LINEAR ALGEBRA PYQS 2010 - 2020

2020

1.

माना समुच्चय V में सभी n imes n के वास्तविक मैजिक वर्ग हैं। दिखाइए कि समुच्चय V, R पर एक सदिश समष्टि है। दो भिन्न-भिन्न 2×2 मैजिक वर्ग के उदाहरण दीजिए।

Consider the set V of all $n \times n$ real magic squares. Show that V is a vector space over R. Give examples of two distinct 2×2 magic squares.

10

(b) माना $M_2(R)$ सभी 2×2 वास्तविक आव्यूहों का सदिश समष्टि है। माना $B=\begin{bmatrix}1 & -1\\ -4 & 4\end{bmatrix}$. माना $T: M_2(R) \to M_2(R)$ एक रैखिक रूपांतरण है, जो T(A) = BA द्वारा परिभाषित है। T की कोटि (रैंक) व शून्यता (निलटि) ज्ञात कीजिए। आव्यूह A ज्ञात कीजिए, जो शून्य आव्यूह को प्रतिचित्रित करता है।

Let $M_2(R)$ be the vector space of all 2×2 real matrices. Let $B = \begin{bmatrix} 1 & -1 \\ -4 & 4 \end{bmatrix}$.

Suppose $T: M_2(R) \to M_2(R)$ is a linear transformation defined by T(A) = BA. Find the rank and nullity of T. Find a matrix A which maps to the null matrix.

2.

Define an $n \times n$ matrix as $A = I - 2u \cdot u^T$, where u is a unit column vector.

- Examine if A is symmetric.
- Examine if A is orthogonal.
- Show that trace $(A) \approx n-2$.
- (iv) Find $A_{3\times3}$, when $u = \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \end{bmatrix}$.

(b) माना F सिम्मिश्र संख्याओं का एक उपक्षेत्र है व $T: F^3 \to F^3$ एक ऐसा फलन है, जो निम्न रूप से परिभाषित है:

 $T(x_1, x_2, x_3) = (x_1 + x_2 + 3x_3, 2x_1 - x_2, -3x_1 + x_2 - x_3)$ a, b, c पर क्या शर्ते हैं कि (a, b, c), T के शून्य समष्टि में है? T की शून्यता निकालिए। Let F be a subfield of complex numbers and T a function from $F^3 \to F^3$ defined by $T(x_1, x_2, x_3) = (x_1 + x_2 + 3x_3, 2x_1 - x_2, -3x_1 + x_2 - x_3)$. What are the conditions on a, b, c such that (a, b, c) be in the null space of T? Find the nullity of T.

15

4.

Let

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} -11 & 2 & 2 \\ -4 & 0 & 1 \\ 6 & -1 & -1 \end{bmatrix}$$

- (i) Find AB.
- (ii) Find det(A) and det(B).
- (iii) Solve the following system of linear equations: 1, 2, 1x+2z=3, 2x-y+3z=3, 4x+y+8z=14

2019

1.

(c) माना कि $T: \mathbb{R}^2 \to \mathbb{R}^2$ एक रैखिक प्रतिचित्र है, जैसा कि T(2, 1) = (5, 7) एवं T(1, 2) = (3, 3). अगर A मानक आधारों e_1, e_2 के सापेक्ष T के संगत आव्यूह है, तो A की कोटि ज्ञात कीजिए।

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear map such that T(2, 1) = (5, 7) and T(1, 2) = (3, 3). If A is the matrix corresponding to T with respect to the standard bases e_1 , e_2 , then find Rank (A).

If

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & -4 & 1 \\ 3 & 0 & -3 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 2 & 1 & 1 \\ 1 & -1 & 0 \\ 2 & 1 & -1 \end{bmatrix}$$

then show that $AB = 6I_3$. Use this result to solve the following system of equations:

$$2x+y+z=5$$

$$x-y=0$$

$$2x+y-z=1$$

(b) माना कि A और B समान कोटि के दो लांबिक आव्यूह हैं तथा $\det A + \det B = 0$. दर्शाइए कि A + B एक अव्युत्क्रमणीय (सिंगुलर) आव्यूह है।

Let A and B be two orthogonal matrices of same order and det $A + \det B = 0$. Show that A + B is a singular matrix.

