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Research Proposal: Safe Learning for Robots in a Human World 
 

The rapid advancement of reinforcement learning (RL) and its integration into 

increasingly autonomous robotic systems operating alongside humans raises crucial questions 

about safety, reliability, and human-robot collaboration. As robots powered by RL become more 

commonplace in diverse environments such as workplaces, healthcare settings, public spaces, 

and residential areas, ensuring these systems can reliably learn and execute tasks without posing 

risks to human safety or damaging property has emerged as a significant historical and 

contemporary challenge. This research aims to explore how methodologies developed to assess 

and guarantee the safe implementation of embodied RL robots have evolved along with the field. 

By critically analyzing technical milestones and innovations, pivotal case studies involving 

collaborative robots, and foundational academic contributions, this study aims to highlight the 

effectiveness of various safety assessment practices and pinpoint where these methods have 

proven insufficient. The stakes involved in adequately addressing these safety and performance 

concerns are substantial; failures in ensuring robot safety can lead to severe physical harm, 

undermine public trust in technology and automation, and significantly impede the adoption and 

broader societal integration of robotic systems. Conversely, a thorough historical perspective on 

both successful and unsuccessful approaches to RL safety provides invaluable insight, guiding 

the development of more robust and dependable learning algorithms and safety guidelines. 

Understanding past mistakes and shortcomings is also essential for preempting similar future 

errors, protecting human welfare, and fostering a beneficial coexistence between humans and 

future autonomous robots in society. By ignoring these historical insights into ongoing safety and 



 

collaborative practices, one risks repeating avoidable mistakes, potentially endangering people, 

hindering technological innovation, and slowing down the incorporation of advanced learning-

based robotic systems for the benefit of all humanity. 

Historically, the journey toward safe robot learning begins with the rigid, cage-bound 

manipulators of the late twentieth century. These early machines were deliberately sequestered 

from workers and governed by explicit movements in code, making their behaviors predictable 

and their hazards straightforward to isolate. The turn of the millennium, however, ushered in a 

wave of research that sought to more closely model human learning in robots, giving robots the 

capacity to adapt to novel tasks through experience. Trial-and-error, something natural to a 

human learner but previously disregarded for robots, became a design principle. With it arrived a 

host of safety dilemmas that the older, fenced-off paradigm had conveniently deferred. Engineers 

soon realized that an algorithm rewarded solely for task completion might discover perilous 

shortcuts, knocking over a pallet or veering toward a pedestrian if such actions happened to 

maximize its return. The dramatic televised spills of humanoid platforms in high-profile robotics 

contests only underscored how fragile autonomous systems could be when exploration was left 

unchecked. Within laboratories, the debate over whether to remove safety tethers during 

development captured a deeper tension: progressing quickly often meant courting danger, while 

proceeding cautiously risked stagnation. Over the 2000s and 2010s, these experiences catalyzed 

a gradual shift from ad-hoc guardrails toward systematic evaluation. Controlled testbeds, 

standardized scorecards that penalized unsafe maneuvers, and cross-disciplinary safety reviews 

emerged as stopgaps against the most conspicuous failure modes. Yet even as these tools 

matured, real-world deployments in warehouses, clinics, and city streets exposed new edge 

cases: slippery floors, unpredictable human intent, and shifting weather that laboratory metrics 



 

rarely captured, to name a few. By the early 2020s, the community increasingly acknowledged 

that safety must be ingrained throughout an RL system’s life-cycle, from the first exploratory 

learning in simulation to continuous monitoring after deployment. 

Research on safe reinforcement learning has expanded swiftly over the past decade as 

roboticists manage the dual mandate of useful performance/ rapid learning and rigorous safety. 

The field now frames “safe RL” as learning policies that maximize return while keeping 

specified risk or cost signals within strict bounds during both training and deployment. García 

and Fernández’s landmark survey formalized this agenda by distinguishing two complementary 

paths: reward-centric methods, which embed risk terms or heavy penalties directly into the 

objective, so the agent internalizes avoidance of hazardous states, and exploration-centric 

methods, which regulate how the agent gathers experience, for example by masking forbidden 

actions or consulting external risk models1. This taxonomy clarified that shaping the reward 

alone is rarely sufficient: hand-crafted penalties can be mis-specified or gamed, hence a credible 

safety solution typically combines reward design with explicit behavioral constraints. The 

dominant mathematical tool for such constraints is the Constrained Markov Decision 

Process (CMDP). Rather than folding every concern into one scalar reward, a CMDP lets 

designers specify distinct cost functions for various conditions (e.g., collision probability, energy 

overshoot) and require that expected costs never exceed preset thresholds. Achiam et al. 

operationalized this idea in Constrained Policy Optimization (CPO), an algorithm that performs 

trust-region updates guaranteeing near-feasible policies at every step2. CPO and its successors 

demonstrate that safe exploration can be achieved by bounding the size of each policy change so 

 
1 García and Fernández, “Comprehensive Survey on Safe Reinforcement Learning.” 
2 Achiam et al., “Constrained Policy Optimization.” 
 



