

Bruno Melício, brunomelicio.ai@gmail.com

Budapest, 17/03/2021

Content

- Introduction
 - Motivation
- Knowledge Distillation
 - Background
 - Standard approach
 - Variations
 - Knowledge Distillation with Teacher Assistants
- Conclusion

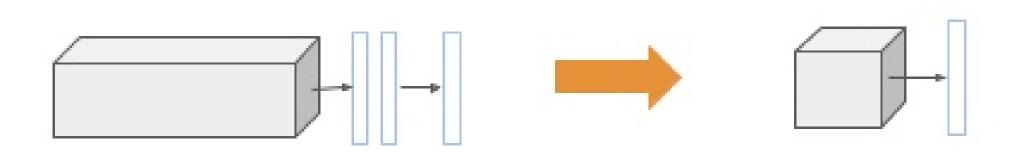
Introduction

Motivation

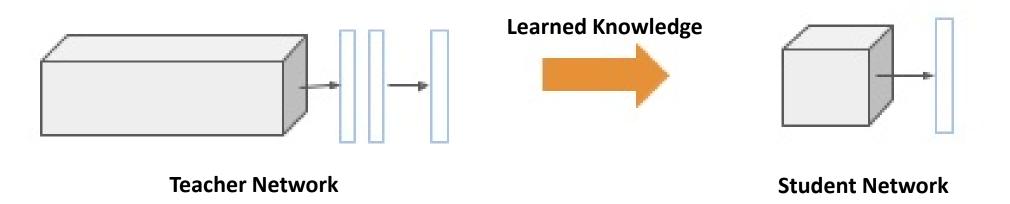
- Deep learning-based algorithms have achieved state of the art results on complex tasks that require Human Intelligence. However, these algorithms are trained on massive datasets resulting on huge models with a lot of parameters that restricts them to cloud computing for real time applications.
- Thus, they cannot be deployed on edge devices.
- A more suitable model for deployment would be a smaller model with less parameters but as accurate as a cumbersome¹ model.

¹ Cumbersome - large or heavy and therefore difficult to carry or use; unwieldy.

• Knowledge distillation is a compression technique that **transfers knowledge** from a **large model** to a **smaller model**.



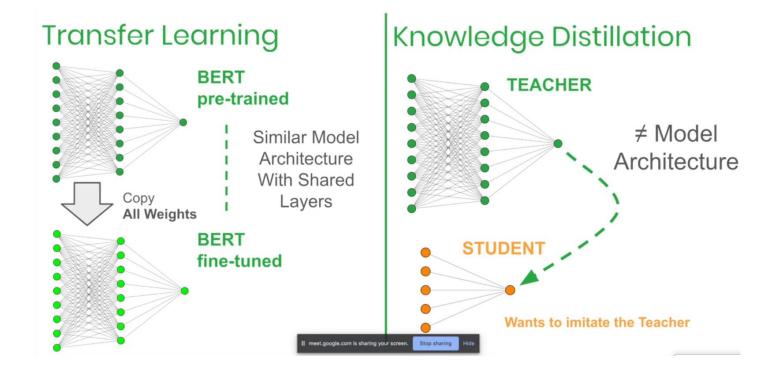
• A big network with a lot of parameters, called **Teacher Network**, is trained on a huge dataset. Then, using a different kind of training, called **"distillation"**, the **learned knowledge is transferred** from the cumbersome model to a smaller network with fewer parameters, called **Student Network**, that is more suitable for deployment.



¹ Cumbersome - large or heavy and therefore difficult to carry or use; unwieldy.

Background

- Knowledge Distillation is different than Transfer Learning
- Knowledge Distillation is a compression technique



