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Geology and Hydrology of the EI Convento Cave-Spring System,
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by
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INTRODUCTION AND PREVIOUS WORK

The EI Convento Cave-Spring System is of particular interest because it is the
central feature of the only well-developed, large scale karst area formed on the
Tertiary belted limestones of the South Coast of Puerto Rico (Moussa, 1969).
Whereas the North Coast Tertiary belted limestones are well known for their exten-
sive karst development (Meyerhoff, 1938; Mitchell, 1954; Doerr and Hoy, 1957;
Gurnee, 1958, 1966; Monroe, 1960, 1964a, 1964b, 1964c, 1966, 1968; Beinroth,
1969; Miguel-Giron, 1972), karst topography on the South Coast has only been
treated in any detail (to the author's knowledge) by Moussa (1969) and Beck
(1973a, 1973b).

Moussa (1969) describes the South Coast karst area and offers general comments
on the geomorphic history of the Quebrada de Los Cedros (Cedros Gorge) which is
the site of the El Convento Cave-Spring System. The cave itself, however, is not
described, nor was it entered (Moussa, 1971, pers. com.). The U.S. Geological
Survey and the Commonwealth of Puerto Rico have jointly published two Water-
Resources Bulletins which deal with this area: Water Resources of the Guayanilla-
Yauco Area, Puerto Rico (Crooks, Grossman and Bogart, 1968) and Water Re-
sources of the Tallaboa Valley, Puerto Rico (Grossman and others, 1972). Although
the former includes the Rio Macami drainage, of which the Quebrada de Los Cedros
is a tributary, it mentions the perennial cave-spring system only briefly. The flow
from the El Convento Cave-Spring System is mistakenly indicated as being only the
resurgance of a sinking stream (Crooks, Grossman and Bogart, 1968, p. 26 and p.
35) when it is also a third magnitude spring which flows from the cave perenially
whether the stream above the cave has water or not. Most recently, Miguel-Giron
(1972) includes this area on a map of "Principales Nucleos de Cavidades Subterra-
neas en Puerto Rico" (p. 2) and shows the location of El Convento and nearby
Cueva Mapancha on a "Mapa de Cuevas" (p. 39) but the cave and the area are not
mentioned in the text. Except for these brief mentions, then, the EI Convento
Cave-Spring System is essentially unstudied, except for the author's ongoing re-
search.

* Delivered verbally at the National Speleological Society Convention, 1973, Bloomington,
Indiana.

** Bureau of Water Resources, Dept. of Natural Resources, Box 5887, San Juan, Puerto Rico,
00906.
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PHYSICAL SETTING AND GENERAL GEOLOGY

The El Convento Cave-Spring System is located in the Quebrada de Los Cedros,
which is a tributary of the Rio Macana, in southwestern Puerto Rico (see Fig. I).
The surrounding area is marked by other karst features such as Cueva Mapancha
and several large sinkholes which are obvious on the topographic map (Fig. I). The
terrain is rugged and the area is essentially unsettled; a few unpaved roads criss-cross
the hills and make them accesible by Jeep or on foot. The lower portion of the
Quebrada contains a cattle ranch centered around the perennial water flow which
emerges from the cave-spring system.

The area surrounding Guayanilla Bay, to the south, is highly industrialized. In
the major alluvial valleys of the Rio Macana and the Rio Tallaboa agriculture is
dominant, most of the land being devoted to sugar cane. The valley between
Pefiuelas and Santo Domingo, north of the Quebrada, is also extensively devoted to
sugar cane growing. The limestone hills are principally unused except for the previ-
ously mentioned cattle ranch.

