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Integral Calculus and lts Applications

[ 1. Reduction formulae. 2. Reduction formulae for | sin” x dx, [ cos” x dx and evaluation of __[:m sin” xax, |
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REDUCTION FORMULAE

The reader is already familiar with some standard methods of integrating functions of a single variable.
However, there are some integrals which cannot be evaluated by the afore-said methods. In such cases, the
method of reduction formulae proves useful. A reduction formula connects an integral with another of the same
type but of lower order. The successive application of the reduction formula enables us to evaluate the given
integral. Now we shall derive some standard reduction formulae.

(1) REDUCTION FORMULAE for

(a) jSinn x dx ) Icos“ x dx.
(a) jsin"xdx: Jsin""1 x-sin x dx [Integrated by parts]
=gin"~1lx - (- cos x) - J'(nfllsin""2xcosx(~cosx)dx
=—sin" lxcosx +(n—1) Isin“_zx(l—sin2x)dx
=—sin""!xcosx+(n-1) J-Sin"“zxdx—(n—l} _[sin"xdx
Transposing
nfsin”xdx=—s:in“—1xoosx+{n—l)Isin“‘zxdx

sin" 'xcosx n-1, . ,_
i [ sin
n n

or jsin“ xdx=— 2 xdx @)
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> n-1
sin x cos x n-1 =
+ Icos" 2 xdx
n n
Thus we have the required reduction formulae.

()  Similarly, [ cos™ x dx =

Obs. To integrate [ sin” xdx or [ cos” x dx,

(@) when the index of sin x is odd put cos x =t

when the index of cos x is odd, put sinx =t

(b) when the index is an even positive integer, express the integrand as a series of cosines of multiple angles and
integrate term by term if n is small, otherwise use the method of reduction formulae.

(2) To show that I:m sin” x dx = I:m cos" x dx

m-1D)m-3)(n-5)... (1‘[ - )
= Kl =y nl
nm-2m-_4). g o niseven
From (i), we have
2 s TN, 1 (/2
In=j1r T N Gl N i In sin” "2 x dx
0 n n 0
3 n—1
ie. I = = I _,
Case 1. When n is odd
5 n-3 n—-5
Similarly I _,= mlnﬂ, I _,= ——aln-e
4 2 2 ni2 2 2 2
15=g.[3,13:§fl=§‘[0 Smxdx:§|—c08xg :g.
Form these, we get I, = =Dwn-3)n-5..2 ..(i1)
nn-2)(n-4)...3
Case I1. When n is even
n-3 n-5
We have In.—2= R—__E-IR_PIR_‘: ;‘:’ZIH_G
3 1, w2z g 1wz, 1=
14_212’12_510_-‘0 sin xdx—a 0 —E'E.
Form these, we obtain I, = ge-Din - —8) .81 & ..(iii)
nn-2)(n—-4)...4-2 2
Combining (i) and (iii), we get the required result for I;”z sin” x dx.
Proceeding exactly as above, we get the result for I:m cos" x dx.
Example 6.1. Integrate (i) _[ sin x dx (i) _[; 2 c0s® x dx.
Solution. (i) We have the reduction formula
=n—1 _
_.'sin“xdx=sm BB l_[sin”‘zxdx
n n
Putting n = 4, 2 successively,
. 3
Isin4xdx=—w+§.[sin2xdx (o)
4 4
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[ sin® x dx=— M+1j(smx)ﬂdx
2 2
But I(Sinx)odx=jdx=x_ - J‘Siﬂzx v:_smeOSx+£
2 2

Substituting this in (o), we get
3

Isin“xdxz— sin' xmsx+§[_51nxmsx+£)
4 4 2 2
(ii) We know that [ cos” x dx = (B ;(1: (_"2; (3’3 (_”4*) f’_’ (g if nis even)
Putting n = 6, we get
n/2 e 5.3.12_@
6.4.22 16
Exnmpleﬂﬂ.Emluate i ) 08 ; | p .. ‘ § 13 58 o .

«M Ny dey' 0S¥ U R
@ [ J— (V.T.U., 2006) (i) j"' Pade D) [T Ry |
Solution. i) [ ———r_’ﬁT_ dx
= 0 ((12 = x?)

Jlm'?. ﬂ? Slﬂ ¢

Put x = a sin 6, so that dx = a cos 6 d6
Also whenx =0,0 =0, whenx =q, 6 = /2

6.4.2 16 4
=—a

acosBdB:aT_[nrzsinvGdB:a?.u-u-——
0 7.5.3.1 35

a cos
(i) Putting x = 20, we get

J- 1,‘(1 €OS x) g = J--u2 Ja- 26 in? 96 9d0

1+cosx 1+ cos 20

n/2 +/2 sin O
=2j T

°"_|ﬁ

.(2 sin 0 cos 0)* dO = 42 j" sin ede_4f
0  92cos a

(i) dx Put x = a tan 6, so that dx = a sec® 0 d0
o 0( 2 4220 Alsowhenx =0, 6 =0, when x = o, 6 = W2

n/2 asec edB 1 "2 op_g _ 1 (2n-3)2n-5)...3.1 ¢
=] % 1.f o Al D) @A) 4.2 2

"sec?® @ @2l 0 a
- o A0 LY B LR R R T
Example Gﬂ-Evaluate j F—dx. Hence ﬁnd;tke valueofj x" gin x dx. j, Pro i ,,_.;‘,
v ot ; .I‘; l-{ L-‘l;;’ ‘.!
d 4 f L I78) Y ¢ AT

Solutmn Puttmgx a sin 6, we get

n/2 (a sin 0)"

I \{— _-.- “acosf

f2
LY (acos0)de =a” j;‘ sin” 6 d@

= (n_l) (n _3)---- no s -
S . a”, if n is odd
n-Dn-9..1 x _, (@)
T T Ea , if n is even
Now integrating by parts, we have
n+1 |1 n+1
[} 2" sintxdx = | (sin™ ). - j’ol — S

n+1 . n+ (l_xz)
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1 |n 2 x"*! i

= L B, S . 241

(n+1)[2 Il (l_xz)] [Using (i) p. 241]

_ 1 T nin-2)(n-4)...1 n

"n+l1l2 +Dr-1)(n-3)..22

1 {n nin-2)(n-4)...2 }

when n is odd

“n+il2 +D(-D(n-3)..8 VIR, 7 SRR

Evaluate 6.4. Evaluate I, J: (@® - x?)" dx where n is a positive integer. Hence show that

2n

2
= as T i)
n2nal Azt

Solution. Putting n = a sin 0, we get
@ /2 n/2
I.= I (02_x2)“dx=j (az—azsin29)"acosed9=a2"”j cos?**1 g de
0 o i

g1, @W@n-2(@n-4)..42 T —
2n+1)(2n—1)(2n-3)...5.3

Now replacing n by n — 1, we get

Ihl:agﬂ_l(2n—2)(2n—4)_..4.2 Lo g2, o
" (2n-1)(2n-3)...5.3 La 2n +1

f 2n+1“21"-1'

which is the second desired result.

IEEN (1) REDUCTION FORMULAE for | sin™ x cos” x dx

Isinmxoos"xdxzjsinm'lx - cos" x - sin x dx [Integrate by parts]
1 n+l
. —cos"t! x . cos" ! x
=sinm " 1lx. | ——— *I(m—l)sm'"‘zxcosx- - | dx
n+1 n+l
sin” 'xeos"'x m-1
== + J‘sin""“‘2 x(1 — sin? x) cos™ x dx
n+1 m+1
= m—1 n+l
sin X COS x m-1 i s - .
=— + J'smm ? xcos"x dx — Ism"’x cos™ x dx
n+1 n+1 n+1

Transposing the last term to the left and dividing by 1 + (m — 1)/(n +1), i.e., (m + n)/(n + 1), we obtain the
reduction formula
som=—1 n+1 _
jsinmxoos“xdx=—sm C L N 1 Jlsinm72xcos"xdx (1)
m+tn m+tn

Obs. To integraie j' sin™x cos” x dx,

(a) when m is odd, put cosx = ¢
when n is odd, putsin x = ¢
(b) when m and n both are even integers, express the integrand as a series of cosines of multiple angles and integrate
term by term if m and n are small, otherwise use the method of reduction formulae.

(2) To show that

s:msinmxcnsnxdx:(m—1)(m—3)...x(n—l)(n—3)... x(
0 m+n)m+n-2)(m+n-4)..

g, only if both m and n are even)
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From (i), we have
12 = m-1 n+1 n/2 " 12
Lon= r Siumxcos"xdx=‘—sm L, W 4 & lr sin~? x cos"x dx
: 0 m+n " m+nJdo
m-=1
€., L. o= ;
e MR mgn B
Case I. When m is odd
a s m-—3 m-2=9
Similarly, In-an= i gim-diwtn-n= o —gln-sin
4
I5.n_ n+513'”
. 92 2 n/2 P
Finally I .= T e -[o sin x cos" x dx
T/
2 cos"*1 x . 2 i)
= - = waa\LL
n+3 n+1 (n+3)(n+1)
From these, we obtain
7o (m-1)(m-3)(m-5)..4.2
™ (m+n)m+n-2d(m+n-4)...(n+3)n+1)
Case II. When m is even
m-3 m-5
Wekimve, Ty g = sl kiie Ticas gy m g T
3 1 1 pn/2
L= gl lon= gl ig )y o2
_ _ _ /2
From these, we have I = n— 1 —3) (1~ 5.1 " cos” x dx
’ m+n)(m+n-2)(m+n-4)...(n+2) Jo
(m-1)(m-3)...1 (n-1)(n-3).. w5 ¥
i : (W2 only ifn ) {
R D AT, e e )
Combining (ii) and (iif), we get the desired result.
Example 6.5. Integrate (i) Isin‘ x cos® x dx . (Raipur, 2005)
) I ol W ke (V.T.U.,, 2010 S)
0 (1+¢°) 0 (Z+x%)" I A
Solution. () Taking n = 2, in () of page 241, we have the reduction formula :
= m=1 3
J-sinmxcoszxdx=sm oo AR 1Isinm'2xco52xdx
m+2 m+2
Putting m = 4, 2 successively,
. 3 3
Isin‘xcoszxdx=—%ﬁ—i+% sin? x cos? x dx (1)
. 3
. 2 2 __Ssnxcos"x 1 2
Ism x cos*xdx = = +4 Icos x dx

8o gond 1,1,
But jcos xdx—2I(1+ooszx)dx—2[x+2sm2x)
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Isingxmsﬂxdx: w‘f—(&.}s]nzx)
Substituting this in (1), we get
sin® x cos® x 1{_sinxc033x

Isin"xcoszxdx=——--—~—-—~— +—= 1

1 ¥
—(2x + 2x
= 5 +16( sin )}

(ii) Putting ¢ = tan 6, so that

w 46 n/2 tan® 0 & 5-3-1x5-3-1 n_ 57
L P = X—= .
.L @+ 22 .L muese&ede I sin® @ 008’ 00 = o 3 5 2048
(¢ii) Putting x = tan 0, so that
= g /2 tan? @ 5 12 2
= 0d0 =——=—.
J; {1+x2)m I Bxiue(': 60do= _.- sin? @ cos ST

n/6
Solution. (i) J-

y 16
cos® 30 sin® 60.dO _ j': cos* 30 (2 sin 30 cos 30)° d

Put 36 =x

so that 3d6 = dx

Alsowhen 8=0,x =0;
when 0 = /6, x = W/2.

16
=8 j': sin® 360 cos’ 30 d@

2
=§r sin® x cos” x dx
3 Jo

_8 2x6-4-2 1

310-8-6-4-2 15
1 4 2.32 Put x =sin ¢ so that dx = cost dt
&) Lx(l-—x)sadx Whenx=0,t=0; whenx=1,¢=n/2

12 . 32
=r sin4t(oos2c)M-oostdt=J: sin? ¢ cos? t dt

31x3IE 3n
8.6-4-2 2 256

iy j':“ 2 J2ax — x?) dx
B j:”xw,((za-' ) dx

n/2 . 12
=‘|; (2a sin® 8)*'2 \/(2a) cos O - 4a sin 6 cos 6 dO

Put x = 2a sin? 6
- dx = 4a sin 6 cos 6 dB

5-3-1x1 T _ 5nat

n/2
= 25q¢ L sin® Bcos? 8 dO = 32 a* -

86-4-2 2 &
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REDUCTION FORMULAE for (a) | tan” x dx__(b) | cot” x dx

(a) Let I = I'tan"xdx=‘|ltan“'2x-tan2'xdx=Itan“‘zx-(seczx—l)dx
& Itan""a xsec? x dx — J-tan"‘"g'-xdx
tan" ! x
Thus, I= S —1I, _, which is the required reduction formula.
() Let I= _[mt"xdx=j'mt""2xwt2xdx=j'cot"-‘zx.(eosec.zx—ndx
= Icot“"zsteczxdx— Icot""zxdx
cot” ! x
Thus In=_ a1 —i, 9

which is the required reduction formula.

Solution. (i) Putting n = 5, 3 successively in the reduction formula for j‘ tan” x dx, we get
1 ! 1 :
1= Ztan"'x—fs; 1= Etanzx—fl
1. 2
Thus Is=ztan x—Etan x+1
ie. Itansxdx=ltan4x—«1-tan2x.+ Itanxdx=ltan“'x—ltan2x—logcosx
’ 4 2 4 2 ’
(it) Putting n = 6, 4, 2 successively in the reduction formula for Imt“ x dx, we get
. 1
Ia=—%cot5x—l4_;14=—§cot.3x =L;I,=—cotx-1I
-1

Thus Iﬁ=?cot.5x+_-1§cot3x —cot x — Idx
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. 6 o1 s, 1 s
ie., Icot xdx_—5cot x+3cotx—cﬂtx—x.
nl 4 | ! . ) 4 I
Example 6.8.If I = L tan" ©d6, prove thatn (I, _,+1,  ,)=1 (V.T.U, 20035’

/4
Solution. The reduction formula for I: tan” 0d0 is

1 - 1 1
In—m|tan ID —-Iﬂ_2——n_1 —In_2 or IR+IH—2_E
Changing n to n + 1, we obtain
In.+l+In-l=(n+1) or n+1U, , ,+I =1
IEEl REDUCTION FORMULAE for (a) | sec” x dx (b) | cosec” x dx
(a) Let I= Isec"xdx: Isec”‘zx.seczxdx
Integrating by parts, we have
I =sec" 2x. tanx — jl(n—2)sec“‘3x-secxtanx}tanxdx
=sec” 2xtanx-(n—2) jsec"‘zx-tanzxdx
:sec"‘zxtanx—(n—Z)Jsec"’gx-(seczx—l)dx
=sec" 2xtanx-(n-2)I, +(n-2)1 _,
Transposing, we have
(n-1I,=sec’* 2xtanx +(n—2)I, _,
n—2
Thus I == xlt"m" R _fln_gwhich is the desired reduction formula.
n-— n-
() Let 1= Ioosec"xdx=jcosec"‘2x-cosec2:rdx

Integrating by parts, we have

I = cosec” ~2x. (—cot x) — I[(n — 2) cosec” ~3 x - (— cosec x cot x) - (— cot x) dx

=—cotx cosec"~2x —(n—2) j'cosec"'z x (cosec? x — 1) dx

=—cotxcosec” 2x-(n-2) +(n—-2)I,_,

or [1+(n-2),=-cotxcosec® 2x+(n—-2)I, _,
n—2
-2
Thus - cot x cosec x,n I,
n-1 n-1

which is the required reduction formula.

j R L S 2 3 A
Example 6.9. Evaluate (i) _[0 sec? xdx (i) j' |, cosec® B.d6. (V.T.U., 2008)
"
2
Solution. (i) Putting n = 4 in the reduction formula for Isec" xdx, wegetl, = secht.anx + gfg

2 n/4
sec” x tan x

n/4 4
j. sec®* x dx =
0 3

n/4
+EI sec? x dx
3 Yo

2 2 nia 2
:_-3_+§|tanx " =§(1+1)=4/3.
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(iz) Putting n = 3 in the reduction formula for J- cosec” x dx, we get

I,=- %cutx cosec x + %Il
/2 n/2
oosecaxdx=-1|cotxcosecx|”2+1j cosec x dx
n/3 2 ®/3 " 9 Jus
1 2 1 /2
=_E(0_E)+E’ lo,t;,(ol)sec:vc—ot)i;:vc)l,”.3

2 1 1 1

1 1
=—+—|logl-log| =-—||==+—1log 3.
3 2[°g og[J:E JE)] Ba e

PROBLEMS 6.2

1. Evaluate (i) _[tanﬁxdx (V.T.U., 2007) (i) Imﬁxdx.

n/4 7 1
2. Show that L tan xdx=§(5—810g2)

3. I, = j':“ tan” x dx, prove that (n— 1), +1, ,)=1. (V.T.U., 2009)

Hence evaluate I, (Madras, 2000)
4 Ifr = j‘:: cot” ©.d8 (n > 2), prove that I, = n-]; —1I, ;- Hence evaluate /. (Marathwada, 2008)
5. Obtain the reduction formula for I:“ sec” 6do. (V.T.U., 2010 8)
6. Bvaluate (i) [ sec® 0o (i) _[::: cosecd d6. 7. Evaluate _[: (a® + 22)5/2 g,

n n+l
g Ils= Ilitg dt, show that/ ,,= ;+1 —1I,. Hence evaluate I..

I REDUCTION FORMULAE for

(a) Ix" e™ dx b) Ix"’ (log x)" dx.
(a) Let L= [ e dx
Integrating by parts, we have
ax ax
PRy Sl
a a
x"e™ n e ; ;
or I = ——1I, _; which is the required reduction formula. (Madras, 2006)
a a
(b) Let L,,= " Gog 2" de= [ (og 2" . xm d
Integrating by parts, we have
xm+l 5 1 xm+1
=11 3 = 1 et dx
I, = (log 2y - ——— [ naog =
m+1 m+1
- - n m n—1 =x no__ n
= 2 (ogxr - jx (log 21"~ 'dx or Iy, ="——(0gx)' ——"—I,, 1

which is the desired reduction formula.
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REDUCTION FORMULAE for

(a) Ix"sinmxdx (b) Ix”cosmxdx (e) Ioos"'xsinnxdx

@Let I, = [«"sinmxds

Integrating by parts, we get

[ —gn [0S mx) Inx“_l - cos mx)
L m m
n
=—%m—+%j’x"”l cos mx dx [Again integrate by parts]
n - -
_ x" cosmx +£—{x"_1 _sin mx —{I(n—l)x"_z _sin mx dx}}
m m m m
Meosmx n 4 . nn-1)
or In=——m—+—-——x" 1 sin mx — ——1,
m m

which is the desired reduction formula. (Madras, 2003)

(b) Let I,,:J'x"cosmxd.x

Integrating twice by parts as above, we get

"o n(n —-1)
L= sl +_n2_ leosmx-—5 I ,
@Let I, ,= [ cos™ x sinnxd
Integrating by parts,
I, , ==—cos™x. g— I m cos™ "' x (- sin x).(:i:ﬂde

1 m -1 .
=—Ecos"‘xcosnx— = Imsm X . €os nx sin x dx
n
~» sin (n — 1) x = sin nx cos x — €o0S nx sin x
orcosnxsinx=sinnxcosx—sin(n—-1)x

1 m . . 2
=- Ecos”‘xcosnx~ = Imsm ! % [sin nx cos x —sin (n — 1)x} dx

1 i m
=— — cos™x cos nx — E(Im,n_fm_l,n—l)

Transposing, we get

m 1 m m
1+—)I =—=cos xcosnx+— I
( n m,n n n m-1,n-1
cos™ x cos nx m
or Im,.,,:_ + Im—ln-—l
, m+n m+n '

which is the desired reduction formula.