3.

Let

$$A = \begin{pmatrix} 5 & 7 & 2 & 1 \\ 1 & 1 & -8 & 1 \\ 2 & 3 & 5 & 0 \\ 3 & 4 & -3 & 1 \end{pmatrix}$$

- (i) Find the rank of matrix A.
- (ii) Find the dimension of the subspace

$$V = \left\{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \middle| A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = 0 \right\}$$

15+5=20

1. (a) मान लीजिये कि A एक 3×2 आब्यूह है और B एक 2×3 आब्यूह है। दर्शाइये कि $C=A\cdot B$ एक अब्युक्तमणीय आब्यूह है।

Let A be a 3×2 matrix and B a 2×3 matrix. Show that $C = A \cdot B$ is a singular matrix.

10

 (b) आधार सदिशों e₁ = (1, 0) और e₂ = (0, 1) को α₁ = (2, -1) एवं α₂ = (1, 3) के रैखिक संयोग के रूप में व्यक्त कीजिये।

Express basis vectors e_1 = (1, 0) and e_2 = (0, 1) as linear combinations of α_1 = (2, -1) and α_2 = (1, 3).

2.

(a) अगर A और B समरूप n×n आब्यूह हैं, तो दर्शाइये कि उनके आइगेन मान एक ही हैं।
 Show that if A and B are similar n×n matrices, then they have the same eigenvalues.

3.

For the system of linear equations

$$x+3y-2z=-1$$
$$5y+3z=-8$$
$$x-2y-5z=7$$

determine which of the following statements are true and which are false :

- (i) The system has no solution.
- (ii) The system has a unique solution.
- (iii) The system has infinitely many solutions.

13

2017

- **1.**(a) मान लीजिए $A = \begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix}$ । एक व्युत्क्रमणीय आव्यूह P ज्ञात कीजिए ताकि $P^{-1}AP$ एक विकर्ण- आव्यूह हो ।
 - Let $A = \begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix}$. Find a non-singular matrix P such that $P^{-1}AP$ is a diagonal matrix.
- 1.(b) दर्शाइए कि समरूप आव्यूहों के समान अभिलक्षणिक बहुपद होते हैं।
 Show that similar matrices have the same characteristic polynomial.

2.

2.(d) मान लीजिए कि U व W सदिश समष्टि V के चार सुस्पष्ट विमीय उप-आकाश जहाँ पर विमा V=6। उप-आकाश $(U\cap W)$ की सम्भावित विमाएँ ज्ञात कीजिए। Suppose U and W are distinct four dimensional subspaces of a vector space V, where dim V=6. Find the possible dimensions of subspace $U\cap W$.

3.

- 3.(a) विचारिए आव्यूह-प्रतिरूपण $A: R^4 \to R^3$ है, जहाँ पर $A = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 1 & 3 & 5 & -2 \\ 3 & 8 & 13 & -3 \end{pmatrix}$ । A की प्रतिछाया की विमा व एक आधार की ज्ञात कीजिए ।

 Consider the matrix mapping $A: R^4 \to R^3$, where $A = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 1 & 3 & 5 & -2 \\ 3 & 8 & 13 & -3 \end{pmatrix}$. Find a basis and dimension of the image of A and those of the kernel A.
- 3.(b) सिद्ध कीजिए कि आव्यूह के विभिन्न अशून्य-अभिलक्षणिक सिद्धश रैखिक स्वतंत्र होते हैं।
 Prove that distinct non-zero eigenvectors of a matrix are linearly independent. 10
- 3.(b) सिद्ध कीजिए कि आव्यूह के विभिन्न अशून्य-अभिलक्षणिक सिद्धश रैखिक स्वतंत्र होते हैं।
 Prove that distinct non-zero eigenvectors of a matrix are linearly independent. 10

4.

Consider the following system of equations in x, y, z:

$$x + 2y + 2z = 1$$

 $x + ay + 3z = 3$
 $x + 11y + az = b$.

- (i) For which values of a does the system have a unique solution?
- (ii) For which pair of values (a, b) does the system have more than one solution?

