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Abstract

In this paper a non-contact magnetic spring design is presented that uses inclined
magnets to produce an adjustable relationship between load force and dynamic
stiffness. With appropriate choice of parameters, the spring may either operate
with a range of constant natural frequency against variable load forces, or a
positive stiffness in one horizontal direction may be achieved in addition to
having a positive vertical stiffness. Dynamic simulations are presented to assess
the non-linear stability of a planar three degree of freedom version of the system;
cross-coupling between horizontal and rotation motion is shown to compromise
passive stability, in which case passive constraints or active control must be
used to avoid instability. The design is scalable in that using larger magnets
increases the load bearing capacity and decreases the natural frequency of the
system.

Keywords: Magnetic levitation, Vibration isolation

1. Introduction

In comparison to using springs with a linear force–displacement relationship
for vibration isolation, using permanent magnets for load bearing can be advan-
tageous due to the smaller variation in resonance frequency seen with increased
load as a result of a corresponding increased stiffness. However, two perma-
nent magnets in direct repulsion will not completely eliminate the variability in
resonance frequency due to load, only reduce it.

Often, vibration isolation systems are tuned to a narrow-band frequency
range and are only effective for a given mass being supported. A resonance
frequency that varies little with load force is desirable due to the resulting
predicability of the vibratory behaviour; for example, changes in load force over
time will not affect the resonance frequency of the support, which simplifies the
system modelling and possible control scenarios. To achieve this, we wish to
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design a nonlinear spring such that varying the applied load F = mg results
in a change in stiffness k such that the natural frequency ωn =

√
k/m remains

constant.
A similar idea using permanent magnets has been mentioned previously by

Todaka et al. [1], who suggested using a mechanical linkage with two vertically-
oriented magnets such that the floating magnet moved in an arc around a fixed
magnet due to the effects of the linkage. However, the parameters governing this
design were not investigated at that time; their paper primarily investigated the
relationship between resonance frequency and horizontal/vertical displacement
between the two permanent magnets.

Bonisoli and Vigliani used the different approach of coupling a magnetic
spring with a linear elastic spring, for which a nonlinear analysis and experi-
mental results were shown [2, 3]. Such coupled elastic–magnetic systems have
been investigated by several authors to various degrees [4–7], especially in the
design of load-bearing systems with high static stiffness and low dynamic stiff-
ness, also known as ‘quasi–zero stiffness’ devices after their design principle of
operating near a point of instability in the force/displacement curve where the
dynamic stiffness approaches zero.

In related work, we have previously presented material that uses two mag-
netic springs, one in attraction and the other in repulsion, to achieve such
quasi–zero stiffness effects [8]. In the present work, we exploit the use of mag-
netic forces in an alternative way that yields a larger region of low stiffness. As
with all magnetic springs, positive stiffness in the vertical direction infers nega-
tive stiffness or instability in at least one horizontal direction [9]. This instability
may be countered with a linear bearing (or some other physical constraint) or
with an active control system.

This paper consists of three main parts: Section 2 defines the geometry of
the system and presents the theory for analysing its behaviour; Section 3 uses
this theory to demonstrate the advantages of this magnet design, specifically in
terms of its natural frequency versus applied load; and Section 4 extends the
model to analyse rotations and torques to investigate the planar stability of the
system.

The results presented in this paper are reproducible [10] with code located at
http://www.github.com/wspr/magcode. This is a MATLAB software package
written by the authors for calculating the forces between magnets and multipole
arrays of magnets, and is freely available to be used by the public. The directory
‘examples/oblique’ contains the code that has been used to directly generate the
figures in this paper.

2. Oblique spring geometry and theory

A schematic of the oblique magnetic spring is shown in Fig. 1. Cuboid mag-
nets are used that extend a distance b into the page such that their facing sides
are square. The magnet angle θ can range from 0◦ to 90◦, where θ = 0◦ has
horizontally-oriented magnets and θ = 90◦ has vertically-oriented magnets. The
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Figure 1: Schematic of the oblique-magnet spring. When magnet offset d = 0
and displacement y = 0, the magnet faces are aligned and touching. Displace-
ments x and z (not shown) are in the horizontal and out-of-plane directions,
respectively.

spring is composed of two symmetric pairs of oblique magnets; this ensures the
horizontal forces cancel when the spring is centred and force is produced in the
vertical direction only.