The karst area surrounding the Quebrada de Los Cedros is formed on the Juana
Diaz Formation. The Juana Diaz Formation has been divided into three units: a
lower, sandy or gravelly, conglomeratic mudstone up to 190 m thick; a middle zone
of dense, biomicritic, reef facies limestone 400 m thick; and an upper chalk or chalky
limestone up to 150 m thick which is not everywhere present (P.R.W.R.A., 1972).
The karst topography is limited to the middle zone (P.R.W.R.A., 1972). The only
other significant karst features on the South Coast Tertiary limestones are devel-
oped on a series of dense limestone strata exposed along the coast in the area of
Guanica. Here the solutional enlargement of several sets of joints into grikes has
broken the thin beds (ca. 0.5 m) into a limestone pavement of separate, jagged
blocks marked by raindrop pits, solution pans, and runnels (Moussa, 1969; Beck,
1972). At least one significant cave is also developed in this area. The common
factor displayed by these two karst areas and limited to them is the dense, imper-
meable nature of the strata as compared to the chalky or marly character of the
surrounding Juana Diaz and Ponce Formation limestones. A dense, impermeable
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Fig. I. Drainage Area of the EI Convento Cave-Spring System

limestonc is sometimes citcd as a prcrcquisitc for karst dcvelopmcnt (Thornbury,
1954) and it appcars that it is thc localizing factor in this area of Puerto Rico
(Moussa, 1969; Beck, 1973a),

CLIMATE AND GENERAL HYDROLOGY

Thc climatc of this portion of Pucrto Rico is gcncrally rather dry, but this particu-
lar arca falls within thc subtropical moist forcst catcgory using the Holdridgc modcl
(Ewel and Whitmore, 1973), Rainfall in this zone ranges from approximately 100
to 200 cm/yr and according to Calvesbert (1972) average annual rainfall in the
immediate area of EI Convento is approximately 127 cm*.

* Precipitation, evaporation, and tcmpcrature data in CaIvcsbcrt (1972) and Crooks, Grossman
and Bogart (1968) arc given in the English systcm and wcre convcrteJ by thc author to mctric
cquivalcnts using standard conversion factors and rounding off to thc ncarest unit.
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"The distribution of rainfall over the year does not show an absolute wet season-
dry season relationship, but only a relatively dry season and a relatively wet season"
(ibid., p. 4). Rainfall in the EI Convento area is highest in August, September,
October, and November (Crooks, Grossman and Bogart, 1968). The majority of
Puerto Rico's rainfall is of orographic nature and falls as brief, heavy showers
(Calvebert, 1972).

The mean annual temperature is 250C (Calvesbert, 1972). Data on the range of
temperatures is not available for this immediate area but at Santa Isabel, similarly
located, the range extends from an average daily minimun of 18°C in February to
an average daily maximun of 31 °C in August (ibid.). The average annual evapora-
tion at two stations in the South Coast subtropical dry forest zone is approximately
205 em. The subtropical dry forest has a potential evapotranspiration: precipitation
ratio of 2.0- 1.0 and the subtropical moist forest from 1.0-0.5 (Ewel and Whitmore,
1973). However, the EI Convento area is near the drier margin of the moist zone
and local conditions in the hills surrounding the Quebrada when visited by the
author on numerous occassions throughout 1972 and 1973 indicate that evapo-
transpiration probably exceeds precipitation here by a noticable amount.

The Rio Macana, of which the Quebrada de Los Cedros is a tributary, is peren-
nial as it leaves the Central Mountains, however, it loses its flow to the coastal
limestone hills and alluvium (Crooks, Grossman and Bogart, 1968). The Quebrada
de Los Cedros occassionally flows to the north of EI Convento, but this is generally
associated only with periods of heavy rainfall. At such times the flow is completely
absorbed by the sinkhole above the EI Convento Cave-Spring System. The flow
from Charco Azul (the local name for the pool at the resurgence of the El Convento
System), however, is perennial. This feeds a small stream around which the afore-
mentioned cattle ranch is centered and is then absorbed into the alluvium.

DESCRIPTION OF THE EL CONVENTO CAVE-SPRING SYSTEM

The El Convento Cave-Spring System was mapped (see Fig. 3) with a Universal
Wilkie*, oil damped, prismatic-sighting compass and a steel tape during 197 I and
1972 by the author and numerous associates (sec Acknowledgements). The data
were converted to latitude and departure coordinates (Kunath, 1970) on a Wang
500* computer. The total error of closure was approximately twenty-five meters in
a one thousand meter loop and this was corrected by distributing the error equally
to all stations on the loop. The error is ascribed to the large number of individual
mapping expeditions which were compiled to make the map and to the inexact
vertical control in the survey of the Quebrada**.

