

32Mbit Quad-SPI Pseudo-SRAM Data Sheet

Version: 1

Table of Contents

	Table of contents	2
1.	Feature and Specification	3
2.	Description	3
3.	Package Information	4
	3.1 Package Outline Drawing	4
4.	Ordering Information	6
	4.1 Part Number	6
5.	Package Ball Signal Table	7
6.	Function Diagram	7
7.	Powerup Initialization	8
8.	Interface Description	8
	8.1 Address Space	8
	8.2 Page Size	8
	8.3 Drive Strength	8
	8.4 Power-On Status	8
	8.5 Command/Address Latching Truth Table	9
	8.6 Command Termination	9
9.	Wrap Boundary Taggle Operation	10
10	. SPI Mode Operations	12
	10.1 SPI Read Operations	12
	10.2 SPI Write Operations	14
	10.3 SPI Quad Mode Enable Operation	14
11	. Read ID	14
	11.1 SPI Read ID Operation	15
12	. QPI Mode Operations	15
	12.1 QPI Mode Operations	15
	12.2 QPI Write Operations	16
	12.3 QPI Mode Exit Operation	16
13	. Reset Operation	17
14	. Input/Output Timing	18
15	. Electrical Specifications	18
	15.1 Absolute Maximum Ratings	18
	15.2 Pin Capacitance	19
	15.3 Decoupling Capacitor Requirement	19
	15.4 Operation Conditions	19
	15.5 DC Characteristics	20

The CSS3204L is general part number of 32Mb Quad-SPI Pseudo-SRAM product family. The package type and detailed part number refers to 3. Package Information, 4 Ordering Information and 4.1 Part Number.

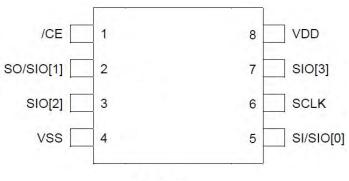
1. Feature and Specification

Single Supply Voltage

VDD=2.7 to 3.6V Interface: SPI/QPI with SDR mode Performance: Clock rate up to 133MHz at VDD=3.0V+/-10% 109MHz at VDD=3.3V+/-10% Organization: 32Mb, 4M x 8bits Addressable Bit Range: A[21:0] Page Size: 1024 bytes Refresh: Self-managed **Operating Temperature Range:** Tc = -40°C to +105°C **Maximum Standby Current:** 350µA @ 105°C 250µA @ 85°C **Typical Standby Current:** 100µA @ 25°C 50Ω Output Drive Strength LVCMOS 1K Bytes Wrapped Burst or 32 Bytes Wrapped Burst via toggle command. 1K Bytes Wrapped Burst as long as tCEM is met Software Reset

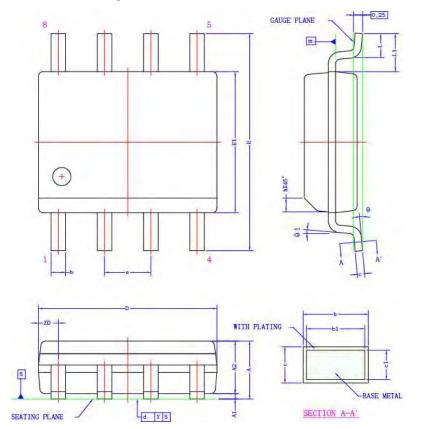
2. Description

This Pseudo-SRAM device features a high speed, low pin count interface. It has 4 SDR I/O pins and operates in SPI(serial peripheral interface) or QPI (quad peripheral interface) mode with frequencies up to 133MHz. The data input (A/DQ) to the memory relies on clock (CLK) to latch all instructions, addresses and data. It is most suitable for low-power portable and wearable or IoT (Internet of Thing) applications. It incorporates a seamless self-managed refresh mechanism. Hence it does not require the support of DRAM refresh from system host. The self-refresh feature is a special design to maximize performance of memory read operation.


