256Mbit Octal-SPI Pseudo-SRAM Data Sheet

CSS25617SB

Version 01

Cascadeteq Inc 256Mb DDR Octal-SPI Pseudo-SRAM

Table of Contents

1	Table	e of Contents	2
2	Featı	ure, Specification and Package Information	4
	2.1	Package Types: BGA 24b X8/X16 (BG)	5
	2.2	Package Outline Drawing	
	2.2.1	BGA 24B , package code BG	
3	Orde	ring Information	
4	Packa	age Ball Signal Table	7
5	Block	k diagram	8
6	Powe	er-Up Initialization	g
	6.1	Power-Up Initialization Method 1 (via. RESET# pin)	9
	6.2	Power-Up Initialization Method 2 (via. Global Reset)	10
7	Inter	face Description	11
	7.1	Address Space	11
	7.2	Burst Type & Length	11
	7.3	Command/Address Latching	11
	7.4	Command Truth Table	11
	7.5	Read Operation	12
	7.6	Write Operation	15
	7.7	Control Registers	16
	7.8	Halfsleep TM Mode	23
	7.9	Deep Power Down Mode	24
8	Elect	rical Specifications:	25
	8.1	Absolute Maximum Ratings	25
	8.2	Pin Capacitance	25
	8.3	Decoupling Capacitor Requirement	26
	8.3.1	Low ESR cap C1:	26
	8.3.2	Large cap C2:	26
	8.4	Operating Conditions	26

CSS25617SB

	Cascadeteq Inc	256Mb DDR Octal-SPI Pseudo-SRAM
8.5	DC Characteristics	27
8.6	ISB Partial Array Refresh Current	28
8.7	AC Characteristics	29
9. Chan	ge Log	30

Cascadeteq Inc 256Mb DDR Octal-SPI Pseudo-SRAM

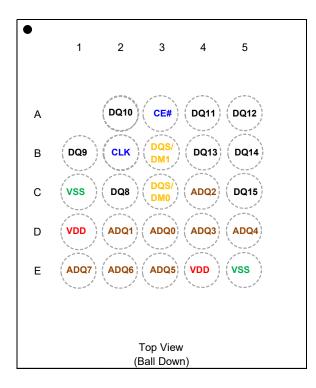
2. Feature, Specification and Package Information

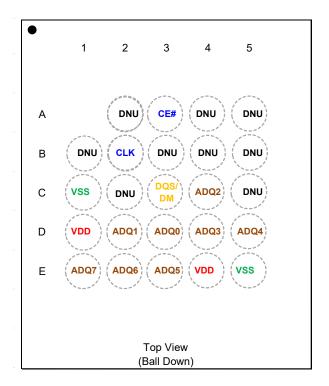
The CSS25617SB is the part number of 256Mb DDR Octal-SPI Pseudo-SRAM product family. This device supports both OPI (x8) and HPI(x16) product with Xccela protocol. The package type and detailed part number refers to 2. Package Information, 3. Ordering Information.

Specification:

- **Single Supply Voltage:**
 - V_{DD} =1.62 to 1.98V
 - $V_{DDQ} = 1.62 \text{ to } 1.98V$
- Interface: Octal Peripheral interface (OPI) and Hexadecimal Peripheral interface (HPI) with Xccela mode,
 - Two bytes transfer per clock –X8
 - Two words transfer per clock X16
 - Mode register configurable X8(default)/X16
 - Note: 1 Word = 2 Bytes in this document.
- Performance: Clock rate up to 250MHz, 500MBps read/write throughput X8 1000MBps read/write throughput - X16
- Organization: 256Mb in X8 mode (default)
 - 32M x 8bits with 2048 bytes per page
 - Column address: AYO to AY10
 - Row address: AX0 to AX13
- Organization: 256Mb in X16 mode
 - 16M x 16bits with 1024 Words per page
 - Column address: AYO to AY9
 - Row address: AX0 to AX13
- Refresh: Self-managed
- Operating temperature range
 - T_{OPER} = -40°C to +85°C (standard range)
 - $T_{OPER} = -40$ °C to +105°C (extended range)
- **Typical Standby Current:**
 - 40μA @ 25°C (Halfsleep[™] Mode with data retained)
- **Maximum Standby Current:**
 - 1100μA @ 105°C
 - 680μA @ 85°C

Feature


- **Low Power Features:**
 - Partial Array Self-Refresh (PASR)
 - Auto Temperature Compensated Self-Refresh (ATCSR) self-managed by a built-in temperature sensor
 - Ultra Low Power Halfsleep[™] mode with data retention.
- Software reset
- Reset pin (not available on all packages)
- Output driver LVCMOS with programmable drive strength
- Data mask (DM) for write operation
- Data strobe (DQS) for high speed read operation
- Register configurable write and read latencies
- Write burst length
 - max 2048 Bytes in X8/1024 Words in X16
 - min 2 Bytes in X8 /2 Words in X16
- Wrap & hybrid burst in
 - 16/32/64/128/2K Bytes length in X8 mode.


- o 16/32/64/128/1K Words length in X16 mode.
- Linear Burst Commands
- Row Boundary Crossing (RBX) read operations enabled via Mode Register
 - o X16 mode can be configured by setting MR8[6]=1 (default is X8 mode and MR8[6]=0)

2.1Package Types: BGA 24b X8/X16 (BG)

The CSS25617SB is available in mini-BGA 24B package 6 x 8 x 1.2mm, ball pitch 1.0mm, ball size 0.4mm, package code "BG".

