

16Mbit Quad-SPI Pseudo-SRAM Data Sheet

CSS1604S

Version: 1

Cascadeteq Inc

Table of Contents

	Table of contents	2
1.	Feature and Specification	4
2.	Description	5
3.	Package Information	5
	3.1 Package Outline Drawing	е
4.	Ordering Information	8
	4.1 Part Number	8
5.	Package Ball Signal Table	8
6.	Function Diagram	9
7.	Powerup Initialization	S
8.	Interface Description	10
	8.1 Address Space	10
	8.2 Page Size	10
	8.3 Drive Strength	10
	8.4 Power-On Status	10
9.	Mode Register Definition	10
10.	Command/Address Latching Truth Table	11
	10.1 Command Termination	12
11.	Mode Register Operations	12
	11.1 SPI MR Read Operation	12
	11.2 SPI MR Write Operation	12
	11.3 QPI MR Read Operation	13
	11.4 QPI MR Write Operation	13
12.	Read ID	13
	12.1 SPI Read ID Operation	14
13.	Toggle Burst Length Operation	14
14.	SPI Mode Operations	15
	14.1 SPI Read Operations	15
	14.2 SPI Write Operations	16
	14.3 SPI Quad Mode Enable Operation	17
15.	QPI More Operations	17
	15.1 QPI Read Operations	17
	15.2 QPI Write Operations	18
	15.3 QPI Quad Mode Exit Operation	18
16.	Reset Operation	18
17	Input/Output Timing	19

Cascadeteq Inc

18. Electrical Specifications	20
18.1 Absolute Maximum Ratings	20
18.2 Pin Capacitance	20
18.3 Decoupling Capacitor Requirement	21
18.4 Operation Conditions	21
18.5 DC Characteristics	22
18.6 AC Characteristics	23
19. Revision History	23

Cascadeteq Inc

The CSS1604S is general part number of 16Mb Quad-SPI Pseudo-SRAM product family. The package type and detailed part number refers to 3. Package Information, 4 Ordering Information and 4.1 Part Number.

1. Feature and Specification

Interface:

SPI/QPI with SDR mode

Single Supply Voltage:

VDD=1.62 to 1.98V

Performance:

144MHz for Wrapped Burst operation 84MHz for Linear 512 Burst operation

Organization:

16Mb, 2M x 8bits

Addressable Bit Range:

A[20:0]

Page Size:

512 bytes

Refresh:

Self-managed

Operating Temperature Range (refer to 4.1 Part Number)

 T_{OPER} = -40°C to +85°C (standard)

 T_{OPER} = -40°C to +105°C (extended)

Maximum Standby Current

150μA @ 105°C

100μA @ 85°C

Typical Standby Current

20μA @ 25°C

Output Drive LVCMOS with programmable drive strengths of 50, 100 and 200 Ω

Dedicated Wrapped Burst read and write commands

Linear 512 Length Burst:

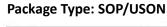
Supported up to 84MHz and can cross page boundary as long as tCEM is met.

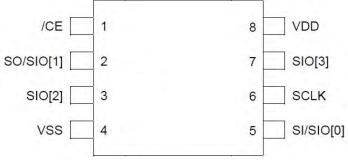
Register Configurable Wrap Lengths of 16, 32, 64 and 512

Burst Length Toggle Command

To switch between configurable wrap length and 32 bytes wrap

Software Reset

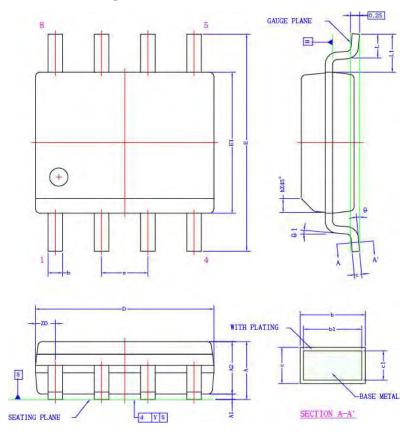



2. Description

This feature of the CSS1604S is a high speed, low pin count interface. It has 4 SDR I/O pins and operates in SPI(serial peripheral interface) or QPI (quad peripheral interface) mode with frequencies up to 144 MHz. The data input (A/DQ) to the memory relies on clock (CLK) to latch all instructions, addresses and data. It is most suitable for low-power portable, wearable and IoT (Internet of Thing) applications. It incorporates a seamless self-managed refresh mechanism. Hence it does not require the support of DRAM refresh from system host. The self-refresh feature is a special design to maximize performance of memory read operation

