

64Mbit Quad-SPI Pseudo-SRAM Data Sheet

CSS6404L

Version: 1

Table of Contents

	Table of contents	2
1.	Feature and Specification	4
2.	Description	5
3.	Package Information	5
	3.1 Package Outline Drawing	6
4.	Ordering Information	8
	4.1 Part Number	8
5.	Package Ball Signal Table	8
6.	Function Diagram	9
7.	Powerup Initialization	9
8.	Interface Description	10
	8.1 Address Space	10
	8.2 Page Size	
	8.3 Drive Strength	10
	8.4 Power-On Status	
	8.5 Command/Address Latching Truth Table	10
	8.6 Command Termination	11
9.	Wrap Boundary Taggle Operation	12
10	. SPI Mode Operations	12
	10.1 Access Using CRE	13
	10.2 SPI Write Operations	14
	10.3 SPI Quad Mode Enable Operation	15
11	. Read ID	15
	11.1 SPI Read ID Operation	16
12	. QPI Mode Operations	16
	12.1 QPI Mode Operations	16
	12.2 QPI Write Operations	17
	12.3 QPI Mode Exit Operation	17
13	. Reset Operation	18
14	. Input/Output Timing	19
15	. Electrical Specifications	19
	15.1 Absolute Maximum Ratings	
	15.2 Pin Capacitance	20
	15.3 Decoupling Capacitor Requirement	20
	15.4 Operation Conditions	20
	15.5 DC Characteristics	21

15.6 AC Characteristics22
16. Revision History

The CSS6404L is general part number of 64Mb 3.3V Quad-SPI Pseudo-SRAM product family. The package type and detailed part number refers to 3. Package Information, 4 Ordering Information and 4.1 Part Number.

1. Feature and Specification

Interface:

SPI/QPI with SDR mode

Single Supply Voltage:

VDD=2.7 to 3.6V

Performance: Clock rate up to

133MHz for 32 Bytes Wrapped Burst operation at VDD=3.0V+/-10%

109MHz for 32 Bytes Wrapped Burst operation at VDD=3.3V+/-10%

84MHz for Linear Burst operation

Organization:

64Mb, 8M x 8bits

Addressable Bit Range:

A[22:0]

Page Size:

1024 bytes

Refresh:

Self-managed

Operating Temperature Range (refer to 4.1 Part Number)

T_{OPER} = -40°C to +85°C (standard range)

T_{OPER} = -40°C to +105°C (extended range)

Maximum Standby Current

350µA @ 105°C

250μA @ 85°C

Typical Halfsleep[™] Mode with data retained

100µA @ 25°C

50Ω Output Drive Strength LVCMOS.

Linear Burst (continuous) or **32 Bytes Wrapped Burst** via Wrap Boundary Toggle command Linear Burst:

Supported up to 84MHz and can cross page boundary as long as tCEM is met.

Software Reset

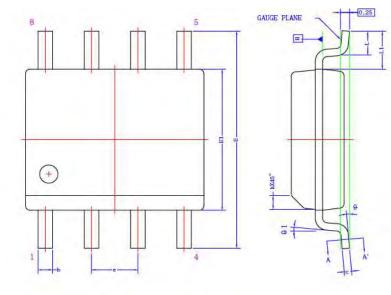


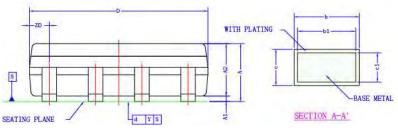
2. Description

The feature of the CSS6404SL is a high speed, low pin count interface. It has 4 SDR I/O pins and operates in SPI(serial peripheral interface) or QPI (quad peripheral interface) mode with frequencies up to 133MHz. The data input (A/DQ) to the memory relies on clock (CLK) to latch all instructions, addresses and data. It is most suitable for low-power and low cost applications like portable, wearable or IoT devices. It incorporates a seamless self-managed refresh mechanism. Hence it does not require the support of DRAM refresh from system host. The self-refresh feature is a special design to maximize performance of memory read operation.