4

3. Package Information

The CSS3204LS is available in standard package including 8-lead SOP-8L(150) The CSS3204LU is available in advanced package including 8-lead USON-8L(3x2mm)


Package Type: SOP/USON

Top View

3.1 Package Outline Drawing

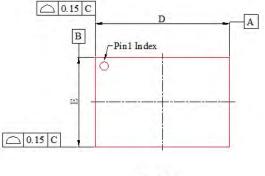
3.1.1 SOP-8L (150) Drawing

SYMBOL	1.1.1	DIMENSION (MM)			DIMENSION (MIL)			
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
A	1,35	1.60	1.75	53	63	69	1	
A1	0,10	0,15	0,25	4	6	10	-	
A2	1,35	1,45	1,55	53	57	61		
ь	0,31	-	0.51	12	-	20		
ь1	0,28	0.40	0.48	11	16	19		
c	0.17	- H	0.25	7	-	10		
c1	0.17 0.20	0,20	0.23	7	8	9		
D	4,80	4.90	5,00	189	193	197	NOTE :	
E	1	6.00 BSC			236 BSC		1, REFE	
E1	3,80	3,90	4,00	150	154	157	2, DIM	
8		1,27 BSC			50 BSC	-	BUR	
L	0.40	0,66	1.27	16	26	50	0,1 DIN	
L1	1	1.05 REF			41 REF		INT	
ZD	Long St	0.55 REF	1000	1.1	22 REF	-	PER	
h	0,25	0,38	0.50	10	15	20	, D.	
Y	-	- H	0.10	-51	-	4	3, DIM	
0	0°	-	8°	0°	-	8"	АLL 'Ъ'	
01	0"			0°			THE	

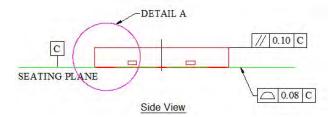
REFER TO JEDEC STD: MS-012 AA,

DIMENSION "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURRS, MOLD FLASH, PROTRUSION AND GATE BURRS SHALL NOT EXCEED 0.15mm PER SIDE.

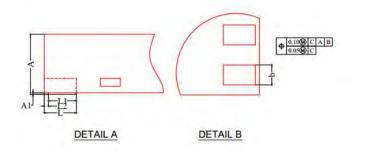
DIMENSION "E1" DOES NOT INCLUDE INTERLEAD WOLD FLASH OR PROTRUSION, INTERLEAD WOLD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25mm PER SIDE.


'D' AND 'E1' DIMENSIONS ARE DETERMIND AT DATUM H .

ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.10mm TOTAL IN EXCESS OF THE

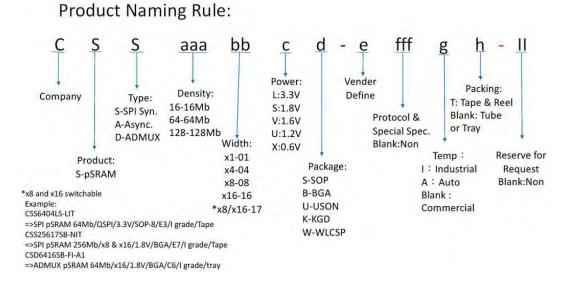

'b' DIMENSION AT MAXIMUM WATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE POOT.

3.1.2 USON-8L (3x2mm) Drawing



Top View

C	MIL	LIMETI	ERS	
Symbol	MIN.	NOM.	MAX	
A	0.40	0.45	0.50	
A1	0.00		0.05	
D	2.90	3.00	3.10	
D1	0.10	0.20	0.30	
E	1.90	2.00	2.10	
E1	1.50	1.60	1.70	
L	0.40	0.45	0.50	
L1	0.30			
L2			0.15	
b	0.20	0.25	0.30	
e	-	C		


NOTE:

1. Scale 1:4

2. ALL DIMENSIONS AND TOLERANCES TAKE REFERANCE TO JEDEC MO-229

3. DIMENSION "b" APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15MM AND 0.30MM FROM THE TERMINAL TIP. IF THE TERMINAL HAS OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL, THE DIMENSION B SHOULD NOT BE MEASURED IN THAT RADIUS AREA.