The EI Convento Cave-Spring System is composed of several different passage
segments separated by the Quebrada (see Figs. 2 and 3). The major passage system

* Registered trademark or copyrighted name.
** The Universal Wilkie compass is highly accurate (in the author's experience) for measuring

azimuths, but it is generally inaccurate and imprecise for measuring vertical angles, principal-
ly due to a lack of sights for this purpose.
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is on the western side of the gorge and connects Charco Azul (the resurgence), EI
Convento (a high, arched entrance which gives the system its name), Hoyo sin
Nombre and La Rendija. The passage is principally tall, canyon type passage (termi-
nology after White, 1967, p. 2-18 and 2-20) with flowing water generally covering
the bottom. Rimstone dams frequently span the passage and cause abrupt drops in
the water level. The passage parallels the canyon wall from Charco Azul through El
Convento to Hoyo sin Nombre and then veers west under the uplands. After several
hundred meters it makes almost a 1800 turn and returns to the Quebrada at La
Rendija, so named because it is a high, narrow canyon passage. The only side
passage occurs near the La Rendija end and is a short (ca. 75 m) segment with some
water flow emanating from beneath a large flowstone block which marks its termi-
nus. At the La Rendija entrance water seeps from the talus in the Quebrada and
flows into the passage system.
The La Rendija entrance is immediately adjacent to a tall cliff (ca. 75 m) which

blocks the Quebrada here (see Fig. 2). In the face of the cliff on the west, adjacent
to La Rendija, there is a small, unnamed cave with a few chimneys and short crawls
leading off from it. The central portion of this room is a large, massive, flowstone
mound tapering up and to the near ceiling of the room. From a small crawlway on
the east side of this room one can enter another cave, Ojo de Agua, which is a
continuation of the EI Convento System trending eastward.
Ojo de Agua begins as a tall slot at the eastern comer of the cliff and the
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Fig. 2. Artist's sketch of Qucbrada de los Cedros looking north with vegctation removed. Cueva
Viento, on thc east wall, is not shown.
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Fig. 3. Map of El Convento Cave-Spring Systcm; compass and steel tape survey by B. F. Beck
and othcrs.

Quebrada wall. Inside the entrance on the northwest a clay slope leads upward to
the aforementioned crawlway , and to the east the main passage becomes a small
(ca. I m x 2 m), vertically elongated, elliptical tube. The unnamed cave and this
portion of the Ojo de Agua passage are above the level of flowing water. After
approximately 20 m, the passage to the east opens into more tall, canyon like
passage. At the juncture there is a short drop (ca. 2 m) and the water flowing out of
the Ojo de Agua passage sinks into a small hole, from here to pass beneath the
previously mentioned dry passage, through the talus at the base of the cliff, and to
reappear as the seep at La Rendija. The Ojo de Agua passage continues eastward
approximately 50 m and ends in a pool which is clear at low flow but murky in
flood. Below the surface of the water in this pool one can see the passage continu-
eing east. Passage heights and water depths for the various areas are shown on Fig.
3.

Indented in the eastern wall of the Quebrada, approximately sixty meters south
of the cliff, there is a steep soil and talus slope. This is not shown in Fig. 2 for
clarity but is included in the map of Fig. 3. This leads upward to an extremely
large, but relatively short, tunnel.like cave, known as Cueva Viento. Although the
dimensions are large (20 m wide and 60 m tall) the cross-section is still canyon like.
At the rear of Cueva Viento there is a large dome, estimated to be seventy-five
meters tall, with two skylights penetrating to the uplands above. Just outside the
mouth of Cueva Viento, up a steep limestone face on the north wall, a short,



GEOLOGY AND HYDROLOGY Of EL CONvENTO CAVE-SPRING SYSTEM 99

upper-level cave penetrates totally through the limestone wall and exits back into
the Quebrada above the cliff (i.e., on top of the Unnamed Cave and the beginning
of the Ojo de Agua passage; see Fig. 3). The lower portions of Cueva Viento are
approximately at the same elevation as the floor of the Quebrada above the cliff.