 

constraint violations cannot suddenly spike: a property essential when training occurs directly on 

hardware. Complementary strategies place protective “shields” around the learner. Saunders et al. 

introduced a human-in-the-loop protocol in which a person selectively blocks or corrects 

catastrophic actions while the agent is still naïve; a supervised model then learns to replicate 

those interventions, gradually reducing human burden while preserving the zero-violation 

record3. Such oversight highlights a pragmatic trade-off: human guardianship is robust but 

labor-intensive, whereas automated filters demand accurate system models that are seldom 

available for complex robots.  

Another approach is to leverage guarantees from classical control: Berkenkamp et al. 

combined Gaussian-process models with Lyapunov-based safety certificates, restricting 

exploration to the region of state space proven (within statistical confidence) to remain stable4. 

The result is a controller that improves performance without ever violating stability constraints, 

exemplified on an inverted-pendulum task that never allowed the pole to fall throughout 

learning. This is a vast difference from the typical naïve initialization of a learning agent. Similar 

work employs control-barrier functions or reachability analysis to compute safe sets and then 

projects the learned policy back into those sets at run-time. These approaches supply the formal 

proofs absent from purely empirical techniques, though they too rely on reasonably accurate 

dynamics estimates. As the methodological arsenal broadened, survey papers began mapping the 

terrain and identifying gaps. A recurring theme is the need for state-wise constraints: rules such 

as “never contact a human” that must hold at every instant, not just on average. Zhao et al. 

catalogue emerging algorithms that honor such instantaneous bounds, from policy-gradient 

 
3  Saunders et al., “Trial Without Error: Towards Safe Reinforcement Learning via Human Intervention.” 
4 Berkenkamp et al., “Safe Model-Based Reinforcement Learning with Stability Guarantees.” 



 

variants with hard masks to model-predictive shields that veto unsafe commands in real time5. 

Their review also underscores a persistent gab between simulated algorithm performance and 

real life (sim2real gap): algorithms validated in perfect simulators often falter on physical robots 

because of sensor noise, latency, or unmodelled interactions with humans. Consequently, recent 

literature stresses continuous risk monitoring and logging once a policy is deployed. By 

streaming safety metrics, recording near-misses, and retraining on those edge cases, practitioners 

create a feedback loop that gradually tightens safety margins in the messy real world. Taken 

together, these contributions reveal a maturing yet still fragmented discipline. Reward shaping, 

CMDP optimization, human supervision, Lyapunov certification, and real-time shielding each 

address slices of the safety problem, but no single approach fully resolves the tension between 

rapid learning and guaranteed protection. Moreover, many studies evaluate safety only in 

simulation or on narrowly scoped hardware tasks, leaving open questions about scalability to 

high-degree of freedom (DOF) systems like collaborative arms, mobile robots, or autonomous 

vehicles. Future work, including this research proposal, builds directly on this literature by (i) 

examining how different assessment practices perform when robots share space with people, (ii) 

analyzing which combinations of constraints, oversight, and certificates have historically 

prevented accidents, and (iii) identifying metrics that capture not just average reward but tail-risk 

events most relevant to human safety.  

Understanding how safety assessment practices migrated from ad-hoc safeguards to 

formal, learning-aware protocols requires tracing the historical record. A touchstone is the 

DARPA Robotics Challenge (DRC, 2012–2015), which thrust semi-autonomous humanoids into 

disaster-recovery tasks such as climbing ladders and turning valves. Although few teams used 

 
5  Zhao et al., “State-Wise Safe Reinforcement Learning: A Survey.” 



 

modern RL, the competition nevertheless exposed the limits of 2010s autonomy under real-world 

time pressure: robots toppled, stalled, or simply timed out, all while the internet watched and 

laughed. Atkeson and colleagues’ post-mortem tallied dozens of falls and noted that public 

perception became “robots are slow and fall down,” crystallizing the performance versus safety 

tension that still suspends learning robots today6. The detailed team technical reports, available 

in the Journal of Field Robotics special issue and DARPA’s archive, explain how operators 

traded speed for stability, how tethers and emergency stops were deployed, and which fallback 

behaviors mitigated disaster-level failures7. For safe-RL research these documents are more than 

colorful anecdotes: they catalogue concrete failure modes (unexpected ground contact, joint 

saturation, sensor dropout) that any future RL controller must detect and avoid.  