4. Ordering Information

4.1 Part Number:

Table 1 Part Number									
Part Number	Density	Temperature	Note						
CSS3204LU-L-A2	32Mb	0-70C	USON						
CSS3204LU-LE-A2	32Mb	-25~85C	USON						
CSS3204LS-L-A2	32Mb	0-70C	SOP8						
CSS3204LS-LI-A2	32Mb	-40~85C	SOP8						
CSS3204LS-LJ-A2	32Mb	-40~105C	SOP8						

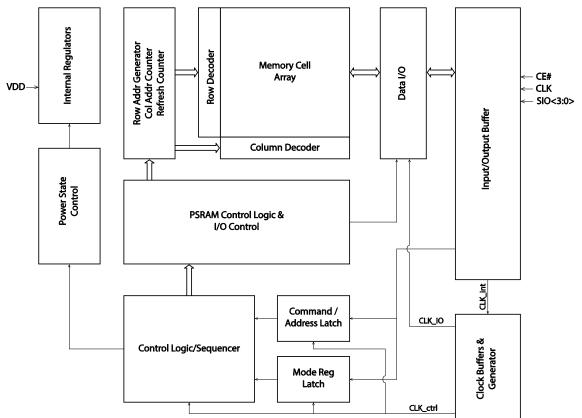
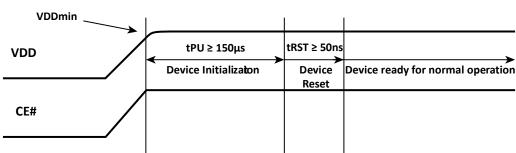

5. Package Ball Signal Table

Table 2 Signals Table

Symbol	Туре	SPI Mode Function QPI Mode Function		QPI Mode Function	Comments			
VDD	Power		Core sup	oly				
VSS	Ground		Core supply ground					
CE#	Input	Chip select, acti	Chip select, active low. When CE#=1, chip is in standby state					
CLK	Input							
SI/SIO[0]	10	Serial Input	IO[0]*	IO[0]* IO[0]				
SO/SIO[1]	10	Serial Output	IO[1] *	IO[1]				
SIO[2]	10		IO[2]* IO[2]					
SIO[3]	10		IO[3] *					

Note: * Quad SPI mode

6. Function Diagram



7. Powerup Initialization

SPI/QPI products include an on-chip voltage sensor used to start the self-initialization process. When VDD reaches a stable level at or above minimum VDD, the device will require 150µs and user-issued RESET Operation (see section 13) to complete its self-initialization process. From the beginning of power ramp to the end of the 150µs period, CLK should remain LOW, CE# should remain HIGH (track VDD within 200mV) and SI/SO/SIO[3:0] should remain LOW.

After the Device Reset tRST \geq 50ns period the device is ready for normal operation.

8. Interface Description

8.1 Address Space

SPI/QPI PSRAM device is byte-addressable. 32M device is addressed with A[21:0]

8.2 Page Size

Page size is 1K (CA[9:0]). The device operates in a bursting address sequence back to starting address of same page in a wrap manner.

8.3 Drive Strength

The device powers up in 50Ω .

8.4 Power-On Status

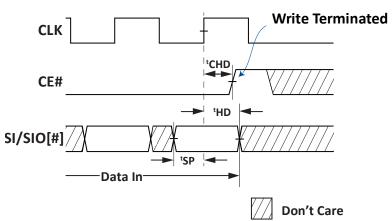
The device powers up in SPI Mode. It is required to have CE# high before beginning any operations.

