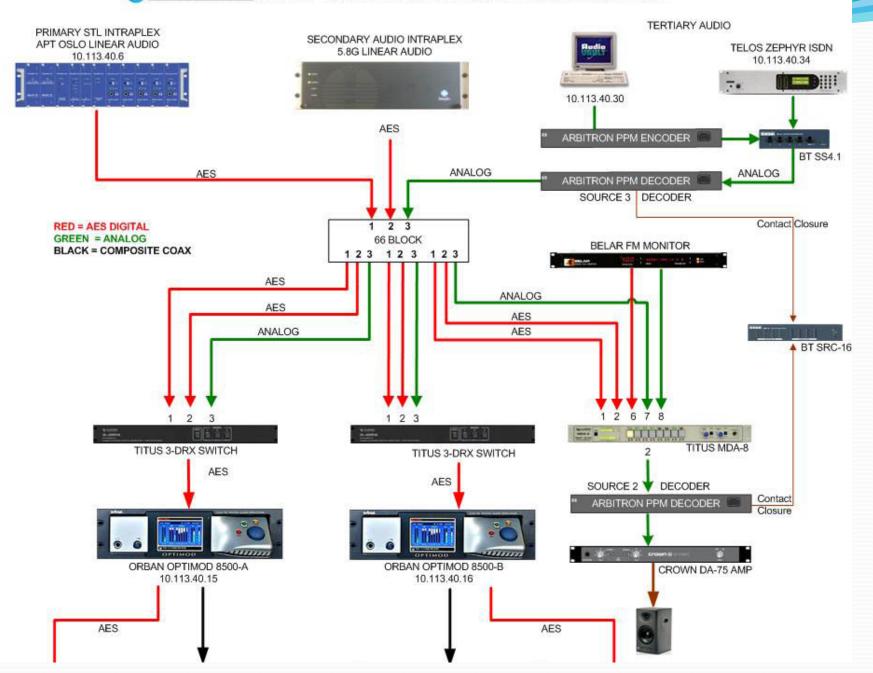
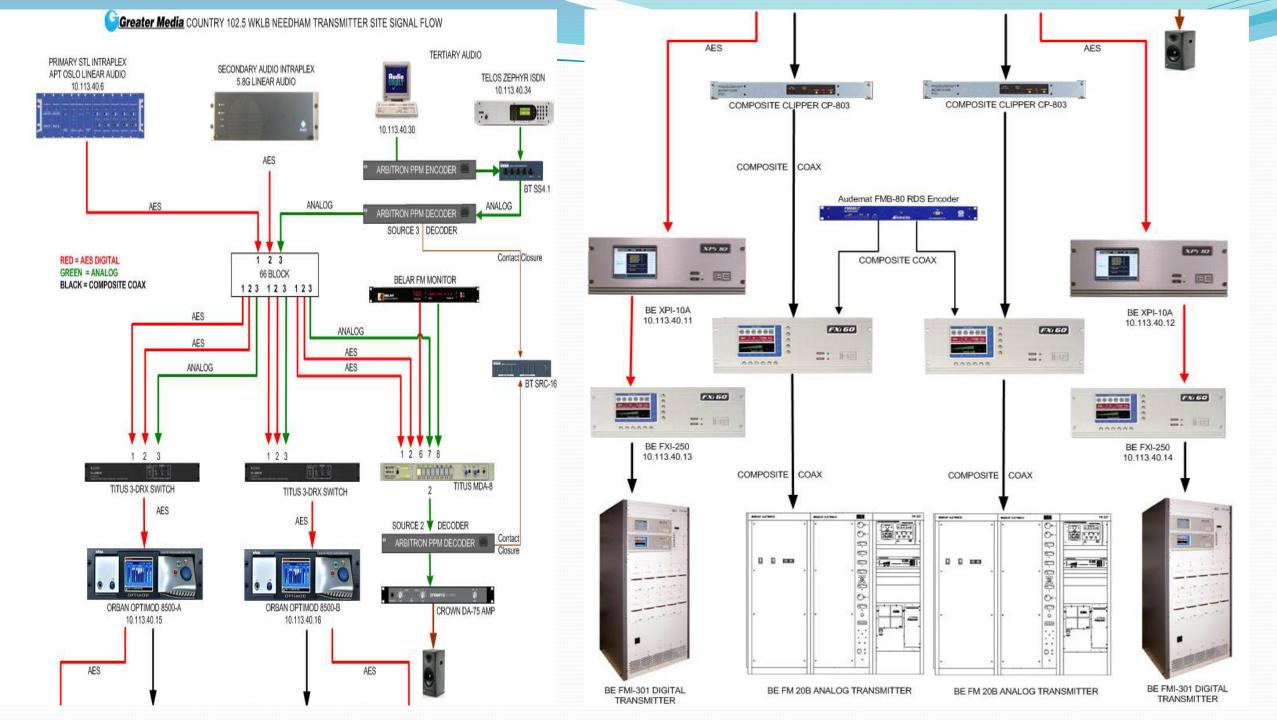
Commercial FM Radio Transmitter Sites Common Redundancy Methods