3. Package Information

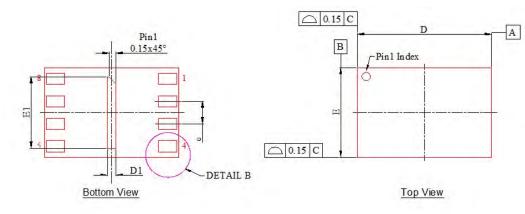
The CSS6404LS is available in standard package including 8-lead SOP-8L(150) The CSS6404LU is available in advanced package including 8-lead USON-8L(3x2mm)

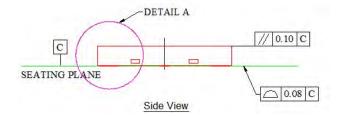


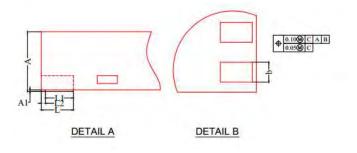

Package Type: SOP/USON (Not to scale)

3.1 Package Outline Drawing

3.1.1 SOP-8L (150) Drawing






SYMBOL	DIMENSION (MM)			DIMENSION (MIL)			
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
A	1,35	1.60	1.75	53	63	69	
A1	0.10	0,15	0,25	4	6	10	
A2	1,35	1,45	1,55	53	57	61	
ь	0,31	-	0.51	12	-	20	E
b1	0.28	0.40	0.48	11	16	19	
с	0.17		0.25	7	-	10	
c1	0.17	0,20	0,23	7	8	9	
D	4,80	4.90	5,00	189	193	197	NOTE :
E	1	6.00 BSC			236 BSC		1, REFER TO JEDEC STD: NS-012 AA,
E1	3,80	3,90	4,00	150	154	157	2. DIMENSION *D* DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GA
е		1.27 BSC			50 BSC		BURRS, MOLD FLASH, PROTRUSION AND GATE BURRS SHALL NOT EXCE
L	0.40	0,66	1.27	16	26	50	0.15mm PER SIDE. DIMENSION *E1" DOES NOT INCLUDE INTERLEAD WOLD FLASH OR PRO
L1	1	1.05 REF			41 REF		INTERLEAD WOLD FLASH OR PROTRUSION SHALL NOT EXCEED 0,25mm
ZD	1	0.55 REF	A	1.1	22 REF		PER SIDE,
h	0.25	0.38	0.50	10	15	20	'D' AND 'E1' DIMENSIONS ARE DETERMIND AT DATUM H .
Y	-	-	0.10		-	4	3. DIMENSION "6" DOES NOT INCLUDE DAMBAR PROTRUSION,
Ð	0°	-	8°	0°	-	8°	ALLOWABLE DAMBAR PROTRUSION SHALL BE 0,10mm TOTAL IN EXCESS 'b' DIMENSION AT MAXIMUM WATERIAL CONDITION.
01	0*			0°		-	THE DANBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOO

3.1.2 USON-8L (3x2mm) Drawing

C	MILLIMETERS						
Symbol	MIN.	NOM.	MAX				
A	0.40	0.45	0.50				
A1	0.00		0.05				
D	2.90	3.00	3.10				
D1	0.10	0.20	0.30				
E	1.90	2.00	2.10				
E1	1.50	1.60	1.70				
L	0.40	0.45	0.50				
L1	0.30						
L2			0.15				
b	0.20	0.25	0.30				
e	0.50 BSC						

NOTE:

- 1. Scale 1:4
- 2. ALL DIMENSIONS AND TOLERANCES TAKE REFERANCE TO JEDEC MO-229
- 3. DIMENSION "b" APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15MM AND 0.30MM FROM THE TERMINAL TIP. IF THE TERMINAL HAS OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL, THE DIMENSION B SHOULD NOT BE MEASURED IN THAT RADIUS AREA.

