs. a single control
group. That is, in a study consisting of a control group and three
treated groups, Dunnett's test controls alpha for the three
pairwise comparisons of each treated group vs. control. Since
this MPCP protects against only a specific subset of all possible
pairwise comparisons, it is quite powerful and widely applicable
to DNT studies, in which the comparison of treated groups with
the control is a common objective.

By contrast, Fisher's protected LSD is designed to adjust
alpha for all possible pairwise comparisons. In the example of a
study with a control group and three treated groups, Fisher's
protected LSD controls alpha for the six pairwise comparisons
of the four groups. Thus, Fisher's LSD would be the preferred
MPCP if the study's objective is to evaluate all possible group
comparisons but would be somewhat conservative (less
powerful), relative to Dunnett's test, if only comparisons with
the control are of interest since it adjusts for additional
comparisons that are not of interest.

Another distinguishing characteristic of the two tests is that
Fisher's LSD is a protected test while Dunnett's test is designed
as an unprotected test. That is, Fisher's LSD test is used as a
post-hoc test only when the analysis of variance F test for
treatment effect is statistically significant. By contrast, Dun-
nett's test is designed as a stand-alone test to be conducted
without regard to the outcome of the analysis of variance F test
for treatment effect [12]. It is not uncommon for DNT testing
laboratories to misuse Dunnett's test as a protected test, i.e.,
dependent on the outcome of the analyses of variance.
However, because the critical values and alpha adjustments
are calculated based on Dunnett's being an unprotected stand-
alone test, to use it as a protected post-hoc test reduces its power
and may yield conservative results.

Table 4 presents a comparison of the results from Dunnett's
and Fisher's protected LSD for five simulated experimental
Table 4
Example results of the F test, a protected Fisher's LSD and the unprotected
Dunnetts for a range of treatment outcomes

Example Group means ANOVA p-value Multiple comparison

C L M H Fisher's LSD Dunnett

1 360 370 380 386 0.104 NSD NSD
2 360 370 380 389 0.062 NSD HNC
3 360 389 380 370 0.062 NSD LNC
4 360 370 380 391 0.041 HNC HNC
5 370 380 360 394 0.021 HNM NSD

Simulation uses n=20/group with a within-group SD=36, with four treatment
groups (C = control, L = low, M = mid, H = high dose).
NSD=no significant difference.
outcomes. For simulation purposes, all examples utilized a
sample size of n=20/group and maintained a within-group
standard deviation of 36. All tests in this simulation were
conducted at the 0.05 significance level. Because it is a protected
MPCP, Fisher's LSD was only conducted in the examples
producing a significant treatment effect in the ANOVA test,
whereas Dunnett's test was conducted for all examples since it is
an unprotected test.

In example 1, where the group means ranged from 360 to
386, there were no significant effects with either the ANOVA or
Dunnett's test. Examples 2 and 3 show a slightly higher mean in
either the high-dose or low-dose group, and Dunnett's test was
conducted and those dose groups (with the mean of 389) were
significantly greater than the control. This illustrates the
increase in power that comes with Dunnett's test when the
only group comparisons of interest are the pairwise compar-
isons of treated groups with the control. In both cases, the
ANOVA, which tests the simultaneous equality of all four
treatment group means, was not significant. Furthermore, since
the ANOVA F test does not assign any order to the group
means, the results were identical in both examples (p=0.062).
In example 4, the high-dose group was even higher, and both
tests used (Fisher's LSD and Dunnett's) identified the high-dose
mean as being higher than that of control. Finally, in example 5,
the mid-dose group mean is lower than, and the high dose is
higher than that of control. The ANOVA followed by Fisher's
LSD is not affected by this ordering and identifies the two
extreme means as being different. However, when compared
with the control mean, none of the treatment group means are
different when tested with Dunnett's.

This last characteristic of Dunnett's test is of particular note
in study designs that utilize dual control groups (e.g., both a
vehicle and a pair-fed control group). Often times, laboratories
will analyze such study designs by using Dunnett's test for
comparison of treated groups with one control and then repeat
the process for comparison with the second control. However,
this practice should be avoided since, to do so employs
Dunnett's test for twice the number of comparisons for which it
was designed and thus increases the chances of a false positive.

In summary, if the only comparisons of interest are those of
the individual treated groups with a single control, then
Dunnett's MPCP is an efficient and powerful test that addresses
the specific objective. If any other group comparisons are of
interest, then Fisher's protected LSD is a powerful test that
adjusts for all possible comparisons.