Ball Assignment for MINI-BGA 24B

(6x8x1.2mm)(P1.0)(B0.4)

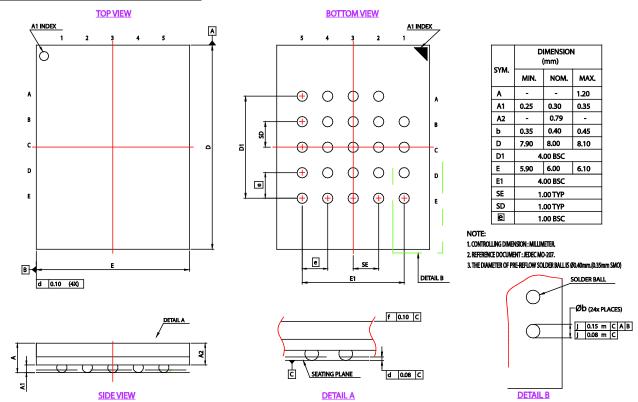
Note: Ball out of X8/X16 mode in Part Number

CSS25617SB for 256Mb

(6x8x1.2mm)(P1.0)(B0.4)

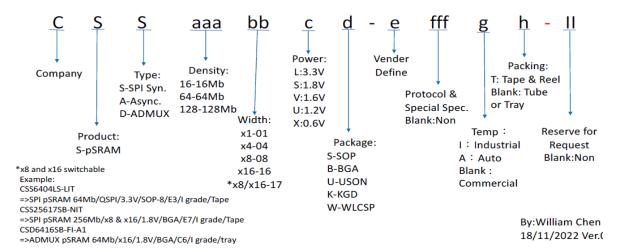
Note: Ball out of X8 mode only if use in Part Number

CSS25608SB for 256Mb


DNU: Do Not Use for X8 mode only

256Mb DDR Octal-SPI Pseudo-SRAM

2.2 Package Outline Drawing


2.2.1 BGA 24B, package code BG

3 Ordering Information

Table 1: Ordering Information

Product Naming Rule:

Part Number	10	Temperature Range	Max Frequency	Note
CSS25617SB-NI	X8/X16	Tc=-40°C to +85°C	250 MHz	BGA 24B
CSS25617SB-NJ	X8/X16	Tc=-40°C to +105°C	250 MHz	BGA 24B

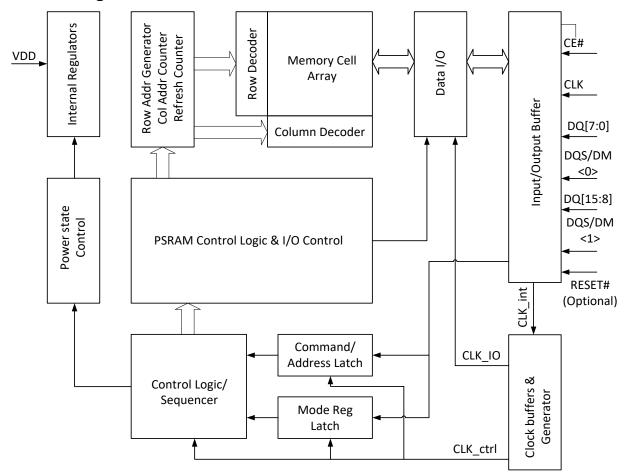
CSS25617SB

Cascadeteq Inc

256Mb DDR Octal-SPI Pseudo-SRAM

4 Package Ball Signal Table

All signals are listed in Table 2.


Table 2: Signals Table

Symbol	Туре	Description	Comments
V _{DD}	Power	Core & IO supply 1.8V	V_{DDQ} short to V_{DD} internally.
Vss	Ground	Core& IO supply ground	
A/DQ[7:0]	Ю	Address/Data bus [7:0]	Used in X8 and X16
DQ[15:8]	10	Data bus [15:8]	Used in X16 only
DQS/DM<0>	Ю	DQ strobe clock for DQ[7:0] during all reads, Data mask for DQ[7:0] during memory writes. DM is active high. DM=1	Used in X8 and X16
DQS/DM<1>	Ю	DQ strobe clock for DQ[15:8] during memory reads, Data mask for DQ[15:8] during memory writes. DM is active high.	Used in X16 only
CE#	Input	Chip select, active low. When CE#=1, chip is in standby	
CLK	Input	Input clock	
RESET#	Input	Reset signal, active low. Optional, as the pad is internally tied to a weak pull-up and can be left floating.	May not be available for all package types

256Mb DDR Octal-SPI Pseudo-SRAM

5 Block diagram

6 Power-Up Initialization

Octal DDR products include an on-chip voltage sensor used to start the self-initialization process. V_{DD} and V_{DDQ} must be applied simultaneously. When they reach a stable level at or above minimum V_{DD} , the device is in Phase 1 and it requires 150 μ s to complete its self-initialization process. System host can then proceed to Phase 2 of the initialization described in section 6.1.

During Phase 1 CE# should remain HIGH (track V_{DD} within 200mV); CLK should remain LOW. After Phase 2 is complete the device is ready for operation, however HalfsleepTM entry and Deep Power Down (DPD) entry are not available until HalfsleepTM Power Up (tHSPU) or DPD Power Up (tDPDp) durations are observed.

6.1 Power-Up Initialization Method 1 (via. RESET# pin)

The RESET# pin can be used to initialize the device during Phase 2 as follows:

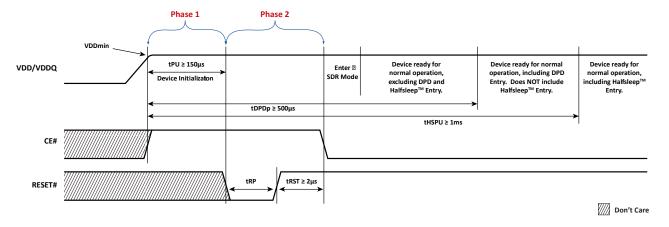


Figure 1: Power-Up Initialization Method 1 RESET#

Note: Not be available for all package types.