3. Package Information

The CSS1604SS is available in standard package including 8-lead SOP-8L(150)
The CSS1604SU is available in advanced package including 8-lead USON-8L(3x2mm)



Top View

3.1 Package Outline Drawing

3.1.1 SOP-8L (150) Drawing

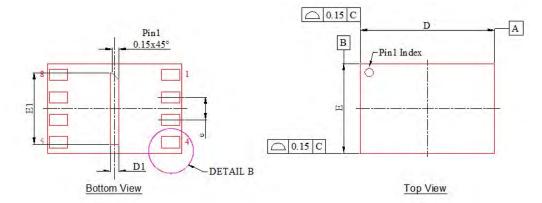
SYMBOL	1	OIMENSION (MM)		DIMENSION (MIL)			
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	ı
A	1,35	1.60	1.75	53	63	69	
A1	0.10	0,15	0.25	4	6	10	
A2	1,35	1,45	1,55	53	57	61	
ь	0.31		0.51	12		20	
ь1	0.28	0.40	0.48	11	16	19	
C	0.17	1-	0.25	7	-	10	
c1	0.17	0,20	0.23	7	8	9	
D	4,80	4.90	5,00	189	193	197	N
E		6,00 BSC		236 BSC			1
E1	3,80	3,90	4.00	150	154	157	2
в		1,27 BSC			50 BSC		
L	0.40	0.66	1,27	16	26	50	
L1		1.05 REF		41 REF			
ZD	0.55 REF				22 REF		
h	0.25	0,38	0.50	10	15	20	
Y	1,2	-	0.10	-	-	4	3
0	0°	-	8°	0"	-	8"	
01	0"			.0°	-	-	-

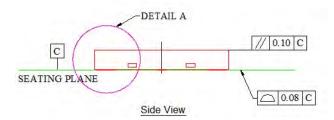
, REPER TO JEDEC STD: NOS-012 AA,

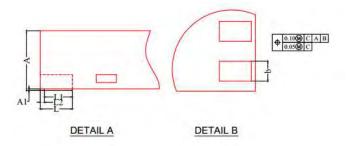
 DIMENSION "D" DOES NOT INCLUDE WOLD FLASH, PROTRUSION OR GATE BURRS, MOLD FLASH, PROTRUSION AND GATE BURRS SHALL NOT EXCEED 0.15mm PER SIDE.

DIMENSION "E1" DOES NOT INCLUDE INTERLEAD MOLD FLASH OR PROTRUSION, INTERLEAD MOLD FLASH OR PROTRUSION SHALL NOT EXCEED 0,25mm PER SIDE,

'D' AND 'E1' DIMENSIONS ARE DETERMIND AT DATUM H .

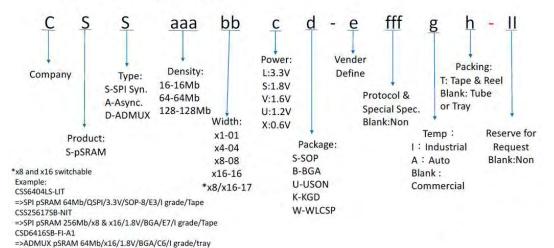

DIMENSION "6" DOES NOT INCLUDE DAMBAR PROTRUSION,


ALLOWARLE DAMBAR PROTRUSION SHALL BE 0.10 $_{\rm HB}$ TOTAL IN EXCESS OF THE 'b' DIMENSION AT MAXIMUM MATERIAL CONDITION,