If a dose-response evaluation is the primary objective, then
the reader is referred to tests designed for that task such as
William's test [68] or linear contrasts. These tests gain power by
restricting the alternative hypothesis (monotonic increasing or
decreasing) as opposed to not equal, which is the alternative
hypothesis in ANOVA and the MPCPs discussed here. These
trend tests are not considered multiple pairwise comparison
procedures in that, much like the ANOVA F test, they provide a
simultaneous global conclusion about all groups rather than for
specific pairs of groups. As discussed earlier, such trend tests
are beyond the scope of this paper but the reader is referred to
Tukey et al. [61].
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Here it is also important to emphasize that these recommen-
dations are not iron-clad laws. So long as adequate alpha
protection is provided, investigators are free to choose among
other alternatives. For instance, many DNT studies use Tukey's
MPCP. It is certainly not wrong to do so, and indeed this
procedure provides excellent protection against Type I errors.
Yet equally clearly, Tukey's is less than optimal in terms of the
overall protection provided against all forms of experimental
error (Types I and II combined— Carmer and Swanson [9]) due
to rather low power. So, as always, choice of an MPCP involves
balancing relative costs and benefits, a balance which will vary
according to experimental objectives.

3.8.3. MPCP testing when interactions with treatment are
significant

Another issue is the use of MPCPs with several common
multifactorial designs. In order to understand what is to follow,
it is first necessary to remind the reader of the concept of simple
main effects. This is an essential concept in interpreting most
multifactorial designs, not least those using multiple correlated
or repeated measures. If the multifactorial analysis reveals a
significant interaction between treatment and another factor, it is
necessary to unravel that interaction by testing treatment effects
for every level of the interacting factor. For example, if a 2-way
treatment-by-sex design produces a significant treatment-by-
sex interaction, we will want to test treatment effects for every
level of sex, which is to say separately for males and females.
Here the test of the treatment effect for males alone is a test of a
simple main effect of treatment. To understand the application
of MPCPs to simple main effects of treatment, we begin by
discussing the ubiquitous 2-way sex-by-treatment design. If
none of the three effects (the main effects of treatment and sex
and the treatment-by-sex interaction) are significant, analysis
clearly stops here. Similarly, if the treatment effect is the sole
significant effect, pairwise comparisons of treatment group
means averaged across sex can be conducted using the recom-
mended unprotected Dunnett's or protected Fisher's LSD.

Matters become more complex when both treatment and sex
main effects are significant, or when there is a significant
interaction between sex and treatment, independent of whether
the two main effects are significant. To understand why this is
so, consider analysis of body weight at some age. If both sex
and treatment but not their interaction are significant, we are
faced with a dilemma. The main effect of treatment in this
design is simply the average of the weights of the two sexes for
each of k treatment groups. However, this average is chimerical,
in the sense that there is no animal whose weight is the average
of male weights and female weights. Thus the experimenter will
necessarily want to present treatment effects by sex, so that the
reader can see how treatment actually affected real animals, not
statistical chimeras. Presenting simple main effects by sex is
also required for interpretation of a sex-by-treatment interac-
tion. Thus there are two experimental outcomes necessitating
multiple pairwise comparisons of the simple effect of treatment— a
significant interaction, or significant main effects of both sex and
treatment. In either case, we conduct MPCPs of two groups, males
and females. How should we control alpha under these
circumstances? Two possible approaches are discussed here. One
alternative, virtually always utilized in current DNT designs, is to
simply ignore the problem. This strategy increases power, albeit at
the expense of increased Type I errors (doubled number of pairwise
comparisons). This alternative will continue to be popular,
especially when sex is not nested within litter. In such designs,
simple main effects of sex involve sample sizes half as large as
those for the main effect of treatment, and reductions of alpha to
compensate for multiple comparisons becomes excessively
conservative. A second alternative is to control family-wise alpha
for the doubling of pairwise comparisons in some fashion. Several
approaches less conservative than Bonferroni's are discussed in
the following section. However, all still reduce alpha and hence
power.

3.8.4. Correlated measures
The MPCP problem is aggravated when correlated measures

are involved, as they usually are in DNTstudies. By “correlated”
measures we mean within-subject measures, multiple measures
taken on each subject. These will usually take one or both of two
forms. For instance, it is common to measure a number of
dependent variables in a single procedure. Thus wemight collect
body weight, or thickness of six brain layers, or a range of
behavioral variables including activity, rearing and stereotypy in
a motor activity setup. The traditional repeated measures are
another example of correlated dependent variables, since the
same dependent variable is measured repeatedly. For example,
motor activity may be measured every five minutes for an hour,
and at three different ages. We suggest including as many such
correlated measures as possible in single multifactorial analyses,
even though this clearly greatly complicates the problem of
alpha protection in such complex experimental designs. These
problems are only further aggravated by the typical, and
necessary, inclusion of both sexes in the analysis.