] LA nl2 T N N ARTE Lo J00AF 2NN £

| Example 6.10. Show that [ cos™ x cosnxd= T [*" cos™ Iz cos - Dxdx |
." . ‘ ) L “: '.:f "; " o ¥
SV, 2008)

"y

' _. L ) lanre ,
Hence deduce that J cos™ x cos nxdx= —~ .
' Jo . 2n +1

n/2
Solution. Let I, = cos™ x -cos nx dx
; 0
Integrating by parts
m  Sinnx e n/2 = ) sin nx
L, .=|cos™ x. - —I m cos x (- sin x) X = dx
0
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m (T2 _— . » cos (n — 1) x = cos nx cos x + sin nx sin x
=—J cos x sin nx sin x dx ; ;
n Jo or sin nx sin x = cos (n — 1) x — cos nx cos x
w20 P cos” ! x[cos (n — 1) x — cos nx cos x] dx = (I -1 )
= n Jo n m-1,n-1 m, n

Transposing and dividing by (1 + m/n), we get

_._m
m,n"m m-1,n-1
which is the required result.
2
Putting m=n,I [: r oos"::cceasJr::.ncn:i:vc]=l I _,
0 2
Changing nton —1,
1
In—l=§IR—2
1(1 1 1 1 1 # 0
In=§(§.{’=72)=22 In.—2_ ?In_a ...... = Iﬂ*ﬂ=2_n I (OOSJC) dx
1 n_ =
Hence Iﬂ_§-§—2"+l

Example 6.11. Find a reduction formula for I ™ sin x dx. Hence evaluate J.t_e: si}z'a;.x_ dx.

¥

sin” x &
I I

Solution. Let I, = Ie“" sin” x dx = I
Integrating by parts,

e"x n-1 eax
n:sin"x.——f(nsin xcos x). — dx
a a

ax _._n
™ sin” x i g in i i
=" a % _[ (sin" ! x cos x). €™ dx [Again integrating by parts]
ax . n T
_ % sin x_ﬂ[sin"‘lxcosx-e—‘"j{(n_l)sin"Qx
a a ¢

ax
" " e
X COS X - €OS ¥ + sin” ~ 1 x (- sin x)} N dx]

- %—’5 (a sin x —n cosx) + _n? I[(n—l)sin“'z x x (1-sin?x) —sin"x] e™ dx
« a
™ sin" ! x : nin—1) n?
S U (asinx—ncosx) + a—2 I .- a_2 /
Transposing and dividing by (1 + n2/a?), we get
_ v sin" ! x(asinx—ncosx) n(n-1
In_ 2 “n-2

a® +n? a® +n
which is the required reduction formula.

Putting a = 1 and n = 3, we get
¢* sin® x(sinx—3cosx)+ 3.2 I,

j
’ 12 +9 #49

But I, = J.ex sin x dx = — sin (x — tan™! 1).

V2
e sin® x(sinx —8cosx) 3
- S € sin (x —w4).
I, = fo = sin (x )
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b b
Property L [ f(x)dx = L £(t) dt
(i.e., the value of a definite integral depends on the limits and not on the variable of integration).

b
Let [ e dx =gt o [ F@ax = 40) - o)
) b _
Then If(t)dt =00 ; j £ @ dt = §b) - ola).
Hence the result.

b a
Property IL. j £(x) dx = — L f(x) dx
(i.e., the interchange of limits changes the sign of the integral).
Let Jf(_x]_dr- =¢lx); I: f ) dx = o(b) — ¢la)

and - [} redx == 0@ 1} = 16@) — 6®) = 4) ~ (e,
Hence the result.
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b c b
Property IIL. I f(x)dx = I f(x) dx + I f(x) dx

b
Let I f(x) dx = (x), so that _[ f(x) dx = ¢(b) - tla)

b
Also J’: f(x) dx + .L fl)dz=] 60 [ +] 60 [

= [¢le) — dla)] + [¢(d)— d(c)] = o(b) — dla)
Hence the result follows from (1) and (2).

a a
Property IV. L f(x)dx = -[o f(a - x)dx
Putx=a—t, so thatdx = —dt. Alsowhenx=0,t =a ;whenx=aqa,t=0.

j': £ = — I: fla-t)dt= _[: fla—t)dt= _[: fla-x)dx

,I(sin x)

J(sin x) + \/(cos x)

) J(sin x)
Solution. Let I=
Solution J- J(sin x) + J(cos x)

/2
Example 6.12. Evaluate L

Then

_ [ sin (3 — x) |
T

Jquz coS x)
J(cos x) + 4/(sin x)

n/2 J(sm x) + J(cos x) n/2
J(sin x) + {J(cos x) 0

Adding 2 = j dx=|x

Hence I = /4.

1
Example 6.13. Evaluate I log (1 +2)

dx.
0 1+

Solution.Let  I= j
1+ x

x/4 log (1 + tan 6)
=I —a—. B8
0 1+tan” @

= 1o —2_Tan-tepal™" a0 -7
_jo 0g(1+tan9) =ik Iﬂ -

Transposing, 2 =log 2 - | 6 |ﬂM =— log 2. Hence I = - log 2.

®|a

=i
4

- 8
Example 6.14. Evaluate I: :s"# dx.
+cos” x

-3
T oxSsm x
Solution. Let I= || 2= dx
0 1+ cos” x

sin (ln - x) + J[oos (n- x)] “

M tog |1+ tan(Z—0)|do= " 10g[1
Iﬂ og[ - n(z— J] _Io og|1+

r:.o"2

_ T

3 n/d
¢ we:_[o log (1 + tan 6) do

ltane
1+ tan

251

(1)

-(2)

[Prop. 11]

[Prop. IV]

(Cochin, 2005)

log (1 +x) (1+ x) Put x = tan 0 so that dx = sec’ 0 do
Whenx =0,06=0;whenx=1,06=mn/4

[Prop. IV]

(Madras, 2006)
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% (n— x) sin® (1 — x)

Then I:I g dx [Prop. IV]
0 1+cos” (m—x)
o [F AL e B0 E g
0 1+cos” x 0 1+ cos® x
-
Transposing, 2I=mx jn l_s.m—:: di
0 1+cos” x
——nL 148 Whenx=0,t=1:Whenx=mnt=-1;
:n‘l-‘l Mdt=—2ﬂ I—I dt +Tt.|-_1 dt
1 48 1 1442 1

=95 | tan™! t|;l +m| t'|;] :—27:(—%—%) — 2m. Hence, I = n%/2 - m.

Property V. r f(x)dx =2 j: f(x) dx , if f(x) is an even function,
- a
=0 if f(x) is an odd function. (Bhopal, 2008)

@ 0 i}
J' f () dx= j fl)dx+ f () dx 1) [Prop. 1)
a -a 0

0
In I f(x)dx, putx =—1¢, so that dx =—dt

el {4

0 0 a @
_[ £ de=— I f-tdt= I f-Ddt= j f-x)dx [Prop. T1]
—a a 0 0 1
Substituting in (1), we get
r f)dx= j i) e J'“ £ dx 2
= 0 0

(i) If f(x) is an even function, f (- x) = f (x).
fom @, [ ferax= [ fwder [ rowax=2(" feds
. 0 0 0
(&) If f(x) is an odd function, f (- x) = — f(x).

from (2), _[ P j'; F de L f(x)dx =0.
—a

2a a
Property VL j'o f(x)dx =2 L £(x) dx, if f (2a - %) = f(x)
=0, if f(2a - x) = - f(x)

2a a 2a
_[ f(x)dxzj ) dx+ _[ f(x) dx (1) [Prop. T}
0 1] a

2
In In“ f(x)dx, put x = 2a — t, so that dx = —dt
Alsowhenx =a,t =a ; whenx =2a,t =0.
2a 0 a ) a
j f(x)dxz—f f(za_:)dx=j f(2a—t)dt=I i3~ 2 de [Prop. 11]
0 a 0 0
Subsituting in (1), we get
2a a a
j' f(xydx=j' f(x)dx+j' f(2a - x)dx A2)
0 0 0 _
@) If f (2a — x) = f (x), then from (2) '
2a @ a a
["rwan= [ feave [ foa=2 [ foa
0 0 0 0
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() If f (2a — x) =— f (x), then from (2)

J':“ ) dx= _[: £ dx— I: Fladds =0,

n n/2
Cor. L. If n is even, I sin™ x cos" x dx =2 I
0

m
sin™ x cos™ x dx and if n is odd, I sin™ x cos™ x dx = 0.
0 0

2n

Cor. 2. If m is odd, I sin” xcos" x dx =0
0

2n

and if m is even, I

n
= I - n
sin™ x cos” xd.x=2.[ sin™ x cos”" x dx
0 0

ni2
=4I sin™ x cos™ x dx, if n is even = 0, if n is odd.
0
Example 6.15. Evaluate f: 0 sin” 6 cos? 0 d6. '  (V.T.U, 2009 S)

Solution. Let I= j“ 0sin” O cos? 6d6
0

o . 2 4 T n B 4
Then I= Iﬂ (mt — 6) sin“ (1t — B) cos (T[—B)d‘c):njo sin“ Bcos” 8d6 — T [Prop. IV]
/2
or 2l=n r sin® B cos? 0d0=2n I: sin? @ cos® 6 d6 [Prop. VI Cor. 2]
0
o 181 n &
=An. g a8 216
2
H =1
ence =
 enlg ai : DAV
Example 6.16. Evaluate [ log sinx dx. ' (Anna, 2005 S)
. : * t ht i
/2
Solution. Let  I= J'O log sin x dx (D)
/2 n/2
then I= _[0 log sin (ufz—x)dx=jo log cos x dx ...(ii)
Adding (i) and (it)

n/2
J-o (log sin x + log cos x) dx

12 12 1
J'“ log (sin x + 008 x) dic = r 10.;(5“‘ 2"]dx
0 0 2

Imfz 1 e sl r’tf2 ! 9 dx Im’? 1 i e 2’[1:12 i
0g S1n = 0 = Sin — 10
0 € 0 g 0 o8 € 0
/2
- I: log sin 2v dx —log 2| /2 =I' - 7 log 2 . i)

where r

n/2 : Put, 2x = ¢, so that 2dx = dt
J; log sin 2x dx

Whenx=0,t=0;whenx=1w/2,t=mx

T i
- % I log sin ¢ dt =% _[ log sin x dx [ log sin (n —x) = log sin x, Prop. IV]
0 0

_ _1_ n/2 . _
—2.2_[0 logsin xdx =1.
Thus from (iii), 2 = I — (/2) log 2, i.e., I = — (/2) log 2.
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Solution. Put sin™! x = 6 or x = sin 6 so that dx = cos 6 @
Alsowhenx=0,0=0;whenx=1,6=m/2.

= =1 _ e .
erx:j 2 6.289 4o [Integrate by parts]
0 x 0 sin 6

; ; 12
[a.logsine;”—j': 1.log sin 6 dO

1/ 2

- Ty \.n .
logsm_&d3=—(—-2~log2)_§ log 2 [ :1_.’to_(xlogx) 0]
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11. J-: log (1 +cos @) d8=—mlog, 2 (Madras, 2003)
log(1+x ) 3 1og(x+11'x)
12. (i) =nlog, 2 (i) =rlog, 2.

IEEN (1) INTEGRAL AS THE LIMIT OF A SUM

We have so far considered integration as inverse of differentiation. We shall now define the definite
integral as the limit of a sum :

Def. If f(x) is continuous and single valued in the interval la, bl, then the definite integral of f (x) between
the limits a and b is defined by the equation

b )
J‘ fedx= Lt hifia)+fa+h) +fa+2h) +..+fa+n-1b)],
a -

wherenh =b-a. (1)
(2) Evaluation of limits of series

The summation definition of a definite integral enables us to express the limits of sums of certain types of
series as definite integrals which can be easily evaluated. We rewrite (1) as follows :

n-1
[ faydx= Lt k'Y fla+rh), wherenh=b—a.
4 = o0

Puttinga =0 and b = 1, so that h = 1/n, we get

Lt —Z f[ ] [} 10 ax

n—e M

Thus to express a given series as definite integral:
(i) Write the general term (T, or T, , ; whichever involves r)
Le., [r/n) . 1/n
(it) Replace r/n by x and 1/n by dx,
(zif) Integrate the resulting expression, taking
the lower limit = Lt (r/n) where r is as in the first term,

n—see

and the upper limit = Lt (r/n) where r is as in the last term.
n—ee

Example 6.18. Find the limit, when n — =, of the series
n n n n

St . + R
nF ot 18 Rt 2A n® +(n-1)>?

n n 1

Solution. Here the general term (= = .-
n+r? 1+(r/n)® n

+1)

= . 1 > dx [Putting r/n = x and 1/n = dx]
+X

Now for the first term r = 0 and for the last termr=n -1

the lower limit of integration = Lt (2] =0
n

n—ye
- y s n-1 1
and the upper limit of integration = Lt | ——[=Lt |1-—|=1.
n—ee n n—yes n
S w 1 dx -1 |t -1 -1
Hence, the required limit =I 2=|t£m x| =tan~1(1) - tan~1(0) =
0 1+x 0



DOWNLOADED FROM www.CivilEnggForAll.com

=t

[To find limit of a product by integration :
Let P= Lt (given product)

n—jeo

Take logs of both sides, so that
logP= nLi_; (a series) =k (say). Then P = ¢* ]

| - 2 1;
Solution. Let P= 1t -{[14-—) [1+—] (1+E]} .
Taking logs of both sides,
logP= Lt l{log(1+ ]«blog(l-:- ]+..-+log.[1+£)}
LEL N ; n
Its general term =log_[1+£].—=log(1+x).dx [Putting r/n = x and 1/n = dx]
n) n

Also for first term r = 1 and for the last term r = n.
The lower limit of integration = Lt (1/n) = 0 and the upper limit = HI_J:. (n/n) = 1
n-—yeo oo

Hence log P = jl log(1+x)dx= II log(1+x) .1dx [Integrate by parts]
=|log@+x).x |y — _[0 et
=log2 - Illex =log 2 I dx+fo S

=log2-| xE +|-10g(1+x)|0 =log2-1+log2
=log 22 - log, e = log (4/e). Hence, P = 4/e.

IR AREAS OF CARTESIAN CURVES

(1) Area bounded by the curve y = f (x), the x-axis and the ordinates x =a, x = b is I: y dx.

Let AB be the curve y = f (x) between the ordinates LA (x = «) and MB (x = b). (Fig. 6.1)
Let P (x, y), P’ (x + &x, ¥ + &) be two neighbouring points on the curve and NP, NP’ be their respective
ordinates.
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Let the area ALNP be A, which depends on the position of P whose
abscissa is x. Then the area PNN'P’ = 8A.

Complete the rectangles PN’ and P’IN".

Then the area PNIN'FP’ lies between the areas of the rectangles PN’
and P'N.

Le., 0A lies between y8x and (y + 8y) 8x

% lies between y and y + dy.
Now taking limits as P — Pi.e,8x > 0(and . & —0),

dA/dx =y
Integrating both sides between the limits x = ¢ and x = b, we have
Al =], yax
or (value of A for x = b) — (value of A forx = a) = ﬁ’ydx
Thus area ALMB = j: ydx.
(2) Interchanging x and y in the above formula, we see that the area bounded 6] X

by the curve x = f (y), the y-axis and the abscissaey =a,y = b is I: x dy. (Fig. 6.2) V. 6.2

Obs. 1. The area bounded by a curve, the x-axis and two ordinates is called the area under the curve. The process
of finding the area of plane curves is often called quadrature.

Oba&ﬁiﬁuﬂmmAumwhmbmmnd#Medmtkeautt—clockwmdm:muwn%emdmuw
and an area whose boundary is described in the clockwise direction is taken as negative.

b
In Fig. 6.3, the area ALMB (= L ¥ dx) which is described in the anti-clockwise direction and lies above the x-axis,

will give a positive result.

b
In Fig. 6.4, the area ALMB (: [y dx) which is described in the clockwise direction and lies belaw the x-axis, will

give a negative result.

\ )
Y} B E A
o L M X
o ‘I:: + ve
1] =t -~ area
A - = area i #
) + ve i L ! N M,
I area H A O L (x=c)\ -ve| X
S aretx = b
o r M X
B B
Fig. 6.3 Fig. 6.4 Fig. 6.5

b ¢
In Fig. 6.5, the area ALMB [: j ¥y dx] will not consist of the sum of the area ALN [: J. ¥ dx) and the area NMB
a a

b
(: I y dx}, but their difference.
¢

Thus to find the total area in such cases the numerical value of the area of each portion must be evaluated separately
and their results added afterwards.

Example 6.20. Find the area of the loop of the curve ay® = 2*(a - x). (S.V.T.U., 2009 ; Osmania, 2000)

Solution. Let us trace the curve roughly to get the limits of integration.
() The curve is symmetrical about x-axis.
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(ii) It passes through the origin. The tangents at the origin are ay? =ax?ory=+x. .. Originisanode.
(iii) The curve has no asymptotes.
(iv) The curve meets the x-axis at (0, 0) and (a, 0). It meets the y-axis at (0, 0) only.

From the equation of the curve, we have y = % V@ —x)
a

For x > a, y is imaginary. Thus no portion of the curve lies to the right of the line
x=a.Alsox — —oo,y —> oo,

Thus the curve is as shown in Fig. 6.6.
Area of the loop = 2 (area of upper half of the loop)

g o a—x 2 fe
=2_L ydx=2J-0x[ » J =ﬁjﬂ [a—(a—x)]Jla-x)dx

i (a — x)3'2 (i (@ - x)*'2 0
= | lala—x)*? —(a—xP"%dx =20a | ——— | - —| ———
g I Tl s T2 | T e ez |,
=—Eﬁ(0—a3’2)+i(0—um2):iaz—iag=£D:2.
3 5Ja 3 5 15

- Example 6.21. Find the area included between the curvey®(2a - x) =x%and its asg.ympt'ote. (V.T.U, 3;'003}3',

Solution. The curve is as shown in Fig. 4.23.
Area between the curve and the asymptote

2 2 3 - 9
=2J'aydx=2j'u X s Putx =2asin“ 0
0 0 2a - x so that dx = 4a sin 0 cos 6 d@
/2 3
_[“ (2a sin® 9) . 4a sin © cos 8 0
2a cos? B
n/2 3-1 &
ﬁazj' sin® 0d6=16a2- 2 2. T _ 3ng2,
0 4-2
( E:lfaq:ipledm Fmdﬂzearegenciosedb@thecurdeaﬂx? y3(2ﬂ v i) "' LS ¥ '

Solution. Let us first find the limits of‘ integration.
(z) The curve is symmetrical about y-axis.
(if) It passes through the origin and the tangents at the origin arex2=0orx =0,x = (.
There is a cusp at the origin.
(iii) The curve has no asymptote.
(iv) The curve meets the x-axis at the origin only and meets the y-axis at (0, 2a). From
the equation of the curve, we have

{y(2a -y}

Fory <0 ory > 2qa, x is imaginary. Thus the curve entirely lies between y = 0 (x-axis) and
y = 2a, which is shown in Fig. 6.7.

2a 2 r2Za P =% & 2 )
Area of th = == f _ ut y sin
e ¢ curve =2 IU * dy a 'L Fylyi2e—) dy ~. dy = 4a sin 0 cos 6 d6

n/2
-2 L 2a sin® 0 2 sin® 6 (2a — 2a sin® )] X 4a sin © cos 6 d6
a

3-1x1
6-4-2

= a2,

nl2
= 3942 _[O sin? 0 cos? 0 d6 = 3242 ; %
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Example 6.28. Find the area enclosed between one amﬁ of the cycloid x = a(6 - sm 6), y=a(l —m 0), and :
its base. ' (V T U ).

L]

Solution. To describe its first arch, 0 varies from 0 to 2r i.e., x varies from 0 to 2an (Fig. 6.8).

2
Required area = I y dx
x=0 Y
where y = a(1 — cos 0), dx = a(1 — cos 0) dé. AO=n)
/2
o j‘“ a(l — cos 6) - a(1 — cos 6) dO
6=0 (0]
©=0) B X
= 242 L (1 — cos 6)% d6=8a? j':sin* gde (6=2n)
Fig. 6.8

12
= 16a? _[n“ sin* ¢ do, putting 6/2 = ¢ so that d0 = 2d0.

= 16a? - Lo 9 = 3na®.

¥
2

bo

Example 6.24. Find the area of the tangent cut off from the parabola x* = 8y by the -Iingfx-.;?y'\-l---s' 0]

Solution. Given parabola is x2 = 8y (@)
and the straight lineisx -2y + 8=0 ..-(E0)

Substituting the value of ¥ from (it) in (i), we get

x2=4(x +8)orx2—-4x—-32=0

or x-8@x+4)=0 .. x=8,—-4.