Commercial

4. Ordering Information **Product Naming Rule:** bb fff aaa d S Ш С e g Power: Vender Packing: Density: L:3.3V Define Company Type: T: Tape & Reel 16-16Mb S:1.8V S-SPI Syn. Blank: Tube Protocol & 64-64Mb V:1.6V A-Async. or Tray Special Spec. 128-128Mb U:1.2V D-ADMUX Width: Blank:Non X:0.6V Reserve for x1-01 Temp: Product: Package: I: Industrial Request x4-04 S-pSRAM x8-08 S-SOP A : Auto Blank:Non *x8 and x16 switchable **B-BGA** x16-16 Blank :

U-USON

W-WLCSP

K-KGD

Example: CSS6404LS-LIT *x8/x16-17 =>SPI pSRAM 64Mb/QSPI/3.3V/SOP-8/E3/I grade/Tape

CSS25617SB-NIT

=>SPI pSRAM 256Mb/x8 & x16/1.8V/BGA/E7/I grade/Tape

CSD6416SB-FI-A1

=>ADMUX pSRAM 64Mb/x16/1.8V/BGA/C6/I grade/tray

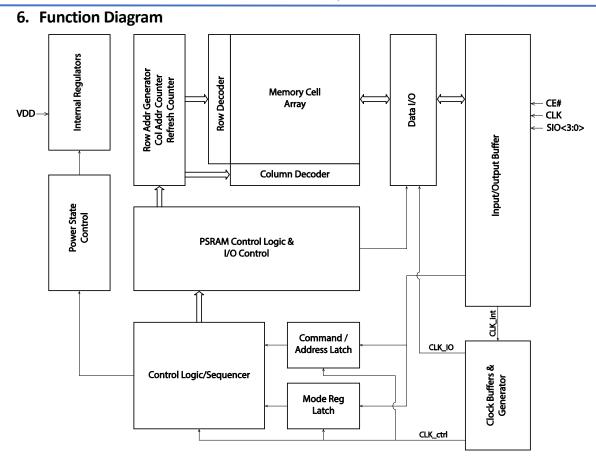
4.1 Part Number: Table 1 Part Number

Density	Temperature Range	Frequency	Note
64Mb	0-70C	84Mhz*	USON
64Mb	-40~85C	84Mhz*	USON
64Mb	0-70C	84Mhz*	SOP8
64Mb	-40~85C	84Mhz*	SOP8
64Mb	-40~105C	84Mhz*	SOP8
	64Mb 64Mb 64Mb 64Mb	64Mb 0-70C 64Mb -40~85C 64Mb 0-70C 64Mb 0-70C 64Mb -40~85C	64Mb 0-70C 84Mhz* 64Mb -40~85C 84Mhz* 64Mb 0-70C 84Mhz* 64Mb 0-70C 84Mhz* 64Mb 0-70C 84Mhz* 64Mb 0-70C 84Mhz*

*Note: 133MHz for 32 Bytes Wrapped Burst operation at VDD=3.0V+/-10% 109MHz for 32 Bytes Wrapped Burst operation at VDD=3.3V+/-10%

84MHz for Linear Burst operation with RBX(row boundary crossing)

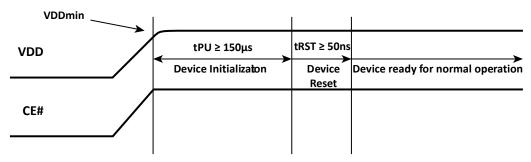
5. Package Ball Signal Table


Signals Table Table 2

Symbol	Туре	SPI Mode	Function	QPI Mode Function	Comments					
VDD	Power									
VSS	Ground		Core supply ground							
CE#	Input	Chip select, act	Chip select, active low. When CE#=1, chip is in standby state							
CLK	Input									
SI/SIO[0]	10	Serial Input								
SO/SIO[1]	10	Serial Output	IO[1] *	IO[1]						
SIO[2]	10									
SIO[3]	10									

Note: * Quad SPI mode

Cascadeteq Inc



7. Powerup Initialization

SPI/QPI products include an on-chip voltage sensor used to start the self-initialization process. When VDD reaches a stable level at or above minimum VDD, the device will require 150µs and user-issued RESET Operation (see section 13) to complete its self-initialization process. From the beginning of power ramp to the end of the 150µs period, CLK should remain LOW, CE# should remain HIGH (track VDD within 200mV) and SI/SO/SIO[3:0] should remain LOW.