The RESET# pin can also be used when CE#=high at any time after the device is initialized to reset all register contents. Memory content is not guaranteed. Timing requirements for RESET# usage are shown below.

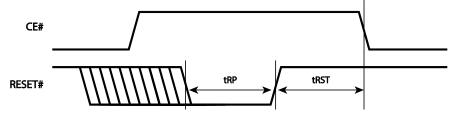


Figure 2: RESET# Timing

6.2 Power-Up Initialization Method 2 (via. Global Reset)

As an alternate power-up initialization method, after the Phase 1 150µs period the Global Reset command can also be used to reset the device in Phase 2 as follows:

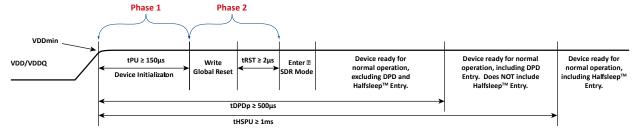


Figure 3. Power-Up Initialization Method 2 Timing with Global Reset

The Global Reset command resets all register contents. Memory content is not guaranteed. The command frame is made of 4 clocked CE# lows. Clocking is optional during tRST. The Global Reset command sequence is shown below.

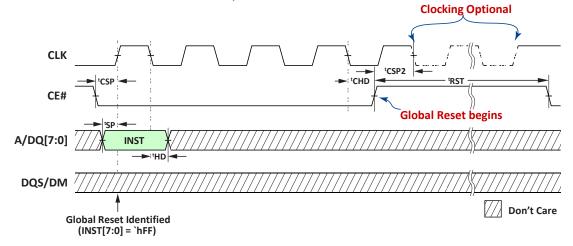


Figure 4: Global Reset

7 Interface Description

7.1 Address Space

Octal DDR PSRAM device is byte-addressable(X8)/word-addressable(X16). Memory accesses must start on even addresses (A[0]='0). Mode Register accesses can start on even or odd address.

7.2 Burst Type & Length

Read and write operations are default Hybrid Wrap 32 mode. Other burst lengths of 16, 32, 64 or 2K bytes in standard or Hybrid wrap modes are register configurable (16, 32, 64 and 1K words configurable in X16 mode). The device also includes command burst options for Linear Bursting (see Table 20). Bursts can start on any even address. Write burst length requires a minimum of 2 bytes(X8)/2 words (X16). Read has no minimum length. Both write and read have no restriction on maximum burst length as long as tCEM is met.

7.3 Command/Address Latching

After CE# goes LOW, instruction code is latched on 1^{st} CLK rising edge. Access address is latched on the 3^{rd} , 4^{th} , 5^{th} & 6^{th} CLK edges (2^{nd} CLK rising edge, 2^{nd} CLK falling edge, 3^{rd} CLK falling edge).

7.4 Command Truth Table

The Octal DDR PSRAM recognizes commands listed in the following table. Instruction and address are input through A/DQ[7:0] pins. Host must send correct instruction and address format according to the following table.

Note that CA[10] is only used in X8 mode and it is ignored in X16 mode.

Note that Linear Burst commands, 20h and A0h, ignore burst setting defined by MR8[2:0].

Note that only Linear Burst Read command is capable of performing row boundary crossing (RBX) read function.

	1st	CLK	2nd	CLK	3rd	CLK
Command						_
Sync Read	00	Oh	А3	A2	A1	Α0
Sync Write	80h		А3	A2	A1	Α0
Linear Burst Read	20h		А3	A2	A1	Α0
Linear Burst Write	A0h		А3	A2	A1	Α0
Mode Register Read	40)h		×		MA
Mode Register Write	C0h			×		MA
Global Reset	FI	Fh		;	×	

Remarks:

 \times = don't care (V_{IH}/V_{IL})

A3 = 7'bx, RA[13] {unused address bits are reserved}

A2 = RA[12:5]

A1 = RA[4:0],CA[10:8] { CA[10] is used only in X8 mode}

A0 = CA[7:0]

MA = Mode Register Address

7.5 Read Operation

After address latching, the device initializes DQS/DM to '0 from CLK rising edge of the 3rd clock cycle (A1). See Figure 5 below.

Output data is available after LC latency cycles, as shown in Figure 7 & Figure 8. LC is latency configuration code defined in Table 5 and Table 6. When data is valid, A/DQ[7:0] and DQS/DM follow the timing specified in Figure 9. Synchronous timing parameters are shown in Table 30 & Table 31. CE# should be kept low until the last byte of data has been received by the host.

In case of internal refresh insertion, variable latency output data may be delayed by **up to** (LCx2) latency cycles as shown in Figure 7. True variable refresh pushout latency can be anywhere **between** LC to LCx2. The 1st DQS/DM rising edge after read pre-amble indicates the beginning of valid data.

In X16 mode DQ [15:8] will not receive INST/ADD, instead they will remain Hi-Z until read latency and then start pumping out data, similar to DQ [7:0].

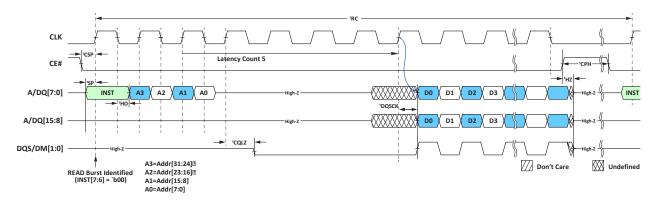


Figure 5: Synchronous Read

If RBX is enabled (MR8[3] written to 1) and a Linear Burst Read Command ('h20) is issued, read operation may cross row boundaries as shown in Figure 6.

