Obesity, Physical Activity, and Dopamine

Lex Kravitz, PhD

Associate Professor Washington University in St Louis

Over the last 30 years, obesity has emerged as a leading public health challenge

www.cdc.gov 2

Over the last 30 years, obesity has emerged as a leading public health challenge

Changes in diet cause weight loss, but the effect sizes are generally small

Foster et al. (2003) [21]-Dansinger et al. (2005) [20]-Truby et al. (2006) [26] Gardner et al. (2007) [23]- Atkins Shai et al. (2008) [28]-Davis et al. (2009) [29]-Foster et al. (2010) [22]-Yancy et al. (2010) [27]-- Glycemic Ebbeling et al. (2007) [31]-Elhayany et al. (2010) [33]-Mediterrane Austel et al. (2015) [34]-Dansinger et al. (2005) [20]--Ornish Gardner et al. (2007) [23]-Mellberg et al. (2014) [13]-- Paleolithic Dansinger et al. (2005) [20]-Zone Gardner et al. (2007) [23]--15 -12 -9 -6 -3 Long-term weight change (kg)

Exercise also causes small effects on weight

Goryakin, et al., Obes Rev. 2018 Apr;19(4):518-528

BMI change

Prevention: How can we prevent weight gain?

Novel approaches for weight loss

Outline

- What causes obesity (in mice)?
 - What is the role of inactivity?
 - What is the role of overeating?

Obesity is associated with physical inactivity

Hypothesis

Impaired dopamine circuitry

Physical inactivity

Weight gain

Kravitz AV, O'Neal TJ, Friend DM. Front Hum Neurosci. 2016;10:514

A brief overview of dopamine circuitry

Striatum

Substantia Nigra

A brief overview of dopamine circuitry

Indirect pathway

Substantia Nigra

Direct pathway

A brief overview of dopamine circuitry

4x speed

Kravitz et al., *Nature*, 2010

LASER

Substantia Nigra

Direct pathway

Indire ct pathway

How does obesity affect this circuitry?

1. Reductions in dopamine release

2. Impairments in dopamine receptors

3. Alterations in dopamine synthesis

We exposed three groups of mice to different diets

Friend et al. Cell Metabolism. 2017 Feb 7;25(2):312-321.

High fat diet depressed activity levels ... and this didn't recover with weight loss

D2 receptor binding was significantly reduced in obese and previously obese mice

High fat diet impairs D2 receptors in rodents

Hypothesis

We examined striatal neural activity in lean and obese mice

electronhysiology

Average firing rates were not different between lean and obese mice

Movement related activity in the striatum was blunted in obese mice

Hypothesis

D2 Receptors are Expressed by Multiple Cell Types in the Striatum

Indirect pathway neurons Cholinergic Interneurons Dopaminergic Terminals Cortical Terminals

We took a genetic approach to isolate the contribution of D2Rs in different cell types

Control

indirect-D2-KO

Collaborators: Marcello Rubinstein, Julia Lemos, Veronica Alvarez

Removing D2Rs from iMSNs (but not other cell types) decreased physical activity

Kim LeBlanc and Tanisha London

LeBlanc et al., 2018, Molecular Psychiatry

Partial knockdown of iMSN-D2Rs produces almost the full iMSN-D2-knockout phenotype

Obese mice have low activity levels

Obese

Lean

Inhibiting iMSNs restored movement in obese mice

Obese With DREADD activation

Lean With DREADD activation

Inhibiting iMSNs restored movement in obese mice

Interim summary (part 1)

- High fat diet reduces striatal D2R binding, decreases activity levels, and disorganizes striatal neuronal activity
- Genetic elimination of D2Rs on iMSNs recapitulates these effects

Outline

- What causes obesity (in mice)?
 - What is the role of inactivity?
 - What is the role of overeating?

Is there a causal relationship between inactivity and obesity?

Friend et al. Cell Metabolism. 2017 Feb 7;25(2):312-321.

Removing D2Rs alters movement levels, but not caloric balance

Friend et al. Cell Metabolism. 2017 Feb 7;25(2):312-321.

Does natural variance in activity levels correlate with weight gain in wildtype mice?

Natural variance in activity levels did not correlate with weight gain.

Why don't inactive mice gain more weight?

How does changing activity levels affect total daily energy expenditure?

O'Neal TJ*, Friend DM*, Guo J, Hall KD, Kravitz AV. *Current Biology*. 2017 Feb 6;27(3):423-430.

Would long term wheel access produce larger changes in daily energy expenditure?

Interim summary (part 2)

- High fat diet reduces striatal D2R binding, decreases activity levels, and disorganizes striatal neuronal activity
- Genetic elimination of D2Rs on iMSNs replicates these effects
- Inactivity is not sufficient to cause weight gain

Outline

- What causes obesity (in mice)?
 - What is the role of inactivity?
 - What is the role of overeating?

(at least) Two systems drive eating: Hedonic vs. homeostatic feeding

Berthoud, H.-R., Münzberg, H., & Morrison, C. D. (2017). Blaming the Brain for Obesity: Integration of Hedonic and Homeostatic Mechanisms. Gastroenterology, 152(7), 1728–1738.

Can we quantify both hedonic and homeostatic drives to eat?

Total food intake = Metabolic need + Hedonic need

Hedonic need = Total food intake - Metabolic need

Experimental plan

The average metabolic need of a mouse is ~10Cal per day

Total food intake = Metabolic need + Hedonic need

The average metabolic need of a mouse is ~10Cal per day

Hedonic need = Total food intake - Metabolic need

Outline

- What causes obesity (in mice)?
 - What is the role of inactivity?
 - What is the role of overeating?

Why do mice over-eat high fat diets? How high fat diet alters the regulation of daily caloric intake in mice

Julia A Licholai^{1,4}, Katrina P Nguyen^{3,4}, Wambura C Fobbs¹, Corbin J Schuster¹, Mohamed A Ali¹, and Alexxai V Kravitz^{1,2}

Conclusion #1: Mice will over-eat high-fat diet in the complete absence of hunger

Obesity (Silver Spring). 2018 Jun;26(6):1026-1033.

Does high-fat diet fail to activate satiety signals?

h	Control grou	o, n=8			
12	Chow				from chow
8					
2	Supplement	group, n=24			

High-fat diet appropriately activates satiety signals

Bridget Matikainen-Ankney: Operant task to assay effort for hedonic feeding

Conclusion

Future directions

- Why do some mice eat more high fat diet than others?
- Can manipulations of brain circuitry prevent weight gain?
- Can manipulations of brain circuitry promote lasting weight loss?

Acknowledgements

<u>Kravitz Lab</u> Bridget Matikainen-Ankney Eric Casey Alex Legaria Kia Barclay

<u>Alumni:</u> Danielle Friend Kim LeBlanc Tanisha London Kavya Devarakonda Tim O'Neal Katrina Nguyen Julia Licholai Wambura Fobbs Mohamed Ali

Collaborators

<u>NIAAA</u> Veronica Alvarez Julia Lemos

<u>U Buenos Aires</u> Marcelo Rubinstein <u>NIDDK</u> Kevin Hall Juen Guo

Washington University Meaghan Creed

Questions? alexxai@email.wustl.edu

SNIDDK

Diabetes Research Center Nutrition Obesity Research Center Hope Center for Neurological Disease