The best way to deal with the problem of multiple correlated
measures is to begin by simplifying designs wherever possible.
This approach is rare, but holds great promise for making
MPCPs in multifactorial designs both practicable and interpret-
able. It seems to be rare for researchers to look at the correlation
structure of their correlated dependent variables. For instance,
automated startle tests or automated open field tests can today
record many supposedly distinct variables. Yet assessment of
correlations between such behavioral variables reveals that
often these different variables are so highly correlated as to be
virtually identical. Table 5 contains an example (Dr. S. Sobrian,
personal communication). In this case, the seven machine-
generated variables listed fall into two groups, horizontal
activity and rearing (vertical activity). Several of the variables
show significant correlations both within and between the two
primary variables. Hence only two variables underlie this group
of seven, and only two simple main effects of treatment need be
assessed for these two variables, not the full seven.

Just as multiple dependent variables may be simplified by
reducing to one variable for each correlated set, we can
sometimes simplify repeated measures by the simple expedient
of reducing the number of time intervals assessed [65]. For
example, it may be reasonable to simplify repeated measures of



Table 5
Correlations between dependent variables for spontaneous motor activity (n=33 subjects)

Movement
type

Variable Horizontal movement Vertical movement

Hactv Totdist Movtime Restime Vactv Vmovno Vmovtime

Horizontal Hactv – 0.923 ⁎ 0.922 ⁎ −0.922 ⁎ 0.448 0.399 0.428
Totdist – 0.856 ⁎ −0.856 ⁎ 0.296 0.180 0.308
Movtime – −1.00 0.35 0.328 0.359
Restime – −0.351 −0.328 −0.359

Vertical Vactv – 0.905 ⁎ 0.982 ⁎

Vmovno – 0.865 ⁎

Vmovtime –

Hactv = horizontal activity.
Totdist = total distance.
Movtime = movement time.
Restime = resting time.
Vactv = vertical activity.
Vmovno = vertical number of movements.
Vmovtime = vertical movement time.
⁎ Statistically significant correlations.
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adaptation by reducing the number of intervals (“bins”) used in
the data analyses. The DNT guidelines do not allow such
reductions to proceed beyond a certain point, usually five
blocks of ten trials for startle, or not less than five temporal
periods in motor activity. The optimal strategy may be to divide
temporal intervals or trials into a number of bins which,
consonant with DNT guidelines, adequately describe the
change over time. Such decisions should be made based on
historical data, and need to be made during the test validation
stage, and not separately for each study.

In summary, wherever possible the number of correlated
within-subject variables should be reduced. This simple
expedient will often do more to protect against alpha inflation
without substantial loss of power than will any amount of
statistical manipulation of MPCPs. Such simplification is rare in
the current DNT practice.

3.8.5. MPCPs for multiple dependent variables
Once all practical data simplifications have been conducted,

the experimenter (and the reader/assessor) will need to resolve
the problem of alpha control for multiple MPCPs. For example,
an analysis of morphometric brain measurement data may have
to deal with as many as 6 to 8 endpoints. This actually presents
two problems. First, since each subject contributes data for all
measurements, these data typically do not meet the sphericity
requirement for the conventional analysis of variance. Thus, as
with repeated measures, the experimenter is well advised to use
multivariate analysis techniques which do not require the
sphericity assumption. A good choice is profile analysis [58].
Profile analysis is a multivariate technique which does not
require sphericity, and which looks at the effects of treatment
(in the above example) on the profile of all morphometric brain
data. Typically, use of profile analysis is preceded by conver-
sion of all raw data to z scores to accommodate for measure-
ments of different magnitude. Profile analysis is then conducted,
and provides tests of differences between weights, tests of the
main effect of treatment, and a test of the treatment-by-organ
weight interaction. When a significant interaction between or-
gans and treatment is obtained, it will be necessary to conduct
MPCPs on simple main effects of treatment for each organ.

An even simpler approach to multivariate analyses of
multiple correlated endpoints is provided by Heyse [24]. This
technique adjusts alpha levels based on the degree of correlation
between variables and the most statistically significant p value
obtained from tests of each of the k correlated variables. The p
value is adjusted as follows:

p adjustedð Þ ¼ 1� 1� p0ð Þr

where p0 is the smallest of k obtained p values, and r is an
adjustment for correlation between variables (set at the square
root of k if the actual value is unknown). If the obtained p
(adjusted) is greater than alpha, then the interaction is not
significant.