After the Device Reset tRST \geq 50ns period the device is ready for normal operation.

Figure 1 Power-Up Initialization Timing

8. Interface Description

8.1 Address Space

SPI/QPI PSRAM device is byte-addressable. 64M device is addressed with A[22:0].

8.2 Page Size

Page size is 1K (CA[9:0]). Default burst setting is Linear Bursting that crosses page boundary in a continuous manner. Note however that burst operations which cross page boundary have a lower max input clock frequency of 84MHz, and it can cross page boundary one time only in a burst. Optionally the device can also be set to wrap 32 (CA[4:0]) via the Wrap Boundary Toggle command and is not allowed to cross page boundary in this configuration.

8.3 Drive Strength

The device powers up in 50Ω .

8.4 Power-On Status

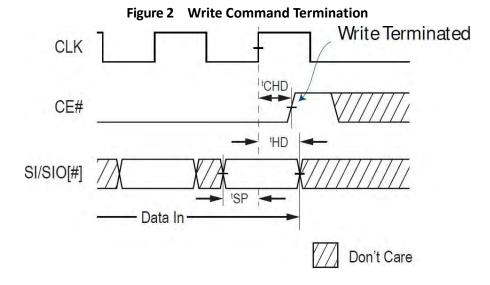
The device powers up in SPI Mode. It is required to have CE# high before beginning any operations.

8.5 Command/Address Latching Truth Table

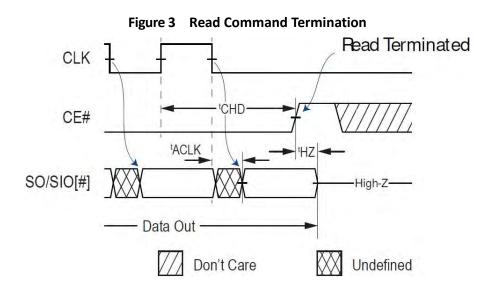
The device recognizes the following commands specified by the various input methods

		SPI Mode (QE=0)				QPI Mode (QE=1))	
Command	Code	Cmd	Addr	Wait Cycle	DIO	Max Freq.	Cmd	Addr	Wait Cycle	DIO	Max Freq.
Read	'h03	S	S	0	S	33			N/A		
Fast Read	'h0B	S	S	8	S	133/84*	Q	Q	4	Q	66
Fast Read Quad	'hEB	S	Q	6	Q	133/84*	Q	Q	6	Q	133/84*
Write	'h02	S	S	0	S	133/84*	Q	Q	0	Q	133/84*
Quad Write	'h38	S	Q	0	Q	133/84*			same as 'h	102	
Enter Quad Mode	'h35	S	-	-	-	133		N/A			
Exit Quad Mode	'hF5	1		N/A			Q	÷		-	133
Reset Enable	'h66	S	-			133	Q		(-	133
Reset	'h99	S	-	1 P.4	-	133	Q	-		-	133
Wrap Boundary Toggle	'hC0	S	1	1.1.2.4	-	133	Q	-	- R. 1	-	133
Read ID	'h9F	S	S	0	S	33			N/A		
Remark: S = S	erial IO,	Q = Qu	ad IO		1.1.1					-	

Table 3 True Table


*Note:

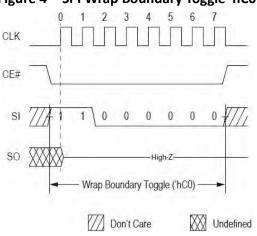
Max Freq. would be 133MHz at VDD=3.0V+/-10% and 109MHz at VDD= 3.3V+/-10%) under Wrap32 operation; **Max Freq.** would be 84MHz under Linear Burst operation. Please refer Section 9 for Wrap32 and Linear Burst operation



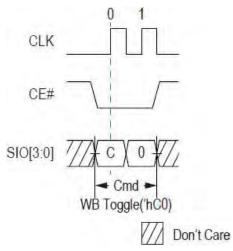
8.6 Command Termination

All Reads & Writes must be completed by raising CE# high immediately afterwards in order to terminate the active command and set the device into standby. Not doing so will block internal refresh operations and cause memory failure.

For a memory controller to correctly latch the last piece of data prior to read termination, it is recommended to provide a longer CE# hold time (^tCHD > ^tACLK+^tCLK) for a sufficient data window.



9. Wrap Boundary Toggle Operation

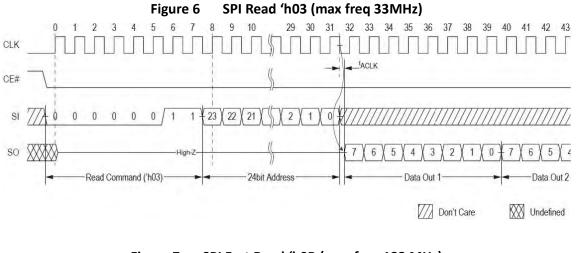

The Wrap Boundary Toggle Operation switches the device's wrapped boundary between Linear Burst which crosses the 1K page boundary (CA[9:0]) and Wrap 32 (CA[4:0]) bytes. Default setting is Linear Burst.

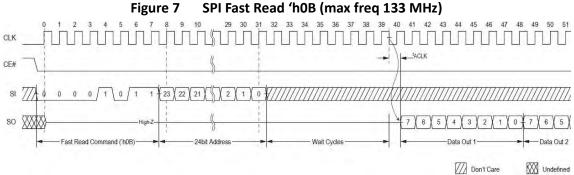
Linear Burst allows the device to burst through page boundary. Page boundary crossing is invisible to the memory controller and limited to a lower max CLK frequency of 84MHz.

Figure 4 SPI Wrap Boundary Toggle 'hC0

10. SPI Mode Operations

The device powers up into SPI mode by default but can also be switched into QPI mode.

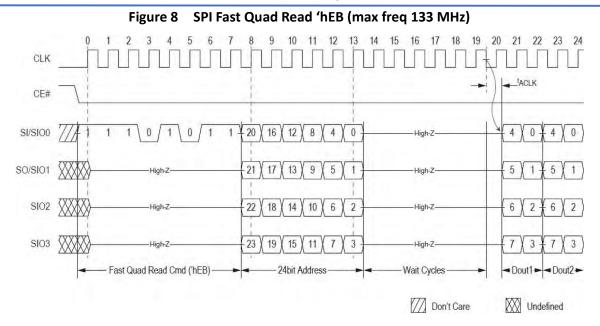



10.1 SPI Read Operation

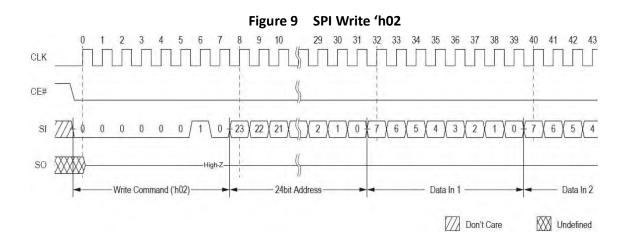
For all reads, data will be available ^tACLK after the falling edge of CLK.