Thus (i) and (ii) intersect at P and @ where x = 8 and x = — 4. (Fig. 6.9) Fig. 6.9

Required area PO@ (i.e., dotted area) = area bounded by straight line (ii) and x-axis from x = — 4 to

x = 8 — area bounded by parabola (i) and x-axis fromx =—4 tox = 8.

-j's %, from (&) j'g d%, from (i)
= _4y ,rnmu—_4y » Irom (2

" B 3
= S d A LB . .
% —4
= l {(32 + 64) — (— 24)} - i(512 +64) =
2 24
- Example 6.25. Find the area common to thebambblq y2 = ax and t{:e-cinéle'xf-'_;quﬁ = dax. " & SR
Solution. Given parabolais y2=ax )
and the circle is x% + y? = 4ax. ..(i1)

Both these curves are symmetrical about x-axis. Solving (i) and (if)

for x, we have
2 +ax=4axorx(x—38a)=0

or x=0, 3a.

Thus the two curves intersect at the points where x = 0 and x = 3a.
(Fig. 6.10).

Also (ii) meets the x-axis at A(4q, 0).

Area common to (i) and (ii) i.e., the shaded area

= 2[Area ORP + Area PRA] (By symmetry)

¥ (i2)

N

Fig. 6.10

3a da
=2“ﬂ y dx, from (i) + La y dx, from (ii)]

=9 [I:u Jlax) dx + I:: (4ax — x?) dxi|
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3/2 ia
;W E +2 j':a Ji4a® — (x - 20)? dx

SV 0972, o[ L (o 20) Jida? — (2] + 29 gin1 2220
=3 @’ +2[2(x 2a) \J14a® — (x — 20)°} + g ol e

=2Ja

= 4J3a%+ 2[{0 - %a\@al + 202 (/2 — 1U6)]

= 43a?- J3a%+ %naﬁ: (Nﬁ+§n] a.

aF 4 ’ S e L5 8l | 2N ; / -.'—'l: '
(2) Areas of polar curves. Area bounded by the curve r = f(6) and the radii vectors
. 1 B
e-a,e—ﬁwEerde.

Let AB be the curve r = f(6) between the radii vectors OA (6 = o) and OB (6 = p).
Let P(r, 6), P'(r + dr, 6 + 80) be any two neighbouring points on the curve. (Fig. 6.11)
Let the area OAP = A which is a function of 8. Then the area OPP’ = 84. Mark
circular arcs PQ and P'Q’ with centre O and radii OP and OF".
Evidently area OPF’ lies between the sectors OPQ and OP'Q’ i.e., 8A lies
between 12 86 and % (r + 6r)? 86.
84

w4 lies between 1r2and1(r+ 82

T R
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Now taking limits as 86 = 0 (.. & — 0), %=%r2
p
Integrating both sides from 6 = 0. to 6 =, we get | A |E = J %rz de
o
p
or (value of A for 0 = B) — (value of A for 6 = o) = % I r2 de
- 1 p 2
Hence the required area OAB = = I r- de.
o

Example 6.26. Find the area of the cardioid r = a (I — cos 8). (V.T.U., 2004)

Solution. The curve is as shown in Fig. 6.12. Its upper half is traced from 6 =0 to 6 = .

™ nw
Area of the curve =2-lj r? de=a? J- (1 — cos 6)? do
2 Jo 0

=a? [ (2sin” /2" do=4a® " sin’ 0/2-do 0=
0 L =

2 ni2 4 i
=8a sin® ¢ d¢, putting 6/2 = ¢ and d6 = 2d¢.

=]

3.1 © 3na?
o e 7 : Fig. 6.12
4.2 2 2 =

Example 6.27. Find the area of a loop of the curve r = a sin 36.

Solution. The curve is as shown in Fig. 4.35. It consists of three loops.
Puttingr=0,8in36=0 .. 36=0ormi.e, 6 =0 or /3 which are the limits for the first loop.

n/3 3 2 oxl3
Area of a loop = % L r’ de= %32 J: sin? 30 d = % I: (1 — cos 60) d©
9 i n/3 9 2
_a’|g_sinée =ﬂ_(£_o]=£_
4 6 |p 4 \3 12

Obs. The limits of integration for a loop of r = a sin n6 or r = a cos n6 are the two consecutive values of @ when r = 0.
Example €.28. Prove that the area of a loop of the curve x* + y* = 3axy is 3a%/2.

Solution. Changing to polar form (by puttingx =r cos 8,y =r sin 0), r = w
cos” 0 +sin” 0
Putting r = 0, sin 6 cos 6 = 0.
0 = 0, /2, which are the limits of integration for its loop.
Area of the loop
/2 9a? sin® 6 cos® 6
'[0 (cos® 6 +sin® 0)°
_9a® (m/2 tan® @ sec’ O
"2 b @+tan®ey?

12
=l_rr r2d0=—1—
2 Jo 2

[Dividing num. and denom. by cos® 6]

2 oo
=3g 1 d_:’ putting 1 + tan® @ = ¢ and 3 tan? 0 sec? 0 d6 = dt.
t
2 =% [™ 2 2
B0 |2 | 3B ¢ pumede
2 | -1 1 2 9

Example 6.29. Find the area common to the circles
r=avJ2 and r=2acos 8
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Solution. The equations of the circles are r = ¢ /2 ..({) and r=2acos6 ..(iZ)
(i) represents a circle with centre at (0, 0) and radius a /2. (if) represents a
circle symmetrical about OX, with centre at (u, 0) and radius a. Y} Q .
_ The clircles are shown in Fig. 6.13. At their point of intersection P, eliminat- & ltEJ
ing r from (i) and (ii), o i %
a2 =2a cosBie.,cos6=12 I L/
or 0=mn/4 &
Required area =2 x area OAPQ (By symmetry) Fig. 6.13
= 2(area OAP + area OPQ)

_ 1 pn/4 9 : 1 ¢n/2 2 -
4[2 J'D r* de, for () + _[M 2 de, for (u)]

= 2 ri2 1 9
:j"t (a.ﬁ)z de + J'“ (23(:089)2 de:zazlelfnrht +402 j‘ + Ccos Gde
0 /4 n/4 2
. /2 2
= 202w - 0) + 20 [0+ 02 | T 2(£—E_EJ=Q2(n-1)
2 g 2 2 4

Example 6.30. Find the area common to the cardzoids r=a(l +cos ® and r=a(l - cos 6).
(Kumksheh'a 2006 ; - V.T.U., 2006)

Solution. The cardioid r = a(1 + cos 8) is ABCOB’A and the cardioid r = a(1 — cos 0) is OC’BA’B’O.
Both the cardioids are symmetrical about the initial line OX and intersect at B and B’ (Fig. 6.14)
Required area (shaded) = 2 area OC’'BCO

= 2 [area OC’BO + area OBCO]

n/2 ]_ r 1 ﬂ(h
-2 {j 2d{a} +{j' ~p? de}

o 2 r=a(l - cos 6) n/2 2 r=a(l+cos®) A of| A X

(2a, 0)

2 ;

=g? r (1 - cos 6)% d6 + a® r (1+ cos 9)2d0
(V] nl/2

9 n/2 9 T 2

- L (1 — 2 cos 6 + cos B)dB+I’2[1+2cose+cos 6] do Fig. 6.14
I
az{j (1+ cos? 6) d6 — 2]' cosede+2j' cosBdB}
:az{j(:t(l+$]d0—2|sin9|3m+2|sin9|zm}
- n
gt )8 5 B2 o DT =(E—4)a2.
2 4 |, 2
PROBLEMS 6.7 B
1. Find the whole area of ’
(i) the cardioid r =a (1 +cos 8)  (V.T.U., 2008) (i) the lemniscate r* =a2eos 20;  (V.T.U., 2006)

2. Find the area of one loop of the curve : |

(i) r = a sin 20. (ii) r = a cos 36.

3. Show that the area included between the folium x% + y® = 3axy and its asymptote i is equal to the area of ]obp.

4. Prove that the area of the loop of the curve 2 + 3 = 3axy is thmehmeathearegofthe loop of the l'.:llmrg a2 cos 26.

5. Find the area inside the circle r = a sin 0 and lying outside the cardioid r = a(1 — cos ). Mﬁmﬂ(&ﬂm
6. Find the area outside the circle r = 2a cos 6 and inside the cardioid r = a(1 + cos 8). , (Kufﬂksfﬁm, 2006)
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LENGTHS OF CURVES

(1) The length of the arc of the curve y = f(x) between the points where v B

[ () o \

Let AB be the curve y = f(x) between the points A and B where x = ¢ and
x = b (Fig. 6.15)

.«

Let P(x, y) be any point on the curve and arc AP = x so that it is a function 0 T M X
of x. =a-=]
I x =
ds _ dy]2 : b |
Then a =11+ (E [(1) of p. 164] Fig. 6.15
b 2 .
I 1+(d—y)]dx— g dx=|s|*_:b
a dx a x=a
= (value of s for x = b) — (value of s for x =a) = arc AB - 0
= I dyY’
Hence, the arc AB = L 1+ (E] 1 dx.
(2) The length of the arc of the curve x = f(y) between the points wherey =aandy =b, is
i 2
j 1 +[E] dy [Use (2) of p. 165]
a dy

(3) The length of the arc of the curve x = f(1), y = §(t) between the points wheret=a and t = b, is

J' \{[ ] dt. [Use (3) p. 165]

(4) The length of the arc of the curve r = f(0) between the points where 6 = o.and 6 = B, is

p s (dr i
I r? +[E5] | ae. [Use (1) of p. 165]
o de |

(8) The length of the arc of the curve 8 = f(r) between the points wherer =aand r = b, is

b de)? |
I 1+ {ra) dr [Use (2) of p. 166]

- Example 6.31. Find the Iengih of the qrc of the parabola ¥ = day memmred ﬁb?& the veri\e.: to one
wrenugy of the !a&us»mcfum AN : ; J ;s oﬂ‘g‘

Solution. Let A be the vertex and L an extremity of the latus-rectum so that at A, x=0 and at L, x = 2a.
(Fig. 6.16).

dy 1 x Y
N = x2/ that —% = — . 2x = —
ow y =x/4a so atdx T x >
_, i dyY
arcAL_In 1+(aJi|dx IA\S %

ra [ ] ]dx:i J.m,f[(za)2+x2]dx a X
2a 2a Jo .
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2a

2a

_ 1 [ 2yi@a) +2%) LG 2i]
a

2
_L m+25gsmh_ll
2a 2 2 2

0

=a[JZ+sinh-'1]=a[J2 +log(1+ 2)] [+ sinhlx=log x+ 1 +x?)]

Example 6.32. Find the perimeter of the loop of the curve 3ay® = x(x — a)?.

Solution. The curve is symmetrical about the x-axis and the loop lies y
between the limits x = 0 and x = a. (Fig. 6.17).
x(x —a)
We have y=—— -
J(Ba) o A X
dy _ 1 [Exlm_ﬂ.x‘lm]: 1 3x-a Ge=0) x=a)
dx \[(3a) 2 2 2JBa) Jx
Fig. 6.17
Perimeter of the loop = 2 J'a 1+ (ij :| dx (By symmetry)
_2j (334:—:1)2 dx=8 (9x? + 6ax + a®
12ax J(12ax)
a 3x + @ i 1 ® 1 -1/2
= (3 + ax ) dx
J(sa j J@a) Io *
1 |82 Q2| a9, 4a
= +a = (4a™"")=—1.
JBa)| 3/2 12|, @Ba) NE]
Example 6.33. Find the length of one arch of the cycloid
(P.T.U., 2009 ; V.T.U., 2004)

x=alt-sint), y =a(l-cost).
Solution. As a point moves from one end O to the other end of its first arch, the parameter ¢ increases
from O to 2. [see Fig. 6.8]

Also E =a(1—cost),% =@ sin t.

dt

2n 2 2
Length of an arch = L [%J + [Z—i’) ] dx

2n 2n
= [ Vlla-cos O +(@sin 0P} dt =a ]'0 21— cos D) dt

p 2r
=2a .[2 sint/2dt=2a _cost/2 = 4al(- cos ) — (— cos 0)] = 8a
0 1/2

0

Example 6.84. Find the entire length of the cardioid r = a (1 + cos 8).
(P.T.U., 2010 ; Bhopal, 2008 ; Kurukshetra, 2005)

Also show that the upper half is bisected by 0 = /3. (Bhillai, 2005)

Solution. The cardioid is symmetrical about the initial line and for its upper half, & increases from 0 to n
(Fig. 6.18)

dr

Also — =—asin 9.
. de

2
Length of the curve =2 I: r’+ (%%J ] do
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=2 [ lla(L+cos OF + (- asin 6} d6 = 20 [ 2@ cos o) do

n

L

0
Length of upper half of the curve is 4a. Also length of the arc AP from 0 to 7/3.

n/3 /3
=aJ' J2 T+ cos 0)] de:zaJ' cos 8/2-d6
0 0

n/3
0

wiln _[: o 879 dbi=dn

Fig. 6.18

=4a|sin6/2 ;" = 2a = half the length of upper half of the cardioid.

PROBLEMS 6.8

1. Find the length of the arc of the semi-cubical parabola ay? = x® from the vertex to the ordinate x = 5a.

2. Find the length of the curve (i) y = log sec x from x = 0 to x = /3. (V. 2010 S; P.T.U., 2007)
(ii)y = log [(e* = 1)/(e* + 1)] from x = 1 to x = 2.

3. Find the length of the arc of the parabola ¥% = 4ax (i) from the vertex to one end of the latus-rectum.

(i2) cut off by the line 3y = 8x. (V.T.U., 2008 S ; Mumbai, 2006)
4. Find the perimeter of the loop of the following curves :
(@) ay? =x%a —x) (ii) 9y2 = (x — 2)(x — 5)~.
5. Find the length of the curve y? = (2x — 1)? cut off by the line x = 4. (V.T.U., 2000 S)

6. Show that the whole length of the curve x2(a? — x2) = 8a%2 is na /2 .
7. (@) Find the length of an arch of the cycloid x = a(6 + sin 8), y = a(1 — cos 0).

(b) By finding the length of the curve show that the curve x = a(6 —sin 8), y = a(1 — cos 8), is divided in the ratio 1: 3
at 0 = 2n/3. (S.V.T.U., 2009)

8. Find the whole length of the curve x = @ cos¥ ¢,y = a sin® ¢ L.e., x¥3 + y23 = o3
(V.T.U., 2010 ; Marathwada, 2008 ; Rajasthan, 2006)
Also show that the line 8 = /3 divides the length of this astroid in the first quadrant in the ratio 1 : 8.

(Mumbai, 2001)
9. Find the length of the loop of the curve x =2,y = t —£3/3. (Mumbai, 2001)
10. For the curve r = ae® cot o, prove that s/r = constant, s being measured from the origin.
11. Find the length of the curve 6 = %[r + l) fromr=1tor=3. (Marathwada, 2008)
r
12. Find the perimeter of the cardioid r = a (1 — cos 8). Also show that the upper half of the curve is bisected by the line
6 = 2n/3.
18. Find the whole length of the lemniscate r? = a? cos 26.
14. Find the length of the parabola r(1 + cos 8) = 2a as cut off by the latus-rectum. (J.N.T.U., 2003)

X3 (1) VOLUMES OF REVOLUTION

() Revolution about x-axis. The volume of the solid generated by
the revolution about the x-axis, of the area bounded by the curve y = f(x), the
x-axis and the ordinates x =a, x = b is

b
J' ny? dx.

Let AB be the curve y = f(x) between the ordinates LA(x = a) and 0
MB(x = b).

Let P(x, y), P'(x + &, ¥ + &y) be two neighbouring points on the curve
and NP, N'P’ be their respective ordinates (Fig. 6.19).

Let the volume of the solid generated by the revolution about x-axis
of the area ALNP be V, which is clearly a function of x. Then the volume of the solid generated by the revolution
of the area PNN'P’ is §V. Complete the rectangles PN’ and P’N.

Fig. 6.19
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The 8V lies between the volumes of the right circular cylinders generated by the revolution of rectangles
PN’ and P'N,
ie., 8V lies between my? dx and w(y + dy)? &x.

% lies between my? and n(y + &y)2.
R . dv 5
Now taking limits as P’ — P,ie.,0x —» 0(and .. & —0), = ke Ty
b b
“—dx=| m?dx or |V|b :Irg;zdx

v dx a 2T a
or (value of V for x = b) — (value of V for x = a)

J'f’ dV
a

b
i.e., volume of the solid obtained by the revolution of the area ALMB = I my? dx .

Example 6.35. Find the volume of a sphere of radius a. T Y (S.V.T.U., 2007)

Solution. Let the sphere be generated by the revolution of the semi-circle
ABC, of radius a about its diameter CA (Fig. 6.20)

Taking CA as the x-axis and its mid-point O as the origin, the equation of
the circle ABC is x2 + y? = ¢

- Volume of the sphere = 2 (volume of the solid generated by the
revolution about x-axis of the quadrant OAB)

=2 [ m? dx=2n [} @ -x*) dx

3

=2n a2x—x—
3

¢ 3
=2n as—a—u(O—O) :£m3. Fig. 6.20
o 3 3

" 3

~ Example 6.36. Find the volume formed by the revolution of loop of the curve y*(a + x) = x%(3a— x), about
the x-axis. : (Marathwada, 2008)

Solution. The curve is symmetrical about the x-axis, and for the upper half
of its loop x varies from 0 to 3a (Fig. 6.21)

J-Ea x%(8a — x)
0 a+x

Volume of the loop = j:ﬂ mldx=n dx

3 2
3a —x° + 3ax
=1tI — " dx
0 x+a

[Divide the numerator by the denominator] Fig. 6.21

3a

x3 JC2 3
—~3—+4a-—§-4a2x+4a log (x + a)

3a 4 8
=1t_[ —x% +4ax — 4a® + e de=m
0 x+a

0

- 27d° 2 2 3 3
= +2a-9a” —4a” - 3a + 4a” log 4a — (4a” log a)

=ma®(-3 + 4log 4) = na® (8 log 2 - 3).

Example 6.37. Prove that the volume of the reel formed by the revolution of the cycloid x = a (6 + sin 6),
y = a1 - cos 8) aubout the tungent ut the vertex is n%a. (V.T.U., 2003)

Solution. The arch AOB of the cycloid is symmetrical about the y-axis and the tangent at the vertex is the
x-axis. For half the cycloid OA, 0 varies from 0 to n. (Fig. 4.31).
Hence the required volume

8=n

=2 oz my* dx = 2n ,I: a’(1 - cos 0)° . a (1 + cos ) d6



DOWNLOADED FROM www.CivilEnggForAll.com

EGRAL CALCULUS AND ITS APPLICATIONS 267

= 2na® j; (2 sin? 6/2)° - (2 cos? 6/2) do

= 16na® j;‘ sin® 8/2 - cos? /2 - d@ [Put 6/2 = ¢, d6 = 2d¢]

B2 3.1x1 =w
= 32na’ sin* ¢ cos® ¢ dp =32ma3- "= T _ p28.
[ Yeol™y de =Bl T .5 SR

Example 6.38. Find the volume of the solid formed by revolving about x-axis, the area enclosed by the
parabola y* = 4ax, its evolute 27ay? = 4(x — 2a) and the x-axis.

FUJ’

Solution. The curve 27ay? = 4(x — 2a)3 (@) v )
is symmetrical about x-axis and is a semi-cubical parabola with vertex at A (2a,
0). The parabola y? = 4ax and (i) intersect at B and C where 27a (4ax) = 4(x — 2a)3
or x® — 6ax? — 15a%x — 8a® = 0 which gives x = — @, — @, 8a. Since x is not negative, x = 8a
therefore we have x = 8a (Fig. 6.22).