Note that opposing magnets have parallel sides and anti-parallel magnetisa-
tions; hence, the force calculations by Akoun and Yonnet [11] may be applied
to this system. Their theory is summarised in Appendix A.

Two dimensions are used to describe the relative displacement between adja-
cent magnet pairs. The magnet offset d, fixed during operation, is the horizontal
face gap in the centred position, and the displacement y can be considered as
the vertical face gap in the centred position, designed to vary as the load on the
spring changes. With displacement y = 0, the facing magnets are horizontally
aligned, and with magnet offset d = 0 also, the magnet faces are touching. The
force and stiffness characteristics of the spring can be affected by adjusting the
magnet angle θ and the magnet offset d.

We assume that there are no magnetic interactions between magnets from
one side of the spring to magnets on the other side. This can be ensured in
practice with a large enough separation between the pairs on opposite sides.
Accordingly, the total force of the spring is given by the superposition of forces
for each magnet pair:

~F = ~F1 + ~F2. (1)

To calculate ~F1 and ~F2 a local coordinate system is defined for each magnet
pair aligned in each direction of magnetisation. Then ~F1 = R(θ)~G1 and ~F2 =

R(φ)~G2, where φ = π − θ, ~G1 and ~G2 are the forces between the magnet pairs
in the local coordinate systems of the base magnets, and R(·) is the planar
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rotation matrix

R(t) =

cos t − sin t 0
sin t cos t 0

0 0 1

 . (2)

These forces ~G1 and ~G2 are calculated with ~Gi = ~Fm(~si) where ~Fm(·) given
in Eq. (A.1) is the force between parallel cuboid magnets [11] and ~s1 and ~s2 are
the displacement vectors between the magnet centres in the local coordinate
system of the magnets given by

~s1 = R(−θ)

d+ x
y
z

+

a0
0

 , ~s2 = R(−φ)

−d+ x
y
z

+

a0
0

 , (3)

where a and d are geometric parameters defined in Fig. 1, and [x, y, z]T are dis-
placements in the horizontal, vertical, and out-of-plane directions, respectively.
In Section 4 this model will be extended with a small angle approximation to
calculate forces and torques due to rotation around the z axis.

3. Influence of design parameters

The analysis in Section 2 allow us to calculate total force ~F in terms of dis-
placement. This section will outline the influence of the various design parame-
ters on the force, stiffness, and natural frequency characteristics of the system.
To begin, vertical force as a function of vertical displacement Fy(y) = Fy(0, y, 0)
will be considered (with other displacements x = z = 0).

3.1. Magnet shape

For this entire analysis, we use a magnet size ratio of γ = a/b = 0.4. De-
pending on the exact desired displacement range, values around this magnet
ratio produce the maximum force between two opposing cuboid magnets for a
fixed magnet volume [12]. For the analysis to follow directly, the magnet volume
is fixed at V = ab2 = (10 mm)3. We define a ‘unit length’ u = 3

√
V = 10 mm

and refer in the subsequent analysis to the ‘magnet gap ratio’ defined as d/u.
The effects of increasing the magnet volume are addressed in Section 3.5.

3.2. Magnet angle

Having chosen the magnet size ratio, there are two parameters that influ-
ence the force and stiffness characteristics of the spring; these are the magnet
angle θ and the magnet offset d. Variations in the magnet angle affect the force
characteristics to a greater extent and will be examined first.

The theory outlined in Section 2 was used to calculate force versus displace-
ment curves over a range of magnet angles from 0◦ to 90◦. These are shown in
Fig. 2, which shows a dramatic effect on the force and stiffness characteristics
due to changes in the inclination angle of the magnets. Of particular interest are
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Figure 2: Force versus displacement for magnet angles from 0◦ to 90◦ in 5◦

increments. The offset distance between the magnets is zero. Light gray lines
indicate negative stiffness (instability) and markers show the position of quasi–
zero stiffness.

the low-stiffness regions in the force curves in Fig. 2; these are potential areas
for improved vibration isolation.

