O

DQOrs

PIOTR CZARNAS & ANDRZEJ NAGALSKI, PhD

A STEP-BY-STEP GUIDE TO
IMPROVE DATA QUALITY

HOW TO REACH A 100% DATA QUALITY SCORE

Copyright @ 2024 DQOps

All rights reserved

D@Ops

DQOps is an open-source platform for data quality that covers

the entire data lifecycle, from profiling new data sources to
fully automating data quality monitoring.

The approach to managing data quality changes throughout the data lifecycle.

The preferred interface for the data quality platform also changes: user interface, Python

code, REST API, command line, editing YAML files, running locally, or configuring a
shared server. DQOps supports all of these options.

Learn more about DQOps at www.dgops.com

EVALUATING NEW DATA
SOURCES

Data scientists and data analysts
want to review the data quality of
new data sources or understand
the data present on the data lake
by profiling data.

TESTING DATA

An organization has a dedicated
data quality team that handles
quality assurance for data
platforms. Data quality engineers
want to evaluate all sorts of data
quality checks.

CREATING DATA PIPELINES

The data engineering teams want
to verify data quality checks
required by the Data Contract on
both source and transformed data.

OPERATIONS

The data platform matures and
transitions to a production stage.
The data operations team
watches for schema changes and
data changes that make the data
unusable.

http://www.dqops.com

Table of Contents

Introduction

Glossary

Data quality monitoring process

l. Setting up data quality monitoring

1. Define data quality requirements from the business perspective

© 00 N O

DO.1. Analyze and define business needs for data quality monitoring
DO.2. Provide a list of tables and columns to be monitored

DO.3. Provide a list of metrics for data quality checks

DO.4 (Optional) Provide a list of business KPlIs

2. Define data quality requirements from the data engineering perspective

DE.1. Define requirements for the data engineering process
DE.2. Provide a list of recent issues with data pipelines
DE.3. Review the existing data quality checks

DE.4. Introduce the Data Quality Team to the infrastructure

DE.5. Provide necessary credentials

3. Connecting data quality checks

DQ.1. Create a data quality environment
DQ.2. Import metadata
DQ.3. Deploy data quality checks
Data quality check definition
Time and data grouping slicing
Deployment of data quality checks
DQ.4. Configure initial alerting thresholds
DQ.5. (Optional) Develop and deploy custom data quality checks
DO.5. Provide a list of KPIs to be monitored
DE.6. Provide a list of metrics to monitor the data pipeline
DQ.6. Create data quality KPI dashboards
Governance dashboards
Operational dashboards

Detailed dashboards
Design and development of data quality dashboards

12
16
17
20
23
25
28
31
34
37
38
41
44
44
46
51
55
59
64
69
75
75
76
78
79

Il. Improving data quality KPIs
4. Optimizing data quality scores
DQ.7. Check the KPIs on dashboards
DQ.8. Identify tables affected by data quality issues
Data quality incident automation
DQ.9. Re-execute data quality checks
DQ.10. Identify unresolved data quality issues
5. Fixing source data issues
DO.6. Review the data quality issue
DO.7. Identify the root cause of the issue
DO.8. Review or fix the issue with the Data Producer
DO.9. Create a list of data quality exceptions
DQ.12. Adjust thresholds and KPIs for low-quality tables
6. Fixing data pipeline issues
DE.7. Review issues in the data pipelines
DE.8. Fix issues in the data pipelines
DE.9. Create a list of tables that are not production-ready
DQ.11. Reconfigure data quality checks
Summary

82
82
83
86
88
91
94
95
96
99
101
103
107
110
111
114
115
116
119

Introduction

Data quality assurance refers to the process of ensuring that data meets the expectations of those
who will use it. The field of data quality has adopted the word “dimension” to identify the aspects
of data that can be measured and through which its quality can be quantified. While different
experts have proposed different data quality dimensions, almost all of them include some version
of accuracy, validity, completeness, consistency, currency, or timeliness.

Data quality can mean different things to different companies, and the number and types of
measures used to assess data quality may vary depending on how a company intends to use its
data. The outcomes of data quality measurements are known as data quality key performance
indicators (KPIs). These scores are used to evaluate the health and quality of data sources and
ensure compliance with data quality requirements, which are typically agreed upon in a data
contract between a data producer and a data consumer.

Data quality KPIs can be classified into two categories: business-focused and data
engineering-focused. Business-focused KPIs help to monitor data quality and ensure data
trustworthiness, whereas data engineering-focused KPIs monitor data pipeline issues, allowing
data engineering teams to improve data platforms.

Data quality monitoring and improvement involve different stakeholders, including the Data
Owner, Data Producer, Data Engineering Team, and Data Quality Team.

The Data Owner has a deep understanding of the data’s purpose, the data model, and the
business processes in their area of responsibility. Additionally, they have expertise in the
line-of-business applications that utilize the monitored data. This knowledge empowers them to
analyze and define business needs for data quality. They identify tables requiring data quality
checks and establish acceptable metrics and thresholds for these checks. Furthermore, they
collaborate with the Data Quality Team to investigate potential data quality issues and identify root
causes.

The Data Producer is the owner of an external platform that is the source of data imported into the
monitored data warehouse or data lake. The Data Producer may also be an external vendor
involved in a data-sharing agreement.

The Data Engineering Team collects, manages, and converts raw data into usable information for
data scientists and business analysts. This team also builds and maintains data pipelines and
databases. Their responsibilities include designing, building, testing, and maintaining data
management systems essential for high-quality data.

The Data Quality Team plays a critical role in helping organizations achieve their business goals by
identifying poor data quality, which is the root cause of operational failures. They are responsible
for importing metadata from monitored databases into the data quality platform, configuring data

quality checks tailored to specific needs, and monitoring for data quality issues. When issues
arise, the Data Quality Team facilitates the data cleaning process by engaging all stakeholders.

This eBook guides how to improve data quality by setting up a data quality monitoring process.
The process involves tracking data quality KPIs to identify and prioritize data quality issues that
require immediate attention. Data quality KPIs and a list of tables affected by the data quality
issues should be presented on data quality dashboards. Once data quality monitoring is set up,
improving data quality becomes an iterative process that involves identifying issues by the Data
Quality Team, contacting the Data Owner and/or Data Engineering Team to resolve the issues,
and then re-executing data quality monitoring by the Data Quality Team.

The eBook explains the data quality improvement process through a flowchart, which illustrates
the sequence of activities involved in making the process work. Each step and decision in the
process is represented by a shape. The rectangles represent actions and have unique
abbreviations and numbers to help readers locate a detailed description in the eBook. The colors
indicate which stakeholder is responsible for a particular action. The Data Owner (DO) is marked
in , the Data Engineering Team (DE) in [s[{zlslal, and the Data Quality Team (DQ) in

To simplify the process of monitoring data quality and identifying areas for improvement before
quality issues affect the reliability of analytical processes, we have created the DQOps data
quality platform. The platform provides an efficient user interface that makes it easy to add data
sources, configure data quality checks, and manage issues. DQOps comes with over 150 built-in
data quality checks, but users can also design custom checks to detect any business-relevant
data quality issues. The platform supports incremental data quality monitoring to allow the
analysis of data quality for large tables. Users can track data quality KPI scores using built-in or
custom dashboards to show progress in improving data quality to business sponsors. DQOps is
DevOps-friendly, allowing users to define data quality definitions in YAML files stored in Git, run
data quality checks directly from their data pipelines, or automate any action with a Python Client.
DQOps can be used locally or as a SaaS platform.

In DQOps, a data quality check is a combination of the data quality sensor and data quality rule.
The data quality sensors capture measures such as the number of rows, the percentage of null
values in a column, or the current delay between the timestamp of the latest row and the current
system time. The sensors can be implemented as templated SQL queries (DQOps uses the Jinja2
templating engine) or as custom code that can call the appropriate source system's APIs. The
executed data quality check has two possible statuses: passed or failed. The status of the data
quality check is verified by a data quality rule that compares the sensor readout with the minimum
acceptance threshold. Data quality issues are identified as failed data quality checks rejected by
the data quality rule. DQOps calculates data quality KPIs as a percentage of passed data quality
checks for each table, database, or connection.

Glossary

Data Engineering
Team (DE)

Data Owner (DO)

Data Quality
Team (DQ)

Data Producer
Data quality

dashboard

Data quality KPI

Data grouping

Rule
Check

Sensor

Threshold

The team that collects, manages, and converts raw data, builds and
maintains data pipelines, and maintains databases. The Data Engineers
are responsible for designing, building, testing, and maintaining data
management systems.

A person who understands the purpose of the data, the data model, and
the business processes in their area of responsibility; analyzes and defines
business needs, indicates which tables should be checked for data
quality, and sets thresholds for alerts.

The team imports metadata from monitored databases into the data
quality platform, configures data quality checks, and monitors data quality
issues.

The owner of an external platform supplying data to be imported into the
monitored data warehouse or data lake.

A display of data quality KPIs separated by business areas, organizational
units, geographical locations, suppliers, business partners, etc.

The results of data quality measurements. DQOps calculates data quality
KPIs as a percentage of passed data quality checks for each table,
database, or connection.

A data group is a group of rows loaded from a single or different source
and aggregated into one table. Data groups are used to calculate separate
data quality KPI scores for different groups of rows, such as individual
data quality KPIs for different vendors, platforms, departments, or
countries.

A set of conditions against which sensor readouts are verified, described
by a list of thresholds.

A test for data quality is a combination of a data quality sensor and a data
quality rule. Checks are defined as YAML files.

A template SQL query that captures metrics such as the number of rows,
the percentage of null values in a column, or the current delay between
the timestamp of the latest row and the current system time.

The established metric’s value, past which an alert of a given type shall be
raised.

Data owner

Data engineering team

1. Defining data quality requirements

DO.1. Analyze anc

Start data quality
initiative
monitoring

2. Provi

ing access to tested data

Data quality monitoring process

Setting up data quality monitoring Improving data quality KPIs

5. Fixing source data issues

Alist of data quality
issues

| Alist of requirements
| for custom
|

DOS. Create a list of
data quality
exceptions

A list of tables and Alist of data quality DO.8. Review or fix
columns. checks the issue with the

data producer

dashboards:

DO.2. Provide a list of
tables and columns
to be monitored

DO.5. Provide a list of
KPis to be monitored

DO.4. Provide a list of
business KPls

DO.7. Identify the root
cause of the issue

quality check

DO.6. Review the
data quality issue

ixing data pipeline issues

DE.7. Review issues DE.8. Fix issus
in the data pipelines. the data pipaling

Alist of data pipefine
monitoring checks

DE.1. Analyze and
define business
for the data

DE.2. Provide a list of
recent issues with
data pipelines

3. Connecting data quality checks

A list of integration Are the
pote m;::'v‘,v the affected

ables fixed?,

Alist of data pipeline
logs.

DE.4. Introduce the
data quality team o
the infrastructure

DE 5. Provide
ne:

DE.6. Provide a list of
metrics to manitor
ata pipeline

Alist of tables
10 be excluded

quality checks

LEGEND

Start or end of
the pracess.

The action of the data
00)

owner (

The action of the data
‘engineering team (DE)

The action of the data
quality team (DQ)

Optional action

Output document

Optional output

Decision point

t document

DE.8. Create a list of
tables that are not
production-reacy

4, Optimizing data quality scores

Alist of tables
affected by the data
quality issues.

A list of built-in
quality checks

All data meets

Alist of remaining
data quality KPls

custom quality
checks.

Alist of unresolved
data quality issues to
addressed later

l. Setting up data quality monitoring

Setting up data quality monitoring can be divided into three parts. First, the Data Owner needs
to define data quality requirements, translated into a list of tables and columns to be monitored,
a list of data quality checks, and, optionally, a list of business-focused data quality KPIs. Next,
these requirements are transferred to the Data Engineering Team, which reviews them
regarding the data engineering process. The Data Engineering Team generates a list of pipeline
monitoring checks, introduces the Data Quality Team to the infrastructure, and provides the
necessary credentials. In the third part, based on requirements from the Data Owner and the
Data Engineering Team, the Data Quality Team installs the environment, imports the metadata,
and creates data quality checks. Finally, the Data Quality Team assigns the initial data quality
monitoring KPIs thresholds and creates the first data quality monitoring dashboards.

1. Define data quality requirements from the business perspective

A list of tables and
columns

A list of data quality | Alist of business

|
| KPis :

| -

T

DO.1. Analyze and
define business
needs for data quality
monitoring

DO.2. Provide a list of DO.3. Provide a list of
tables and columns metrics for data
to be monitored quality checks

Start data quality
initiative

DO.4, Provide a list of
business KPls

The Data Owner analyzes and defines business goals and needs for data quality monitoring.
The next steps provide a list of tables and columns that the Data Owner wants to monitor. A list
of metrics used to create data quality checks is also defined. Finally, the Data Owner, with the
assistance of the Data Quality Team, defines data quality KPIs relevant from a business
perspective.

DO.1. Analyze and define business needs for data quality monitoring

The Data Owner identifies current goals and scope regarding data quality monitoring. This can
be a specific issue that the Data Owner is trying to fix or a strategic initiative for preventing the
deterioration of data quality in the whole company.

The Data Owner also needs to identify the data elements that are critical or required for a
specific business process that needs to be monitored. This data is typically referred to as
critical data elements (CDEs). The Data Owner should also define the expectations of data
consumers regarding the condition of the data to ensure its suitability for particular purposes.

At this stage, the Data Owner presents business needs for data quality monitoring to the Data
Quality Team to help them better understand the context. This will help the Data Quality Team
define monitoring methods at the later stages.

The Data Owner should take the following steps before proceeding with the data quality
initiative.

Set business goals and scope. To clearly understand the business owner's needs, it is
important to discuss and set business goals for data quality. This will make it easier to
develop metrics to measure its quality.

Identify CDEs for monitoring. Prepare a list of the critical data elements and the most
common problems that lead to data quality issues. This will help qualitatively assess the
scope and area of the problems that need to be targeted.

Set data quality priorities. Clarify what is crucial for the Data Owner to test. The Data
Owner needs to collect all the necessary information about data quality measurement
needs from data consumers.

Assess data quality dimensions. Different companies need a different set of data
quality categories. If the data must arrive on time and without delays, the company
should prioritize timeliness. If it is more important that the data arrives in a specific
format, the company should prioritize validity.

There is a need to review the list of previous data quality issues that the Data Owner would like
to eliminate in the future. The following table shows typical data quality issues that could be
detected.

10

Data quality

Definition

Data quality issue

dimension

Accuracy

The degree of closeness of data
values to real values, often
measured by comparison with a
known source of correct
information.

Data cannot be used as a reliable
source of information and impacts
the organization’s business
intelligence, budgeting,
forecasting, and other critical
activities.

Completeness

The degree to which all required
- records in the dataset,

- data values

are present with no missing
information.

The completeness does not
measure accuracy or validity; it
measures what information is
missing.

Missing values/data or rows.

Consistency

The degree to which data values
of two sets of attributes

- within a record,

- within a data file,

- between data files,

- within a record at different points
in time

comply with a rule.

This dimension represents if the
same information stored and used
at multiple instances matches.

An inconsistent number of rows.
Information stored in one place
does not match relevant data
stored elsewhere.

Reasonableness

The degree to which a data
pattern meets expectations.
Reasonableness measures the
degree to which data values have
a reasonable or understandable
data type and size.

The values in the database are not
reasonable

Timeliness

The degree to which the period
between the time of creation of the
real value and the time that the
dataset is available is appropriate.

Data is not up-to-date

11

Data quality

dimension

Definition

Data quality issue

Uniqueness The degree to which records occur [The same data is stored in multiple
only once in a data file and are not |locations.
duplicated.

Validity The degree to which data values [Invalid data format.

comply with pre-defined business
rules such as the format, type, and
range. E.g., zip codes. e-mails

The Data Owner does not always have full control over the data. Data that is shared with
external partners and vendors should meet data-sharing KPIs. The Data Owner may define the
data quality KPIs that will be monitored.

DO.2. Provide a list of tables and columns to be monitored

Now that the CDEs (critical data elements) have been identified, before the Data Owner can
measure the data quality, there is a need to know how the data is structured in the data store.
At this stage, the Data Owner checks the frequency of data updates, data size, format,
patterns, completeness, etc. The Data Owner also carefully checks the number of tables,
columns, and their names. Before implementing data quality monitoring using DQOps, the data
must be uniform in these aspects.

To complete this stage, make sure the following steps have been taken.

Identify monitored databases, data warehouses, and data lakes. The Data Owner
should decide which data platforms will be included in the monitoring and improvement
of the data quality. DQOps platform supports the most commonly used data sources.

Decide which stages should be monitored. Tables have different purposes along the
data lineage. Monitoring the quality of the ingestion stage measures the quality of the
source data and the reliability of the data ingestion process. Monitoring can also
measure the data sharing KPI for an external Data Producer (a business partner).
Measuring the quality of the reporting layer and data mart ensures that the dashboards
show the correct numbers. Depending on the goal of the data quality project, all or only
selected stages may be monitored.

Identify the file formats. If the ingestion stages, and therefore the quality of flat files,
are monitored, the Data Owner should identify the expected file formats, such as CSV,

12

Parquet, ORC, or JSON. The DQOps platform allows data quality monitoring of CSV,
Parquet, and JSON files.

Provide a list of tables to be monitored. The Data Owner should gather a list of
important tables affected by data quality issues.

Prioritize tables based on their importance. A data quality improvement project can
provide a quick return on investment when the most important tables are cleaned up
first. The next steps in the project can be implemented in sprints. Groups of tables with
the same priority can also be assigned a project milestone. DQOps supports assigning
priorities to tables.

Identify large tables. Large tables stored on Big data platforms require special
attention and careful planning. Executing data quality checks on these tables can be
time-consuming or can affect regular workload, reducing the responsiveness of the data
platform or even slowing down regular data loading jobs.

Identify date-partitioned tables. Tables that are physically partitioned by date or date
and time are candidates for date-partitioned data quality checks. DQOps can monitor
the data quality of each daily partition separately. Data quality readouts (such as a row
count) and data quality alerts can be evaluated for each daily partition separately and
can be associated with the date of the partition. Daily-partitioned tables include
ingestion tables, fact tables, clickstreams tables, and transaction tables.

Identify append-only tables with an event timestamp column. Date-partitioned data
quality checks in DQOps are not limited to tables physically stored using date
partitioning. Tables that do not change often can also be analyzed for data quality
issues in a daily time gradient. DQOps treats them as date-partitioned tables and
calculates separate data quality scores for each "day of data" separately.

Provide the list of columns to be monitored. Specify all columns that should be
monitored and identify the expected data formats. Examples of columns that should be
monitored for data quality include identifiers (should not be null), measures (should be
within valid ranges), columns that store a value from a dictionary (such as country
codes), and all columns with known formats (such as email). When tables store all data
in a text column (varchar, string), the expected data type should be specified. DQOps
simplifies the identification of columns that should be monitored by providing basic
statistics.

Add comments on known data quality issues. The list of tables and columns should
be extended with comments on the most severe and recurring data quality issues

13

related to these tables and columns. This information will help in selecting appropriate
data quality checks.

Specify the frequency of updates. The frequency of table changes and the
configuration of the data pipeline scheduler are very important for the correct
configuration of the data quality platform. Data quality checks should be scheduled to
match the frequency of data loading operations on the monitored table.

Determine expected schema changes. Configuring data quality monitoring on a table
that is expected to be decommissioned or redesigned can be futile. DQOps data quality
platform has several built-in data quality checks for detecting schema changes, as well
as data quality checks for timeliness, which can detect that decommissioned tables are
no longer fresh.

DQOps platform offers comprehensive support for various data sources (Figure 1.1.). It easily
integrates with relational databases like MySQL, PostgreSQL, and Oracle, as well as
cloud-based data warehouses like Amazon Redshift, Snowflake, or Google BigQuery. It also
empowers you to manage data quality within popular big data processing frameworks like
Spark and Databricks. Additionally, it integrates with SQL query engines like Trino and Athena,
allowing you to seamlessly monitor data quality within your existing analytical workflows.
DQOps extends its reach beyond traditional sources, allowing you to import and monitor flat
files in various formats, including the widely used CSV, Parquet, and JSON files. This ensures
that data residing outside your core databases, such as results from external APIs or data
shared from partners, can be effectively evaluated for quality and incorporated into your overall
data governance strategy.

The DQOps platform offers an overview of the basic statistical summaries (shown in Figure 1.2)
of tables and columns. This summary includes important details such as the number of rows,
data types, value ranges, and missing or unique values. It gives you a quick snapshot of your
data's information, which is helpful in selecting columns for monitoring.

14

Data Sources

D&@o

bigquery-pusiic-data

b 2 S aliest data

=

:_codclive
Kaggie_losn
wens shinszes

hazgie studnis

e sfanacres
V& saape nerepsguen
+ & maven resmuran_ratngs
» & tabe_avaiabity

» £ thaook_scommerse

Brofiing

Monitoring Checks Partiion Checks

Select a database

AlloyDB for PostgreSaL

K_2

Amazon RDS for SQL Server

E

Azure SQL Managed Instance

€

Cloud SQL for SQL Server

(=

JSON

s

Parquet

Data Quality Dashboards Incidents Configuration

Amazon Athena

Amazon Redshift

©)

Azure Synapse Analytics

¥

CockroachDB

Mariabe

MariaDB

o)

Percona Server for My SQL

(N

AV,
7

Snowflake

KA
[=]
vy

Amazon Aurora

Azure Database for MySQL

Bigquery

Microsoft SQL Server

PostgreSQL

I

Trino

K_2

Amazon RDS for MySQL

|

Azure Database for Postgre SQL

€

Cloud SQL for MySQL

S

Databricks

by

MysaL

My

YugabyteDB

@ [2 sychonize ﬂ”.

K_2

Amazon RDS for Postgre SQL

Azure SQL Database

€

Cloud SQL for Postgre SQL

o

DuckDB

o

Oracle Database

O

Single StoreDB

Figure 1.1. DQOps supports data quality monitoring in the most commonly used data sources.

bigquery-public-data

~ BB ahr

v [Columns
» [0 edition
» [0 lower ci
» 00 measure_na
» [0 report_type
» [source
» 000 source_date

» [0 state_name

» [0 upper_ci
» [value
» [Profiling checks

b o austin 311
b ef country_codes
» e cryplo_dogecoin
crypto_dash
dogecoin
dao_ai_test_data
dqo_testing_time_lag
duck-test
example_connection
kaggle_covidiive
kaggle_loan
kaggle_shirisizes
kaggle_students

kaggle_uefamatches

D@o pPs Data Sources

w o america_health_rankings ~ :

» [subpopulation

Profiling Monitoring Checks Partition Checks

f
B Profiling checks for bigquery-public-data.america_health_rankings.ahr
Basic data statistics Table preview
me : Table statistics.

E Total rows 18.16k Column count 10
. Column © Detecteddata - Imported
i name type data type
edition INTS4
i lower ci FLOAT64
measure_name STRING STRING
report_type STRING STRING
source STRING STRING
E source_date Mixed data type STRING
state_name STRING STRING
subpopulation STRING STRING
upper_ci FLOATE4
value FLOATG4

Data Quality Dashboards

Profiling checks

Collected at

Incidents

Table quality status

2024-03-05 14:54:06

Scale: Min value:

2021

Able-Bodied

2021 Health
Dispari

coc.
Behavioral
Ris.

2013-2017

Alabama

American
Indian/Ala.

Configuration

Table comparisons

o I T

Max value: ?:S:t - pgrcuslrlfl:
2021 0 000%
102284 1343 7.40% 1
Uninsured 0 000%
202&:;1%“ 0 000%
e e o
2019 0 000%
Wyoming 0 0.00%
wnite 1508 831% W
103084 1343 740% 1
102684 1292 7.12% |

Collect statistics
<

Distinet:

count Action

1.360k

1.356k

Figure 1.2.
statistics.

simplifies the selection of columns for monitoring by providing basic

15

At this stage of the process, there may be some problems worth noting.

The absence of all tables and columns to be monitored will delay the analysis process
and subsequent implementation.

The average update time of the monitored tables must correspond to the frequency of
periodic evaluation of data quality checks. Otherwise, data that changes every month
could be monitored daily, raising 30x more alerts.

DO.3. Provide a list of metrics for data quality checks

After analyzing the data, the Data Owner, together with the Data Quality Team, defines a list of
metrics that will be used to create data quality checks. The Data Owner should define specific
metrics for each column selected for data quality monitoring. Each selected metric should
relate to a data quality dimension, such as timeliness, completeness, validity, consistency, or
uniqueness. This is an important step because a precise definition of metrics reduces the time
for implementing and subsequently tweaking the data quality rules.

Make sure you complete the following steps before you move to the next stage.

Specify data quality expectations. Based on the assumptions about the expected
quality of the data, the Data Owner should determine how to measure the degree to
which the data meets these expectations.

Prepare a list of metrics from the Data Owner's perspective. This step should result
in associating expectations with different measurements. After analyzing and examining
the metrics structure, the Data Owner can create a list of metrics.

Discuss the list of metrics with the Data Quality Team. After preparing a list of
metrics, the Data Owner must discuss the list with the Data Quality Team. Metrics must
be analyzed to make sure the Data Owner clearly understands their structure.

Finalize the list of metrics. After a qualitative study of the metrics and the needs of the
Data Owner, a final list of metrics can be created. It is important to add a detailed
description of what and how the metrics should be measured. The metrics will be used
to configure alerting thresholds in the data quality checks.

Aggregate required data quality checks. The list of metrics to be measured must
match the list of data quality checks available in the data quality platform of choice.
DQOps platform has more than 150 built-in data quality checks and enables the design
of custom data quality checks to meet any business-specific data quality requirements.

16

You can manage and run data quality checks with a user-friendly interface shown in
Figure 1.3, but also Python code, REST API, and command line.

