

IEEE BTS Radio Implementation Presentation Buenos Aires, Argentina BTS Chapter

November 17, 2015

Who am I?

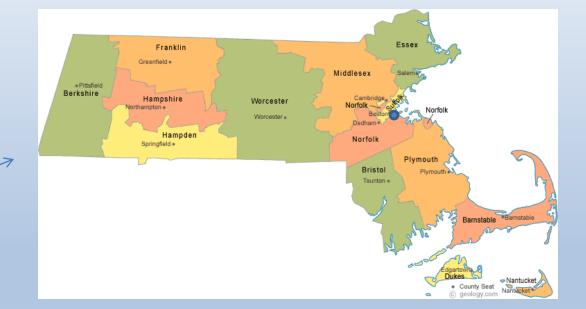
Paul Shulins Dir. of Technical Operations for Greater Media Boston, MA U.S.A.

My Background:

- Graduated from the University System of New Hampshire, Plymouth NH, USA, 1979
- Laconia, NH Engineer 1979-1981
- Springfield, MA Chief Engineer 1981-1985
- Rochester, NY Chief Engineer 1985-1987
- Boston MA, Director of Technical Operations 1987-Present (28 Years)

Responsibilities

- Oversee Engineering Department
- 4 Engineers
- 1 Digital Playout Specialist
- 1 IT Desktop Support Person
- Consulting firm employed for higher level
 Network Issues



My home is in the Northeast USA

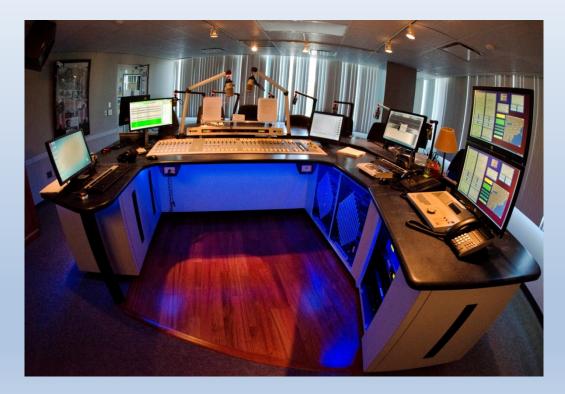
IEEE New England and the State of Massachusetts

City of Boston Massachusetts

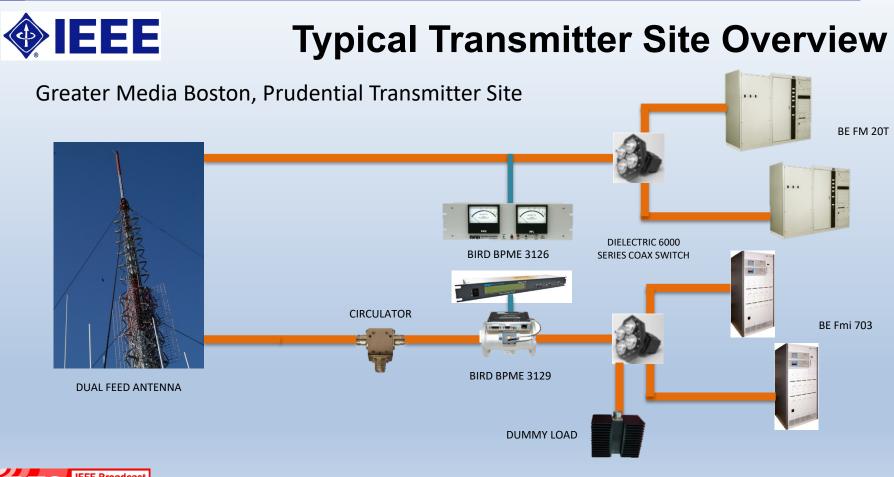
Radio Market Statistics

MKT CODE		ТҮРЕ	FREQ	MARKET	DST	METRO 12+ POPULATION	HISPANIC 12+ POPULATION*	BLACK 12+ POPULATION**
001	1	PPM	13	New York	BH	16,157,500	3,845,200	2,740,600
003	2	PPM	13	Los Angeles	BH	11,271,300	4,807,500	810,100
005	3	PPM	13	Chicago	BH	7,939,500	1,594,300	1,357,900
009	4	PPM	13	San Francisco	BH	6,463,500	1,430,100	447,200
024	5	PPM	13	Dallas-Ft. Worth	BH	5,633,600	1,470,200	886,000
033	6	PPM	13	Houston-Galveston	BH	5,362,100	1,816,300	928,300
015	7	PPM	13	Washington, DC	BH	4,793,400	705,100	1,272,600
007	8	PPM	13	Philadelphia	BH	4,558,200	366,000	932,600
047	9	PPM	13	Atlanta	BH	4,549,700	456,400	1,507,300
013	10	PPM	13	Boston	BH	4,192,800	406,100	309,800
429	11	PPM	13	Miami-Ft. Lauderdale-Hollywood	BH	3,906,200	1,924,000	800,200
011	12	PPM	13	Detroit	В	3,803,600	143,300	841,500