THE DANBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE POOT,

3.1.2 USON-8L (3x2mm) Drawing

Comb.1	MILLIMETERS						
Symbol	MIN.	NOM.	MAX.				
A	0.40	0.45	0.50				
A1	0.00		0.05				
D	2.90	3.00	3.10				
D1	0.10	0.20	0.30				
E	1.90	2.00	2.10				
E1	1.50	1.60	1.70				
L	0.40	0.45	0.50				
L1	0.30						
L2			0.15				
b	0.20	0.25	0.30				
e	0.50 BSC						


NOTE:

- 1. Scale 1:4
- 2. ALL DIMENSIONS AND TOLERANCES TAKE REFERANCE TO JEDEC MO-229
- 3. DIMENSION "b" APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15MM AND 0.30MM FROM THE TERMINAL TIP. IF THE TERMINAL HAS OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL, THE DIMENSION B SHOULD NOT BE MEASURED IN THAT RADIUS AREA.

4. Ordering Information

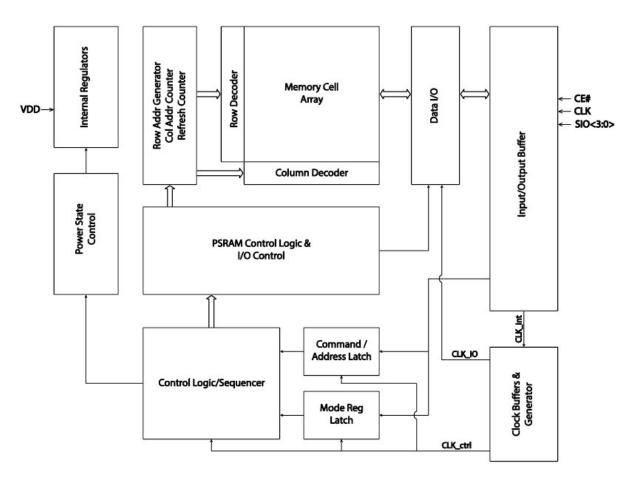
Product Naming Rule:

4.1 Part Number:

Table 1 Part Number

Part Number	Density	Temperature	Note
CSS1604SU-M	16Mb	0-70C	USON
CSS1604SU-MI	16Mb	-40~85C	USON
CSS1604SS-M	16Mb	0-70C	SOP8
CSS1604SS-MI	16Mb	-40~85C	SOP8
CSS1604SS-MJ	16Mb	-40~105C	SOP8

5. Package Ball Signal Table


Table 1 Signals Table

Symbol	Туре	SPI Mode	Function	QPI Mode Function	Comments				
VDD	Power		Core sup	oply 1.8V					
VSS	Ground		Core supply ground						
CE#	Input	Chip select, act	Chip select, active low. When CE#=1, chip is in standby state						
CLK	Input		Clock Signal						
SI/SIO[0]	Ю	Serial Input	Serial Input IO[0]* IO[0]						
SO/SIO[1]	Ю	Serial Output	IO[1]						
SIO[2]	10								
SIO[3]	10								

Note: * Quad SPI mode

6. Function Diagram

7. Powerup Initialization

This SPI/QPI products include an on-chip voltage sensor used to start the self-initialization process. When VDD reaches a stable level at or above minimum VDD, the device will require 150 μ s and user-issued RESET Operation (see section 16) to complete its self-initialization process. From the beginning of power ramp to the end of the 150 μ s period, CLK should remain LOW, CE# should remain HIGH (track VDD within 200mV) and SI/SO/SIO[3:0] should remain LOW

After the Device Reset tRST \geq 50ns period the device is ready for normal operation.

Figure 1 Power-Up Initialization Timing

8. Interface Description

8.1 Address Space

SPI/QPI PSRAM device is byte-addressable. 16M device is addressed with A[20:0].

8.2 Page Size

Read and write operations are default page size of 512 bytes.