For either of the above approaches, a significant interaction
will typically be followed by k individual tests for simple main
effects of treatment. Given the relatively large number of such
measures, any approach which adequately protects alpha will also
substantially reduce the power of eachMPCP. A Bonferroni-style
adjustment may be utilized in such cases, and several such ad-
justments are presented below. The above approach extends to all
correlated within-subject measures, including repeated measures.
In all cases, a three-step procedure may be undertaken.

1. Wherever possible, simplify the data by pooling highly
correlated variables and reducing the number of temporal
intervals assessed (again, such simplifications need to be
conducted prior to actual data analyses, not in a post-hoc
fashion).

2. Conduct a multivariate repeated measures, a profile analysis
of the results, or perhaps a Heyse adjustment.

3. When there is a significant interaction between treatment and
correlated within-subject variables, then test simple main
effects for treatment at each level of the correlated measure.
Adjust family-wise alpha protection using one or another of
Bonferroni-type adjustments to alpha, including several such
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adjustments discussed below. Then use Dunnett's or Fisher's
LSD for pairwise comparisons at the adjusted alpha level
produced by one of these Bonferroni-style methods, for each
simple main effect of the correlated within-subjects variable.

Several p-value or alpha adjustment procedures have been
proposed. One extreme correction is the Bonferroni correction;
it assumes independence of data and is conservative (i.e., low
power). This correction simply divides alpha (typically 0.05) by
n, the number of measures. This is excessively conservative, not
least because all such adjustments are protected, that is, occur
only if there is a significant interaction term. There have been a
number of published Bonferroni-type adjustments to alpha
which are at least slightly less conservative [25,27]. Another
variation has been proposed by Tukey et al. [61] with the
understanding that if making a Bonferroni correction to address
the question of multiplicity of statistical tests is too unlikely to
find significance (especially when the number of tests
increases), then making no correction at all is equally
unacceptable. Therefore, Tukey has proposed to divide α, not
by the number of tests within a class of variables (as in the
Bonferroni correction), but by its square root (in the absence of
a known correlation structure) [40].

More recently, a different approach has been proposed, the
“false discovery rate” (FDR) method [2,3]. Controlling the FDR
was applied by Ellis et al. [14] to the analysis of neurochemical
maps. Briefly, it consists of sorting the p-values and calculating
an adjusted p-value as a function of its rank in the series.
Practically, the unadjusted p-values are sorted in ascending
order. An adjusted p-value is calculated by multiplying the
unadjusted p-value by the ratio of its corresponding index (i)
over the total number of p-values (n). This adjusted value is
appropriate for independent tests. The following correction is
necessary for dependent tests. It consists in multiplying the
adjusted p-value by the sum of 1 / i for i=1 and n.

Whatever method is used, it is important to note that any
adjustment to an α or a p value will result in a modification of
the power (for more details see Section 3.3).

3.9. Analyses of different data types

The amount of information provided by the data increases
from the lowest level (nominal) to the highest level (ratio)
(Section 3.4.4.2). As the level of measurement increases, so does
the sophistication and availability of statistical methodology.Most
of the analyses described in this paper are based on parametric
methods (evaluation of parameters from known distributions such
as the normal distribution) and are applicable to continuous data or
data with the interval and ratio level of measurement. Parametric
methods, such as analysis of variance-based methodology, are
fully developed to address some of the major objectives of this
paper (litter and sex effects, repeated measurements) and are
readily available in statistical software packages.

Nonparametric methods, which do not rely on parameters of
known distributions, are generally employed for the analysis of
discrete or categorical variables, such as those described by the
nominal or ordinal level of measurements. To make full use of
available nonparametric methodology, one must first distinguish
between nominal and ordinal variables. Statistical methods
designed for ordinal variables address directional shifts in the
response outcome. For example, the administration of treatment
may result in a general shift in the ease-of-removal-from-cage
response from easy to difficult. For nominal variables, the
statistical methodology should simply address whether or not
there is a general association between the treatment group
classification and the pattern of response outcomes.

As the level of information provided by the data decreases,
the sophistication and availability of statistical methodology
becomes more limited. While the effects of litter, sex, and
repeated measures are easily incorporated into statistical models
utilized in parametric analyses, they are less easily addressed in
nonparametric analyses used in the analysis of discrete variables.
In practice, these effects are often held fixed while analyzing the
effect of treatment groups. For example, the effect of treatment
groups might be evaluated separately for each sex and time
point. While less than desirable, this is often seen as a necessary
sacrifice for the analysis of discrete variables. While this may be
somewhat true for nominal variables, there are alternatives
available when the discrete variable is ordinal in nature.