15

2016

1. (a) (i) यदि
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & 2 \\ 1 & 0 & 1 \end{bmatrix}$$
 है, तो प्रारम्भिक पंक्ति संक्रिया (elementary row operation) के प्रयोग से A^{-1} निकालिये।

Using elementary row operations, find the inverse of $A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & 2 \\ 1 & 0 & 1 \end{bmatrix}$.

6

(ii) यदि $A = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$ है, तो $A^{14} + 3A - 2I$ का मान निकालिये।

If $A = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$, then find $A^{14} + 3A - 2I$.

2.

Using elementary row operations, find the condition that the linear equations

$$x-2y+z=a$$
$$2x+7y-3z=b$$
$$3x+5y-2z=c$$

have a solution.

$$W_1 = \{(x, y, z) \mid x + y - z = 0\}$$

$$W_2 = \{(x, y, z) \mid 3x + y - 2z = 0\}$$

$$W_3 = \{(x, y, z) \mid x - 7y + 3z = 0\}$$

तो $\dim (W_1 \cap W_2 \cap W_3)$ तथा $\dim (W_1 + W_2)$ का मान निकालिये।

If

(ध) यदि

$$W_1 = \{(x, y, z) \mid x + y - z = 0\}$$

$$W_2 = \{(x, y, z) \mid 3x + y - 2z = 0\}$$

$$W_3 = \{(x, y, z) \mid x - 7y + 3z = 0\}$$

then find $\dim(W_1 \cap W_2 \cap W_3)$ and $\dim(W_1 + W_2)$.

- 2. (a) (i) यदि $M_2(R)$, 2×2 कोटि (order) के वास्तविक आब्यूहों की समष्टि (space) तथा $P_2(x)$, वास्तविक बहुपदों (polynomials), जिनकी अधिकतम घात (degree) 2 है, की समष्टि (space) हो, तो $T: M_2(R) \to P_2(x)$, जहाँ $T \begin{bmatrix} a & b \\ c & d \end{bmatrix} = a + c + (a d)x + (b + c)x^2$, का $M_2(R)$ एवं $P_2(x)$ के मानक आधारों (standard bases) के सापेक्ष आब्यूह निरूपित कीजिये। इसके अलावा T का शून्य समष्टि (null space) प्राप्त कीजिये। If $M_2(R)$ is space of real matrices of order 2×2 and $P_2(x)$ is the space of real polynomials of degree at most 2, then find the matrix representation of $T: M_2(R) \to P_2(x)$, such that $T \begin{bmatrix} a & b \\ c & d \end{bmatrix} = a + c + (a d)x + (b + c)x^2$, with
 - respect to the standard bases of $M_2(R)$ and $P_2(x)$. Further find the null space of T.

10

б

8

8

18

- (ii) यदि $T: P_2(x) \to P_3(x)$ इस प्रकार है कि $T(f(x)) = f(x) + 5 \int_0^x f(t) \, dt$, तो $\{1, 1+x, 1-x^2\}$ एवं $\{1, x, x^2, x^3\}$ को क्रमशः $P_2(x)$ एवं $P_3(x)$ का आधार (bases) लेते हुए T का आव्यूह निकालिये।
 - If $T: P_2(x) \to P_3(x)$ is such that $T(f(x)) = f(x) + 5 \int_0^x f(t) dt$, then choosing $\{1, 1+x, 1-x^2\}$ and $\{1, x, x^2, x^3\}$ as bases of $P_2(x)$ and $P_3(x)$ respectively, find the matrix of T.

4.

(b) (i) यदि $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ है, तो A के अभिलक्षणिक मान (eigenvalues) तथा अभिलक्षणिक सदिशों (eigenvectors) को निकालिये।

If
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, then find the eigenvalues and eigenvectors of A .

- (ii) सिद्ध कीजिये कि हर्मिटी (Hermitian) आव्यूह के सभी अभिलक्षणिक मान वास्तविक हैं।

 Prove that eigenvalues of a Hermitian matrix are all real.
- (c) यदि आधारों (bases) $\{1-x, \ x(1-x), \ x(1+x)\}$ एवं $\{1, \ 1+x, \ 1+x^2\}$ के सापेक्ष रैखिक रूपांतरण (linear transformation) $T: P_2(x) \to P_2(x)$ के तहत आव्यूह निरूपण $A = \begin{bmatrix} 1 & -1 & 2 \\ -2 & 1 & -1 \\ 1 & 2 & 3 \end{bmatrix}$ हो, तो T प्राप्त कीजिये।
 - If $A = \begin{bmatrix} 1 & -1 & 2 \\ -2 & 1 & -1 \\ 1 & 2 & 3 \end{bmatrix}$ is the matrix representation of a linear transformation

 $T: P_2(x) \to P_2(x)$ with respect to the bases $\{1-x, x(1-x), x(1+x)\}$ and $\{1, 1+x, 1+x^2\}$, then find T.