~.  Required volume = Volume obtained by revolving the shaded area
OAB about x-axis = Vol. obtained by revolving area OMBO — Vol. obtained by
revolving area ADBA

= [} (cdav) de— [ my? lfor ()] dx

9 Ba 4 3
=dam | X | —ZE (™ (x-20)%dx
2 b 27a 12a
talil
— 198nq3 — AT (x — 2a)*
27a 4 -

= 128na% — -~ (6a)* = 80ma3.
27a

(b) Revolution about the y-axis. Interchanging x and y in the above
formula, we see that the volume of the solid generated by the revolution about
y-axis, of the area, bounded by the curve x = f (y), the y-axis and the abscissae
y=a,y=>bis

b 2
L nx” dy. Fig. 6.23

Example 6.39. Find the volume of the reel-shaped solid formed by the revolution about the y-axis, of the
part of the purabola 32 = dax cut off by the latus-rectum. - (Rohtak, 2003)

Solution. Given parabola is x = y%/4a.
Let A be the vertex and L one extremity of the latus-rectum. For the arc AL, y varies from 0 to 2c
(Fig. 6.23).
.~ required volume = 2 (volume generated by the revolution about the y-axis of the area ALC)
3t n i 4ma®
JlyE — = (824° - 0)=
164° 8a®| 5 |,  40d” 5
(c) Revolution about any axis. The volume of the solid generated by Y
the revolution about any axis LM of the area bounded by the curve AB, the axis
LM and the perpendiculars AL, BM on the axis, is

[0 n(PNY? dON)

where O is a fixed point in LM and PN is perpendicular from any point P of the o l‘: N ]‘,{ X
i
(]

y5

=2 _[02" mx? dy = 2n I:“

curve AB on LM. )
With O as origin, take OLM as the x-axis and OY, perpendicular to it as
the y-axis (Fig. 6.24). Fig. 6.24
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Let the coordinates of P be (x, y) so that x = ON, y = NP
If OL = a, OM = b, then required volume = _[: ny? dx = I;)LM n(PN)?> d(ON).

Example 6.40. Find the volume of the solid obtained by revolving the cissoid y* (2a - x) = x° about its
asymptote. (V.T.U., 2000)

3

Solution. Given curve isy = ..(@)

2a — x

It is symmetrical about x-axis and the asymptote is x = 2a. (See Fig. 4.23). If P (x, y) be any point on it and
PN is perpendicular on the asymptote AN then PN = 2a — x and

3/2

AN=y= — [From (i)
J(2a —x)
JAN) = dy = JCa - x) 3/2)\x — x¥2 .1 (2a - x)V?(- 1) &
2a — x
_3Vx@a-x)+ %% , _ Bax'/? 482
2(2a_x)3.r"2 (zadx)&'g

s 3ax¥? — x¥?
a_x) .—-2_
(2a — x)¥
Put x =2a sin? 6
then dx = 4a sin 0 cos 6 dO

Required volume =2 [7_ " =(PN)? d(AN) = 2x [ (2

=2n [," (2a-x)Ba-)x d
=2n ["*\@a) cos 6 (3a — 2a sin? 6) x \(Za) sin 6. 4a sin O cos O 6

12 /2
= 16m3[3 j'; sin? 0 cos” 0. d0 — 2 j’: sin? 0 cos? 6 de]

= 16ma3 3_2(_1,3-2_ 3-1x1 T = 20243,
4-2 2 6-4-2 2
(2) Volumes of revolution (polar curves). The volume of the solid gener-
ated by the revolution of the area bounded by the curve r = f(0) and the radii vectors
0 =0, 08=f (Fig. 6.25)

(a) about the initial line OX (0= 0) = [* %" 3 sin 6 de
(14

0=0 X
Fig. 6.25

(b) about the line OY (6 =/2) = [* 2_; * cos 8de.
(18

Example 6.41. Find the volume of the solid generated by the revolution of the cardioid r=a (1 + cos 6)
about the initial line. (V.T.U., 2010 ; Kurukshetra, 2009 S)

Solution. The cardioid is symmetrical about the initial line and for its upper half 6 varies from 0 to .
[Fig. 6.18].

required volume = J': g nr3 8in 0 d6 = % _[0" a® (1 + cos 8)° sin 8d6

_md®
6

2na®

3

(1+cos 0)* [' _
4

— 2m3 n 3 5 = _8 3
_——3—J’o (1+ cos 6)° - (~sin 0) d6 = — [0—16]—§m.

0

Example 6.42. Find the volume of the solid generated by revolving the lemniscate r° = a2 cos 20 about the
line 0 =t/ 2. (V.T.U., 2006)

Solution. The curve is symmetrical about the pole. For the upper half of the R.H.S. loop, 6 varies from
0 to n/4. (Fig. 4.34).
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required volume = 2(volume generated by the half loop in the first quadrant)
- :” gmﬁ‘ cos 8.d6 = 4?“. jﬂ“” @ (cos 26)3'2 cos 6 d6 [* r=a (cos 20)]
2 Put 2 sin 0 = si
< Ane (G 262 6% cas0de V2 sin 6=sin ¢

3 70 Jﬁcosed9=cos¢d9

41'[(13 nl2 ) 3/ 1 4]1:(13 n/2 4 41[ 3 3.1 ' Tl'(la
= — 1—sin® ¢)'“.—= cospdp= —— cos” ¢ dbp= a == x

= o 0" —= cos ¢ 3J§ju 0do=—d’ o o=

PROBLEMS 6.9

1. Find the volume generated hy the revolution of the area bounded by x-axis, the catenary y = ¢ cosh x/c and the
ordinates x = * ¢, about the axis of x.

Find the volume of a spherical segment of height & cut off from a sphere of radius a.

Find the volume generated by revolving the portion of the parabola y? = 4ax cut off by its latus-rectum about the
axis of the parabola. (V.T.U., 2009)
4. Find the volume generated by revolving the area bounded by the curve Jx + J; =Ja, x = 0,y = 0 about the x-axis.

5. Find the volume of the solid generated by revolving the ellipse x%a? + y%/b? = 1.

]

() about the major axis.  (Bhopal, 2002 S) (ii) about the minor axis. (Bhillai, 2005)
6. Obtain the volume of the frustrum of a right circular cone whose lower base has radius R, upper base is of radius r
and altitude is A.

7. Find the volume generated by the revolution of the curve 27ay? = 4(x — 2a)* about the x-axis. _
8. Find the volume of the solid formed by the revolution, about the x-axis, of the loop of the curve :

(1) yHa —x) =%2 (a + x) (i) 2ay*=x (x—a)? (i) y% = x (2 — 1)2.
9. Find the volume obtained by revolving one arch of the cycloid
(i) x=a(t—sint), y =a (1 - cos t), about its base. (Kurukshetra, 2006 ; V.T.U., 2005)

(ii) x = @ (0 + sin 6), ¥ = a (1 + cos 6), about the x-axis.
10. Find the volume of the spindle-shaped solid generated by the revolution of the astroid x*® + y*3 = 3 about the

x-axis. _ (P.T.{f.,_ 2010 ; S.V.T.U,, 2008)
11. Find the volume of the solid formed by the revolution, about the y-axis, of the area enclosed by the curve xy? = 4a?
(2a — x) and its asymptote. (V.T.U., 2006)

12. Prove that the volume of the solid formed by the revolution of the curve (a? + x%) = a3, about its asymptote is % w2 ad.

13. Find the volume generated by the revolution about the initial line of
(i) r=2acos® (i) r=a (1 — cos 68). (P.T.U., 2006)
14. Determine the volume of the solid ebtained by revolving the lemicon r = @ + b cos @ (a > b) about the initial line.
(Gorakhpur, 1999)
15. Find the volume of the solid formed by revolving a loop of the lemniscate r? = a? cos 26 about the initial line.
(J.N.T.U., 2003 ; Delhi, 2002)

H-mEN SURFACE AREAS OF REVOLUTION

(a) Revolution about x-axis. The surface area of the solid generated by the revolution about x-axis, of the
arc of the curvey =f(x) fromx=atox="b,is

j’::: 2ry ds.

Let AB be the curve y = f (x) between the ordinates LA (x = a) and MB (x = b). Let P(x, y), P’ (x + &y + 8y)
be two neighbouring points on the curve and NP, N'P’ be their respective ordinates (Fig. 6.19).

Let the arc AP = s so that arc PP’ = 8s. Let the surface-area generated by the revolution about x-axis of the
arc AP be S and that generated by the revolution of the arc PP’ be 8S.

Since 8s is small, the surface area 8S may be regarded as lying between the curved surfaces of the right
cylinders of radii PN and P’N’ and of same thickness s.
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Thus 8S lies between 2ny 8s and 2n (y + 8y) &s

% lies between 2y and 2% (7 + &)

Taking limits as P — P, i.e., 8s — 0 and &y — 0, dS/dx = 2rny
x=0 x=b i x=b
[ Bas= [ omyds or |SETE= [ 2nyds

—a ds et =,,

b
or  (valueof § forx=25)-(valueof S forx=a)= _[’ ony dx

X=a

=b
or surface area generated by the revolution of the arc AB ~0 = * 2y ds.

x=a

=b
Hence, the required surface area = r 2y ds.

x=qa

Solution. The cardioid is symmetrical about the initial line and for its upper half, 6 varies from O tont
(Fig. 6.18).

Also de r2+('f")2} \J[a (1+ cos 6)* +a” sin” 6]

=a,fi2(1+cosﬂ =n\f2.2cos 0/2] = 2a cos 8/2

required surface = I 2ny dB 211:I rsin 0 2a cos 6/2 d6

=4m_[0 a(l + cos 6) sina-cosWZda=4m21' Dions _g. 2smgcosg mﬂBdO

-161:0,2_[ cos -smﬂda lﬁmz(—m_l- cos '-( Sine l]de

5 2
_ o | cos o/2| - 32 ; 32na”
=—32na 3 ! 5 (0- 1)--—-—5 .

(b) Revolution about y-axis. Interchanging x and y in the above formula, we see that the surface of the
solid generated by the revolution about y-uxis, of the arc of the curve x =f(y) fromy=atoy=>bis
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Solution. The astroid is symmetrical about the x-axis, and for its portion in the first quadrant ¢ varies
from 0 to /2. (Fig. 4.29).

Also dx

dt

?_t= J(dt) +(d‘¥)] J[Bazcos*tmnzt+9agsm‘tms2t]

—3a sintcost \(cos? ¢t +sin® £) = 3a sin £ cos t

/2
required surface = 2_.. m:— -dt= 41!_[ acos® t - 3a sint cos t dt

=—-3acog2zsmt,% = 3a sin®f cos t.

/2 2
= 12na? J.: sin ¢ cos® ¢ dt = 12na® 3.1 =12ma”

5.83.17 b

OBJECTIVE TYPE OF QUESTIONS

PROBLEMS 6.11
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DOUBLE INTEGRALS

b
The definite integral j f(x) dx is defined as the limit of the sum
a

flxy) 8y + flxy) &y + .+ flx,) &,
where n — < and each of the lengths 8x,, 8x,, ... tends to zero. A double integral is its counterpart in two
dimensions.
Consider a function f(x, y) of the independent variables x, ¥ defined at each point in the finite region R of
the xy-plane. Divide R into n elementary areas 84, 84,, ..., 84, . Let (x,, y,) be any point within the rth elemen-
tary area 84, . Consider the sum

n

[y, yp) 84, + F (g, ¥,) 84y + ... + F(x,,7,) 84, ie, D flx,,3,) 84,

r=1
The limit of this sum, if it exists, as the number of sub-divisions increases indefinitely and area of each
sub-division decreases to zero, is defined as the double integral of f{x, y) over the region R and is written as

HR flx, y) dA.

n
Thus [, o aa- &Et“o Z:jl f(x,.,) 84, (1)

The utility of double integrals would be limited if it were required to take limit of sums to evaluate them.
However, there is ancther method of evaluating double integrals by successive single integrations.

For purpose of evaluation, (1) is expressed as the repeated integral Lxﬂ Lyz f(x, ) dxdy.
1 1

Its value is found as follows :

() When y,, y, are functions of x and x,, x, are constants, f (x, y) is first integrated w.r.t. y keeping x fixed
between limits y , y, and then resulting expression is integrated w.r.t. x within the limits x,, x, i.e,

=[] feo )y

where integration is carried from the inner to the outer rectangle.
274
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Figure 7.1 illustrates this process. Here AB and CD are the two curves whose equations arey, = f,(x) and
¥y = f, (x). PQ is a vertical strip of width dx.

Then the inner rectangle integral means that the integration is along one edge of the strip PQ from P to @
(x remaining constant), while the outer rectangle integral corresponds to the sliding of the edge from AC to BD.

Thus the whole region of integration is the area ABDC.

Y Q y=f® £

\
/L'J

®
I
e

x:
=
1

Ry

/

Al P 1= f,_(:ﬁ)
0 X 0 X
Fig. 7.1 Fig. 7.2

(it) When x,, x, are functions of y and y,, y, are constants, flx, y) is first integrated w.r.t. x keeping y fixed,
within the limits x,, x, and the resulting expression is integrated w.r.t. y between the limits y,, y,, i.e.,

I, = Ih = flx, y)dx|dy | which is geometrically illustrated by Fig. 7.2.
n 7=

Here AB and CD are the curves x, = f,(y) and x, = f,(y). PQ is a horizontal strip of width dy.
Then inner rectangle indicates that the integration is along one Yl
edge of this strip from P to @ while the outer rectangle corresponds to the < Q - D
sliding of this edge from AC to BD. ¥=¥

Thus the whole region of integration is the area ABDC.

(iti) When both pairs of limits are constants, the region of integra-
tion is the rectangle ABDC (Fig. 7.3).

InI,, we integrate along the vertical strip PQ) and then slide it from =
: A P =N B
AC to BD. 0

Inl, we integrate along the horizontal strip P‘Q * and then slide it ) X
from AB to CD. Fig. 7.3

Here obviously I, = I,
Thus for constant limits, it hardly matters whether we first integrate w.r.t. x and then w.r.t. y or vice versa.

il .\:_g 2 9 &
Example 7.1. Evaluate Ia L x(x" +y") dxdy.

2
5 ) 5 3T 5 6
Solution. I= L dxj: {x3+xy3)dy = L |:x3y+x.y?]0 dx = L {xa.x2+x.%}dx
7

= J': {xs +%]dx=

Example 7.2. Evaluate HA xy dx dy , where A is the domain bounded by x-axis, ordinate x = 2a and the
curve 22 = 4ay.

£+£5-5ﬁ 1,5%| _ 188802 nearl
6 g ik B : 5

Solution. The line x = 2¢ and the parabola x2 = 4ay intersect at L(2a, a). Figure 7.4 shows the domain A
which is the area OML.

Integrating first over a vertical strip PQ, i.e., w.r.t. y from P(y = 0) to @(y = x%4a) on the parabola and then
w.r.t. x from x = 0 to x = 2a, we have ’

% s 2a y2 +*/da
[ wdrdy=["ax [ syay- [ H e
0
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Y Y.
x,=4ay %2 = 4ay 5
L(2a, a) L(2a, a)
M 9 . 8 S
o| P M X o| M X
Fig. 7.4
2a
2a 6
] 1 5 I x5 dx - ——1 ) x— ot g—- i
32a 32¢°| 6|, 3

Otherwise integrating first over a horizontal strip RS, i.e., w.r.t. x from, R (x = 2 J@ ) on the parabola to
S(x = 2a) and then w.rt. y fromy =0 toy = a, we get

2 2a
[l wacas = [ [ wae [5 5] o
= 2a I: (ay - y*)dy=2a [%—Jé—a]:=%.

Example 7.3. Evaluate HR x* dx dy where R is the region in the first quadrant bounded by the lines
x=y,y =0 x=8and the curve xy = 16.

Solution. The line AL (x = 8) intersects the hyperbola xy = 16 at A (8, 2)

while the line y = x intersects this hyperbola at B (4, 4). Figure 7.5 shows the Y] 38
region R of integration which is the area OLAB. To evaluate the given integral, ] b
we divide this area into two parts OMB and MLAB. & ¥
xalM pyal@ o xatL pyat@ 2 )
-ll-l. I dxdy 1at0 J;atP * dxdy * xat M J-y at P’ % dxdy $¢“
_ I Ix x2 il IB jlﬁb: x2 dud .
“hob SA I S Y Q i € A, 2
i 16/x . P -
=J'x2dx|y dex| OP M PL y=0X
0 Fig. 7.5
4 8 P
=J' x3dx+f 16x dx = a [ +16| % | =448
0 4 4 6 i

CHANGE OF ORDER OF INTEGRATION

In a double integral with variable limits, the change of order of integration changes the limit of integra-
tion. While doing so, sometimes it is required to split up the region of integration and the given integral is
expressed as the sum of a number of double integrals with changed limits. To fix up the new limits, it is always
advisable to draw a rough sketch of the region of integration.

The change of order of integration quite often facilitates the evaluation of a double integral. The following
examples will make these ideas clear.

Example 7.4, By changing the order of integration of I: J: e ™ sin px dxdy, show that

J'” sin px gn (U.P.T.U., 2004)
o TR 2

Solution. .[: I: e sin px dxdy = j: U: e ™ sin px dx] dy
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oo —=Xy i
= j —— 5 (pcos px + y sin px) dy
9 P +y b
= I -1 (J’) “ n ’
= ly = 21 =X -(2)
_[; p2 + yz tan p) |, 3 5
On changing the order of integration, we have
= %y o
J: In e ™ sin px dxdy = I sin px{j dy}dx
=) —Xy P rey -
- J' sin px| &—| dx= J' S0P e ...(ii)
] -x | 0 x
Thus from (i) and (i), we have _[: TP =2

Example 7.5. Change the order of integration in the integral

I= I Ir- ﬁ’x,y)dxdy

Solution. Here the elementary strip is parallel to x-axis (such as PQ)
and extends from x = 0 tox = ,/(¢® - y?) (i.e., to the circle x* + y2 = a?) and this

strip slides from y = —a to ¥ = a. This shaded semi-circular area is, therefore,
the region of integration (Fig. 7.6).
On changing the order of integration, we first integrate w.r.t. y along a

vertical strip RS which extends from R [y = — \/(a® - y*)] to S [y = {/(a® - y*)].

To cover the given region, we then integrate w.r.t. x fromx =0 to x = a.

- )
Thus I= J' deJ—f(xy)dy
{a -
or J' I J[z—xz flx,y) dydx .
1

Example 7.6. Evaluate L J:: dydx/log y by changing the order of integration.

Solution. Here the integration is first w.r.t. y from Pony = e* to @ on Y
the line y = e. Then the integration is w.r.t. x from x = 0 to x = 1, giving the Q e Blx=1)
shaded region ABC (Fig. 7.7). C 4 =

On changing the order of integration, we first integrate w.r.t. x from R
onx=0toSonx=logyand thenw.rt.y fromy=1toy=e.

1 e dydx _ (¢ (v dxdy e
Th =0 |
ul I .L‘ logy .[ .r log ¥ * =¥
'08.7' e e
Al P
=e—-1 =
logy |y1 b=k
O -
X
Fig. 7.7

5 da  p2Vax ’
Example 7.7. Change the order of integration in I = .[o I B dydx and hence evaluate.
i 4 X
(Nagpur, 2009 ; P.T.U., 2009 S)
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Solution. Here integration is first w.r.t. ¥y and P on the parabola
x% = 4ay to @ on the parabola y% = 4ax and then w.r.t. x from x = 0 to x = 4a
giving the shaded region of integration (Fig. 7.8).

On changing the order of integration, we first integrate w.r.t. x from R to
S, then w.rt.y fromy=0toy=4a

- [ v = [ <[

= ra (2J_ ¥ f4a) dy

y /4a
312 i 2 2 2
¥y~ ¥y | _ 32" 16a” _16a .
‘2‘[- 32 12a| 3 3 3 - el
Example 7.8. Change the order of integration and hence evaluate
15 ) 3’ dxd” (S.V.T.U., 2006 S)
= .
Solution. Here integration is first w.r.t. y from P on the parabola y% = ax Yl
to @ on the line y = ¢, then w.r.t. x from x = 0 to x = a, giving the shaded region B

OAB of integration (Fig. 7.9). '
On changing the order of integration, we first integrate w.r.t. x from R to W
R

S,thenw.rt.y fromy=0toy=a.

Fra _ y*dy o i dx // 3
=L h peamesh b P

¥ la O >

X %2 . 1| xa I O i 4 X
_E.[o y'dy|sin [;2*]0 —aj:) ¥'dy [sin™! (1) —sin™! (0)] Fig. 7.9
-2l 2y _ |y [ _ma?