Paul Shulins – Greater Media Boston


Transmitter Site Safety

- Transmitter Precautions
- RFR Issues
- **Emergency Procedures**
- Emergency Lighting
- Never work alone on high voltage or high current equipment
 Know CPR
- Know where the circuit breakers are!
- Wear Electric Shock Footware

Greater Media COUNTRY 102.5 WKLB NEEDHAM TRANSMITTER SITE SIGNAL FLOW

G

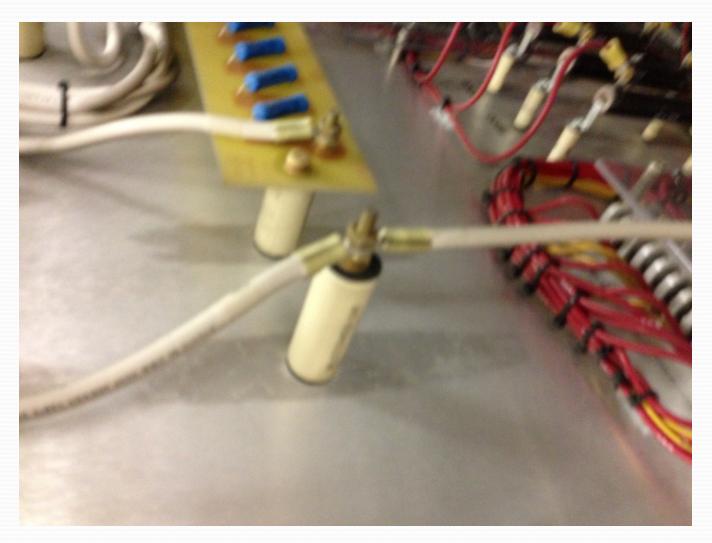
FM Combiner Systems Advantages:

- Real Estate on towers or rooftops is used most efficiently
- Most intermodulation Products are eliminated
- Leverage the buying power of many companies to provide an advanced design antenna with optimum coverage of the target population
- Larger Broadband Antennas that can handle multiple frequencies usually have better immunity from icing effects
- Allow for individual stations to benefit from the best antenna locations

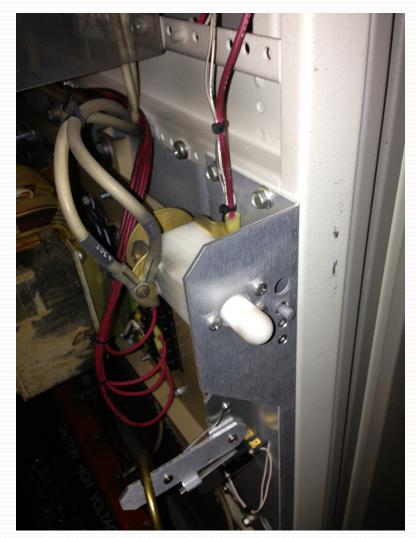
FM Combiner Systems Disadvantages:

- High Up front cost to build and install
- Agreements required between radio stations
- Cooperation for VSWR Protection Enforcement Required
- All Changes must be agreed to by committee

Typical High Voltage Filter Capacitor


The grounding Stick

Example of a High Voltage Terminal



Example of High Voltage Resistors

Example of Transmitter Door Interlock

Secure Nitrogen Tank to wall

Secure Nitrogen Tank to wall

RFR Issues

- How does RF affect the human body?
- At what level does the body suffer adverse effects?
- At what level are the effects permanent?