2015

1.

DECTION—A

- Q. 1(a) दिए गए सदिश $V_1 = (1, 1, 2, 4)$, $V_2 = (2, -1, -5, 2)$, $V_3 = (1, -1, -4, 0)$ तथा $V_4 = (2, 1, 1, 6)$ रैखिकत : स्वतंत्र हैं। क्या यह सत्य है ? अपने उत्तर के पक्ष में तर्क दीजिये। The vectors $V_1 = (1, 1, 2, 4)$, $V_2 = (2, -1, -5, 2)$, $V_3 = (1, -1, -4, 0)$ and $V_4 = (2, 1, 1, 6)$ are linearly independent. Is it true ? Justify your answer.
- Q. 1(b) निम्नलिखित आव्यूह को पंक्ति सोपानक रूप में समानीत कीजिये और तत्पश्चात् इसकी कोटि निकालिए:

Reduce the following matrix to row echelon form and hence find its rank:

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 5 \\ 1 & 5 & 5 & 7 \\ 8 & 1 & 14 & 17 \end{bmatrix}.$$

2.

Q. 2(a) यदि आव्यूह
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
 तब आव्यूह A^{30} को ज्ञात कीजिये।

If matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ then find A^{30} .

Q. 2(c) निम्नलिखित आव्यूह के आइगन मानों एवं आइगन सदिशों को ज्ञात कीजिए : Find the eigen values and eigen vectors of the matrix :

 $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}.$

4.

Let $V = \mathbb{R}^3$ and $T \in A(V)$, for all $a_i \in A(V)$, be defined by $T(a_1, a_2, a_3) = (2a_1 + 5a_2 + a_3, -3a_1 + a_2 - a_3, -a_1 + 2a_2 + 3a_3)$ What is the matrix T relative to the basis

$$V_1 = (1, 0, 1)$$
 $V_2 = (-1, 2, 1)$ $V_3 = (3, -1, 1)$?

5.

Q. 4(b) R⁴ की उस उपसमिष्ट की विमा ज्ञात कीजिये जो समुच्चय $\{(1, 0, 0, 0), (0, 1, 0, 0), (1, 2, 0, 1), (0, 0, 0, 1)\}$ द्वारा विस्तारित है। तत्पश्चात् उसका आधार निकालिए। Find the dimension of the subspace of R4, spanned by the set $\{(1, 0, 0, 0), (0, 1, 0, 0), (1, 2, 0, 1), (0, 0, 0, 1)\}$ Hence find its basis.

12

12

(a) एक सदिश ${f R}^3$ में ज्ञात कीजिए, जो कि ${f V}$ तथा ${f W}$ के प्रतिच्छेद का जनक है, जहाँ कि ${f V}$ एक ${f xy}$ समतल है तथा ${f W}$ सदिश $(1,\,2,\,3)$ तथा सदिश $(1,\,-1,\,1)$ के द्वारा जिनत किया गया आकाश (स्पेस) है ।

Find one vector in \mathbb{R}^3 which generates the intersection of V and W, where V is the xy plane and W is the space generated by the vectors (1, 2, 3) and (1, -1, 1).

10

<u>2.</u>

(b) प्रारंभिक पंक्ति या स्तंभ संक्रियाओं का प्रयोग करके, आव्यूह (मैट्रिक्स)

$$\begin{bmatrix} 0 & 1 & -3 & -1 \\ 0 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$$

की कोटि ज्ञात कीजिए।

Using elementary row or column operations, find the rank of the matrix 10

$$\begin{bmatrix} 0 & 1 & -3 & -1 \\ 0 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$$

<u>3.</u>

 $\mathbf{Q2.}$ (a) मान लीजिए कि \mathbf{V} और \mathbf{W} निम्न उपसमिष्टियाँ हैं \mathbf{R}^4 की :

$$V = \{(a, b, c, d) : b - 2c + d = 0\}$$
 और

 $W = \{(a, b, c, d) : a = d, b = 2c\}.$

(i) V, (ii) W, (iii) $V \cap W$ का एक आधार और विस्तार ज्ञात कीजिए ।

Let V and W be the following subspaces of R4:

$$V = \{(a, b, c, d) : b - 2c + d = 0\}$$
 and

 $W = \{(a, b, c, d) : a = d, b = 2c\}.$

Find a basis and the dimension of (i) V, (ii) W, (iii) $V \cap W$.