“2a )0 Y2 3| TT6 -

1 2 .
Example 7.9. Change the order of integration in I = L J. d J xy dxdy and hence evaluate the same.
4 X
(Bhopal, 2008 ; V.T.U., 2008 ; S.V.T.U., 2007 ; P.T.U., 2005 ; U.P.T.U., 2005)

Solution. Here the integration is first w.r.t. y along a vertical
strip PQ which extends from P on the parabolay = x? to @ on the line y
= 2 — x. Such a strip slides from x = 0 to x = 1, giving the region of
integration as the curvilinear triangle OAB (shaded) in Fig. 7.10.

On changing the order of integration, we first integrate w.r.t. x
along a horizontal strip P’Q" and that requires the splitting up of the
region OAB into two parts by the line AC (y = 1), i.e., the curvilinear
triangle OAC and the triangle ABC.

For the region OAC, the limits of integration for x are from x = 0

tox= \G and those for y are from y = 0 to y = 1. So the contribution to
I from the region OAC is

by jol dy Ioﬁxydx

For the region ABC, the limits of integration for x are from x = 0 to x = 2 —y and those for y are fromy =1
toy = 2. So the contribution to I from the region ABC is

= f dy Lz_y xy dx.
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Hence, on reversing the order of integration,

= Ty 12 wpims [Py 7 s
0 0 1 0

ld e & 2d
= —_. +
.[0 Y 2 yu L Y

-k
2 7
(i}

1 1 2 1 2 2
__. d .*._I 2-v2dy=1 656
9 UJ’ Y 2 ), ¥2-y) dy —+——2 =

o]

J{? -2%)
I — X dx and hence evaluate it.
x ’(xx 45 y2 )

(J.N.T.U., 2005 ; Rohtak, 2003)

1
Example 7.10. Change the order of integration. in I = J‘G

Solution. Here the integration is first w.r.t. y along P@ which

Y

extends from P on the line y = x to @ on the circle y = ,’(2 .x%). Then @ 5
PQ slides from y = 0 to y = 1, giving the region of integration OAB as 2 x'irb % Q ,,3?5'
in Fi P
in Fig. 7.11. C/////////// e

On changing the order of integration, we first integrate w.r.t. x 5 =5 ?
from P’ to @ and that requires splitting the region OAB into two
parts OAC and ABC.

For the region OAC, the limits of integration for x are from
x=0tox =1 and those for y are from y = 0 toy = 1. So the contribution ) o X
to I from the region OAC is Fig.7.11

1 y
L= | dy | ﬁ;dx.

For the region ABC, the limits of integration for x are 0 to /(2 — yz) and these for y are from 1 to v/2 . So
the contribution to  from the region ABC is

= -
. V& + 3%
T Lt O e

1 i
= L (~f§—1)y<:ty+J'1 J@ =) dy =%£J§—1)+J§ =D __;_ it

DOUBLE INTEGRALS IN POLAR COORDINATES

To evaluate rz rz f(r, 0) drd6 , we first integrate w.r.t. r between limits
al

5]
r=r; and r =r, keeping 6 fixed and the resulting expression is integrated w.r.t.
from 6, to 6,. In this integral, r,, r, are functions of 6 and 6,, 6, are constants.
Figure 7.12 illustrates the process geometrically.
Here AB and CD are the curves r, = f,(6) and r, = f,(8) bounded by the lines
6 =0, and 6 = 6,. PQ is a wedge of angular thickness 86.

Then [* f(r,0) dr indicates that the integration is along PQ from P to

n

while the integration w.r.t. 8 corresponds to the turming of PQ from AC to BD.

Thus the whole region of integration is the area ACDB. The order of Fig. 7.12
integration may be changed with appropriate changes in the limits.
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Example 7.11. Evaluate H r sin © dr d8 over the cardioid r = a (1 — cos 6) above the initial line.
(Kerala, 2005)

Solution. To integrate first w.r.t. r, the limits are from 0 (r = 0) to P
[r = a (1 — cos 8)] and to cover the region of integration R, 6 varies from 0 to P

e (Fig-j-13)~ [ e ano [ e[ J-:au—wsﬂ? rd,_} de 0=x ////////)/Z%/

“ 2 al(l —cos 6) g aw

=J’ sin0de| T~ =£—j (1-cos 0)° . sin 6 dO
0 2 . 2 Jo

=E'2- (1—0059)3 ﬂ_i g_ﬁ Fig. 7.13
2 3 ~2°3° 3°

Example 7.12. Calculate II r* dr de over the area included between the circles r = 2 sin and r =4 sin@

Solution. Given circles r = 2 sin 6 = 10] v
and r=4sinb ...(21)
are shown in Fig. 7.14. The shaded area between these circles is the region of 2
integration.

If we integrate first w.r.t. r, then its limits are from P(r = 2 sin 8) to Q(r =
4 sin 0) and to cover the whole region 6 varies from 0 to n. Thus the required

integral is B
4sin @ T 4 Asin®
I= rtdﬁj- ‘I radr':.[ dﬁ[%]
0 2sin@ o ot ’)‘
= T4 _ L _ 3.1 o _ 0 X
=60 L sin® 0.d6 =60 x 2 L sin 9d9-120x4.2-§-22-5m Fig. 7.14
PROBLEMS 7.1
Evaluate the following integrals (1-7) :
& ey 1 sz
1 j' _[ s oy 2. _[ j' F 625D e . (V.T.U., 2000)
1 J1 0 Jx
e 1 ofa+s?)
3. I j' e*'Y dxdy.  (P.T.U., 2005) 4, J' j A (Rajasthan, 2005)
0 Jo o Jo 1+x%+y
5. II xy dxdy over the positive quadrant of the circle 22 + y2 = a2, (Rajasthan, 2006)

6. H (x+ y7dxdy over the area bounded by the ellipse x%a? + y*/b%? = 1. (Kurukshetra, 2009 S ; U.P.T.U., 2004 S)

7. ”. xy(x + y) dxdy over the area between y =x2 and y = x. (V.T.U., 2010)
Evaluate the following integrals by changing the order of integration (8-15) :
a
8. r 2y 3 (Bhopal, 2008)
0 Jy x"+y

a3 ,k44) .
# L L " G y) dady. (V.T.U., 2005 ; Anna, 2003 S ; Delhi, 2002)
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Jiz-25 xdydx
I I 3 (P.T.U., 2010 : Marathwada, 2008 ; U.P.T.U., 2006)
(x° +y )
12 \!t -
11. I" J’ J log (2 + y?) dxdy (a > 0).
0
I havas, ‘vt 20 3. ok B (Anna, 2009)
12.j . (V.T.U, 2010 1 jj (il o} . 2009
O_nyy ) o ®dedy )
14. J' j' —dydx (Bhopal, 2009 ; S.V.T.U., 2009 ; V.T.U., 2007)
15. _[ _[ 2= Qydy . (S.V.T.U., 2006 ; U.P.T.U., 2005 ; V.T.U., 2004)
0 (1]

16. Sketch the region of integration of the following integrals and change the order of integrations,

i
f(x) dxdy (Rajasthan, 2006) (ii) I:e fr,8) r drd®.

20 f2ax)
@[] ) j
0 J(Efu: —x°) 2 log (rfa)
17. Show that _U r sin 8 drd® - 2a?/3, where R is the semi-circle r = 2a cos 6 above the initial line.
rdrd@

\‘ﬂ + l"2

19. Evaluate H 13 drdd over the area bounded between the circles r = 2 cos 0 and r = 4 cos 6.
(Anna, 2009 ; Madras, 2006)

18. Evaluate H oveione 16bp of the lefnnitoate 2= 0% oo 20, (Rohtak, 2006 S ; P.T-U., 2005)

AREA ENCLOSED BY PLANE CURVES

(1) Cartesian coordinates.

Consider the area enclosed by the curves y = fi(x) and y = f,(x) and the
ordinates x = x,, x = x,, [Fig. 7.15 (a)].

Divide this area into vertical strips of width &«x. If P(x, y), @(x + &x, ¥ + &y)
be two neighbouring points, then the area of the small rectangle PQ = &xdy.

area of strip KL = Lt X &« &y.
-0

Since for all rectangles in this strip 8« is the same and y varies fromy = 7

filx) toy =fy(x). s Fig. 7.15(a)
> fal2)
area of the strip KL = & Lt z dy =& &) dy.
&—0 fim filx)
Now adding up all such strips from x = x, to x = x,, we get the area ABCD
flx) X falx) % pfhlx)
= dx dy = dxd
&_)Q Z ,Il y X filx) 4 '["'I hilx) R
Similarly, dividing the area A’B’C’D [Fig. 7.15(b)] into horizontal L
strips of width 8y, we get the area A’'B'C'D'. Y]
J- J-fg(y)
N 1 ()

(2) Polar coordinates.

Consider an area A enclosed by a curve whose equation is in polar
coordinates.

Let P(r, 6), Q(r + &r, 6 + 80) be two neighbouring points. Mark
circular areas of radii r and r + 8r meeting OQ in R and OP (produced) in
S (Fig. 7.16).

Fig. 7.15 (b)
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Since arc PR =rd0 and PS = or.

.. area of the curvilinear rectangle PR@S is approximately
=PR .PS=rb60.dr.

If the whole area is divided into such curvilinear rectangles,
the sum ZZrd65r taken for all these rectangles, gives in the limit the
area A.

Hence A= Lt 55r805r = H rdédr
50

where the limits are to be so chosen as to cover the entire area.

Example 7.18. Find the area of a plate in the form of a quadrant of the ellipse

B

2
Sl (V.T.U., 2001 ; Osmania, 2000 S)
a

%[

Solution. Dividing the area into vertical strips of width

8, y varies from K(y = 0) to Ly = b./(1 — x2/b%)] and then x
varies from O to a (Fig. 7.17).
required area

a7 o [ o
QJ‘“ l
a Jo

y(@® - 2%) dx = nabl4.

Otherwise, dividing this area into horizontal strips of width &y, x varies from M(x = 0) to
Nlx=a,/@1- y2fb2} ] and then y varies from 0 to b.

b aJi1- %) b P
I dyI A . I dy [x] a-y*6%
0 0 0
=4 J'; J@&% — %) dy = nabl4.

Obs. The change of the order of integration does not in any way affect the value of the area.

required area

Example 7.14. Show that the area between the parabolas y* = 4ax and x° = 4ay is -13?- e
(Kerala, 2005 ; Rohtak, 2003)

Solution. Solving the equations y? = 4ax and x2 = 4ay, it is seen

that the parabolas intersect at O (0, 0) and A (4a, 4a). As such for the v x? = 4ax
shaded area between these parabolas (Fig. 7.18) x varies from 0 to 4a o ()" =4dax
and y varies from P to Q i.e., from y = x%4a to y = 2-f(ax) . Hence the f i
required area ! i
da  p2(ax) 4 | 4
_ ax _ n — 2 :
& L [.,. dvdx = [" @@ -x*/1a)dx 4 i
0 ta —x
a 282 1 x| _32 2 16 2 16 2 i
‘2‘5‘3" 43| T8¢ T3 TR Fig. 7.18
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Example 7.15. Calculate the area included between the curve r = a (sec 6 + cos 8) and its asymptote.

Solution. The curve is symmetrical about the initial line and has an Y
asymptote r = a sec 0 (Fig. 7.19). r =a(sec 6 + cos 6)
Draw any line OP cutting the curve at P and its asymptote at P’. Along
this line, 6 is constant and r varies from a sec 8 at P’ to a (sec 6 + cos 6) at P. P
Then to get the upper half of the area, 8 varies from 0 to /2. P

r drd@ o a %2

>y

. n/2 @ (sec 8 + cos B)
required area =2 j I
0

asec 8
12 | 2
=2 I“ [12- de
0 o sec 8 r=/

n/2
=a? I (2 + cos® ©) d8 = 5na?/4.
0

:|n{sec9+m59)

Fig. 7.19

Example 7.16. Find the area lying ins'ide the cardioid r = a(1 + cos 6) and outside the circler = a.

Solution. In Fig. 7.20, ABODA represents the cardioid r = a(1 + cos 6) Vi
and CBA’ DC is the circle r = a.
Required area (shaded) = 2 (area ABCA) e
n/2 r=0P n/2 {1+ cos @)
=2 [ rdedr=2 " | (rdr) d6 %
0 r=0F 0 « Al C A X
/2 9 a(l +cos 8) 2
=2 [ |5 de=a” [ [(L+cos6)’ ~11de
0 2 0
o D
2 2
ool 2 =qg2(1 = a s
=a (cos? 0+ 2 cos 0) d6 =a (_ T )=_(1:+8). Fig. 7.20
_L R) +2 n ig
PROBLEMS 7.2
1. Find, by double integration, the area lying between the parabola y = 4x — x2 and the line y = x.
2. Find the area lying between the parabola y = x? and the linex +y —z = 0. (Anna, 2009)
3. By double integration, find the whole area of the curve a®c? = 3*(2a — y). (U.P.T.U., 2001)
4. Find, by double integration, the area enclosed by the curves y = 3x/(x? + 2) and 4y = 2% (J.N.T.U., 2005)
5. Find, by double integration, the area of the lemniscate r? = a? cos 20. _ (Madras, 2000 S)
6. Find, by double integration, the area lying inside the circle r = a sin 8 and outside the cardioid r = a(1 — cos 0).
(Anna 2009 ; Mumbai, 2006)
7. Find the area lying inside the cardioid r = 1 + cos 0 and outside the parabola r (1 + cos 8) = 1.
8. Find the area common to the circles r = a cos 8, r = a sin 6 by double integration. (Mumbai, 2007)

TRIPLE INTEGRALS

Consider a function f (x, y, z) defined at every point of the 8-dimensional finite region V. Divide V into n
elementary volumes 8V, 8V, ..., 8V, . Let (x,, y,, 2,) be any point within the rth sub-division 8V . Consider the sum

Z f(xr' yr’zr)av:" )
r=1

The limit of this sum, if it exists, as n — e and 8V, — 0 is called the triple integral of f(x, ¥, 2) over the
region V and is denoted by

[[[ fx. 3, 22av.
For purposes of evaluation, it can also be expressed as the repeated integral

j:j _Il:g E f(x, y, 2)dxdydz.
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If x,, x, are constants ; ¥ys ¥ are either constants or functions of x and z,, z, are either constants or
functions of x and y, then this integral is evaluated as follows :

First f (x, y, 2) is integrated w.r.t. z between the limits 2z, and 2z, keeping x and y fixed. The resulting
expression is integrated w.r.t. y between the limits y, and y, keeping x constant. The result just obtained is
finally integrated w.r.t. x from x, to x,.

Thus I= r‘& Iyzm J‘zzu'y) f(x, y,2)dz| dy| dx

x y(x) z(x, y)

where the integration is carried out from the innermost rectangle to the outermost rectangle.
The order of integration may be different for different types of limits.

1 x4z
‘Example 7.17. Evaluate j' 1 J‘: _[ " fcw g+ 2) drdyde, (J.N.T.U., 2006 ; Cochin, 2005)
= x—2

Solution. Integrating first w.r.t. y keeping x and z constant, we have

X+ Z
1 4 1 2
_ y_ - 1
I= L _[0 +y2 x_zd.xdz_ .[_1 L [(x+z)(2z)+24xz]drdz
gl 4 1
- dz 2] [—+z +—sz 4 = 0.
2 4
0 =
(1-x%) pir=2*=»%) ;
Example 7.18. Evaluate I IJ _{: i xyz dxdydz. (V.T.U., 2003 )
Solution. We have
7 1 Ja-xH Jl‘l—xz—y} i Ju-2% 22 ‘“l"‘z"’z}d .
- .[o 4 Iu 4 jo I .[ 2 2 Y
(1-2%)
1 Ya-2H g 2 2 1! 2.5° ¥
- |, x{.[o yg-af -y dyrdr = 5 [ x| -2t -2 =
L 202 on 1 L2 1M, 53, .5
_8-[0 [(1-2%)% . 2x —(1 - x2) .xldx—BIU (x-2x% + x°) dx
1
1o 2t af 2l L. 0. 1
82 4 6] 8\2 2 6/ 48
PROBLEMS 7.3
Evaluate the following integrals :
A LT A B 49 62
I J. j (x° + y° + 2°) dx dy dz. (Anna, 2009) 2: _[ f (x° +y° +2°)dxdydz
o Jo Jo ¢ b La
(S.V.T.U., 2009 ; V.T.U. 2000)
Tt 5% o | ol X+y+z
s | -L“ [ xdzdray a [ | [ e T dzdya
(Nagpur, 2009) (V.T.U., 2010 ; Kurukshetra, 2009 S ; J.N.T.U., 2005)
log2 px px+logy ey Ei e plogy pe*
Jﬂ .L .L e dx dy dz. 6. L Jll -[1 lmz@ﬁdy.
(Bhopal, 2008) (S.V.T.U., 2008 ; Rohtak, 2005)

a2

X /2 asin 8
7. ID _[0 J'O @ rdzdr de. (V.T.U., 2009)
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VOLUMES OF SOLIDS

(1) Volumes as double integrals. Consider a surface
z = f (x,y). Let the orthogonal projection on XY-plane of its
portion 8’ be the area S (Fig. 7.21).

Divide S into elementary rectangles of area & 8y by
drawing lines parallel to X and Y-axes. With each of these rect-
angles as base, erect a prism having its length parallel to OZ.

volume of this prism between S and the given sur-
face z = f (x, y) is z8uxdy.

Hence the volume of the solid cylinder on S as base,
bounded by the given surface with generators parallel to
the Z-axis.

= Lt E)Zz&xﬁy
gt Fig. 7.21

= szxdy or I f(x, ) dx dy
where the integration is carried over the area S.
Obs. While using polar coordinates, divide S into elements of area 86 &r.
replacing dxdy by ré8dr, we get the required volume = H zr dodr.

Example 7.19. Find the volume bounded by the cylinder x* + y* =4 and the planesy +z =4 and z = 0.
(S.V.T.U., 2007 ; Cochin, 2005 ; Madras, 2000 S)

Solution. From Fig. 7.22, it is self-evident thatz =4 —y is to
be integrated over the circle x + y% = 4 in the XY-plane. To cover the

shaded half of this circle, x varies from 0 to /(4 — y°) and y varies
from — 2 to 2.
Required volume

=2 J‘22 jm z dxdy =2J’722 LW (4 - y) dxdy

(1]

=2 Jli (4—y)[x]0“'f’ dy =2 I_: 4-9) H(‘i—yz)dy
=2 fg 4V(4_y2)dy‘2_[_22 J’W dy Fig. 7.22

2
=8 J' g 4 - yz) dy [The second term vanishes as the integrand is an odd function.]
2
‘ 2
g 2T ot 2201 2| o 16m. 21
2 2 2
_2 C
(2) Volume as triple integral §x By 62

Divide the given solid by planes parallel to the coordinate planes into
rectangular parallelopipeds of volume &x &y &z (Fig. 7.23).

P(x, 3 2
the total vol = zx
e volume gli";g Y & 8y &z 5 Y
-

8z —0

[ [ foaa z
with appropriate limits of integration. Fig. 7.23
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Example 7.20. Caleulate the volume of the solid bounded by the planesx=0,y=0,x+y+z=a andz=0.
(P.T.U., 2009)

i a aG—x a-x—y
Solution. Volume required = L L jo dz dy dx

" a-x {1 2 =%
S R S o 4
= I 2 (a—x) 1 2 . 1 (a—x)3u_a3
- .[o {(a—x) T2 }dx__ija a=5 dx_E T 0_?

