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Research Proposal: Safe Learning for Robots in a Human World

The rapid advancement of reinforcement learning (RL) and its integration into
increasingly autonomous robotic systems operating alongside humans raises crucial questions
about safety, reliability, and human-robot collaboration. As robots powered by RL become more
commonplace in diverse environments such as workplaces, healthcare settings, public spaces,
and residential areas, ensuring these systems can reliably learn and execute tasks without posing
risks to human safety or damaging property has emerged as a significant historical and
contemporary challenge. This research aims to explore how methodologies developed to assess
and guarantee the safe implementation of embodied RL robots have evolved along with the field.
By critically analyzing technical milestones and innovations, pivotal case studies involving
collaborative robots, and foundational academic contributions, this study aims to highlight the
effectiveness of various safety assessment practices and pinpoint where these methods have
proven insufficient. The stakes involved in adequately addressing these safety and performance
concerns are substantial; failures in ensuring robot safety can lead to severe physical harm,
undermine public trust in technology and automation, and significantly impede the adoption and
broader societal integration of robotic systems. Conversely, a thorough historical perspective on
both successful and unsuccessful approaches to RL safety provides invaluable insight, guiding
the development of more robust and dependable learning algorithms and safety guidelines.
Understanding past mistakes and shortcomings is also essential for preempting similar future
errors, protecting human welfare, and fostering a beneficial coexistence between humans and

future autonomous robots in society. By ignoring these historical insights into ongoing safety and



collaborative practices, one risks repeating avoidable mistakes, potentially endangering people,
hindering technological innovation, and slowing down the incorporation of advanced learning-

based robotic systems for the benefit of all humanity.

Historically, the journey toward safe robot learning begins with the rigid, cage-bound
manipulators of the late twentieth century. These early machines were deliberately sequestered
from workers and governed by explicit movements in code, making their behaviors predictable
and their hazards straightforward to isolate. The turn of the millennium, however, ushered in a
wave of research that sought to more closely model human learning in robots, giving robots the
capacity to adapt to novel tasks through experience. Trial-and-error, something natural to a
human learner but previously disregarded for robots, became a design principle. With it arrived a
host of safety dilemmas that the older, fenced-off paradigm had conveniently deferred. Engineers
soon realized that an algorithm rewarded solely for task completion might discover perilous
shortcuts, knocking over a pallet or veering toward a pedestrian if such actions happened to
maximize its return. The dramatic televised spills of humanoid platforms in high-profile robotics
contests only underscored how fragile autonomous systems could be when exploration was left
unchecked. Within laboratories, the debate over whether to remove safety tethers during
development captured a deeper tension: progressing quickly often meant courting danger, while
proceeding cautiously risked stagnation. Over the 2000s and 2010s, these experiences catalyzed
a gradual shift from ad-hoc guardrails toward systematic evaluation. Controlled testbeds,
standardized scorecards that penalized unsafe maneuvers, and cross-disciplinary safety reviews
emerged as stopgaps against the most conspicuous failure modes. Yet even as these tools
matured, real-world deployments in warehouses, clinics, and city streets exposed new edge

cases: slippery floors, unpredictable human intent, and shifting weather that laboratory metrics



rarely captured, to name a few. By the early 2020s, the community increasingly acknowledged
that safety must be ingrained throughout an RL system’s life-cycle, from the first exploratory

learning in simulation to continuous monitoring after deployment.