8.3 Drive Strength

The device powers up in 50Ω .

8.4 Power-On Status

The device powers up in SPI Mode. It is required to have CE# high before beginning any operations.

9. Mode Register Definition

Table 3 Mode Register Table

MR No.	MA[3:0]	Access	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
0	'h0	R/W	rsvd.	Wr	Wrap		rsvd.			Zout

Table 4 Wrap Codes MR0 [6:5]

Wrap	Burst Settings	Page Boundary Crossing				
MR0[6:5]	Wrapped Length	Non-Wrap CMDs ('h03,'h0B,`hEB,'h02,'h38)	Wrap CMDs('h8B,'h82)			
00	16	Wrap 16, no cross page boundary				
01	32	Wrap 32, no cros	s page boundary			
10	64	Wrap 64, no cross page boundary				
11 (default)	512 (page size)	Linear, can cross page boundary	Wrap 512, no cross page boundary			

Table 5 DQ Output Drive Strength Codes MR0[1:0]

DQ Output Drive Strength						
MR0[1:0]	Impedance					
00(default)	50Ω					
01	100Ω					
10	200Ω					
Others	reserved					

10. Command/Address Latching Truth Table

		SPI Mode (QE=0)				QPI Mode (QE=1)					
Command	Code	Cmd	Addr	Wait Cycle	DIO	Max Freq.	Cmd	Addr	Wait Cycle	DIO	Max Freq.
Read	'h03	S	S	0	5	33			N/A		
Fast Read	'h0B	S	S	8	S	144/84*	Q	Q	4	Q	66
Fast Read Quad	'hEB	S	Q	6	Q	144/84*	Q	Q	6	Q	144/84*
Write	'h02	S	S	0	S	144/84*	Q	Q	0	Q	144/84*
Quad Write	'h38	S	Q	0	Q	144/84*		same as 'h02			
Wrapped Read	h8B	S	S	8	S	144	Q	Q	6	Q	144
Wrapped Write	h82	S	S	0	5	144	Q	Q	0	Q	144
Mode Register Read	hB5	S	S	8	S	144	Q	Q	6	Q	144
Mode Register Write	hB1	S	S	0	S	144	Q	Q	0	Q	144
Enter Quad Mode	'h35	S	near.			144			N/A		
Exit Quad Mode	'hF5			N/A			Q	12	1	0.0	144
Reset Enable	'h66	S	5201		1.2	144	Q	-		127	144
Reset	'h99	S	-			144	Q	32-5		200	144
Burst Length Toggle	'hC0	S			120	144	Q	-	1 2 1	1	144
Read ID	'h9F	S	S	0	5	33	N/A				
Remark	: S = Serial	10, Q = 0	Quad IO								

The device recognizes the following commands specified by the various input methods

Note *: Linear 512 Length burst can be performed crossing page boundary(RBX) by non-Wrapped burst commands issued while Burst Length Toggle is set to MR default setting of MR0[6:5]=11. Frequency limits are therefore: Max Freq. is up to 84MHz when Linear 512 Length, and Max Freq. is 144MHz under Wrapped Burst Operation.

10.1 Command Termination

Figure 2

All Reads & Writes must be completed by raising CE# high immediately afterwards in order to terminate the active command and set the device into standby. Not doing so will block internal refresh operations and cause memory failure.

Write Command Termination

CLK

CE#

SI/SIO[#]

Data In

Don't Care

Released date: 2022 Dec 23rd Version: 1.0 For a memory controller to correctly latch the last piece of data prior to read termination, it is recommended to provide a longer CE# hold time (tCHD > tACLK+tCLK) for a sufficient data window.