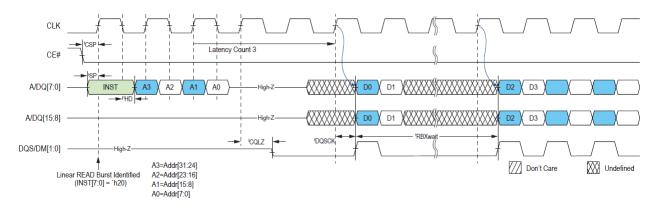


Figure 6: Linear Burst Read with RBX (Starting address '7FE in X8 mode and '3FE in X16 mode)

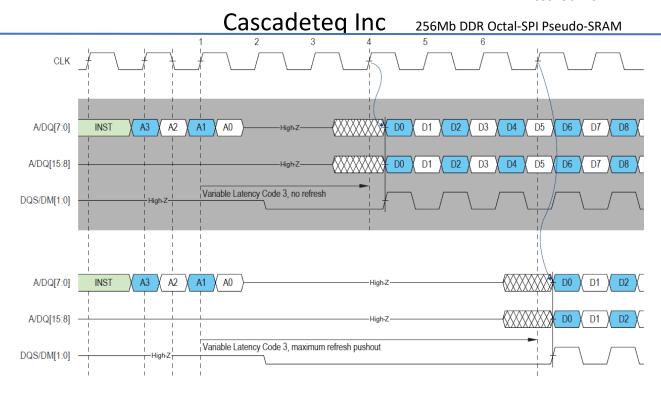


Figure 7: Variable Read Latency Refresh Pushout

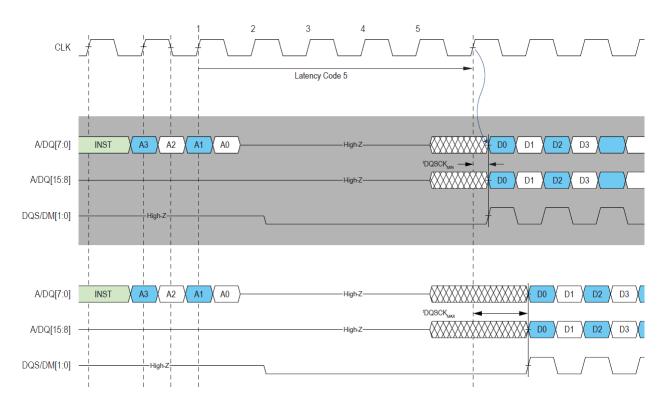


Figure 8: Read Latency & tDQSCK

CSS25617SB

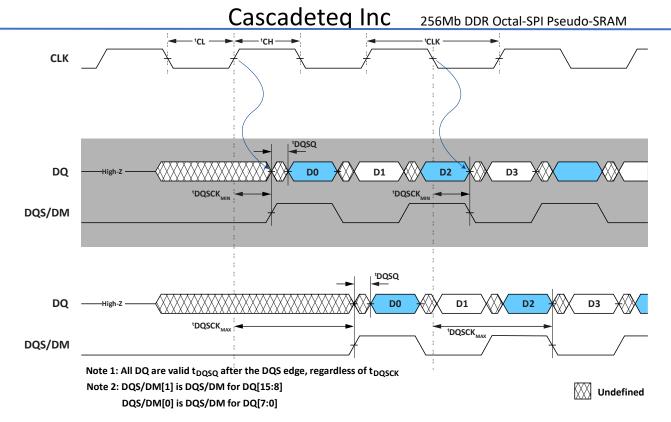


Figure 9: Read DQS/DM & DQ timing

7.6 Write Operation

A minimum of 2 bytes (in X8 mode) / 2words (in X16 mode) of data must be input in a write operation. In the case of consecutive short burst writes, tRC must be met by issuing additional CE# high time between operations. Single-byte write operations can be done by masking through DQS/DM pin as shown in Figure 10.

In X16 mode DQ[15:8] are ignored during INST/ADDR cycles. Instead, DQ[15:8] are only used after write latency to receive the data, similar to DQ[7:0]. During write data cycles the DQ[15:8] and DQ[7:0] can be independently masked via DM[1] and DM[0].

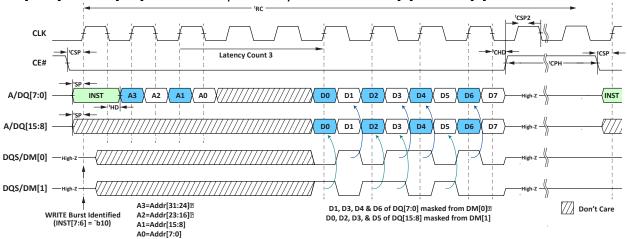


Figure 10: Synchronous Write followed by any Operation

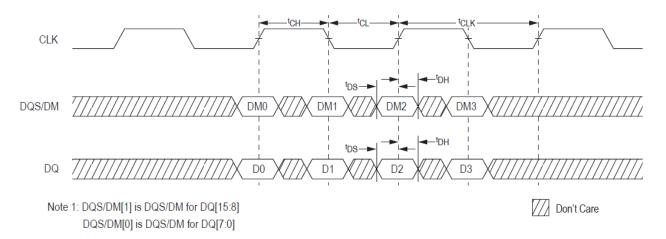


Figure 11: Write DQS/DM & DQ Timing

7.7 Control Registers

Register Read is shown below. Mode Address in command determines which Mode Register is read from as Data0 (see chart in the Figure below). All Mode Registers are 8-bit wide, Mode register write and read uses only A/DQ[7:0] even in X16 mode.