15

(b) (i) λ तथा μ के मान जाँच कीजिए ताकि समीकरण x+y+z=6, x+2y+3z=10, $x+2y+\lambda z=\mu$ का (1) कोई हल नहीं है, (2) एक अद्वितीय हल है, (3) अपरिमित हल हैं ।

Investigate the values of λ and μ so that the equations x + y + z = 6, x + 2y + 3z = 10, $x + 2y + \lambda z = \mu$ have (1) no solution, (2) a unique solution, (3) an infinite number of solutions.

10

<u>4.</u>

(ii) आव्यूह $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ के लिए कैली – हैमिल्टन प्रमेय सत्यापित कीजिए और अतएव इसका व्युत्क्रम ज्ञात कीजिए । साथ ही, $A^5 - 4A^4 - 7A^3 + 11A^2 - A - 10$ I के द्वारा निरूपित आव्यूह भी ज्ञात कीजिए ।

Verify Cayley – Hamilton theorem for the matrix $A=\begin{bmatrix}1&4\\2&3\end{bmatrix}$ and hence find its inverse. Also, find the matrix represented by $A^5-4A^4-7A^3+11A^2-A-10\ I.$

10

<u>5.</u>

(c) (i) मान लीजिए कि
$$A=\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$
. A के आइगेन मानों और संगत आइगेन सिदशों को ज्ञात कीजिए।

Let
$$A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$
. Find the eigen values of A and the corresponding eigen vectors

corresponding eigen vectors.

सिद्ध कीजिए कि ऐकिक आव्यूह के आइगेन मानों का निरपेक्ष मान 1 होता है। Prove that the eigen values of a unitary matrix have absolute value 1.

2013

1.(a) Find the inverse of the matrix:

$$A = \begin{bmatrix} 1 & 3 & 1 \\ 2 & -1 & 7 \\ 3 & 2 & -1 \end{bmatrix}$$

by using elementary row operations. Hence solve the system of linear equations

$$x + 3y + z = 10$$

$$2x - y + 7z = 21$$

$$3x + 2y - z = 4$$

10

8

7

- Let A be a square matrix and A* be its adjoint, show that the eigenvalues of 1.(b) matrices AA^* and A^*A are real. Further show that trace (AA^*) = trace (A^*A) .
- 1.(c)Evaluate $\int_{0}^{1} (2r \sin \frac{1}{r} \cos \frac{1}{r}) dr$

2.(a)(i) Let P_n denote the vector space of all real polynomials of degree at most n and $T: P_2 \rightarrow P_3$ be a linear transformation given by

$$T(p(x)) = \int_0^x p(t)dt, \qquad p(x) \in P_2.$$

Find the matrix of T with respect to the bases $\{1, x, x^2\}$ and $\{1, x, 1+x^2, 1+x^3\}$ of P_2 and P_3 respectively. Also, find the null space of T.

- 2.(a)(ii) Let V be an n-dimensional vector space and $T: V \to V$ be an invertible linear operator. If $\beta = \{X_1, X_2, ..., X_n\}$ is a basis of V, show that $\beta' = \{TX_1, TX_2, ..., TX_n\}$ is also a basis of V.
- **2.**(b)(i) Let $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & \omega^2 & \omega \\ 1 & \omega & \omega^2 \end{bmatrix}$ where $\omega(\neq 1)$ is a cube root of unity. If λ_1 , λ_2 , λ_3 denote

the eigenvalues of A^2 , show that $|\lambda_1| + |\lambda_2| + |\lambda_3| \le 9$.

8

3.

