

## **RECOVERY DATA**

|        |          | Post-Dose        |                   |          |
|--------|----------|------------------|-------------------|----------|
| Animal | Baseline | 1 hour post-dose | 4 hours post-dose | Recovery |
| 1001   | 88       | 94               | 92                | 94       |
| 1002   | 90       | 96               | 94                | 96       |
| 1003   | 104      | 110              | 108               |          |
| 1004   | 98       | 104              | 106               |          |
| Mean   | 95       | 101              | 100               | 95       |

Interpretation 1: Heart rate was increased 5-6 bpm during the first 4 hours post-dose and returned to baseline values during recovery.

Interpretation 2: Heart rate was increased 5-6 bpm during the first 4 hours post-dose. Of those animals that continued through recovery, heart rate remained 6 bpm higher than baseline.

|        |          | Post-Dose        |                   |            |
|--------|----------|------------------|-------------------|------------|
| Animal | Baseline | 1 hour post-dose | 4 hours post-dose | Recovery   |
| 1001   | 89       | 95               | 94                | 89         |
| 1002   | 91       | 97               | 96                | 91         |
| 1003   | 75       | 81               | 80                |            |
| 1004   | 81       | 87               | 86                |            |
| Mean   | 84       | 90               | 89                | <b>9</b> 0 |

Interpretation 1: Heart rate was increased 5-6 bpm during the first 4 hours post-dose and remained 6 bpm higher than baseline during recovery.

Interpretation 2: Heart rate was increased 5-6 bpm during the first 4 hours post-dose. Of those animals that continued through recovery, heart rate returned to values observed at baseline.

Simply interpreting results based on recovery means from a subset of animals can be misleading. Another issue arises if one applies a statistical analysis to recovery data. Typically, main study sample sizes provide sufficient power that conclusions about primary endpoints can be made with confidence. Recovery data is often only collected on a small subset of main study animals and, as such, an analysis of recovery data is often under-powered for meaningful interpretation.

|              | Post-            |                   |          |
|--------------|------------------|-------------------|----------|
|              | 1 hour post-dose | 4 hours post-dose | Recovery |
| N            | 6/group          | 6/group           | 3/group  |
| Control Mean | 85               | 83                | 83       |
| TA Mean      | 90*              | 89*               | 88       |

In the example above, if recovery data were statistically analyzed, the results could easily be misinterpreted as a significant increase during the post-dose period that "goes away" during recovery. More likely, there is simply insufficient power with the recovery sample size to detect statistical significance.

https://biostat.net