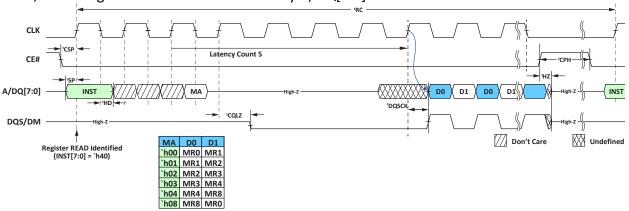


Figure 12: Register Read

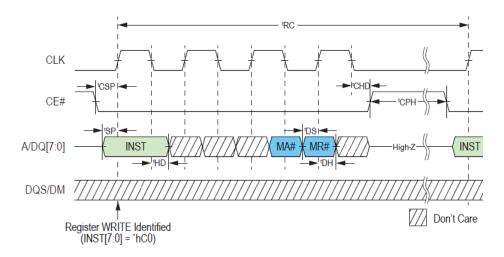


Figure 13: Register Write

Register Writes are always latency 1. Write Latency Code, MR4[7:5] does not apply to Register writes. Register Reads follow the same read latency settings, defined in MR0[4:2] (see Table 6).

Registers 0, 4 & 8 are read and writable. Registers 1, 2 and 3 are read-only. Register 6 is write-only.

Register mapping is shown in Table 3. All MR0 or MR8 writes must have MR0[7:6] or MR8[7] written to $oldsymbol{`0}(s)$.

256Mb DDR Octal-SPI Pseudo-SRAM

Table 3: Mode Register Table

MR No.	MA[7:0]	Access	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
0	`h00	R/W	'0	0'	LT	Read	Latency	Code	Drive	e Str.
1	`h01	R	ULP rsvd.			٧	'endor I	D		
2	`h02	R	KGD		De	v ID		Density	,	
3	`h03	R	RBXen 0 SI		RF		rsv	/d.		
4	`h04	R/W	Write Latency Code		RF	rate		PASR		
6	`h06	W	Halfsleep [™]				rsv	/d.		
8	`h08	R/W	'0'	x8/x16	rs	vd	RBX	BT	В	BL

Table 4: Read Latency Type MR0[5]

Latency Type				
MR0[5] LT				
0	Variable (default)			
1	Fixed			

Table 5: Read Latency Codes MR0[5:2]

	VL Codes	(MR0[5]=0)	FL Codes (MR0[5]=1)	Max Input CL	K Freq (MHz)	Note
MR0[4:2]	Latency	Max push out	Latency	Standard	Extended	
000	3	6	6	66	66	
001	4	8	8	109	109	
010	5 (default)	10	10	133	133	
011	6	12	12	166	166	
100	7	14	14	200	200	
101	9	16	16	225	225	1
110	10	18	18	250	250	1

Note 1: The RBX function cannot be used when MR0[4:2] is set to 101 or 110

Table 6: Operation Latency Code Table

Туре	Operation	VL (d	FL	
		No Refresh	Refresh	
Memory	Read	LC	Max push out	FLC
	Write	WLC		WLC
Register	Read	LC		LC
	Write		1	1

*Note: see Table 15 for WLC settings.

256Mb DDR Octal-SPI Pseudo-SRAM

Table 7: Drive Strength Codes MR0[1:0]

Codes	Drive Strength
'00	Full (25Ω default)
'01	Half (50Ω)
'10	1/4 (100Ω)
'11	1/8 (200Ω)

Table 8: Ultra Low Power Device mapping MR1[7]

ULP				
'0	Non-ULP (no Halfsleep™)			
'1	ULP (Halfsleep™ supported)			

Table 9: Device ID MR2[4:3]

Codes	Device ID
'00	Generation 1
'01	Generation 2
'10	Generation 3
'11	Generation 4 (default)

Table 10: Device Density mapping MR2[2:0]

MR2[2:0]	Density
'001	32Mb
'011	64Mb
'101	128Mb
'111	256Mb (default)
'110	512Mb
others	reserved

Table 11: Row Boundary Crossing Enable MR3[7]

MR3[7] (read-only)	RBXen
0	RBX not supported
1	RBX supported via MR8[3]=1

Table 12: Self Refresh Flag MR3[5:4]

MR3[5:4] indicates current device refresh rate. Refresh rate depends on temperature and refresh frequency configuration, set by MR4[4:3].

MR3[5:4] (read-only)	Self Refresh Flag	
01	0.5x Refresh	
00	1x Refresh	
10	4x Refresh	
11	reserved	

Table 13: Write Latency MR4[7:5]

Write latency, WLC, is default to 5 after power-up. Use MR Write to set write latencies according to write latency table. When operating frequency exceeding Fmax listed in the table will result in write data corruption.

MR4[7:5]	Write Latency Codes (WLC)	Fmax (MHz)
000	3	66
100	4	109
010	5 (default)	133
110	6	166
001	7	200
101	8	225
011	9	250

Table14: Refresh Frequency setting MR4[4:3]

MR4[4:3]	Refresh Frequency	
х0	Always 4x Refresh (default)	
01	Enables 1x Refresh when temperature allows	
11	Enable 0.5x Refresh when temperature allows	

Note: x= don't care

Table 15: PASR MR4[2:0]

The PASR bits restrict refresh operation to a portion of the total memory array. This feature allows the device to reduce standby current by refreshing only that part of the memory array required by the host system. The refresh options are full array, one-half array, one-quarter array, one-eighth array, or none of the array. The mapping of these partitions can start at either the beginning or the end of the address map.

Address Space: RA [13:0], CA [10:0] note: CA [10] is ignored in X16 mode.