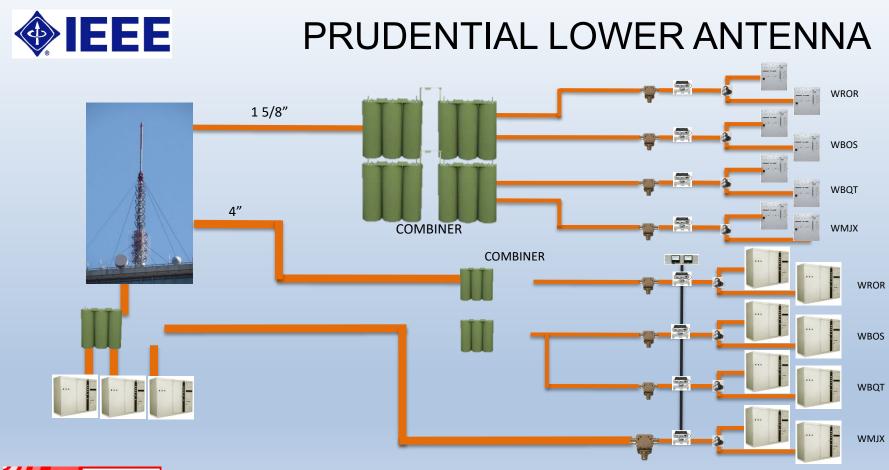
5 HD and HD 2 Stations



Typical Studio Layout



Studio - Transmitter


Studio - Transmitter

EE Broadcas Technology Society

BTS IEEE Broadcast Technology Society

PRUDENTIAL UPPER ANTENNA

Redundant UPS sytems

Make before break Bypass Switch

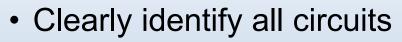
UPS Bypass Switch

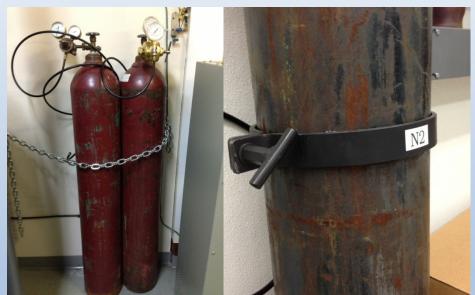
Modulation Monitoring

Modulation Monitoring

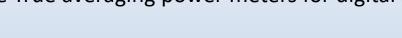
- Critical to adjust and verify Modulation Levels
- Critical to adjust and verify pilot injection levels
- Important tool for making audio performance measurements
- RDS Monitor to maintain and verify RDS Injection levels, and RDS Content
- Most accurate when coupled directly to a transmission line sample
- Off the air samples feeding modulation monitors are subject to many variables that can potentially cause inaccurate measurements especially if not carefully planned.

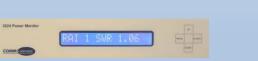
• Clearly identify all circuits


- Clearly identify all circuits
- Battery operated
 Emergency lighting



- Battery operated
 Emergency lighting
- Secure loose tanks to Wall




Power Metering

Use True averaging power meters for digital signal

Boonton

0

88 TE - 18

Outside RF indicators

RF Exposure Meter

RF Exposure

FCC Maximum Exposure Limits (Occupational/Controlled) Exposure

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density 2 (mW/cm)	Averaging Time (minutes)
0.3-3.0	614	1.63	100	6
3.0-30	1842/f	4.89/f	900/f	6
30-300	61.4	.163	1.0	6
300-1500			f/300	6
1500-100,000			5	6

Typical RF Signs

NOTICE

NON-IONISING RADIATION FIELDS BEYOND THIS POINT MAY EXCEED GENERAL PUBLIC EXPOSURE LIMIT.

Obey all posted signs and site guidelines for working in radio frequency environments.

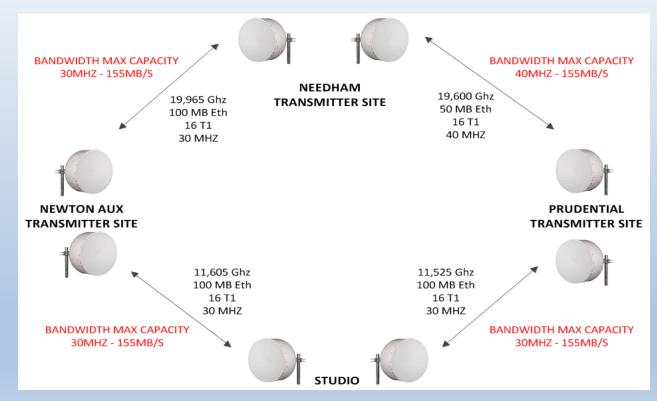
ZCG Scalar 2004

Radio Frequency Energy Hazard Inside Do Not Enter! Risk of Serious Injury or Death Use exposure control procedures. Refer to site policy.