Fig. 2 is difficult to use for design purposes because the required load force
will affect the dynamic stiffness as the system sits in equilibrium at a given
displacement. However, this equilibrium displacement is not a parameter of
particular interest provided the magnetic spring is still levitating. Therefore, for
interpreting the operating conditions of the system it is more useful to consider
the relationship between load force and natural frequency.

The vertical stiffness Ky can be obtained by numerical differentiation of the
vertical force Fy:

Ky(y) = − 1
2

[
Fy(y + δ)− Fy(y − δ)

]
/δ, (4)

where δ is a small displacement increment. The natural frequency ωn(y) as a
function of displacement was calculated in terms of this vertical stiffness Ky

with

ωn(y) =

√
Ky(y)

meq
=

√
Ky(y)

Fy(y)/g
(5)

where the equivalent mass meq = Fy(y)/g is the mass required to load the
spring such that its equilibrium position lies at the displacement y. The force
corresponding to this equivalent mass is referred to as the ‘load force’.

By plotting natural frequency as a function of load force in Fig. 3, we can
choose a magnet angle based on a certain load to satisfy a desired natural
frequency. Specifically, for the case of zero offset between the magnets (Fig. 3a),
it can be seen that at a magnet angle of 35◦ the natural frequency is almost
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independent of force for a large range of applied load (approximately 30 N ±
10 N).

3.3. Magnet offset

Fig. 3 shows the natural frequency versus load curve for a magnet gap ratio
of zero. Increasing the magnet gap changes the force and stiffness relationships
of the spring; Fig. 3b shows the same plot with a magnet gap ratio of 0.25.
The difference in the shape of the curves is not great, but Fig. 3b shows that
a greater magnet gap results in smaller load forces and a smaller range in load
force. Also, the angle which corresponds to the almost-flat natural frequency
curve has changed to 70◦.

The natural frequency versus load force is redrawn in Fig. 4 for a fixed magnet
angle of 45◦ over a range of magnet gaps from zero to 0.5. At this angle, it can be
seen that the region of mostly-flat natural frequency occurs at a gap ratio of 0.05.
This indicates that the magnet angle should be chosen only after the tolerances
of magnet displacement are decided and a minimum gap ratio established.

3.4. Horizontal and out-of-plane stability due to vertical displacement

In Figs 3 and 4, design curves were presented under the assumption that
the vertical stiffness only was under consideration. Due to the inclination of the
magnets, however, the horizontal and out-of-plane stiffness will also vary as the
magnet spring parameters are changed. If active control is used to constrain
the floating magnets, it may be desirable to minimise the horizontal instability
of the magnet spring in order to reduce the number of sensors and actuators
required to stabilise the system.

The horizontal stiffness is calculated with a numerical gradient of the forces
when the magnets are centred and when a small horizontal displacement x is
applied. In this case, the horizontal force Fx will be considered as a function of
vertical displacement y, with horizontal stiffness calculated as

Kx(y) = −1

δ

[
Fx(δ, y, 0)− Fx(0, y, 0)

]
= −1

δ
Fx(δ, y, 0), (6)

where δ is a small displacement increment. An equivalent formulation can be
used to calculate the out-of-plane stiffness due to a vertical displacement based
on the out-of-plane force Fz:

Kz(y) = −1

δ

[
Fz(0, y, δ)− Fz(0, y, 0)

]
= −1

δ
Fz(0, y, δ). (7)

An example of spring parameters that achieve positive stability in both the
vertical and horizontal directions is shown in Figs 5a and 5b. This is possible as
the stiffness in the out-of-the-page direction of Fig. 1 is always negative (Fig. 5c),
and as a consequence of Earnshaw’s theorem [9] the stiffnesses in each direction
must sum to zero; that is, Kx(y) +Ky(y) +Kz(y) = 0.

