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(1) SUCCESSIVE DIFFERENTIATION

The reader is already familiar with the process of differentiating a function y = fix). For ready reference,
a list of derivatives of some standard functions is given in the beginning.

The derivative dy/dx is, in general, another function of x which can be differentiated. The derivative of
dy/dx is called the second derivative of y and is denoted by d%y/dx?. Similarly, the derivative of d2y/dx? is called
the third derivative of y and is denoted by d3y/dx3. In general, the nth derivative of y is denoted by d"y/dx".

Alternative notations for the successive derivatives of y = flx) are
Dy, D%, D%, ...,D"% ;
or yl,yzrygs ---syn ;
or £, £7x), 70 s [T)
The nth derivative of y = flx) at x = a is denoted by (d"y/dx"),, (3,), or f*(a).

. fu 2 d BE L L o & 3 ol '_ M .__')-_ F y "-v - ;_‘,;-I'v §i S,' -
Example 4.1. If y = ¢** sin bx, prove ﬂaqt ¥ —2ay,; -l-(g:ls + @ﬁt:ﬁ.” ?"f ‘: ) F J i pogsy’
Solution. We have y = e* sin bx ..(@)
¥, = €™ (cos bx . b) + sin bx (e™ . a) = be™ cos bx + ay [By ()]

or ¥, —ay = be"* cos bx ...(iD)
Again differentiating both sides,
Vo —ay,; = be™ (— sin bx . b) + b cos bx (€™ . a) = — b%y + aly, — ay)
or ¥, —2ay, + (@® + b%y = 0.
. Example 4.2.Ifx = a (cost +¢sint), y=a (sint~ tc?f%'ﬁkﬂ
Solution. We have %IE =a(-sint +tcost+sint)=at cost
and jl:a(cost-&-tsint—cost):atsint
t
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dy _dy [dx _atsint
dx dt/ dt  atcost

d’y _d
dxz

=tant

L _ 3
(tant) seczt.atm = lat cos® t.

Solution. Differentiating 2 = flx) w.r.t. x, we get

d
2y Ex’i = flz) )
Differentiating (i) w.r.t. x again, we obtain

(dy dy _d%) __, dy\?
2[%%"‘3’&;%3 =f"(x) or Z(Ey) +2ydx' =f"x)
Again differentiating, we get

dy d*y _dy d’y dy -
4. dxdx2+2d’-'dx2+2 =f"(x)

or 8y jxi’ +y f;y “lyrrw [Multiplying by 57
P
Hence %[ys %] 1 fa) 7 (o). [ =t

Solution. Differentiating the given equation w.r.t. x,
dy

)+2bya% 0 or %=—zig’; ()

2ax + 2}1( o = +y
Differentiating both sides of (i) w.r.t. x,
d®y _ _ (hx +by) (a+ hdy/dx) — (ax + hy) (h + bdy/dx)
dx* (hx + by)*

[Substituting the value of dy/dx from (i)]

. ax+hy]_ ( B a.r+hy]
(hx+by)[q h'kx+by (ax+hy)| h b'hx+by

(hx + by)*
_ (h® — ab) (@2 + 2hay + by®)

(hx + by)®
= (h? —ab)(hx + by)? [ ax? + 2hxy + by? = 1]




DOWNLOADED FROM www.CivilEnggForAll.com

136 HicHer Enaineering MaTHEMATICS
- 9 2 dﬁ.? L dy 2
4. Ify=sink [m log {x + /(x* + 1) }], show that (x* + 1) Td;f-‘-'x?ix_ =m?y.
B. Ify =sin"!x, show that (1 - x2) y, — Tay, — 9y, = 0.  (Madras, 2000 S)
1 1 1081 d%y :
L TP F e gl | 0 A | Jochin, 200
6. Ifx 2[ +:t),y 2[: tJ,ﬁnd ) (Cochin, 2005)

7. Ifx = 2 cost = ook 24, y="2 sin ¢ —sif 2¢, find the value of d2y/dx? when ¢ = /2
8, Ifx=a(cost +log tan #/2), y = a sin ¢, find d%/dx?.