Research on safe reinforcement learning has expanded swiftly over the past decade as
roboticists manage the dual mandate of useful performance/ rapid learning and rigorous safety.
The field now frames “safe RL” as learning policies that maximize return while keeping
specified risk or cost signals within strict bounds during both training and deployment. Garcia
and Fernandez’s landmark survey formalized this agenda by distinguishing two complementary
paths: reward-centric methods, which embed risk terms or heavy penalties directly into the
objective, so the agent internalizes avoidance of hazardous states, and exploration-centric
methods, which regulate how the agent gathers experience, for example by masking forbidden
actions or consulting external risk models!. This taxonomy clarified that shaping the reward
alone is rarely sufficient: hand-crafted penalties can be mis-specified or gamed, hence a credible
safety solution typically combines reward design with explicit behavioral constraints. The
dominant mathematical tool for such constraints is the Constrained Markov Decision
Process (CMDP). Rather than folding every concern into one scalar reward, a CMDP lets
designers specify distinct cost functions for various conditions (e.g., collision probability, energy
overshoot) and require that expected costs never exceed preset thresholds. Achiam et al.
operationalized this idea in Constrained Policy Optimization (CPO), an algorithm that performs
trust-region updates guaranteeing near-feasible policies at every step?. CPO and its successors

demonstrate that safe exploration can be achieved by bounding the size of each policy change so
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constraint violations cannot suddenly spike: a property essential when training occurs directly on
hardware. Complementary strategies place protective “shields” around the learner. Saunders et al.
introduced a human-in-the-loop protocol in which a person selectively blocks or corrects
catastrophic actions while the agent is still naive; a supervised model then learns to replicate
those interventions, gradually reducing human burden while preserving the zero-violation
record®. Such oversight highlights a pragmatic trade-off: human guardianship is robust but
labor-intensive, whereas automated filters demand accurate system models that are seldom

available for complex robots.

Another approach is to leverage guarantees from classical control: Berkenkamp et al.
combined Gaussian-process models with Lyapunov-based safety certificates, restricting
exploration to the region of state space proven (within statistical confidence) to remain stable?.
The result is a controller that improves performance without ever violating stability constraints,
exemplified on an inverted-pendulum task that never allowed the pole to fall throughout
learning. This is a vast difference from the typical naive initialization of a learning agent. Similar
work employs control-barrier functions or reachability analysis to compute safe sets and then
projects the learned policy back into those sets at run-time. These approaches supply the formal
proofs absent from purely empirical techniques, though they too rely on reasonably accurate
dynamics estimates. As the methodological arsenal broadened, survey papers began mapping the
terrain and identifying gaps. A recurring theme is the need for state-wise constraints: rules such
as “never contact a human” that must hold at every instant, not just on average. Zhao et al.

catalogue emerging algorithms that honor such instantaneous bounds, from policy-gradient
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variants with hard masks to model-predictive shields that veto unsafe commands in real time>.
Their review also underscores a persistent gab between simulated algorithm performance and
real life (sim2real gap): algorithms validated in perfect simulators often falter on physical robots
because of sensor noise, latency, or unmodelled interactions with humans. Consequently, recent
literature stresses continuous risk monitoring and logging once a policy is deployed. By
streaming safety metrics, recording near-misses, and retraining on those edge cases, practitioners
create a feedback loop that gradually tightens safety margins in the messy real world. Taken
together, these contributions reveal a maturing yet still fragmented discipline. Reward shaping,
CMDP optimization, human supervision, Lyapunov certification, and real-time shielding each
address slices of the safety problem, but no single approach fully resolves the tension between
rapid learning and guaranteed protection. Moreover, many studies evaluate safety only in
simulation or on narrowly scoped hardware tasks, leaving open questions about scalability to
high-degree of freedom (DOF) systems like collaborative arms, mobile robots, or autonomous
vehicles. Future work, including this research proposal, builds directly on this literature by (i)
examining how different assessment practices perform when robots share space with people, (ii)
analyzing which combinations of constraints, oversight, and certificates have historically
prevented accidents, and (iii) identifying metrics that capture not just average reward but tail-risk

events most relevant to human safety.

