Ex. 10, (a) [ a particle siarts from rest af a given point of cveloid with iis axis vertical and
vertex downwards, prove that it falls L of the vertical distance to the lowest point in time
2(a'e)’? sin”! (17.Jn ), where a is the radius of the generating circle.

[Agra 2000, 02, 05; Kanpur 1999; Purvanchal 1996]

Sol. Proceed as in Art, 114 upto equation (11}, For the solution of this problem, do not wrile
equations (2) and (3). With equaton { 11). now proceed as lollows. Re-writing (11), we get

cos {t(glda)'*} = sis, or  1=2(ale)" " cos ' (slsy) _ L1
Since =8 so s =8ay, Thus Sl = (g :
Then, (12) reduces (o i = 2alu) ?cos ! vy A E)]

Let the particle take time ¢ in falling a distance (L/mn)y, so that when 1 = ¢, v = ¥, — w/n
=1 - Un)y, and so (13) gives

= 2alg)  cos (1 - 1) = 2alg) T sin {1 - (1 - Ly ',

[using formula, cos
or f=2(alg) ?sin' (1//n ), which is the required time.

Ex. 10 (b) A particle slides down the arc of a smooth cyveloid whose axis is vertical and verfex
lowest, stariing from vest al a given point of the cveloid, Prove that the lime occupied in falling down
the fivst half of the vertical height 1o the lowest point is equal o the fime of fafling the second half.

Sol. Proceed as in Ex. 10{a) by replacing by 2, [Meerut 2007)

Pe=sin ' (1 =)'

S. A particle oscillates in a cycloid under gravity, the ampli-
tude of the motion being b, and period being ;T. Show that its
velocity at any time t measured from a position of rest is

2."_b. sin (Z’-’.’.)
T t [Mecrut 1977 (S))]

Sol. Refer § 4:12 above.
The equations of motion are

m (d*s|dt*)=—mg sin ¢ (1)
and m (v¥/p)=R—mg cos ¢, ..(2)
For the cycloid, s=4a sin ¢. ...(3)
Using (3), (1) becomes
(d*s/d1*)= —(g/4a) s,

which represents a S.H.M
. the time period T of the particle is given by

T=2%/+/(g/da) or T=4m 4/(alg). ..(4)
: 2
Integrating, P“ﬂ(j—f ) “*ﬁ_a s+ 4. ...(5)

But the amplitude of the motion is b. So the actual distance
of a position of rest from the vertex O is b i.e.,, ve=0 when s=b.

S, from (5), we get
A=(g/4a) b*.
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Substituting in (5), we get
: ds \* g
e e | —
4 dt ) 4a (6*~5%).

bt ) v

(—ive sign is taken because the particle is moving in the direction
of s decreasing)

...(6)

or —24/(alg) v(b'd ol

Integrating, 1=24/(a/g).cos™* (s/b)+ B.
Initially =0 when s=b. .. B=0.

t=2+/(a/g) cos~! (s/b)

o eesendi i)

Substituting in (6), we get
-=;‘—&[ b*— b? cos? { V(gla) }] =%— * sin? {% \/(g/a)}

o v=3 Vigla sind viela) } From (8), v(gla)=dn/T

S, the velocity of the particle at any time ¢ measured from
the position of rest is given by

v=§.;":_rq. (z 4«) (an ) (Zm\

Ex. 51. A particle rests in equilibrium under the attraction of two centres of
force which attract directly as the distance, their intensities being u and u' ; the particle
is displaced slightly towards one of them, show that the time of a small oscillation is

2x/V(p + ') (Rohilkhand 1988; Agra 86)

Sol. Supoose 4 and A’ are the two centres of force, their intensities being
pu and u' respectively. Let a particle of
mass m be in equilibrium at B under the — .
attraction of these two centres. If AB=a 4’ B P A
and A'B =a’, the forces of attraction at
B due to the centres 4 and A' are mua and mu'a’ respectively in opposite directions.
As these two forces balance, we have

mua = mu'a’. (1)

Now suppose the particle is slightly displaced towards 4 and then let go. _et

P be the position of the particle after time ¢, when BP = x.
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The attraction at P due to the centre 4 is mu . AP or mu (@ = x) in the direction
PA i.e., in the direction of x increasing. Also the attraction at P duc to the centre
A is mu' .A'P or mu' (@' +x) in the direction P4’ ie. in the direction of x
decreasing. Hence by Newton’s second law of motion, the equation of motion of the
particle at P is

m (d*x/di?) = mu (@ —x) —mp’ (@' +x), e(2)
where the force in the direction of x increasing has been taken with +ive sign and
the force in the direction of x decreasing has been taken with —ive sign.