CLK
CE#

ACLK
ACLK
SO/SIO[#]

Data Out

Don't Care

Windefined

Figure 3 Read Command Termination

11. Mode Register Operations

11.1 SPI MR Read Operation

For all reads, MR data will be available tACLK after the falling edge of CLK

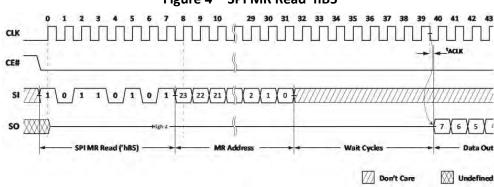
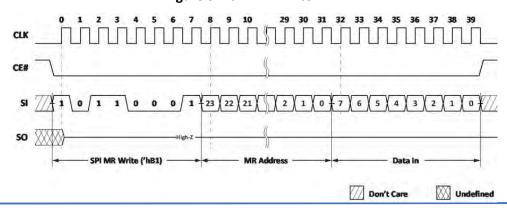
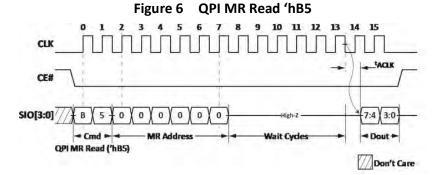



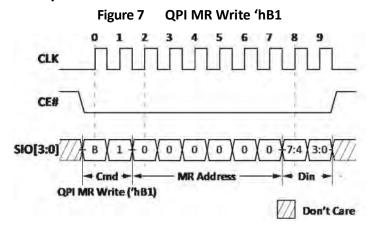
Figure 4 SPI MR Read 'hB5

11.2 SPI MR Write Operation

Figure 5 SPI MR Write 'hB1



Released date: 2022 Dec 23rd


Version: 1.0

11.3 QPI MR Read Operation

11.4 QPI MR Write Operation

12. Read ID

Read ID command provides information of vendor ID, known-good-die, device density, and manufacturing ID. Note that Read ID command can be used ONLY as Power up initialization after the device Reset tRST ≥ 50ns right after Global Reset command.

Figure 8 Pre-condition of EID Read

12.1 SPI Read ID Operation

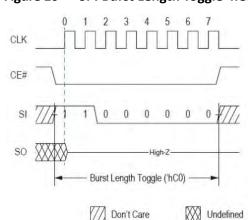
This command is similar to Fast Read, but without the wait cycles and the device outputs EID value instead of data.

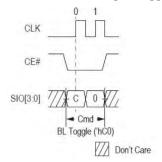
Figure 9 SPI Read ID 'h9F (available only in SPI mode)

13. Toggle Burst Length Operation

The Toggle Burst Length Operation switches the device's wrapped burst boundary between the Mode Register setting MR0[6:5] and a fixed value of 32 bytes.

Commands other than Wrapped Read ('h8B) and Wrapped Write ('h82) are linear type bursts which allow the device to burst through page boundaries. A page boundary crossing is only available when the Burst Length Toggle is set to use MR settings (default) AND Burst Wrap setting is set to full page size MR0[6:5] = 11 (default). The page boundary crossing is invisible to the memory controller and limited to a lower max CLK frequency of 84MHz.




Figure 10 SPI Burst Length Toggle 'hCO

Don't Care

Undefin

Figure 11 QPI Burst Length Toggle 'hCO

14. SPI Mode Operations

The device powers up into SPI mode by default but can also be switched into QPI mode.

14.1 SPI Read Operations

For all reads, data will be available tACLK after the falling edge of CLK SPI Reads can be done in four ways:

- a. 'h03: Serial CMD, Serial Addr/IO, slow frequency, with wrap or linear bursting.
- b. 'hOB: Serial CMD, Serial Addr/IO, fast frequency, with wrap or linear bursting.
- c. 'hEB: Serial CMD, Quad Addr/IO, fast frequency, with wrap or linear bursting.
- d. 'h8B: Serial CMD, Serial Addr/IO, fast frequency, with forced wrap (toggle & register configurable lengths)