Just above the cliff, the floor of the upper Quebrada slopes downward to the
north such that the cliff edge is a high point. At the base of this slope just north of
the cliff there is a system of irregular crevices between the rocks which lead down-
ward in a maze of small, intertwining passages which all soon became to small for
human entrance. The flood flow from the Central Mountains drains to the base of
this slight upward slope and is here totally absorbed into these crevices, later to
reappear below in the El Convento Cave-Spring System. The approximate location
of this upper sink is shown on Fig. 3 but the details of the upper Quebrada are
deleted to avoid overcrowding.

GEOMORPHIC HISTORY

Moussa (1969) discussed the geomorphic history of the Quebrada and El Con vento
in a general manner. The drainage from the Cordillera Central (the mountains which
appear across the northern portion of Fig. 1) at one time apparently flowed to the
east and joined the Rio Tallaboa. A sinkhole, which formerly existed approximately
in the triangular area north of the Quebrada, pirated a portion of this drainage
underground and through various karst conduits to the south. Continueing develop-
ment and collapse has left the Quebrada as we see it today.

Moussa (1969) believes the gorge is due to the collapse of a former cave system.
The large, high, canyon type cave passages which cross the canyon obliquely, how-
ever, complicate this theory. On the other hand, the extremely large boulder span-
ning the Quebrada near the cliff base (see Fig. 3) may well be the remains of a
natural bridge, which would tend to substantiate Moussa's (1969) hypothesis. Head-
ward collapse over a receding spring system is most probably an integral part of the
development of the Quebrada, but a detailed geomorphic history of the area awaits
more extensive study of all the caves and the various karst features in the area.

HYDROLOGY

The details of the hydrology may be followed on Fig. 2 and Fig. 3. Water flowing
from the upper drainage area (outlined on Fig. 1) converges and flows into the
narrow Quebrada where it then disappears into the sinkhole immediately above the
cliff. During the majority of the year this stream is dry, but during the wetter
periods it may carry heavy, short duration floods due to thundershowers and a
smaller, more persistant flow for several weeks or months.

It is possible to calculate a frequently occurring high flow from the hydrologic
parameters. The drainage basin above the Quebrada has an area of approximately
3.4 km2 (calculated by the weighed paper technique). A good approximation for
the precipitation rate is 2.54 cm/hour for approximately one hour; this is within
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the range of, and a good approximate average of, the compiled data associated with
a normal convective type thunderstorm rainfall as monitored at Peiiuelas (Calves-
bert, 1972, pers. com.). The mean annual runoff coefficient may be approximately
calculated from the Basin Climatic Index (R.A. Domenech and Associates and
Black and Veatch, Consulting Engineers, 1970; figures 2-4 and 2-5) and by this
method an approximate value of 22.5% is obtained. However, utilizing very general
criteria in Todd (1970, Table 2-26) a value from 55-70% is obtained. Soil maps
(U.S. Department of Agriculture, 1969) show most of the drainage as high runoff
potential soils. During a high intensity, short duration rainfall, such as we are
hypothesizing, the higher values are probably closer to correct, although the lesser
value is probably more correct on an annual basis (which it is calculated for). In
light of this data 55% will be used as an approximation of the runoff coefficient
with an uncertainty of 15%, i.e., 55115%.

Approximately three to five hours after the thundershower, the flood flow
should reach the cave. As an order of magnitude approximation we may calculate
the summation of rainfall times the runoff over the area of the drainage basin and
assume that all this flow arrives within one hour. This yields a flow of 4.7:! 1.3 x
104 m3 Ihour which is completely swallowed by the system. This is on the order of
103 m3/min in flood. Sediment size data indicate a velocity near 300 m3/min
which is reasonably close to the lower range of this estimate (Beck, 1973b).