SPI Reads can be done in three ways with Linear Burst or 32 Bytes Wrapped Burst:

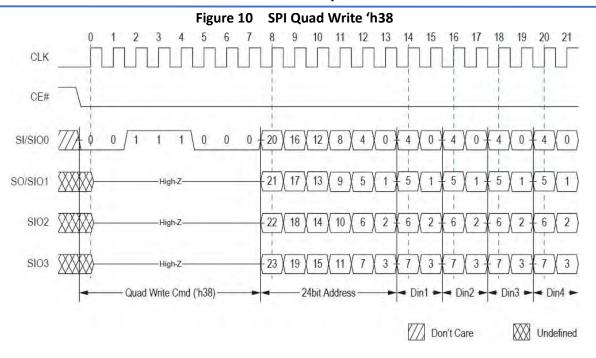
- 1. 'h03: Serial CMD, Serial Addr/IO, slow frequency.
- 2. 'hOB: Serial CMD, Serial Addr/IO, fast frequency.
- 3. 'hEB: Serial CMD, Quad Addr/IO, fast frequency.



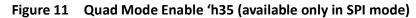
Released date: 2022 Dec 27 Version: 1.0

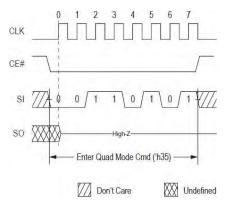


Cascadeteq Inc


10.2 SPI Write Operations

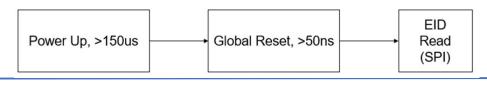
SPI write command can be input as 'h02 or 'h38




Cascadeteq Inc

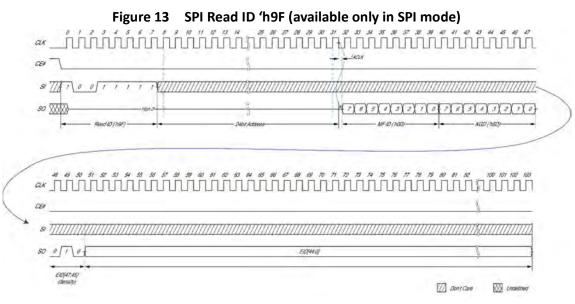
10.3 SPI Quad Mode Enable Operation

This command switches the device into quad IO mode.



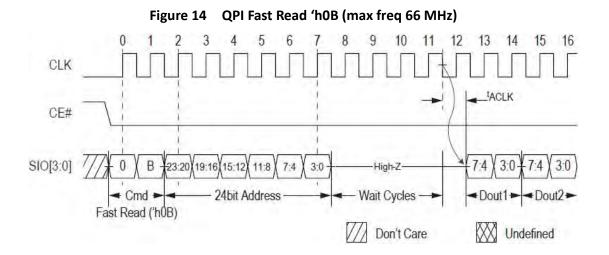
11. Read ID

Read ID command provides information of vendor ID, device density, and manufacturing ID. Note that Read ID command can be used ONLY as Power up initialization after the device Reset tRST \geq 50ns right after Global Reset command.



11.1 SPI Read ID Operations

This command is similar to Fast Read, but without the wait cycles and the device outputs EID value instead of data.

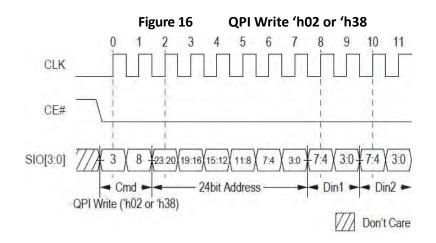

12. QPI Mode Operations

12.1 QPI Read Operations

For all reads, data will be available ^tACLK after the falling edge of CLK.