The drawback of achieving minimal instability is a reduction in the achiev-
able low-stiffness regions of the spring. Fig. 6 shows a plot of natural frequency
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(a) Zero offset between the magnets. At 35◦ the natural
frequency is near-constant for a wide range of load forces.
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(b) Gap ratio of 0.25. Near-constant natural frequency
occurs at 70◦.

Figure 3: Natural frequency versus load force for magnet angles from 0◦ to 90◦

in 5◦ increments.
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Figure 4: Natural frequency versus load force for gap ratios from zero to 0.5 in
increments of 0.05 and a magnet angle of 45◦.
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Figure 5: Stiffness in three directions versus displacement for a gap ratio of 0.2
and magnet angles from 0◦ to 90◦ in 5◦ increments (arrows indicate increasing
magnet angle). For the horizontal and vertical stiffness plots (a) and (b), regions
of positive stiffness for both directions are coloured; regions of gray indicate that
either the vertical and/or horizontal stiffness is negative in that position for that
magnet angle.

versus load force for a magnet angle of 40◦ and for a variety of magnet gaps.
In this graph, regions of negative horizontal stiffness have been de-emphasised
by drawing those sections of the curves in light grey. It can be seen here that
the ‘flat’ sections of the curve (that correspond to configurations of largely-flat
natural frequency against load force) occur largely in the regions of horizontal
instability. Fig. 6 also demonstrates that when designing the system for hor-
izontal stiffness, a larger magnet gap increases the displacement range of the
magnetic spring, albeit with a decrease in possible load force.

A more detailed investigation on the planar stability of the system is per-
formed in Section 4.

3.5. Magnet volume

Having examined the influence of magnet angle and magnet gap on the nat-
ural frequency and load force characteristics, it is essential to confirm that this
arrangement is scalable for arbitrary loads by increasing the magnet volumes.
With fixed magnet gap ratio of 0.2 and magnet angle of 40◦, the natural fre-
quency/force characteristic with volumes from (10 mm)3 to (50 mm)3 is shown
in Fig. 7, which shows that larger magnet sizes permit larger load forces while
also retaining a low natural frequency. In fact, the natural frequency decreases
with larger magnet sizes. This shows that the oblique magnet spring system is
suitable for bearing large loads with low stiffness, and fits into the category of
springs that exhibit ‘high-static–low-dynamic’ stiffness [e.g., 6].
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Figure 6: Natural frequency versus load force for gap ratios from 0.05 to 0.5
in 0.05 increments and a magnet angle of 40◦. Regions of negative horizontal
stiffness are drawn in light gray, and displacements are labelled with dotted lines
for every change in displacement of 1 mm.
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Figure 7: Natural frequency versus load force for a magnet gap ratio of 0.2
and a magnet angle of 40◦ over a range of magnet volumes from (10 mm)3 to
(50 mm)3. The displacement ranges are proportional to the magnet size such
that the system with magnet volume (10 mm)3 undergoes displacement from
0 mm to 10 mm and the system with volume (50 mm)3 moves over 0 mm to
50 mm. Regions of negative horizontal stiffness are drawn in light gray.
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3.6. Design based on these results

Clearly there is a large space of design possibilities for such a magnet ar-
rangement. Using these results requires an iterative approach based around the
following constraints:

1. Magnets are large enough to bear the required load variance, which will
inform a maximum and minimum magnet clearance;

2. Stiffness at the equilibrium point is satisfied by varying the magnet offset
and angle;

3. Load variation is modelled and natural frequency remains within accept-
able limits.

Generally, a larger magnet size will permit a larger range of approximate natural
frequency invariance (Fig. 7). Only by evaluating a number of trial solutions for
magnet angle and magnet offset can an acceptable design be found to satisfy a
specified amount of load variability.

4. Investigation into planar stability

In Section 3.4, the translational stiffness of the system in three dimensions
was discussed in terms of a change in the vertical equilibrium position of the
spring (corresponding to a variation in applied load, say). However, this is not
enough to establish the global stability of the system due to cross-axis coupling
and rotational affects that were not included as part of the model. Here, the
planar stability of the system will be investigated to attempt to provide some
picture of the complex kinetics seen due to planar translation and rotation; the
system is assumed to be constrained in a single plane for this analysis with
geometry shown in Fig. 8.