Understanding how safety assessment practices migrated from ad-hoc safeguards to
formal, learning-aware protocols requires tracing the historical record. A touchstone is the
DARPA Robotics Challenge (DRC, 2012-2015), which thrust semi-autonomous humanoids into

disaster-recovery tasks such as climbing ladders and turning valves. Although few teams used
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modern RL, the competition nevertheless exposed the limits of 2010s autonomy under real-world
time pressure: robots toppled, stalled, or simply timed out, all while the internet watched and
laughed. Atkeson and colleagues’ post-mortem tallied dozens of falls and noted that public
perception became “robots are slow and fall down,” crystallizing the performance versus safety
tension that still suspends learning robots today®. The detailed team technical reports, available
in the Journal of Field Robotics special issue and DARPA’s archive, explain how operators
traded speed for stability, how tethers and emergency stops were deployed, and which fallback
behaviors mitigated disaster-level failures’. For safe-RL research these documents are more than
colorful anecdotes: they catalogue concrete failure modes (unexpected ground contact, joint

saturation, sensor dropout) that any future RL controller must detect and avoid.

A second line of understanding can be drawn from the formal safety standards that codify
best practice for robots working near humans. ISO 10218 sets baseline requirements for
industrial arms: interlocked cages, emergency-stop circuits, and detailed validation tests,
reflective of the decades of hard-won factory experience®. The rise of collaborative robots
prompted the companion specification ISO/TS 15066, which introduces force limits,
speed-and-separation monitoring, and power-and-force control for scenarios where humans and
machines share the same workspace’. These documents supply numerical thresholds that an RL
policy must ultimately satisfy, such as maximum allowable contact forces, sensor reaction times,
and fault-tolerance levels. They also highlight verification gaps: standards typically assume

deterministic controllers, whereas learning policies are stochastic and may drift as they adapt.
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Bridging that mismatch, perhaps by embedding ISO-derived constraints into the reward or by
certifying the runtime shield against standard-mandated fault models, is an open problem that
anchors the present proposal. Case studies of real deployments further enrich this landscape. The
first fatal industrial-robot accident in 1979 forced manufacturers to adopt rigorous interlocks,
demonstrating that a single mishap can reshape regulation culture. More recently, warehouse
fleets and assistive service robots have begun using RL to optimize routing, gripping, or
navigation. Although detailed incident logs are scarce, as many firms regard them as proprietary
information, conference papers and IEEE archives occasionally surface instructive snippets:
near-miss counts during pilot roll-outs, rates of human intervention, wear-and-tear metrics after
prolonged learning. Even blog-style disclosures from the right sources are revealing. OpenAlI’s
account of its Rubik’s Cube-solving robotic hand discusses force-threshold resets and frequent
human restarts during policy fine-tuning, hinting at the engineering overhead required to keep an

ambitious RL system within safe bounds.

Curating such literature will help identify which hazards persist despite simulation
success and which mitigation patterns generalize across platforms. Benchmark datasets and
simulators supply yet another historical waypoint. OpenAl’s Gym (2016) unified
performance-centric evaluation across RL algorithms, but left safety implicit. In response,
Safety Gym (2019) introduced high-dimensional continuous-control tasks that log both reward
and a cost signal for unsafe events (collisions, boundary violations). The accompanying study by
Ray et al. quantified progress via metrics such as violation-free episode rate and worst-case

return'®, while a companion blog post disseminated code and baseline results to the broader
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community'!. Safety Gym’s popularity reflects the field’s recognition, circa 2019, that
repeatable, open benchmarks are essential to move safety from anecdote to science, paralleling
the impact ImageNet had on computer vision. Importantly, the benchmark’s designers
emphasized online safety: costs accrue throughout training, not just at convergence, mirroring

real-robot constraints where every trial can cause damage.