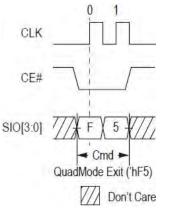
QPI Reads can be done in one of two ways with Linear Burst or 32 Bytes Wrapped Burst:

- 1. 'h0B: Quad CMD, Quad Addr/IO, slow frequency
- 2. 'hEB: Quad CMD, Quad Addr/IO, fast frequency



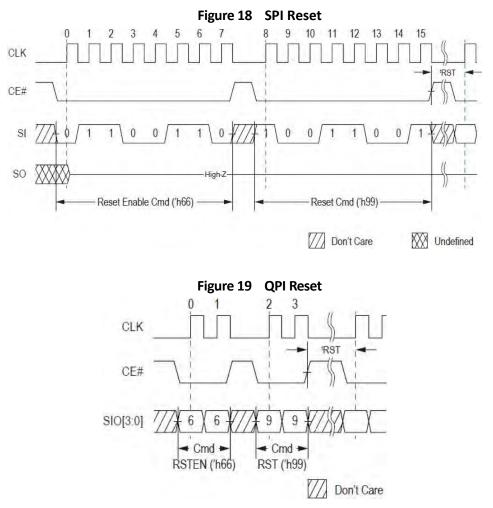
Cascadeteq Inc

12.2 QPI Write Operations

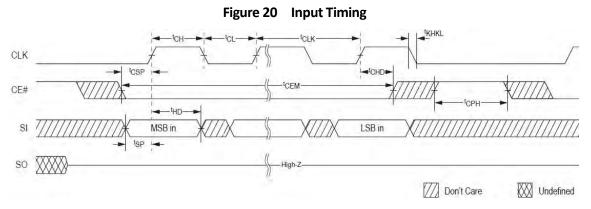

QPI write command can be input as 'h02 or 'h38.

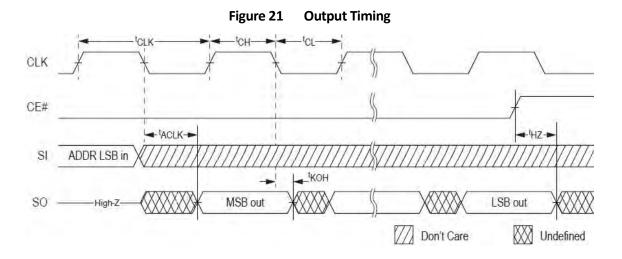
12.3 QPI Quad Mode Exit Operation

This command will switch the device back into serial IO mode.


Figure 17 Quad Mode Exit 'hF5 (only available in QPI mode)

13. Reset Operation


The Reset operation is used as a system (software) reset that puts the device in SPI standby mode which is also the default mode after power-up. This operation consists of two commands: Reset-Enable (RSTEN) and Reset (RST).



Reset command has to immediately follow the Reset-Enable command in order for the reset operation to take effect. Any command other than the Reset command after the Reset-Enable command will cause the device to exit Reset-Enable state and abandon reset operation.

14. Input/Output Timing

15. Electrical Specifications

15.1 Absolute Maximum Ratings

Table 4 Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	Notes
Voltage to any ball except V_{DD} relative to V_{SS}	VT	-0.4 to V _{DD} +0.4	V	
Voltage on V_{DD} supply relative to V_{SS}	V _{DD}	-0.4 to +4.0	V	2
Storage Temperature	T _{STG}	-55 to +150	°C	1

Notes: 1. Storage temperature refers to the case surface temperature on the center/top side of the PSRAM 2. During voltage transitions, all pins may overshoot to -0.5V or VCC+0.5V for period up to 20ns. Caution:

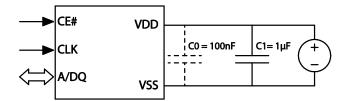
Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability

15.2 Pin Capacitance

Table 5Package Pin Capacitance

Parameter	Symbol	Min	Max	Unit	Notes
Input Pin Capacitance	CIN		6	pF	VIN=0V
Output Pin Capacitance	COUT		8	pF	VOUT=0V

Note: spec'd at 25°C.


Table 6 Load Capacitance

Parameter	Symbol	Min	Max	Unit	Notes
Load Capacitance	CL		15	pF	

Note: System C_L for the use of package

15.3 Decoupling Capacitor Requirement

It is required to have a decoupling capacitor on VDD pin for IO switchings and psram internal transient events. A low ESR 1 μ F ceramic cap is recommended. To minimize parasitic inductance, place the cap as close to VDD pin as possible. An optional 0.1 μ F can further improve high frequency transient response.