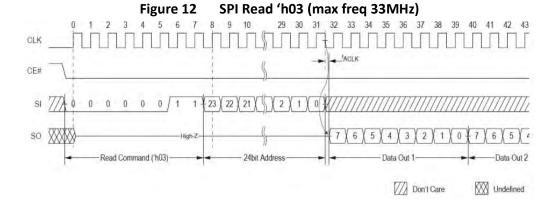
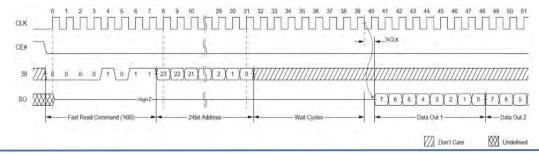
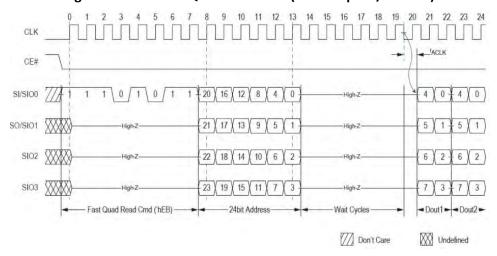



Figure 13 SPI Fast Read 'h0B (max freq 144/84 MHz)



Released date: 2022 Dec 23rd

Version: 1.0

Figure 14 SPI Fast Quad Read 'hEB (max freq 144/84 MHz)

14.2 SPI Write Operations

Figure 15 SPI Write 'h02

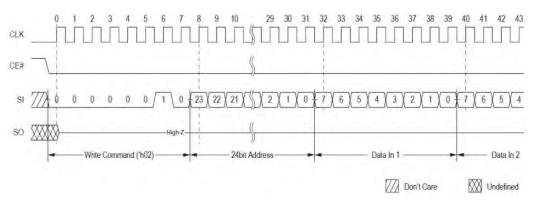
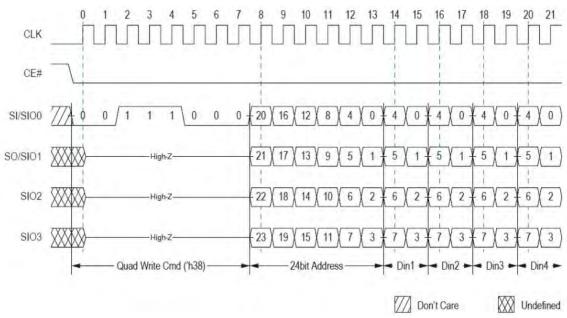
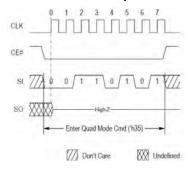



Figure 16 Quad SPI Write 'h38


Released date: 2022 Dec 23rd Version: 1.0

14.3 SPI Quad Mode Enable Operation

This command switches the device into quad IO mode.

Figure 17 Quad Mode Enable 'h35 (available only in SPI mode)

15. QPI Mode Operations

15.1 QPI Read Operations

For all reads, data will be available tACLK after the falling edge of CLK QPI Reads can be done in one of three ways:

- a. 'hOB: Quad CMD, Addr & IO, slow frequency with wrap or linear bursting.
- b. 'hEB: Quad CMD, Addr & IO, fast frequency with wrap or linear bursting.
- c. 'h8B: Quad CMD, Addr & IO, fast frequency with forced wrap (toggle & register configurable lengths).

Figure 18 QPI Fast Read 'h0B (max freq 66 MHz)

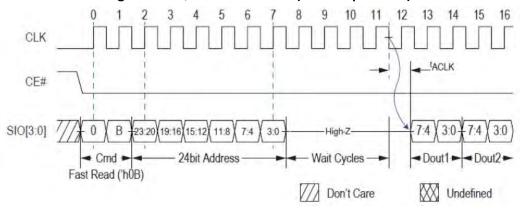
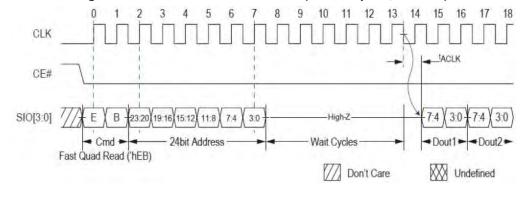
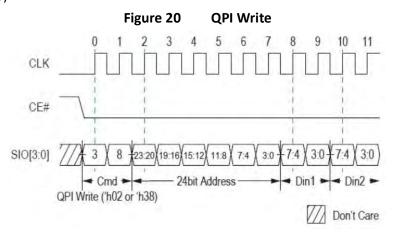