9

8.5 Command/Address Latching Truth Table

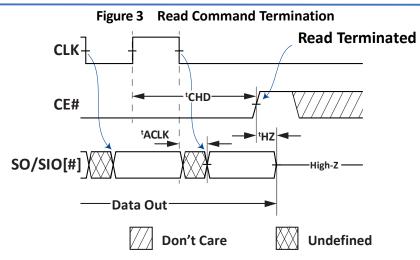
The device recognizes the following commands specified by the various input methods

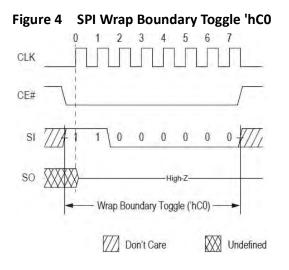
			•	Table 2	True	e Table					
				SPI Mode (C	(E=0			(QPI Mode (O	QE=1)
Command	Code	Cmd	Addr	Wait Cycle	DIO	Max Freq.	Cmd	Addr	Wait Cycle	DIO	Max Freq.
Read	'h03	S	S	0	S	33			N/A		
Fast Read	'h0B	S	S	8	S	133*	Q	Q	4	Q	66
Fast Read Quad	'hEB	S	Q	6	Q	133*	Q	Q	6	Q	133*
Write	'h02	S	S	0	S	133*	Q	Q	0	Q	133*
Quad Write	'h38	S	Q	0	Q	133*			same as 'h	n02	
Enter Quad Mode	'h35	S	-	-	-	133			N/A		
Exit Quad Mode	'hF5			N/A			Q	-	-	-	133
Reset Enable	'h66	S	-	-	-	133	Q	-	-	-	133
Reset	'h99	S	-	-	-	133	Q	-	-	-	133
Wrap Boundary Toggle	'hC0	S	-	-	-	133	Q	-	-	-	133
Read ID	'h9F	S	S	0	S	33			N/A		

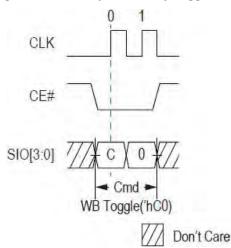

Remark: S = Serial IO, Q = Quad IO

Note *: Max Freq. would be 133MHz at VDD=3.0V+/-10% and 109MHz at VDD= 3.3V+/-10%)

8.6 Command Termination


All Reads & Writes must be completed by raising CE# high immediately afterwards in order to terminate the active command and set the device into standby. Not doing so will block internal refresh operations and cause memory failure.

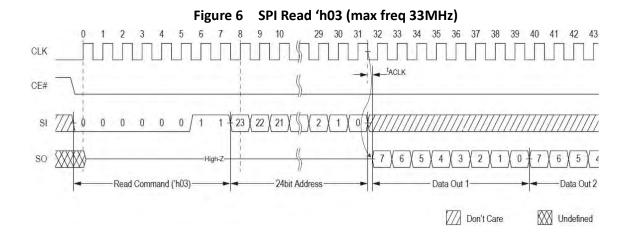

For a memory controller to correctly latch the last piece of data prior to read termination, it is recommended to provide a longer CE# hold time (^tCHD > ^tACLK+^tCLK) for a sufficient data window


9. Wrap Boundary Toggle Operation

The Wrap Boundary Toggle Operation switches the device's wrapped boundary between 1K Bytes Wrapped Burst or 32 Bytes Wrapped Burst. Note that the default setting is 1K Bytes Wrapped.