Biological Effects of RF Exposure

- Heating of human body tissue
- Electro stimulation (RF Shocks and burns)
- Exclusively an occupational problem
- Rooftops are the most common locations for concerns

Typical Rooftop Installation

Outside Building RF Indicator

RFR Issues

- The body heats up in the presence of significant RF Energy
- The better an antenna you are, the more RF Energy will be absorbed
- Most people are good antennas at or near FM Frequencies
- Metal Rod Antenna impedance = 2-3 ohms
- Average Human Body impedance = 360 ohms
- Lost RF energy converted into heat

How much RF Exposure can really hurt me?

- Energy/Mass
- Sleeping 1.0 W/kg
- Moderate Exercise 2.25 W/kg
- Max Exposure without risking permanent damage 4.0 W/kg
- Fluid Levels averaged over entire body
- The eyes are particularly vulnerable to RFR due to limited blood flow and inability to cool.
- Time is also a factor in that the body can only take very short term exposure to extremes of heat and cold
- Human cells die at 107 degrees F

Electro stimulation

- Shock or RF Burn
- Requires contact with an RF Radiator or Re Radiator
- Touching a live antenna causes RF current to flow through your body to ground
- Any ungrounded conductive object in a strong RF Field will be illuminated and re-radiate

Shock or Burn Factors:

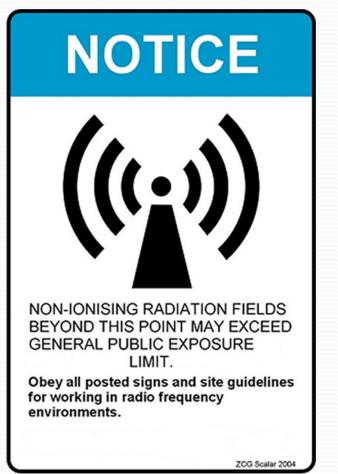
- Strength of the electric field
- RF Frequency
- How well grounded you are
- Surface area of the body that contacts the RF Source
- A surge of energy occurs at the point of contact and results in a shock and possibly an RF Burn
- Lightly touching a radiator with a fingertip is the worst thing you can do, since the total current flows though a very small area!

Typical RF Exposure Meter

Typical RF Exposure Meters (personal Monitors)

FCC Maximum Exposure Limits (Occupational/Controlled) Exposure

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density 2 (mW/cm)	Averaging Time (minutes)
0.3-3.0	614	1.63	100	6
3.0-30	1842/f	4.89/f	900/f	6
30-300	61.4	.163	1.0	6
300-1500			f/300	6
1500-100,000			5	6



FCC Maximum Exposure Limits (Public/Uncontrolled) Exposure

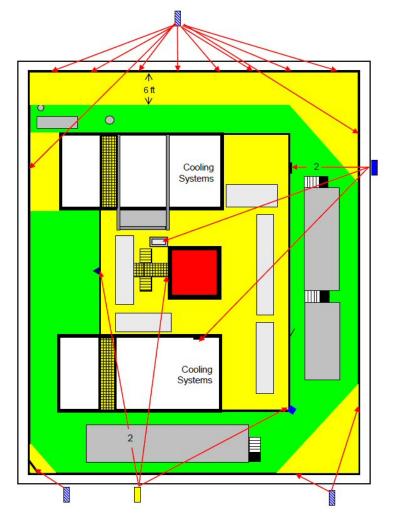
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density 2 (mW/cm)	Averaging Time (minutes)
0.3-1.34	614	1.63	100	30
1.34-30	824/f	2.19/f	180/f	30
30-300	27.5	.073	.2	30
300-1500			f/1500	30
1500-100,000			1.0	30

Typical RFR Signage

A WARNING

Radio Frequency Energy Hazard Inside Do Not Enter! Risk of Serious Injury or Death Use exposure control procedures. Refer to site policy.

ADVERTENCIA


Riesgo de energía de radiofrecuencia en el interior. ¡No entre! Riesgo de una lesión grave o muerte.

Siga los procedimientos para controlar su exposición. Consulte las políticas de las instalaciones.

WN202 ANSI Z535.1-2006, Z535.2-2007 IEEE C95.2 - 1999, C95.7 - 2005 @RFSigns.com

Prudential RF Signage Plan

Acknowledgements/Reference Source:

- Richard Strickland: RF Safety Solutions
- Has done surveys for the company I work for
- Wrote the book on some of the most popular RF Survey Products
- Provides Surveys and training
- RFSafetysolutions.com
- Includes links to many papers on RFR safety