D@o Data Sources
~ & bigquery-public-data
¥ &% america_health_rankings
v 8 ahr
w [} Columns
» (0 edition
» (00 lower_ci
» (Il measure_name
» [0 report_type
» I source
» [l source_date
» (0 state_name
» [} subpopulation
¥ 0 upper_ci
» I value
» B3 Daily monitoring
» BB Monthly monitering
» o austin_311
b & country_codes

» o crypto_dogecoin

£ crypto_dash
dogecoin
dqo_ai_test_data
dao_testing_time_lag
kaggle_covidive
kaggle_loan

kaggle_shirtsizes

vy v v w vy wvow

£ kaggle_students

Profiling Partition Checks

lower i X

Monitoring Checks

Data Quality Dashboards

Incidents Configuration

[0 Daily monitering checks for bigquery-public-data.america_health_rankings.ahr.lower_ci Save
<
Daily checks Monthly checks
status: Enabled configured at: Effective cron 09*** Nextexecution at: Mar, 07 2024 09:00 Schedule configuration: monitoring_daily.
Show advanced checks Passing rule (KPI met) Failing rule (KPI not met)
Data quality check v Warning threshold Error threshold Fatal threshold
v Nulls g ®
max_count ©
@6 G OGC) E O mmdaly nuls count
- Compieteness o
® & QG B O Wdaiy_nulls_percent Add Warning Add Error Add Fatal
Completeness.
anomaly_percent &
® & O E © daily_nulls_percent_anomaly 5 Add Error Add Fatal
Compieteness
® & O C)E @ aaily_not_nulis_count Add Warning Add Error Add Fatal
Con s
~ Uniqueness g ®
® B OO E O daily_distinct_count Add Wamning Add Error Add Fatal
Uniquaness
@HOOEQ da t_percent Add Waming Add Error Add Fatal
Unig

Figure 1.3. Sample screen from the DQOps platform showing

daily_null_count check.

check editor with activated

It is important to watch out for the following circumstances, which could hinder progress at this

stage.

Inapplicability of metrics selected for a given dataset

Lack of understanding of the description of the metrics.

Lack of insights about the data selected for the data quality process.

Changes in the database schema during the requirements gathering process.

DO.4 (Optional) Provide a list of business KPIs

At this stage, the Data Owner presents the business KPIs that should be tested and the
business reason behind this need. It is important to understand how the database structure

17

aligns with the business process, as this will help identify differences and errors in the data that
do not match reality. The Data Quality Team should assess the proposed business-specific
KPIs to determine whether they can be monitored using a data quality tool. The data model
used by the data quality tool to store the data quality check results must support proper
reporting of those KPIs measured from the business perspective. It is also important to design
business-specific dashboards to provide a clear view of the data quality. These dashboards
should present KPIs separately for relevant categories such as business areas, organizational
units, geographical locations, suppliers, and business partners. Learn more about dashboards

in the DQ.6. Create data quality KPI dashboards chapter.

This stage consists of the following steps.

Demonstrate assumptions for KPlIs. Provide the data team with precise Data Owner's
requirements for KPIs to be displayed on the data quality dashboards.

Review assumptions of KPIs. The Data Quality Team analyzes data to match business
KPI requirements with a list of possible data quality checks. This is a crucial step in the
process as sometimes requirements cannot be implemented with available tools, or the
volume of data makes it impossible to execute data quality checks in the current
environment.

Create the final list of KPIs. The Data Owner and the Data Quality Team work together
to create an accurate list of KPIs and a detailed description of business metrics. The list
should also specify the granularity of the KPIs.

The DQOps platform offers over 50 built-in dashboards, like the sample "KPIs per table -
summary" dashboard shown in Figure 1.4. The platform also allows you to modify these
dashboards or create entirely custom ones using Looker Studio. This flexibility ensures
that your data quality insights are tailored to your needs and business context.

18

D®&Ops Datasouces Profiing Monitoring Checks Partition Checks Data Quality Dashboards Incidents Configuration ® a '
(B show advanced dashboards Summary of changes i X | KPIs per table - sus KPIspermonthsandd... X KPls - current vs previo... X
& Profilng KPIs per table - summary Check type filter monitoring
M Table profiling status = —
& Only ‘include in KPI” checks
M Profiing data quality KPis Connection - Data group name - Table filter e ——
I Data Quality Dimensions
mvoume e o
™ Pl
@ Monitoring urrent month Previous month]
M Current status.
B Data quality KPls
#Executed checks KPI% #Correct results #Warnings #Errors # Fatal errors
88 KPIs scorecard - summary
88 KPIs per table - summary 6.3K 83.0% 5.2K 41 1K 53
88 KPIs per months and days
88 KPIs - current vs previous month
88 KPI history KPIs per connection KPIs per schema
W Data Quality Dimensions i . Correct i Fatal . Cormect i Fatal
- Connection KPI% i Wamings Errors et Schema name KPI'% i Wamings Errors o
olume
. maven_restaurant_ratings 0% 56| n 2| 22— maven_restaurant_satings co% I 56| n 2| 22—
M Schema changes bigquery-public-data sl 7R 0 2030 ol country_codes] 17| 0 n ol
B Partitions kaggle_loan 7o 456l 30 1200 Tomm america_health_rankings 7esmmm 3840 0 1190 ol
W Current status kaggle.students ovEmE 8l 0 o 21— austin 311 om0 0 1n3m ol
M Highest issue severity per day
thelook_ecommerce e 27KEEE 0 sc1mmmm 0 kaggle_loan 7oEEM 456l 30 1208 omm
W Data quality KPIs
W Data Quality Dimensions kaggle_shirtsizes SOEEEE 168 0 3| ol kaggle_student_performance osmmm 88 0 0 21—
Partition volume statistics dgo_ai_test_data sexEEEM 108 0 18| ol thelook_ecommerce SN 2KEEEE O seimmmm 0
L]
L sl kaggle_covidlive oo 755H 0 n ol kaggle_shirtsizes 168] 0 3| 0|
& DQOps usage table_availability v 4 0 0 ol dgo_ai_test_data 108] 0 18 of
M Statistics of executed checks
kaggle_uefamatches 100c N | 0 0 o kaggle_covidiive o 755H 0 n ol
B Execution errors
W Checks nolonger in use kaggle_uefamatches ToovEEEE 1 0 0 ol
KPIs per quality dimension KPIs per check category
ity di i Correct i Fatal Correct i Fatal
Quality dimension KPI% Comita Wamings Ermors a— Check category KPI% « Conta Wamings Erors ot
Reasonableness 69% 2| 0 o om pattems 0% ol 0 3 of
Validity et TR 0 sommm 1 bool o0%| ol 0 0 o
Completeness 83% N 27 . 4 527 32— numeric 1K . 0 407 1.
Uniqueness _— 2561 0 2] ol nulls ToKEEEE 41 SOSH 21 N
Availabilty o 77| 0 o ol i a7l 0 18] of
Timeliness oo . 12| 0 0 ol uniqueness 20410 0 2] ol
Consistency oo EEEN s2M 0 o ol schema ISKEEE 0 2| -
volume 4sam 0 0 of
timeliness 12| 0 0 of
text 2| 0 0 ol
availabiity 71 0 0 ol
KPI per table Results per table
[KP1 % Current month [l KPI % Previous month Correct resuits % Warnings % [l Errors %
I Fatal errors %
kaggle_woridpopulation world_population_datas.
qo_ai_test_data string_test_data 44500979608
atabase_OcOet below_above_value_test_63758.
maven_restaurant_ratings.consumers|
maven_restaurant_ratingsrat
qo_al_test_data string_test_data_44500979608._[0* country_codes.country_codes
maven_sestaurant_satings.consumers| america_health_rankings.ahr|
country_codes country_codes austin_311.311_service._requests
america_heaith_rankings ahr| kaggle_loan eligibility_prediction_for_loan|

Figure 1.4. DQOps platform offers more than 50 built-in data quality dashboards. Users can
modify these dashboards or creat tom on ing Looker St
the “KPIs per table - summary” dashboard.

The sample screen shows

Problems that can appear at this stage:
* The database model is not correctly documented.

* The Data Owner's requirements are unrealistic to
tools.

accomplish with current data quality

19

https://dqops.com/docs/integrations/looker-studio/creating-custom-data-quality-dashboards/

Due to the volume of data, performing data quality checks (such as complex SQL
queries) on current hardware is not economically feasible. A costly database upgrade
would be required.

The result of this stage is a prepared list of KPIs with descriptions for the Data Quality Team.
Sample column names are shown below.

Business Metrics to Expected metric

Requirement ID . Related tables
requirement measure value

2. Define data quality requirements from the data engineering
perspective

A list of integration
points to verify the
data quality

A list of data pipeline A list of data pipeline
monitoring checks logs

DE.1. Analyze and
define business DE.2. Provide a list of DE.3. Review DE.4. Introduce the DE.5. Provide

needs for the data recent issues with the existing data data quality team to necessary
engineering data pipelines quality checks the infrastructure credentials
processes

DQ.1. Create
a data quality — =
environment

The Data Engineering Team manages the data warehouse or data lake. Incoming data quality
issues may affect the stability of the data pipelines. These issues may accumulate, affecting
tables in the downstream data warehouse or data lake layers. Many of these data quality
issues may be detected in advance, allowing the Data Engineering Team to stop processing
and fix the issue.

20

This stage describes the critical steps for gathering the data engineering requirements in the
data quality area, introducing the data engineers to the data quality tool, and connecting the
data quality tool to the data platform.

The data engineers must also introduce the Data Quality Team to the data platform
infrastructure. One of the most critical areas is the integration points to the existing system,
e.g., Where to set up data quality checks at certain stages of data pipelines. Finally, the Data
Engineering Team provides the Data Quality Team with all the necessary authorization
credentials.

Well-designed data warehouses, ETL tools, and data pipelines report the progress of data
pipelines and errors as logs. However, to fully understand the complexities of data processing,
it is necessary to have a bird's eye view of the entire process. Proper implementation of data
observability can provide such a view, allowing organizations to monitor, understand, and
troubleshoot their data infrastructure in real-time. This includes monitoring data ingestion,
transformation, and storage processes to identify anomalies, errors, or deviations from
expected behavior. This empowers data teams to proactively address potential issues before
they escalate, thus minimizing the risk of data downtime, inaccuracies, or disruptions to
business operations.

DQOps streamlines data observability by automatically activating pre-selected data quality
checks on your data sources. As shown in Figure 2.1, the user interface allows you to
customize this configuration, defining which checks are activated by default. DQOps platform
empowers you to detect two key anomalies: outliers, which are new minimum or maximum
values deviating significantly from the norm, and distribution shifts, where typical values like
mean, median, or sum change (as illustrated in Figure 2.2).

21

DQOPS Data Sources

I Sensors

B Rules

W Data quality checks

& Default checks configuration
@ Table-level checks pattems
@ Column-evel checks patiems

@ Manage users

(Default schedules

& Default webhooks

(&) Shared credentials

[Data Dictionary

Profiling

Tabie s crecispatt %

88 Table check pattern default

Monitoring Checks

Target table Profiling

Show aavanced checks

Data quality check

Partition Checks

Monitoring Daily

Data Quality Dashboards Incidents Configuration

Monitoring Monthly Partition Daily Partition Monthly
Passing rule (KPI met)

Warning threshold

- CEED = e

Save

Failing rule (KPI not met)

Error threshold

Fatal threshold

~ Volume

@© ©® & O O daily_row_count

Compiteness

@ ® & © @ gaily_row_count_anomaly

Consistency’

min_count &

1

anomaly_percent @
1

max_percent ®

Ermor

Error

Add Fatal
Add Fatal

go aae

@ ® & © @ daily_row_count_change Error Add Fatal
Consistency 10
v Timeliness
max_days @
@ ® & © (O gaily_data_freshness Emor Add Fatal
Timeliness 2
max_days @
@ ® & © (O oally_data_staleness Error Add Fatal
Timeliness 2

> Accuracy

Figure 2.1. A sample screen from the DQQOps platform shows the default configuration of
table-level volume and timeliness data quality checks. Default checks are automatically
activated on monitored data sources. Learn more about how DQOps enables data observability.

D@o pPS DataSources

v & bigquery-public-data
» o% america_health_rankings
v % austin_311
v B 3M_service_requests
v [Columns
» () city
» (] close_date
» [0 complaint_description
» () council_district_code
» 0 county
» [created_date
» [incident_address
» [incident_zip
» (I last_update_date
» (0 latitude
» (0 location
» (I longitude
» 00 map_page
» (00 map_tile
» [0 source
» [state_plane_x_coordir
» [state_plane_y_coordir
» (0 status
» (I status_change_date
» (I street_name

» () street_number

» M _unioue kev

Profiling

Monitoring Checks

311_service_requests X | latitude X

v Anomaly

® & OB @ daily_partition_sum_anomaly
- Considtency

@O & OC)E O WM EHdaily_partition_mean_anomaly

Consistency

Check results Sensor readouts

Data group (time series) no grouping v

30.40

30.35

30.30

30.25

30.20

30.15 g

30.10

©

TGN SRR 2 P DR RS> o B
AP SN RPN ;PR S
S S S T P O P TN AT SESTES & &

FF I I T I IS I T IS T T IT TP

Partition Checks

Data Quality Dashboards Incidents Configuration

Add Warning

anomaly_percent ©

1

Execution errors

Month Last3 months v

@

Warning (lower bound) [l Actual value Expected value Warning (upper bound)

RS D DS
F F F F & F

& & &
& & S i

K]

®

Add Erro

o x

feR e ed ey
S & PPN
FEFE ¢ ¢

S
$

< Synchronize @ .

o o®

Add Fatal

Add Fatal

PP
s

Figure 2.2. A sample screen from the DQQOps platform user interface shows detected

anomalies.

daily_partition_mean_anomaly check. Learn more about anomaly detection in DQOps.

The graph shows a time series of recent mean values measured with a

22

https://dqops.com/docs/dqo-concepts/data-observability/
https://dqops.com/docs/categories-of-data-quality-checks/how-to-detect-anomaly-data-quality-issues/

DE.1. Define requirements for the data engineering process

After analyzing the Data Owner's needs and specifying the right metrics and checks, the Data
Engineering Team transfers the Data Owner's requirements to the technical team. The Data
Engineering Team also specifies what they want to monitor regarding data quality.

Before moving to the next stage, make sure that the following steps have been completed.

Review the data quality requirements from the data engineering perspective.
Based on the data quality monitoring requirements prepared by the Data Owner, the
Data Engineering Team provides feedback about the feasibility of accessing the data.

Define an incident resolution process. The Data Engineering Team is responsible for
resolving data quality issues caused by pipeline errors or low-quality data from the
source systems. A data quality platform should be integrated into the workflow,
providing early warnings for issues or helping analyze the root cause. The Data
Engineering Team should provide the requirements for the data quality platform and
how the platform should integrate with the existing workflow.

Identify notification channels for data quality issues. The Data Engineering Team
may use Slack, Microsoft Teams, or email for notifications. Jira, ServiceNow, Azure
DevOps, or any other ticketing platform can also be used to track and assign work
items. The data quality platform should publish notifications to these channels or
directly interact with the ticketing platform, creating tickets in real time.

Define the need for process improvement monitoring. If the data quality platform
opens tickets directly in the system, it can lead to a large number of tickets. To manage
this, the Data Engineering Team should provide a list of KPIs to track the increase or
decrease in the number of issues. These KPIs can be tracked on the data quality
dashboards for data engineering. One example of a KPI is the number of data quality
issues detected as anomalies using an algorithm for detecting time series anomalies.

Integrate points with the existing DevOps and DataOps infrastructure. The data
platform may already use DevOps/DataOps practices, such as storing the data pipeline
definitions in a source code repository like Git. Continuous delivery pipelines
automatically deploy new code changes to the platform. Also, many modern data
processing platforms use scripting to implement the data processing steps. The most
popular examples are Apache Airflow for scheduling and dbt for data processing. All
those platforms define the data processing steps in code, offering multiple extension
points to call the data quality platform to evaluate the latest batch of data before it is
accepted and loaded into the downstream systems. You can also seamlessly integrate

23

DQOps into custom data pipelines and ML pipelines by calling a Python client for
DQOps. Figure 2.3 provides a concrete example of using Python code to call the
run_checks operation and execute data quality checks within your pipelines.

Execution

from dgops import client
from dgops.client.api.jobs import run_checks

from dgops.client.models import CheckSearchFilters, \

RunChecksParameters
token = "s4mpl3_4u7h_7ek3n’

dgops_client = client.AuthenticatedClient(
"http://localhost:8888/°,
token=token

request_body = RunChecksParameters(
check_search_filters=CheckSearchFilters(
column="sample_column’,
column_data_type="string’,
connection="sample_connection’,

full_table_name="sample_schema.sample table’,

enabled=True

dummy_execution=False

call_result = run_checks.sync(
client=dqops_client,
json_body=request_body

Return value sample

RunChecksQueueJobResult(
job_id=DqoQueueJobId(
job_id=123456789,
created_at="2823-18-11T13:42:00Z"

result=RunChecksResult(

highest_ severity=RuleSeveritylLevel.ERROR,

executed_checks=18,

correct_results=7,

warnings=1,

errors=2,

fatal errors=8,

execution_errors=6
) 5

status=DqoJobStatus. FINISHED

Return value sample in JSON format

1

"jobId" : {
"jobId" : 123456789,
"createdAt” : "2823-10-11T13:42:00Z"

"result” : {
"highest_severity" : "error”,
"executed_checks” : 18,
"correct_results” : 7,
"warnings" : 1,
"errors” : 2,
"fatal_errors™ : @,
"execution_errors” : @

"status” : "finished”

It is important to pay attention to possible problems that may occur at this stage.

Figure 2.3. Example of Python code calling the DQOps run_checks operation to execute data
quality checks (left panel). The right panel summarizes the executed data quality checks with
the highest data quality issue severity level “error.”

The existing ETL platform may not offer an extension point for executing data quality

checks.

24

Due to the volume of data queried every day, running the data quality checks required
by the Data Owner is not feasible on the existing physical infrastructure. The data
quality checks should be implemented as SQL queries, but their complexity may require
heavy full-table scans or complex joins across the tables. The data platform may not
have enough computing power to process these queries on a daily basis.

DE.2. Provide a list of recent issues with data pipelines

Many data quality issues do not originate from the source system but are caused by bugs or
instability in the data loading platform. Typical causes of issues are canceled jobs, timeouts,
lack of disk space for temporary files, out-of-memory errors, network failures, or bugs in the
transformation code.

The result of these issues is visible mainly as missing or incomplete data in the data warehouse
or data lake. In projects that require real-time or near real-time processing, these issues should
be detected as soon as possible. The data quality platform should identify most of these
problems. Timeliness data quality checks (freshness) detect an increasing processing lag.
Completeness checks can detect missing data when an incidental data pipeline failure occurs.
Accuracy checks can compare the cleansed data with the source data system.

At this stage, the Data Engineering Team should review the list of incidents caused by some
problems with the data pipelines. The Data Quality Team assesses which data quality checks
and data quality dimensions can detect or predict these issues in advance.

Before starting the next stage, the following steps must be taken.

Prepare a list of recent issues with data pipelines. The list of recent data quality
incidents is usually tracked in a ticketing system or a task management system, such as
Jira.

Prioritize data pipelines. Not all data pipelines are the same. Data pipelines that load
core tables should be monitored end-to-end. Pipelines that load dictionary tables
should be monitored if these tables change frequently, and their referential integrity is
crucial.

Provide the frequency of data loading. Timeliness (data lag) data quality checks can
measure the freshness of data. However, the volume of data or its format may not allow
for real-time data loading. Timeliness data quality checks must consider the frequency
of data loading and the expected time of the day when the data pipeline is executed.
Scheduling the subsequent data quality checks should be based on the data pipeline

25

execution frequency and a relevant timeframe (time of the day for a daily refresh, day of
the week for weekly, day of the month for monthly, etc.). This enables the data to be
verified as soon as it is expected to appear in the database.

Identify parallel data streams (groupings). You may have tables that aggregate data
from different data sources, which load data in separate data pipelines. Rows from
different data streams can be identified by specific columns in the table, such as
country, state, vendor, data provider, or department. A data quality platform should be
able to monitor each data grouping separately. In DQOps, this is simply achieved by
running a "GROUP BY" clause in the data quality SQL query.

Define data pipeline extension points. Some data processing and scheduling
platforms, such as Airflow, support extension points. These are places in the data
pipeline where a data quality tool can be called to verify a new batch of data before
confirming that the data loading process can continue. DQOps easily integrates with
Apache Airflow.

The DQOps platform supports different types of timeliness checks, such as data freshness,
staleness, and ingestion delay. Data freshness refers to the age of the most recent row in the
monitored table. It is measured by calculating the difference between the most recent event
timestamp in a table and the current system time when observing the freshness. Data
staleness is similar to data freshness but measures the time since the target table was most
recently loaded. The ingestion delay measures the time it takes for the data pipeline or ETL
process to pick up the latest data and load it into the target table.

DQOps uses data quality dashboards to present the current state of data timeliness and
measure the data timeliness KPI over time. The "History of timeliness issues" dashboard,
shown in Figure 2.4, allows you to review recent timeliness issues.

26

D@ops Data Sources Profiling Monitoring Checks Partition Checks Data Quality Dashboards Incidents Configuration @ @ .
@ show advanced dashboards
g s History of timeliness issues Check ype for Torpord
B Data profiing Issues count Connection - Data group name ~ Table filter Time window: Last 7 days -
' Profiling data quality KPls
M Checkresuls Y
B Data Quality Dimensions
™ Volume # Executed checks # Wamings #Errors # Fatal errors
Table timeliness collected by data freshness, data staleness,
Pl data ingestion delay, and reload lag checks 30 6 14 1
B Schema changes
@ Monitoring
M Current status
W Highest issue severity per day Connections Schemas Data group
W Data quality issues count Connection #lssues ~ Schema name #Issues - Data group name #lssues ~
W Data quality KPIs dao_testing time_lag 1AM doo_testing_time_lag 14— 0 grouping 21—
8 Check results bigquery-public-data 7 austin_311 7
fa Data Quality Dimensions
8 Availabilty
M Accuracy
W Completeness
& Timeliness
82 Current timeliness issues
88 History of timeliness issues
22 Table freshness - tables with the mos
83 Table freshness - tables with the olde
82 Table staleness - tables most recent!
@2 Table staleness - tables no longer loe
88 History of table freshness
88 Minimum, maximum, and average de
M Consistency
W Validity
M Volume
N0 Stage Priority Check name
W Schema changes Table stage #Issues ~ Table priority #Issues ~ Check name #Issues ~
& Partitons - 2 I - 21— daily_data_freshness 14—
@8 Current stetus daily_data_staleness 7
W Highest issue severity per day
W Data quality issues count
W Data quality KPIs
W Check results
W Data Quality Dimensions.
W Partition volume statistics
Pl
% DQOps usage
W Statistics of executed checks
M Execution errors
B Checks no longer in use
@ Agoregated results for all check types
B Data quality issues count
W Data quality KPIs
Issues per severity level Issues distribution
Severity #lssues ~
o 1« — , I Error waming [l Fatal
Fatal] s °
Lé 1
o
8mar 2024 9 mar 2024 10 mar 2024 11 mar 2024 12mar 2024 13 mar 2024 14 mar 2024
Table
§ X e Current Current
Connection.Schema. Table Check display name Issue first seen Issue lastseen ~ Gartent actual expected
value value
bigquery-public-data austin_311.311_service_requests daily_data.freshness 8 mar 2024,1200:02 14 mar 2024, 120001 15 15
dqo_testing_time_lag dqo_testing_time_lag.crypto_dogecoin daily_data_freshness 8 mar 2024, 12:00:02 14 mar 2024, 12:00:00 4093 |
dqo_testing_time_lag dqo_testing_time_lag.crypto_dogecoin daily_data_staleness 8 mar 2024, 12:00:02 14 mar 2024, 12:00:00 4092 2

Figure 2.4. A sample "History of timeliness issues" dashboard from the DQOps helps review

recent timeliness issues.

It is worth paying attention to the following problems with the data pipelines:
* Network issues during data transfer.

- Disk space issues.

27

Out-of-memory errors.

Exceeded API limits.

Outdated credentials.
Configuration issues.

Suboptimal way of delivering files.

Invalid schedules for running the data pipelines.

DE.3. Review the existing data quality checks

Certain data quality checks may already be implemented in the data pipeline and executed at
different stages of data loading. Results of these data quality checks are typically stored in flat
files, inserted into a dedicated table, or forwarded to a cloud-based logging platform such as
Azure Monitor Logs, Google Cloud Logging, or AWS CloudWatch Logs. What is usually missing
is a high-level picture of the most frequently arising issues. A clear understanding of recurring
issues helps you find the root cause of the problem and avoid them in the future. This
emphasizes the importance of identifying all of those logging integration points.

The Data Engineering Team should review the code of the data pipelines and the configuration
of ETL tools, looking for all possible places where valuable log information is stored. The logs
should identify the source or target tables that were referenced. The logs should also have a
timestamp indicating when the error occurred. Additional important information is the severity
level of the problem (e.g., distinction between warnings and errors).

The Data Engineering Team should consult with the Data Quality Team on how their existing
logs can be integrated into a complete data quality result database.

In many cases, log files can be queried just like regular databases. Data quality tools, like
DQOps, that support custom data quality check definitions, can query these logs or aggregate
log entries. Figure 2.5 provides an example of a check available in the DQOps platform, where
custom SQL expressions are used to retrieve the latest results from the log table.

Consider a simple example: the data pipeline writes an entry (inserts one row) to the logging
table in the database for each file that has been processed. The log entry identifies the target
table, the date and time the data is loaded, and the most important value - the number of rows
loaded in that batch. A custom data quality check can aggregate all these log entries daily, add
up the number of loaded rows, and verify that the total number of rows matches the threshold.

28

2024-02-03 21:21:47 sales_dwh

2024-02-03 21:21:47 sales_dwh

2024-02-03 21:21:48 sales_dwh

Example of query that can be used in

1 SELECT

END AS severity

10 WHERE logs.schema_name =

Example of a log table data_pipeline_checks_log containing results of data quality checks.
Each row identifies the timestamp when the check was run, the target table, and the data
quality issue severity level for identified issues.

executed_at schema_name table_name column_name check_name check_metric status

fact_sales row_count 12452342 passed
fact_sales product_id null_count 0 passed
fact_sales category_id null_count 0 passed

import_custom_result_on_table check available in DQOps platform which will pull the

most recent result of the null_count check from the log table containing results of data quality checks.