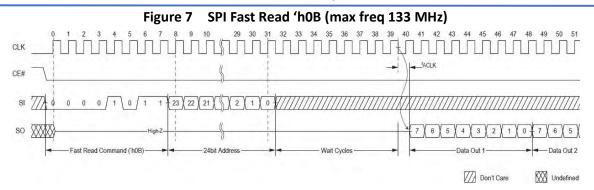
Figure 5 QPI Wrap Boundary Toggle 'hC0

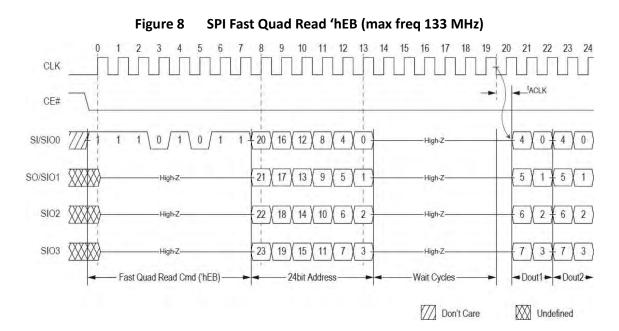
10. SPI Mode Operations

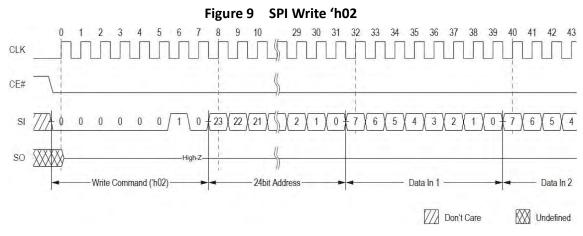

The device powers up into SPI mode by default but can also be switched into QPI mode.

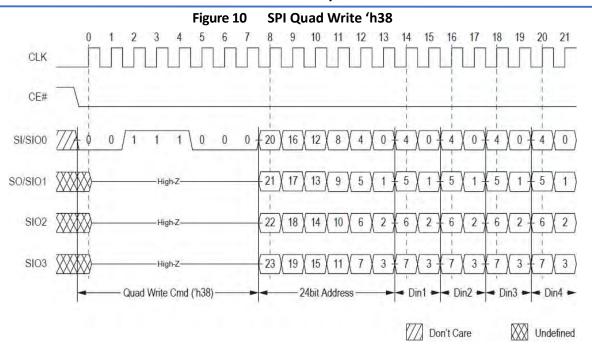
10.1 SPI Read Operations

For all reads, data will be available ^tACLK after the falling edge of CLK.


SPI Reads can be done in three ways:

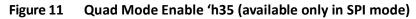

- 1. 'h03: Serial CMD, Serial Addr/IO, slow frequency.
- 2. 'hOB: Serial CMD, Serial Addr/IO, fast frequency.
- 3. 'hEB: Serial CMD, Quad Addr/IO, fast frequency

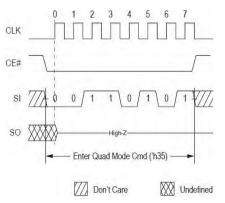




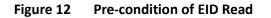
10.2 SPI Write Operations

SPI write command can be input as 'h02 or 'h38.



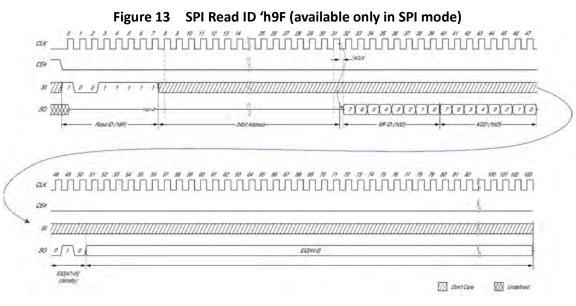


10.3 SPI Quad Mode Enable Operation


This command switches the device into quad IO mode.

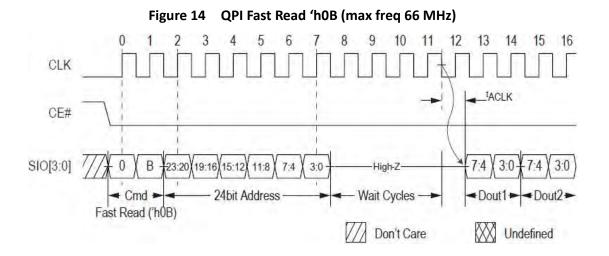
11. Read ID

Read ID command can be used ONLY as Power up initialization after the device Reset tRST \geq 50ns right after Global Reset command.



11.1 SPI Read ID Operations

This command is similar to Fast Read, but without the wait cycles and the device outputs EID value instead of data.