2.(b)(ii) Find the rank of the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 8 & 12 \\ 3 & 5 & 8 & 12 & 17 \\ 5 & 8 & 12 & 17 & 23 \\ 8 & 12 & 17 & 23 & 30 \end{bmatrix}$$

2.(c)(i) Let A be a Hermetian matrix having all distinct eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$. If $X_1, X_2, ..., X_n$ are corresponding eigenvectors then show that the $n \times n$ matrix C whose k^{th} column consists of the vector X_k is non singular.

2.(c)(ii) Show that the vectors $X_1 = (1, 1+i, i)$, $X_2 = (i, -i, 1-i)$ and $X_3 = (0, 1-2i, 2-i)$ in C^3 are linearly independent over the field of real numbers but are linearly dependent over the field of complex numbers.

(c) Prove or disprove the following statement:

12

- If $B = \{b_1, b_2, b_3, b_4, b_5\}$ is a basis for \mathbb{R}^5 and V is a two-dimensional subspace of \mathbb{R}^5 , then V has a basis made of just two members of B.
- (d) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by

 $T(\alpha, \beta, \gamma) = (\alpha + 2\beta - 3\gamma, 2\alpha + 5\beta - 4\gamma, \alpha + 4\beta + \gamma)$ Find a basis and the dimension of the image of T and the kernel of T.

2. (a) (i) Let V be the vector space of all 2×2 matrices over the field of real numbers. Let W be the set consisting of all matrices with zero determinant. Is W a subspace of V?

Justify your answer.

8

(ii) Find the dimension and a basis for the space W of all solutions of the following homogeneous system using matrix notation:

$$x_1 + 2x_2 + 3x_3 - 2x_4 + 4x_5 = 0$$
$$2x_1 + 4x_2 + 8x_3 + x_4 + 9x_5 = 0$$
$$3x_1 + 6x_2 + 13x_3 + 4x_4 + 14x_5 = 0$$

(b) (i) Consider the linear mapping $f: \mathbb{R}^2 \to \mathbb{R}^2$ by

$$f(x, y) = (3x + 4y, 2x - 5y)$$

Find the matrix A relative to the basis ((1, 0), (0, 1)) and the matrix B relative to the basis $\{(1, 2), (2, 3)\}$. 12

(ii) If λ is a characteristic root of a non-singular matrix A, then prove that $\frac{|A|}{\lambda}$ is a characteristic root of Adj A.

(c) Let

$$H = \begin{pmatrix} 1 & i & 2+i \\ -i & 2 & 1-i \\ 2-i & 1+i & 2 \end{pmatrix}$$

be a Hermitian matrix. Find a nonsingular matrix P such that $D = P^T H \overline{P}$ is diagonal.

2011

<u>1.</u>

SECTION—A

1. (a) Let A be a non-singular, $n \times n$ square matrix. Show that A . (adj A) = |A| . I_n . Hence show that |A| adj (adj A) $|A| = |A|^{(n-1)^2}$.

(b) Let
$$A = \begin{bmatrix} 1 & 0 & -1 \\ 3 & 4 & 5 \\ 0 & 6 & 7 \end{bmatrix}$$
, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, $B = \begin{bmatrix} 2 \\ 6 \\ 5 \end{bmatrix}$.

Solve the system of equations given by

$$AX = B$$

Using the above, also solve the system of equations $A^T X = B$ where A^T denotes the transpose of matrix A.

2. (a) (i) Let λ₁, λ₂, ..., λ_n be the eigen values of a n × n square matrix A with corresponding eigen vectors X₁, X₂, ..., X_n. If B is a matrix similar to A show that the eigen values of B are same as that of A. Also find the relation between the eigen vectors of B and eigen vectors of A.

(ii) Verify the Cayley-Hamilton theorem for the matrix

10

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & 0 \\ 3 & -5 & 1 \end{bmatrix}.$$

Using this, show that A is non-singular and find A^{-1} .

<u>3.</u>

(b) (i) Show that the subspaces of \mathbb{R}^3 spanned by two sets of vectors $\{(1, 1, -1), (1, 0, 1)\}$ and $\{(1, 2, -3), (5, 2, 1)\}$ are identical. Also find the dimension of this subspace.