. s d’y  dy _
9, Ifx=sint,y=sin pt, prove that (1 —x2?) 2 —x g +pZy =0.

dgy 2a%xy
3_ SO 1R O g
10. If x® + y® = 3axy, prove that %) R
(2) Standard Results
We have (1) D" (ax +b)"=m(m-1)(m-2)...(m-n+1)a” (ax + b)y" "
n-1 n
" 1 _(—l)n(n!)an - __(—1) m-1'a

@ B [ax+b)_ (ax +b)"*! ) D og (ecw by (ax +b)"

(4) D (a™X) = m" (log a)? . a™* (5) D” (e™*) = m" e™

(6) D" sin (ax + b) = a” sin (ax + b + n/2) (7) D® cos (ax + b) = a” cos (ax + b + n/2)

(8) D" [e®* sin (bx + ¢)] = (a2 + b2)™2 ¢2* sin (bx + ¢ + n tan™! b/a)
(9) D" [e** cos (bx + ¢)] = (a2 + b%)™2 2% cos (bx + ¢ + n tan™! b/a)
To prove (1), let ¥y = (ax + b)y"

yy=m.alax + by 1!

yo = m(m —1)a® (ax + by" ~2

¥y =mim—1) (m-2) a®(ax + b)" -3

Hence y,=mm—-1)(m-2)...(m—n+1a" (ax +b)" "

In particular, D" (x")=nl
(2) follows from (1) by taking m = — 1. The proof of (3) is left as an exercise for the student.
To prove (4), let y=a™
y,=mloga.a™,y,=(mlog a)® a", etc.
In general ¥, = (mlog ay* a™=.
(5) follows from (4) by taking a =e.

To prove (6), let y = sin (ax + b)

: ¥y =acos (ax + b) =a sin (ax + b + W2) .
¥, = a® cos (ax + b + 1/2) = a® sin (ax + b + 21/2)
¥;=a® cos (ax + b + 21/2) = a® sin (ax + b + 31W2)

In general, ¥, = a" sin (ax +b + nn/2).
The proof of (7), is left as an exercise for the reader.
To prove (8), let y =e* sin (bx + ¢) .

¥, =€ cos (bx +¢) . b +qe™ sin (bx + ¢
= e"* [a sin (bx + ¢) + b cos (bx + ¢)]

Puta =rcos o, b =rsin aso thatr = ‘I(a2 +b%),0=tan1 bla

¥, = re®* [sin (bx + ¢) cos o + cos (bx + ¢) sin ol
=re* sin (bx + ¢ + o)
Similarly, Yo =12 e sin (bx + ¢ + 20)
¥4 =r®e* sin (bx + ¢ + 3a)
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In general, ¥, =r"e™ sin (bx + ¢ + no) (V.T.U., 2000)

where r= J(a2 +5?) and o = tan"! b/a.

Proceeding as in (8), the student should prove (9) himself.

(3) Preliminary transformations. Quite often preliminary simplification reduces the given function to
one of the above standard forms and then the nth derivative can be written easily.

To find the nth derivative of the powers of sines or cosines or their products, we first express each of these as
a series of sines or cosines of multiple angles and then use the above formulae (6) and (7).

A x-n x+n
Exampl Ify=xlog X_=, showthaty, = (- )"~ 2(n-2)! -
e LI R T i ISP T e |:{x—1)" (x+1)":|
(URT.U., 2003)
Solution. Differentiating y w.r.t. x, we have
-1 1 1
=log X +x -
N g.1c+1 [x—l x+1]
- T 1 1 .
=log(x-1) Iog(;ac:+1)+x_1+:'€+1 ..(D)

Now differentiating (i) (n — 1) times w.r.t. x,

_EDTPm-2)! D@2 DT e-D DT (- D!
(x -1 (x+1" 1 (x-1)" (x+1)"

x—1 x+1 +—(n—1)+—(n—1)}

n

=(-1"2(n-2)! -
x-1D" x+D" (x-1D" (@x+1)"