Background

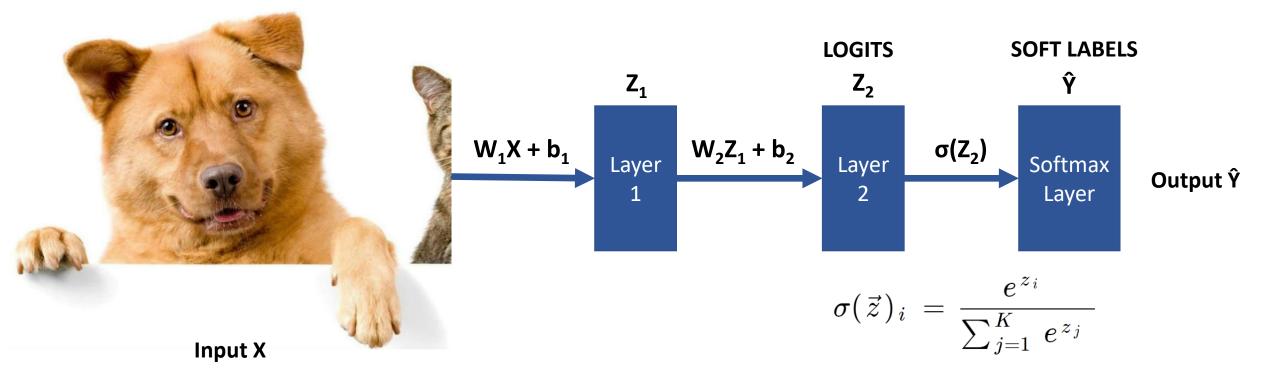
• Given a dataset D = (X,Y) we want to train a Neural Network to learn a function $f_{\theta}(x)$ and find the optimal parameters θ such that the loss L($f_{\theta}(x)$, Y) is minimal.