Methodology designed for ranked data analysis, such as
Kruskal–Wallis and Wilcoxon, are often employed for the
analysis of ordinal variables. These methods do not readily
address repeated measures and, as the number of actual
observed outcomes decreases resulting in a majority of response
“ties” (same response outcome), the appropriateness of these
ranked data analyses decreases. Furthermore, while it is true that
the Friedman test provides a nonparametric approach to
repeated measures, it too lacks generality in that it is only
appropriate for a single repeated measure.

Another approach to discrete variable analysis employs the
Mantel–Haenszel strategy [30,39,41]. The approach is often
referred to as a “strategy” rather than a test because it provides
flexibility to address general association (nominal variables)
and directional shifts (ordinal variables) as well as directional
shifts in response associated with directional shifts in the
treatment variable (dose-response evaluation).

Methods for addressing repeated measures in discrete
variables have been developed by Grizzle et al. [21] and
Koch et al. [29], and are referred to as the GSK method (for
Grizzle, Starmer and Koch). This methodology has been
integrated into the SAS analysis procedure PROC CATMOD,
so called because it utilizes categorical modeling methodology.
The application of CATMOD to functional observational
battery (FOB) data has been described by Creason [11]. This
approach becomes less practical in the presence of sparse or
“zero” cells (response levels for which very few or no animals in
a treatment group were categorized at a given time point).

More recently, advances have beenmade in analytical models
for ordinal data types. The generalized estimating equation
(GEE) approach [33] provides another alternative to modeling
categorical data. This methodology has been integrated into the
SAS analysis procedure PROC GENMOD. While promising in
its ability to address multiple factors such as treatment, litter, and
sex, as well as repeated measures of ordinal data, the GEE



Fig. 3. Kaplan–Meier method of estimation of censored data. Passive avoidance
data are notorious for censored data, because commonly a significant proportion
of animals fail to cross on trial 2, after the initial shock, and are simply assigned
the latency at which the trial is terminated. The top panel gives data for trial 1,
initial latency to cross into the shock box. Since no aversive stimuli have as yet
been administered, all animals cross over within the allotted time. Such data
(trial 1) can be analyzed using either conventional ANOVA on latency scores or
the Kaplan–Meier approach, with closely comparable results. Panel 2 shows
latency to cross into the shock box on trial 2, following being shocked in this box
on trial 1. Many rats freeze and are timed out, producing a substantial amount of
censored data. In this example, using a conventional analysis suggests that there
is no treatment effect, while the Kaplan–Meier approach using log-rank survival
tests shows that in fact there is a significant main effect of treatment.
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methodology can be quite complex and should only be em-
ployed with the assistance of a knowledgeable statistician.

Fleiss [17] and Stokes et al. [57] provide excellent resources
for statistical analysis of discrete or categorical data analysis. As
noted in Section 3.4.4.2, failure to distinguish the different data
types and utilize the most appropriate statistical methodology
may result in loss of power or uninterpretable results.

3.10. Censored data

A relatively unique data characteristic is presented by some
DNT tests that measure the time it takes for a certain event to
occur. These include tests such as passive avoidance and Morris
water maze, both of which are often used as tests of learning and
memory. In a passive avoidance test, the animal learns to associate
entering into an area with a shock, and subsequently learns to not
enter that area and thereby passively avoids the shock. In the
Morris water maze, the animal swims in a tank of water and
eventually learns the location of an escape platform under the
surface, using the spatial cues throughout the room. In these types
of studies, latency is a measure of time-to-event, for example,
crossing into shock compartment, or finding the escape platform.
There is typically a cut-off for the latency measure, to provide a
practical upper limit for the test. The consequence of this
maximum latency is possibly more important for passive
avoidance, since the longer latency is the dependent measure
which directly addresses how well the animal has learned. On the
other hand, swim latencies decrease as the animal learns, and
acquisition is evaluated by shorter latencies. The rest of this
section will address passive avoidance latencies, but are
applicable to any test that provides these types of data.

In statistical terms, the latency of an animal is considered to be
right-censored if the event never occurs in the allotted time. For
that particular animal, the actual time to cross over is not known,
only that it did not occur. The latency measurement combines two
data characteristics: a time-dependent quantitative measure of
how long it takes for an animal to cross over and a dichotomous
categorical measure of whether or not an animal crossed over in
the allotted time. A common approach to statistical analysis is to
ignore the censored data as such and conduct standard analyses
for quantitative data. For example, in a study forwhich the allotted
time for crossover was 180 s, the analysis of latency might be
conducted with an analysis of variance or possibly a nonpara-
metric Kruskal–Wallis test. The maximum allotted time of 180 s
is substituted for those values that are censored. One obvious
problem with this approach is that for the censored values, the
animal never actually crossed over. Therefore their inclusion as
180 s will underestimate the true latency.