Simplifying the equation (2), we get
m (d%x/df?) = m (ua — px — p'a’ — p'x)
or d*x/df? = — (u +p')x. [ by (1), mua =mu'a’]
This is the equation of a S.H.M. with centre at the origin. Hence the motion

of the particle is simple harmonic with centre at B and its time period is
2n/V(pu + u').

Ex. 4. A particle of mass m, is falling under the influence of
gravity through a medium whose resistance equals p times the
velocity. If the particle were released from rest, show that the

n

[Meerut 1975, 79, 83, 85, 87S, 88S, 90S]

Sol. Let a particle of mass m falling under gravity be at a

distance x from the starting point, after time ¢. If v is its velocity

at this point, then the resistance on the particle is u» acting verti-

cally upwards i.e., in the direction of x decreasing. The weight

mg of the particle acts vertically downwards i.e., in the direction
of x increasing.

2
: e gy . am , !
distance fallen through in time t is g—;.—[ e=tnimy — | 4K ]
".
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the equation of motion of tl.e particle is

2

o mg
2 = 1Zg — 1y
di? 5

or ((V_ ....tl.'. Y e\ .‘{.3_":_ d‘,
= m" : de*~ dt
dv
of = Gy v~

Integrating, we have
m
:=—; log (g—’;:-’ p )+A, where A4 is a constant,
But initially when =0, v=0; .. A=(m/,4) log g.

m

t A lo ( ) |
—— — —.— ‘1 L e r
# gl 8 0g g

or t=—"log 8 --(—“/m) v}
I '
or —'it=log ( Y o ) or 1—-L y—p-vm
m gm gm
dx gm - am
or "=a‘t-=T‘- (l""(’ rt/m) or dx——“(l """‘) d’.
Integrating, we have
x_gﬁ[ g ]+B
1 p (1)
where B is a constant.
But initially when =0, x=0.
m [ m
(W L [ ]+B )

Subtracting (2) from (1), we have

2
- {'—"— e-wm—'-"--i-f }=g—ms‘ { T "1+N
w \u m I m
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Ex. 28. A particle moves with a central acceleration which varies
inversely as the cube of the distance. If it be projected from an apse at a
distance a from the origin with a velocity which is V2 times the velocity
for a circle of radius a, show that the equation to its path is
rcos (6/V2) =a.  [Rohilkhand 77, 81; Allahabad 78; Meerut 78; Agra 86]

Sol. Here the central acceleration varies inversely as the cube of
the distance i.e., P = u/r3 = yu3, where u is a constant.

If V is the velocity for a circle of radius a, then

2
V [P %
r=a 4
or V = V( ula?). _
~. the velocity of projection v, = V2V = V(2 u/a?).

The differential equation of the path is

h2 |y d 2u Eﬂﬁ -
_ dﬂz u?

Multiplying both sides by 2 (du/d&) and integrating, we have
du :
2_p2 |2 = py
vé=h [u + (dﬁ) ] puuc + A, (1)
where A is a constant.
But initially when r = ai.e.,u = 1/a, du/dé = 0 (at an apse), and
v =w =V(2u/ad). _
s from (1), we have
_E 2|1 = £
=h ﬂz] p + A.
h2=2u and 4 =,ufﬂ2.
Substituting the values of 42 and A4 in (1), we have

2

du
2 au = anl + 2
ZF[H-*(dﬂ]] Hu +a2

2
du 1 1 — a?u?
— — — 2_ 2=——--—n-—-—
or -_ 2 (dﬂ] =2 +uc—-2u 2
or Jlai‘—u---f(l—azuz) or % —

a6 V2 V(- atud)
Integrating, (8/v2) + B =sin~! (au), where B is a constant.
But initially, when u = 1/4,6 =0. .. B=sin"11 ='le
" (6/V2) + 3 =1sin~ ! (au) or au =a/r=sin{37w +(6/V2
or a =rcos (6/vV2), which is the required equation of the path.
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Ex. 20.. A shot fired at an elevation o is observed to strike the
foot of a tower which rises above a horizontal plane through the
point of projection. If 8 be the angle subtended by the tower at this
point, show that the elevation required to make the shot strike the
top of the tower is 3 [0+sin~" (sin 0+ sin 2o cos 6)].