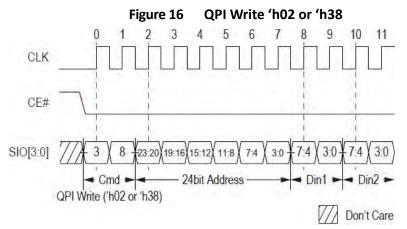

12. QPI Mode Operations

12.1 QPI Mode Operations

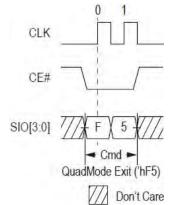
For all reads, data will be available ^tACLK after the falling edge of CLK.

QPI Reads can be done in one of two ways:

- 1. 'h0B: Quad CMD, Quad Addr/IO, slow frequency
- 2. 'hEB: Quad CMD, Quad Addr/IO, fast frequency

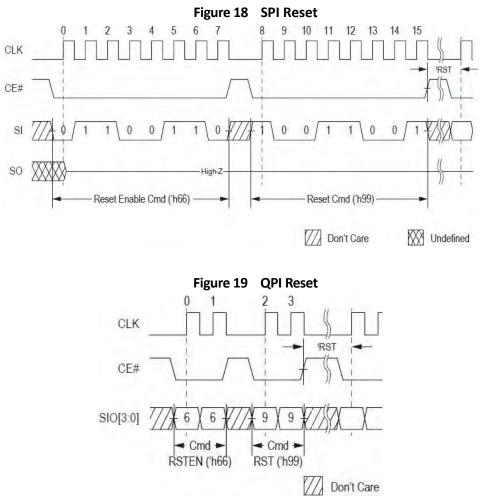


12.2 QPI Write Operations

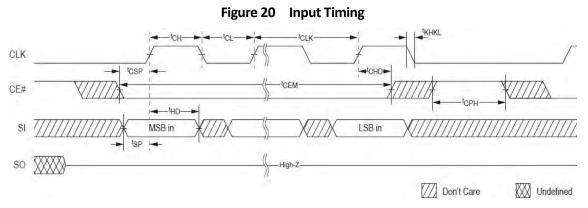

QPI write command can be input as 'h02 or 'h38.

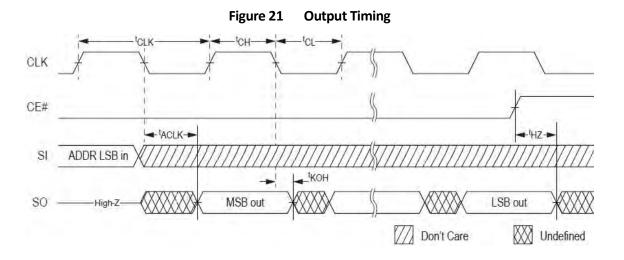
12.3 QPI Quad Mode Exit Operation

This command will switch the device back into serial IO mode.



13. Reset Operation


The Reset operation is used as a system (software) reset that puts the device in SPI standby mode which is also the default mode after power-up. This operation consists of two commands: Reset-Enable (RSTEN) and Reset (RST).



Reset command has to immediately follow the Reset-Enable command in order for the reset operation to take effect. Any command other than the Reset command after the Reset-Enable command will cause the device to exit Reset-Enable state and abandon reset operation.

14. Input/Output Timing

15. Electrical Specifications

15.1 Absolute Maximum Ratings

 Table 4
 Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	Notes
Voltage to any ball except V_{DD} relative to V_{SS}	VT	-0.4 to V _{DD} +0.4	V	
Voltage on V_{DD} supply relative to V_{SS}	V _{DD}	-0.4 to +2.45	V	2
Storage Temperature	T _{STG}	-55 to +150	°C	1

Notes:

- 1. Storage temperature refers to the case surface temperature on the center/top side of the PSRAM.
- 2. During voltage transitions, all pins may overshoot to -0.5V or VCC+0.5V for period up to 20ns.