2 logs.check_metric AS actual_value,
@ AS expected_value,
CASE
WHEN logs.status 'passed’ THEN ©
) WHEN logs.status = ‘failed' THEN 2
7 ELSE 3

FROM data_pipeline_checks_log as logs

"{schema_name}' AND

11 logs.table_name = '{table_name}' AND

12 logs.column_name "{column_name}"' AND

13 logs.check_name = 'null_count’

14 log.executed_at = |

1 SELECT MAX(max_entry.executed_at)

16 FROM data_pipeline_checks_log as max_entry

17 WHERE max_entry.schema_name = '{schema_name}' AND
18 max_entry.table name = '{table_name}' AND

1 max_entry.column_name = "{column_name}' AND
20 max_entry.check_name = 'null_count' AND

21 max_entry.executed_at >= TODAY()

Figure 2.5. DQOps has built-in data quality checks using custom SQL expressions, which is a
quick method for running custom data quality checks without defining reusable (custom)

checks.

Complete the following steps

before moving to the next stage.

Identify the logging framework. The Data Engineering Team should find out what
logging framework or custom logging method is used in the data loading process.

29

Hand over the list of existing data quality checks. The Data Engineering Team should
prepare a list of previously implemented data quality checks and hand it over to the
Data Quality Team.

Identify existing data quality logs. If any data quality checks are being run, the Data
Engineering Team can share logs from these checks with the Data Quality Team. These
existing logs can be migrated and loaded into the global data quality database.

Required fields in the log entries:
Source table or target table.
Date and time.
Type of entry.
A field to distinguish between successful and failed entries.
Optional fields in the log entries:
A number (such as the number of rows processed).
Severity (when errors and warnings are distinguished from each other).
Data pipeline ID.
Additional key/value pairs.
A path to a file that was processed.
Batch ID (if the data is executed in batches).
The following types of events are commonly logged and should be analyzed:
Errors in the data pipelines.
Exceptions raised by custom code.
Data parsing errors.
Start and finish notifications for a certain step in the data pipeline.
Messages with a number of rows or files that were processed.
Custom data quality check results, such as detection of null values.

Problems that may occur at this stage:

30

The data pipeline does not have a logging layer.

The format of logs does not allow them to be read without significant parsing or
processing.

The regular expressions needed to parse log entries are very complex.

This stage results in a list of data pipeline logs provided to the Data Quality Team. The logs
should include information about the processing steps executed by the data pipeline and a
record of data quality checks executed inside the data pipeline.

DE.4. Introduce the Data Quality Team to the infrastructure

Data engineers build, monitor, and maintain data pipelines and ETL processes. When
introducing data quality practices into the architecture, knowledge transfer is required so that
the Data Quality Team can fully understand the infrastructure and tools that are used in the
data platform.

To build a rich data infrastructure, data engineers require a mix of different programming
languages, data management tools, data warehouses, and entire sets of other tools for data
processing, data analytics, and AI/ML. Some of the most commonly used tools in data
platforms include:

Cloud infrastructure (GCP, AWS, Azure).

SQL databases.

Big data SQL engines such as Apache Spark, Presto, and AWS Athena.
ETL platforms.

Data ingestion tools.

Scheduling platforms (such as Airflow or Prefect).

Business intelligence tools.

At this stage, the Data Engineering Team should introduce the Data Quality Team to the
infrastructure and prepare a list of integration points to verify the data quality.

The following infrastructure components in the data platform should be identified:

31

Computing infrastructure. Identify the type of virtual machines or SaaS platforms that
are used to store and process the data.

Database engines. Identify all the database engines that are used and should be
monitored for data quality issues. DQOps supports integration with all the most popular
databases.

Network topology. Some servers may be located in secured locations, protected from
external access using firewalls. A data quality platform must be whitelisted to access
those servers over the network. In some circumstances, the database (such as the
Kerberized Hadoop cluster) can only be queried from a dedicated node (bastion server)
that is part of the cluster. Some components of the data quality platform must be
deployed on a remote server using an agent architecture.

Personal Identifiable Information (Pll) data. Analyzed tables may store sensitive
information. To avoid data leakage, data quality checks for these tables must be
designed with a review and approval process. DQOps supports the detection of Pll data
in tables.

File storage. Data lakes store the data in flat files, such as CSV or Parquet files.
External tables based on flat files should also be monitored for data quality issues. The
location, file format, and directory format for these file locations should be documented.
Folders that meet the Apache Hive folder structure for partitioned data can be easily
queried as regular tables using Apache Spark, Snowflake, Presto, or Microsoft
PolyBase.

Big data engines. Many big data engines, such as Apache Spark, Apache Hive, Presto,
and Trino, require special drivers or additional configuration to establish a connection.
DQOps supports all those engines.

ETL platforms. The ETL platform used for the full extract-transform-load process can
log essential information at each stage. Many ETL platforms can also call on external
services, such as a data quality platform.

Data ingestion tools. The data platform can use basic data ingestion tools with limited
data transformation capability, such as Airbyte.

Scheduling tools. Information about the configuration of a scheduling tool is essential
to integrate the data quality process into the overall data processing pipeline. A
scheduling tool like Apache Airflow can delay the data loading process until the data
quality tool is executed. Knowledge of scheduling is also essential to configure data
quality checks that should be scheduled when data is expected to be present. Still, the

32

data pipeline is not able to trigger the data quality checks automatically when the data
load operation finishes.

Business intelligence tools. Organizations use business intelligence (Bl) tools to
analyze data and gain insights into business operations. However, there are instances
where data quality issues may arise, leading to inaccurate numbers being displayed on
the dashboards generated by these tools. This is where data observability comes in. It
is a process that ensures data quality issues are detected and resolved before they
reach the end-users. Robotic process automation tools can be used to screen-scrape
dashboards. Additional filters and transformation logic can be applied to the Bl tool's
dashboard or data model to ensure the accuracy of the numbers displayed.
Additionally, periodic refreshes performed by the Bl tool may also fail, leading to
inaccuracies. Custom data quality checks can be implemented to compare aggregate
numbers shown on dashboards with a data warehouse or system of record.

DQOps data quality platform can be installed using pip, Docker (Figure 2.6.), or directly
compiling code.

Start DQOps in server mode

To start DQOps in a server mode follow the steps below.
1. Download the dqops/dqo image from DockerHub by running the following command in a terminal:
docker pull dqops/dqo
2. Run the DQOps Docker image
docker run -v [enter the path to your local userhome folder]:/dqo/userhome -d -m=4g -p 8888:8888 dqops/dqo [--dqo.cloud.api-key=here-our-DQOps-Cloud-API-key] run

3. The -v flag mounts your locally created pQops User Home folder into the container. You need to provide the path to your local pQops User Home folder
4. The -p flag creates a mapping between the host's port 8888 to the container’s port 8888. Without the port mapping, you would not be able to access the application.
5. The -d flag turns on a daemon mode

6. The -m parameter configures the memory size for the container. We are advising to allocate at least 2 GB of memory for the DQOps container, which is configured by -m=2g .
DQOps container runs one Java JVM process and several small Python processes (two per core) that are running the rules. DQOps runtime allocates 80% of the container
memory for the JVM heap. The memory is used for caching YAML and parquet files in memory. The memory size can be changed by passing the pgo_JAvA_opTs environment
variable to the container using the following docker run parameter: -e DQO_JAVA_OPTS=-XX:MaxRAMPercentage=60.0

7.The --dgo.cloud.api-key argument specifies the API Key of your DQOps Cloud account.
8. The run command at the end will run the run CLI command command and activate a server mode without the DQOps Shell.

9. After a few seconds open your web browser to http://localhost:8888/. You should see the DQOps user interface.

Figure 2.6. The DQOps data quality platform can be run as a Docker container in server or
command-line mode. You can also build a custom DQQOps container image. The screenshot of
the documentation section explains how to start DQOps in server mode.

33

The following problems may occur at this stage.

Data must be queried only from a collocated server, limiting the choice of data quality
tools to those that support multi-cloud remote agent architecture (such as DQOps).

Additional firewall rules must be configured to access databases.
Personal data must be handled with care.

Data quality checks that access tables with sensitive data must undergo a review
process. The data quality tool should support this process, for example, by requesting a
pull in the source code repository. The tool must then store the definitions as easily
readable flat files (such as data quality check specifications written in YAML or Python
rules used in DQOps).

DE.5. Provide necessary credentials

Once the Data Engineering and Data Quality Teams have identified all the data platform
components within the scope of data quality monitoring, it is time to decide on the expected
level of data access authorization.

Data access rights must be defined for both the data quality engineers and data quality tools.
The data quality engineers will also require access to consoles, query tools, or database
management tools such as Oracle Toad, DBeaver, or Microsoft Management Studio. You may
need to access cloud resources through the appropriate consoles on public clouds to review
the list of available databases, schemas, datasets, and columns. The Data Quality Team
engineers should be granted appropriate access rights to use AWS Management Console,
Azure Portal, or GCP Console.

If landing or ingestion zones are monitored through flat file queries directly as external tables,
reading and listing access rights at the file storage level are also required. Landing zones may
receive files such as CSV, Parquet, or ORC. These flat files can be located on AWS S3 buckets,
Azure Blob Storage, GCP Buckets, or the HDFS file system in Hadoop clusters.

The data quality tool may require installing a dedicated server or instantiating a new virtual
machine. Personnel responsible for maintaining this environment must have server access
rights. Alternatively, the data quality tool can be deployed to a shared environment like a
Kubernetes cluster. The DQOps platform is available as SaaS or can be deployed on-premise.

34

Once the data quality tool is installed, it can operate on a technical account to avoid using
personal accounts. Such technical accounts must be requested in advance, approved by
authorized personnel, and granted respective access to data.

To avoid problems at this stage, ensure the following steps have been taken.

Introduction to the company’s access control and/or credential management
policy. The Data Engineering Team should introduce the Data Quality Team to the
company's security policies. The specific policy depends on the company but may
include a password expiration policy.

Acquire the required computing resources for the data quality software. The data
quality tool may require a dedicated or virtual server or can be installed on an existing
Kubernetes cluster. The platform must be correctly sized to meet the data storage and
memory requirements for the data quality platform.

Ensure appropriate firewall rules. The data quality platform can operate directly from
the SaaS cloud or be installed in a separate environment that must be whitelisted to
access the database or data lake.

Grant access to the Data Engineering Team. The Data Engineering Team must be
granted appropriate access to the databases, data lakes, and query tools.

Create technical accounts for the data quality tool. The data quality tool should
access the monitored databases through a dedicated technical account, following the
corporate password rotation policy accordingly. The workload executed by the tool on
the monitored databases will be easy to identify and limit if running data quality checks
affects the data platform's performance.

Assign access rights for the data quality tool. Technical user accounts prepared to
support the data quality tool should be granted access rights limited to listing metadata
and executing SQL queries. Additional access rights that allow data manipulation, table
management, or access rights should be avoided.

Provide access to the data pipeline platforms. If a data quality tool is integrated
directly into the data pipelines, it is helpful to provide the Data Quality Team with limited
access rights. The data quality engineers will be able to monitor errors and review logs.
For example, a dedicated operator called from an Apache Airflow DAG can call the data
quality tool. Reviewing logs may be necessary to resolve integration issues between the
data pipeline and the data quality platform.

35

Verify the scope of access rights. The Data Engineering Team should verify the scope
of access that has been granted to the Data Quality Team and the technical accounts.
This helps protect against the disclosure of sensitive information and data breaches.

Credential management can be complex, especially when dealing with multiple data sources.
To simplify this process, DQOps offers a centralized solution, illustrated in Figure 2.7. This
figure showcases DQOps' user interface for storing and managing credentials. By securely
storing your credentials within DQOps, you can streamline data access and avoid the need to
manage them individually for each data source.

D@o Data Sources Profiling Monitoring Checks Partition Checks Data Quality Dashboards Incidents Configuration @ | & Synchronize | _@ g
m Sensors 7
W Rules Shared credentials X

B Data quality checks -
B Default checks configuration Credential name Credential type Add credential

[@ Table-level checks patterns
@ Column-level checks patterns AWS_default_config text edit delete download
@ Manage users
(O Default schedules
& Default webhooks
[3 Shared credentials
[® Data Dictionary

AWS_default_credentials text edit delete download
Azure_default_credentials text edit delete download

GCP_application_default_credentials json text edit delete download

Figure 2.7. DQQOps enables users to store and manage their credentials in one place.

Note the following problems that may arise at this stage.
Credentials are invalid.

Access to the file storage (S3 Buckets, Azure Blobs, GCP Buckets) has not been
granted.

Firewall rules have not been reviewed.

The credential expiration policy is not followed, so the data quality platform loses
access to the monitored database.

Granted access is not sufficient for the Data Quality Team.

36

3. Connecting data quality checks

Alist of custom

dashboards | | momtonm

DO.5. Provide a list of
KPIs to be monitored

metrics to monitor
the data pipeline

Dashboards
displaying quality
dimensions

A list of built-in
quality checks

DQ.5. Develop and DQ.6. Create
deploy custom data dashboards
quality checks displaying KPIs

DQ.3. Deploy data
quality checks.

A list of remaining
custom quality
checks

At this stage, we have defined a list of monitoring tables and columns. We have also agreed
upon the requirements for data quality checks and KPls with the Data Owner and Data
Engineering Teams. Any obstacles that might delay the implementation of the data quality
control tool should have been identified and addressed. We have also provided the credentials
to connect to monitored databases, data warehouses, and data lakes.

The Data Quality Team is now ready to activate the data quality monitoring. This chapter
describes the following steps:

Configuration of the data quality environment.

Importing metadata about tables and columns from monitored data platforms into the
data quality system.

Activation of data quality checks based on requirements.
Configuration of the alerting thresholds for the first time before the tuning process.

Configuration of data quality KPI dashboards to show overall data quality scores for the
entire data platform.

Once this stage is complete, the data quality platform can monitor data quality. However, the
thresholds for triggering alerts are not yet properly tuned. Tuning and configuring thresholds
will be covered in the next stages once the data quality KPI dashboards are operational.

37

DQ.1. Create a data quality environment

The Data Quality Team deploys the data quality platform on the provided environment. A
SaaS-hosted environment may require configuring the firewall whitelisting rules. The supplied
credentials and connection details must be verified as the first step. Both the Data Quality
Team members and the data quality tool (which may use a separate technical account) must be
able to query the target database and import the metadata.

The Data Quality Team can also deploy the data quality tool on provisioned on-premise servers
or virtual machines. Setting up multiple clouds or accessing a secured data warehouse or data
lake may require the installation of a monitoring agent on a provisioned virtual machine or
Kubernetes cluster.

A fully configured data quality environment may also require a data quality metrics database
and a business intelligence tool connected to that database to display customized data quality
dashboards.

Finally, the data quality platform may support different integration modes. It can operate as a
standalone platform triggered by a built-in scheduler that activates the data quality checks at a
set time. For example, once a day at 6 AM, when the data loading processes were supposed to
complete the nightly refresh process. On the other hand, a data quality platform can be
integrated directly into existing data pipelines, triggered as a blocking step in existing Apache
Airflow DAGs.

If the integration mode requires direct integration with an existing scheduling platform,
additional steps specific to the type of scheduler (Apache Airflow, Prefect) must be followed.
Some components of the data quality platform, such as the client interface, CLI interface,
Airflow operators, or scripts, must also be installed on the chosen scheduler.

Pay attention to the steps below to build a reliable data quality environment.

Optional cloud environment configuration. Provide and configure the cloud
environment, including accounts, billings, projects, subscriptions, and instances.

Deploy the data quality platform. Follow the platform's documentation, particularly to
meet CPU, memory, and disk capacity requirements. An undersized environment may
not be stable.

Deploy remote monitoring agents. Optionally, a multi-cloud environment or a platform
managed as a SaaS may require a direct connection to the monitored platform,
reachable from a co-located server.

38

Configure connections to requested databases. Use credentials for technical
accounts instead of personal accounts. For highly distributed environments, appropriate
firewall rules must also be configured. Otherwise, the data quality platform cannot
connect to the monitored databases using database protocols. Although the user
interface of web-based database platforms may use HTTPS (port 443), database
connectors (such as JDBC drivers) may use separate ports for binary protocols. The
default port for Microsoft SQL Server is 1433. Also, many big data platforms use the
Hive Thrift server, which listens on port 10000.

Configure a connection to the monitored database in the data quality tool.
Connection details should be entered into the data quality platform. Sensitive
information such as passwords, private keys, or API keys should be stored in a secure
location like a key vault. A cloud environment can use AWS Secrets Manager, Azure Key
Vault, or GCP Secret Manager.

Configure a data quality database (Optional). Data quality metrics, sensor readouts,
and alerts may be stored in a data warehouse for further analysis. Choose a database
platform that can easily integrate with the data quality tool. DQOps simplifies this
process by storing all the data quality data as Parquet files following the Hive
partitioning scheme. This data can simply be replicated to a data lake or cloud bucket.
Later, any SQL engine capable of querying Hive-compatible data can query the output
files of the data quality tool. Data can be queried using Apache Hive, Apache Spark,
DataBricks, Google BigQuery, Presto, Trino, SQL Server PolyBase, AWS Athena, and
AWS Redshift Spectrum. DQOps creates a separate Data Quality Data Warehouse for
each DQOps Cloud account, not sharing any tables or databases between tenants.

Configure in-house data quality dashboards (Optional). Custom data quality
dashboards that show business-relevant metrics can query the data quality database
configured in the previous step. Ensure that all the users involved in the data quality
process can access the dashboards. Business users involved in the negotiation and
cooperation with external parties involved in a data-sharing agreement should be able
to track the data quality KPlIs related to sent or received data files. DQOps platform has
over 50 customizable built-in data quality dashboards, allowing you to create data
domain-specific views that will be shared with business sponsors, external partners,
and other stakeholders.

Configure a scheduler. Determine when the checks will be run (at what time of day
and how often, e.g., daily, once a month).

39

Deciding how to deploy a data quality platform depends on your specific needs. Figure 3.1
compares the two primary deployment options available in DQOps: on-premise and Software
as a Service (SaaS).

Differences between DQOps deployment options

On-premise

Control: An on-premise solution is ideal
for organizations with strict security
requirements or those hesitant to store
sensitive data in the cloud.

Customization: The software can be
customized to meet your specific needs
and workflows.

IT expertise required: Your IT team will
be responsible for installation,
maintenance, and updates.

Scalability: Scaling the application to
handle increased needs may require
additional hardware or software
investment.

Potential upfront costs: On-premise
solutions involve upfront licensing fees
and ongoing maintenance costs.

Software as a Service

Ease of use: SaaS solutions are easy
to set up and use, requiring minimal IT
involvement.

+ Automatic updates: The vendor is

responsible for updates and
maintenance, ensuring you always have
access to the latest features and bug
fixes.

Scalability: SaaS applications are
designed to scale automatically to meet
your changing needs.

Subscription-based cost: You can
choose from several subscription plans
that match your needs with predictable
costs.

Figure 3.1. The DQOps platform has two primary deployment options: on-premise and SaaS
(Software as a Service). Each offers distinct advantages and considerations.

At this stage, there may be some problems that need attention:

Insufficient computing, memory, or disk space capacity.

40

Lack of prior identification of network rules and firewall settings.

The prolonged approval process for integrating SaaS data quality solutions into the data
platform architecture by the architecture or security boards.

Issues with access to a specific integration point.

Access to tools and resources not granted to the Data Quality Team in advance.

DQ.2. Import metadata

The data quality platform operates on monitored data sources by executing SQL queries,
parsing flat files, or reading metrics from the monitored data platform. Additional data quality
KPIs should be associated with the table name, such as the number of days a table has been
refreshed on time. To run highly configured data quality checks and later track the quality on
the table or column level, import a list of tables, columns, and data types into the data quality
tool.

To avoid mistakes at this stage, make sure that the following steps have been taken.

Verify that the data quality platform has been granted the required access rights.
The data quality platform must be able to list schemas, tables, and columns from the
monitored system.

Verify that the tables/columns listed in the requirements are found. The list of
tables requested for monitoring may not match their actual physical names.

Identify the documentation of the requested tables in the data catalog. The
organization may already have implemented a data catalog tool, such as Alation or
Amundsen, which may already provide important guidelines. Reviewing the current
documentation can provide crucial knowledge about the use of these data sources,
their importance, and known previous data quality issues.

Prioritize the tables. A more extended data quality project should be divided into
phases. The most important tables, such as fact tables, should be covered first. The
Data Quality Team should agree on the priority of the tables with the Data Owner and
the Data Engineering Team. Importing the metadata in phases reduces the time for the
first data quality insights for the most important tables. A priority field in work
management, such as Jira or Azure DevOps, can be used to sort and prioritize the
backlog. DQOps platform supports assigning priorities to the tables.

41

Review the table partitioning scheme. Partitioning is essential for storing a huge
volume of data while ensuring reasonable query response times. Date partitioned tables
(such as click streams, event streams, and transaction logs) that have not been updated
are perfectly designed for incremental data quality analysis. A data quality platform
should be able to calculate separate data quality metrics for each daily partition. In
addition, a data quality platform should be able to execute data quality checks
incrementally, querying only the most recent time periods. For example, DQOps solves
the challenge of monitoring date-partitioned tables by calculating separate metrics for
each "day of data." KPlIs, calculated as the number of passed data quality checks, can
be counted for each daily partition separately.

Identify the frequency of changes to past data. Even daily partitioned data may be
updated during the day. Especially if the data pipeline loads the data throughout the
day and only the rows generated before the synchronization time exists.
Synchronization on the following day will load the missing data. Still, the data quality
readouts, such as the number of rows per day, will change after receiving the remaining
rows for the previous day. The execution of data quality checks may be delayed to skip
processing today's data or even yesterday's data to avoid calculating data quality
metrics for partially loaded daily partitions. If the data quality checks are executed on
partially loaded daily partitions, the data quality scores may be inadequate. The most
affected are those data quality checks that compare the daily increment of the number
of rows to the average daily increment.

Identify partition discriminators. Previous partitions may be updated for daily
partitioned data. The data may also be from a source that is generated manually, such
as a Microsoft Excel file, which may be changed several times and reloaded into the
database. Changes in the partition can be identified at the data level by checking the
aggregated value calculated from all the rows in the partition. The simplest type of
aggregated partition discriminator is the number of rows, which changes when missing
rows are loaded. More complex discriminators can be calculated from the data. These
can range from a simple aggregate field sum (a column measure from a fact table) to
calculating the hash of all values in a column.

Import table metadata. The Data Quality Team should import metadata about tables
and columns based on their business priority. The most sensitive tables, such as
transaction or fact tables, should be imported earlier. Importing the metadata of the
entire database can be delayed and scheduled in subsequent sprints.

Run data profiling. Review the tables to better understand their structure and typical
content. Identify columns expected to have some percentage of null values. You should
also import and identify columns that store aggregate measures, such as sales data or

42

the number of impressions. DQOps allows you to run basic statistics on columns and
tables to quickly learn about typical data values.

DQOps platform streamlines metadata import with a user-friendly interface. Figure 3.2
showcases a sample screen where you can browse and select schemas for metadata import.

D@o Data Sources Profiling Monitoring Checks Partition Checks Data Quality Dashboards Incidents Configuration @ ‘ & Synchronize | P 3
<+ Add connection bigquery-public-data X

» & bigquery-public-data = bigquery-public-data Add Schema | ‘ Delete Connection ‘ ‘ Import metadata ‘

iqo_ai_test_data

aggle_covidiive Connection Schedule Comments. Labels Schemas Default grouping template Incidents and Notifications

aggle_loan

aggle_shirtsizes Source schema name Import status

£ kaggle_students
america_health_rankings v Import tables
aggle_uefamatches

aggle_woridpopulation
austin_311 v Import tables

aven_restaurant_ratings

ble_availability
austin_bikeshare X Import tables

» £ thelook_ecommerce

austin_crime X Import tables

austin_incidents

austin_waste

baseball

Import tables

Import tables

Import tables

bbc_news X Import tables

Figure 3.2. A sample screen from the DQQOps shows a list of schemas for importing metadata.

The problems that may occur at this stage:
Incorrect paths to flat files.

Access rights are not granted at a file system level (HDFS, S3 bucket, etc.) for data files
used by external tables.

Flat or columnar data files (Parquet, ORC) are corrupted, making some partitions
unreadable.

There is no documentation of the data model.
There is outdated information about tables in the corporate data catalog.
Data quality control requirements refer to missing tables or columns.

Access rights are not granted to the Data Quality Team or technical account used by the
data quality platform to query the monitored database.

43

Incorrect partitioning of tables.
Dates stored as text columns do not follow the same format.

The tables in various databases are configured with different localization settings,
resulting in format mismatch.

DQ.3. Deploy data quality checks

The activation of data quality checks should be divided into two steps. The first step, described
here, involves activating data quality checks that collect data quality metrics from the
monitored sources. This step should be followed by configuring the alerting thresholds, as

described in the next step of the process (DQ.4. Configure initial alerting thresholds).
Data quality check definition

In DQOps, a data quality check is a test that can be run on both table or column levels. It is
divided into two parts: a data quality sensor and a data quality rule. Briefly, the sensor reads
the value from the data source at a given point in time, and the rule sets conditions for the
sensor's readout. If the conditions are not met, the check detects an issue with the data.

Examples of sensor reads include the number of rows, the percentage of null values in a
column, or the current delay between the timestamp of the latest row and the current system
time. The sensors can be implemented as templated SQL queries (DQOps uses the Jinja2
templating engine) or as custom code that can call the appropriate source system's APIs. The
definition of custom data quality sensors implemented as code is also supported in DQOps.
The metrics captured by the data quality sensors (called sensor readouts in DQOPSs) should be
stored in the data quality database for further analysis. Time series analysis requires historical
data to detect anomalies in the dynamics of the changes in the data set. A data quality sensor
that captures the current row count of the table, which is scheduled daily, can build a complete
history of the table row counts over a more extended period of time. This time series can be
analyzed to detect anomalies on different levels, such as a sudden decrease or increase in the
table row count. DQOps stores a copy of the sensor data locally on the monitoring agent. The
data files are stored as Apache Parquet files in an Apache Hive-compatible folder tree,
partitioned by the data source, monitored table name, and the month. A local copy of the
sensor data enables a true multi-cloud data collection without accessing any sensitive data by
an external cloud or SaaS solution.