	256Mb X8				
Codes	Refresh Coverage	Address Space	Size	Density	
'000	Full array (default)	0000000h-1FFFFFh	32M X8	256Mb	
'001	Bottom 1/2 array	0000000h-0FFFFFh	16M X8	128Mb	
'010	Bottom 1/4 array	0000000h-07FFFFh	8M X8	64Mb	
'011	Bottom 1/8 array	0000000h-03FFFFh	4M X8	32Mb	
'100	None	0	0M	0Mb	
'101	Top 1/2 array	1000000h-1FFFFFh	16M X8	128Mb	
'110	Top 1/4 array	1800000h-1FFFFFFh	8M X8	64Mb	
'111	Top 1/8 array	1C00000h-1FFFFFh	4M X8	32Mb	

	256Mb X16				
Codes	Refresh Coverage	Address Space	Size	Density	
'000	Full array (default)	0000000h-0FFFFFh	16M X16	256Mb	
'001	Bottom 1/2 array	0000000h-07FFFFh	8M X16	128Mb	
'010	Bottom 1/4 array	0000000h-03FFFFh	4M X16	64Mb	
'011	Bottom 1/8 array	0000000h-01FFFFh	2M X16	32Mb	
'100	None	0	0M	0Mb	
'101	Top 1/2 array	0800000h-1FFFFFFh	8M X16	128Mb	
'110	Top 1/4 array	0C00000h-1FFFFFh	4M X16	64Mb	
'111	Top 1/8 array	0E00000h-1FFFFFh	2M X16	32Mb	

CSS25617SB

Cascadeteq Inc

256Mb DDR Octal-SPI Pseudo-SRAM

Table 9: Halfsleep[™] MR6[7:0]

MR6[7:0]	ULP Modes	
'hF0	Halfsleep™	
'hC0	Deep Power Down	
others	reserved	

Note: see 7.8 HalfsleepTM Mode; 7.9 Deep Power Down Mode for more information.

Table 17: IO X8/X16 Mode MR8 [6]

Device powers up in X8 mode, MR8[6]=0. After power up device can be configured to X16 mode by setting MR8[6]=1 via mode register write command. Host can switch in and out of X16 mode any time after power up.

MR8[6]	X8/X16 Mode
0	X8 (default)
1	X16

256Mb DDR Octal-SPI Pseudo-SRAM

Table 18: Burst Type MR8[2], Burst Length MR8[1:0]

By default the device powers up in 32 Byte Hybrid Wrap. In non-Hybrid burst (MR8[2]=0), MR8[1:0] sets the burst address space in which the device will continually wrap within. If Hybrid burst wrap is selected (MR8[2]=1), the device will burst through the initial wrapped burst length once, then continue to burst incrementally up to maximum column address (2K in X8 mode/1K in X16 mode) before wrapping around within the entire column address space. Burst length (MR8[1:0]) can be set to 16,32,64 & 2K in X8 mode (1K in X16 mode) Lengths.

MR8[2] MR8[1:0]		Burst Length X8/X16 Mode	Example of Sequence of Bytes During Wrap		
			Starting Address	Burst Address Sequence in X8 mode	
'0	'00	16 Byte/Word Wrap	4	[4,5,6,15,0,1,2,]	
'0	'01	32 Byte/Word Wrap	4	[4,5,6,31,0,1,2,]	
'0	'10	64 Byte/Word Wrap	4 [4,5,6,63,0,1,2,]		
΄0	'11	2K Byte/1K Word Wrap	4 [4,5,6,2047,0,1,2,]		
'1	'00	16 Byte/Word Hybrid	2	[2,3,4,15,0,1],16,17,18,2047,0,1,	
'1	'01	32 Byte/Word Hybrid	2	[2,3,4,31,0,1],32,33,34,2047,0,1,	
'1	'10	64 Byte/Word Hybrid	2	[2,3,4,63,0,1],64,65,66,2047,0,1,	
'1	'11	2K Byte/1K Word Wrap	2	[2,3,4,2047,0,1,2,]	

The Linear Burst Commands (INST[5:0]=6'b10_0000) forces the current array read or write command to do 2K Byte Wrap(X8)/1K Word(X16) (equivalent to having MR8[1:0] set to 2'b11). For non-RBX Enabled devices the burst command read/writes linearly from the starting address and wraps back to the beginning of the page upon reaching the end of the page. To access a different page, host must issue a new command.

Table 19: Row Boundary Crossing Read Enable MR8[3]

This register setting applies to Linear Burst reads only on RBX enabled devices (MR3[7]=1). Default write and read burst behavior is limited within page (row) address space. In X8 mode column address range is 2K (CA='h000 -> 'h7FF) and it is 1K (CA='h000 -> 'h3FF) in X16 mode. Setting this bit high will allow Linear Burst Read command to cross over into the next Row (RA+1).

MR8[3]	RBX Read
0	Reads stay within page (row) boundary
1	Allow reads cross page (row) boundary

7.8 Halfsleep™ Mode

HalfsleepTM Mode puts the device in an ultra-low power state, while the stored data is retained. HalfsleepTM Mode Entry is entered by writing 8'hF0 into MR6. CE# going high initiates the HalfsleepTM mode and must be maintained for the minimum duration of HalfsleepTM time, tHS. The HalfsleepTM Entry command sequence is shown below.

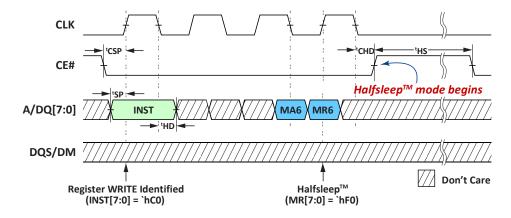


Figure 14: Halfsleep™ Entry Write (latency same as Register Writes, WL1)

Halfsleep[™] Exit is initiated by a low pulsed CE#. Afterwards, CE# can be held high with or without clock toggling until the first operation begins (observing minimum Halfsleep[™] Exit time, tXHS).