A second line of understanding can be drawn from the formal safety standards that codify 

best practice for robots working near humans. ISO 10218 sets baseline requirements for 

industrial arms: interlocked cages, emergency-stop circuits, and detailed validation tests, 

reflective of the decades of hard-won factory experience8. The rise of collaborative robots 

prompted the companion specification ISO/TS 15066, which introduces force limits, 

speed-and-separation monitoring, and power-and-force control for scenarios where humans and 

machines share the same workspace9. These documents supply numerical thresholds that an RL 

policy must ultimately satisfy, such as maximum allowable contact forces, sensor reaction times, 

and fault-tolerance levels. They also highlight verification gaps: standards typically assume 

deterministic controllers, whereas learning policies are stochastic and may drift as they adapt. 

 
6  Atkeson et al., “What Happened at the DARPA Robotics Challenge, and Why?” 
7  DARPA, “DARPA Robotics Challenge (DRC) Program.” 
8  ISO, ISO 10218-1:2011. 
9  ISO, ISO/TS 15066:2016. 



 

Bridging that mismatch, perhaps by embedding ISO-derived constraints into the reward or by 

certifying the runtime shield against standard-mandated fault models, is an open problem that 

anchors the present proposal. Case studies of real deployments further enrich this landscape. The 

first fatal industrial-robot accident in 1979 forced manufacturers to adopt rigorous interlocks, 

demonstrating that a single mishap can reshape regulation culture. More recently, warehouse 

fleets and assistive service robots have begun using RL to optimize routing, gripping, or 

navigation. Although detailed incident logs are scarce, as many firms regard them as proprietary 

information, conference papers and IEEE archives occasionally surface instructive snippets: 

near-miss counts during pilot roll-outs, rates of human intervention, wear-and-tear metrics after 

prolonged learning. Even blog-style disclosures from the right sources are revealing. OpenAI’s 

account of its Rubik’s Cube-solving robotic hand discusses force-threshold resets and frequent 

human restarts during policy fine-tuning, hinting at the engineering overhead required to keep an 

ambitious RL system within safe bounds.  

Curating such literature will help identify which hazards persist despite simulation 

success and which mitigation patterns generalize across platforms. Benchmark datasets and 

simulators supply yet another historical waypoint. OpenAI’s Gym (2016) unified 

performance-centric evaluation across RL algorithms, but left safety implicit. In response, 

Safety Gym (2019) introduced high-dimensional continuous-control tasks that log both reward 

and a cost signal for unsafe events (collisions, boundary violations). The accompanying study by 

Ray et al. quantified progress via metrics such as violation-free episode rate and worst-case 

return10, while a companion blog post disseminated code and baseline results to the broader 

 
10  Ray et al., “Benchmarking Safe Exploration in Deep Reinforcement Learning.” 



 

community11. Safety Gym’s popularity reflects the field’s recognition, circa 2019, that 

repeatable, open benchmarks are essential to move safety from anecdote to science, paralleling 

the impact ImageNet had on computer vision. Importantly, the benchmark’s designers 

emphasized online safety: costs accrue throughout training, not just at convergence, mirroring 

real-robot constraints where every trial can cause damage.  

Survey papers and archival reviews tie these threads together. García and Fernández’s 

2015 survey, for instance, documents a 2009 autonomous-helicopter challenge in which teams 

used demonstrations to avoid catastrophic exploration errors: evidence that concerns over the 

“sim2real gap” predate the deep-learning era. By collating competitions, standards, and 

benchmark suites, one can trace a clear trajectory: from rigid physical isolation, through 

human-in-the-loop supervision, toward formalized constraints and algorithmic shields capable of 

verifying an RL policy in situ. Each stage represents a ratcheting of trust: only when one layer 

proves inadequate does industry or research add the next. Recognizing gaps in the historical 

record is equally instructive. Because many commercial RL deployments remain proprietary, 

publicly available useful datasets of robot learning sessions in human environments are limited. 

Sharing anonymized logs: frequency of human takeover, distribution of near-miss severities, 

perhaps in a standardized reporting form, would let researchers benchmark algorithms under 

authentic risk. Another gap is the absence of a procedural bridge between ISO standards and RL 

certification: auditors lack clear guidelines for evaluating policies that adapt over time. 