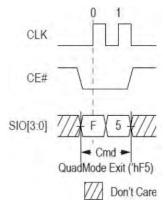
Figure 19 QPI Fast Quad Read 'hEB (max freq 144/84 MHz)

Released date: 2022 Dec 23rd


Version: 1.0

15.2 QPI Write Operation

QPI write command can be done in one of two ways:


- a. 'h02 or 'h38: Quad CMD, Addr & IO, with wrap or linear bursting.
- b. 'h82: Quad CMD, Addr & IO, with forced wrap (toggle & register configurable lengths).

15.3 QPI Quad Mode Exit Operation

This command will switch the device back into serial IO mode.

Figure 21 Quad Mode Exit 'hF5 (only available in QPI mode)

16. Reset Operation

The Reset operation is used as a system (software) reset that puts the device in SPI standby mode which is also the default mode after power-up. This operation consists of two commands: Reset-Enable (RSTEN) and Reset (RST).

Figure 22 SPI Reset

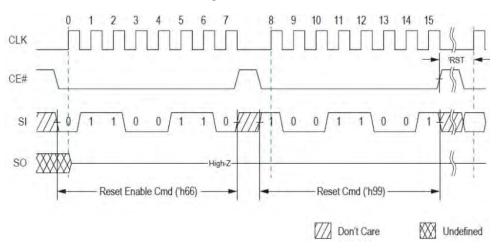
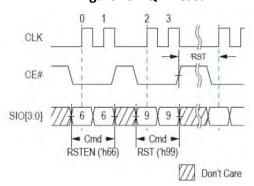



Figure 23 QPI Reset

Reset command has to immediately follow the Reset-Enable command in order for the reset operation to take effect. Any command other than the Reset command after the Reset-Enable command will cause the device to exit Reset-Enable state and abandon reset operation.

17. Input/Output Timing

Figure 24 Input Timing

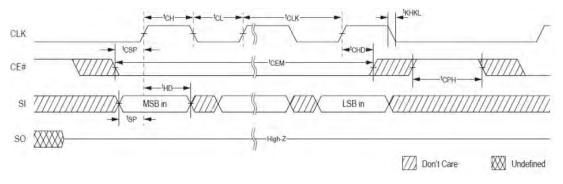
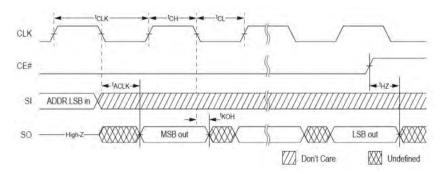



Figure 25 Output Timing

18. Electrical Specifications

18.1 Absolute Maximum Ratings

Table 6 Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	Notes
Voltage to any ball except V_{DD} relative to V_{SS}	VT	-0.4 to V _{DD} +0.4	V	
Voltage on V_{DD} supply relative to V_{SS}	V _{DD}	-0.4 to +2.45	V	
Storage Temperature	T _{STG}	-55 to +150	°C	1

Notes: Storage temperature refers to the case surface temperature on the center/top side of the PSRAM. Caution:

Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability

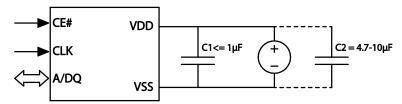
18.2 Pin Capacitance

Table 7 Package Pin Capacitance

Parameter	Symbol	Min	Max	Unit	Notes
Input Pin Capacitance	CIN		6	pF	VIN=0V
Output Pin Capacitance	COUT		8	pF	VOUT=0V

Note: spec'd at 25°C.