An analytical formulation for calculating the torques between two cuboid
parallel magnets has recently been presented by Janssen et al. [13]. The torque
equations will not be reproduced here but they follow a similar (albeit more
complex) form than that of Eq. (A.1) for force. Note that, with reference to
Fig. 8, the torques are not calculated by using the already-calculated force terms
(the blue vectors in that figure); the torque is calculated using a separate integral
equation that takes the lever arm into account.

Note, however, that the force and torque equations do not permit a relative
rotation between the two interacting magnets (their sides must remain parallel).
Therefore, in order to analyse the rotational stability of the magnetic system a
small angle approximation must be made, which is illustrated in Fig. 9: due to
overall rotation ϕ of the spring the moving magnets will translate around their
lever arms l (the centre of rotation is here assumed to be the mid-point between
the magnet centres) but their angle to the horizontal remains fixed. Calculating
the force and torque in this way is only valid for small rotations, but is sufficient
to establish relationships regarding rotational stability and cross-coupling with
translational forces.
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Figure 8: Geometry of the planar system in which forces and torques due to
rotation ϕ are calculated. The system is shown with ϕ = 15◦, lever arm ratio
l/u = 2, magnet angle θ = 30◦ and magnet gap ratio d/u = 0.5.

(a) Without rotation. (b) With rotation shown in black; the un-
rotated position, as in (a), is shown in light
grey.

(c) With small angle approximation of zero
magnet rotation shown in colour; the ro-
tated magnets, as in (b), are shown in black.

Figure 9: Visual representation of the small angle approximation in which the
magnet structure rotates but the magnets themselves are assumed to remain
parallel to their respective partner.
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4.1. Theory for planar force and torque calculations

The model developed for this system in Section 2 is here extended to calcu-
late torques and allow (small) rotations, both around the z axis only.

The vector equations for this new geometry require an additional term to
accomodate rotation. First define two lever arm vectors for each magnet with
respect to a centre of rotation denoted by ~l1 = [−l, 0, 0]T and ~l2 = [l, 0, 0]T in
the local coordinate system of the spring (although other centres of rotation
are certainly possible). These lever arms define additional translations of the
magnets ~p1 and ~p2 due to rotation of the system:

~p1 = R(ϕ)~l1 −~l1, ~p2 = R(ϕ)~l2 −~l2. (8)

The displacement vectors (again in the coordinate system of the magnets) be-
tween the magnet pairs are then given by

~s1 = R(−θ)

~p1 +

d+ x
y
z

+

a0
0

 , ~s2 = R(−φ)

~p2 +

−d+ x
y
z

+

a0
0

 .
(9)

Also, the displacement vectors in the coordinate system of the magnets from the
spring magnet centres to the centre of rotation (required for torque calculation)
are given by

~t1 = R(−θ)
(
−R(ϕ)~l1

)
, ~t2 = R(−φ)

(
−R(ϕ)~l2

)
. (10)

Eqs (8) to (10) are kept in a more general transformation matrix form to acco-
modate extensions into more rotational degrees of freedom.

As before, the total force is

~F = ~F1 + ~F2 = R(θ)~Fm(~s1) + R(φ)~Fm(~s2), (11)

where ~Fm(·) is the magnet force equation given in Eq. (A.1). The torque is not
affected by the rotation transformations (recall it is around the z axis only) and
is given by the sum of torques between the magnet pairs

Tz = Tmz (~s1,~t1) + Tmz (~s2,~t2), (12)

where Tmz
is the appropriate component of the magnetic torque equation given

by Janssen et al. [13]. (To be precise, the equations of Janssen et al. are written
for magnets with z direction magnetisation, so they require a coordinate trans-
formation as the analysis here casts the magnetisations into the x direction.)

4.2. Planar stability results

The system is not expected to be completely stable due to cross-axis cou-
pling. For example, after horizontal translation the magnetic force will become
asymmetric and a torque will result. Similarly, after a rotation the reverse will
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occur and a horizontal force will be produced, which can be seen from the re-
sultant vectors in Figs 8 and 11. Due to the large number of possible magnet
parameter combinations, only a select number of cases will be analysed in detail
here.