=(—1)“'2(n—2)! X—n _ x+n )
(x-1)" (x+D"

Example 4.6. Find the nth derivative of (i) cos x cos 2x cos 3x (S.V.T.U., 2009)
(ii) €%* cos® x sin x.
Solution. (i) y = cosx cos 2x cos 3x = % cos x (cos 5x + cos x)
= 1(2 cos x cos 5x + 2 cos? x) =  [(cos 6x + cos 4x) + (1 + cos 2x)]
= 4 (1 + cos 2x + cos 4x + cos 6x)
¥, = % [2" cos (2x + nn/2) + 4" cos (4x + n1/2 + 67 cos (6x + n/2)]
(Zi))  cos?x sin x = cos x (sin x cos x) = cos x . %sin2x
= %(2sin 2x cos x) = % (sin 3x + sin x)

D"(e®* cos? x sin x) = % [D" (e sin 3x) + D" (% sin x)]

1 [(22 + 322 sin (3x + n tan™! 3/2) + (22 + 12" sin (x + n tan™! 1))

= 1 [(13)"2 sin (3x + n tan™! 3/2) + (5)2 sin (x + n tan™! 1)].

(4) Use of partial fractions. To find the nth derivative of any rational algebraic fraction, we first split
it up into partial fractions. Even when the denominator cannot be resolved into real factors, the method of
partial fractions can still be used after breaking the denominator into complex linear factors. Then to put the
result back in a real form, we apply De Moivre’s theorem (p. 647).

7. Find the nth derivativeof — % .
Example 4.7. Fi n eriva veof(x—l)(2x+3)
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Solution. W S— 1 -
P G-D@x+3) -D@2.1+3  C32-D)@x+3)

14 .8 1
5'x-1 5 2x+3
1

1"n! 3 D" (12"

Hence

x =
.D" [‘“‘—"‘—"(x_l)"(zx‘ +3)]_ 50 (x_l)nfi-l + 5 . (2x +.3)n+1
=(—1)"'n!{ 1 3.2" }

5 (x_l)n'll * (2x+3)u1-1

Solution. We have y=—1 _ 1 =L[ ) | ]

5 _ 1] &Dal D" al |
n 2ia | (x_ia}n-l-l (x+w)n+1

[Putx =r cos9,a =rsin 0 sothat r = 1f(,;2 +q2)', 6 = tan™! (a/x)]

I G Vil 3 1 _ 1 _
2ia |r"*cos@—isin®)" "' 7" '(cos6+isin6) "

= ED 1 o5 6 i sin 0y @+ D _ (cos 6.+ i sin )¢+ ]

2iar

(-1)" n! . m . . o
=-—— 5 lcos(r+1)6+isin(n+1)0—[cos(n+1)6—isin(n+1)6]}

2iar"

[By De Moivre’s theorem]

_CDnl o, _ 1_sin6
—W.%mﬁu—nﬂ |:Plltr— = ]
=Msin(n+1)esin’”1e.

n+2
a
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IEXE} LEIBNITZ’S THEOREM for the nth Derivative of the product of two functions*

If u, v be two function of x possessing derivatives of the nth order, then
(uv), =u,v+"Ciu, ;v,+"Cou, ,v,+..+"Cu, v +..+"C uv,

We shall prove this theorem by mathematical induction.
Step 1. By actual differentiation,

(wv), = uv + uv,

(uv)y = (v + 1y vy) + (1,0, +uvy)

=un +2C, u,v, + 2C, uv, [ 12=%C;, 1=4C))

Thus we see that the theorem is true forn =1, 2.
Step II. Assume the theorem to be true for n = m (say) so that

— m,
(wv), =u, v+™"Cju

m, m
SN 1 i 08 "IN | A SRR . ST

m-r+1Y_1

my m
+mC u, v +..+mC_ uv,

Differentiating both sides,
wv), =, v+u, v)+"C (u, v,+u, v)+"Colu, s+, oU)+..
+ r-1 um—r+?.vr—1 ¥ U _re1 Ur) + mcr (um—r+ 1Y + U rUrs 1) + ..
+ mCm (ul um + uum + I)
=u, v+A+"Chu, v, +("C;+"Clu, s+ ..