Survey papers and archival reviews tie these threads together. Garcia and Fernandez’s
2015 survey, for instance, documents a 2009 autonomous-helicopter challenge in which teams
used demonstrations to avoid catastrophic exploration errors: evidence that concerns over the
“sim2real gap” predate the deep-learning era. By collating competitions, standards, and
benchmark suites, one can trace a clear trajectory: from rigid physical isolation, through
human-in-the-loop supervision, toward formalized constraints and algorithmic shields capable of
verifying an RL policy in situ. Each stage represents a ratcheting of trust: only when one layer
proves inadequate does industry or research add the next. Recognizing gaps in the historical
record is equally instructive. Because many commercial RL deployments remain proprietary,
publicly available useful datasets of robot learning sessions in human environments are limited.
Sharing anonymized logs: frequency of human takeover, distribution of near-miss severities,
perhaps in a standardized reporting form, would let researchers benchmark algorithms under
authentic risk. Another gap is the absence of a procedural bridge between ISO standards and RL
certification: auditors lack clear guidelines for evaluating policies that adapt over time.
Documenting experimental attempts at such certification, whether in regulatory sandboxes or
industry pilot projects, is vital. The historical sources outlined above, like competition

after-action reports, formal standards, bespoke benchmarks, and scattered industrial anecdotes
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therefore supply not only cautionary tales but also concrete metrics, thresholds, and failure
patterns against which new safe-RL methods can be stress-tested. Grounding the present research
in this evidence base ensures that proposed techniques address not just theoretical safety but the
pragmatic, historically observed realities of robots and humans coexisting in the same

environment.

Securing a clear historical picture of safe reinforcement learning is difficult precisely
because the most instructive evidence is often hidden, fragmented, or contested. Proprietary
deployment logs stay behind corporate firewalls; the study therefore triangulates open reports
such as the DARPA Robotics Challenge after-action dossiers that catalogue every fall and

tether-save!?!3

, and practitioner interviews to extract trends without breaching confidentiality. A
second obstacle is the absence of a shared benchmark: research groups report everything from
“collision cost” in Safety Gym!# to “constraint return” in Constrained Policy Optimization'>,
thwarting apples-to-apples comparisons. By rescaling these metrics to a violation-per-1 000-steps
baseline and calibrating them against ISO force-and-speed thresholds!®!’, the project proposes a
composite safety score that travels across domains. Defining “unsafe” remains slippery, so
incidents are partitioned into catastrophic harm, near-misses, and minor infractions following

industrial taxonomy and state-wise-constraint theory!8, validated through expert video

annotation: echoing the initial human-in-the-loop shielding that slashed catastrophe occurrence
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in RL training'®. Interdisciplinary tensions add yet another layer: engineers focus on dynamics,
ethicists on values, regulators on liability, (and computer scientists on why their hardware isn’t
working). Aligning these lenses requires mapping corporate goals onto theoretical guarantees®
onto legal standards?!, and enabling the cross-disciplinary conversation needed to achieve that.
Critics meanwhile might contend that classic control suffices or that safety cripples learning
speed; however historical record shows tasks like dexterous manipulation already depend on RL,
and constraint-aware algorithms have cut violation rates with minimal reward loss?? while human

oversight has even accelerated convergence?’.

Looking to the future, the study argues that embedding safety criteria inside the learning
loop rather than retrofitting them afterwards offers the most reliable path to true human-friendly
robotics. Early evidence shows a clear trajectory: heuristics in the 2000s gave way to
constraint-aware optimization?* and Lyapunov-certified exploration?®, while structured
benchmarks like Safety Gym?¢ standardized evaluation and accelerated progress. Yet unresolved
questions loom: How do single-agent guarantees scale to fleets? How can reward functions be
better aligned with nuanced human risk preferences? What certification process will regulators
accept or need for adaptive policies? And how can safety generalize under distribution shift?
Answering these will require richer public datasets, tighter integration of formal verification with

learning, and metrics that capture tail-risk events as faithfully as they capture average reward. By
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grounding new proposals in the documented successes and failures of the past, the research
remains tightly coupled to its central concern: ensuring that as learning robots proliferate across
human environments performing useful work, they do so not just with competence, but with

carc.
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