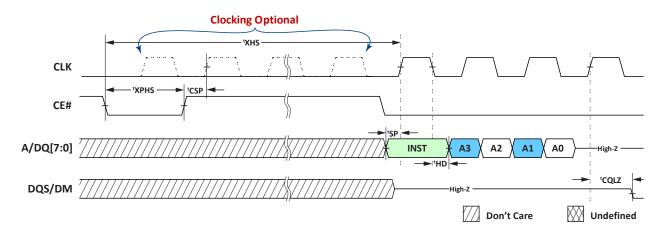


Figure 15: Halfsleep™ Exit (Read Operation shown as example)

7.9 Deep Power Down Mode

Deep Power Down Mode (DPD) puts the device into power down state. DPD Mode Entry is entered by writing 8'hC0 into MR6. CE# going high initiates the DPD Mode and must be maintained for the minimum duration of Deep Power Down time, tDPD. The Deep Power Down Entry command sequence is shown below.

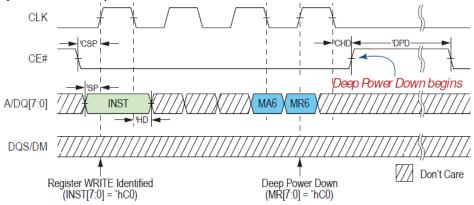


Figure 16: Deep Power Down Entry

Deep Power Down Exit is initiated by a low pulsed CE#. After a CE# DPD exit, CE# must be held high with or without clock toggling until the first operation begins (observing minimum Deep Power Down Exit time, tXDPD).

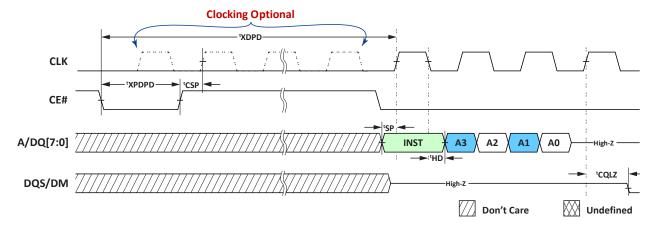


Figure 17: Deep Power Down Exit (Read Operation shown as example)

Register values and memory content are not retained in DPD Mode. After DPD mode register values will reset to defaults. tDPDp is minimum period between two DPD Modes (measured from DPD exit to the next DPD entry) as well as from the initial power up to the first DPD entry.

8 Electrical Specifications:

8.1 Absolute Maximum Ratings

Table 20: Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	Notes
Voltage to any ball except V_{DD} , V_{DDQ} relative to V_{SS}	VT	-0.4 to V _{DD} /V _{DDQ} +0.4	V	
Voltage on V _{DD} supply relative to V _{SS}	V_{DD}	-0.4 to +2.45	V	
Voltage on V _{DDQ} supply relative to V _{SS}	V_{DDQ}	-0.4 to +2.45	V	
Storage Temperature	T _{STG}	-55 to +150	°C	1

Notes 1: Storage temperature refers to the case surface temperature on the center/top side of the PSRAM.

Caution:

Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

8.2 Pin Capacitance

Table 21: Bare Die Pin Capacitance

Parameter	Symbol	Min	Max	Unit	Notes
Input Pin Capacitance	CIN		1	pF	VIN=0V
Output Pin Capacitance	COUT		2	pF	VOUT=0V

Note: spec'd at 25°C.

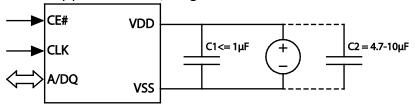
Table 22: Package Pin Capacitance

Parameter	Symbol	Min	Max	Unit	Notes
Input Pin Capacitance	CIN		5	pF	VIN=0V
Output Pin Capacitance	COUT		6	pF	VOUT=0V

Note: spec'd at 25°C.

Table 23: Load Capacitance

Parameter	Symbol	Min	Max	Unit	Notes
Load Capacitance	C_L		15	pF	


Note: System C_L for the use of package

256Mb DDR Octal-SPI Pseudo-SRAM

8.3 Decoupling Capacitor Requirement

System designers need to take care of power integrity considering voltage regulator response and the memory peak currents/usage modes.

8.3.1 Low ESR cap C1:

It is recommended to place a low ESR decoupling capacitor of $<=1\mu F$ close to the device to absorb transient peaks.

8.3.2 <u>Large cap C2:</u>

Though HalfsleepTM average current is small (less than 100 μ A), its peak current from internal periodical burst refresh can reach up to the level of 25mA. The peak current duration can last for few tens of microseconds. During this period if the system regulator cannot supply such large peaks, it is important to place a 4.7 μ F-10 μ F cap to cover the burst refresh current demand and replenish the cap before the next burst of refresh.

8.4 Operating Conditions

Table 24: Operating Characteristics

Parameter	Min	Max	Unit	Notes
Operating Temperature (extended)	-40	105	°C	
Operating Temperature (standard)	-40	85	°C	

CSS25617SB

Cascadeteq Inc

256Mb DDR Octal-SPI Pseudo-SRAM

8.5 DC Characteristics

Table25: DC Characteristics

Symbol	Parameter	Min	Max	Unit	Notes
V_{DD}	Supply Voltage	1.62	1.98	V	
V _{DDQ}	I/O Supply Voltage	1.62	1.98	V	
V _{IH}	Input high voltage	V _{DDQ} -0.4	V _{DDQ} +0.3	V	
VIL	Input low voltage	-0.3	0.4	٧	
Vон	Output high voltage (I _{OH} =-0.2mA)	0.8 V _{DDQ}		٧	
Vol	Output low voltage (IoL=+0.2mA)		0.2 V _{DDQ}	٧	
lu	Input Pin leakage current		1	μΑ	
I _{LO}	Output Pin leakage current		1	μΑ	
	Read/Write @13MHz (X8/X16)		5/6	mA	1
	Read/Write @133MHz (X8/X16)		19/23	mA	1
ICC	Read/Write @166MHz (X8/X16)		22/28	mA	1
	Read/Write @200MHz (X8/X16)		26/33	mA	1
	Read/Write @225MHz (X8/X16)		29/37	mA	1
	Read/Write @250MHz (X8/X16)		32/40	mA	1
ISB _{EXT}	Standby current (105C)		1100	μΑ	2
ISB _{STD}	Standby current (85C)		680	μΑ	2
ISB _{STDDPD}	Standby current (Deep Power Down - 40°C to 85°C)		20	μΑ	3

Note 1: Current is only characterized.