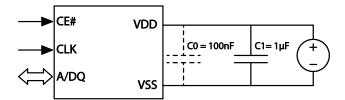
Caution:

Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

15.2 Pin Capacitance

	Table 5	Pin Capac	itance		
Parameter	Symbol	Min	Max	Unit	Notes
Input Pin Capacitance	CIN		6	pF	VIN=0V
Output Pin Capacitance	COUT		8	pF	VOUT=0V

Note: spec'd at 25°C.


Table 6 Load Capacitance

Parameter	Symbol	Min	Max	Unit	Notes
Load Capacitance	C∟		15	pF	

Note: System C_L for the use of package

15.3 Decoupling Capacitor Requirement

It is required to have a decoupling capacitor on VDD pin for IO switching and PSRAM internal transient events. A low ESR 1µF ceramic cap is recommended. To minimize parasitic inductance, place the cap as close to VDD pin as possible. An optional 0.1µF can further improve high frequency transient response.

15.4 Operating Conditions

Table 7 **Operating Characteristics**

Parameter	Min	Max	Unit	Notes
Operating Temperature	-40	105	°C	
Operating Temperature	-40(-25*)	85	°C	*varies by package

15.5 DC Characteristics

Table 8 DC Characteristics

Symbol	Parameter	Min	Max	Unit	Notes				
V _{DD}	Supply Voltage	2.7	3.6	V					
VIH	Input high voltage	V _{DD} -0.4	V _{DD} +0.2	V					
VIL	Input low voltage	-0.2	0.4	V					
V _{OH}	Output high voltage (I _{OH} =-0.2mA)	0.8 V _{DD}		V					
V _{OL}	Output low voltage (I _{OL} =+0.2mA)		0.2 V _{DD}	V					
ILI	Input leakage current		1	μA					
ILO	Output leakage current		1	μA					
Icc	Read/Write		7	mA	1,2				
ISB _{EXT}	Standby current (105C)		350	μA	3				
ISB _{STD}	Standby current (85C)		250	μA	3				
Note :	1. Output load current not included.	•		•	•				

2. 50% bus toggling rate

3. Standby current is measured when CLK is in DC low state.

4. Typical ISB_{STDROOM} is 100uA.

15.6 AC Characteristics

Table 9Read/Write Timing

Symbol	Parameter	Min	Max	Unit	Notes					
	CLK period - SPI Read ('h03)	30.3			33MHz					
	CLK period - QPI Read ('h0B)	15.1			66MHz					
	CLK period - all other operations PKG 3V	7.5			133MHz ^{*1,2,3}					
^t CLK	CLK period - all other operations PKG 3.3V	9.17		ns	109MHz ^{*2,3}					
^t CH/ ^t CL	Clock high/low width	0.45	0.55	^t CLK(min)						
^t KHKL	CLK rise or fall time		1.5	ns	4					
^t CPH	CE# HIGH between subsequent burst operations	18		ns						
^t CEM	CE# low pulse width		3	μs	Extended grade					
CLIVI			8	μs	Standard grade					
^t CSP	CE# setup time to CLK rising edge PKG	2.5		ns						
^t CHD	CE# hold time from CLK rising edge PKG	3.0		ns	2					
^t SP	Setup time to active CLK edge	2		ns						
^t HD	Hold time from active CLK edge	2		ns						
^t HZ	Chip disable to DQ output high-Z		5.5	ns						
^t ACLK	CLK to output delay	2	5.5	ns						
^t KOH	Data hold time from clock falling edge	1.5		ns						
^t RST	Time between end of RST CMD to next valid CMD	50		ns						

Note: 1. Frequency limits are therefore

133MHz (PKG VDD= 3.0V+-10%), 109MHz (PKG VDD= 3.3V+-10%) max for Wrap 32 Bytes

2. System max C_L 15pF for the use of package.

For operating frequencies >84MHz, it is highly recommended to utilize CLK falling edge to sample read data or align sampling clock via data pattern tuning (refer to JEDEC JESD84-B50 for an example).
 Measured from 20% to 80% of VDD

17. Revision History

Vision	Who	Date	Description
1	William CHEN	Dec 19 2022	Initial branded release