Sol. Let AB be the tower and O the point of projection. It
is given that / AOB=6.

Let u be the velocity of projection of the shot. When the

shot is fired at an elevation o from O, it strikes the foot 4 of the
tower AB. Let OA=R.

) -

Then R="1 Z;n_z_m_

Referred to the horizontal and vertical lines OX and OY
lying in the plane of motion as the co-ordinate axes, the co-
ordinates of the top B of the tower are (R, R tan 0).

LR RIans)

0 ~ A x
If B be the angle of projection to hit B from O, then the
point B lies on the trajectory whose equation is

y=x tan B—1g -

1* cos® B
R tan =R tan p—1} R
an U=Rrtan P=28 (acost B
R
or tan f=tan B—1ig oSt B (* R%£0]
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Substituting the value of R from (1), we get

g ot
tan 9=tan p—3g "2 i 3
or tan b=tan B— g
- sin _sin B sin 2«
cosf cosf 2costp B
Multiplying both sides by 2 cos? 8 cos 8, we get
2 cos® B sin =2 sin B cos B cos f—cos 8 sin 2«
or (l+cos 2B) sin 6=sin 2B cos §—cos 8 sin 2«
or sin 28 cos 6—cos 28 sin f=sin §+cos 0 sin 2x
or sin (28—0)=sin 6+cos 8 sin 2«
or 2B—0=sin""! (sin 6+cos 6 sin 2«)
or 2B=~0+-sin~" (sin f+cos 8 sin 2x)
or B=4% [0+sin™! (sin 6+sin 2« cos 6)].

Ex. 19. A projectile aimed at a mark which is in a horizontal
plane through the point of projection, falls a metres short of it when
the elevation is « and goes b metres too far when the elevation is B.
Show that, if the velocity of projection be the same in all cases, the
_y @ sin 2B+-b sin 22

‘a+b
[Gorakhpur 1976; Meerut 82, 85P, 86P]

Sol. Let O be the point of projection and v the velocity of
projection in all the cases. Let P be the point in the horizontal
plane through O required to be hit from O. Let 6 be the correct
angle of projection to hit P from O. Then

proper elevation is + sin-

v? sin 20

OP=the range for the angle of projection =
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When the angle of projection is «, the particle falls at 4 and
when the angle of projection is B, it falls at B, We have

According to the question,
AP—=0P—-0A=a and PB=0OB—0P=b).

_v! sin 20 v?sin2x_ v*
2 g_,_+(sm 20 —sin 2a), ..(1)
2 gj 2
v_s;n 28 v 5;“_23_”—2(5111 zﬁ sin 26). ..:(2)
Dividing (1) by (2), we get

a__sin 20 —sin 2z

b sin 28—sin 2¢

and b=

or a sin 28—a sin 20=>5 sin 20—b sin 2«
or (a+b) sin 20=a sin 2B+4b sin 2z
i sin 262 sin 28+b sin 2«
S a+b
g 1 @ sin 28+4-b sin 2« —1 «in-198in23+b sin 2
. 20= sm b or =4 sin a+b
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Ex. 5. A particle iz acted only a force pavallel to the axis of v whose acceleration is Ay and is
initially projected with a velocity as. parallel to the axis of x at a point where v — a. Prove that it
will deseribe the catenary

V= coslh (e, [Meerut 1998]

Sol. Here, giventhat ¥ = d"widr' = by 1)
Since there is no force parallel to the v-axis, it follows that

¥ o= dxldf =0 (2

Integrating (2). dv/di = ¢, where ¢ is constant of integration.
But. given that initially, dy/dt = a</& . Hence c = a7, .