n, m, m,
+(*C,_+"Cou, 1V 4 +™C uv,

m, —m, m, —_m+1 m m, —m+1
But 1+ MC, ="Cy+™Cy="*+1C,,"C, + "C,="+1C, ...
my m, —m+ m —1=m+1
C.,+mC.=m*IC, ... and ™C, A =1= it
— m+ 1, m+ m+ 1 m+ 1
W), ,,=u,, v+ Cru, v+ ™ 0u, v+ .+ C o, i Ut t { G 7T

which is of exactly the same form as the given formula with n replaced by m + 1. Hence if the theorem is true for n = m, it is
also true forn =m + 1.

Step IT1. In step I, the theorem has been seen to be true for n = 2, and by step 11, it must be true forn =2 + 1i.e., 3 and
soforn =3+ 1i.e, 4 and so on.

Hence the theorem is true for all positive integral values of n.

Example 4.9. Find the nth derivative of e (2x + 3).

Solution. Take u = e¢* and v = (2x + 3)%, so that u, = ¢* for all integral values of n, and v, = 6 (2x + 3)%,
v, = 24(2x + 3), v, = 48, v, v, etc. are all zero.
By Leibnitz’s theorem,
wv), =u, v+"Cyu, v,+"Cou, ,0,+"Cyu, 50,
ie., le* (2x + 303 = e* (2c + 3)° + ne*(6 (2x + 3)?

n(n —1) nn-®-2)

= {(2x +3P+6n(2x+32 +12n (n—- 1) (2x + 3) + 8n(n — 1) (n — 2)}.

Example 4.10. If y = (sin”! x), show that (1 -2y, , ,- 2n + D xy, , ,—n?y, =0. Hence find (G

(U.P.T.U., 2005)
Solution. We have y = (sin~1x)?
|
Differentiating, ¥y = 2sin " x o (1-42) ¥,2=4(sin"1x)? = 4y D)
V1 - %)
Again differentiating, (1-57) 27,9, + (- 20) y,% =4y, B (73]

Dividing by 2y,, (1 —x?) y, —xy, —2=0
Differentiating it n times by Leibnitz’s theorem,

*Named after the German mathematician and philosopher Gottfried Wilhelm Leibnitz (1646-1716) who invented the differ-
ential and integral calculus independent of Sir Issac Newton.
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n(n 1)

1-22)y, o +n(-2%)y, , + -2y, -y, ,,+n()y,]=0
or 1=y, ,,—@n+Dxy, , - nyﬂ_O
which is the required result.
Putting x = 0, O, 4 2)o = P2(,)y ...(itL)
From (i), (y1)p = 0. From (iz), (y,), = 2.
Puttingn = 1,3,5,7, ... in Gii), 0=y, =y, =y; =y, =
L.e.,if n is odd, @)y =0

Again putting n = 2, 4, 6, ... in (iif)
@4)0 = 22 ()’2)0 =2. 22
gy =42 (gl = 2. 22 . 42
W)y = 62 0o = 2. 22 42 g2

In general, if n is even, @p)p=2.22.42.62...(n- 27, (n=2).
Example 4.11. Ify = ¢**" *, prove that (1-x%), Ynsz=(2n+ 1):::_1!,1 S7% - (n® + a”’}y = 0. Hence find the
value of y, when x = 0. (V.I.U, 2003}
Solution. We have y=¢" R (@)
3 i ik asin”! ay n
Differentiating, =gt * L = . (@)
. “ V1-2%) Ya-=z%)
or (1-2%)y,2=a?y>
Again differentiating, (1 —x?) 2y,y, + (- 2¢)y,% = 2a® yy,.
Dividing by 2y, (1 —22)y, —xy, —a?y =0 (i)
Differentiating it n times by Leibnitz’s theorem,
(n—1)
1-2®)y, ,,+n.(-20)y,,,+ n__nz_ -2y, -y, +n.1.y,]1-a%y, =0
or 1-2%y, . ,—-Cn+Day,, ,—(n*+a?)y, =0
which is the required result.
Putting x = 0, O, .9 =m%+a? (,), (i)
From (i), (ii), (iii) - @)y =1, 0y)g = @5 (v,), = a2

Puttingn=1,2, 3,4 ... in (iv),
05)p = (12 + a?) (3,), = a(1% + a?)
) = (22 + @) (3,), = aX(2% + a?)
05) = (3% + a?) (y5), = a(1? + @?) (32 + @?)
Oe)o = (42 +a?) (y,), = aX(2% + a?) (42 + a?).