•
$$L = \sum_{(x,y)\in D} (y - f_{\theta}(\mathbf{x}))^2$$

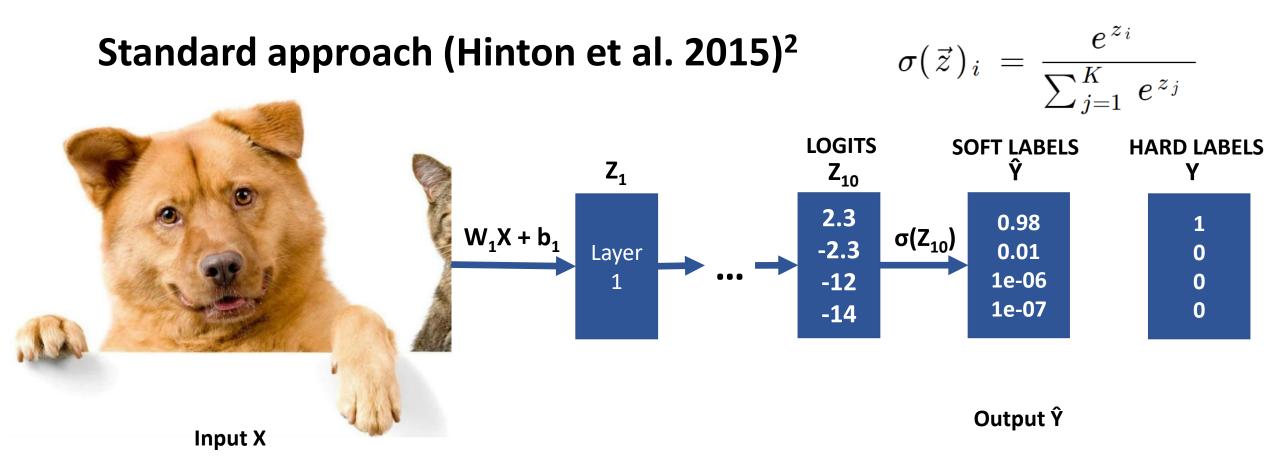
Label / Hard Label

y = [1, 0, 0, 0]^T

Background

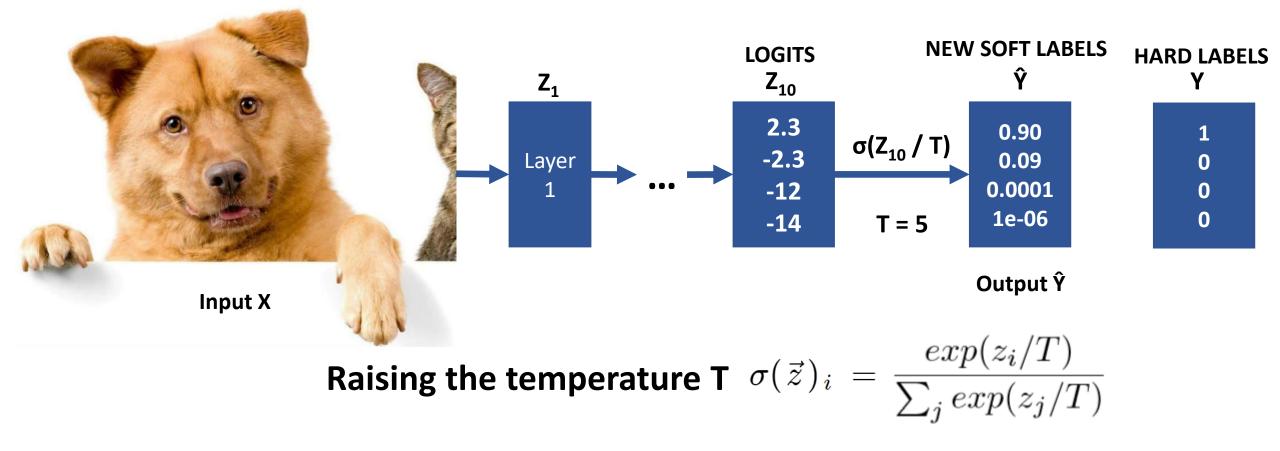


The network learned: $\hat{Y} = f(x) = \sigma(W_2(W_1X + b_1) + b_2)$



2 Hinton, G., Vinyals, O. & Dean, J. (2015). Distilling the knowledge in a neural network. <u>https://arxiv.org/abs/1503.02531</u>

Standard approach (Hinton et al. 2015)²



Standard approach (Hinton et al. 2015)² - Training the Student Network

 Given a dataset D = (X,S) where S is the soft labels learned from the Teacher **Network**, we want to train the Student Network **to learn a function f_e(x)** and **find the optimal parameters \theta** which represent the learned knowledge from the Teacher such that the loss $L(f_{\theta}(x), S)$ is minimal.

Kullback Leibler divergence loss

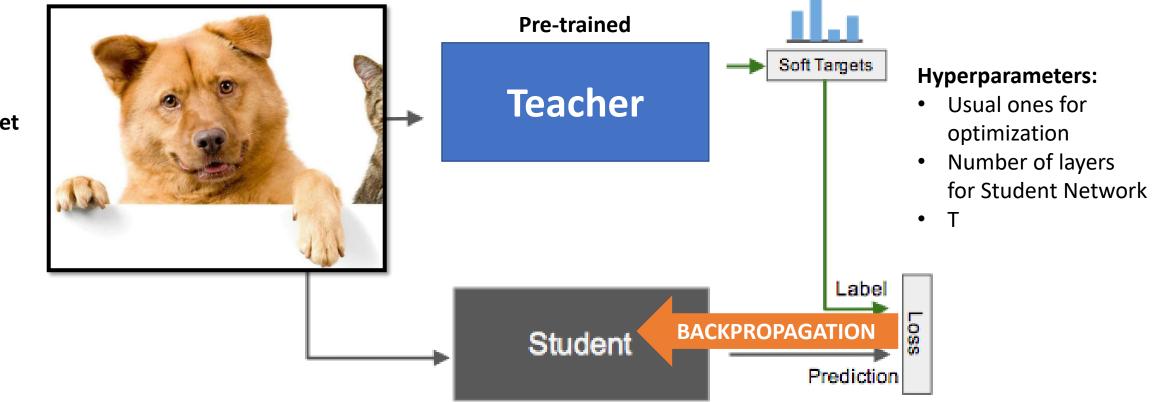
$$L = KL(p\|q) = \int p(x) \log rac{p(x)}{q(x)} dx$$