This flow is conducted through a network of openings too small for human
passage to at least three different points: the small, unnamed cave where it flows
out above the large flowstone mound; the chimney in the connecting passage be-
tween this cave and Ojo de Agua; and into the main flow through Ojo de Agua from
the pool at the end of the passage. During peak floods all three openings function
and water may also enter the system from the rear of the side passage, although this
could not be checked. At such times water in Ojo de Agua backs up because of the
small exit sump and the upperlevel elliptical tube is totally flooded. Thus, the depth
in the main passage must be on the order of 4 m as a minimum. This ponding effect
is responsible for the two large sediment banks present here, the bank closer to the
source being gravel and that downstream clay and silt, as would be expected when
rapidly moving water enters a large volume pool.

As the flow subsides, only Ojo de Agua, and possibly the side passage, continue
to carry water from the sinkhole. Dye studies show that the time interval from
entering the sinkhole to emerging at the siphon in Ojo de Agua is approximately
two hours. Since this path drops approximately 25 m the water might be expected
to move more rapidly, but it is probable that there is a large system of passages
behind this siphon and that the volume of water contained therein must first be
displaced before the dye can emerge.

Even when the stream above is totally dry, as it is for approximately nine
months out of the year, Ojo de Agua and the side passage have a flow of water
eminating from them. In frequent visits from 1971 through 1973 the author has
never seen either passage dry or not flowing. Low flow volumes from these passages
were measured using a plywood dam and a Tsurumi-Seiki Kosakusho flowmeter*.

* The T. S. K. flowmeter is designed for measuring flow through a plankton net, but when
mounted on a handle it will suffice for the approximate measurement of stream flow.
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Table I. Water flow in the EI Convento Cave-Spring System. Measured with a
Tsurumi-Seiki Kosakusho flowmeter.

INPUT OUTFLOW
LOCATI ON FLOW (M3/MIN) LOCATION FLOW (M3/MIN)

OJO DE AGUA 0.9 CHARCO AZUL 0.4
SIDE PASSAGE 0,1 SPRING 0,1(DOWNSTREAM)
TOTAL 1.0 TOTAL 0,5

LOST TO GROUNDWATER: 0.5 M3/MIN

These measurements are tabulated in Table I. Part of the water which enters the El
Convento Cave-Spring System from the siphon in Ojo de Agua passes through the
breakdown in the Quebrada below the cliff and emerges in La Rendija (follow on
Fig. 2). That portion of the flow passing through La Rendija is then joined down-
stream by the minor flow from the side passage and the combined colume con-
tinues through the cave to Charco Azul. Dye tracing shows that a part of the flow
from Ojo de Agua also goes southward, probably through small cave openings, and
emerges at a spring which is on the southeast side of the Quebrada approximately
0.3-0.5 km downstream from Charco Azul.
The resurgences for the cave system are Charco Azul and the aforementioned

spring. Moussa (1969, p. 717) hypothesizes that "there are probably more springs
in the streambed". The author has examined this area firsthand and finds no evi-
dence that any springs other than the obvious one are present. In some places small
streamlets branch and rejoin, as in a braided stream, and occassionally these seep
through gravel bars; such instances may appear to be springs, but closer examina-
tion shows their correct source. The flow from Charco Azul and from the spring is
also tabulated in Table 1. During the flow through the cave and associated spring
system the flow volume is reduced by approximately half, from 1 m3 fmin to 0.5
m3fmin. This loss may occur into deeper passages below water level in the main
portion of the El Convento Cave-Spring System*, or it may occur in the unmapped
network which goes from Ojo de Agua to the spring, or the loss may well occur in
both areas. A higher density of flow measurements throughout the cave-spring
system is needed to accurately locate the point of loss.
Dye tests were conducted in the El Convento Cave-Spring System. Flow from

the exit of Ojo de Agua, through the breakdown to La Rendija took only forty
minutes, implying a relatively open, small volume system. Flow from the siphon in
Ojo de Agua to Hoyo sin Nombre took approximately three and one half hours,
while flow from Hoyo sin Nombre to Charco Azul took well over four hours (exact

* Directly below one of the rimstone dams just upstream from the Hoyo sin Nombre entrance,
a deep hole exists. This is probably simply a plunge pit, but it might be a chimney to lower
passages.
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time unknown). This longer time interval for a much shorter segment of passage
indicates that the latter section from El Convento to Charco Azul is deeper than
expected and probably contains a significant volume of water. However, the volume
of flow may have been significantly lowered by leakage before reaching this area
thus accounting for the longer travel time. The travel time from the siphon in Ojo
de Agua to the spring on the southeast side of the Quebrada was more than seven
hours and less than twenty-four (exact time not measured).