The effect of censored data on the statistical analysis may be
negligible in the first passive avoidance training trial, where
most or all animals cross over and receive the shock. However,
with increasing trials there may actually be as much or more
information in the proportion of animals that do not cross over
than there is in those that do.

A statistical analysis approach designed for time-dependent data
that includes censored data is referred to as “survival analysis.”The
name stems from its common use in the analysis of survival data in
which the time-to-event of interest is death. For example, in a two-
year rodent carcinogenicity study, a certain proportion of the data is
censored in that not all of the animals die in the two-year period.
The same concepts can be applied to latency in the passive
avoidance test in which the time-to-event of interest is the
crossover; not all animals will cross over in the allotted time.

One simple but intuitive method for applying the survival
analysis approach to latency data is provided by the Kaplan–
Meier (KM) method of estimating the survival curve. The KM
method estimates the probability that the time-to-crossover is
greater than a specific time t. For those values that are not
censored, the KM estimate is simply the proportion of animals
that have not crossed over by time t. For censored values KM is
undefined. The KM estimates can then be compared among
groups using either the log-rank test or generalized version of
the Wilcoxon test (for example, SAS PROC LIFETEST).
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Consider a study in which 10 animals from each of 4 groups
were subject to the passive avoidance test with the maximum
allotted time of 180 s. Fig. 3 shows the KM estimates for the two
trials. Table 6 presents the data summaries and results of several
different statistical approaches. The curves show graphically an
estimate of the proportion of animals that have not yet crossed
over at a given time point during the test. For example, 30% of the
control animals had not yet crossed over 40 s into trial 1. The
curves illustrate graphically that there is little distinction between
the latencies of the four groups in the first trial. However,
differences in latency during trial 2 are exemplified by the notable
separation between curves beginning at about 50 s into the trial.

In trial 1 all animals from all groups crossed over and thus
there were no censored values. The latency data from trial 1 is
conducive to a parametric analysis approach and the ANOVA
results in a nonsignificant overall test for group effect
( p=0.977). Likewise, the nonparametric Kruskal–Wallis test
resulted in a nonsignificant overall test of group effect
( p=0.943). Although there were no censored values in trial 1,
survival analysis methodology can still be applied. The log-rank
test for comparing group KM estimates of survival for trial 1
was not statistically significant (p=0.964) as was a dose-related
trend based on the log-rank (p=0.598). Thus there is general
agreement in the different analyses in the presence of no
censored values.

In trial 2, numerous animals did not cross over resulting in a
large proportion of censored values. Note that because the data
are heavily skewed toward the censored values, the means are
distorted and the medians provide a truer picture of the relative
latency of the four groups. Although only 3 out of 10 (30%)
group 4 animals completed the 180 s without crossing compared
with 9 out 10 (90%) group 1 animals, only the log-rank survival
tests resulted in statistically significant results. The smaller p-
value for the log-rank trend test compared to the test for
homogeneity of groups reflects the greater power for the former
when responses occur in a dose-related fashion. As illustrated
by the KM graphs, such was the case for latencies in trial 2.
Table 6
Example results of analyses of data with censored values

Trial 1 Trial 2

Treatment Mean±SD (median) Censored Mean±SD (median) Censored

Group Latency Values Latency Values

C 36±23 (28) 0 165±47 (180) 9
L 35±19 (32) 0 152±59 (180) 8
M 32±14 (32) 0 137±63 (180) 7
H 33±25 (30) 0 113±56 (115) 3

Analyses p-values

ANOVA (H⁎) 0.977 0.209
Kruskal–Wallis (H) 0.943 0.114
Log-rank (H) 0.964 0.048
log-rank trend (T) 0.598 0.007

(H⁎) = test of homogeneity of groups.
(T) = test of dose-related trend.
Data for passive avoidance latency to cross, n=20/group (treatment groups, C =
control, L = low, M = mid, H = high dose). Maximum test time 180 s, i.e.,
censored value.
For time-to-event data that include no or very few censored
values, the survival test methodology provides results similar to
parametric and nonparametric counterparts that do not account
for censored values. However, because they are designed to
account for censored values, the survival test methodology may
be more appropriate for analysis of time-to-event data in the
presence of numerous censored values.

For illustration purposes of the concept of censored data, the
example presented here evaluated only the comparison of
treatment groups for an individual sex. More complex parametric
survival regression models can be utilized to evaluate additional
factors such as sex, as can logistic regression techniques.
However, in practice, the nonparametric survival methodology
described here provides an efficient means by which to analyze
and interpret results from data that include censored values.