Soft Label

 $y = [dog, cat, fungus, plant]^T$

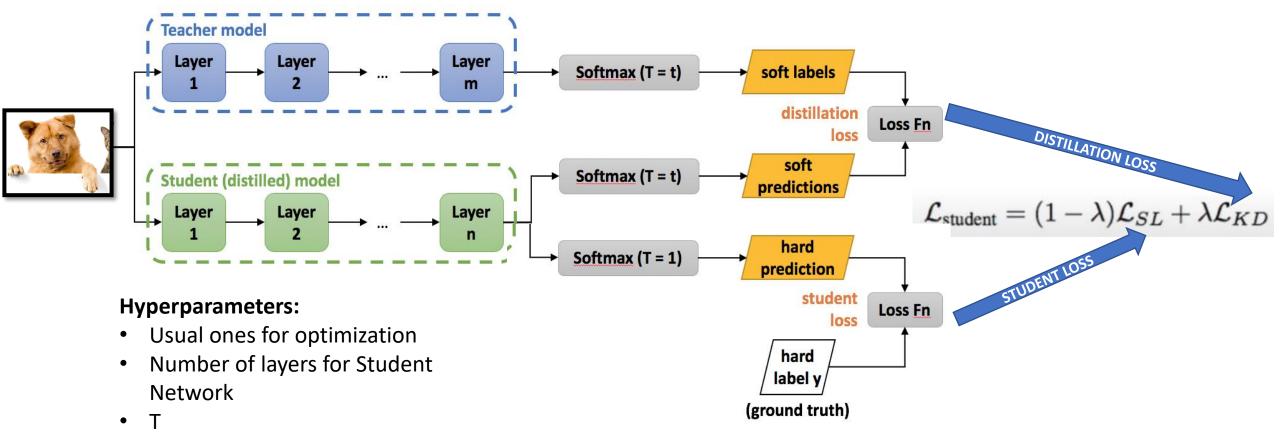
 $y = [0.9, 0.09, 0.0001, 1e-06]^T$

Standard approach (Hinton et al. 2015)² - Training the Student Network



Dataset

Standard approach (Hinton et al. 2015)² - Training the Student Network



• λ

Results from Mirzadeh S.I. et al. 2019³

- Teacher Network: 10 Convolutional Layers
- Student Network: 2 Convolutional Layers

Table 1. Comparison on evaluation accuracy between training a student model with No Knowledge Distillation (**NOKD**) and a Baseline with Knowledge Distillation (**BLKD**)

Model	Dataset	NOKD	BLKD
CNN	CIFAR-10	70.16	72.57
	CIFAR-100	41.09	44.57

3 Seyed-Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, and Hassan Ghasemzadeh. 2019. Improved knowledge distillation via teacher assistant: Bridging the gap between student and teacher. CoRR, <u>https://arxiv.org/abs/1902.03393</u>

Variations (Gou J. et al. 2020)⁴

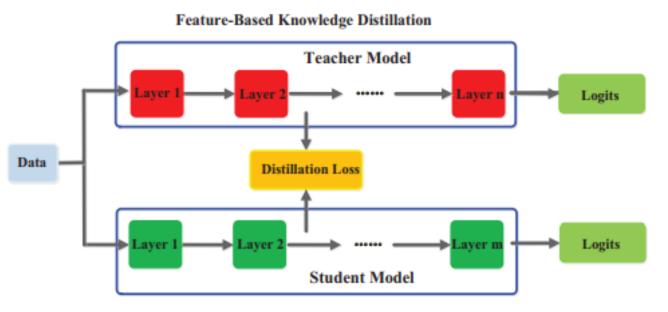


Fig. 7 The generic feature-based knowledge distillation.

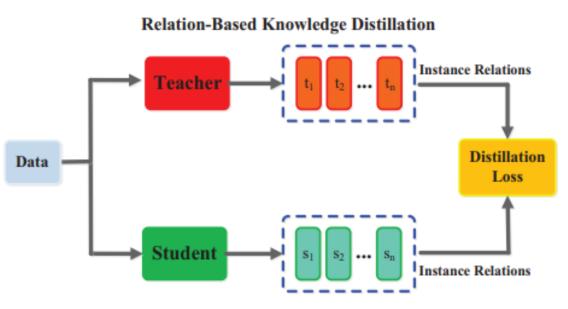


Fig. 8 The generic instance relation-based knowledge distillation.

4 Jianping Gou, Baosheng Yu, Stephen John Maybank, and Dacheng Tao. Knowledge distillation: A survey, 2020. <u>https://arxiv.org/abs/2006.05525</u>

Results from Cho J.H. et al. 2019⁵

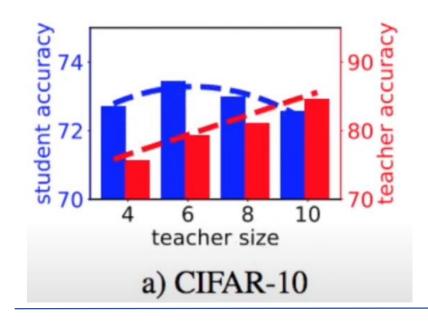
- Teacher Network: ResNet18, ResNet34, ResNet50
- Student Network: ResNet18

Teacher	Teacher Error (%)	Student Error (%)
-	-	30.24
ResNet18	30.24	30.57
ResNet34	26.70	30.79
ResNet50	23.85	30.95