44

The second part of the check, a rule, is a set of conditions against which sensor readouts are
verified, described by a list of thresholds. A basic rule can score the most recent data quality
result if the value is above or below a particular value or within the expected range. A standard
data quality check on a table that counts the number of rows to detect empty or too-small
tables uses a simple "minimum count 1" rule to instantly raise data quality alerts when the
number of rows in a table is below 1. The separation of data quality rules enables more
flexibility in implementing custom data quality rules that may use machine learning or time
series analysis to detect not-so-obvious anomalies.

Below are the most common types of simple data quality rules.

1. Simple rules. These rules directly assess the current data quality sensor readout against a
defined threshold.

Single value comparison

o Equals X. Detects if a specific value (e.g., number of columns in a table) remains
constant.

o Does not equal X. This rule helps ensure a table is not empty (doesn't equal 0
rows) or identifies rows with invalid values (doesn't equal invalid value).

Range comparison

o Greater/less than X. Verify whether a given value is within the expected range.
For instance, it can be used to check whether a table is empty (row count >0).
Similarly, it can also be used to check for null values in a column (the number of
nulls in a column cannot be greater than 0).

o Between X and Y. Ensures numerical values reside within a specific range (e.g.,
the percentage of valid rows between 95% and 100%).

2. Relative value rules. These rules compare the current sensor readout with a similar value
from a previous time period, ignoring seasonality.

The data quality sensor has not changed since the last readout. This rule identifies
minimal changes in data (e.g., the number of columns has not changed since yesterday
(or the previous readout time).

Change from a similar time window (not significant). The rule compares the most
recent data quality sensor readout (such as the current number of rows) to a
comparable value exactly one week ago. For example, Monday's row count compared

45

to the previous Monday's. This type of rule avoids the effect of seasonality on data
volatility.

3. Time series rules. These rules analyze changes in the data quality sensor readouts over a
broader time window (weeks, months).

Difference from average (percentage). Compare the difference from the average value
in percentage. This rule is relatively simple and easy to understand. It checks if the
current value deviates more than a set percentage from the historical average (e.g., daily
row count shouldn't differ more than 20% from the average).

Standard deviation comparison. This rule compares the difference from the average
value in multiples of a standard deviation. The rule will automatically adjust to the
variability of the data. It can detect an expected percentage of anomalies. For example,
99% of valid data quality readouts stay below 2.33 standard deviations, but outliers
above 2.33 standard deviations fall into the top 1% of anomalies. The multiple of
standard deviation (such as 2.33) can be easily converted to a quantile for readability.
The alert is then more straightforward to understand: the increase in the number of rows
was at the top 1% of the largest daily changes.

Time series anomaly detection. The rule uses statistical methods or seasonality
analysis to identify anomalies and outliers. Possible algorithms in this category are
ARIMA or Prophet.

Time and data grouping slicing

When configuring data quality checks, there are two more important aspects to consider. The
first is the time-slicing of the table that will be monitored, and the second is the ability to
calculate data quality metrics for different groups of rows stored in the same table.

Let’s discuss the first aspect. Many data quality solutions are limited to capturing data quality
metrics for the whole table without considering that the old data is measured together with the
most recent data. This limitation has serious implications, making many data quality results
incorrect.

For instance, a simple data quality check that counts the percentage of rows with a
non-negative value could produce misleading results if the data is not segmented by time. A
data quality sensor that analyzes the whole table without time slicing and detects a percentage
of valid rows where the value of a tested column is greater than 0 would run a SQL query
similar to the following (Google BigQuery example).

46

SELECT
CASE
WHEN COUNT(analyzed_table. target_column™) = @ THEN 0.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table. target_column™ < © THEN ©
ELSE 1
END
) / COUNT(analyzed_table. target_column”)
END AS actual_value,
CURRENT_DATETIME() AS time_period
FROM "your-google-project-id . <target_schema> . <target_table>" AS
analyzed_table

The above data quality sensor may return the result as follows:

time_period
-P actual_value

(metrics capture timestamp)

2022-10-08 92.76%

This query measures the percentage of valid rows (the value in the tested column is greater
than 0), but the data quality issues with the old and new rows will affect the final score equally.
New issues that affected only yesterday's data may not be visible, as they are responsible for
lowering the data quality score for only 1/356 of one year’s data. Furthermore, reloaded daily or
monthly partitioned data should be analyzed separately for each daily partition.

A data quality platform that considers time windows (time slicing) should support the
calculation of data quality scores for each time period separately. DQOps solves this challenge
by capturing metrics using a GROUP BY clause. For a day partitioned data, a similar query will
also apply grouping by a timestamp column (an event timestamp, a transaction timestamp, or
similar), truncated to the date. The following changes (marked in bold text) should be applied to
the above SQL query to capture time-sliced data and calculate metrics for each day separately
(Google BigQuery example).

SELECT
CASE
WHEN COUNT(analyzed table. target column’) = @ THEN 0.0

47

ELSE 100.0 * SUM(
CASE

WHEN analyzed_table. target_column™ < © THEN ©

ELSE 1
END

) / COUNT(analyzed_table. target_column’)

END AS actual value,

DATE_TRUNC (CAST (CURRENT_TIMESTAMP() AS DATE), MONTH) AS time_period,
TIMESTAMP (DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH)) AS

time_period_utc

FROM "“your-google-project-id . <target schema> . <target table> AS

analyzed_table

GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

The following time slicing is most useful for further reporting and tracking:

The results captured by the data quality sensor (a SQL query above) may look like this:

time_period actual_value

hourly,

daily,

weekly (truncated to the beginning of the week),

monthly,
quarterly,

yearly.

2022-10-04 95.5%
2022-10-05 96.1%
2022-10-06 94.9%
2022-10-07 95.1%
2022-10-08 82.2%

48

Here, we can quickly identify a significant drop in the percentage of valid rows on 2022-10-08.
This drop is below the average of around 95% valid rows per day. A score in the query that did
not group the data by day and calculated an aggregate score for the table only detected a drop
to 92.76%, which is not too far from the average score. It is important to note that the
examples above show just five days of data, but in a real database, that drop may be below the
average daily variation of the metric's value.

The second important aspect of data monitoring is the ability to calculate data quality metrics
for different groups of rows stored in the same table. Data in the fact table can be loaded from
other sources, countries, states, or received from various external sources. A different pipeline
would load each data stream, and these pipelines may fail independently. Data streams (or
data groupings) can be identified by a discriminator column, such as country or state. A data
quality platform, such as DQOps, that can analyze data within separate segments adds a
GROUP BY <data_grouping_discriminator_column> clause to the data quality queries.
Querying data quality for each country separately without time slicing requires the following
modifications (marked in bold text):

SELECT
CASE
WHEN COUNT(analyzed table. target column’) = @ THEN 0.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table. target_column® < © THEN ©
ELSE 1
END
) / COUNT(analyzed_table. target_column’)
END AS actual value,
CURRENT_DATETIME() AS time_period,
analyzed_table. country™ AS grouping_level 1
FROM “your-google-project-id" . <target_schema> . <target_table>" AS
analyzed table
GROUP BY grouping_level_1
ORDER BY grouping_level_1

The results pivoted for readability might look as follows:

Time_period

(metrics capture
timestamp)

2022-10-08 94.7% 95.8% 95.2%

49

http://127.0.0.1:8000/docs/checks/column/numeric/non-negative-values-percent/#__codelineno-213-3

Data quality scores, calculated for each data source or vendor separately, can simplify the root
cause analysis by linking the data quality incident to a data source, a data stream, an external
data supplier, or simply a separate data pipeline that has loaded invalid data.

Finally, time slicing (capturing data quality scores separately for each time period) can be
integrated with data grouping slicing. The GROUP BY clause must list columns that divide the
data set by a data grouping discriminator column (country in this example). A complete SQL
query that the data quality tool would execute on the data source should look like this:

SELECT
CASE
WHEN COUNT(analyzed table. target column’) = @ THEN 0.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table. target_column® < © THEN ©
ELSE 1
END
) / COUNT(analyzed_table. target_column’)
END AS actual value,
analyzed_table. country™ AS grouping_level 1,
DATE_TRUNC (CAST (CURRENT_TIMESTAMP() AS DATE), MONTH) AS time_period,
TIMESTAMP (DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH)) AS
time_period_utc
FROM “your-google-project-id . <target_schema> . <target_table>" AS
analyzed_table
GROUP BY grouping_level 1, time_period, time_period_utc
ORDER BY grouping_level_ 1, time_period, time_period_utc

The results of this query collect data quality scores for each day/country, allowing accurate
identification of the source of the data quality issue.

Time_period us UK DE
2022-10-04 96.4% 94.2% 95.2%
2022-10-05 95.3% 94.7% 95.6%
2022-10-05 93.9% 96.4% 96.2%
2022-10-07 94.8% 94.9% 95.4%
2022-10-08 94.7% 0% 95.2%

50

http://127.0.0.1:8000/docs/checks/column/numeric/non-negative-values-percent/#__codelineno-213-3

Deployment of data quality checks

To complete the deployment of data quality checks, follow the steps outlined below.

Map built-in data quality checks to requirements. Most data quality requirements
should be easy to analyze using built-in data quality checks. These checks should be
activated without any customization to their definitions.

Configure data profiling checks. Profiling checks assess the initial data quality score
of data sources. They should be activated on new data sources to verify that the
minimum data quality requirements are met. Profiling checks are also helpful for
exploring and experimenting with various types of checks to determine the most
suitable ones for regular data quality monitoring. In DQOps platform, profiling checks
store only one data quality profiling result for each month. If the user runs the same
profiling again during the same month, the previous result is replaced. This behavior is
designed for experimentation and tuning the parameters for the data quality rules.

Configure data monitoring checks. Monitoring checks are used to continuously
monitor the quality of data sources. The data quality results generated by monitoring
checks in DQOps capture an end-of-day or an end-of-month data quality status of
monitored data. If a daily data quality monitoring check is re-evaluated during the day,
DQOps will overwrite previous data quality readouts and alerts. Only one most recently
evaluated data quality readout and data quality alert can be stored in the data quality
database. Monitoring checks are used to track and checkpoint the end-of-day (or
end-of-month) data quality status for every data source, measure the improvement of
the data quality score using data quality KPIs to prove the trustfulness of data sources,
and present the progress of data cleansing projects to stakeholders and business
sponsors of the data quality initiative. Daily monitoring checks also support anomaly
detection for time series. DQOps can detect potential data quality issues when an
anomaly is detected among regular daily data quality readouts.

Configure partition(ed) data quality checks. Date-partitioned tables are often used in
big data platforms at the data ingestion stage. Also, fact tables, clickstream tables, and
transaction tables are often partitioned using a date column. DQOps supports
calculating separate data quality scores for each daily partition. The data quality results
generated by partition checks are stored for every date or month of data. These data
quality checks run SQL queries on monitored tables, adding a GROUP BY
TRUNCATE(<timestamp_column>) clause, capturing results for every daily or monthly
partition. It is also worth mentioning that the table does not need to be physically
partitioned by date to benefit from date-partitioned data quality checks. When the table
is append-only and has a column that identifies a timestamp of the event, this column

51

can be used to execute daily-partitioned data quality checks. Partition checks help
track and check the data quality for daily partitioned data, measuring data quality KPIs
at a partition level. They are also useful for analyzing append-only tables, such as fact
tables in data warehouses, analyzing financial data when only the most recent data for
the current or previous month is important, and older financial records are read-only
(closed). Partition checks can also be used to analyze big tables incrementally,
scanning only the most recent partitions and avoiding additional pressure on the data
source from a data quality platform.

Configure data grouping hierarchy. Tables that aggregate data from multiple data
streams should be identified. The columns that identify the data stream should be
added to the data grouping hierarchy configuration. DQOps supports the data grouping
hierarchy up to 9 levels of nesting. Data grouping hierarchy levels are mapped to
columns in the monitored tables or assigned a static value for grouping different tables
populated from the same data stream (source). Examples of data grouping hierarchies
include country, country/state, continent/country/state, country/department, etc.

Configure incremental loading. Very big tables, often reaching terabyte or petabyte
scale, are commonly partitioned by time. It is unlikely that the old data will be updated
frequently. Old data in these tables is unlikely to be updated frequently, which makes it
possible to reduce query execution time and cost. This can be achieved by including
additional filters, such as a WHERE condition applied on the timestamp column, to limit
the range of scanned data to the most recent time periods (days, hours, etc.). For date-
and time-partitioned tables, it is especially important to execute data quality checks
incrementally, since old data does not change and only the most recent data needs to
be checked for data quality issues.

Schedule the execution of data quality checks. Data quality checks that are not run
at the end of the data loading pipeline should be scheduled internally by the data
quality platform or by an external scheduler, such as Apache Airflow or Prefect. It is
important to understand the scheduling of the data pipeline that is loading the new
data. Data quality checks should be executed at the most convenient time for the new
data to be present. The DQOps platform supports setting schedules for an entire
connection, table, or individual check.

Verify access rights. This action will help you ensure all the tests are executed
correctly. A data quality tool may offer a "dry run" mode that will not store the data
quality results in the data quality database.

Select appropriate parameters. Some data quality checks may require providing
additional parameters.

52

Make a list of checks that require customization. Built-in data quality checks may
not handle all data quality requirements. A list of data quality requirements that
calculate business-relevant metrics must be identified. The DQOps platform makes it
easy to create and implement custom data quality checks.

DQOps offers flexibility in defining data quality checks. Figure 3.3 showcases the user
interface, where you can visually create and edit checks. For those comfortable with code,
Figure 3.4 demonstrates how DQOps supports defining checks within YAML configuration files.

D@o Data Sources Profiling Menitoring Checks Partiion Checks Data Quality Dashboards Incidents Configuration @ P
£ bigquery-publicdata H
» & dqo_ai_test_data H
» & kaggle_covidive H [l Daily monitoring checks for thelook_ecommerce.thelook_ecommerce.orders.user_id Save
» £ kaggle_loan H <
» £ kaggle_shisizes Daily checks Monthly checks
» & kaggle_students
Scheduling siatus: Enabled Scheduling configured at: connection ~ Effective cron expression: 01277 % Next execution at: Mar, 09 2024 12:00 Schedule configuration: menitoring_daily
» & kaggle_uefamatches
» & kaggle_woridpopulation ; Show advanced checks Passing rule (KPI met) Failing rule (KPI not met)
» £ maven_restaurant_ratings : Data quality check Warning threshold Error threshold Fatal threshold
» & table_availability > Nulls g o
v £ thelook_ecommerce
w &% thelook_ecommerce ? Vamee v ©
» [distribution_centers > Accepted values a0}
> [events
> Text ogo®
» [inventory_items
» B order_items > Whitespace T ®
¥ [T erders > Conversions o ®
~ [Columns. H
» I created_at B > Pattems j5 O]
» (0 delivered_at H v Pl o @
» 00 gender :
» 00 num_of item H ® £ O B © caily_contains_usa_phene_percent Add Warning Add Error Add Fatal
Valdy
» [0 order_id
» returned_at H max_percent @
e © 06 8 OOE OBy cortans emi percers ;
» () shipped_at : Validiy
» 0 stats : > Numeric T ®
» 0 user id H

Figure 3.3. A sample screen from the DQQOps user interface shows the check editor with an
activated column-level daily_contains_email_percent check.

53

I File Edit Selection View Go -

¥ ®@0A0 WO Sonarlint focus: overall code Ln 23, Col 1 {150 selected) Spaces:2 UTF-8 LF VYAML httpsy//cloud.dqops.com/dgo-yaml-schema/TableYaml-schemagjson [

Figure 3.4. A sample screen showing the YAML configuration file from the DQOps with a
defined column-level daily_contains_email_percent check. The YAML files in DQOps support
code completion in code editors, such as Visual Studio Code. Data quality check definitions
can be stored in the source code repository and versioned along with any other data pipeline or
machine learning code.

It is worth paying attention to the following problems that may arise at this step.

The data platform may not have enough computing capacity to execute certain data
quality checks. For example, uniqueness checks are particularly computationally
expensive because of the necessary preceding sorting step.

The data files (Parquet, ORC, CSV) behind external tables are corrupted. Those external
tables may only be analyzed when a time window and incremental loading are
configured together.

The schedule for executing data pipelines is not fixed.

The data pipelines take longer than expected to finish, so the most recent data will not
be available for a scheduled data quality check.

54

Some data quality checks may require custom implementation.

The results of this step are two lists of data quality checks. The first list contains built-in data
quality checks, while the second lists custom quality checks that require designing new data
quality sensors and rules.

DQ.4. Configure initial alerting thresholds

Complete automation of data quality verification requires creating data quality alerts for all
values outside the limits or identified as outliers. Data quality alerts should be created for all
remaining data quality results that do not pass the data quality rule evaluation. The previous
stage of activating data quality checks described the effect of time slicing and data slicing.
Time slicing should enable measuring individual data quality results for each time period (hour,
day, week, etc.) separately. Data slicing enables data quality results to be tracked for different
data groupings aggregated in the same table. Data quality alerts should be directly linked to
data quality readouts, inheriting the time window (the day with the data quality incident) and
possible data groupings (identifying the data source).

One more concept should be mentioned here. Data quality alerting is similar to general logging,
used in logging libraries. Not all alerts or anomalies are equal, so they should not be
investigated and resolved at the same priority. Just as log entries in all logging libraries have a
severity level, a data quality alert should also be configured with multiple severity levels.

Each data quality check in DQOps supports setting the alerting thresholds at three severity
levels: warning, error, and fatal error. DQOps evaluates the sensor readout (the captured data
quality metric, such as a percentage of null values) by three data quality rules, using different
alerting thresholds configured as rule parameters. Suppose multiple rules at different severity
levels identify a data quality issue (the rule fails). In that case, DQOps picks the severity level of
the most severe rule that failed in the following order: fatal error, error, and warning.

The rule severity levels in DQOps are described below.

Warning. Data quality checks with a warning level alerting threshold raise warnings for
less important data quality issues, usually anomalies or expected random or seasonal
data quality issues. Warnings are not treated as data quality issues. Data quality checks
that have not passed the warning alerting rule, but have passed the error and fatal error
alerting rules, are still counted as passed data quality checks and do not reduce the
data quality KPIs score. Warnings should be used to identify potential data quality
issues that should be monitored, but the data producer should not take accountability

55

for them. For example, a percentage of data quality check monitoring null value may
raise a warning when the percentage of rows with a null value exceeds 1% of all rows.

Error. This is the default alerting level, comparable to logging libraries' "error" level.
Data quality checks that failed to pass the rule evaluation at the "error" severity level are
considered failed data quality checks for the purpose of calculating the data quality KPI
score. For example, a percentage of data quality check monitoring null value may raise
an error when the percentage of rows with a null value exceeds 5% of all rows.

Fatal error. This is the highest alerting threshold that should only be used to identify
severe data quality issues. These issues should result in stopping the data pipelines
before the issue spreads throughout the system. Fatal error data quality issues are
treated as failed data quality checks and reduce the data quality KPI score. The fatal
error threshold should be used with caution. It is mainly useful when the data pipeline
can trigger the data quality check assessment and wait for the result. If any data quality
check raises a fatal error data quality issue, the data pipeline should be stopped. For
example, a percentage of data quality check monitoring null value may raise a fatal error
alert when the percentage of rows with a null value exceeds 30% of all rows.

Alerting Data quality check Data quality KPI Data pipeline should
threshold passed result is decreased be stopped
Warning v

Error

(default) v

Fatal error v v

The process of configuring initial thresholds is described below.

Choose the most appropriate type of data quality rule. The correct data quality rule
for assessing the data quality sensor readout should be chosen. It should correctly map
to the data quality requirements defined in the earlier steps. It is important to select a
rule that makes it easy to justify a data quality incident in case any parties involved in
the data ingestion process are unwilling to take responsibility for its resolution. A
time-series data quality rule that detects an anomaly may not be as reliable as a simple

56

rule. For example, the table is empty, or the number of rows is 0. In the DQOps
platform, all built-in checks have preselected rules. All checks can also be customized.

Assign the initial thresholds. The threshold represents the expectations and beliefs
about the current data quality status. The Data Owner or the Data Engineering Team
may believe there are no invalid rows, so the rule to count the number of invalid rows
should be "equals 0." The correct values will be validated in later steps, and the
thresholds should be adjusted to a more reasonable value later. The default alerting
thresholds raise data quality issues at the "error" severity level.

Execute data quality rules. The data quality checks should be evaluated with data
quality rules enabled. As a result, errors will be generated for all anomalies.

Review the rules with the highest percentage of errors. In most cases, data quality
rules that generate errors for the majority of time periods or date slices may be
oversensitive. The variability of the row count increase may not perfectly follow a normal
distribution curve, so a rule based on standard deviation will detect false positive errors.

Configure the alerting threshold at the warning severity level. Optionally, an
additional alerting threshold can be configured at a warning severity level for possible
data quality issues that should be observed. Configuring only a warning severity
threshold for a data quality check is possible when the data quality issues should not
reflect on the data quality KPI. Warnings should mainly be used to detect anomalies,
such as an inconsistent average number of rows loaded daily, as these issues happen
occasionally and are not always data quality incidents.

Configure the alerting threshold at the fatal error severity level. Alerting thresholds
for the most severe data quality issues, which should result in stopping data pipelines,
should be configured carefully. It is worth observing whether the master tables that are
replicated to other systems are not empty.

The DQOps platform simplifies managing alert thresholds. It provides a user-friendly interface,
shown in Figure 3.5, for easy configuration and modification.

57

D@o Data Sources Profiling Monitoring Checks Partition Checks Data Quality Dashboards Incidents Configuration ® & Synchronize P 3

v £ bigquery-public-data :
& blgquen-p ° country_codes X

P & america_health_rankings

» o austin_311 : E5 Daily monitoring checks for bigquery-public-data.country_codes.country_codes Save

¥ %y country_codes H <
w B country_codes Table quality status (daily checks) Daily checks Table quality status (monthly checks) Monthly checks Daily comparisons Monthly comparisons

» 000 Columns
Scheduling status: Enabled Scheduling configured at: connection Effective cron expression: 09 *** Next execution at: Mar, 09 2024 09.00 Schedule configuration: monitoring_daily.

» Daily monitoring
N Monthly menitoring : Show advanced checks Passing rule (KPI met) Failing rule (KPI not met)

» & dqo_ai_test_data H Data quality check + Warning threshold Error threshold Fatal threshold

» £ kaggle_covidiive

v Volume ﬁ @
kaggle_loan
£ kaggle shirtsi . min_count @ min_count ® min_count ©@
S Kaggle shirisizes : @© G & O E O WM day_row_count
S . Compietenss 1 10 Q =
£ kaggle_students :

kaggle_uefamatches anomaly_percent ®

® & O B @ dally_row_count_anomaly e Add Fatal
Consifency

kaggle_woridpopulation 1

maven_restaurani_ratings 7
max_percent ®

table_availability : ® & OO B @ aally_row_count_change o Add Error Add Fatal
. Consistency

> Timeliness T ®
> Accuracy a®
> Custom SQL o ®
> Availability o ®
> Schema g ®

Figure 3.5. A sample screen from DQOps showing table-level daily_row_count check with three
severity levels warning, error, and fatal error.

Note the following problems that may occur at this stage.

Thresholds are configured too conservatively, which generates too many false positive
alerts.

The data variability does not follow a normal distribution curve, requiring tweaking the
thresholds at later steps.

Complex machine learning (ML) rules that use time series analysis to generate alerts are
difficult to verify without running an ML model. The external vendor who delivered the
data will not feel responsible for the lower quality of the data, since calculating the same
rules in an Excel sheet would be impossible.

Data quality alerts raised by the data quality rules should be stored in the data quality
database. Time-partitioned data, which uses time slicing to evaluate the data quality checks
separately for each time period (e.g., day), generates individual daily alerts. While this is not a
problem for a table that is not reloaded or updated, a table that receives late changes or
additions will be updated even after a few months. Data quality sensors (especially the row
count sensor) will detect new data and reevaluate the data quality rule. The data quality

58

platform should support alert deduplication to avoid generating additional alerts for updated
partitions. DQOps uses hashing for detecting significant changes.

Another concept for limiting the number of alerts forwarded to operations teams is to group
data quality alerts into clusters of similar alerts with the same properties.

DQ.5. (Optional) Develop and deploy custom data quality checks

Specific data quality requirements influenced by business users may require more complex
data quality checks. These data quality checks should be separated and thoroughly analyzed.
Below are the most common data quality requirements that should be satisfied by custom data
quality checks.

Custom data formats. Column values must follow a complex pattern that is too
complex to parse using regular expressions. These usually involve names that must
follow a naming convention.

Multi-column checks. These data quality checks perform arithmetic operations across
different columns. A simple example is a data quality check that verifies that a net_price
+ tax = total_price.

Cross-table checks. More complex cross-table checks may perform lookups across
related tables.

Performance-sensitive queries. Some data quality checks may require customizations
to best use the database's existing indexes.

Custom filters. If you must analyze only a subset of the data, a filter can be configured
in the data quality check. Some filters may require joins. For performance reasons, they
may require defining a custom data quality check that efficiently performs additional
operations.

Old data updates. In some rare cases, it is possible to refresh partitions that are up to a
year old with updated data. Such partitions need to be retested, but they are far behind
the incremental time window. To prevent executing full table scans every day, a more
complex query can be used to access a logging table to detect recently modified daily
partitions.

A customizable data quality platform (such as DQOps) should support the use of custom data
quality check definitions, provided as custom SQL queries or implemented as custom code.

59

Custom data quality checks should be reusable across tables and not hard coded for individual
tables. To enable the reusability of custom data quality checks, the platform should use a
templating engine to define custom data quality sensors. The following example is a template
of a data quality sensor that counts rows with a non-negative column value.

{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table')}} < @ THEN ©
ELSE 1
END
) AS actual_value
{{- lib.render_data_grouping projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- 1lib.render_group_by() -}}
{{- lib.render_order_by() -}}

The template has configurable parts that are dynamically populated with the target table and
column names. To render the data quality sensor template into an SQL query, the Jinja2
templating engine is used. Other parts of the query template render the proper GROUP BY
clause, additional result columns required to support configurable time series (daily, weekly),
and additional data groping slices.

The DQOps platform uses this kind of data quality sensor template. It allows you to design
custom data quality checks tailored to your specific needs using a user-friendly interface, as
shown in Figure 3.6. Furthermore, DQOps seamlessly integrates your custom checks into the
user interface. This makes them readily accessible and usable by everyone on your team,
fostering collaboration and a data-driven culture within your organization.