4. Interpretation of statistical analyses

4.1. Considerations

The first requirement before attempting to interpret the
statistical analysis is to look at the data. Tables of means and
standard deviations (or other indices of central tendency and
dispersion) offer one way of summarizing the data, but figures
are also strongly encouraged because they often give a better
appreciation than tables and offer a more concise way of
presenting a large data set than tables. Going to the individual
animal data may also be necessary to make sense of the statistical
analysis. Close evaluation of the data can reveal patterns of
effects that may not reach statistical significance, as well as a
statistically significant difference when several baseline groups
(i.e., before treatment) are compared. This may be very
challenging when confronted with data for hundreds of rats on
as many as 20 tests, but it is possible. As Bolles [4] wrote,

“Perhaps the most basic thing I have to say is that rather
than looking at the statistics, you should look at the data.”
(p. 83).

The statistical analysis should be viewed as a tool rather than
an end in itself. It should help the investigator to formulate a
conclusion or a hypothesis. If all the conditions have been filled
out for a study to be a hypothesis testing study (i.e., a priori
identification of all the elements of a study), conclusions can be
drawn from the study. If some of these conditions are missing, a
hypothesis or several hypotheses can be generated, but these
would have to be tested in another sample.

Several considerations should be given about the meaning of
a p-value. First of all, the data should be carefully looked at and
the investigator should attempt to reconcile the obtained p-value
with the examination of the data. Too often the statistical
analysis has been erroneously reduced to a “star-seeking” exer-
cise without which no decision could be taken [51].

As stated above, it is important to realize that the p-value is in
part a reflection of the sample size so that a statistically signifi-
cant relationship, for example, could in all likelihood be found
between intelligence and shoe size if the sample size were large
enough. Consideration should always be given to the strength of



Fig. 4. The visual power of graphed data. In this graph, actual open field data are
illustrated for controls and three increasing dose levels of chemical X. The
ANOVA gives a significant main effect of treatment, but conventional post-hoc
tests suggest that only the low and high doses differ from controls. Barring
actual visual inspection of data, in the absence of a medium dose effect,
experimenters might be tempted to reject such a non-monotonic dose effect as
statistical error. However graphing all data points as shown tells another story—
the effect is also seen at the middle dose, but escapes statistical significance.
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association between dependent and independent variables. Yates
[71] had the following comment on the significance tests:

“… it has caused scientific research workers to pay undue
attention to the results of the tests of significance they
perform on their data, particularly data derived from
experiments, and too little to the estimates of the magnitude
of the effects they are estimating.” (p. 32).

p-values should serve as guidance. A statistically significant
p-value does not indicate the magnitude of a difference; neither
does it provide any information about the replicability of the
finding. A statistically significant p-value can be considered as
nonsignificant by the investigator for a number of reasons
alluded too above (e.g., previous information, multiplicity
problem, large sample size, lack of biological plausibility, etc.).
Similarly, a nonsignificant statistical p-value can be construed
as significant for the same or other reasons (e.g., previous
information, low power, small sample size, biological consis-
tency, etc.). It should be kept in mind that the distinction
between 0.049 and 0.051 as statistically significant and
nonsignificant, respectively, is untenable and is as arbitrary as
the significance criterion used most often (i.e., 0.05).

A clear distinction needs to be made between statistical
significance and biological significance. A finding can be sta-
tistically significant, and have no biological significance, and
vice-versa. For example, a 2% difference in body weight with
sample sizes of 50 rats per sex at the end of a chronic toxicity
studymay be statistically significant and real, but is this difference
biologically important? Conversely, a study with 8 rats in the
control and treated groups may not reach the traditional statistical
significance level, but the data are consistent with previous in-
formation collected on this compound, are biologically plausible
and provide support for the a priori stated scientific hypothesis.
Should such data be declared toxicologically significant? The p-
value alone should never overrule a decision based on
consistency, examination of the data, strength of association,
dose-response relationship, toxicological relevance, biological
plausibility, etc.

4.2. Reporting and presentation

Sorting the data into a table format that allows evaluation of
groups by dose and by test time allows a look at several trends,
but most often graphs are more helpful, as remarked under
Section 4.1. Whenever means of continuous data are graphed,
always include some measure of data variability (e.g., standard
deviation, semi-interquartile range). Without such information,
it is impossible to determine what differences might exist
between treatment groups. It should be noticed, however, that
the standard error of the mean is not a measure of individual
data variability, but that it represents the spread of the sampling
distribution of the mean. In other words, it is a measure of
uncertainty in the average value of all possible samples of the
same size taken from a given population. The standard error of
the mean gives some idea about the accuracy of the mean.

It is also possible to plot means of ranked data, but it should
be understood that the group means do not have any real
statistical meaning. Plots of binary data are easier to understand
when presented as incidence, or percent of treatment group
showing the effect. The graphs should reflect the level of the
analyses. For example, if the total counts are analyzed for motor
activity, plot the total counts as a function of dose.