SOLUTION CHEMISTRY

Water samples were taken at selected sites throughout the cave-spring system and
later analyzed in the laboratory. At the time of sampling no water was entering the
system from the sink. Two D.O. (dissolved oxygen) bottles were collected at each
location; one was fixed for dissolved oxygen measurement by the Winkler method
(Strickland and Parsons, 1968) and the other was left untreated. D.O. bottles have a
ground glass stopper which is tapered downward to insure that no air bubbles are
included with the sample. The bottles were transferred to the laboratory on ice and
kept refrigerated until analyzed. The temperature of the water was measured with a
standard mercury thermometer at the time of sampling. All samples were clear and
the bottles were left immersed and open in the flowing water for more than fifteen
minutes to insure equilibration.

pH and alkalinity were measured immediately upon opening the bottle using a
Beckman Model C pH meter and titrating with 0.0164 N H2S04 to a pH of 4.50
(Brown et aI., 1970). Dissolved CO2 was calculated from the alkalinity and the
initial pH (Brown et aI., 1970). Dissolved oxygen was determined by a Winkler
titration (Strickland and Parsons, 1968) which is essentially similar to the" Azide
Modification of the lodometric Method" (Am. Pub. Health Association, and others,
1965) or the Alsterburg Azide Method recommended by the U.S.C.S. (Brown et aI.,
1970). Ca and Mg were measured by atomic absorption spectrometry with a
lanthinum chloride addative to reduce interference (Brown et aI., 1970). Standards
and blanks were also run unknown to the operator. Ca analyses were generally low
by 3% or less and Mg was slightly low (1%); accuracy improved with concentration
and since the samples were measured at concentrations ten times those of the
standards used for comparison the analytical error is probably very small. Total
carbonate hardness was calculated using the Ca and Mg values (ASTM, 1965).

The results of the analyses are presented in figures 4 through 6. Fig. 4 shows the
dissolved oxygen and carbon dioxide content of the cave waters. Note that the
water eminates from both springs within the cave (Le., in Ojo de Agua and in the
side passage) very low in oxygen and high in CO2 and that it generally loses CO2 as
it passes through the cave system. The dissolved oxygen content rises initially,
probably because the water in the Ojo de Agua passage is shallow and fast moving
and, at the time of sampling, this passage did not contain a large colony of bats.
However, after entering the main passage the dissolved oxygen content decreases
again. The water in the main passage system is deep and generally slow moving and
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Fig. 4. Dissolved oxygen and carbon dioxide in El Convento Cave-Spring System waters.
Oxygen by Winkler titration; Carbon dioxide calculated from pH and alkalinity data.

there are several large bat colonies roosting over it. The water flow over the rim-
stone dams is small compared to the overall volume of water and the decaying
guano and lack of aereation probably both act to reduce the dissolved oxygen.
Similarly, the decaying guano is probably responsible for the small rise in CO2
content found at the sampling station immediately upstream from Hoyo sin
Nombre.
Fig. 5 shows the total hardness as calculated from the calcium and magnesium

values. Fig. 6 shows the Ca hardness and pH plotted on the CaC03 saturation curve
as modified from Picknett's (1972) data. It is recognized that this method of
analyzing the saturation is only approximate (Jacobson and Langmuir, 1972), but
sufficient data were not obtained to utilize a more sophisticated approach. The
presentation of the data on the modified Picknet curve should be satisfactory for
observing relative changes inasmuch as errors due to the presence of other pairs
should remain relatively constant. An earlier presentation (Beck, 1973a) was
slightly in error due to the author's misinterpretation of Picknet's (1972) data;
however, the conclusions presented therein were still valid. The samples are num-
bered sequentially on the graph, 1 and l' being the sources of water (Ojo de Agua
and the side passage) and 5 being the resurgence.
The groundwater as it emerges into the cave passages, both at the siphon in Ojo