2 zi 1Ll
Example 7.21. Find the volume of the ellipsoid x_2 " y_2 3 ""_2 =1
a4 Byt e
(Anna, 2009 ; P.T.U., 2006 ; Kottayam, 2005)
Solution. Let OABC be the positive octant of the given ellipsoid Zi
which is bounded by the planes OAB (z = 0), OBC (x = 0), OCA (y = 0) and cl
the surface ABC, i.e.,

2 2 2 )
X Y z = 1 1 2
=+ += . i
@ b ‘: ! §
Divide this region R into rectangular parallellopipeds of volume 1 E
dxdydz. Consider such an element at P(x, v, z). (Fig. 7.24) i i M |: Y
| P
the required volume = 8 jj_[q dx dy dz. (x5 z e F
In this region R, n
(z) z varies from 0 to MN where >4
MN =c (1 -2*/a® — y2 Ib?). B34

(it).y varies from 0 to EF, where EF = b,/(1 - 2 / «®) from the equation of the ellipse OAB, i.e.,
2%a? + y2b2 = 1.
(i1t) x varies from 0 to OA = a.
Hence the volume of the whole ellipsoid

a pbfi-2%1a®) pe (1-2"1a® - 5" 10%) a b1 -2 1a*) . P T T
g P drdyds =8 [ do [ dy | 2 [TETD

0 0 0

b1 -+*ra’
= _[: dx [ AT Ja =1 - 3216 dy

_ 8c ¢ P 2 _ 2 e — 2, 2

—b_deIU 02—y dy whenp=b \1—x%/d?).
P

_ 8¢ “dx[y\!(Pz—yz) p’ in—l%j' _8c [ bz(l—szndx

=2 b g g " dh 2| 22
0
q xZ 2 4nabe
=21cbcf i dx =2nbc X——| = )
0 a 3|, 3

Otherwise. See Problem 27 page 292.
(3) Volumes of solids of revolution
Consider an elementary area &dy at the point P(x, y) of a plane area A. (Fig. 7.25)
As this elementary area revolves about x-axis, we get a ring of volume
= nlly + &y)? - y%] & = 2my &x &y,
nearly to the first powers of 6y.
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Hence the total volume of the solid formed by the revolution of the area A V%
about x-axis.

=[], 2ny dxdy.
In polar coordinates, the above formula for the volume becomes
_[L 2nr sin 0. rdédr, ;.. HA 2nr? sin © dodr

Similarly, the volume of the solid formed by the revolution of the area A

about y-axis = ”; 2mx dx dy-

Fig. 7.25

Example 7.22. Calculate by double integration, the volume generated by the revolution of the eardioid
r =a (1 - cos 8) about its axis.

Solution. Required volume

= IK Jm(l_msm 2nr? sin 0 dr d@
bk <

O=n 0= 0

%[ 8 a(1-cus 6) [9) X
=2n I - sin 6 d6

o | 3 "

T
_ ond® " g _ 2na® | (1-cos®)* | _ 8md® Fig. 7.26
_-—3—_[0 (1-cos ) .sin®db = 3 1 0— 3
IEEM CHANGE OF VARIABLES

An appropriate choice of co-ordinates quite often facilitates the evaluation of a double or a triple integral.
By changing the variables, a given integral can be transformed into a simpler integral involving the new
variables.
(1) In a double integral, let the variables x, y be changed to the new variables u, v by the transformation.
x=0(u,v),y =y W,v)
where ¢(u, v) and y(i, v) are continuous and have continuous first order derivatives in some region R’ in the
uv-plane which corresponds to the region R in the xy-plane. Then

HR“ f(x, y) dxdy = ”R;,, FloGw, v),y(u, v)l| J | dudv (1)
_dx,y)
where J= D) (=0)

is the Jacobian of transformation® from (x, y) to (u, v) coordinates.
(2) For triple integrals, the formula corresponding to (1) is

_[IL f(x, y, 2) dxdydz = ”]-R, ' flau, v, w), y(u, v, w), 2w, v, w)| J | dudvdw

where J= ox, 3, 2) (=0)
ou, v, w)

is the Jacobian of transformation from (x, v, 2) to (u, v, w) coordinates.
Particular cases :
(i) To change cartesian coordinates (x, y) to polar coordinates (r, 6), we have x =r cos 6,y =r sin 6 and

J= Az, y) =iF
J(r, 8)

_”R f(x,y)dxdy:IL‘ flrcos®,rsin6). rdrde.

[Ex. 5.25, p. 216]

* Sce footnote page 215.
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(ii) To change rectangular coordinates (x, y, z) to cylindrical coordinates (p, ¢, z) — Fig. 8.27, we
have

x=pcosd,y=psing,z=2z

_ i
d J= LX< - [Ex. 5.25]
= ap, 0, 2) F *

Then ﬂ . f(x, y, 2) dxdydz = H - flp cos ¢, psin ¢, 2) . pdpdidz.

(iii) To change rectangular coordinaltes (x, y, z) to spherical polar coordinates (r, 6, §)—Fig. 8.28,
we have

x=rsinBbcos¢,y=rsinOsind,z=r cos 6

and = %((-% =r?sin 0 [Ex. 5.25]
Then f(x,y, z) dxdydz = _ [(rsin 6 cos ¢, r sin 8, sin ¢, r cos 8).r” sin 6 drdéd¢
IIL... II%.
Example 7.23. Evaluate _UR (x + y)* dxdy , where R is the parallelogram in the xy-plane with vertices
(1, 0), (3, 1), (2, 2), (0, 1) using the transformation u =x +y and v = x — 2y. (U.P.T.U., 2004)

Solution. The region R, i.e., parallelogram ABCD in the xy-plane becomes the region F’, i.e., rectangle A’
B'C’D’ in the uv-plane as shown in Fig. 7.27, by taking

u=x+y and v=x-2y (D)
vi
A1, 1) v=1 B(4,1)
0 '-'0
II
=
D'(l,-.-Z)
Fig. 7.27
From (i), we have %(Zu +U),y= = (u —-v)
x &
o5,y _(ou du|__1
du,v) | ox 3
dv dv
Hence, the given integral
4
= 2 I T | 1|df 1
= IL u? | J | dudv = L ]'_2 W g dudv=g| 5| ol =21

Example 7.24. Evaluate [[ xyJ(1—x~3) dx dy where D is the region bounded by x =0, y = 0 and
x +y = 1 using the transformation x +y = u, y = uv. (Marathwada, 2008)
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Solution. We have x = u —uv,y = uv

e B(x,y) ox/ou odyldu | _

Au,v) | ox/ov ylov |~

Alsnwhenx:O,u=0,v=1,wheny=0,u=0,v=0andwhenx+y=1,u=1
the limits of u are from 0 to 1 and limits of v are from 0 to 1.

=U.

lvu
u

1 1
Thus ”D xy JA-x - y) dxdy = J'o J'o ul—v) uv (1 - w)*2 |J| dudv
5 where u = sin” @
_ I J‘ Pt~V vl =) dide du =2 sin 6 cos 6 d
o Jo u=0,86=0
u=1,06=mn/2
1 1
= I (1 -uw)'? dux I v(l-v)dv
0 0
/2 2 3
=I sin® 0 cos 0. 2sin 8 cos dOx| L - L
0 2 3 N
_ 2 1 6.1 = 2
2-[ Sm BCOS Gdﬂ(ﬁ)—§ '9-'7—53—m.
Example 7.25. Evaluate _[: j': e+ dudy by changing to polar coordinates. (Anna, 2003)
—x’ -. |
Hence show that L' e dx=+ynlZ, (Madras, 2003 ; U.P.T.U., 2003 ; J.N.T.U., 2000)

Solution. The region of integration being the first quadrant of the xy-plane, r varies from 0 to « and 8
varies from 0 to /2. Hence,

1= [ [ e Py [ [T e

1 n/2 0 & . _ __1. /2 R _ l n/2 n .
- 2L {J’U e’ ( Zr)dr}de— 2L |e A de = 2J‘U do=7. 0
2
— s =
Al I= =
so J- dxxj e’ dy= {L e dx} .(id)
Thus, from (i) and (i), we have _[: e = 2. ... (Gii)

Example 7.26. Find the volume bounded by the paraboloid x* + y* = az, the eylinder 2% + y* = - 2ay argd the
planez = 0.

Solution. The required volume is found by integrating z = (x2 + y?)a
over the circle x? + y2 = 2ay.

Changing to polar coordinates in the xy-plane, we have x = r cos 6,
y =r sin 0 so that z = r%a and the polar equation of the circle is r = 2 sin 6.

To cover this circle, r varies from 0 to 2a sin 8 and 6 varies from 0 to 7.
(Fig. 7.28)

Hence the required volume

Iﬂ“ I;“inez.rdﬂdr——‘[ de J-zm,ma dr

2a sin 6

ZA

1}

4
lj‘xde L
a Jo

3
. =k Jlnsin‘leB:a%.
0 0 X

Fig. 7.28
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#

x = r sin 6 cos ¢,

HicHER ENGINEERING |
E:ampla ‘7..2'? Find, by triple mtegmttmt, the uogume of th@sphere*ﬁ +3% % 32' = a’-

Solution. Changing to polar spherical coordinates by putting
we have dx dy dz = r? sin 0 dr d0 d¢

i
=rsin@sin$,z=rcos 0

kil r;‘-". i

Also the volume of the sphere is 8 times the volume of its portion in the positive octant for which r varies
from 0 to a, 6 varies from 0 to /2 and ¢ varies from 0 to /2
volume of the sphere
0

(Bhopal, 2009 Madras, 2006 ; V'TU 2003 3}

3
=8.

r J.M2 rm r?sin8drdodo =8 J- r“dr I

/2
sin 6 d6 . I do
0
L | cosOff* X =an. & (-0+ D=2 nad.
3 3
Example 7.28. Find the volume of the portion of the sphere x? + y2 + 2% = a? .’.’y:ngvmszde tfle cylinder
2+y’ =ay.
Solution. The required volume is easily found by changing to
cylindrical coordinates (p, ¢, 2). We therefore, have
x=pcosd,y=psmd,z=2
and J = A, A, 3, 2) =p.
ap, 6, 2)
cylinder becomes p =« sin ¢

(Rohtak, 2003}
ZA
Then the equation of the sphere becomes p? + 22 = a? and that of

— 2
The volume inside the cylinder bounded by the sphere is twice the
volume shown shaded in the Fig. 7.29 for which z varies from 0 to

J(@® —p”), p varies from 0 to a sin ¢ and ¢ varies from O to Tt

9 I J-a-;m¢

Hence the required volume = 2 J. J'

@ 8in [uz— 2)
"j” "’ pdzdpdy

p?) dpd¢ = 2[ ’ 3

In (1 - cos® ¢)d¢=—(31r 4)

p2 )31'2

a1 sin ¢

do
0

and

1 -\j( =N
Example 7.29. Evaluate L .L T Ef 7

J(x2 +y +z )

dz dy dx
Solution. We change to spherical polar coordinates (r, 8, ¢), so that

5.2
x=rsinBcos¢,y=rsinOsin¢p,z=rcos O
J=r?sin 0, x2+y2+22=r2

N[

The region of integration is common to the cone 22 = x? + y? and the cylinder
given integral becomes

(V.T.U,, 2008)
x2+ y? = 1 bounded by the plane z = 1 in the positive octant (Fig. 7.30). Hence 0
varies from 0 to /4, r varies from 0 to sec 6 and ¢ varies from 0 to n/2
0 0

/4 gec’ @
0

-

nl4

rdz ‘I-“M Ime ;.rg sin0dr dedd = J‘ﬂm I
J

d

0 0 0
n/4

g =L

b 4-[0

sec Btan ©dO = —|

2 sec B

r 5

— n6de
9 l; 51

oy
e N2-1)m
B| = 7 )

Fig. 7.30
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Example 7.30. Find the volume of the solid surrounded by the surface

(x/a)?’3 + (I b)%'3 + (/)3 = 1. (Hissar, 2005 S)
Solution. Changing the variables, x, y, z to X, Y, Z where, (x/a)® = X, (y/b)2 =Y, (2/c)\3 = Z
ie., x=aX?3,y=bY? z=cZ3sothatd =3 (x,y,2)0 (X, Y, Z) = 27 abc X?Y?Z2.
required volume = [[[ dxdydz = 27 abe ([[ x*v*2* dx dvaz
taken throughout the sphere X% + Y2 + Z2 = 1. (D)

Now change X, Y, Z to spherical polar coordinates r, 6, ¢ so that X = r sin 6 cos ¢, Y = r sin 0 sin ¢,
Z=rcos0,and 0 (X, Y, Z)/d (r, 0, ¢) = r2 sin 6. To describe the positive octant of the sphere (i), r varies from 0 to
1, 0 from 0 to 7/2 and ¢ from 0 to 2.

. 1 pr/f2 pn/2 9 . 8 9 . ) i
required volume = 27abe x 8 L J'o L r“ sin” 0 cos® ¢ x r2sin? O sin? ¢ . r% cos? 0 . r sin 0 drd8dd

1 /2 /2
=216 abc .[n 2 dr J: sin® 8 cos® 0 d9 L sin® ¢ cos® ¢ dd = 4n abe/35.

PROBLEMS 7.4

Evaluate the following integrals by changing to polar co-ordinates :

1 pfa-35 Ji2x-2%)

L J' J 2+ y)dydr. (P.T.U., 2010) 2 I J' gy (Anna, 2009)
0 J0 x + y
da x i J’ 3 :
_[ I X =Y dxdy (Mumbai, 2006)
y’!ia x + y
4, Jl I xy(x +y 22 dxdy over the positive quadrant of x? + y2 = 4, supposing n + 3 > 0. (S.V.T.U., 2007)
ﬁ. 5= over one loop of the lemniscate (x? + y?) = 2% - y%. (Mumbai, 2007)
1+ 22+ ¥°)

5 1 1
6. Transform the following to cartesian form and hence evaluate Io -[0 73 sin 6 cos 8 drd®. (P.T.U., 2005)
A J-I y% dx dy over the area outside 22 + y2 — ax = 0 and inside x2 + ¥ — 2ax = 0. (Mumbai, 2006)

1 1-x

8. By using the transformation x + y = u, y = uv, show that L L Y gydx = %(e £). (P.T.U., 2003)

12 12 :
9. Transform an ¢ dd do by the substitution x = sin § cos 6, y = sin ¢ sin 6 and show that its value is .
sin @ ¢

(UPT.U, 2001)
Evaluate the following integrals by changing to spherical coordinates : i

(V.T.U., 2006 ; Kottayam, 2005)

Il IJ{:-:F': Ja-=2 —5%) dxdydz
J(1—12 - y2 -2%)

11. III ax dy de 5 where V is the volume of the sphere 22492 22=0a2 (Anna, 2009)
o+ yt v 2®

12. Evaluate J-I —dxiléz-——;—— over the volume of the tetrahedronx =0,y =0,z=0,x +y +z = 1. (Mumbai, 2007)
Q+x+y+z

3
13. Show that HI J dxdy d22 "= Rzg , the integral being extended for all the values of the variables for which
(a -y —2")

the expression is rea]. (U.T.U., 2010)
V 14. ”]' 2% dxdydz, taken over the volume bounded by the surfaces 22 + 32 = a2, 3% + y2 =z and z = 0.
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AREA OF A CURVED SURFACE

Consider a point P of the surface S : z = f (x, y). Let its projection on ZA
the xy-plane be the region A. Divide it into area elements by drawing lines
parallel to the axes of X and Y. (Fig. 7.31).

On the element 6x&y as base, erect a cylinder having generators par-
allel to OZ and meeting the surface S in an element of area &S.

As 8xdy is the projection of 8S on the xy-plane,

~. Oxby = 8S . cos v, where yis the angle between the xy-plane and
the tangent plane to S at P, i.e., it is the angle between the Z-axis and the
normal to S at P(= ZZ'PN).

Now since the direction cosines of the normal to the surface F(x, y, 2) ¥
= 0 proportional to

aF oF aF
ox’dy’ oz
the direction cosines of the normal to S[F = f (x, y) — z] are pro-

portional to — d 02 , 1 and those of the z-axis are 0, 0, 1.

ax’ dy

2
Hence cosy= i - 88= Sedy ‘ﬂi(_aﬁJ +[
2 cos Y ox
(?5)2 + [QEJ +1
0x dy

H s a)?, (2%)°
ence = Lt Y ss- j'L (ﬁ) +[$J +1/ dxdy
Similarly, if B and C be the projections of S on the yz-and zx-planes respectively, then

s= [ [%]2 +(%]2 st e

and s=[ \][[%)2+[%)2+1_ dedsx .




DOWNLOADED FROM www.CivilEnggForAll.com

Murtipee InTegrALs anD BeTa, Gamma FUNCTIONS 293

Example 7.31. Find the area of the portion of the cylinder 22 + 22 = 4 lying inside the cylinder 2% + y* = 4.

Solution. Figure 7.32 shows one-eighth of the required \

area. Its projection on the xy-plane is a quadrant circle x2 + y2=4. z
For the cylinder x2 4 22 =4, (D)
we have d2__x 0 _o
ox 2’ oy
2 2 2 2
so that [a_z) +(%J +1=x -;z = 42_
ox dy z 4-x
Hence the required surface area = 8 (surface area of the 10 -
upper portion of (i) lying within the cylinder x2 + y2 = 4 in the o Y
positive octant) (2,0,0)

—=— dxdy =16 I dx = 32 sq. units. X

I I“ ) \/(4 x%)

Example 7.32. Find the area of the portion of the sphere 2° + y2 + 22 = 9 Zyr.ng inside the cylinder
22+ y2=3y.

Fig. 7.32

Solution. Figure 7.33 shows one-fourth of the required area. Its

projection on the xy-plane is the semi-circle x2 + y2 = 3y bounded by the Y-axis “
For the sphere

2,.2,.,2_q 02 __ X% oz_ ¥

x+y+z—9,a_x— 2::-mday -
2

a2\ 2

(§) + (%] +1=(x2+ 92+ 22)/z2 e z
= g == 92 when x=rcos®,y=rsinb. %

o gl Fig. 7.33

Using polar coordinates, the required area is found by integrating

3/(9—7?) over the semi-circle r = 3 sin 0, for which r varies from 0 to 3 sin 0
and 0 varies from 0 to /2.
Hence the required surface area

‘I-m“2 I-ﬂsm (¢}

- 36 jﬂ (1 - cos ) d0=36| 0 —sin 6 [? = 18 (1 — 2) sq. units,

3sin @
22 | (9 - r?
rd{-}dr __ej W= ]

) 1/2

0

PROBLEMS 7.5 a

1. Show that the surface area of the sphere 2? + y2 + 2% = ¢? is 4ma®.
2. Find the area of the portion of the cylinder x? + y2 = 4y lying inside the sphere x? + y* + 2=
3. Find the area of the portion of the sphere 2% + y2 + 2% = a? lying inside the cylinder x? +ys—
4. Fmp(ll the area of the surface of the cone 22 + 2 = 2% cut off by the surface of the cylinder 22 + 3,2 = a? above tha'
andc. ¥
5. Compute the area of that part of the plane x + ¥ + z = 2a which lies in the f{irst octant and is bﬂunded by tha eylmder'
%2 392 =a?. - LBurdwun. 2003)
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CALCULATION OF MASS

(a) For a plane lamina, if the surface density at the point P(x, y) be p = f(x, y) then the elementary mass
at P = pdxdy.

total mass of the lamina = I pdxdy (1)

with integrals embracing the whole area of the lamina.
In polar coordinates, taking p = ¢(r, 6) at the point P(r, 6),

total mass of the lamina = ”' pr do dr (i)
(b) For a solid, if the density at the point P(x, y, 2) be p = f (x, y, 2), then
total mass of the solid = IH p dx dy dz with appropriate limits of integration.

Example 7.33. Find the mass of the tetrahedron bounded by the coordinates planes and the plane

g + % + f = 1, the variable density p = pxyz. (Rohtak, 2003 ; U.P.T.U., 2003)
Solution. Elementary mass at P = pxyz . dx dy dz. zZ r
the whole mass = H_[ Wxyz dx dy dz,
the integrals embracing the whole volume OABC (Fig. 7.34). The limits for z 8x &y &2

are from O to z = ¢(1 — x/a — y/b).

The limits for y are from 0 to y = b(1 — x/a) and limits for x are from
0 tO a. P{I; Y Z

Hence the required mass

a peb(l-x/a) pell-x/ia-ylb) el dii
= Hxyz
Io .[o Io Y A

a pbil-xia) 9 e(l—x/a—ylb)
= ”Io L xy| 2212 |0 dydz Fig. 7.34

- a pbll-x/a) (.‘2 x yE
-ufy [ G- 3) o

2 2 4 2 4 2 4 2 2 2,2 2
_ e @ b _x) _2b _x b X _ ube” _ 4 =uabc
‘TL x[?(l a) (1 a) ¥ (1 a)]dx_ A )y YO Ha) de=mmg—

CENTRE OF GRAVITY

(e) To find the C.G. (¥, ¥) of a plane lamina, take the element of mass pdx8y at the point P(x, y). Then
[[spaxdy  [[ypdxdy

“foaty” ™ [[o ey

While using polar coordinates, take the elementary mass as préfdr at the point P(r, 8) so that x = r cos 6,
y=rsinf.