Thus. dxfdi = a1 (3
Re-writing (1), ¥ (di/dv) =hy or 23t = 20 ydy.
Integrating, v' =iy’ + ', ¢ is constant of integration ey

Since initially at y = a, there is no velocity parallel to y-axis, we have 3 = Owheny=a. So(4)
gives ¢’ = — ha',

From(4), (dv/d)y’ =10’ —a’)y or dudi= Jn (' —a)”’ (5
whete the positive signis put on R H.S. because the particle is moving in the dircction of v increasing.
o ) - i B I:_IJ-':—/]':.}I 2 Ev?ll _c.'l;'t'
Dividing (31 by (3). . e REIPENER
Integrating. cosh 'U.-.*'a} = (x/a) + ", where ¢ 15 a constant. A

Let us take x = 0 when v = a. Then (6) gives ¢" = 0. So (0) gives
cosh ' (Wa)=x/a or v=acoshix/a), which is a catenary,

Ex, 6. A particle (s :I:"Eﬂ.f ot by a force parallel to the avis of v whose aoceleration (always
fowards the x-axis) &5 v~ and when v = a, i i projected parallel to the x-axis with velocity
I{|,L.’su}'I 2 Prove that it will describe a cycloid,

Sol. Given that Vo= dvldt = - ALy
where the negative sign is put on the R_H. 8. becausc the acceleration is always towards the v-axis
(7.2, in the direction of y decreasing).

Since there is no force parallel Lo x-axis, it follows that

¥ = dxid =10 A2
Intcgrating (2), de/dt = ¢, where ¢ is constant of integration,
But. given that initially, dv/dt = (pla)'~. Hence ¢ = ( ey

Thus. dxidt = (wa)"~ A3
Re-writing (1), Pldi/dv)=—-ph™ or 2pdir=-2puy “dv
Imegrating,  y* = (2p/y) + ¢, ¢’ being constant of integration A4

Since initially at y = a. there is no velocity parallel to the y-axis. we have 7 =0 wheny=a. So
(4) gives ¢’ = ~(2p/a). Hence (4) gives

‘Y 2w 2 2ufa -y v 'rl}l\‘l.: ﬂ—_L‘WI-: .
L—J - - N a = = —J 3
ot ¥ a i Vv ot Lo v
where the negative signis pul on R.H.S. because the particle is moving in the direction of v decreasing,
] 102
o ey a-—y o
r r q —_— = = = - ]
Dividing (5) by (3}, e [ v ) or oy ur—y] aly .0
Let )-=ﬁccs: & sothat  dv=-2acosD s dl) AT
Using (7). (6} gives  ov = 2a cos'0 o = a{l + cos 20) 4.
Integrating x = a8 + (1/2) sin 28] + " = (a/2) (20 + 5in 260 + " LB

Ininally, when v = a, letustake x =0, Now, when v =a then v =a cosD = a=acos 0 =
cos=1=0=0, So putting x = 0 and 0 = 0 in (),
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we get o = 0. Hence (8) reduces to = (a2 (20 + sin 20 L]
Rewriting (7), y=(a2)(1+cos 20) A1)
{9y and {10} give parametric equation ol a cveloid. Hence the required path of the particle is a
cycloid.

Ex. 16. A particle falls towards the earth from infinity; show that its velocity on
reaching the surface of the earth is the same as that which it would have acquired in
falling with constant acceleration g through a distance equal to the earth’s radius.

(Agra 1987)
Sol. Let a be the radius of the earth and O be the centre of the earth taken

as origin. Let the vertical line through O meet the earth’s surface at A. [Draw figure
as in Ex. 15]. '
A particle falls from rest from infinity towards the earth. Let P be the position
of the particle at any time r, where OP = x. [Note that O is the origin and OP is the
direction of x increasing.] According to Newton’s law.of gravitation the acceleration
of the particle at P is u/x® towards O i.e., in tke direction of x decreasing. Hence the

equation of motion of the particle at P is % =-L£. ..-(1)

x*
The equation (1) holds good for the motion of the particle upto 4. At 4
(i.e., on the surface of the earth),

i it B
x=aand —5=—g

-g=—u/a® or u=a%g

. d’x a’g
Thus the equation (1) becomes —5 = ——2*-
) P
Multiplying both sides by 2 (dx/df) and integrating w.r.t. ¢’, we get
2 242
(4!) = g +C.
dt X ¥
But initially when x = o, the velocity dx/dr = 0. Therefore C = (.
2 252
dx ag
[EE - . )
x
Putting x = a in (2), the velocity I at the earth’s surface is given by
V2 =2a’g/a=2ag or V=vV(2ag). ..(3)

