

How Not Asking Big Questions About Reality Can Harm People in an AI World

~*Why Everyday Ideas About How Things Work Shape the Technology Around Us*

AI Fellowship (AIF) Keystone Topic Paper IV - General Readers Edition (GR)

Companion to the AIF Keystone Topic Paper:
Materialist Dogma and Systemic Risk in Intelligent Systems (AC)

David Waterman Schock

January 2026

Why this paper exists

Most people hear debates about artificial intelligence and assume they are technical arguments meant only for engineers and researchers. This paper explains why that assumption is wrong.

The way we *think* about reality — often without realizing it — directly shapes the systems being built around us. When those underlying ideas go unexamined, they don't just affect machines. They affect:

- how decisions are automated
- how people are evaluated
- how errors are explained or ignored
- how responsibility is assigned
- how power is exercised

This paper explains one such hidden assumption — **materialist dogma** — and why it creates **hidden risk** for everyone.

The core idea in plain language

Many modern systems (including AI) are built on an unspoken belief:

If we break things into small enough parts and study how those parts interact, everything important will take care of itself.

This belief feels practical, scientific, and reasonable.

The problem is that it quietly ignores a crucial question:

What keeps complex systems coherent instead of falling apart?

When this question is ignored, systems may appear to work — until they suddenly don't.

What does “materialist dogma” mean here?

This paper does **not** use the word “dogma” as an insult.

Here, **dogma** means:

- an assumption treated as unquestionable
- even though it has never been fully proven
- and even when evidence of its limits keeps appearing

Materialist dogma is the assumption that:

- only physical interactions matter
- coherence and meaning don't need explanation
- large systems will naturally organize themselves
- problems can always be fixed locally

This assumption is rarely stated outright — but it quietly shapes how systems are designed.

Why this matters outside of AI

You don't need to care about AI theory to be affected by this.

Here's how it shows up in everyday life:

- automated systems that make decisions without clear accountability
- algorithms that work “most of the time” but fail badly in edge cases
- institutions that blame individuals when systems malfunction
- technologies that scale faster than our ability to understand their consequences

These are not just technical glitches.

They are symptoms of systems built without a clear account of **coherence**.

What is coherence, really?

Coherence simply means:

- things fit together
- actions don't contradict each other
- systems remain understandable over time
- changes don't cause collapse

Human societies rely on coherence. So do families, governments, economies — and AI systems.

When coherence is assumed instead of designed for, instability grows quietly until it breaks something important.

Why problems keep being “patched” instead of solved

When systems are built on hidden ideas, failures are often explained away as:

- user error
- data problems
- unexpected behavior
- rare edge cases

This leads to endless patching rather than structural correction.

The deeper issue — that the system was never designed to maintain coherence — remains untouched.

Why people resist looking at this

It's not because they are bad or dishonest.

In many professional cultures:

- certainty is rewarded
- expertise is tied to confidence
- admitting limits feels like failure

Questioning foundational ideas can feel threatening — not just intellectually, but personally.

This paper argues that recognizing limits is not weakness. It is responsibility.

A healthier alternative way of thinking

You don't need to adopt a new belief system to understand the solution.

You only need to accept this:

Systems don't hold together by accident.

When we design technology, institutions, or policies, we must ask:

- What keeps this system coherent over time?
- What happens when parts disagree?
- How does responsibility remain clear as scale increases?

If those questions aren't asked early, the cost is paid later — by everyone.

How this affects you directly

As AI and automated systems become more common, their ideas shape:

- who gets approved or denied
- who is blamed when things go wrong
- how errors are corrected (or ignored)
- whether humans remain meaningfully involved

Understanding these ideas helps you:

- ask better questions
- recognize systemic failures
- resist being blamed for structural problems
- demand better design and accountability

The takeaway

This paper is not about rejecting science or technology.

It is about finishing the job.

When powerful systems are built on ideas no one is allowed to question, those ideas quietly become the most dangerous part of the system.

Coherence is not optional.

And the cost of ignoring it is shared by everyone.

AI Fellowship (AIF)

General Readers Edition