=

with integrals embracing the whole lamina.

‘” r cos 0 pr dédr H r sin 6 p rdédr

o8 Hprdedr il Hprdedr
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(b) To find the C.G. (%, ¥, z) of a solid, take an element of mass pdx8ydz enclosing the point P(x, y, 2).
Then

([ 20 dxdyaz I IE: dadydz m 2p dxdydz
X = .
[ | |
Example 7.34. Find by double mtegmtwn, the centre of grav;ty of the area of the cardioid Wi ;"
r=a (1l +cos 6. . _r" &Y fl
Solution. The cardioid being symmetrical about the initial line, its
C.G. lies on OX, t.e., ¥y = 0 (Fig. 7.35). : p
T a(l + cos 8) 2
[[prcose.rdear LT L cos 8. r°dr . d
xX= =
(1 < 8)
[[ o rdear [* [ rar.de
-n <0
3 a(l+cos 6) Fi
g. 7.35
I cos B - de r cos 0 (1+ cos 0)° dO
_2a Jx
i o a(1+msB! g " n 5
[ |= P [ a+coser do
-z | 2
0
2.r (3 cos” B + cos” ©) dB i x
=2?a' 2 - I cos"9d9:2j cos" 6dO or 0
-7 0
2. _L (1 + cos” 6) dO according as n in even or odd.
/2 2.1
2. - *0)d 1l=n S. =
2a Io (Boom 0-+con O) e(asthepowersof_za 8 22 4.2 2 5a
3 /2 5 cos 6 are even) 3 - n, 1= 6
Q.L (1 + cos® 6) d® BT

Hence the C.G. of the cardioid is at G(5a/6, 0).

- Example 7.85. Using double nptegrat;an, ﬁnd the CG of a lamina fn fhe sknpe pfa Fuqdrgpt @"t}w'
curve (x/a)?’3 + (ylb)2'3 = 1, the density bemg p = kxy, where k is a constant.

Solution. Let G (%, ) be the C.G. of the lamina OAB
(Fig. 7.36), so that

X =

Hkxy.xdxdy= Hx2ydxdy
I kxy . dxdy _[ xy dxdy

where the integrals are taken over the area OAB so that y
varies from 0 toy (to be found from the equation of the curve in
terms of x) and then x varies from 0 to a.

Thus

Ia I ydydx J- ly /2\ 2 -[ x dx Fig. 7.36

U [oae [elinfe [oe

For any point on the curve, we have
x=a cos’ 0,y = b sin? 6 so that
dx = — 3¢ cos? 0 sin 6 d6.
Also when x=0,0=1/2; whenx=a,06=0.
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0
J a? cos® 0. % sin® 0. (- 3a cos® 0 sin 0) dO
Hence x= e

0
I a cos® 0. b2 sin® 0. (- 3a cos® 6 sin 6) dO

n/2

12
J‘; gin” 0 cos® 0.6

Y _128
2
I: sin’ 0 cos® © dO a2
[0 [ kay.yadxay
Similarly, y= g =128 ——o b. Hence the required C.G. is G 128 128 =p].
a ey T 429 429429
L A kxy . dxdy

CENTRE OF PRESSURE

Consider plane area A immersed vertically in a homogeneous 0 Free surface
liquid. Take the line of intersection of the given plane with the free
surface of the liquid as the x-axis and any line lying in this plane and
perpendicular to it downwards as the y-axis (Fig. 7.87).

If p be the pressure at the point P(x, y) of the area A, then the
pressure on an elementary area 8x8y at P is pdxdy which is normal to
the plane.

the resultant pressure on A = I j pdxdy.

If this resultant pressure acting at C (k, k) is equivalent to pres-
sure at various points such as pdxdy distributed over the whole area A,
then C is called the centre of pressure.

taking the moment of the resultant pressure at C and the sum of the moments of the individual
pressures such as pdxdy at P(x, y) about the y-axis, we get

h ﬂpdxdy=”x.pdxdy, el j_[x.dxdy/ﬂpdxdy

Similarly, taking moments about x-axis, we have

Fig. 7.37

k= H ¥ . pdxdy / I _[ pdxdy with integrals embracing the whole of the area A.
While using polar coordinates, replace x by r cos 8, ¥ by r sin 8 and dxdy by r dédr in the above formulae.

Example 7.36. A horizontal boiler has a flat bottom and its ends are plane and semi-circular. If it is just
full of water, show that the depth of the centre of pressure of either end is 0.7 x total depth appmx;mately

Solution. Let the semi-circle x2 + y2 = a? represent an end of the given
boiler (Fig. 7.38). By symmetry, its centre of pressure lies on OY.
If w be the weight of water per unit volume, then the pressure p at the
point P(x, y) = w(a — ).
the height k of the C.P. above OX, is given by

HJ’ plely .[ Im " wla- )y dy-d
[pastr g (5 wia-y dy-a
0(:;2_12) e fa I:g (a2 _x2)_%(02 —x2)3"2:‘dx

Iﬂ
_a _
2 _ .2 a 1
j‘:’a| ay— 3212 nJia ) ey .L, [a(a2 — 22 5 (a2 _xz)} %

Fig. 7.38
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Now put x = a sin 6, so that dx = a cos 8 dé.
Also when x = —a, 8 = - /2, and when x = @, 6 = ©/2.

nl2 3 3
I [a—wsze—&msae]acwede
n2| 2 3

- /2 2
‘l.Ir [azcosﬁ—a—cosze]acosﬁdﬂ
-n/2 2

a 16 — 3r
3n—4

/2
2_[“ (3 cos® 0 — 2 cos* 8) d6
o a
= —- = =0.3c nearly.
3 /2 2 3 4
2-[0 (2 cos® 6 — cos® 0) dO

Hence, the depth of the C.P. = a — k = 0.Ta approximately.

PROBLEMS 7.6

1. Alamina is bounded by the curves y = x?— 3x and y = 2x. If the density at any point is given by Ay, find by double
integration, the mass of the lamina.
2. Find the mass of a lamina in the form of cardioid r = a(1 + cos 6) whose density at any point varies as the square of
its distance from the initial line.
‘3. Find the mass of a solid in the form of the positive octant of the sphere x? + y2 + 22 =9, if the dznmty at any pomt is
2xyz.
4. Find the centroid of the area enclosed by the parabola y? = 4ax, the axis of x and its latus-rectum.
5. The density at any point (x, y) of a lamina is o(x + y)/a where ¢ and « are constants. The lam;na is bounded bythe
linesx=0,y=0,x=a,y =b. Find the position of its centre of gravity. }
6. Find the centroid of a loop of the lemniseate 72 = a2 cos 20. * f )
7. A plane in the form of a quadrant of the ellipse (x/a)? + (y/b)? = 1 is of small but varying thickness, l;he th:el&ness at
any point being proportional to the product of the distances of that point from the axes ;. ‘show that the coordinates
of the centroid are (8a/15, 8D/15). - (Nagpur, 2009)
8. In a semi-circular disc bounded by a diameter OA, the density at any pomt varies as the distance from O ; End the
position of the centre of gravity.
9. Find the centroid of the tetrahedron bounded by the coordinate planes and the planex +y+z=1, the denrstty at any
point varying as its distance from the face z =
10. Find ¥ where (&, ¥, 2) is the centroid of the region R bounded by the parabolic cylinder z = 4 — x? and the planes
x=0,y=0,y =6, z=0. (Assume that the density is constant).
11. If the density at any point of the solid octant of the ellipsoid (x/a)? + (y/)? + (z/c)? = 1 varies as xyz, find the
coordinates of the C.G. of the solid. (P.T.U., 2005)
12. A horizontal beiler has a flat bottom and its ends consist of a square 1 metre wide surmounted by an isesceles
triangle of height 0.5 metre. Determine the depth of the centre of pressure of either end when the boiler is just full.
13. A quadrant of a circle is just, immersed vertically in a heavy homogeneous liquid with one edge in the surface. Find
the centre of pressure. :
14. Find the depth of the centre of pressure of a square lamina immersed in the liquid, with one vertex in the surface
and the diagonal vertical.
15. Find the centre of pressure of a triangular lamina immersed in a homogeneous hqu:d with one side in the free
surface. - (P.T.U, 2003)
16. A uniform semi-circular is lamina immersed in a fluid with its plane vertical and its boundary diameter on the free
surface. If the density at any point of the fluid varies as the depth of the point below the free surface, find the
position of the centre of pressure of the lamina. g

(1) MOMENT OF INERTIA

If a particle of mass m of a body be at a distance r from a given line, then mr? is called the moment of
inertia of the particle about the given line and the sum of similar expressions taken for all the particles of the
body, i.e., ¥mr? is called the moment of inertia of the body about the given line (Fig. 7.39).
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If M be the total mass of the body and we write its moment of inertia bd
= MFE?, then £ is called the radius of gyration of the body about the axis.

(2) ML.I. of plane lamina. Consider the elementary mass pdxdy at the
point P(x, y) of a plane area A so that its M.I. about x-axis = p&«dy y2.

M.I of the lamina about x-axis, i.e. I = H p % dxdy.
A

Similarly, M.1. of the lamina about y-axis’ i.e., I = HA p x? dxdy. 0
Also M.IL. of the lamina about an axis perpendicular to the xy-plane, i.e., Fig. 7.39

1= -UA p(x® + %) dxdy.
(3) MLL of a solid. Consider an elementary mass p8xdydz enclosing a point P(x, y, z) of a solid of volume V.

Distance of P from the x-axis = \/(y® + z%).
M. of this element about the x-axis = p &x8y8z (y2 + 22).

Thus M.L of this solid about x-axis, i.e. = [[| p(s* + 2% dxdydz.
Similarly, its M.L about y-axis, i.e., I, = HL p(z% + x%) dxdydz

and M.IL about z-axis, i.e., I, = J:UV p(a? + ¥?) dxdydz.

(4) Sometimes we require the moment of inertia of a body about axes other than the principal axes. The
following theorems prove useful for this purpose :

I. Theorem of perpendicular axis. If the moment of inertic of a lamina about two perpendicular axes
OX, OY in its plane are I, and I, then the moment of inertia of the lamina about an axis OZ, perpendicular to it
isgivenbyl, =1 +1.

Its proof follows from the relations giving I,, I, and I, for a plane lamina [(2) above].

IL. Steiner’s theorem®. If the moment of inertia of a body of mass M about an axis through its centre of
gravity is I, then I', moment of inertia about a parallel axis at a distance d from the first axis, is given by I' = I + Md?

Its proof will be found in any text book on Dynamics of a Rigid Body.

Example 7.37. Find the M L. of the area'ﬁ’i)ouﬁded"by the curve r* = a® cos 20 abqﬁt its axis. ¥

Solution. Given curve is symmetrical about the pole and for half v
of the loop in the first quadrant 0 varies from 0 to n/4 (Fig. 7.40).

Elementary area at P(r, 8) = r dédr.
If p be the surface density, then elementary mass
= p rdﬂdr (l)

14 S 20)
its total mass M =4 r r . prdrd®
0 0
9 n/4 2
= 2pa L cos 20 dB = pa 3D Fig. 7.40

Now M.I. of the elementary mass (i) about the x-axis.
= prdedr - y2 = prd6 dr (r sin 0)2 = pr3 sin? 6 drd6
Hence the M.I. of the whole area

n/4 Jicos 26)
i IH:M» Imﬂcoﬁ29) pr3 sinzedrde _ 49-[ sin2 el T‘4/4 ayfleos de
o Jo 0 0
2 (V% 2 . 3 /2 . 00 do
= cos” 20 -sin“ 0d0O = pqt 2 4-gin2 L.22% = =
pa Io pa .’-0 cos” ¢ sin 2 3 [Put 26 = ¢, d6 = d¢/2]
4 12 4 2
pa’ [*® 5 3 pa . Ma -
. " do =% (3n-8)= 31 — 8).
: L (cos” ¢ — cos’ ) dp =P Bn—8) = = @3n - 8) [By (id)]

*Named after a Swiss geometrer Jacob Steiner (1796-1863) who was a professor at Berlin University.
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Example 7.38. Find the moment of inertia of a hollow sphere about a diameter, its external and internal
radii being 5 metres and 4 metres. . ]

Solution. Let p be the density of the given hollow sphere. Then the M.I. about the diameter, i.e., x-axis is
= .[”v p(¥? + 2%) dxdydz
Changing to polar spherical coordinates, we get
I

X

2n pen 5
-[n Io L p{(r sin 0 sin §)° + (~ cos 8)*} r2 sin 0 dr d6 do

5

&r 5 -n_s r
P J:J sin® ¢ d¢ L sin” 0 d6 )

+J d¢j cos® ©sin 0 d0 -

<)

Example 7.39. A solid body of density p is in the shape of the solid formed by revolution of the centroid
r = a1 + cos 0) about the initial line. Show that its moment of inertia about a straight line through the pole

_8m0 5 45)-1120.5m.
15

perpendicular to the initial line is %npa (U.P.T.U.,, 2001)

Solution. An elementary area rd6dr, when revolved about OX generates a
circular ring of radius LP = r sin 6 (Fig. 7.41).

M.I. of this ring about a diameter parallel to OY 7

(r sin 0) 0

= (2mr sin 6) (rd6dr)p - s ) 0 L x
[ M. of a ring about a diameter = Ma?/2.] ‘y
Now using Steiner’s theorem, we have M.I. of the ring about OY = M.I. of the

ring about a diameter LP parallel to OY + Mass of the ring (OL)? (r cos 6)
= 2npr? sin® O d6dr + 2nr sin O (rd6dr) (r cos 6)? Fig. 7.41
Hence M.I. of the solid generated by revolution about OY

rdedr

r=all + cos 0)
=np I I (r% sin3 0 + 2r* sin O cos?0) d6dr

a(l+ cos @) 4

_np‘[ (sin® 6 + 2 sin 6 cos® B)dﬁjl r* dr

= _“%‘L J': sin 6 (1 + cos? 6) (1 + cos 0)° d6 [Put 6 = 20

5

= np50 I:Jz sin 2 (1 + cos® 2¢) (1 + cos 2¢)° 2d¢

5 n
= np5a In ;2 2sin ¢ cos ¢ {1 + (2 cos? § — 1)} (2 cos? ¢)° 2do

= M J.mrz (cos™ ¢ — 2 cos'®

0+ 2 cos' ¢) sin ¢ do

/2
B cos'? ¢ +2cosl4 o 2cos® ¢ |" _ 852 mpa®

12 14 16 & 105

5

Example 7.40. A hemisphere of radius R has a cylindrical hole of radius a drilled through it, the axis of
the hole being along the radius normal to the plane face of the hemisphere. Find its radius of‘gymtr.ﬁn a.bou&a
diameter of this face.
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Solution. M.I. of the given solid about x-axis

= [[[ ps? + 2% dxdydz

The limits of integration for z are from 0 to z = (B — P y2)
found from the equation of the sphere x2 + y2 + 22 = R2. The limits for x
and y are to be such as to cover the shaded area A in the xy-plane between
the concentric circles of radii ¢ and R (Fig. 7.42).

Thus the required M.I. about x-axis

=p HA IO“‘RZ"Z i (y? + 2%) dzdx dy

=pHA| y23+z3/3|:m dxdy =p ”‘A [y2(R2 —x2—yzlm+%(R2—x2—y2)3’2]dxdy_

Now changing to polar coordinates, we have x = r cos 6, y = r sin 6 and dxdy = rdédr.
Also to cover the area A, r varies from a to R and 6 varies from 0 to 2r.

Hence the required M.I. about x-axis

L T 2 oa/2, 1 0 939
-pL Ie [r sin® 0-(R* —r®) +§(R —r*) rdedr

R 2
:pja Ioﬂ[%rz (1 - cos 29)“'%(1?2 —rz)] de -r(R% —r2)V2 dr

=p -[‘IR

R P R®:-r?
=PL 2“(?‘* 3 J-F(Ri—rz’)mdr

2n
-r(R%-r?)\2dr

0

9 A
’"—(e— — 29)+1(1fer2 —r’)e
2 2 3

R
- % j (2R? + r)(R2-r>)V2 . rdr [Put r2 =t and rdr = dt/2]

R
= % jz (2R? + t)(R2 - t)V2 dt (Integrate by parts]
a

= E{(sz ra) R -2+ 2 (R - a2)5’2] =2 (g2 _q2p2x L (4R? 4 a?)
9 5 3 10
.. _ [ (R V- _2mp o oa3re
[. Mass_pjﬂ L L dz-rdr-deﬁ?(R —a®)
Hence, the radius of gyration = [(4R2 + «?)/10]V2.

(1) PRODUCT OF INERTIA

If a particle of mass m of a body be at distances x and y from two given perpendicular lines, then ¥mxy is

called the product of inertia of the body about the given lines.
Consider an elementary mass 8x8y8z enclosing the point P(x, y, 2) of solid of volume V. Then the product of
inertia (P.I.) of this element about the axes of x and y = pdx8ydz xy.

P.I. of the solid about x and y-axes, i.e., ny = ‘[[ = pxydxdydz

Similarly, P, = [[[ pyedudydzand B, = [[[ pexdxdydz.

In particular, for a plane lamina of surface density p and covering a region A in the xy-plane,

P = HA pxydxdy whereas P, =P, =0. [~ z=0]
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(2) Principal axes. The principal axes of a lamina at a given point Y
are that pair of axes in its plane through the given point, about which the
product of inertia of the lamina vanishes.

Let P(x, y) be a point of the plane area A referred to rectangular axes
OX, OY. Let (x’, ¥°) be the coordinates of P referred to another pair of rect-
angular axes OX’, OY” in the same plane and inclined at an angle 6 to the
first pair (Fig. 7.43).

Then x"=xcos0+ysinb (8

« (0] x
y' =ycos®-xsinb )

If I, I, be the moments of inetria of the area A about OX and OY and He.740

P_ be its product of inertia about these axes, then

= [[,w*aa1, = [[, px*da, Py = [[ pay da.

the product of inertia P/ about OX" and OY” is given by
P’xy= L pxy dA= .[[q. p(x cos 6+ y sin 6)(y cos 6 — x sin 0) dA

=sin 8 cos 6 HA p(y* — x%) dA + (cos? 6 — sin? 6) HAP’Q’dA

=1/2sin 20 - (I, —Iy) + cos 26 ny_
Now OX’, OY” will be the principal axes of the area A if Plxy vanishes.
Le., If 1/2 sin 26 (Ix—Iy) + cos 20 P,'ry =
ie., If tan 26 = 2P _ /(I - I ).
This gives two values of 6 differing by /2.

Example 7.41. Show that the principal axes at the node of a half-loop of the Ieml;r,scate r=a? cos 20 are
inclined to the initial line at angles

1 Ly 1 _11
= ndﬁ —ta
2tan 2a 2+2 n s

Solution. Let the element of mass at P(r, 6) be prd6dr.
Then L=p [ [ 2 sine - rdedr [See Fig. 7.40]

4

nfd 4
= Pd L sin? 6 cos? 20 de:F’i[E-EJ

4 16 \4 3
n/4  payf(cos 20) 2
g...» pa (T
= 6-rdedr="—|—+=
P j I r- cos r r 16 (4 3}
n/d pa {cos 29
» " pa’
and p I I r? sin 0 cos 0 - rd0dr = g
Hence the required direction of the principal axes at O are given by
2P,, pa’ /24 1
tan 26 = == =3
I -1, (pa®/16)x(4/3) 2
or by B=ltan 1amdﬂ:+ltaat l
2 2 2 2 2

PROBLEMS 7.7

1. Using double integrals, find the moment of inertia about the x-axis of the area enclosed by the lines

x=0,y=0, (x/la) + (y/b) = 1. (P.T.U., 2005)
2. Find the moment of inertia of a circular plate about a tangent. ) y '
3. Find the moment of inertia of the area y = sin x from x = 0 to x = 2r about OX.
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BETA FUNCTION
The beta function is defined as
" .
Blm, n) = Lx”“ltl-x)“‘ldx {::3 ..(1)

Putting x = 1 —y in (1), we get B(m, n) = — Jf(l —y)'"“ly‘-“‘ldy

1 1 1
=j'0 Y= (1 - y¥*~1 dy = Bln, m)

Thus B(m, n) = p(n, m) ..(2)
Putting x = sin” 0 so that dx = 2 sin 0 cos 6 d6, (1) becomes

B(m, n) = j'o " (sin2 )"~ (cos? 0)* 12 sin 6 cos 6 d6

/2
-2 _|'o sin®" =1 9 cos?~1 0 do A3
which is another form of B(m, n).
This function is also Euler’s integral of the first kind*.
[EZEH (1) GAMMA FUNCTION
The gamma function is defined as

I(n) = j': e * x-1dx (n > 0) )
This integral is also known as Euler’s integral of the second kinds. It defines a function of n for positive values of n.