If v, is the velocity acquired by the particle in falling a distance equal to the
carth’s radius a with constant acceleration g, then -vlz =0+ 2ag or
v, = V(2ag). o (4)
From (3) and (4), we have V' = v, , which proves the required result.
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Ex. 19. A particle is projected vertically upwards from the surface of earth with
a velocity just sufficient to carry it to the infinity. Prove that the time it takes to reach

‘; ' (l ' breE ] ’

where a is the radius of the earth.
(Meerut 1988, 2004; Kanpur 87; Agra 88; Rohilkhand 88)
Sol. [Refer fig. of Ex. 17]

Let O be the centre of the earth and 4 the point of projection on the earth’s
surface.

If P is the position of the particle at any time #, such that OP =x, then the
acceleration at P = u/x?* directed towards O.
the equation of motion of the particle at P is
2
% _— % (1)
But at the point A4, on the surface of the earth, x = a and d%x/di® = —g.
—g=—(u/a®) or p=a’g

d’x _ _a*g
dr? x2
Multiplying by 2 (dx/dt) and integrating w.r.t. ¢°, we get
\2 242
(E) = s 4+ C, where C is a constant.
dt x
But when x = e, dy/dr - 0.
C=0.
2 2 az
[Q - § or £=££@SJ_ .-(2)
dt x dt Vx

[Here +ive sign is taken because the particle is moving in the direction of x
increasing. |
Separating the variables, we have
1
dr = av(2g) V(x) dx.
Integrating between the limils x = a to x = a + h, the required time ¢ 1o reach
a height h is given by

h
1

t= r+hfxdx— i [g.rm]ﬂ
“avap ), "O%Twvap 3L

VB eema-on 1 [0
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Ex. 5. (@) A uniform rod Od, of length 2a, free fo turn about its end O, revolves with uniform
angtilar velocitv o abowt the veriical OF througl O, and is inclined af o consiant angle o to OF
show that the value of o is either zevo or cos ! {34r Sam’).

[Agra 2009, 11; Guwahati 2007; Kanpur 2006, 2008]

(b)Y A rod, of leneth 2a, revolves with wniform angular velocity w about o vertical axis rotgh
a smooih joint af mie extremity of ife rod so that i describes a cone of semi-vertical angle o, show
that w®  3gida cos o). Prove also that the divection of reaction at the hinge makes with the
vertical an angle tan ' {{3/4) tan o). [Meerut 2000, 200 1; Kanpur 2011]

Sol. {a) Take an clement PO(= &x) al a distance x from O, such that OF = x. The mass of the
element M) is (A2} &x. Draw L perpendicular to £, Then element M0 will describe acircle of radius
PIL{=xsin o) about /.. Hence the effective force on this element PO is (M/2a) e PlLo’ along L. So the
reversed effective force on the element PO is (M 2a) Sy sin oee” along L2 as shown in the ligure,

Mow by D" Alembert’s principle all the reversed effective forces
acting at different poinis of the rod, and the external forces. namely
weight M and reaction at & are in cquilibrium,. To avoid reactional £,
laking moments aboul O, we have

Myeasin o — {Z{M/2a) By’ v sin o b cosa =)

ar Mg asin cx—wjﬂ)r?:h =1
2a 0

or Mg arsinoe (MP2a)a” sinacos e {(2ay 3 =0

or Me asine £1 - (da'3e)n” cos =0

giving eithersine =10 e, =0 or cos o = 3g/dan’

D
Hence. the rod is inclined at an angle zero or cos ' (3g/da )
Remark. If @° < 3g/4a. then cos « = | and se in this case second value of « is not possible and
hence =0 s the only possible value,
(h) For [irst part reler part (@), To find the direction ol reaction at the hinge O, let X, Yhe the
horizontal and vertical components of reaction at ). Then resolving the forces horizontally and
veriically, we gel