Table 8 Load Capacitance


Parameter	Symbol	Min	Max	Unit	Notes
Load Capacitance	C_L		15	pF	

Note: System C_L for the use of package

18.3 Decoupling Capacitor Requirement

It is required to have a decoupling capacitor on VDD pin for IO switchings and psram internal transient events. A low ESR 1 μ F ceramic cap is recommended. To minimize parasitic inductance, place the cap as close to VDD pin as possible. An optional 0.1μ F can further improve high frequency transient response.

Figure 26 Decoupling Capacitor

Note that the length of grounding connection between PSRAM and PCB must be as short as possible. Having **ground plane on PCB** and **multipoint ground** would be preferred (to avoid single-point grounding topology). The width of VDD and VSS traces would be suggested more than 20mil.

18.4 Operating Conditions

Table 9 Operating Characteristics

Parameter	Min	Max	Unit	Notes
Operating Temperature	-40	105	°C	Extend
Operating Temperature	-40	85	°C	

Released date: 2022 Dec 23rd Version: 1.0

18.5 DC Characteristics

Table 10 DC Characteristics

Symbol	Parameter	Min	Max	Unit	Notes
V _{DD}	Supply Voltage	1.62	1.98	V	
V _{IH}	Input high voltage	V _{DD} -0.4	V _{DD} +0.2	V	
VIL	Input low voltage	-0.2	0.4	V	
V _{OH}	Output high voltage (I _{OH} =-0.2mA)	0.8 V _{DD}		V	
V _{OL}	Output low voltage (I _{OL} =+0.2mA)		0.2 V _{DD}	V	
ILI	Input leakage current		1	μΑ	
I _{LO}	Output leakage current		1	μΑ	
	Read/Write (144Mhz)		7	mA	1,2
Icc	Read/Write (66Mhz)		6	mA	1,2
	Read/Write (13Mhz)		5	mA	1,2
ISB _{EXT}	Standby current (105C)		150	μΑ	3
ISB _{STD}	Standby current (85C)		100	μΑ	3

Note:

- 1. Output load current not included.
- 2. 50% bus toggling rate
- 3. Standby current is measured when CLK is in DC low state.
- 4. Typical ISB_{STD} is 20uA at 25°C

18.6 AC Characteristics

Table 8 Read/Write Timing

Symbol	Parameter	Min	Max	Unit	Notes
	CLK period - SPI Read ('h03)	30.3			33MHz
	CLK period - QPI Read ('h0B)	15.1			66MHz
^t CLK	CLK period - all other operations	7		ns	144MHz*1,2,3
^t CH/ ^t CL	Clock high/low width	0.45	0.55	^t CLK(min)	
tKHKL	CLK rise or fall time		1.1	ns	4
^t CPH	CE# HIGH between subsequent burst operations	18		ns	
^t CEM	CE# low pulse width		3	μs	Extended grade
			8		Standard grade
^t CSP	CE# setup time to CLK rising edge PKG	2.5		ns	2
^t CHD	CE# hold time from CLK rising edge PKG	3.0		ns	2
tSP	Setup time to active CLK edge	2		ns	
tHD	Hold time from active CLK edge	2		ns	
^t HZ	Chip disable to DQ output high-Z		6	ns	
^t ACLK	CLK to output delay	2	5.5	ns	3
^t KOH	Data hold time from clock falling edge	1.5		ns	
^t RST	Time between end of RST CMD to next valid CMD	50		ns	

Note: 1. Only Linear 512 Burst allows page boundary crossing. Frequency limits are therefore 144MHz max for Wrapped Burst operation 84MHz max when Linear 512 Burst commands cross page boundary

- 2. System max C_L 15pF for the use of package.
- 3. For operating frequencies >84MHz, it is highly recommended to utilize CLK falling edge to sample read data or align sampling clock via data pattern tuning (refer to JEDEC JESD84-B50 for an example).
- 4. Measured from 20% to 80% of VDD

19. Revision History

Vision	Who	Date	Description
1	William CHEN	Dec 23rd 2022	Initial branded release