60

DQO Data Sources Profiling Monitoring Checks Partition Checks Data Quality Dashboards Incidents Configuration ® a ;
& Seneors
T column
W accepted_values 88 Sensor: column/numeric/negative_count
M accuracy
i bool Sensor definition BigQuery Databricks MySQL Qracle Postgresql Presto Redshift Snowflake Spark
W conversions
W custom_sql
W datatype Sensor runner type sql_template v
I datetime
W integrity Supports grouping by GROUP BY.
i nulls Supports partitioned checks by 7
B numeric grouping by the partition date:
integer_in_range_percent
@‘ g‘ — oe-p Sensor parameters
& invalid_latitude_count
@ invalid_longitude_count Parameter name Value Action
@ mean

(& negative_percent
@ non_negative_count
(@ non_negative_percent 1 | {% import '/dialects/bigquery.sql.jinja2’ as lib with context -¥}
2 SELECT
sun
CASE
WHEN {{ lib.render_target_column('anslyzed_table')}} < & THEN 1

@ number_above_max_value_cou }
& number_above_max_value_perc }
@ number_below_min_value_coun }
& number_below_min_value_perci }
[@ number_in_range_percent

(@ percentile

jections('analyzed_table')
(& population_stddev : 16 on{"analyzed table')
(@ population_variance :)| TR } AS analyzed table

@ sample_stddev if

@ sample_variance : 14 {{- lib.render_order_by() -1}

@ sum

Figure 3.6. A sample screen from the DQQOps platform showing the sensor definition screen for
the negative_count sensor. The sensor query template, written in the Jinja2, can be modified.

In the process of defining and testing a custom data quality sensor, follow these steps:

Write an SQL query to pull metrics. Implement a prototype of the custom data quality
sensor by writing an SQL query that can retrieve the correct metrics. At this step, the
performance implications of executing the query are easily identified.

Customize the SQL query to the query template. The SQL query should be
customized to the data quality sensor template by replacing the hard-coded table and
column names with placeholders. Additional placeholders should also be added to
support configurable time slicing and data groupings.

Register a definition of the custom data quality sensor. The custom quality sensor
template should be registered in the platform. In DQOps, for example, custom data
quality sensors can simply be added as text files in the "sensors" folder.

Verify the implementation of the data quality sensor. The newly defined data quality
sensor should be attached to a tested table and executed in a dry-run mode without
saving the data quality results.

61

Activate the custom data quality sensor on the target tables. Once the sensor
implementation is verified, it can be connected to the target tables.

After connecting custom data quality sensors (template SQL queries), data quality alert
thresholds should be configured. A properly implemented custom data quality check should
return a measure that can be evaluated by reusing data quality rules, which, in most cases, are
sufficient.

More complex data quality checks may separate some parts of a complete data quality check
into a custom rule function. DQOps hands over the evaluation of alerting rules to Python
functions. These Python functions (data quality alerting rules) are called with three groups of
arguments:

The current value of the data quality sensor that is being evaluated.

An array of historical data quality sensor readouts for the requested time window before
the time of the period being evaluated.

Additional data quality rule parameters to enable an additional level of configuration.

Below is an example of a simple data quality rule that compares the current sensor value with a
minimum value:

def evaluate_rule(rule_parameters: RuleExecutionRunParameters) ->
RuleExecutionResult:
if not hasattr(rule_parameters, 'actual_value'):
return RuleExecutionResult()

expected_value = rule_parameters.parameters.min_value
lower_bound = rule_parameters.parameters.min_value
upper_bound = None

passed = rule_parameters.actual value >= lower_bound

return RuleExecutionResult(passed, expected_value, lower_ bound,
upper_bound)

DQOps empowers you to take complete control over your data quality rules. As illustrated in
Figure 3.7, the user interface provides a user-friendly environment for both modifying existing
rules and creating entirely new ones.

62

D@lo Data Sources Profiling

B Sensors
& Rules
B averages

(@ between_percent_moving_average_30, }
between_percent_maving_average_60, *
between_percent_moving_average_7_
percent_moving_average
within_percent_maving_average_30_d: :
within_percent_moving_average_60_d.

within_percent_moving_average_7_da: }

3

o W) E W E WG

ange

8

mparison
between_floats
between_ints
between_percent
count_between
detected_datatype_equals
diff_percent

equals

equals_0

equals_1

equals_integer
import_severity

max

max_count

max_days

max_failures
max_missing
max_percent
max_value
min
min_count

min_percent

{Enig ooy e I e e o e 0 O e Qe Y o e R e e e T Y

®
EX
E

I

<

3
@

88 Rule: comparison/max_count

Monitoring Checks Partition Checks Data Quality Dashboards Incidents Configuration ® _@ g

Shared credentials X between_percent_movi... X

Rule definition Python code

from datetime import datetime
from typing import Sequence

rule specific parameters object, contains values received from the quality check threshold configuration

class MaxCountRuleParametersSpec:
max_count: int

class HistoricDataPoint
timestamp_utc: datetime
local datetime: datetime
back_periods index: int
sensor_readout: float
expected_value: float

class RuleTimsWindowSettingsSpec:
prediction_time window: int
max_periods_with_readouts: int

9 # rule execution parameters, contains the sensor value

class RuleExecutionRunParamsters:
actual value: float
parameters: MaxCountRuleParametersSpec
time_period_local: datetime
previous_readouts: Sequence[HistoricDataPoint]
time_window: RuleTimelindowSettingsSpec

(actual value) and the rule parameters

8 # default object that should be returned to the dgo.ic engine, specifies if the rule was passed or failed,

what is the expected value for the rule and what are the upper and lower boundaries of accepted values (optional)

class RuleExecutionResult:
passed: bool
expected_valus: float

Figure 3.7. A sample screen from the DQOps platform showing a rule definition screen for the
min_value sensor. The rule source code, written in Python, can be modified.

Note the problems that can happen at this stage.

Data quality requirements may require writing very complex SQL queries.

Complicated tests may require combining several tables and writing complex SQL
queries with multiple join statements. For partitioned data, additional data partitioning
filters may be required for referenced tables.

Performing custom tests may require extensive collaboration with the Data Engineering

Team.

At this stage, we increase the number of test definitions and add custom data quality checks to
the list of supported data quality checks.

63

DO.5. Provide a list of KPIs to be monitored

Data quality sensors capture quality-related metrics from monitored data sources. These
sensor readouts should be evaluated by data quality rules to detect outliers or measures that
do not meet the required thresholds. In DQOps, the combination of the data quality sensor and
data quality rule is called a data quality check. An executed data quality check has two
possible statuses: passed or failed. For long-term data quality monitoring, the data quality
platform must measure the percentage of passed data quality checks within all executed data
quality checks. This percentage of passed data quality checks is called a data quality KPI.

DQOps stores the result of executed data quality rules for both passed (no alert raised or only a
warning raised) and failed (errors or fatal errors alerts raised) data quality check evaluations.
Data quality checks can define the alerting threshold at three severity levels: warning, error, and
fatal error. The final alert raised by the data quality check evaluation reflects the most severe
level for which the threshold has been met.

Data quality KPIs can be aggregated at multiple levels, providing ways to measure the data
quality for time periods (days, weeks, months, etc.), data quality dimensions, data streams
(such as by country), or any combination of these grouping levels.

The expected result of calculating the data quality KPI at different grouping levels may look like
the following tables:

Data quality KPIs at a day level.

Date KPI value

2022-10-01 95.1%
2022-10-02 96.2%
2022-10-03 94.5%
2022-10-04 94.7%

64

Data quality KPIs at a day and data quality dimension level.

Timelines Completeness Validity
2022-10-01 96.1% 97.4% 95.1%
2022-10-02 99.2% 94.6% 96.2%
2022-10-03 94.6% 97.0% 94.3%
2022-10-04 99.1% 93.2% 94.7%

Additionally, data quality KPIs can be calculated for different data groupings separately. Data
aggregated in a single database (or a data lake) can be loaded from different data sources. To
calculate a separate data quality KPI for each data source, it must be possible to identify that
source at the data level. There are two ways to identify the data source in DQOps:

Separate tables for each data source. This is a simple case that can be solved by
tagging the table with the name of the data source, external vendor, or department. A
data quality KPI can be calculated from multiple tables at once. In DQOps, such a
configuration is provided as a tag value assigned to a data grouping level. Here is an
example of the data grouping configuration in a YAML file:

apiVersion: dqo/v1
kind: table
spec:
incremental_time_window:
daily partitioning_recent_days: 7
monthly partitioning recent_months: 1
default_grouping name: by supplier
groupings:
by country:
level 1:
source: tag
tag: UK

Multiple data sources aggregated into a single table. Data from multiple sources can
be aggregated in a single table. If there is a column that identifies the data source, it can
be used to assign the generated alerts and sensor readouts to the correct data

65

grouping. Here is another example of a DQOps YAML file that uses a "country" column
to identify separate data groupings for separate data quality KPI calculation:

apiVersion: dqo/vl
kind: table
spec:
incremental time_window:
daily partitioning_recent_days: 7
monthly_ partitioning_recent_months: 1
default grouping name: by supplier
groupings:
by_country:
level_1:
source: column_value
column: country

Data quality KPIs can also be calculated for combinations of data sources (data groupings),
time periods, and data quality dimensions. An example output of a data quality KPI calculation
at a month, country-level data sources, and separate data quality dimensions would look like
the following table:

Month Data source Timelines = Completeness Validity
us 96.1% 97.4% 95.1%
UK 99.2% 94.6% 96.2%

2022-10
FR 94.6% 97.0% 94.3%
JP 99.1% 93.2% 94.7%

The Data Quality Team and the Data Owner should agree on the selection of valid data quality
KPI aggregations that will simplify further discovery of the root causes of data quality issues.
The following aggregations should be discussed:

Time dimensions. Tracking data quality KPIs at the monthly level allows you to
compare the current month's data quality KPI with those of the previous month. Any
changes to the data engineering process or improvements in the quality of the source
data should be visible at this scale.

66

Data sources with separate tables. Identify groups of related tables that are
populated from the same data source. This level of aggregation allows you to track data
quality at the data source level.

Data sources aggregated in shared tables. Find discriminator columns that identify
the data source, supplier, country, business unit, brand, or market.

Tables with the same purpose. Tables can also be grouped by their purpose. All
tables that are part of a single data mart can be grouped. Data quality KPIs should also
be tracked separately for fact and dimension tables.

Data received from external vendors. External vendors, business partners, or
suppliers may share data imported into a data warehouse or data lake. The
data-sharing agreement may include very specific KPIs for data sharing. These
data-sharing KPIs are, in fact, data quality KPIs related to the latency of the data
exchange, which is the timeliness data quality dimension. The completeness of the data
received from external business partners should also be monitored to detect missing
data due to outdated credentials or corrupted files. If the data sharing agreement
describes the data format, the receiving party can verify the field format as validity data
quality checks.

Data shared with external vendors. If an organization shares (exports) data with its
business partners, it should track the data quality of the exported data. This enables the
organization to meet all data quality requirements in the data-sharing agreements.

KPIs aggregated by product or service line. A data lake or data warehouse can
aggregate all corporate data from different organizational units, business divisions, or
subsidiaries. Data quality KPIs should be linked to a particular line of business.

Internal cross-departmental KPls. Data quality KPIs can be calculated separately for
different departments involved in the entire data lineage. From the perspective of the
department responsible for the data lake, data quality KPIs for upstream data sources
should be separated from the data quality KPIs of downstream data delivered to other
departments.

Multiple copies of the same data. The same data can be stored in different databases
and data warehouses. The data quality KPIs of the original data in an OLTP database
can be compared with the data quality of the copy stored in the data lake or data
warehouse.

67

Data and cloud migration. A successful data migration project should prove that the
data quality of the target (migrated) database is the same as that of the source
database (the old decommissioned database). Similar tables in the old and new
databases should be tagged with the same data grouping label. All tables in the old
database should be tagged as "old," and all new ones should be tagged as "new."

Data mesh. Data may be distributed across different data lakes. It is crucial to track the
data quality for each data lake. Data quality should also be measured for the data that is
exchanged between the mesh nodes.

The DQOps platform provides dashboards that help analyze data quality from multiple
perspectives, enabling you to effectively identify root causes. These dashboards offer
numerous aggregations, including time dimensions, connections, data quality dimensions,
priorities, stages, and grouping. For instance, Figure 3.8 illustrates the "Current table status"
dashboard with data group aggregation by product categories.

D@o Data Sources Profiling Monitoring Checks Partition Checks Data Quality Dashboards Incidents Configuration @ & Synchronize @ ‘
Show advanced dashboards Gurrent table status X
@ Profiling
Current table status Check type filter_monitoring
M Table profilng status
. [only include in KPI* checks
@ Profiling data quality kPl Connection Table priority Table filter Time window: Current month
W Data Quality Dimensions
™ Volume
m Pl
& Monitoring # Executed checks #Issues # Warnings #Errors # Fatal errors
fa Current status 260 47 0 47 0
82 Current table status
88 Current column status
8 Data quality KPls Connection Schema
W Data Quality Dimensions Fatal Fatal
™ Volume Connection Status Wamings Errors errors © Schema name Status Wamings Emors errors @
(520
thelook_ecommerce 0 a7 of thelook_ecommerce 0 47 of
W Schema changes
& Partiions
I Current status
M Highest issue severity per day
M Data quality KPIs
W Data Quality Dimensions
W Partition volume statistics
mel
fa DQOps usage
M Statistics of executed checks 1
W Execution errors
W Checks no longer in use Data group Stage
Fatal Fatal
Data group Status ~ Warnings Errors errors © Table stage Status Wamnings Errors errors ©
Pants 0 1 ol 0 47 ol
Jumpsuits & Rompers 0 1 of
Suits 0 1 ol
Suts & Sport Coats 0 1 ol
Pants & Capris 0 1 ol
anngsets B 0 o
Dimension Check category
Fatal Fatal
Quality dimension Status Wamings Errors erors © Check category Status Wamings ~ Ermors errors @
Valigity 36 of numer c 36 of
Completeness 0 n ol 0 n of

Figure 3.8. A sample screen of the "Current table status dashboard" from DQOps shows the
grouping of data quality issues by different product categories.

68

Note the problems that may happen at this stage.

A discriminator column that identifies different data streams has many distinct values
that generate many aggregations. For example, calculating data quality KPIs at the
"city" level may generate too many aggregations.

The database model lacks documentation, so table groups do not make sense.

The database model changes frequently, and keeping the data quality KPIs up-to-date
with the current data model is difficult.

The data quality KPIs identified in this step will be used when designing data quality
dashboards. The design of the data quality dashboard is described later in this guide.

DE.6. Provide a list of metrics to monitor the data pipeline

Data quality should also be measured from a data engineering perspective. Bugs or failures in
data pipelines or ETL processes can cause many data quality issues. A data quality platform
can identify these issues because most failures will be noticed as anomalies in time series
analysis.

The most typical issues with data pipelines are easy to detect with the following data quality
dimensions:

s Data quality .
Data pipeline issue dimension Data quality check
The data pipeline fails to Timeliness The data lag (the difference between the
execute because the credentials current timestamp and the highest
are outdated. timestamp in the database) rises above

the threshold. No new data is loaded
because the data pipeline has stopped
working. This issue can be detected by a
data freshness check.

Data pipelines do not start at Timeliness Some data pipelines have to wait until
the same time of the day. other pipelines have finished their work.
The waiting time may vary daily, and it
can get very long on some days. Tracking
the ingestion delay and comparing it with
the average delay detects these issues.

69

Data pipeline issue

Data quality

dimension

Data quality check

The data pipeline failed or was
canceled during execution.

Consistency

The average number of rows loaded per
day drops below the average.

The data pipeline scheduled
daily was canceled during
execution.

Completeness

Month or week completeness checks
detect days with missing data.

The incremental loading pipeline | Uniqueness The number of duplicate values,

loaded the same data multiple especially identifiers, indicates that some

times. data was loaded multiple times.

The incremental loading pipeline | Accuracy The number of rows per day between the

missed some rows. source table and the target table
identifies that some rows are missing.
This is especially true if the data quality
check is executed 1-2 days later when all
late-coming data should have been
already loaded.

Not all rows have been loaded Accuracy Comparing the number of rows between

from the staging table to the the staging table and the target

data warehouse. (cleansing, data vault, etc.) tables
indicates a mismatch.

The column format has Validity Validity data quality checks should be

changed. configured for each column that is
required to follow a particular format.
These data quality checks work best on
staging tables with all columns defined
as a text data type. The data quality
checks can try to parse the column
values or verify that columns match
particular date formats.

The number of columns in the Consistency Tracking changes in the number of

file has changed.

columns identify the issue. The current
number of columns (retrieved from the
table's metadata) must be compared to
the last known number of columns.

70

Data pipeline issue

Data quality
dimension

Data quality check

The order of columns has
changed in the file.

Consistency

Similar to detecting that the number of
columns has changed, calculating the
hash code from the names of all columns
helps identify the issues.

The column order has changed.

Consistency

Often, the source data is retrieved using
a simple SQL SELECT statement with a
list of columns or just "*" to retrieve all
columns. If the data pipeline is sensitive
to column reordering and cannot depend
on named columns, statistical analysis is
required to detect issues. A data quality
check that monitors the number of
distinct values in a column can instantly
detect that the number of unique values
has changed since the last data quality
check evaluation. The number of distinct
values in two columns that have been
reversed changes significantly from day
to day.

The table schema has changed.

Consistency

The hash code of all column names and
their data types can be tracked. Any
changes to the hash will instantly identify
a change.

Rows were rejected because
column values were out of
range for the target data types.

Validity

Staging tables should be tested using
"value in range" data quality checks.
Numeric and decimal fields with limited
scale and precision cannot accept values
that do not match their respective format;
e.g., the DECIMAL(8, 2) column does not
accept values with a format different than
123456.78. Tables in the staging area
should be tested periodically.

Out-of-memory errors.

Completeness,
Timeliness

Random failures of the data quality
pipeline affect timeliness (data loaded on
the next execution) or completeness
(data never loaded), so there are some
missing days.

71

Data quality
dimension

Data pipeline issue

Data quality check

Disk space issues. Completeness In most cases, if the data for a particular
date is too large to fit on a disk, the data
for that day is dropped. Completeness
data quality checks detect the gaps in
the data.

The Data Quality Team and the Data Engineering Team, preparing a list of data quality KPlIs,
should focus on the following topics:

Gather a list of frequent data pipeline issues. Obtain a list of common data pipeline
issues and map it to a list of supported data quality checks that can predict these
issues.

Identify the most critical issues that must be detected. The list of data pipeline
issues must be prioritized to avoid flooding the Data Engineering Team with alerts that
notify about less critical issues.

Define mapping of existing data quality checks to reporting categories. Existing
data quality checks run using different data quality tools (such as dbt or Great
Expectations) should be imported into the data quality database. It is important to map
them to a different stage or group them into data groupings. These valuable data quality
checks should be measured against expected data quality KPI levels.

Define KPIs for existing logs. The frequency of warnings or errors reported to the log
management platform should be measured and aggregated into a global data quality
KPI score. All such logs should be identified, and the acceptable number of errors and
alerts must be defined.

Prepare a mapping between data pipelines and tables. To calculate aggregated data
quality KPIs at a database or data pipeline level, tables referenced by a single complex
data pipeline or a complex ETL job must have the same data grouping levels assigned
to them. It is also helpful to assign source and target tables to different areas. In that
case, a separate data quality KPI can be measured for the source tables used by a
single data pipeline or an ETL job. An increase in the number of alerts on the source
table would help identify affected data pipelines or ETL jobs that should be paused until
the data quality issue in the source tables is resolved. DQOps uses a "stage" value at
the table level to map tables to a common stage.

72

Define the expected data quality KPIs at the data pipeline level. The data quality KPI
value at the data pipeline level is a percentage of passed data quality checks for the
stage, data quality dimension, and data grouping). Examples of data quality KPIs
monitored from a data pipeline perspective:

o Percentage of fresh tables on the ingestion stage, calculated by measuring the
timeliness sensors for all tables assigned to the "ingestion" stage.

o Percentage of tables loaded without any delay, measured by counting alerts
raised when tables were not updated on time.

Agree on accepted KPI levels. Ideally, all data quality KPIs (percentage of passed
data quality checks) should be 100%, but this is not always possible. Adaptive data
quality checks that use machine learning, time series analysis, anomaly detection, or
simple statistical analysis (different from the standard deviation) generate false positive
alerts that should be treated as warnings about a possible issue. The expected
percentage of such alerts should be agreed upon with the Data Engineering Team.

Configure an alert notification channel. The Data Engineering Team may require
frequent or even real-time notifications about identified data quality issues. Popular
notification channels include email and Slack. DQOps platform supports integration with
Slack webhooks which are used to set up in-app Slack notifications, as shown in Figure
3.9.

Integrate with a ticketing system. A ticketing system such as Jira or ServiceNow may
already be in use by the Data Engineering Team. A ticket should be opened when a
certain data quality issue is identified in a ticketing system. A list of such high-severity
alerts must be identified with the Data Engineering Team.

Decide on the frequency of notifications. Not all alerts should be immediately
published on the notification channel or result in opening a new ticket. For some types
of alerts (especially anomalies), it is advisable to delay the notification. Subsequent data
quality issues might indicate a broader problem behind all of them, which can only be
detected by introducing a notification delay, after which a collective notification shall be
sent. On the other hand, notifications may be set to be raised only when the data quality
KPI drops below a certain threshold. In that case, if one of the 20 tables in the ingestion
stage is delayed, the data quality KPI for timeliness in the ingestion stage will simply
drop to 95%. A drop of that KPI to or below 90% indicates that at least two tables in
the ingestion stage are delayed, so the Data Engineering Team should be notified.

73

Prepare requirements for data quality KPl dashboards from the data pipeline
perspective. Data quality KPIs should be displayed on data quality dashboards. The
Data Engineering Team should provide its requirements for data quality dashboards that
could help them identify the root cause of issues or predict data pipeline failures.
Requirements for data quality dashboards should focus on KPIs grouped by stages,
schemas, tables, data pipelines, data areas, and data quality dimensions. Additional
fitering on the dashboards should also be discussed. DQOps has many built-in
dashboards that allow tracking and reviewing issues from the data pipeline perspective,
such as schema changes, timeliness, table availability, validity, and completeness. All
dashboards can be customized.

Monday, February 19th ~

@ DQO Notifications APF 10:00 am
New incident detected in america_health_rankings.ahr table.

First seen: 2024-02-19 0%:00:06 (GMTQ)
Quality dimension: Validity

Check category: patterns

Highest severity: error

Total data quality issues: 2

View in DQOps

New incident detected in austin_311.311_service_requests table.

First seen: 2024-02-19 0%:00:06 (GMTQ)
Quality dimension: Consistency

Check category: schema

Highest severity: fatal

Total data quality issues: 4

View in DQOps

Figure 3.9. An example of DQOps notification in Slack. DQOps supports integration with Slack
webhooks which are used to set up in-app Slack notifications.

The problems that may occur at this stage:
The recent list of data pipelines is missing.

The complexity of data pipelines or ETL processes makes it difficult to determine which
tables are used by them.

74

The organization lacks knowledge of the inner workings of some of the old ETL
processes because the employees responsible for them have left.

Integration with notification channels or ticketing systems requires extensive work and
approval from platform owners.

DQ.6. Create data quality KPI dashboards

After gathering the lists of requested data quality KPIs requirements from the Data Owner and
the Data Engineering Team, the Data Quality Team can design and build the data quality
dashboards.

Depending on the audience and purpose of data quality dashboards, they can be divided into
three groups: Governance, Operational, and Detailed.

Governance dashboards

Governance data quality dashboards offer senior management a clear and comprehensive
picture of their organization's data health. These dashboards condense key data quality
indicators (KPIs) into a high-level, macro view, quickly grasping overall data quality.

The dashboards cater to different levels of detail. Senior management can review a concise
summary or analyze KPIs by individual time periods, data sources, schemas, tables, columns,
data quality dimensions, check categories, data groups, and even specific days. The
dashboards should also offer the ability to filter data by various criteria. This granular filtering
allows for pinpointing areas needing improvement.

An example of the Governance dashboard “KPls scorecard summary” available in the DQOps
platform is shown in Figure 3.10.

75

() show advanced dashboards

& Profiing
M Table profiling status
W Profiling data quality KPIs
W Data Quality Dimensions
i Volume
[
B Monitoring
8 Current status
& Data quality KPIs
B3 KPIs scorecard - summary
88 KPIs per table - summary

88 KPIs per months and days

82 KPI history
W Data Quality Dimensions
m Volume
Pl
W Schema changes
& Partitions
8 Current status
I Highest issue severity per day
W Data quality KPIs.
W Data Quality Dimensions
W Partition volume statistics
el
& DQOps usage
I Statistics of executed checks
W Execution errors

W Checks no longer in use

D®@Ops Datasources

BB KPIs - current vs previous month

Profiling Monitoring Checks

KPIs scorecard - sum... X

KPIs scorecard - summary

Partition Checks Data Quality Dashboards Incidents Configuration

© (o) @

Check type filter monitoring

+ Only “include in KPI" checks

Connection Quality dimension ~ Check category Data groupname ~ ~ Table filter
Current month Previous month]
Percentage of passed checks KPIs history by month
100%
80%
60%
KPI % 0%
)
83.0%
$-21%
0% 100% 0%
March 2024 0ct2023 Nov 2023 Dec2023 Jan 2024 Feb 2024 Mar 2024
Passed data quality checks Percentage of executed checks
Correctresults ~ Correct result % Warnings Warnings %
o) o)
5.4K 82% 44.0 0.7%
@ Correct
Warning
Failed data quality checks ® Error
@ Fatal
Errors Errors % Fatal errors Fatal errors %
[o)
110KS 16:]% 56.0 0.9%
Distribution of checks results per month
I Correct results Warnings [l Errors [Fatal errors
8K
6K
a®
ZK]
0
0ct 2023 Nov2023 Dec 2023 Jan 2024 Feb 2024 Mar 2024

Figure 3.10. A sample screen of the governance dashboard “KPIs scorecard - summary,” which
is available on the DQQOps Platform.

Operational dashboards

Operational data quality dashboards are designed for Data Engineers and Data Owners,
providing insights into the health of data pipelines and data warehouses/lakes. These
dashboards pinpoint the areas needing attention by highlighting tables or pipelines with the
most frequent data quality issues. The Data Quality Team plays a vital role in this process by
helping identify and eliminate false positive alerts.