X= Ei—fﬁr ¥ S1M 0L = I_ Mx ebe = Maw® 5111 (2
I

1 } 2a
and Y=Me
Let the reaction at £ make an angle 6 with vertical. Then
an 6 = L _ Mam “sin o _asing  3g . using (1)
¥ Mg E 4 cos o
or tan 0= {3/4) tan so that 0 =tan™" {(3/4) tam o}

Ex. 21. Assuming that a particle falling freely under gravity can penetrate the
earth without meeting any resistance, show that a particle falling from rest ar a distance
b (b > a) from the centre of the earth would on reaching the cenire acquire a velocity
ya (3b — 2a)/b] and the time to travel from the surface to the centre of the earth is

[g— ] sin~1 [ﬁ] » where a is the radius of the earth and g is the acceleration

due to gravity on the earth’s surface. (Meerut 1982; Agra 84, 86)
Sol. Let the particle fall from rest from the point B such that OB = b, where

O is the centre of the earth. Let P be the position of the particle at any time ¢
measured from the instant it starts falling from B and let OP =1x.
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Acceleration at P = pu/x* towards O. The equation of motion of P is

d* (
_I R "‘_ N _ lB ;
di2 - vel=0
which holds good for the motion from B to A4 i.e., outside the surface Py,
of the earth. "
But at the point 4 (on the carth’s surface) x =a and =1
20 /2 = —
d*x/di? = —g. vel=vy{ A
' -g= - u/a* or 7 =a2g. a
d®x a* '
—=-=£ (1) 0
dr x

Multiplying both sides of (1) by 2 (dx/di) and then integrating
w.r.l. ‘1", we have

dx\* 24
[E] = “—Ih + .4, where A4 is a constant of integration.
But at B, x = 0B = b and dx/dt = (.
2 2
U=M+A or A=- 247¢,
b b
N L
(&) =20z -3) @

If V'is the velocity of the particle at the point A4, then at 4, x = 04 =a and
(dx/dn)? = V2,
2 = 9n2 l_l). .3
Ve=2a%g (a b --(3)
Now the particle starts moving through a hole from A4 to O with velocity V at
A.
Let x, (x < a), be the distance of the particle from the centre of the earth at

any time 7 measured from the instant the particle starts penetrating the earth at
A. The acceleration at this point will be Ax towards O, where A is constant.

The cquation of motion (inside the earth) is d%x/dr? = — Ax, which holds good
for the motion from A4 to O.
At A, x = a and d%x/dr? = — g. Therefore, 1 = g/a.

dx_ _&
a2 a
Multiplying both sides by 2 (dx/dr) and then integrating w.r.t. 7°, we have
2
[%] = - %Iz + B, where B is a constant. . (4)

)\ . o, (11
But at A, x = 04 = a and [E] = |/ =2ag[E—E]*from (3).

1 1] g [3b—2a]
2, (L _ 1] 2 2 — ap |22 = 44),
‘Zag[a b aﬂ +B or B=ag

b
Substituting the value of B in (4), we have
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2
_;gx_] _ [3b—2a] _ £,
Putting x = 0 in (5), we get the velocity on reaching the centre of the earth as
v[ga (3b — 2a)/b].

Again from (5), we have

& £z i ton

dt
a2
where c2= 5 (3b —2a).
% = - \/[ %) “V(e? = x?, the —ive sign being taken because
the particle is moving in the direction of x decreasing
a dx ) .
or dt = — V[—] . » separating the variables.
g/ V(ct-x¥ P ¢

Integrating from A to O, the rcquired time 7 is given by

=_\/[ ” »"(c
-V(g)[° ‘,(,_.fixz} [\/(ﬁlsir‘%ﬂ
=\/(§)““"§=\/ ‘““ [a-f{*(sb Za}fb}]

[Substituting for ¢]

Ex. 15. A rod is movable In a vertical plane about a smooth
hinge at one end, and at the other end Is fastened a weight W/[2, the
weight of the rod being W. This end is fastened by a string of length
[ to a point at a height ¢ vertically over the hinge. Show that the
tension of the string is IW/c. '