The torsional stability due to rotation is affected by the geometric parame-
ters of the system as shown by example in Fig. 10, for which each geometry is
drawn to relative scale in Fig. 11. Further torque variations can be effected by
varying the lever arm and the position of the centre of rotation. The validity
of the torque calculations can be assessed by comparison with the effect of the
force terms as if the latter were being used to calculate torque directly using
the equation

Tz ≈ l(−~F1 + ~F2) ·
[
− sinϕ

cosϕ

]
(13)

where the dot product produces the component of force perpendicular to the
lever arm. Torques calculated in this manner are shown in Fig. 10 as dashed
lines and it can be seen they match closely for small angles of rotation.

Stability results will be shown using perturbations of a dynamic simulation of
the system in a small number of variations of design parameters. The equations
of motion are defined as

Mẍ = Fx(x, y, ϕ)− cxẋ,
Mÿ = −Mg + Fy(x, y, ϕ)− cy ẏ,
Jmϕ̈ = Tz(x, y, ϕ)− cϕϕ̇,

(14)

for which a time-domain solution was produced numerically with a Runge-Kutta
technique (Matlab’s ode45 function). Viscous damping terms cx, cy, and cϕ
account for energy loss in the system. The force and torque terms are those
defined in Eqs (11) and (12) respectively.

The parameters used in Table 1 were used for the dynamic simulations. The
equilibrium displacement y0 is found by numerically inverting a static analysis
of the magnet forces Fy(0, y0, 0) = Mg; a damping ratio of 20 % is assumed to
account for eddy current damping and any other energy losses; and the moment
of inertia is approximated with Jm = 1

3Ml2. The parameters have been selected
such that the vertical, horizontal, and rotational direct stiffnesses are all positive
for this equilibrium displacement.

Assuming that the device is always designed to move freely in the vertical
direction to accommodate changing load, there are three regimes in which we
would like to illustrate the stability of the system:

1. constraining rotation;

2. constraining horizontal displacement;

3. unconstrained.

It is evident that the case of constraining both rotation and horizontal dis-
placement will be stable provided the vertical stiffness is positive. The first of
the dynamic simulations presented is displacement in the x–y plane with con-
strained rotation. Given the system described in Eq. (14) and a perturbation
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Figure 10: Torque versus rotation for a certain spring configuration with pa-
rameters u = y = 10 mm, θ = 30◦, and l/u = 2. Dashed lines show for verifi-
cation torque as if calculated using the magnetic forces around their lever arms
only (Eq. (13)). Notice that varying the magnet gap ratio (shown) can vary
the rotational stiffness from stable (d/u = {0.25, 0.5}) to unstable (d/u = 1).
Geometries for these three configurations are shown in Fig. 11.

(a) d/u = 0.25 (b) d/u = 0.5 (c) d/u = 1

Figure 11: Visual representation of the forces and torques at a rotation of
ϕ = 10◦ corresponding to the stability results shown in Fig. 10. Force vector
lengths are proportional to their magnitude, but torque arc lengths are not.
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Table 1: Parameters used for the dynamic simulations.

Explicit parameters Implicit parameters

Mass M 3 kg Equilibrium position y0 14.04 mm
Damping ratio ζ 0.2 Moment of inertia Jm 1.60 g/m2

Magnetisation J1, J2 1 T Horizontal stiffness Kx 15.43 N/m
Unit length u 20 mm Vertical stiffness Ky 170.5 N/m
Magnet angle θ 45◦ Rotational stiffness Kϕ 31.3 mN m/rad.
Offset ratio d/u 0.4 Horizontal damping cx 9.05 kg/s
Magnet ratio γ 0.4 Vertical damping cy 2.72 kg/s
Lever ratio l/u 2 Rotational damping cϕ 2.83 mN m s/rad.
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Figure 12: Dynamic simulation of system defined by Eq. (14) with perturbation
of ∆x = ∆y = 1.5 mm and constraint on rotational ϕ.
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of ∆x = ∆y = 1.5 mm, the resultant dynamics are shown in Fig. 12 as dis-
placements from the equilibrium position of the spring. While this is close to
the maximum perturbation for this system before instability, this example illus-
trates that there is a region near the equilibrium position within which stability
is achieved.