Note 2: Without CLK toggling. ISB will be higher if CLK is toggling.

Note 3: Typical mean ISBstddpd 8uA at 25°C

256Mb DDR Octal-SPI Pseudo-SRAM

8.6 ISB Partial Array Refresh Current

Table 26: Typical-mean PASR Current @ 25°C

Standby (Standby Current @ 25°C									
PASR	ISB -typical mean Unit Notes									
Full	90	μΑ	1, 2							
1/2	80	μΑ	1, 2							
1/4	75	μΑ	1, 2							
1/8	72	μΑ	1, 2							
Halfsleep	™ Current @ 25°C									
PASR	I Halfsleep™ -typical mean	Unit	Notes							
Full	40	μΑ	1,2,3							
1/2	30	μΑ	1,2,3							
1/4	25	μΑ	1,2,3							
1/8	22	μΑ	1,2,3							

Table27: Typical-mean PASR Current @ 105°C /85°C

Standby Current @ 105°C									
PASR	ISB –typical mean Unit Notes								
Full	530	μΑ	2						
1/2	370	μΑ	2						
1/4	290	μΑ	2						
1/8	250	μΑ	2						
Halfsleep	[™] Current @ 85°C								
PASR	I Halfsleep™ -typical mean	Unit	Notes						
Full	440	μΑ	2, 3						
1/2	300	μΑ	2, 3						
1/4	230	μΑ	2, 3						
1/8	190	μΑ	2, 3						

Note1: Current at 25°C is only attainable by enabling 0.5x Refresh Frequency (see Table 17)

Note2: PASR Current is only characterized without CLK toggling.

Note3: Spec'd Halfsleep[™] current is only guaranteed after 150ms into Halfsleep[™] mode.

Cascadeteq Inc 256Mb DDR Octal-SPI Pseudo-SRAM

8.7 AC Characteristics

Table28: READ/WRITE Timing

		KGD/BGA 1.8V Only											
		133	RMHz 166MHz 200MHz			225MHz 250MHz							
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
tCLK	CLK period	7.5		6		5		4.4		4		ns	
tCH/tCL	Clock high/low width	0.45	0.55	0.45	0.55	0.45	0.55	0.45	0.55	0.45	0.55	tCLK	
tKHKL	CLK rise or fall time		1.2		1		0.8		0.7		0.6	ns	
tCPH	CE# HIGH between subsequent burst operations	15		18		24		26		28		ns	
tCEM	CE# low pulse width (excluding		4		4		4		4		4	μs	Standard temp
	Halfsleep™ exit)		1		1		1		1		1	μs	Extended temp
tCEM	CE# low pulse width	3		3		3		3		3		tCLK	Minimum 3 clocks
tCSP	CE# setup time to CLK rising edge	2		2		2		2		1.6		ns	
tCSP2	CE# rising edge to next CLK falling edge	1.5		1.5		1.5		1.5		1.5		ns	
tCHD	CE# hold time from CLK falling edge	2		2		2		2		1.6		ns	
tSP	Setup time to active CLK edge	0.8		0.6		0.5		0.5		0.5		ns	
tHD	Hold time from active CLK edge	0.8		0.6		0.5		0.5		0.5		ns	Max 0.75*tCLK
tHZ	Chip disable to DQ/DQS output high-Z		6		6		6		6		6	ns	
tRBXwait	Row Boundary Crossing Wait Time	30	65	30	65	30	65	NA	NA	NA	NA	ns	
tRC	Write Cycle	60		60		60		60		60		ns	
tRC	Read Cycle	60		60		60		60		60		ns	
tHS	Minimum Halfsleep™ duration	150		150		150		150		150		μs	
tXHS	Halfsleep™ Exit CE# low to CLK setup time	150		150		150		150		150		μs	
tXPHS		60		60		60		60		60		ns	
LAFIIS	Halfsleep™ Exit CE# low pulse width		tCEM		tCEM		tCEM		tCEM		tCEM	μs	Standard temp
tDPD	Minimum DPD duration	500		500		500		500		500		μs μs	Extended
tDPDp	Minimum period between DPD Modes	500		500		500		500		500		μs	
tXDPD	DPD CE# low to CLK setup time	150		150		150		150		150		μs	
tXPDPD	DPD Exit CE# low pulse width	60		60		60		60		60		ns	
tPU	Device Initialization	150		150		150		150		150		μs	
tRP	RESET# low pulse width	1		1		1		1		1		μs	
tRST	Reset to CMD valid	2		2		2		2		2		μs	

CSS25617SB

Cascadeteq Inc

256Mb DDR Octal-SPI Pseudo-SRAM

Table 29: DDR timing parameters

		KGD/BGA 1.8V Only											
		133	MHz	166	MHz	200MHz		225MHz		250MHz			
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
tCQLZ	Clock rising edge to DQS low	1	6	1	6	1	6	1	6	1	6	ns	
tDQSCK	DQS output access time from CLK	2	6.5	2	6.5	2	6.5	2	6.5	2	6.5	ns	
tDQSQ	DQS – DQ skew		0.6		0.5		0.4		0.4		0.4	ns	
tDS	DQ and DM input setup time	0.8		0.6		0.5		0.5		0.5		ns	
tDH	DQ and DM input hold time	0.8		0.6		0.5		0.5		0.5		ns	

9 Change Log

Version	Who	Date	Description
0.1	William	Oct 31 2023	Initial released version 01