Sol. Let a rod AB of length 22 (say) be movable in a vertical
plane about asmooth hingeattheend 4. A weight W/2 is attached
at the other end B of the rod and this end is fastened by a string
BC of length / to a point C at a height AC=c vertically over the
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hinge at 4. The rod is in equilibrium
under the action of the following forces !
(i) W, weight of the rod at its mid-
point G, acting vertically down-wards,
(ii) W/2, weight attached at the end
B, acting vertically down-wards,
(iii) T, tension in the string along
BC,
and (iv) the reaction at the hinge at A.
Let 6 and ¢ be the angles of inclina-
tion of the rod and the string respectively
to the vertical. | (Fig. 2'18)

To avoid reaction at 4, tal&i_ng moments about the point 4,
we have

T.AN=W AL+}W AM

or T.AC sin ¢=W.AG sin 0+4W.AB sin 0
or T.csin¢=W.asin 0+34W . 2asin 6 [ ABe=2a]
2a sin 6
o T=W e on + <D
Now from the ACBK, BK=BC sin ¢=1 sin ¢

and from the AABK, BK=AB sin 6=2a sin 0.

I sin $=2a sin 0. -(2)

from (1) and (2), we get
T=WIl|c.

Example 25:

A uniform straight rod of length 2a. has two small rings at its ends which
canrespectively slide on thin smooth horizontal and vertical wires OX and OY.
The rods starts at an angle a, to the horizontal with angular velocity [{3g (1
~sin a)}/2a]'? and downwards. Show that it will strike the horizontal wire at the

e

At any time t, let the rod AB be inclined at an angle 6 to the horizontal al.
If G be the C.G. of the rod AB, thenco-ordmatesofGaregnvcnbyx acos
6, y =asin 6, so that
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X =—asin08, y = acos09,
~. velocity of G = m

- J[( - asin80)’ + (acos08’]=6
.. kinetic energy of the rod at time t

2 ) . :
-t| L84 a’e’ |= 3-ma’B2 (1)
2 3 3

Initial angular velocity is
1/2
= [39-(1 —sin a)] (given)
2a

. Initial kinetic energy = %ma’ -'%(a -sina)
[from (1)] = mga (1 - sin ).
Hence energy equation gives

%ma’(')z = mga(l - sina) = mg(asina) — mg(asinB)

ie. %a’éz - ga(l -sina) = ga (sina —sin )
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ie. %—a‘E'F = ga (1 - sin6)

o -;-%]J(I —sin0)

(negative sign is taken with radical sign, since 0 decreases)

12
2a 1
or dt=—| do
[33] 1-sin®

Hence the required time
172 o 12a o
( ] J‘Jl sin@ [ S] IJ(] smB

,rza\m “ 40
38/ l{cos?(8/2) +sin’(8/2) - 25in(B/2)cos(8/2)]

rza\luz - 40
) LEJ J {cos (8/2) —sin(8/2)}
) (E)HZ o w

) i3 712-003(0/2)— %sm(e/;{l

tan (n/8)
3g ) tan [(x/8) — (/)]

o] (35
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Ex. 7. Discuss the motion of a particle falling under gravity in a
medium whose resistance varies as the velocity. (Meerut 19928, 938)

Sol. Suppose a particle of mass m starts at rest from a point O
and falls vertically downwards in a medium whose resistance on the
particle is mk times the velocity of the particle. Let P be the position
of the particle at any time ¢, where OP = x and let v be the velocity of
the particle at P.

The forces acting on the particle at P are

(i) The force mkv due to the resistance acting vertically upwards
i.e., against the direction of motion of the particle, and

(ii) the weight mg of the particle acting vertically downwards.

By Newton’s second law of motion the equation of motion of the
particle at time ¢ is

mm = mg — mky
d%
or E =g- kv. ...(l)

If V is the terminal velocity of the particle during its downward
motion, then from (1)
O=g—kVv or k=g/V.
Putting £k = g/V in (1), we get
dx g _
dfz =8- VV = V(V V). “'(2)
Relation between v and x.
The equation (2) can be written as

va;—i(V—v)
V v V v
or dx—EV—vdV _gV-vdv
V==V Vi ¥
_-g T dv = g[l V—v]dv'
V

Integrating, x = — E [v+ Viog (V =v)] + A, where A is a constant.