*After an enormously creative Swiss mathematician Leonhard Euler (1707-1783). He studied under John Bernoulli and
became a professor of mathematics in St. Petersburg, Russia. Even after becoming totally blind in 1771, he contributed to
almost all branches of mathematics.
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=1, ..(i1)

In particular,  I(1) = I:e"‘dx=|—-e’x .

(2) Reduction formula for I'(n).

Since I'(n + 1) = -[: e * x" dx [Integrating by parts] = | —-x"e " : +n r e ¥ x"dx
0

INn + 1) =nl(n) ..(Ei)

which is the reduction formula for I'(zz). From this formula, it is clear that if I'(n) is known throughout a unit

interval say : 1 < n < 2, then the values of I'(n) throughout the next unit interval 2 < n <3 are found, from which

the values of T(n) for 3 < n <4 are determined and so on. In this way, the

values of T'(n) for all positive values of n > 1 may be found by successive i T
application of (iii). : F

Also using (i) in the form 5

By .iv) ; I

We can define I'(n) for values of n for which the definition (1) fails. i T
It gives the value of I'(n) for 0 < n < 1 in terms of the values of I'(n) for = A 1 2 3 4
1 < n < 2. Thus we can define I'(n) for all = < 0 provided its value for 1 < A -1
n < 2is known. Also if - 1 < n < 0, (4) gives I'(n) in terms of its values for i B
0 <n < 1. Then we may find, I'(n) for -2 <n <—1 and so on. E K

Thus (1) and (iv) together give a complete definition of I'(n) for all i =&
values of n except when n is zero or a negative integer and its graph is as ! = 4
shown in Fig.7.44. The values of T'(n) for I < n <2 are given in (Table I- i =

Appendix 2) from which the values of I'(n) for values of n outside the
interval l<n<2(n#0,-1,-2,—-3.....) may be found. Fig. 7.44
(8) Value of I'(n) in terms of factorial.
Using I'(n + 1) = nI'(n) successively, we get
n2)=1xn1)=1!
M3)=2xMN2)=2x1=2!
IM4)=3xI3)=38x2!=3!
In general I'(n + 1) = n ! provided r is a positive integer ..(v)
Taking n =0, it defines 0 ! =T(1) = 1.

(4) Value of I'(}). We have

r(3)= I: e« dx [Put x = y2 so that dx = 2y dyl
-y % b
= 2 Y d i 1 = T
J e 'y which is also = 2 Jlo e dx

L o e o R

whence r(l) = yn =1.772 i) (V.T.U., 2006)

[EET3] RELATION BETWEEN BETA AND GAMMA FUNCTIONS

_ (m) I'(n)

B, ) T(m + n)

We have nm) = j: e tym-1 [Put ¢ = x2 so that df = 2x dx
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=2 [C & o dy (2)
Similarly, In)=2 _‘: e Y 421 gy
'(m)I(n) —4I aem=Logy _L: e ¥2" =1 dy
=4 I; j: e ® +5%) y2m -1 y2" =1 dxdy ...(8) [+ the limits of integration are constant.]

Now change to polar coordinates by writing x = r cos 6, ¥ = r sin 8 and dx dy = rd8dr. To cover the region
in (3) which is the entire first quadrant, r varies from 0 to « and 6 from 0 to /2. Thus (3) becomes

e 12
Im)(n) =4 ...o _f; e pRmn=10,2m-1 g 21 g Jody

=[2

But by (2), 2 Jm e pAmEn -1 g T'(m + n)

™2 0521 gsin2 "l ode|x|2 [T e r2mm-1 gy (4)
1] 0

and by (3) of § 7.14, 2]’ 0s?" =1 gsin?" ! 0 d0 =P(m, n).

Thus (4) gives I'(m)I'(n) = B(m, n) T(m + n) (U.T.U., 2010 ; Bhopal, 2009 ; V.T.U., 2008 S)
whence follows (1) which is extremely useful for evaluating definite integrals in terms of gamma functions.

n/2
Cor. Rule to evaluate Io sin? x cos? x dx.

0% sin® x cos? x dx = [‘”1.‘“1] [By (3) of § 7.14]
ks
~ r[ 2 )T 2
- p+q+2 -.(5)
ar(P* 2]
In particular, when g = 0, and p = n, we have
n+1
2 . . r( 2 ) Jn
I sin” xdx = — .—
N +2) 2
eold
r[n + 1]
Similarly, M2 st xdp=—s 2 ) I .(6)
1—[_{1_+ ?.) 2
2
Example 7.42, Show that
n-1
(@) T(n) = L: (log ﬁ dy (n> 0). (J.N.T.U., 2003 ; Madras, 2003 S)
g-1
®) B, @)= [ aTy)ﬁ dy (V.T.U., 2003 ; Gauhati, 1999)

1xP~ 14 x91 ;
=S e U 2ines W Y (V.T.U., 2008 ; Osmania, 2003 ; Rohtak, 2003)
0 (1+x)P*?

Solution. (a) I'(n) = _[: " lexdx (n>0)



DOWNLOADED FROM www.CivilEnggForAll.com

MuLtiPLe INTEGRALS AND BeTa, Gamma FuncTions m
-x
i 1 n-1 1 5 1 n-1 Puty=e
= L (log —] y[— —dyJ-: jﬂ [log —) dy. Le., x = log (1/y)
y y y so that dx = - (1/y) dy
®) B, @)= [, P -2 dx
1 . 1
=1 s e, y==—
=j'0 1 [ ¥ ]q -1 i Put x 1+y:e : £ 1
L \ Iy 1+ ) so that dx = _lgdy
1+y)
oo g-1 Q‘l - g-1
=" 2X——dy= 1L ¥ o +I Y
0 (14 y)Pt0 0 (14 y)P*9 1 (14 y)Pt0
Now substituting y = 1/z in the second integral, we get
w y?l 0o 1 1 1 1 2P}
.(1 el N p+g (_Tsz=Io prg 42
a+y 2277 (1+1/2) z (1+2)
1 g-1 1 p-1 1..P-1 g-1
y z X +x
Hence, ,q)= et gy | ee——idp= | ———
P I°(1+y}p+q 2 '[C' 1+2z)P* 0 (1+x)P*?
Example 7.43. Express the following integrals in terms of gamma functions :
i dx nl2
@ |, 1 Ea ®) [ tan ) de. (Madras, 2006)
oo i e p.2
© [ Z-dx  (UPTU, 2006) @ [, @™ ax.
¢
1
(@) [, %" liog (1/x)]? dx (Madras, 2000)
i Put 2% =sin 6, i.e., x =sin*’? @
S (a)I - %) so that dx =1/2sin™% 6 cos 6 d6
{ 3\
-l+1
r|—2
* ) )
12 inl2¢g. 12 1 Jm 4
0 2 J(l_sinz e) 2 Jo ——+2 F(—)
rl -2 4
2
. )
n/2 nl/2 |
®) [, tan® do = ["sin'’* g cos12 6 de
l+1 —l+1
ri2—|r[-2
2 2 r(3)r(L
_ ) &) 11y (s
1 1 Tooeoorq 2 \4) 4
2 gt?
a|L——
2
m xl‘ - x{?
(© jl) c_xdx:jo de [ o= (loB = exloxq]

= j: e F10BC &€ gy [Put x log ¢ = ¢ so that dx = dt/log c]
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o 4 t \ at 1 s .
B = t dt=T 1)1 +1
IU < {logc) log ¢ (logc)“l IO L (c + 1)/log c)

T 2 1 =
(d) J'O a % dx= Io e b loga g, Put (b log a) x“ =t

so that dx = d#/2,{(b log a)

1
Il=
I -! t 132 [ 2) ‘JE
2,I(b log a) 2\{(b log @) 2J(b log @)

Put x =e7*/® so that log (1/x)=t/5

1 4 L = 4 3
(e) log/x)P dx=— [ e’ .2dt
Io 625 Io dx =_ée""5 dt

_r4)_ 6
625 625

Example 7.44. Evaluate J': e x™ =1 sin bx dx in terms of Gumma function. (U.P.T.U., 2003)

Solution. We have [(m) = [ €™ 2™ ! gy [Put x = ay, dx = ady]
= [ ewamymtdy or Jy €@ y" tdy=T(m)/a"™. i)

Then I= J: e x™ 1gin bx dx = j: e ** x™~1 (Imaginary part of ei®*) dx

= LP. of I: e-(u—ib}x xm—l %

= L.P. of ([T(m)(a — ib)" [By ()]
= LP. of {Tm)/(r™ (cos 6 — { sin 8)"] wherea =rcos8,b =r sin 8
= LP. of I'(m)/(r'" (cos m8 — i sin m0)] (Using Demoivere’s theorem §19.5)
I'(m). (cos mB + [ sin m0)
=LP. of r'" (cos m@ + i sin m0) (cos mB — L sin mB)
= l‘::) sin m0@ where r .J(a® + b%), 6 = tan"1 b/a.
2
Example 7.45. Prove that I & I ; L =
Ja-z9 7 Ju+sH 42 L
1 n/2 sin®  cos @ Pufbing 22 = on bodi= cos 6 d6
Solution. I \/* J- P zm [ ng g (sin 6)
1wz _ _1T@E/4TA/2) T @E/4)T1/2)
-2 Iﬂ 8 de_ZB(E’z ]"4 r6/4) | T/4)
2 2
Il dx _ Inm sec” 6d6 Pitting i =tan 8§ de = sec” 0.do
° Ja+x% ° 2/(tane)seco 2,/(tan )
n/4 m‘? 172 . 1
— d = =—
J‘I J(snl—zm 2J'j o do [Puttmg2ﬁ 0, d6=do

Lp[l 1)_ 1 TA/4)r1/2)
42"\ 4’2 ) 4J2 T1((3/4)
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k J(f—d:‘) < Ja‘fx’) =4~1’§ :{r [%)}2 =ﬁ-

Solution. (i) We know that ﬁ (m, n)=2 j sin?"~1 @ cos? 19 de (1)

1 12 . o
Puthngn-a,wehaveﬁ( J 2 [ sin® " g g (2)

Again putting n = mm(;),wegetﬁ(m,m) 2] (smecose =1 g
n/2 & - e
22m — |, sin®""'20de

= 2%*1‘[ sin?"~! ¢ d¢, putting 26 = ¢

1 ‘.I':f2_ 9m-1
=*2"9m772"1"2j sin

or 22n =1 f(m, m)=2 [|"*sin 2'"'19d9=ﬁ[m,%J [by (2)

(ii) Rewriting the above result in terms of " functions, we get

1
T(m)l"(m)=r(m)r(§]
T (m +m) I‘(m-b-;—]

F(’m)'F[m+%J=—W.

¢ do

92m -1

or

22m—l

Solution. (a) Putting x/h =X and ylh=Y, we ee tha th given integral
= [[, XY 1 (YY" h® dXdY where D' is the domain X>0,Y>0and X+ Y< 1.

| 1-%
—pitm I:I:-XX!'I y»-lagy dX =n'*"™ E‘Xu’.—l ):n X
hH 151 hH-m _hl+m T Nm+1)
jx (1= X)" dX =——BUm+1)= ThneD

*Named after a German mathematician Peter Gustav Lejeune Dirichlet (1805-1859) who studied under Cauchy and
succeeded Gauss at Gottingen. He is known for his contributions to Fourier series and number theory.
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= pi+m [‘l;.!(i-} ;I;(T)I) @D [ Tm+1)m=T(m)

(b) Taking y + z £ 1 — x(= h: say), the triple integral
1plex plox—-y j_ 4, e
= .l-uj-n xj-n ot 'yt dedydx

_ (-1 fh Ay m-1 n-1 gy T'(mTI@) e ,
= IO b [-I.O IO y F4 dZdy] dx = Jloxl F(Tn.-l-n hm dx e [By (!)]
I (m) I(n) I' (m) N(n)

1 1 m+n
B i et 1- de=—m
Fm+n+1) 0¥ a-x) Fm+n+1) Bk, m +n.+ 1)

_ I'mIn) T (m+n+1) TOTmM)T (n)
" Tm+n+1) TU+m+n+1) Tl+m+n+l)

Example 7.48. Evaluate the integral [[[+'™ ym~1 2 -1 dxdydz where %, y, z are all positive with

condition, (x/a) + (y/b)3 + (z/¢) < 1. (U.P.T.U., 2005 S)
a
Solution. Put (x/al =u,i.e., x = au'? so that dx = ;uUP‘l du
b
(y/b¥ =v,i.e., y=bvl so that dy = p va-1dy
and GleY =w, ie.,z=cw' so thatdz = Ew”"ldw

Then m xt1 =1 2 dadydz

p J'J]'(aulfp}l—l (bvlft;)m-l (cwlh')n—l ( E ]uUp—-l ( E Jul.-'q—-l ( E leh‘—l dudidi
p q r
lygm n
b
= qu—rc H ul/p-tymia=1ynlr=1 gy, dv dw where u + v + w < 1.

_db" " TWUpTm/gT (n/r)

pgr T(/p+ml/g+nir+1) [By Dirichlet’s integrall

x z ’ ) '

Example 7.49. The plane ~+ -g'- += = 1 meets the axes in A, B and C. Apply Dirichlet’s integral to find

the volume of the tetrahedron OABC. Also find its mass if the density at any point is kxyz. (U.P.T.U., 2004)
Solution. Putx/a = u, y/b = v, zlc = w then the tetrahedron OABChasu>0,v20,w>0andu+v+w<1.

volume of this tetrahedron = .mndx dy dz

= _m;)abc du dv dw [a dx = adu, dy = bdv, dz = cdw

for D'=u=20,v20,w20&u+v+w<l.
= abe _mlnul_l ' ' du do dw

rorwra) abe i w
=g 1D 6 [By Dirichlet’s integral]

Mass = [[[ kayzdx dy dz = [[[ k (aw) (Bv) (cw)abe du dv dw
T S IJ'.I'uz—l GELBN g g

r@rere i
T(2+2+24+ 1) kabe

= i azbzcz .

1
— bey2h2n2 P
= ka*b% -8l = 72
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(1) ELLIPTIC INTEGRALS

1
In Applied Mathematics, we often come across integrals of the form I; e dxor L sin *” dx which

cannot be evaluated by any of the standard methods of integration. In such cases, we may find the value to any
desired degree of accuracy by expanding their integrands as power series. An important class of such integrals
is the elliptic integrals.

Def. The integral Fk, )= [ ——2 __(12<1) (@)
0 1— 2 2
which is a function of the two variables % and ¢, is called the elliptic integral of the first kind with modulus k and
amplitude ¢.
The integral E(k, ¢) = _[: Ja -2 sin? x) dx (k2 < 1) i)

is called the elliptic integral of the second kind with modulus k and amplitude §.
The name elliptic integral arose from its original application in finding the length of an elliptic arc (Fig.7.45), For
_instance, consider the ellipse
x =acos ¢, y=bsin¢, (a<b)
Then length of its arc

I [ J [dy] }d"’ I\([(—asmd:)zﬂboosqa}"‘}dq,
= I:J[(b2+(a2_b2)m‘n2¢ld¢=b I:AI-[I*;%J“E ]d¢

=bE(k, §) for k2 =1-a?b?< 1.
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Also the perimeter of the ellipse

12
Sl _[: JA-#2 sin® 0) do = 4bE(k, 1/2).

This particular integral with upper limit ¢ = /2 is called the complete elliptic integral of the second kind
and is denoted by E(k).

ni2 G e
Thus E(k) = L (A -k sin” 0)dy (k? < 1) o (i)
Similarly, the complete elliptic integral of first kind is

n/2 do
K(k) = —_—_—
® '[0 Ja 22 sin® §)

To evaluate it, we expand the integral in the form

(2 <1) .Aiv)

2 4
(1-%k2sin?¢)12=1+ %sing ¢+% sint ¢ + ...

This series can be shown to be uniformly convergent for all k, and may, therefore, be integrated term by term [See
§ 9.19-I1]. Then we have

w2 2 4 6
K(k) = I 1+k—sin2¢+£sin4¢+isinﬁ¢+... do
0 2 8 16

2 2 2
= Z 1+[1J BallB] gay| 185 T os, ()
2 2 2.4 2.4.6.
This series may be used to compute K for various values of k. In particular, if £ = sin 10°; we have

K= gu +0.00754 + 0.00012 + ...) = 1.5828 0i)

In this way tables of the elliptic integrals are constructed. Values of F(&, ¢) and E(k, ¢) are readily available for 0 <¢
<2, 0 <k < 1. (See Peirce’s short tables).

6
Example 7.50. Express I: % in terms of elliptic integral.
sin

2cospdo
(1+ cos® ¢)

2 cos® ¢ 7/2(1 + cos® ¢) — 1

e L |
J(1+ cos® ¢) 0 @ +cos® §)
nf2 n/2 do nl/2 2 ni2 do
=2 Jal+costpdp- [ ——=2__L_9 J@-sin? ) do—- | ——
J‘(] .[3 ‘(1 + ms2 ¢)} l-[o -[0 ’(2—5?[112 ¢)}
n/2 - n/2 d¢ 1 1
=22 [ Ja-1/2sin® ¢) do- 2 =2J§E[—)— 21{(—]
J_Iﬂ J_-L Ja-1/2sin? ¢) V2 2 V2

(2) Elliptic functions. By putting sin x = ¢ and sin ¢ = z, (i) becomes
_— r dt
0 i - )1 - #2%)]
This is known as Jacobi’s form of the elliptic integral of first kind* whereas (1) is the Legendre’s formt.
If k = 0, (vii) gives u = sin”! z. By analogy, we denote (vii) sn~! z for a fixed non-zero value of k. This leads
to the functions sn u =z =sin ¢ and cn u =cos ¢
which are called the Jacobi’s elliptic functions.

Solution. Put cos x = cos? ¢ and dx =

/2
Then I= J’O do=2

(k2 <1) ...(vit)

* See footnote p. 215.
T A French mathematician Adrien Marie Legendre (1752-1833) who made important contributions to number theory,
special functions, calculus of variations and elliptic integrals.
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The elliptic functions sr 1 and cn u are periodic with a period depending on k and an amplitude equal to unity. These
behave somewhat like sin © and cos u. For instance
sn(0)=0,cn(l) =1 and  sn(—u) = - sn(u), cn(-u) = cn(u).

Solution. Putting ~ x= %(l—sine),dx=—'§eo39d9.
2 2
2ax —x2 = GT(l—sinB)(3+sina)anda.2'—x2=%(1+sin9)(3-sin6}
Also when x=0,0 =w/2; whenx=0a/2,0=0.

Thus the given integral
_ 4 —(a/?2) cos 8 dO

2 (n/2 de 2 i
5 A el
a® dnr2 J[(l—sinzﬁ)@—Sin'zG)] 3a Jo J[(l—(ll3)25in29] 3a \ 3,

(1) ERROR FUNCTION OR PROBABILITY INTEGRAL
The error function or the probability integral is defined as

-2 [,
erf(x) = P .[u e’ dt.
This integral arises in the solution of certain partial differential equations of applied mathematics and occupies an
important position in the probability theory.
The complementary error function erfc(x) is defined as erfe(x) = 1 — erfl(x).
(2) Properties : (i) erf(—x) = —erf(x);  (i1) erf(0) =0

2 > 2, 2 4m_ -
(iii) erf(eo) = ﬁ IO et dt *ﬁ? =1 [By (ii2), p. 289]
This proves that the total area under the Normal or Gaussian error function curve is unity — § 26.16.
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m OBIJECTIVE TYPE OF QUESTIONS
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