The second stability example constrains horizontal displacement while allow-
ing free rotation of the system. A perturbation of ∆y = 1.5 mm and ∆ϕ = 3◦ is
modelled with dynamic results shown in Fig. 13. Again, with one constraint on
the system there is a stable region around the equilibrium point. In fact, this
arrangement is more stable than the last as there is less cross-coupling between
the vertical and rotational degrees of freedom.

Finally, it might now be expected that since stability was achieved in both
x–y and y–ϕ regimes, an unconstrained system might be similarly stable. Un-
fortunately this is not the case, as cross-coupling influences are too great and
even an incremental perturbation eventually leads to instability as shown in
Fig. 14. (There is a macroscopic perturbation of ∆y = −1 mm and incremental
perturbations of ∆x = 1× 10−9 m and ∆ϕ = 1× 10−9 deg.) Despite achieving
positive direct stabilities in all three degrees of freedom, some form of control
over this cross-coupling instability is required for stable operation; this could
take the form of passive bearings or non-contact electromagnetic actuators.

5. Conclusions and future work

In this paper, a particular magnet geometry was investigated for the purposes
of developing a spring for vibration isolation with the goal of a load-invariant
natural frequency. The resonance–load relationship was found to have significant
flat areas, indicating this goal could be achieved for certain geometries. The
load-bearing capacity could be largely increased by scaling the volumes of the
magnets; this was shown to have small effect on the natural frequency of the
system.

Since the system uses magnetic levitation to achieve its force characteristic,
there are various instabilities inherent in its dynamics. Some of these instabili-
ties due to coupling between horizontal and rotational degrees of freedom have
been highlighted, but a complete six degree of freedom analysis must await fu-
ture developments in magnetic torque modelling. A physical realisation of this
system is currently under construction (using a combination of various phyi-
cal constraints and active control to achieve stability), and its details will be
reported at a future date.

Appendix A. Forces between cuboid magnets

An analytical equation for calculating the force between parallel cuboid mag-
nets was shown by Akoun and Yonnet [11] and is reproduced here for clarity. For
a fixed magnet with dimensions [2a, 2b, 2c]T and a second magnet of dimensions

[2A, 2B, 2C]T and centre displacement between them of [α, β, γ]T, the force ~Fm
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Figure 13: Dynamic simulation with perturbation of ∆y = 1.5 mm and ∆ϕ = 3◦

with constraint in horizontal displacement x.
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Figure 14: Dynamic simulation without constraint and vertical perturbation
only. Despite ‘stable’ stiffnesses in each direction (seen in Figs 12 and 13), the
unconstrained system is unstable due to cross-axis coupling.
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on the second is given by Eq. (A.1) where the two magnets have homogeneous
and constant magnetisations J1 and J2, respectively, in the z-direction only,
µ0 = 4π × 10−7 N/A2 is the magnetic constant, and ei are indices of the six
summations. See Fig. A.15 for a schematic of this arrangement.

~Fm =
J1J2
4πµ0

∑
(e1,...,e6)∈{1,−1}6

(
~fm(~d) ·

6∏
i=1

ei

)
, (A.1)

where

~fm(~d) =


1
2

[
v2 − w2

]
log(r − u) + uv log(r − v) + vw arctan

(
uv
rw

)
+ 1

2ru
1
2

[
u2 − w2

]
log(r − v) + uv log(r − u) + uw arctan

(
uv
rw

)
+ 1

2rv

−uw log(r − u)− vw log(r − v) + uv arctan
(
uv
rw

)
− rw

 ,
(A.2)

and

~d =

uv
w

 =

α− e1a+ e2A
β − e3b+ e4B
γ − e5c+ e6C

 , r =
√
u2 + v2 + w2. (A.3)

Note that since Eq. (A.1) is written for magnets oriented in the z direction,
a coordinate transformation is used to apply it to the system analysed in this
paper.
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