ADVERTENCIA

Riesgo de energía de radiofrecuencia en el interior. ¡No entre! Riesgo de una lesión grave o muerte.

Siga los procedimientos para controlar su exposición. Consulte las políticas de las instalaciones.


WN202 ANSI Z535.1-2006, Z535.2-2007 IEEE C95.2 - 1999, C95.7 - 2005 @RFSigns.com

FM Combiner System

FM Combiner System

FM Combiner System

VSWR Protection

- Protecting the Transmission Line and Antenna is obviously critical
- Antenna / Transmission line repairs are expensive, time consuming, weather dependent, and can keep your site out of commission for long periods of time!
- Do not rely on Integrated Transmitter VSWR Fold back Systems to protect your antenna and transmission live systems
- Interlock All Transmitters feeding the antenna
- If part of a combiner system, make certain each station is interlocked to a master protection system and do an "interlock check" routinely to verify compliance

VSWR Protection

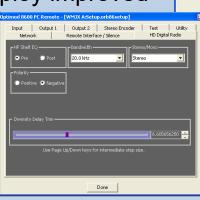
Studio Considerations

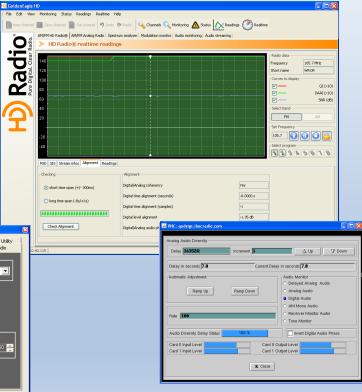
- 1. STL Bandwidth
- 2. Provide OFF AIR Enunciation to Control rooms
- 3. Purchase HD radios for Air monitoring of each stations HD Signal.
- 4. Silence Sense monitoring of each Station feed for Audio/Carrier Loss

HD Radio considerations

Transmitter Control Considerations

- 1. RF isolation Protection
- 2. Proper interlock for Coax Switches
- 3. Proper interlock for Reject Loads
- 4. Proper interlock for VSWR
- 5. Deploy control system with remote control capability via Smartdevice, Secured Web page, Telephone interface





Audio Diversity Delay

- 1. Ability to take delay alignment readings
- 2. Ability to calibrate Diversity delay remotely
- 3. New Software revisions for Exporter and HD Audio processing usually employ improved changes in delay times.

HD Diversity Delay

Studio Considerations For PPM rated markets

- 1. Provide enough monitoring for all PPM sources STL feeds, HD1, HD2, Streams
- 2. Include monitoring for all Internet Streams
- 3. Monitor PPM and Silence Sensing.
- 4. Provide adequate PPM alarm enunciation in control rooms
- 5. Provide Timely PPM alarm alerts to staff E-Mail, Paging, Text Message, Growl Alert

105.7 WBOR	MAGIC	Country 102.5	radio 129	96₀9
CLASSIC HITS	WAJX Continuous Soft Rock	ANALOG	ANALOG	BOSTON TALKS ANALOG
HD1 HD2	HD1	HD1 HD2	HD1	HD1 HD2
STREAM	STREAM	STREAM	STREAM	STREAM
HD-2 STREAM	HD-2 STREAM	HD-2 STREAM	HD-2 STREAM	HD-2 STREAM
Titus Source 2	Titus Source 2	Titus Source 2	Titus Source 2	Titus Source 2
NEWTON	NEWTON	NEWTON	NEWTON	NEWTON
OPX/ISDN	OPX/ISDN	OPX/ISDN	OPX/ISDN	OPX/ISDN
HD2 Vault Primary	HD2 Vault Primary	HD2 Vault Primary	HD2 Vault Primary	HD2 Vault Primary
HD2 Vault Backup	HD2 Vault Backup	HD2 Vault Backup	HD2 Vault Backup	HD2 Vault Backup
ON Air Vault Backup	ON Air Vault Backup	ON Air Vault Backup	ON Air Vault Backup	ON Air Vault Backup

Why use an FM Combiner?

- Use a single Antenna System to serve multiple radio stations
- Pooling resources allows for a much higher budget to invest in a better performing antenna system
- Real estate on a tower or tall building is limited and expensive
- Intermodulation products can be reduced or eliminated
- Suppression from lightning damage is generally increased
- Ability to construct a backup antenna or a lower/upper antenna array is much more practical and affordable
- Ability to design the antenna for RFR Suppression is increased

VSWR Protection

- Protecting the Transmission Line and Antenna is obviously critical
- Antenna / Transmission line repairs are expensive, time consuming, weather dependent, and can keep your site out of commission for long periods of time!
- Do not rely on Integrated Transmitter VSWR Fold back Systems to protect your antenna and transmission live systems
- Interlock All Transmitters feeding the antenna
- If part of a combiner system, make certain each station is interlocked to a master protection system and do an "interlock check" routinely to verify compliance