15.4 Operating Conditions

 Table 7
 Operating Characteristics

Parameter	Min	Max	Unit	Notes
Operating Temperature (extended)	-40	105	°C	
Operating Temperature (standard)	-40	85	°C	

15.5 DC Characteristics

Table 8 DC Characteristics

Parameter Supply Voltage Input high voltage Input low voltage Output high voltage (I _{OH} =-0.2mA)	Min 2.7 V _{DD} -0.4 -0.2	Max 3.6 V _{DD} +0.2 0.4	UnitVV	Notes
Input high voltage Input low voltage	V _{DD} -0.4	V _{DD} +0.2		
Input low voltage			V	
	-0.2	0.4		
Output high voltage $(I_{-1} = 0.2mA)$			V	
Output high voltage (10H0.211A)	$0.8 V_{\text{DD}}$		V	
Output low voltage (I _{OL} =+0.2mA)		0.2 V _{DD}	V	
Input leakage current		1	μΑ	
Output leakage current		1	μA	
Read/Write		7	mA	1,2
Standby current (105C)		350	μA	3
Standby current (85C)		250	μA	3
l F S	nput leakage current Dutput leakage current Read/Write Standby current (105C)	nput leakage current Dutput leakage current Read/Write Standby current (105C) Standby current (85C)	nput leakage current1Dutput leakage current1Read/Write7Standby current (105C)350Standby current (85C)250	nput leakage current 1 μA Output leakage current 1 μA Read/Write 7 mA Standby current (105C) 350 μA Standby current (85C) 250 μA

Output load current not included.
 50% bus toggling rate

3. Standby current is measured when CLK is in DC low state.

4. Typical ISB_{STDROOM} is 100uA.

15.6 AC Characteristics

Table 9 Read/Write Timing

Symbol	Parameter	Min	Max	Unit	Notes			
	CLK period - SPI Read ('h03)	30.3			33MHz			
	CLK period - QPI Read ('h0B)				66MHz			
	CLK period - all other operations PKG 3V	7.5			133MHz ^{*1,2,3}			
	CLK period - all other operations PKG 3.3V	9.17			109MHz ^{*2,3}			
^t CLK	CLK period - all other operations	11.9		ns	84MHz ^{*1}			
^t CH/ ^t CL	^t CL Clock high/low width		0.55	^t CLK(min)				
^t KHKL	CLK rise or fall time		1.5	ns	4			
^t CPH	CE# HIGH between subsequent burst operations	18		ns				
^t CEM	CE# low pulse width		3	μs	Extended grade			
CLIVI			8	μι	Standard grade			
^t CSP	CE# setup time to CLK rising edge PKG			ns				
^t CHD	CE# hold time from CLK rising edge PKG			ns	2			
^t SP	Setup time to active CLK edge			ns				
^t HD	Hold time from active CLK edge			ns				
^t HZ	Chip disable to DQ output high-Z		5.5	ns				
^t ACLK	CLK to output delay		5.5	ns				
^t KOH	Data hold time from clock falling edge			ns				
^t RST	Time between end of RST CMD to next valid CMD			ns				

Note:

 Only Linear Burst allows page boundary crossing. Frequency limits are therefore 133MHz (PKG VDD= 3.0V+-10%), 109MHz(PKG VDD= 3.3V+-10%) max for Wrap 32 Bytes, and 84MHz for Linear Burst commands cross page boundary

2. System max C_L 15pF for the use of package.

3. For operating frequencies >84MHz, it is highly recommended to utilize CLK falling edge to sample read data or align sampling clock via data pattern tuning (refer to JEDEC JESD84-B50 for an example.)

4. Measured from 20% to 80% of VDD

16. Revision History

Vision	Who	Date	Description
1	William CHEN	Dec 27 2022	Initial branded release