 (ii) Find the nullity and a basis of the null space of the linear transformation A: R⁽⁴⁾ → R⁽⁴⁾ given by the matrix

$$A = \begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}.$$

(c) (i) Show that the vectors (1, 1, 1), (2, 1, 2) and (1, 2, 3) are linearly independent in R⁽³⁾. Let T: R⁽³⁾ → R⁽³⁾ be a linear transformation defined by

$$T(x, y, z) = (x + 2y + 3z, x + 2y + 5z, 2x + 4y + 6z).$$
 Show that the images of above vectors under

Show that the images of above vectors under T are linearly dependent. Give the reason for the same.

(ii) Let
$$A = \begin{bmatrix} 2 & -2 & 2 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$$
 and C be a non-

singular matrix of order 3×3 . Find the eigen values of the matrix B^3 where $B = C^{-1}AC$.

- 1.
- 1. Attempt any five of the following:
 - (a) If λ_1 , λ_2 , λ_3 are the eigenvalues of the matrix

$$A = \begin{pmatrix} 26 & -2 & 2 \\ 2 & 21 & 4 \\ 4 & 2 & 28 \end{pmatrix}$$

show that

$$\sqrt{\lambda_1^2 + \lambda_2^2 + \lambda_3^2} \le \sqrt{1949}$$

(b) What is the null space of the differentiation transformation

$$\frac{d}{dx}: P_n \to P_n$$

where P_n is the space of all polynomials of degree $\leq n$ over the real numbers? What is the null space of the second derivative as a transformation of P_n ? What is the null space of the kth derivative?

2.

2. (a) Let $M = \begin{pmatrix} 4 & 2 & 1 \\ 0 & 1 & 3 \end{pmatrix}$. Find the unique

linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ so that M is the matrix of T with respect to the basis

$$\beta = \{ \nu_1 = (1, 0, 0), \nu_2 = (1, 1, 0), \nu_3 = (1, 1, 1) \}$$

of \mathbb{R}^3 and

$$\beta' = \{ w_1 = (1,\,0),\; w_2 = (1,\,1) \}$$

of \mathbb{R}^2 . Also find T(x, y, z).

3.

- **4.** (a) (i) In the *n*-space \mathbb{R}^n , determine whether or not the set
 - $\{e_1 e_2, e_2 e_3, \dots, e_{n-1} e_n, e_n e_1\}$ is linearly independent.
 - (ii) Let T be a linear transformation from a vector space V over reals into V such that $T T^2 = I$. Show that T is invertible.

20

2009

1.

- 1. Attempt any five of the following:
 - (a) Find a Hermitian and a skew-Hermitian matrix each whose sum is the matrix

$$\begin{bmatrix} 2i & 3 & -1 \\ 1 & 2+3i & 2 \\ -i+1 & 4 & 5i \end{bmatrix}$$

12

(b) Prove that the set V of the vectors (x_1, x_2, x_3, x_4) in \mathbb{R}^4 which satisfy the equations $x_1 + x_2 + 2x_3 + x_4 = 0$ and $2x_1 + 3x_2 - x_3 + x_4 = 0$, is a subspace of \mathbb{R}^4 . What is the dimension of this subspace? Find one of its bases.

12

2. (a) Let $\mathcal{B} = \{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}$ and $\mathcal{B}' = \{(2, 1, 1), (1, 2, 1), (-1, 1, 1)\}$ be the two ordered bases of \mathbb{R}^3 . Then find a matrix representing the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ which transforms \mathcal{B} into \mathcal{B}' . Use this matrix representation to find $T(\bar{x})$, where $\bar{x} = (2, 3, 1)$.

20

3.

(c) Find a 2×2 real matrix A which is both orthogonal and skew-symmetric. Can there exist a 3×3 real matrix which is both orthogonal and skew-symmetric? Justify your answer.

20

3. (a) Let $L: \mathbb{R}^4 \to \mathbb{R}^3$ be a linear transformation defined by $L((x_1, x_2, x_3, x_4))$ = $(x_3 + x_4 - x_1 - x_2, x_3 - x_2, x_4 - x_1)$ Then find the rank and nullity of L. Also, determine null space and range space of L.

4.

4. (a) Prove that the set V of all 3×3 real symmetric matrices forms a linear subspace of the space of all 3×3 real matrices. What is the dimension of this subspace? Find at least one of the bases for V.