5 <u>https://openaccess.thecvf.com/content_ICCV_2019/papers/Cho_On_the_Efficacy_of_Knowledge_Distillation_ICCV_2</u> 019_paper.pdf

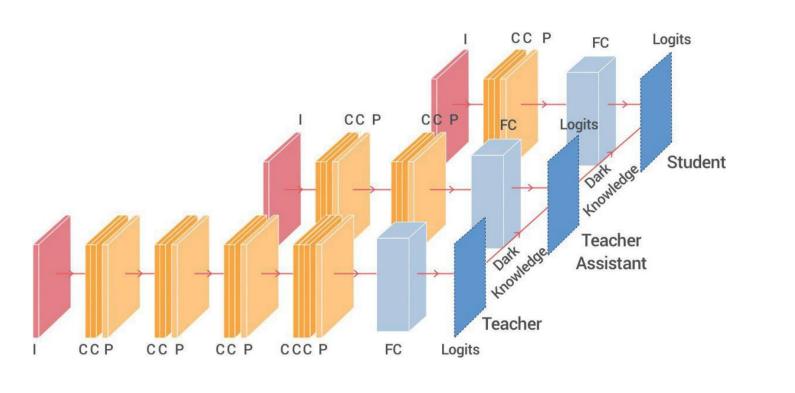
Results from Mirzadeh S.I. et al. 2019³

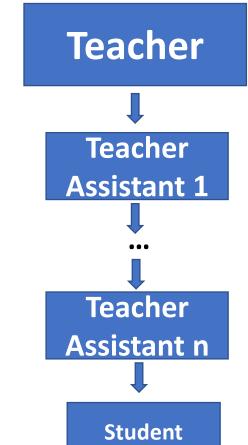
- Teacher Network: 4,6,8,10 Convolutional Layers
- Student Network: 2 Convolutional Layers



- The teacher is becoming so complex that the student does not have the sufficient capacity or mechanics to mimic the teacher's behavior despite receiving hints.
- Teacher's certainty about data increases, thus making its soft targets less soft. This weakens the knowledge transfer which is done via matching the soft targets

Improved Knowledge Distillation via Teacher Assistant (Mirzadeh S.I. et al. 2019)³





Results from Mirzadeh S.I. et al. 2019³

- CNN layers: TN: 10 ; TA: 4; SN: 2
- ResNet layers: TN: 110; TA: 20; SN: 8

Table 1. Comparison on evaluation accuracy between training a student model with No Knowledge Distillation (NOKD) and a
Baseline with Knowledge Distillation (BLKD) and Knowledge Distillation with Teacher Assistant (TAKD)

Model	Dataset	NOKD	BLKD	TAKD
CNN	CIFAR-10	70.16	72.57	73.51
	CIFAR-100	41.09	44.57	44.92
ResNet	CIFAR-10	88.52	88.65	88.98
	CIFAR-100	61.37	61.41	61.82

Conclusion

- Knowledge Distillation is a compression technique that transfers knowledge from a big Teacher Network to a small Student Network
- The transfer can be via the output soft labels or the hidden feature maps of the Teacher Network
- Adding intermediate Teacher Assistants can make the learning of the Student Network more effective

References

- 1. <u>https://towardsdatascience.com/knowledge-distillation-simplified-dd4973dbc764</u>
- 2. Hinton, G., Vinyals, O. & Dean, J. (2015). Distilling the knowledge in a neural network. https://arxiv.org/abs/1503.02531
- 3. Seyed-Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, and Hassan Ghasemzadeh. 2019. Improved knowledge distillation via teacher assistant: Bridging the gap between student and teacher. CoRR, <u>https://arxiv.org/abs/1902.03393</u>
- 4. Jianping Gou, Baosheng Yu, Stephen John Maybank, and Dacheng Tao. Knowledge distillation: A survey, 2020. https://arxiv.org/abs/2006.05525
- 5. <u>https://openaccess.thecvf.com/content_ICCV_2019/papers/Cho_On_the_Efficacy_of_Knowledge_Distillation_ICCV_2019_paper.pdf</u>
- 6. <u>https://www.youtube.com/watch?v=lSjBc1wSJMI</u>
- 7. <u>https://www.youtube.com/watch?v=b3zf-JylUus&t=707s</u>
- 8. KERAS IMPLEMENTATION: <u>https://keras.io/examples/vision/knowledge_distillation/</u>