When data are compiled in tables, results of the statistical
analyses should also be indicated. This should include degrees
of freedom, F-values or other appropriate statistics, as well as
exact p-values where available. Depending on the table format,
it may be possible to include that information on the same table,
or present it separately. At the very least, this information
should be presented for every endpoint (whether significant or
not), for the overall analyses and for any subsequent step-down
analyses.

The following real-life example is presented to show the
visual power of graphs (Fig. 4). Chemical X decreased the open-
field activity, and the overall statistical analysis was significant.
Post-hoc comparisons showed that the low and the high doses
were different from control, but not the middle dose. One could
conclude that since this did not show a dose-response
relationship, it was an anomalous finding. The graph of the
mean group data actually showed more variability in the low
dose group, but the graph of the individual values clearly
explained the outcomes. The low dose had a few subjects with
higher activity, but most of the group had lower activity; the
middle dose group was less variable but had somewhat higher
counts. An interpretation of these data could be that all doses
were different from control, even though the middle dose did
not quite reach significance. In this case, the graphical
representation of the individual values was critical in making
such a determination.

Current US EPA reporting requirements for the DNT
guidelines [62] include: 1) Tables of data for each test animal
(including ID number of each pup and the litter from which it
came) for each day tested/observed, body weight and scores on
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each developmental landmark, total session activity counts and
intrasession subtotals, data for each repeated trial/session
showing acquisition and retention scores on the tests of learning
and memory, time and cause of death, and any neurological
signs seen, and for neuropathology, a list of structures examined
as well as the locations, nature, frequency, and extent of lesions,
and brain weights; 2) Summaries for each treatment and control
group including the number of animals at the initiation of the
study, body weight of the dams during gestation and lactation,
litter size and mean weight at birth, number and percentage of
animals showing each abnormal signs at each observation time,
and mean and standard deviation for each continuous endpoint
(e.g., body weight, activity counts, startle responses, etc.) at
each observation time, and for neuropathology, the number of
animals in which any lesions was found, the frequency and
average grade for severity of the lesion for each animal, and the
values of all morphometric measurements made for each animal
listed by treatment group; 3) Evaluation of data, including “…
appropriate statistical analyses. The choice of analyses should
consider tests appropriate to the experimental design and need
adjustments for multiple comparisons.” Clearly, the suggestions
made in this paper (including variability bars in graphs, p-
values in tables and/or summaries, looking at individual data)
are very much in line with the reporting requirements already
set forth by the US EPA. The inclusion of such information
would aid in the review of data sets by regulators or peer
reviewers.

5. Summary of recommendations

Our general recommendations are as follows:

– evaluate the data and not just the level of significance.
Wherever possible the graphing of data is encouraged;

– include sex and sex-by-treatment interaction as factors in the
analysis of all dependent variables collected on both sexes;

– litter must remain a factor in analysis throughout the study,
not just in young animals. If each litter contributes animals of
both sexes, then sex and the sex by treatment interaction
must be analyzed as a correlated variable;

– to assess adaptation or changes that occur over time,
repeated-measures methodologies should be utilized to
evaluate the effects of different dose groups while account-
ing for the correlated data resulting from multiple measure-
ments on the same animal;

– clearly indicate the information to be provided by each
procedure. Do not test hypotheses on the same data that
generated them. Always test them in a new data set;

– identify the type of data that each endpoint represents (e.g.,
body weight is a continuous endpoint, degree of lacrimation
is an ordinal endpoint) and utilize the most appropriate
statistical methodology for that type. Describe in detail all
the statistical analyses in the protocol and the study report;

– running a statistical analysis after seeing the data can only
generate hypotheses to be confirmed, but no conclusions;

– consider strategies to address the multiplicity problem in the
study, or at least indicate how the multiplicity problem will
be addressed in the study. Use complex multifactorial
statistical analyses to substantially reduce multiplicity of
significance tests. This approach has the added benefit of
allowing tests of interaction terms which are not addressed in
simpler designs;

– provide the total count of derived p-values (significant and
nonsignificant). Preferably, report exact p-values with their
associated F values and degrees of freedom, as appropriate.
If p-values are adjusted for multiple comparisons, unadjusted
p values should also be provided and the method of
adjustment should be identified;

– address the strength of association between dependent and
independent variables;

– use pairwise comparison procedures that are optimal for the
questions being addressed (e.g., use Dunnett's if the only
concern is to compare treatment mean values to control);

– consider the use of statistical methodology specifically
designed for censored data when the data include a
substantial number of such measurements (e.g., passive
avoidance latencies in which crossover never occurs).
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