76

Operational dashboards go beyond a high-level view. Teams can leverage granular filtering
options to delve deeper into specific aspects of data quality. Filters encompass time frames,
connections, schemas, data groups, stages, data quality dimensions, check categories, and
individual tables and columns. This level of detail allows for pinpointing the root causes of
issues and facilitates targeted solutions.

The operational dashboards available in the DQOps platform, such as the one shown in Figure
3.11, utilize a color-coded system to represent the severity level of detected data quality
issues. Green indicates no issues, while yellow, orange, and red signify progressively more
critical problems. This visual approach quickly identifies the most concerning tables and
columns. Additionally, the dashboards display the precise number of issues per severity level,
further aiding in prioritization.

D@Ops Data Sources Profiling Monitoring Checks Partition Checks Data Quality Dashboards Incidents Configuration @ £ Synchronize a 43_4
Show advanced dashboards Gurrent table status X
@ Profiing
Current table status N Check ype e MO0 KIS
W Table profiling status
O only “include in KPI* checks
M Profilng data quality KPIs Connection - Table priority - Table filter Time window: Current month ~ + N ————————
M Data Quality Dimensions
i Volume
[320
& Monitoring # Executed checks #Issues # Warnings #Errors # Fatal errors
f Current status 1.1K 106 4 97 5
B3 Current table status
88 Current column status
M Data quality KPIs. Connection Schema
W Data Qualty Dimensions Fatal Fatal
™ Volume Connection Status Wamings Errors errors © Schema name Status Wamings Erors errors ©
[320
1 2| 2 - 1 2 —
W Schema changes
& Partitions 0 o 2 - o 0 2 —
B Current status 3 128 - 3 128 -
W Highest issue severity per day - 0 Bl] - 0 ST m— 0|
W Data quality KPIs - . ppr— ol - . = ol
M Data Quality Dimensions
M Partition volume statistics
- - W o B a o
I Statistics of executed checks 1-10/10 e . of
B Execution errors
W Checks no longer in use Data group Stage
Fatal Fatal
Data group Status Wamings Emors erors © Table stage Status Warnings Eors errors ©
B oM SEE— B om— SE—
B)l o
Overwesr .o e A o
Dimension Check category
Fatal Fatal
Quality dimension Status Wamings Erors errors @ Check category Status Wamings Errors errors @
Co 3 — 4]
Val . 0 37— -
Re - schema 0 -
Un ol b 0 o -
ol B 3l ol
Table
Connection Lastdetected Status Warnings Errors @ ~ Fatal errors @ ~
urant_ratings Mar 18, 2024, 215:05PM 1 21 2
jents ar 19, 9:20:00AM 0 0 2
war 19,2024, 90004t [o 120 —
products war 18,2026, ocoeavt [N © o E— 0|

Figure 3.11. A sample screen of an operational dashboard “Current table status,” which is
available on the DQOps Platform.

77

Detailed dashboards

Detailed data quality dashboards should provide a more detailed view for Data Engineers and
Data Owners. This view will allow them to inspect data at the table and column level, which can
be extremely helpful during the investigation phase of data quality issues. This deep-dive
capability will enable them to diagnose problems effectively. Once a data quality issue has

been addressed, these dashboards can be used to confirm its successful resolution.

DQOps platform offers a wide range of detailed dashboards catering to specific data quality
dimensions such as availability, completeness (an example shown in Figure 3.12), timeliness,
consistency, and validity. Moreover, other detailed dashboards provide detailed information on

areas of interest such as schema changes, volume, and personally identifiable information.

All

DQOps dashboards offer a vast range of filtering options within each dashboard. You can drill
down into specific timeframes, connections, schemas, data groups, tables, stages, priorities,

tables, and individual columns.

D@ O Data Sources Profiling Monitoring Checks Partition Checks ~ Data Quality Dashboards Incidents Configuration ® 2
@ show advanced dashboards

& Profiing : Check type filter monitoring
Current completeness issues on columns e e en———

Connection - Data group name - Table filter Time window: Last 30 day
™ Profiing d

B Check results
B Data Quality Dimensions

™ Volume Table completeness collected by nulls_count, nulls_percent # Most recently executed null checks # Warnings #Ermors # Fatal errors

Pl not_nulls_count and not_nulls_percent 490 4 48 4

M Schema changes
@ Monitoring

B Current status Connection Schema Table Check type

Highest issue severity per da 8 - .
 Hig ly per day) #1ssues Highest Highest Highest #1ssues Highest
M Data quality issues count Connection ok severity schema name severity Table name severity Check type 5 severity

o - o - [® -~

M Data quality KPIs
M Check results. an
-

B Data Quality Dimensions . -
W Availabilty an , . -
W Accuracy 2
& Completeness 3 quests 12 -

-

98 Incomplete columns with null values a1

39 Incomplete columns with null values. e " Check name

83 Empty columns Highest
#lssues ;

G5 History of completeness Issues s Y

°
M Timeliness

o
M Consistency

-

W Vlidity
W Volume |
[l Table stage Table priority 1
1l

Schema changes Highest Highest
~ o Table stage #lssues colerity Table priority #lssues goverity
B Partt o - a5 ° ok

. o L

W Highest issue severity per day

#Issues #1lssues
o - o -

kaggle_ioan

88 Current completeness issues on colu
kaggle_shirtsizes kL]

W Data quality issues count

W Data quality KPIs

M Check results Seve.r'rty

M Data Qualty Dimensions Severity #lssues ~
M Partition volume statistics Error 48 I
W Pl Warning a1

[DQOps usage Fata a
W Statistics of executed checks

M Execution errors

Column

Connection.Schema.Table @ ~ Column name Check display name Detected at Actual Expected 5=;"j‘v

value value

maven_restaurant_fatings maven_restaurant ratings consumers Transportation_Metnod daily_not_nulls_percent 17 mar 2024, 151500 99 95 -

Figure 3.12. A sample screen of a detailed dashboard “Current completeness issues
columns,” which is available on the DQQOps Platform.

on

78

Design and development of data quality dashboards
Below are the main features of a good data quality dashboard:
Clear, logical layout and ease of understanding.

Enables data export to an Excel file when information about a data quality issue needs
to be shared with additional people or external partners who do not have access to the
dashboard.

It allows a relatively easy comparison between different time periods, such as the
current and previous month.

Enables filtering for the time periods.

Allows users to drill down through data streams, stages, data suppliers (business
partners, etc.), and data pipelines.

Enables calculation of grand totals for KPlIs, i.e., the percentage of passed data quality
checks for all data quality dimensions.

It is also worth mentioning that a cumulative data quality KPI may be misleading without being
split into different data quality dimensions (timeliness, validity, etc.). The number of active data
quality checks in each data quality dimension may differ. The cumulative data quality KPI can
use additional formulas that calculate a weighted KPI across different data quality dimensions.
The formula for the cumulative (weighted) data quality KPI may use different weights for each
data quality dimension. An example of such a calculation is presented in the table below. This
example of weighted calculation of KPIs can be applied to the customized data quality
dashboards available on the DQOps platform.

Data quality Timeliness Validity Accuracy Weighted KPI
dimension

KPI per
dimension

Weight

Weighted KPI

79

The cost of the business intelligence (BI) platform used to present the data quality dashboards
should not be neglected. The data engineers and some Data Owners may not have a license
for a Bl platform. Moreover, additional specialists who may be involved in the incident
resolution must be granted access to data quality dashboards, which may require covering
additional licensing fees.

DQOps uses Looker Studio (formerly Google Data Studio) to present data quality dashboards.
All data quality results, i.e., data quality sensor readouts used on the detailed dashboards and
data quality alerts aggregated on the governance and operational dashboards, are
synchronized to a private data quality data warehouse in the Google Cloud. Looker Studio is
used to show data quality dashboards because there is no per-user license fee, which allows
granting access to all parties involved in the issue resolution process.

The following tasks must be completed during the design and development of data quality
dashboards:

Build a data quality warehouse. The data quality results used to create data quality
dashboards must be aggregated in a database. In case a custom data quality database
is used, it may be a significant effort beyond the scope of just one step in the process
because data modeling and data ingestion activities must be performed. For simplicity,
we assume that the data quality platform provides the data quality warehouse. With
DQOps, each customer receives a private data quality lakehouse in Google Cloud
(Figure 3.13).

Select a business intelligence environment. You can choose from various
commercially available Bl technologies, such as Sisense, Tableau, Power Bl, or Looker
Studio. Data quality projects implemented with DQOps will receive a complementary
Looker Studio instance connected to a data quality data warehouse.

Connect the business intelligence platform to the data quality database. The
business intelligence tool must also be connected to the data quality database. DQOps
customers can ask the vendor to access a custom Looker Studio data source, which
provides direct access to the data quality lakehouse.

Select relevant data groupings for aggregation of data quality KPIs. The relevant
data grouping hierarchy levels that identify data sources, data streams, vendors,
business partners, subsidiaries, or data pipelines must be selected.

Design dashboards for governance, operational, and detailed dashboards. Custom
data quality dashboards should be developed according to the Agile process. For each
requested data quality dashboard, the development process should involve the
requirement review, mockup preparation, mockup review, development, and testing.

80

O
=

Data Quality Specialist,
Data Stakeholders

0

Local Data Quality Data

N Data Quality Data Warehouse

Lake (Hive-compliant)

Local configuration of data

(Google BigQuery)

& ——® sources and configured quality
1 checks, stored as YAML files

Data Engineer, |
Data Scientist :

> Qgit

Integration with
CI/CD pipelines

—
Looker Studio
DQOps Web Ul Dashboards
' '
. Data quality ci
DQOps runtime data warehouse refresh DQOps Cloud O

(instance) o SaaS service

Looker Studio
DQOps user home
-
Data
synchronization

Figure 3.13. Data quality projects implemented with DQOps receive a complementary Looker
Studio instance connected to a Data Quality Data Warehouse on Google Cloud. Learn more

about DQOps architecture in the documentation.

Note the problems that may arise at this stage.

The cost of a business intelligence platform can be significant.

The data quality database must be redesigned, or additional tables must be created.

Too much data displayed on the dashboard creates visual clutter.

81

https://dqops.com/docs/dqo-concepts/architecture/dqops-architecture/
https://dqops.com/docs/dqo-concepts/architecture/dqops-architecture/

Il. Improving data quality KPIs

Once the first data quality dashboards are set up, the Data Quality Team can start monitoring
the data quality KPlIs. If the KPIs’ scores are not acceptable, the team identifies the checks
responsible for the alerts and creates a list of tables affected by the issue. The Data Quality
Team then contacts the Data Owner, who can review the root cause of the issue. If the problem
can be resolved in the source system or by an external data provider, the Data Quality Team
can re-execute data quality checks and continue monitoring. An issue that the Data Owner
cannot resolve because it occurred in the data pipeline or an ETL process must be verified by
the Data Engineering Team.

Sometimes, a data quality issue cannot be resolved promptly, or its resolution requires a
manual update of invalid records. For example, a data quality requirement that the phone
number is provided for every customer in the CRM cannot be easily fixed without engaging the
sales team in a lengthy CRM data cleaning. In this case, the Data Owner creates a list of
tolerated data quality issues. Next, the Data Quality Team adjusts the KPIs’ rules and
thresholds for affected tables and re-executes data quality checks. If the Data Quality Team still
identifies unresolved data quality issues, they create a list of issues to be addressed at a later
stage. At the end of the process, all data should meet expected data quality KPIs or a list of
exceptions should be created. The remaining data quality issues should be monitored and fixed
as soon as the right conditions are met, under which data quality issues can be resolved.

4. Optimizing data quality scores

The active data quality checks will raise alerts whenever the alerting thresholds are exceeded.
Initially, the majority of the alerts at this stage will be false positives because the alerting
thresholds are defined based on the expectations of Data Owners. At this stage, false positive
alerts should be identified, and their alerting thresholds should be adjusted to the actual data
quality. The remaining data quality alerts indicate actual data quality issues that may be
resolved by the Data Owner, Data Producer, or Data Engineering Team.

The Data Quality Team monitors data quality KPIs on newly created data quality dashboards.
Any identified data quality issues must be reviewed with the Data Owner, who should take
responsibility for the next steps. The Data Producer can fix the data quality issues present at
the data source level. Issues caused by a bug in the data pipeline or an ETL process should be
fixed by the Data Engineering Team. Once the problem is resolved, the Data Quality Team
re-executes data quality checks.

82

If the issue cannot be fixed immediately, the Data Quality Team may adjust the alerting
thresholds or acceptable levels of data quality KPIs. This happens when there are unfixable
data quality issues in the source data. The purpose of conducting the data quality process is to
measure the percentage of issues (such as a percentage of null values). The Data Quality Team
should investigate further if the data quality KPI deteriorates over time.

'
Y
1

Alist of tables
affected by the data
quality issues

5 A list of unresolved
DQ.8. Identify tables DQ.12. Adjust data quality issues to
affected by data SIEESHOIES SHE IS be addressed later
quality issues for low-quality tables

DQ.7. Check the KPIs rethe .9,
e e ey) Its o . results NO

quality issues

e Al KPIs are
(All data meets dah\ monitored mith\I
\ quality KPls) known data
. quality issues /

DQ.7. Check the KPIs on dashboards

The data quality dashboards help to identify areas with data quality issues that require

attention. As we mentioned in the DQ.6. Create data quality KP| dashboards chapter, the data

quality dashboards can divided into three groups:

Governance dashboards. These dashboards display global data quality KPIs
categorized by the data quality dimension and the total percentage of passed data
quality checks out of the total executed checks. During the data quality KPI review, only
the governance dashboards are important. The issues that need to be addressed are

prioritized in the operational dashboard.

Operational dashboards. These dashboards provide a prioritized list of tables or
columns affected by data quality issues. These are the tables that the Data Quality
Team should focus on with the highest priority.

83

Detailed dashboards. These dashboards facilitate an in-depth investigation of data
quality issues by reviewing the historical data quality sensor readouts or
dimension-specific data quality issues, such as availability, completeness, timeliness,
consistency, or validity — for example, a sharp increase in the percentage of rows with
null values.

Governance dashboards may be divided into data areas, measuring data quality KPls
associated with processing stages, vendors, external data suppliers, data marts, or even
separate data streams aggregated in a single table. DQOps enables the use of up to 9 data
grouping hierarchy levels to tag and segment the data quality results by tags or column values
(such as a country column).

The Data Quality Team should review data quality KPIs with the Data Owner in the respective
data area.

To complete this stage, pay attention to the steps outlined below.

Identify data quality dimensions with unmet KPIs. Governance dashboards should
show exactly which data quality dimensions have issues. Issues may be related to
missing data (timeliness dimension) or invalid values (validity dimension). Identify the
most important data quality dimension affected by data quality issues that must be
addressed.

Identify data areas with unmet KPIs. Once you have identified data quality
dimensions with a high percentage of alerts, review the data quality KPIs at a deeper
level. This level is a set of data quality KPI dashboards that show data quality KPIs at a
data source, stage, vendor, or database level. The data quality dashboard available in
the DQOps platform, shown in Figure 4.1, prioritizes data areas that do not meet data
quality KPIs and should be fixed.

Assess acceptable KPI levels. Acceptable KPI levels may already be agreed upon
with the Data Owner for data sources whose quality is not satisfactory. The Data Owner
may already know that up to 5% of tables may not be refreshed on time for some
acceptable reasons. In that case, the accepted timeliness KPI would be 95%. The Data
Quality Team may choose another area for an in-depth analysis if the governance
dashboards show a slightly higher KPI.

Prioritize the affected data areas. Identify vendors, stages, databases, or any other
data area that does not meet data quality KPIs and should be fixed.

84

D®@Ops Datasources

@ show advanced dashboards

& Profiing
W Table profiling status
W Data profiing issues count
W Profiling data quality KPls
W Check results
W Data Quality Dimensions
™ Volume
[Bl
M Schema changes
& Monitoring
W Current status
W Highest issue severity per day
B Data quality issues count
& Data quality KPIs
83 KPIs scorecard - summary
53 KPIs per table - summary
88 KPIs per months and days
83 KPIs - current vs previous month
23 KPI history
88 KPIs per table and day
83 KPIs per column and day
82 KPIs per data grouping and day
83 KPIs per check and day
23 KPIs per quality dimension and data gro
B Check results
B Data Quality Dimensions
M Volume
™ Pl
W Schema changes
@ Partitions
@8 Current status
W Highest issue severity per day
I Data quality issues count
W Data quality KPIs
@ Check results
W Data Quality Dimensions
M Partition volume statistics
el
@ DQOps usage
W Statistics of executed checks
M Execution errors
W Checks no longer in use
B Aggregated results for all check types
@ Data quality issues count
@ Data quality KPIs

Profiling

Monitoring Checks Partition Checks

KPIs per months an

KPIs per months and days

Connection - Table filter

Data Quality Dashboards

Incidents Configuration

=)

Check type filter monitoring

« Only “include in KPI" checks

Curr Previous month] Last 12 months]
Change of KPIs per day
—KPI% KPI % (poprzedni miesiac)
100%
80%
60%
0%
0%
0%
1 3 5 7 9 n 13 15 7 19 2 23 25 27 2 31
Change of KPIs per dimension per day
c J— y —L —c —— Validity —— Reasonableness —— Timeliness
100%
— 1
80%
60%
b \/
20%
0%
1 3 5 7 9 n 13 15 7 19 2 23 25 27 2 31
Connections Schemas Tables Columns
Connection KPI% . Schemaname KPI% + Table name KPI% « Column name KPI% »
P — [- B oo Qs Ty
maven_restaurant_ratings dqo_testing_time_lag paid
ot e Cum
bigquery-public-data maven_restaurant_ratings alpha_2_code
Halomn B i T e ae
v susts s s ns o Cas
ahr
thelook_ecommerce — kaggle_loan incident_zip
311_service_requests
- [e ——— s ot me
eligibility_prediction_for_loan
PR P E—— o e s
maths
tagecovave s tasg snsaes mn ncen s | wm
products
table_availabilty dgo_ai_test_data 857% county
_— Ty
kaggle_uefamatches kaggle_covidiive 985% subpopulation
astton coters Ty
fasetansces e
1-2/21 < > 1-100/107 < >
Data groups Dimensions Check categories Check names
Data group name Quality dimension KPI% Check category KPI% Check name KPI%
it f— patens [ECEreesT—
Fashion Hoodies & Sweatshirts Reasonableness bool monthly_distinct_count
[—— vatary tmetnes [T o

Figure 4.1. The sample screen of a governance dashboard “KPIs per months and days,” which
is available on the DQOps Platform. This dashboard helps prioritize data areas that do not meet
data quality KPIs and should be fixed.

Note the following problems that may occur at this stage.

* Additional data quality dashboards must be created for

selected data stream

hierarchies. For example, the data quality results are measured at the country and state

85

levels. For these hierarchies, three types of data quality KPI dashboards are possible:
country/state level KPIs, country-level KPIs, and an overall organization-wide KPI.

Incomplete data (such as missing days) affects the KPI calculation because the KPI is
calculated based on too few data quality results in a given time period (month).

Once the data quality KPI review is finished, the Data Quality Team should decide if any data
quality KPIs are not met. The affected tables will be identified in the next stage before the
problem is reviewed with the Data Owner or the Data Engineering Team.

DQ.8. Identify tables affected by data quality issues

Once the area of focus has been identified on the governance dashboards, the Data Quality
Team can use the operational and detailed dashboards to find all the tables that have
generated the highest number of data quality issues. The Data Quality Team identifies the most
severe data quality issues based on the priority of the affected tables and should work together
with the Data Owner, Data Producer, and Data Engineering Team to resolve the issue.

The data quality KPI is a percentage of passed data quality checks. Often, alerting thresholds
are configured too restrictively, resulting in low KPI scores. For example, the alerting threshold
for the minimum number of new rows inserted into a table per day might be set too high. Such
data quality checks can be replaced with ones that compare the daily row count increase to the
average daily growth rate.

To complete this stage, pay attention to the steps outlined below.

Select one data quality KPI to improve. The Data Quality Team should start by
selecting a data quality KPI to improve a single data area. This could be improving the
timeliness of tables at a single stage or the validity of tables from a single data source.

Prioritize the tables affected by the issues. Sort the tables affected by data quality
issues by the number of issues. The Data Quality Team should review three separate
lists of affected tables, sorted by the number of data quality issues at the fatal error,
error, and warning severity levels.

Review fatal error issues. First, you need to review the tables affected by data quality
issues at the fatal error severity level. These are the most significant data quality issues
that affect business users or issues that can propagate down the data pipelines,
spreading across the organization. A master table that stores a list of customers cannot
be empty if replicated to downstream systems. When the Data Quality Team identifies

86

any fatal error data quality incidents, the Data Owner should be informed, and the Data
Engineering Team can be asked to stop the affected data pipeline to avoid spreading
the data quality issue to other systems.

Review regular data quality errors. The default alerting severity level is "error." Sort
tables affected by regular data quality issues by the number of errors to focus on the
most affected tables first.

Review data quality warnings. Review alerting thresholds that trigger warnings for
anomalies. A recent change to the percentage of rows with null values may suggest a
potential data quality issue. If not addressed preemptively, this issue could cause more
severe problems in the future.

Make a preliminary assessment of the data quality issue. Review in detail the data
quality alerts raised in the tables under investigation. DQOps data quality sensors
capture historical data quality readouts. Reviewing historical values, such as row
counts, can help find the root cause of the issue.

Review potential issues caused by misconfiguration of data quality checks. When
data quality checks have been activated recently, there are likely some obvious
configuration issues. Most of these issues can be fixed instantly by changing the
configuration and re-executing the data quality checks without involving other parties.

Review the data directly in the monitored table. To understand a problem, the Data
Quality Team should query the monitored table directly by running SQL queries or
reviewing the files for external tables. Sometimes, a data quality issue is easy to notice
on a query result screen after looking at the table's contents.

Prepare an issue summary for review with the Data Owner or Data Engineering
Team. The data owner, data producer, or data engineering teams should fix data quality
issues that are not false positives. They should also review frequent data quality issues
that happen from time to time. Occasional data quality issues are easily identified
because they lower the data quality KPI. The Data Quality Team should prepare a report
summarizing the investigation's results.

Contact the Data Owner and Data Engineering Teams. At the end of this stage, the
Data Quality Team should engage with teams that can fix the data quality issue at the
source level or the data processing stage.

87

Data quality incident automation

Monitoring data quality in data sources using the DQOps platform will detect new data quality
issues at regular intervals, so the same issues will be detected until the root cause is fixed.
Additionally, DQOps supports hundreds of data quality checks, which can result in many
positive and false-positive check results. Some data quality issues are expected, as data
quality checks are not disabled on a decommissioned table. Planned maintenance events can
cause other issues. To prevent overwhelming the support team with numerous data quality
issues, DQOps groups similar issues into data quality incidents.

A data quality issue is a single check result that does not meet the data quality rule and has
been assigned a severity level, such as warning, error, or fatal error. Data quality issues are
stored in the check_results table and are used to measure the overall data quality by
calculating data quality KPls.

A data quality incident is a group of similar issues with the same properties. When a new
issue that does not match any active incident is identified, a new data quality incident is
created and associated with it. The incident is stored in the incidents table and assigned to the
support and engineering teams for assessment and resolution.

Four statuses are used in the data quality incident workflow in DQOps, as shown in Figure 4.2:

Open status is used for a new incident that was just detected because a new data
quality issue (failed data quality check) was identified, and it did not match any other
open, acknowledged, or muted incident. These issues need to be assessed and then
managed by the 2nd-level support team or the data quality team.

Acknowledged status is assigned when the data quality issue is confirmed and
assigned to the 3rd-level support team for resolution.

Resolved status is used when the 3rd-level support team solves the issue.

Muted status is assigned to false-positive issues, low-impact issues, or issues that
cannot be solved. DQOps will keep detecting data quality issues matching this incident.
New incidents will be assigned to the muted incident for the next 60 days. The incident
mute time window is configurable on a table level.

88

Acknowledged solved
Assigned to be fixed by
the 3rd level support
New data quality New incident .
incident identified created Not aniissue,
do not raise it again

False alarm,
mute

j

Figure 4.2. The diagram shows the management workflow of the data quality incident used in
DQOps.

DQOps supports the following grouping levels:
Table
Table and data quality dimension
Table, data quality dimension, and check category
Table, data quality dimension, check category, and check type
Table, data quality dimension, check category, and check name

The default configuration creates a data quality incident based on the grouping issues table
where the issue was identified, the data quality dimension, and a data quality check category
that mostly groups the check by the type of column or the way how the check is implemented.

In DQOps, It is also possible to raise data quality incidents only for error and fatal or only fatal
severity issues. The default configuration assigned to each data source will create a data
quality incident for all data quality issues, including warning severity issues. The warning
severity issues also include many sensitive anomaly detection checks that may raise
unexpected issues that will engage the support team. An alternative method of managing
warning severity issues is to increase the minimum severity level for raising incidents to error,
and use the current table status dashboards to review warnings.

The DQOps platform has several built-in dashboards that help identify tables with the highest
number of data quality issues. Figure 4.3 shows an example of such a dashboard.