Documenting experimental attempts at such certification, whether in regulatory sandboxes or 

industry pilot projects, is vital. The historical sources outlined above, like competition 

after-action reports, formal standards, bespoke benchmarks, and scattered industrial anecdotes 

 
11  OpenAI, “Safety Gym.” 



 

therefore supply not only cautionary tales but also concrete metrics, thresholds, and failure 

patterns against which new safe-RL methods can be stress-tested. Grounding the present research 

in this evidence base ensures that proposed techniques address not just theoretical safety but the 

pragmatic, historically observed realities of robots and humans coexisting in the same 

environment. 

Securing a clear historical picture of safe reinforcement learning is difficult precisely 

because the most instructive evidence is often hidden, fragmented, or contested. Proprietary 

deployment logs stay behind corporate firewalls; the study therefore triangulates open reports 

such as the DARPA Robotics Challenge after-action dossiers that catalogue every fall and 

tether-save1213, and practitioner interviews to extract trends without breaching confidentiality. A 

second obstacle is the absence of a shared benchmark: research groups report everything from 

“collision cost” in Safety Gym14 to “constraint return” in Constrained Policy Optimization15, 

thwarting apples-to-apples comparisons. By rescaling these metrics to a violation-per-1 000-steps 

baseline and calibrating them against ISO force-and-speed thresholds1617, the project proposes a 

composite safety score that travels across domains. Defining “unsafe” remains slippery, so 

incidents are partitioned into catastrophic harm, near-misses, and minor infractions following 

industrial taxonomy and state-wise-constraint theory18, validated through expert video 

annotation: echoing the initial human-in-the-loop shielding that slashed catastrophe occurrence 

 
12 Atkeson et al., “What Happened at the DARPA Robotics Challenge, and Why?” 
13  DARPA, “DARPA Robotics Challenge (DRC) Program.” 
14  Ray et al., “Benchmarking Safe Exploration in Deep Reinforcement Learning.” 
15  Saunders et al., “Trial Without Error: Towards Safe Reinforcement Learning via Human Intervention.” 
16  ISO, ISO 10218-1:2011. 
17  ISO, ISO/TS 15066:2016. 
18  Zhao et al., “State-Wise Safe Reinforcement Learning: A Survey.” 



 

in RL training19. Interdisciplinary tensions add yet another layer: engineers focus on dynamics, 

ethicists on values, regulators on liability, (and computer scientists on why their hardware isn’t 

working). Aligning these lenses requires mapping corporate goals onto theoretical guarantees20 

onto legal standards21, and enabling the cross-disciplinary conversation needed to achieve that. 

Critics meanwhile might contend that classic control suffices or that safety cripples learning 

speed; however historical record shows tasks like dexterous manipulation already depend on RL, 

and constraint-aware algorithms have cut violation rates with minimal reward loss22 while human 

oversight has even accelerated convergence23. 

Looking to the future, the study argues that embedding safety criteria inside the learning 

loop rather than retrofitting them afterwards offers the most reliable path to true human-friendly 

robotics. Early evidence shows a clear trajectory: heuristics in the 2000s gave way to 

constraint-aware optimization24 and Lyapunov-certified exploration25, while structured 

benchmarks like Safety Gym26 standardized evaluation and accelerated progress. Yet unresolved 

questions loom: How do single-agent guarantees scale to fleets? How can reward functions be 

better aligned with nuanced human risk preferences? What certification process will regulators 

accept or need for adaptive policies? And how can safety generalize under distribution shift? 

Answering these will require richer public datasets, tighter integration of formal verification with 

learning, and metrics that capture tail-risk events as faithfully as they capture average reward. By 

 
19  Saunders et al., “Trial Without Error: Towards Safe Reinforcement Learning via Human Intervention.” 
20 Achiam et al., “Constrained Policy Optimization.” 
21 ISO, ISO 10218-1:201. 
22 Achiam et al., “Constrained Policy Optimization.” 
23  Saunders et al., “Trial Without Error: Towards Safe Reinforcement Learning via Human Intervention.” 
24 Achiam et al., “Constrained Policy Optimization.” 
25 Berkenkamp et al., “Safe Model-Based Reinforcement Learning with Stability Guarantees.” 
26  Ray et al., “Benchmarking Safe Exploration in Deep Reinforcement Learning.” 



 

grounding new proposals in the documented successes and failures of the past, the research 

remains tightly coupled to its central concern: ensuring that as learning robots proliferate across 

human environments performing useful work, they do so not just with competence, but with 

care. 
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