de Agua and at the terminus of the side passage, is approximately saturated with
respect to calcite. As the water flows through the Ojo de Agua passage and through
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Fig. 5. Total carbonate hardness as CaC03 for EI Convento Cave-Spring System waters.
Hardness calculated from Ca and Mg analyses by atomic absorption.
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the breakdown below the cliff, it rapidly loses CO2 and becomes supersaturated.
Once the flow enters the larger main passage, however, the CO2 content remains
relatively constant and the equilibrium trends back toward saturation, probably due
to precipitation of CaC03 on the numerous rims tone dams. The enrichment with
respect to CO2 at site 4 is probably due to the particularly large amount of bat
guano present in the water in that area and the large population of bats living over
the water, as mentioned previously.

ABSTRACT*

Whereas the North Coast Tertiary Limestones of Puerto Rico are classic karst
locales, their southern counterparts are almost devoid of karst development. The EI
Convento Cave-Spring System is the most prominent feature of the only large scale
karst area developed on the South Coast Tertiary limestones. The karst topography
is localized on the middle Juana Diaz Formation, which is a reef facies limestone,
apparently because of the high density and low permeability of this zone as com-
pared to the surrounding chalks and marls. In the EI Convento System a sinking
ephemeral stream combines with the flow from two perennial springs inside the
cave. The surface drainage has been pirated from the Rio Tallaboa to the east into
EI Convento's subterranean course.
The climate is generally semi-arid with 125-150 cm of rain falling principally as

short, intense showers during Sept., Oct., and Nov. Sinking flood waters are ab-
sorbed by a small sinkhole and appear two to three hours later in the cave. In the
dry season this input is absent. The two springs within the cave have a combined
inflow to the system of 1.0 m3/min at low flow but half of this leaks back to the
groundwater before it reaches the resurgence. The spring waters are saturated with
CaC03 and high in CO2 (26.4 ppm). As the water flows through the open cave it
first becomes supersaturated by losing CO2 and then trends back toward saturation
by precipitating CaC03.

RESUMEN

Mientras las calizas terciarias de la costa norte de Puerto Rico son localidades
carsticas chisicas, sus contrapartes en el suroeste de Puerto Rico estan casi total-
mente exentos de desarrollo carstico. EI sistema cueva-manantial EI Convento es la
facci6n mas sobresaliente del unico area carstica de gran escala, desarrollado en las
calizas terciarias de la costa sur. La topografia carstica esta localizada sobre la
formaci6n Juana Diaz mediana, la cual es una caliza de facie recifal, debido apa-
rentemente a la alta densidad y baja permeabilidad de est a zona en comparaci6n a
las cretas y margas adyacentes. En el sistema EI Convento un arroyuelo intermitente
se combina con el flujo de dos man anti ales perennes dentro de la cueva. EI drenaje,

* Abstract to be published in the National Speleological Society Bulletin.
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superficial ha sido pirateado del RIO Tallaboa al este, hacia el cauce subtemineo de
EI Convento.

El clima es generalmente semi-arido con 125-150 cm de precipitacion, principal-
mente en forma de intensas lIuvias cortas durante septiembre, octubre y noviembre.
Aguas filtrantes procedentes de inundaciones son absorbidas por un pequeno sumi-
dero y reaparecen dos 0 tres horas mas tarde dentro de la cueva. Durante las sequlas
este flujo no existe. Los dos manantiales dentro de la cueva tienen un flujo combi-
nado para el sistema Imts3 /min durante flujo bajo, pero la mitad de este vllelve a
infiltrarse al agua subterranea antes de que lIegue a su resllrgencia. Las agllas de
manantial estan saturddas con carbonato de calcio y alto en dioxido de carbon
(26.4 ppm). Mientras fluje el agua por la cueva abierta, primeramente es super-
saturada cuando pierde el dioxido de carbon y entonces regresa a ser saturado por la
precipitacion de carbonato de calcio.
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