89

DQOPS Data Sources Profiling Monitoring Checks Partition Checks Data Quality Dashboards Incidents Configuration @
@ show advanced dashboards Data quality executed.
& Profiing & Check type filter monitori
Data quality executed checks per table B
W Table profiling status
Data orofi . O only ‘include in KPI" checks
W Data profiling issues count Data group name - Table filter Time window: Curentmonth ~ ~
W Profiling data quality KPIs
W Check results
M Data Quality Dimensions
W Volume Month Surrent #Executed checks # Correct results # Warnings #Errors # Fatal errors
i Count of all data quality checks executed ¥
during the time window
W Schems changes N Mar 2024 2024 8.4K 7.2K 44 1.7K 56
& Monitoring
W Current status
W Highest issue severity per day Lt b Lol o
@ Data quality issues count Connection Correctresults Wamings Errors F"‘;"F" Schema name Correctresults Warnings Errors F“‘;‘ rors
28 Data quality executed checks per table
kaggle_students %l 0 0 23— kaggle_student_performance 9%l [o 23—
25 Data quality issues count per check
8 Data quality failed checks per table and maven_restaurant_ratings s6| n 2| 22— maven_restaurant_ratings s6l mn 22| 22—
28 Data quality falled checks per day kaggle_loan scoll 3 128 - kaggle_loan s6oll 33 1320 1 -
8 Data quality KPls thelook_ecommerce 200NN O s mmm— ol thelook_ecommerce 2900 © 2 ol
W Check results
bigquery-public-data scoml] 265 ol america_hesith_rankings 4200 o 150 of
W Data Quality Dimensions
i 3 austin31 4
i Volume kaggle_shirtsizes azil 0 36| ol austin_311 70 0 1238 0|
Pl dqo_ai_test_data 120 Y 20| ol kaggle_shirtsizes a2 0 36l]
W Schema changes kaggle_covidiive 1,996 I 0 12 ol dqo_ai_test data 1200 0 20|]
& Partiions kaggle_uefamatches il] 0 ol kaggle._covidiive 1,99 NI 0 12| ol
W Current status.
table._availabilty a7 0 0 ol country_codes 271 0 12| ol
W Highest issue severity per day
W Data quality issues count kaggle_uefamatches nl 0 ol 0|
W Data quality KPIs
B Check results
W Data Quality Dimensions Severity level Table stage Table priority
W Partition volume statistics Issue severity #Issues ~ Table 4 ;1mgmg'¢ Table pri = .:,:m
[9 al oty al
Error 17K I
DQOps usage . 84K . B
B9 DQOps tsag Fatal sl
W Statistics of executed checks
W Execution ermors Warning el
M Checks nolonger in use
& Aggregated results for all check types
W Data quality issues count
W Data quality KPIs
Issues per quality dimension Issues per check category
Quality dimension Correctresults Wamings Ervors e Check category Comrectresults Wamings Errors e
Completeness 440 I 4 STANEEEN 4 nulls 3245HEE 44 551 I 22
Validity 12940 0 sommm. schema 16190 0 2] 12 -
Reasonableness 2| 0 0 nm numeric 11970 0 o
Uniqueness @12) [25 ol bool o 0] -
Availabilty 84| o 0 ol patterns o 0 361 ol
Timeliness 13| 3 0 ol uniqueness. 3220 0 28] ol
Consistency 965l o o ol pii 971 0 20| ol
datatype 2| o o]
availability 84] [0 o]
volume 404 0 0 0]
Total issues per table Distribution of issue severity level
. Total I Correct results % Warnings %
otallssues B Errors % [Fatal errors %
dqo_ai_test_data.string_test_data_44500979608.
thelook_ecommerce. products
country_codes country_codes,
kaggle_loan.eligibility_prediction_for_loan maven_restaurant_ratings.consumers|
america_health_rankings.ahr|
‘america_health_rankings.ahr austin_311.311_service_requests|
kaggle_loan.eligibility_prediction_for_loan|
austin_311.311_service_requests
kaggle_student_performance maths|
thelook_ecommerce products
maven restaurant_ratings consumers
thelook_ecommerce distribution_centers
thelook_ecommerce_users kaggle_shirtsizes shirt_sizes|

Figure 4.3. A sample screen of a detailed dashboard “Data quality executed checks per table,”

which is available on the DQOps Platform. This dashboard helps identify the tables with the
highest number of data quality issues.

90

Note the following problems that may occur at this stage.
Data quality alerting thresholds are too sensitive and unrealistic.
Monitored tables are empty or outdated.

Not all data quality checks were executed on time due to data platform performance
issues.

Once the data quality issue investigation is completed, the Data Quality Team should be able to
present the data quality issue to the Data Owner or Data Engineering Team. Data quality
dashboards for the detailed dashboard should show enough information needed to identify the
root cause of the problem.

DQ.9. Re-execute data quality checks

The data quality improvement process is a continuous loop of fixing data quality issues and
reviewing data quality KPIs. The step in the middle is the data quality check re-execution,
which is when the data quality checks are executed again to capture the most recent readouts.

When the data quality checks are re-executed after the Data Engineering Team has made major
changes to the data model, many of the data quality checks already configured can become
outdated. This happens often when monitored tables are deleted or replaced with new ones. In
this case, the Data Quality Team should update the data quality check specifications, detach
data quality checks from outdated tables, and reattach these data quality checks to the new
tables.

Migration of data quality checks from outdated tables to new tables can affect the data quality
KPIs because KPI is calculated for both old alerts from the outdated tables and new alerts on
the new table. In some situations, the new table may be a copy of the old table with minor
changes to the table schema (new columns, etc.). For time-partitioned data, when separate
data quality scores are calculated for each partition, each data quality sensor readout and alert
might get duplicated. The Data Quality Team should perform additional cleanup in the data
quality database, removing outdated data quality results that do not reflect the state of existing
tables or active data quality checks.

The stage of data quality checks re-execution can be divided into the following steps:

Identify outdated tables. The Data Owner or Data Engineering Team may identify that
some tables affected by data quality issues are outdated and should be excluded from
the data quality monitoring process. On the other hand, serious data quality issues

91

identified on key tables may require a major data remodeling process. The affected
table can be replaced with a new table with a different schema and name. Data quality
results for old tables may need to be removed from the data quality database.

Identify invalid data quality checks. The Data Owner or the Data Engineering Teams
may determine that some data quality checks are incorrect or that the alerting
thresholds must be adjusted. These data quality checks must be re-executed with a
new configuration.

Identify outdated data quality checks. Alternatively, the Data Owner or the Data
Engineering Team may decide that some data quality checks are not relevant and
should be disabled or removed.

Identify the tables affected by the recent changes. Identify any tables that have been
fixed or the data quality checks that have been updated. These data quality checks will
be re-executed on these tables.

Identify the range of updated partitions for date-partitioned data. The Data
Engineering Team should determine the range of affected daily partitions by partially or
fully reloading large day-partition tables and re-executing the data quality check for the
partitions affected by the changes.

Re-execute selected data quality checks. Re-execution should be done either for the
updated checks or all checks on modified tables. DQOps supports two types of time
series that affect the re-execution process. The first is point-in-time results for the entire
table, while the second is a data quality score for each data partition. Data quality
checks that capture the data quality score calculated for the entire table generate only a
single time-valid result for data quality check execution. The data quality database
preserves previous data quality scores and alerts. This differs from how DQOps handles
data quality results for date-partitioned data, where the data quality results (sensor
readouts and alerts) for the past dates replace the existing data quality results in the
data quality database. By knowing the earliest modified date, it is possible to limit the
data quality check re-execution to only the time period (daily partitions) that was
affected, avoiding a costly full scan of large tables. Figure 4.4 shows a screen from the
DQOps user interface, which allows you to select the time window of the partition on
which the check will be run.

Clean up outdated readouts and alerts. The data quality database may contain
outdated or duplicate data quality results for disabled or removed data quality checks
or tables from the monitored database. The Data Quality Team should remove these

92

results. If they are not removed, they will affect data quality KPIls. Some alerts may be
calculated twice, making data quality KPI scores inaccurate.

Review data quality KPIs on dashboards. After all the affected data quality checks
have been re-executed and outdated data quality results have been removed, the Data
Quality Team should review the data quality KPIs again. If new issues are identified or
the KPIs still do not meet the expected values, the data improvement process may need

to be repeated by going back to stage DQ.7. Check the KPIs on dashboards.

D&o

~ £ bigquery-public-data

3

P &% america_health_rankings
w o austin_311

» FH 311_service_requests
» o2 country_codes

£ dqo_ai_test_data

Data Sources Profiling

Monitoring Checks

311_service_requests X

A Daily partition checks for bigquery-public-data.austin_311.311_service_requests

Table quality status (daily checks)

Scheduling status: Enabled Scheduling configured at: connection Effective cron expression: 0 12 % =*

Partition Checks

Daily checks

Data Quality Dashboards

Table quality status (monthly checks)

Incidents

Configuration

Monthly checks

@

Daily comparisons

& Synchronize _@ g

Save

NMonthly comparisons.

Next execution at: Mar, 15 2024 12:00 Schedule configuration: partitioned_daily

Last 7 days, including today

» £ kaggle_covidiive
» kaggle_loan The results are date partitioned (grouped) by a column: created_date | Configure the date parfitioning column | | Time window: Default incremental time window
» kaggle_shirtsizes i "
oees Show advanced checks Passing rule (KPI met) el met)
» 5 kaggle_students T
Data quality check + Warning threshold ey atal threshold
» & kaggle_usfamatches
Yesterday only
» kaggle_worldpopulation ~ Volume o)
g9 Pep Last 3 days, including today .D- hd
» & maven_restaurani_ratings
Last 3 days, excluding toda:
» 2 table_availability @O & O E @ N E NN daiy_partition_row_count & gty Add Fatal
= = Completeness
»

£ thelock_scommerce
Last 7 days, excluding today

Last 30 days, including today o x

Check results Sensor readouts Execution errors

Last 30 days, excluding today

Data group (time series) no grouping v~ Month Last 3months v | E | Current month only
Partition Date Time Scale Executed At Actual Value Expected Value Issue Severity Level Lower Threshold U TP‘."”E”}S L
pper Thresho oW
2024-03-12 00:00:00 day 2024-03-14 16°56:38 895 500 Success
2024-03-11 00:00:00 day 2024-03-14 16:56:38 890 500 Success
2024-03-10 00:00:00 day 2024-03-14 16:56:38 428 500 Error
2024-03-09 00:00:00 day 2024-03-14 16:56:38 518 500 Success
2024-03-08 00:00:00 day 2024-03-14 16:56:38 489 500 Error
2024-03-07 00:00:00 day 2024-03-14 16:56:38 931 500 Success

Figure 4.4. A sample screen from the DQOps data quality platform showing the results from
running a daily_partition_row_count check using an error severity rule that raises a data quality
issue when the number of rows in a daily partition is below 500 rows. DQOps allows you to
select the time window of the partition on which the check will be run, allowing you to analyze
only new data.

Note the problems that may arise at this stage.

Data that was supposed to be fixed might still be corrupted or invalid.

93

The data quality KPI scores on the dashboard did not change or fell below the
threshold.

The data quality check re-execution was time-consuming.

Many different tables were updated, requiring a comprehensive data quality check
review.

Many data quality checks are outdated, making removing old data quality results from
the data quality database time-consuming.

At the end of this stage, the Data Quality Team should decide whether the data quality KPIs
meet acceptable levels. If the KPI scores are not acceptable and some additional data quality
dimensions may be further improved, the data quality improvement process can be repeated.
In this case, we repeat the steps described in stage DQ.7. Check the KPIs on dashboards. The
Data Quality Team, together with the Data Owner and the Data Engineering Team, may also
decide that the remaining data quality issues cannot be resolved at this moment. Data quality
improvement for these issues can be undertaken at later stages of a continuous operational
process.

DQ.10. Identify unresolved data quality issues

The data quality project usually has time and budget constraints. However, within these
constraints, you can set up initial data quality metrics, optimize alerting thresholds, and fix data
quality issues. Any data quality issues that remain unresolved at the end of the data quality
project should be addressed at later stages of a continuous operational process. As a part of
the project closing activities, all open issues must be documented in a report of unresolved
data quality issues. Once the data quality project is closed, a data quality operations team may
be formed from the Data Quality Team members to continue monitoring and fixing unresolved
issues.

The unresolved data quality issues report should include the following elements:

Unmet data quality KPIs. The report should include a list of high-level data quality
KPls, such as timeliness, along with a summary of actions taken during the data quality
project to fix the problem.

Data areas with low data quality KPIs. Collect a detailed list of unmet data quality
KPIs at a data source, database, vendor, data supplier, or stage level.

94

Tables affected by open data quality issues. Prepare a list of tables that frequently
experience data quality issues or have open, unresolved issues. The data quality
operations team that will be formed later will continue to improve the data quality of
these tables.

Remaining data improvement tasks for Data Owners and Data Producers. A list of
open tickets assigned to Data Owners or Data Producers must be forwarded to the
operations team. Some data quality initiatives are long-term, especially those that
require data cleaning at the record level. These initiatives cannot be lost and become
untracked during the transition to the operational process.

Remaining data pipeline improvement tasks for the Data Engineering Team. List
data pipeline or ETL tasks still under development by the Data Engineering Team. Once
the data pipelines are fixed, the data quality operations team will re-execute affected
data quality checks.

The data quality operations team's responsibilities will be similar to those described in this
document but with yet another additional responsibility. The team should continuously review
the data quality KPIs at the end of each reporting period and compare the weekly or monthly
data quality KPIs with previous periods.

5. Fixing source data issues

Fixing source data issues requires close cooperation between the Data Quality Team, which
identifies the issue, the Data Owner, who understands the data model, and possibly the Data
Producers, who may correct the source data.

As a first step, the Data Owner needs to verify whether the problem is present in the source
platform, such as an OLTP database, or only in the target platform (data warehouse or data
lake). If the source data is correct, the Data Owner should contact the Data Engineering Team
to review the data pipelines.

However, if there is a problem with the source data, the Data Owner should try to solve it with
the Data Producer, even involving external data suppliers or business users. The Data Owner
may create a list of acceptable data quality exceptions if the problem cannot be solved. The
Data Quality Team will adjust the KPIs or alerting thresholds to meet the highest sensible data
quality levels. For example, the percentage of accepted rows with null values may be increased
to match a threshold that will be monitored from then on.

95

A list of acceptable
data quality issues

s the data .
DO.8. Try to solve the i gl DO.9. Create a list of

issue with the owner data quality

fixing the .
of the source data issue? exceptions

s the source DQ.12. Adjust

data & s and KPIs
correct?) ality tables

DO.7. Identify the root
cause of the issue

DQ.8. identify tables

DO.6. Review the
data quality issue

DQ.9. Re-execute

o data quality checks
quality issues q v che

DO.6. Review the data quality issue

The Data Owner is a person best suited to understand the purpose of the data, the data model,
and the business processes in their area of responsibility. The Data Owner should also know
in-depth about all line-of-business applications synchronized with the monitored databases.
The Data Owner is also the point of contact for external data suppliers, vendors, subsidiaries,
or business divisions. For this reason, the Data Owner is entitled to request external parties to
correct the quality of the data provided.

Communication between the Data Quality Team and the Data Owner is important at this stage.
The Data Quality Team should share the result of the data quality investigation. The team
should present the data quality KPIs that were not met, a list of affected tables, failed data
quality checks, and historical data quality sensor readouts for reference. Based on the
investigation, the Data Owner may identify an error in the data quality requirements, such as
incorrect table names, so the problem can be fixed immediately without involving additional
parties. The Data Owner should also be aware of the dynamics of the data, such as the data
refresh calendar, which can affect the timeliness, completeness, or sometimes even the validity
of the data.

The Data Owner and the Data Quality Team take the following steps at this stage.

96

Review the affected data quality KPls. The Data Owner should identify the drops in
the affected data quality KPIs. This may be a decrease in the percentage of tables that
are up-to-date when the problem is related to the timeliness dimension.

Review the affected tables. The Data Quality Team and the Data Owner must
understand the table schema and the purpose of the data stored in the tables. Both
parties should review all relevant documentation to help them understand how these
tables are created, populated, and used.

Review the alerting thresholds. Data quality checks generate alerts when the alerting
thresholds are exceeded. A threshold may be configured as an acceptable percentage
of records with null values. Still, sometimes, due to the nature of the data or for
historical reasons, a percentage or number of invalid records is acceptable. The Data
Owner should confirm that the thresholds are still relevant.

Review the historical data quality readouts. A data quality platform that monitors a
data warehouse or data lake should store a history of data quality sensor readouts. For
example, a data quality platform might have a dashboard that shows a graph of the
data quality sensor readouts over a recent period of time, such as row counts for each
day over the last three months.

Compare the issue with similar problems in the past. The Data Owner who is an
expert in their area of business may have extensive knowledge of similar problems in
the past. The list of similar problems should be used in the next stage when a root
cause analysis is performed.

DQOps platform offers a variety of built-in dashboards to aid in reviewing data quality issues.
Figure 5.1 presents a sample screen of the dashboard named "Schema changes - summary of
changes in columns," designed to summarize the results of checks that detect typical schema
change issues. All built-in dashboards in the DQOps platform can be customized.

97

D®OOps Datasouces Profilng Monitoring Checks Partition Checks Data Quality Dashboards Incidents Configuration ® | & synchronize | & (@)
Show advanced dashboards Summary of changes .. X
B Profiing .
 Toble profing st Schema changes - summary of changes in columns __Checktypefitter monitoring
able profilng status
I Profiling data quallty KPls Connection - Table filter Time window: Current month
W Data Quality Dimensions
™ Volume
[l
B Monitoring . # Executed checks count + #Wamings #Errors #Fatal errors
W Current status . b
M Data quality KPIs 154 0 18 9
M Data Quality Dimensions
8 Volume
[l Connection Schema
& Schema changes Connection #lssues First detected Last detected Schema name #1ssues First detected Last detected
B Table-level issues kaggle_covidiive om— M 100004AM Mar 14,2024, 10:00:01 AM kaggle_covidive ONNNNNN Mar1,2024,10 Mar 14,2024, 10:0001A
sahSummarycfchanoesli coimne kaggle_students o I— Mar 14,202 kaggle._student_performance N Ma
88 Expected vs actual column count
ol ehanged maven restaurant ratings ONNENNNNE Mar1,2024,21504PM Mar 14,2024, 21500PM maven_restaurant satings o —
83 Column count changet
83 Column list changed
83 Column listor order changed
83 Column types changed
B Column-level issues
B Partitions
M8 Current status
M Highestissue severity per day
M Data quality KPIs
W Data Quality Dimensions
[Partition volume statistics
m el
& DQOps usage
Statistics of executed checks
: Table stage Table priority Check name Severity
Execution errors
 Checks no Table stage #lssues + Table priority #1ssues - Check name #lssues ~ Result #Changes ~
lecks no longer in use
27— 27— daily_column_count 27— Ertor 15—
Fata o
Schema changes per table
Max Column Column Column Columnlist Column
Connection.Schema. Table #1ssues First detected @ ~ Last detected severity == count list ororder types
o - changed changed changed changed
kaggle_students kaggle_student_performance maths ONNNNNNNN Mar1,2024,92002AM Mar 14,2024, 920:00AM - 9 0 0 0
s ONNENNNN Mar1202421504PM Mar14,2024,21500PM | 9 0 0 0
kaggle_covidiive kaggle_covidiive.covid_live ONNENNENN Mar1,2024 100004AM Mar 14,2024, 10:00:01 AM | 9 0 0 0

Figure 5.1. A sample screen of a detailed dashboard “Schema changes - summary of changes
in columns,” which is available on the DQOps Platform. This dashboard summarizes results
from checks detecting typical schema change issues.

Note the problems that may arise at this stage.

The Data Owner is new to the organization and may not fully understand their domain of
responsibility.

The summary of the data quality issue presented by the Data Quality Team is
incomplete and may require further investigation.

The data quality issue presented to the Data Owner may result from incorrect data
quality check configuration by the Data Quality Team. Therefore, the Data Quality Team

98

is responsible for fixing the issue during the next opportunity when the data quality
checks are reconfigured and re-executed.

DO.7. Identify the root cause of the issue

Once all relevant information that describes the data quality issue has been gathered, the Data
Owner can start an in-depth analysis that will require verifying the data at the record or
business application levels.

In the event that the data has been prepared by an external vendor or a separate organization
unit, the Data Owner should gather all relevant information about the issue that can be shared
with the external party. Before escalating the issue further, the Data Owner should ensure that
the problem was not caused internally during the data ingestion.

It is also possible that the problem with the data received from an external source was
anticipated beforehand, in case the external vendor had clearly and in advance announced a
major update in their release calendar. The announcement of a breaking change in the file
format, data model, or APl specification might have gone unnoticed ahead of time.
Additionally, the code changes to the data pipelines were not completed on schedule before
the upgrade of the source system.

The following steps can help you identify the root cause of an issue:

Look directly at the data in the monitored table. The Data Owner should directly
query the monitored table or review the content of source files for external tables. The
problem may be obvious. For instance, the format of the date and time stored in a text
column may have changed, the table is empty, or the column stores a different type of
information than expected when preparing the data quality requirements.

Review the data lineage. The Data Owner should check where the data came from. It
might have been a different table at an earlier data processing stage, a flat file, or a
table in another database, such as an OLTP database used by a line-of-business
application.

Look directly at the data in the source table. If the source table or source file can be
identified, the Data Owner should look directly at the data in that table. If the source
table contains valid data but the target (monitored) table does not, the issue must have
appeared at the data transformation stage. The issue should be forwarded to the Data
Engineering Team for fixing.

99

Verify the data in the line-of-business applications. The data model of a
line-of-business application can be complex. In that case, finding all the relevant
information displayed on the application’s user interface can be challenging when
running queries on its OLTP database. The Data Owner should log into the business
application, locate the relevant records, and check that all the information is present
and consistent between the user interface and the database. Selected fields may not be
stored in the main table but are conditionally stored in satellite tables. In this case, the
data transformation process must be adapted to combine all relevant data.

Compare the issue with similar problems in the past. Consult the log of previous
issues in the ticketing system and knowledge base (if any is maintained). The first or
second line of support may already maintain such a knowledge base somewhere.

Check for expected maintenance windows. If the source system was down due to a
scheduled maintenance operation, the data quality issue may have been foreseen
ahead of time. In addition, a nightly job that performs a full data refresh may populate
the source tables. If the data quality check is executed during a full refresh operation, it
may analyze partially loaded data, raising unexpected data quality incidents.

Review the change log of the external platform. The format of the data received from
an external vendor or a SaaS application may have changed because the vendor
announced a breaking change in the data model. The Data Owner should find any
relevant announcements that may affect the quality of the data.

Check the error logs. The problem may be caused by a bug in the processing logic.
The length of the target column could have been too small to fit the incoming data, so
the data loading job was canceled, or the ETL platform skipped some invalid rows.
These types of issues will leave a trace in the log files or an external logging platform.

Ensure that an external party is responsible for the issue. Before the Data Owner
assigns responsibility for correcting a data quality issue to an external vendor, make
sure the problem was not caused internally by the data recipient.

Assess the KPI levels. The data quality KPI should be calculated as a percentage of
passed data quality checks. Some data quality checks that compare the most recent
data quality readout with historical readouts may identify anomalies that are
nevertheless acceptable. Suppose the alerting thresholds for data quality checks that
detect anomalies (such as the difference from the mean value) are too sensitive. In that
case, the Data Owner must handle many false positive alerts. The Data Owner may
decide to lower the KPI level (percentage of passed data quality checks), which a data
quality investigation should follow.

100

Assess the alerting thresholds. Alerting thresholds may be too sensitive and not
correspond to reality. For example, the threshold for a row count increase by month
may not consider the company's decreased activity during the holiday season. In that
case, the threshold for the monthly row count data quality check for July should not be
set to 90% of the previous month. The alerting threshold should allow a higher drop of a
monthly row count increase to 80%.

Assess the level of relevance of the data. The Data Owner may decide that data with
lower data quality KPI scores is of low priority to the organization. Data quality
improvements for the tables associated with these KPIs can be postponed or
designated within the regular maintenance process in the future.

It is worth paying attention to the problems that may occur at this stage.
The Data Owner does not have access to the monitored platform.
The Data Owner does not have access to the source system.
The data model of the analyzed platforms is complex and not well documented.

The vendor does not provide detailed information about the planned changes ahead of
time.

The Data Owner cannot access line-of-business applications to verify issues at their
source.

The nature of the problem is complex, and additional parties must be involved in the
investigation.

At the end of this stage, it is the responsibility of the Data Owner to determine whether the
issue with data quality is present in the original source data or if it has occurred during the data
transformation process. If the data quality issue is present in the data source, it should be
escalated to the Data Producer. On the other hand, if the issue is internal, it can be resolved by
either the Data Engineering Team (if the data was incorrectly transformed) or the Data Quality
Team (if the data quality checks were misconfigured or configured with overly sensitive alerting
thresholds).

DO.8. Review or fix the issue with the Data Producer

Data quality issues that arise from external vendors or line-of-business applications should be
addressed with the relevant platform owner (the Data Producer). This could be an internal

101

platform owner, such as a CRM owner, or a business process owner if the issues are caused
by missing steps in the process or users not executing the process correctly, such as by
entering incorrect data. If data quality issues are already present in datasets shared by an
external vendor, their engineering team should be consulted and responsible for fixing them.

The following steps might help you solve the issue:

Collect all information about the issue. The Data Owner must collect all the
information about the incident identified by the Data Quality Team.

Prepare an information package. The Data Owner should extract data samples from
the data set to show exemplary invalid values. On top of that, all data quality results
should be aggregated and prepared in a format that an external party can view without
access to the data quality platform. This may be an Excel file that shows a list of
outdated tables, the percentage of null column values in a data set, or other information
that can clearly describe the data quality issue to an external party.

Prepare a list of suggestions. You can prepare suggestions on how the problem can
be solved, especially if the solution requires changing the database schema.

Decide on the business impact of the issue. Assess the importance and the business
impact of not fixing the data quality issue on the data consumer side. An external party,
especially an external vendor, can calculate the cost of fixing the problem in the source
platform. This must be compared with the loss generated by the data quality issue.

Propose a deadline for fixing the issue. The external party must agree on the deadline
and the milestones for the implementation steps.

Identify a point of contact on the Data Producer's side. The Data Owner should
know who to contact to discuss the data quality issue.

Contact an external party. The Data Owner contacts the vendor to find the cause of
the issue, correct the data, and/or understand why the data has changed.

Wait for a response. Once the information package about the data quality issue has
been submitted to the external party, the Data Owner can no longer resolve the issue.
The Data Owner can only follow up with the external party when the relevant milestones
are expected to be finalized.

Notify the data engineering and Data Quality Teams of schema changes. An
external solution may disrupt existing data pipelines and data quality checks. Changes
to the data model must be applied to the schema of downstream tables. Schema

102

changes may also affect existing dashboards, ML models, data quality checks, or
downstream data pipelines that export data to other data consumers.

Plan major changes. The changes that affect multiple downstream teams must be
planned with all respective parties.

Propose an alleviating solution for issues that cannot be fixed. When a data quality
issue cannot be solved, or the cost of fixing the problem does not justify the benefits,
the Data Owner must decide on the next steps. Data pipelines or data models may
need to be updated. Dashboards that are never expected to show valid information
should also be removed.

Note the problems that may arise at this stage.
Long response time from the vendor

The recent change on the vendor side may require a significant modification of the
business process.