RAM PRAKASH/Dynamics Page 18



But initially at O,x =0andv = 0.

V2
=—1]ogV.
£ : 2 2
Vv Vv Vv
Xx==—yp=——]og(V—-v)+—IlogV
gv gz g ( ) 2 g
4 V V .
or -x——Ev-i- : logV_v -(3)

which gives the velocity of the particle at any position.

Relation between v and t.
The equation (2) can also be written as

R
dt (V V).

V dv
U=V

Integrating, we have
= - %log (V = v) + B, where B is a constant.
[nitially at O,z =0andv = 0.

V
B=—logV.
ng V
t=——log(V—=v)+—logV
Vg g’(/ ) g o8
or =ElogV_v' -(4)

which gives the velocity of the particle at any time ¢.
Relation between x and t.
From (4), we have

8! V__av
logV or 7 e¥
or V—v=Ve S'/V
or v=V[1-e &V
dx
—_—= — 8/
or i Rl 1
or dx=V[l-e 8Vdt.
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Integrating, we get
r2
x=Vt+ %e‘#"’-{- C, where C is a constant.
Initially at O,x =0and¢ = 0.

2
Ciis
. 2 2
x=Vt+ L egv  1Z
82 g
or x=WVt+ —‘;—(e-sr/"— 1), w3)

which gives the distance fallen through in time ¢.
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26. A particle moves in a straight line, its acceleration
&dﬂwmmampmommmmnmm

173

[x’] when it is at a distance x from O. If it starts from

rest at-a distance a from O, show that it will amive at O with a
velocitya\/ aﬂermnezs 6
(Meerut, 1986, 87, 90 S; Agra, 1981, 84;
Bhopal, 1982 ; Rohilkhand, 1987)
Sol. The eqnation of motion of the particle is

v - [ !
or vdv = —pua*x ¥ dx
Integrating, 122- ==-3uad”x"’+¢c (1)
Initially, x =a, v=0 s c=3uad”’a"”
. From (1)v* =6ua’” @ -x"? w(2)

If the particle arrives at O (x =0) with velocity V, then,
from (2) we have
Vi=6ua?@”-0) or V=6ud
Vzam
Also from (2),

v,zg_m\[(am_xm

or dt:-é- &
\/6 u a"” 7 aV? — x\3

. Required time T from x=a to O (x=0) is given by
T 0 |

B
4 ‘/6 snaV1/3 /3

ua a’” -x
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Putting

T = ol f dx
Jﬁﬂa’ﬂ A Va'? —

¥ =asin®@ so that drx = 6a sin’ 6 cos 8 dé.

x=0,6=0 and when .t=a,0_=%
7
T = —=l 6 u sin’ 8 cos 6.d6
\/s,ua’” A Va”’(l-sinza)
i _
z

=52 _ | sinfoas=V S A2
vﬁpaz A n o 5:3-1

Example 25. A particle whose mass is ‘'m’ is acted upon by

a force m p x~*” towards then centre. If it starts from rest at a distance
‘a’ from this centre, then show that it will arrive at the centre after

4/3
time ff‘;_ﬂwirh infinite velocity. (Bhopal, 1981)

Sol. The equation of motion is

dv ' - 571
mv—=-mimux )
dr 4

RAM PRAKASH/Dynamics Page 22



or vdv = — ux~*dx

2
Integrating, -‘g - % puxi+c (1)
Initially, x=a and v=0
0=3ua 5+ 3 ia}
Sha c or c=->ua
2
3 - _
From (1), -%--ip (x**-a=??) w(2)
or v-%=—\/3,u\/x'”’-a'm

(x decreases as ¢ increases)

1
or df=“r.#dx'-
Reqnimd time of moving from x=a to x=0 is

0
173 _1/3

_Ffvm V3yf\(:mixﬁd‘
fm“‘

b 4
7
f a’sinb 3,020 cos 046
o l—-Siﬂz

Putting x = asin’6

’I
f sin’6dé.
3 0
3¢ 2 _2a”
\/3 '3 -\73;¢

. Also from (2), as x»0, v-»
. 24 :
Hence the will t
particle will arrive a thecenmanetdmemwith
infinite velocity.
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