The estimated cost of fixing the problem exceeds budget constraints.

The identified data quality issue was merely an anomaly detected by a machine learning
algorithm that the vendor could not trace back.

If the Data Owner resolves the issue with the external party, the Data Quality Team is
contacted. The Data Quality Team can re-execute data quality checks after the Data
Engineering Team loads the corrected data. Issues that cannot be resolved must be listed as
data quality exceptions.

DO.9. Create a list of data quality exceptions

The remaining data quality issues that are tolerated or unavoidable should not affect the
reported data quality KPI. They should be tracked but not precisely measured towards the total
data quality KPI score due to their uncontrollable variability in the number of data quality alerts.
Many of these data quality issues may be fixed in the future, but the exact time the issue is
mitigated is not yet known.

The Data Owner should decide how to address the remaining data quality issues. Here are
potential approaches:

103

Update the data model. Changes to the data model may be necessary. This might
involve adjusting column lengths or data types to accommodate previously rejected or
truncated values. The Data Engineering Team should be involved in updating data
pipelines and ETL processes accordingly.

Change the data processing logic. For tables needing replacement with a different
schema, decommissioning is a viable option. This might involve implementing
additional pre-processing, joins, or post-processing steps.

Decommission tables. Tables that must be replaced by another table with a different
schema should be decommissioned. This requires informing all data consumers who
use the old version of the table and carefully planning the transition process.

Apply temporary solutions. If resolving an issue requires significant time, consider
interim solutions. For example, business users may be advised to temporarily refrain
from using affected dashboards until data reliability improves.

Disable data quality KPl monitoring. If the KPI (percentage of data quality alerts) is
high and changes too frequently, the monitoring can be turned off or postponed at the
data quality KPI level.

Lower the data quality alerting thresholds. Alerting thresholds for data quality checks
can be adjusted to match the actual quality of data. For example, after discussing this
with the platform owner, the Data Owner may decide that 20% of records may contain
phone numbers that do not match an expected format. From this point, the Data Quality
Team should simply measure whether the percentage of these invalid records is
increasing, and only when this happens should they raise data quality alerts.

Reduce the severity of data quality alerts. False positive alerts with no business
impact should be monitored but not counted as failed data quality checks, lowering the
overall data quality KPI score. DQOps supports the configuration of alerting thresholds
at three severity levels: fatal errors for issues that should result in stopping data
pipelines, alerts for regular data quality issues that should be fixed, and warnings for
data quality issues that should only be observed. The severity level for non-critical alerts
can be changed to a warning severity level and tracked from that point. These alerts will
be treated as passed data quality checks and will not lower the data quality KPI.

Customize data quality sensor definitions. If the current data quality checks cannot
correctly detect data quality issues, it should also be possible to change the
implementation of these checks. Since DQOps is an extensible data quality platform
that uses the Jinja2 templating engine to define data quality sensors, it is possible to
change the implementation of selected data quality checks. Another reason for

104

changing built-in data quality checks is related to performance issues when querying
large tables. Custom data quality checks can be modified to consider the partitioning of
large tables. This would enable efficient partition elimination conditions in the data
quality sensor query.

Customize data quality alerting rules definitions. DQOps executes Python scripts to
assess the severity of data quality checks. Default rules can be customized to support
higher variability in the data quality or to apply additional machine learning libraries to
exclude some false alerts.

Plan a long-term data quality improvement project. Consider initiating a dedicated
project for critical data quality issues requiring significant resources to fix. In that case,
you can temporarily disable specific data quality checks until the problem is resolved or
exclude them from the overall data quality KPI calculation. The DQOps platform allows
you to disable data quality checks and exclude them from calculating the data quality
KPI score using the user interface, as shown in Figure 5.2.

D@O

v & bigquery-public-data :
& bigquery-p : %
v 5% america_health_rankings ~ }

Data Sources Profiling Monitoring Checks Partition Checks Data Quality Dashboards Incidents Configuration

o a]
® ‘\v Synchronize | & (@)

v B ahr EH Daily itoring checks for bigquery-public-data.america_health_rankings.ahr
» [Columns <
» B9 Daily monitoring Table quality status (daily checks) Daily checks* Table quality status (monthly checks) Monthly checks Daily comparisons Monthly comparisons
» B8 Monthly monitoring
iing status: Enabled ing configured at: connection ~ Effective cron expression: 09 * ** Next execution at: Mar, 16 2024 09:00 Schedule configuration: monitoring_daily
» &% austin_311 :
» &% country_codes H Show advanced checks Passing rule (KPI met) Failing rule (KPI not met)
» & dqo_ai_test_data : Data quality check v Warning threshold Error threshold Fatal threshold
» E kaggle_covidlive
i - v Volume T ®
» E kaggle_loan
min_count ®

» & kaggle_students

» B kaggle_shirtsizes E © ®E O = EEEE daiy_row_count ; Add Fatal
. Compitencas

» & kaggle_uefamatches

» E kaggle_worldpopulation

Check Settings Schedule override Comments X

» E maven_restaurant _ratings

» & table_availability

» £ thelook_ecommerce

Disable data quality check

Custom data grouping Select option v AAdd new data grouping configuration

Exclude from KPI

Include in SLA (Data
Contract)

Data Quality Dimension Completeness

SQL WHERE condition

Figure 5.2. The DQOps data quality platform allows additional configurations to be set at the
data quality checks level. For example, a check can be excluded from calculating the data
quality KPI score.

105

The data quality issues that cannot be solved shortly will affect downstream data consumers.
The affected parties should be informed about the data quality issues, the timeline for solving
the problem, and the temporary solution that can help mitigate the problem until it is fixed.

The Data Owner should contact the following parties:

Business users. Business users who depend on data quality for decision-making
should know how to adjust their business processes so they are not affected by invalid
data.

Business intelligence teams. Dashboards and reports that use incorrect data should
be adjusted or even temporarily decommissioned if the numbers presented on them
might lead to wrong decisions.

Data science teams. Some machine learning models that depend on the data must be
retrained, or an extra step of data cleaning must be applied to the training data sets.

Downstream data consumers. Low-quality data sets shared with other teams will
reduce trust between teams. Data consumers should be informed about the
implications of data quality.

External parties. The data consumer who receives low-quality data must be informed.
Sharing low-quality data may even result in the termination of the data-sharing
agreement between the parties.

As the data quality platform continues monitoring invalid data, the data quality issues under
review by the Data Owner and the Data Engineering Teams are still at the top of the list on data
quality dashboards. The Data Quality Team should receive a list of data quality exceptions to
be applied to the configuration of the data quality checks. The issues will disappear from the
list as soon as the Data Quality team applies all requested configuration changes, disabling
false checks or adjusting the alerting thresholds.

The list of data quality exceptions should contain the following information:

Tables to be excluded from data quality monitoring. The Data Quality Team will
disable periodic data quality checks on these tables or unscheduled data quality check
execution until the Data Producer improves data quality.

Data quality KPIs to be changed. The data quality KPIs should be measured
differently or even removed from the governance dashboards (top-level data quality KPI
dashboards). The simplest solution is to lower the accepted KPI level for the linked data
source.

106

New thresholds for data quality alerts. The Data Owner may ask to decrease the
alerting thresholds. For example, the accepted delay in receiving new data in timeliness
data quality checks may be extended to account for additional delay.

Data quality alerts to be removed. Some data quality checks may be removed. For
example, validity checks that verify the data format of string columns may be disabled
or replaced with a less sensitive data quality check that only measures the percentage
of invalid records rather than detecting invalid values.

Data quality sensors to be customized. Prepare a list of data quality sensors that
need to be customized or custom data quality sensors that need to be modified. A
custom data quality sensor should be able to detect custom data formats.

Data quality alerting rules to be customized. Some alerting rules may be changed so
false positive alerts are no longer raised.

DQ.12. Adjust thresholds and KPIs for low-quality tables

The Data Quality Team needs to gather all the necessary information from consultations with
the Data Owner before applying any changes to the data quality platform. The list of data
quality exceptions identified at the previous stage will be converted into configuration tasks for
the Data Quality Team. The team will then disable any outdated data quality checks. It is
important to note that data quality checks should be removed when a table is exempt from
data quality monitoring.

Deactivation of data quality checks means that they will not be executed in the future, and as a
result, data quality alerts will no longer be raised. However, alerts that have already been raised
will still be stored in the data quality database. This may reduce the data quality KPI score
calculated as a percentage of passed data quality checks. If alerts previously raised by these
data quality checks are considered false positives, the Data Owner may remove them from the
data quality database. In this case, the Data Quality Team should remove alerts and irrelevant
data quality sensor readouts from the database.

Decommissioning entire tables from data quality monitoring is a common task. Therefore, the
DQOps data model is designed to simplify this. Data quality results are stored in Parquet files,
organized by connection name, table name, and month. This structure simplifies data cleaning
— removing the relevant Parquet file effectively removes all associated data. For example, to
remove September 2022 alerts for a specific table, you would simply delete the corresponding
file:

107

.data/check_results/c=conn_bq 17/t=austin_311.311 service_requests/m=2022-09-
01/check_results.0.parquet.

Removing data quality results is not just a matter of decommissioning data quality checks.
Significant changes to data quality sensor configurations, alerting thresholds, or time
dimensions might necessitate recalculating data quality checks for all affected daily and
monthly partitions. Outdated data quality results should be removed when changes have also
been applied to the configuration of the data grouping hierarchy. DQOps performs
deduplication of data quality results (sensor readouts and alerts), but changes to the data
dimensions (dynamic addition of GROUP BY clause) would preserve old results, which must
also be removed.

Major changes to data quality KPI calculations or aggregation methods might need
adjustments to data quality dashboards. The Data Quality Team must review and plan any
necessary modifications to ensure the dashboards continue to provide accurate and relevant
information.

The data quality checks decommissioning process has the following steps.

Deactivate data quality checks. First, deactivate data quality checks. DQOps
supports two ways of deactivating data quality checks. The checks can be removed
from the data quality specification YAML files or deactivated by setting a "disable" flag
at the data quality check level.

Exclude tables from data quality monitoring. Tables that should no longer be
monitored for data quality issues can be deactivated in two ways. The entire table-level
data quality specification file can be deleted from DQOps. These files can be identified
on the platform by the file extension <schema_name>.<table_name>.dqotable.yaml.
The second option is to set a “disable” flag on the table, preserving the current
configuration of data quality checks until the table is added back to data quality
monitoring.

Remove outdated data quality results. Outdated data quality results, including
readouts and alerts, should be removed; otherwise, they will affect data quality KPI
calculation. The DQOps platform offers a variety of filtering options (as illustrated in
Figure 5.3) to help you remove outdated results.

Change the implementation of data quality checks. Some changes may require
changes to the implementation of data quality sensors or data quality alerting rules.
DQOps supports the customization of built-in data quality checks by copying the
implementation of these sensors and rules from the DQOps distribution into the user's

108

home folder. The data quality sensors are stored in the "sensors" folder, and the data
quality alerting rules are stored in the "rules" folder.

Reconfigure data quality checks and alerting thresholds. Alerting thresholds or data
quality sensor parameters should be updated in the data quality specification files.

Recalculate modified data quality checks. Data quality checks that have been
updated or reconfigured must be recalculated.

Update data quality KPl dashboards. Optionally, modify the data quality KPI
dashboards. Modification is especially advised if changes to data dimensions have
been applied, resulting in new aggregations of data quality KPIs.

Review changes to data quality KPls. After any changes are made, the Data Quality
Team must review the data quality KPIs. After that, they can continue to monitor data
quality issues. A significant change in the level of the KPI or a significant increase in the
number of data quality alerts may be due to a human error made while implementing
the changes.

Delete data quality results

Connection: bigquery-public-data Schema: america_health_rankings Table: ahr

@ A

For the time range
M 2024-03-05 to | M 2024-03-05

Check type {profiling. monitoring, partitioned) Time gradient (daily/monthly)

monitoring > >

All basic statistics results All check results All sensor readouts All execution errors
Filtered basic statistics results Filtered check results Filtered sensor readout

Collector Category Check category Sensor name

Collector Name Check name

Collector Target

Figure 5.3. The DQQOps user interface allows you to delete data quality results at the

connection, table, or column level for a specific time range, check type, or time gradient.

Note the problems that may arise at this stage.

109

Implemented changes do not result in improving the KPI scores.

Removal of outdated alerts may reveal other data quality issues that went unnoticed up
to this time.

Implemented changes to KPI thresholds are too substantial, making the results
unrepresentative.

6. Fixing data pipeline issues

The data quality issues that the Data Owner reviewed may have been present in the source
data or introduced in the data pipeline during the data loading process. Moreover, some data
quality issues present in the data source may have been fixed by the Data Producer,
sometimes resulting in changes to the data model.

For all these data quality issues, the Data Engineering Team must update the data pipelines or
at least perform a complete reload of updated source data. The required changes to the data
pipelines may also be significant. Target tables should be categorized as not yet
production-ready and excluded from the data quality KPI calculation.

Once the data pipelines have been updated and the target tables reloaded, the Data
Engineering Team should re-execute data quality checks for the affected tables and review
changes to the data quality KPIs.

DE.7. Review issues DE.8. Fix issues in
in the data pipeline the data pipeline

Are the
affected YES
ables fixed?

A list of tables
to be excluded

DE.9. Create a list of
m g tables that are not
production-ready

110

DE.7. Review issues in the data pipelines

The Data Engineering Team should review the data quality issue and determine why a data
pipeline introduced the problem. Changes to the data pipeline or the data model of the source
data applied by the Data Producer may also require changing the schema of target tables.

The Data Engineering Team should identify all affected data consumers along the data lineage
who need to be notified. Changes to data pipelines and data models may require collaborative
planning with downstream consumers or even external vendors who receive shared data.

Possible issues with data pipelines depend on the data quality dimension:

Timeliness

The data pipeline did not start on time.

Too many data transformation tasks are executed, delaying the loading of the
affected table.

The data pipeline sometimes does not finish, and the missing data is loaded
during the next data pipeline execution.

Completeness

o

The pipeline was not executed for particular days.
Several files were corrupted, or the data pipeline could not load them.

The data pipeline randomly fails during processing, skipping some files or
loading target tables partially until it is stopped.

Unplanned maintenance tasks were carried out on the data transformation
platform, which caused ongoing data pipeline tasks to stop.

The data pipeline jobs were manually stopped and never resumed.

Column values were truncated or converted to null values because they did not
match the target column data type or were out of range for the target column's
length or precision.

Validity

O

o

Columns were truncated to fit into the target column data types.

Invalid values were not excluded during the data transformation phase.

111

Consistency

o The order of the columns has been changed, and source data has been loaded
into the wrong target columns. These issues can be easily detected by
monitoring the number of unique values in a column (cardinality).

o The target table was loaded twice without truncating or partially loaded, so the
number of rows has changed significantly since the last data quality check
evaluation.

Uniqueness
o The table was loaded twice without truncating the target table first.
o Some files were loaded multiple times.

Below are additional problems in data pipelines that will affect data quality checks independent
of the data quality dimensions.

Expired credentials.

Access denials caused by lost access rights.
New features introduced to the data platforms.
Updates applied to the data pipeline tools.
Changes in referenced libraries.

Changes to the shared code base reused by multiple data pipelines (internal
frameworks and libraries).

Disk space issues.

Network interruptions.

Server failures or overloads.

Unexpected system shutdown.

Out-of-memory issues.

Noisy neighbor problems caused by other processing jobs.

Lack of communication between upstream and downstream teams.

Subsequent tasks in a pipeline get stopped due to a failure of a preceding process.

112

The following points might help you quickly identify the issue:

Verify known issues. The Data Engineering Team should check the problems that may
have been identified earlier but were never fixed or might have happened in the past
and were resolved for the time being. This step might help reduce the time needed to
find the cause of the issue.

Review all logs and task boards. The process should consist of the following steps:

o Check the logs in tools for errors.

o

Find task boards for previous incidents and bugs that are queued for resolution.
o Check if the issue is related to previous issues.

o Verify if the issue is related to data pipelines that are still in development.

o Verify if the issue is related to the latest committed improvements and changes.

o Review maintenance notifications mentioning possible downtime of platforms
used in the data pipeline.

Review the changes applied by the Data Producer. The data quality issues fixed by
the Data Producer may also require changing the data model. The Data Engineering
Team should review all affected data pipelines and plan the required changes to the
target tables and the data pipelines.

Examine the data. The Data Engineering Team should make sure that they understand
the data structure. The problem may have been introduced into the data pipeline
because of inconsistencies between the dataset’s documentation and the actual data
structure.

Plan changes to the target table schema. Issues that can only be fixed by updating
the data model must be planned carefully. After all, target tables are used by
downstream data pipelines or by data consumers such as data science or business
intelligence teams.

Plan changes to the data pipelines. The changes should be planned if the issue can
be fixed entirely by updating the data pipeline. However, updating the data pipeline is
not the only task. The target tables have to be reloaded, and downstream tables have to
be updated or reloaded, resulting in further actions.

Identify all affected downstream data consumers. Changes that affect other tables
on the data lineage that are maintained by separate Data Engineering Teams must be

113

communicated to those teams. The change must be coordinated with all affected
parties if it affects critical business processes.

Identify issues that are impossible to fix. Finally, some data quality issues are not
worth fixing, or no resources are available to make changes to the data pipelines. The
Data Engineering Team may suggest retiring or temporarily disabling some pipelines or
target tables.

It is worth noting the problems that may occur at this stage.
The scope of the required changes is underestimated.
The tools are outdated or prone to bugs.
Many downstream data consumers will be affected by the changes.

Not all affected parties have been identified or informed in advance.

DE.8. Fix issues in the data pipelines

Once the Data Engineering Team has identified the cause of the problem, the next stage is to
fix it and notify all affected parties. The steps taken to resolve the issue should be documented
and communicated to affected parties to help fix the problem faster or prevent similar problems
in the future. The implementation steps required to fix an issue in the data pipeline are
technology-specific and beyond the scope of this guide.

The actions described below will help you fix the issue.

Follow best practices and conventions. The Data Engineering Team should use the
data platform documentation and follow all internal best practices and conventions.
Data pipelines implemented consistently are easier to understand and maintain in the
future.

Reload the data. Significant changes to the data pipeline may require a full reload of
the target table. Reloading large data sets should be planned in advance.

Identify potential additional overlooked downstream systems. Look for other
downstream systems that may depend on the reloaded data. These systems may be
overlooked during the research phase but will be susceptible to table removal or table
model changes. For example, an external system may query the affected table through

114

a database view. In case of slight changes in the table’s schema, the view must be
deleted and recreated.

Refresh data along the data lineage. If the data has changed, tables and data marts
downstream of the data lineage must also be refreshed.

Prevent the spread of corrupted data. Changes should be communicated to other
stakeholders who might still be using corrupted data. They should be notified of data
refreshes or schema changes as soon as they occur.

It is worth paying attention to the problems that may arise at this stage.

Loading new data does not solve the problem of corrupted data that has already been
propagated.

Lack of communication between the engineering teams.

Fixing one problem can reveal another.

The improvements are time-consuming.

The Data Engineering Team assigns the lowest priority to the issue.
Reloading data is difficult or impossible.

If the issue with the data pipeline is fixed, the Data Engineering Team informs the Data Quality
Team, and the related quality checks can be re-executed. The remaining data quality issues
identified as false positives will be excluded from the data quality monitoring process.

DE.9. Create a list of tables that are not production-ready

If the data pipeline issue has not been resolved, the Data Engineering Team has decided that
some tables are not yet production-ready and should be excluded from the data quality KPIs
measurement. Tables that fall under the following cases are not considered production-ready:

Under development. Tables that are still being designed, prototyped, or frequently
changed should be considered temporarily unstable. The Data Engineering Team should
decide whether to monitor these tables with the data quality platform to provide live
data quality findings for ongoing development. However, these tables can also be
excluded from the data quality KPI calculation to avoid a negative impact on the data
quality KPI reported from the governance dashboard, diminishing the measures that
represent the operational state of stable parts of the system.

115

Obsolete. Tables that have recently become obsolete and are no longer used in
business operations should also be excluded from the data quality KPI calculation.
These tables will negatively impact the data quality KPIs but will not be fixed.

The Data Engineering Team should prepare three lists of tables affected by recent data quality
issues. These lists will guide the Data Quality Team in reconfiguring data quality checks.

Tables to be excluded from data quality monitoring. The data quality platform should
no longer monitor tables that are either obsolete or about to undergo significant
redesigning. Any data quality issues reported on these tables are incidental and
irrelevant to the business.

Tables to be paused from data quality monitoring. Tables affected by ongoing
changes to data pipelines can be paused until a new implementation of the data
pipeline is completed. The current configuration of data quality checks on these tables
may contain a lot of business knowledge, such as finely tweaked alerting thresholds for
certain data quality checks. After the data is stable, the Data Quality Team can resume
monitoring these tables.

Replaced tables. When changes to affected tables require significant changes to the
table schema, the Data Engineering Team may create a new version of the table with a
different name. The Data Quality Team should switch all configured data quality checks
from the old version to the new one.

Some problems may arise at this stage that are worth noting.
The Data Engineering Team cannot estimate when the development will be completed.

Additional parallel activities affect the availability of the Data Engineering Team to
complete development.

The Data Engineering Team cannot make an authoritative decision on whether some
obsolete tables should be considered no longer necessary.

DQ.11. Reconfigure data quality checks

The Data Quality Team collects feedback from the Data Owner, the Data Producer, and the
Data Engineering Team regarding necessary changes to data quality checks. Below are the
most common changes that need to be implemented.

116

New data quality checks. New data quality checks need to be activated on new
tables, or additional data quality checks must be activated on already monitored tables.

Deleted data quality checks. Data quality checks that generated false positive alerts
need to be removed.

Changed alerting thresholds. Alerting thresholds need to be adjusted according to the
actual quality of data. For example, the Data Owner expected 0% of the rows with null
values for the country column, but in reality, 5% of rows have no specified country. A
safe threshold of up to 6% of the rows with no specified country should be configured
to monitor if data quality decreases over time.

Renamed tables. In case some tables have been renamed or new versions designed,
the existing data quality configuration should be moved or copied to the new tables.

Once the changes have been applied to the data quality check configuration, the Data Quality
Team should review the new data quality KPI scores. Outdated alerts related to deactivated
data quality checks may affect the overall data quality score, especially if the alerts were raised
by incorrectly configured data quality checks or the alerting thresholds were too sensitive.

To reconfigure data quality checks, the Data Quality Team should follow the steps given below:

Deactivate outdated data quality checks. There are three ways to deactivate data
quality checks supported by DQOps:

o Deleting the configuration of data quality checks.

o Disabling a configured data quality check that will retain the configuration but
exclude the check from evaluation.

o Removing the table metadata when a table is decommissioned.

Delete false positive alerts. Alerts raised by misconfigured data quality checks affect
the data quality KPI that is measured as a percentage of passed data quality checks.
The Data Owner can decide to remove these alerts to track the data quality KPI for valid
data quality checks only.

Connect new data quality checks. Additional data quality checks can be configured
when new data quality requirements are specified during a review of data quality issues
with the Data Owner, Data Producer, or Data Engineering Team.

Re-evaluate the updated data quality checks. All modified data quality checks should
be re-executed. Updated or new data quality checks can generate new data quality
alerts that affect the data quality KPI score.

117

Review data quality KPIs on data quality dashboards. The Data Quality Team should
check whether the data quality KPI has increased or decreased after applying the
changes. Activating new data quality checks can have unexpected consequences.
Relaxing alerting thresholds may also not increase the KPI score as expected.

Push a new data quality configuration to a source control repository. DQOps stores
the configuration of data quality checks as YAML files (as shown in Figure 6.1), making
them easily manageable with version control systems like Git. In validated
environments, all changes to the data quality configuration can be pushed to a
dedicated branch and reviewed using a pull request before affecting the main branch. A
complete code review of new data quality checks prevents issues with possible data
leaks if the data quality check is configured to perform data lookups using a very
selective filter condition, for example: WHERE SSN="SSN of a person of interest."

File Edit Selection Vie Go --- =

ings.ahr.dgotable.yam! X

_health_rankings.a

7
Detects when the volume's (row count) change since the last known row count exceeds the maximum accepted
change percentage.

Source:

¥ @oA0 W0 Sonarlint focus: overall code Ln11,Col 31 Spaces2 UTF-8 LF YAML httpsy/cloud.dqops.com/dqo-yaml-schema/TableYaml-schemajson 1

Figure 6.1. In the DQQOps platform, data quality checks are configured on monitored tables and
columns in the <schema_name>.<table_name>.dqotable.yaml YAML files. You can quickly
migrate the configuration by simply changing the name of the YAML file.

118

It is necessary to pay attention to the following problems that may arise.

False positive alerts raised by deactivated data quality checks lower the data quality KPI
score, which may not be the desired outcome.

Tickets associated with false positive alerts may still be active and must be rejected in
the ticketing system.

Re-evaluation of updated data quality checks may generate additional workload on the
monitored database.

Summary

This eBook provides a framework for establishing and maintaining trustworthy data, allowing
organizations to make confident, data-driven decisions that fuel success. It outlines a
step-by-step approach that involves setting up data quality monitoring, analyzing key
performance indicators (KPIs), and continuously improving data quality.

To simplify this process, the eBook introduces DQOps, an open-source data quality platform.
DQOps goes beyond a typical data quality platform and empowers organizations to manage
data quality throughout the entire data lifecycle. The process starts with profiling new data
sources and ends with full automation of data quality monitoring in operations. This adaptability
is crucial because the approach to data quality and the preferred interface for managing it
change throughout this lifecycle.

Data quality is an ongoing journey, not a destination. By actively embracing continuous
improvement and ensuring strong cross-team collaboration, organizations can stay ahead of
the curve and maintain high-quality data.

119

This eBook describes the proven data monitoring process that will help you remove
all data quality problems. It was created by the DQOps Team based on their experience in data
cleansing and data quality monitoring.

Inside this eBook, you will find how to:

Set data cleansing goals.
Conduct an iterative data cleansing project.

Measure data quality across multiple dimensions of data quality, such as accuracy, validity,
completeness, consistency, currency, or timeliness.

Detect and respond to data quality problems in the future.

Detect problems in data pipelines.

Learn more about DQOps at www.dgops.com

DQOrs

http://www.dqops.com