Hence in general, 0,) =a(12+a?) (3% +a?) ... [(n - 2)% + &?], when 7 is odd.
=a?(22+a®) (42 +a?) ...... [(n—2)? +a?, when n is even.
Example 4.12. If y!/™ + y1/™ = 2x, prove that | ; LN [ Y : e --},

! (- 1y, ., +@n+Dxy, , ,+(@n° —m’)ym-ﬂ.
(V.T.U., 2008 S ; Mumbai, m?;ﬁwi-n‘,goa

Solution. We have yym 4+ ﬁm =2
y
or (yYm)2 — 2x(y¥m) 4+ 1 =0

|| 2
ylfm: w —x + 1H(;.:z_].)

Hence y=lxx JE -1

Taking logarithm, logy =mlog lx + (x* —1)]
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Differentiating both sides w.r.t. x,
1 1 X m
Ty =m. . it g r=%
AN T B TS R )

Squaring, y,2 (2 -1)=m?y*
Again differentiating, (% — 1) 2y, y, +¥,2 (2) =m? . 2y .y,

Dividing by 2y, @ =1y, +xy; —m =0
Differentiating it n times by Leibnitz’s theorem,
n(n—1)

G2-1)y,,,+ny,, 20+ 5 Ya @ Fxy,  +n ¥, (D)-m?y, =0

or -1y, ,,+@n+ Dy, +n®—m?y, =0.
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i sinh~! x _ 5 i L 4
9. Ify= 2 »show that (1 + x®)y, ., + (2n +3)xy, 1+ (n + )%y, = 0. V.T.U., 2010)
;f 1+x%)
20. Ify = sinh [m log (x + % 41 )], prove that (x + Dy, 2 +@n+Day, ,+ (n?2-m?)y, =0. (V.T.U.,, 2010 S)

[EEJ FUNDAMENTAL THEOREMS

(1) Rolle’s Theorem

Y
If (i) fix) is continuous in the closed interval [a, bj, (ii) f {(x) exists for | G
every value of x in the open interval (a, b) and (iii) f (a) = f (b), then there is at L&
least one value ¢ of x in (a, b) such that f*(c) = 0. A E B
Consider the portion AB of the curve y = f (x), lying between x = ¢ and UE " E & Qi
x = b, such that :i : ': ii
(i) it goes continuously from A to B, 5 : . —

(if) it has a tangent at every point between A and B, and Fig. 4.1
(iii) ordinate of A = ordinate of B.

From the Fig. 4.1, it is self-evident that there is at least one point C (may be more) of the curve at which
the tangent is parallel, to the x-axis.

Le., slope of the tangent at C (x =¢) =0
But the slope of the tangent at C is the value of the differential coefficient of fix) w.r.t. x thereat, therefore
fe)=0.

Hence the theorem is proved.

Example 4.18. Verify Rolle’s theorem for (i) sin x/€* in (0, n). ’ (J.N.T.U., 2003)
@) (x —a)™ (x — b)* where m, n are positive integers in [a, b]. (V.T.U., 2010 ; Nagarjuna, 2008)
Solution. (i) Let flx) = sin x/e*.

fix) is derivable in (0, 7).
Also A0) = fin) =0.

Hence the conditions of Rolle’s theorem are satisfied.

" e* cos x —e” sin x ' .
fx)= ox vanishes where €* (cos x —sin x) = 0
e

or tanx =1 ie., x=1/4.

The value x = 7/4 lies in (0, 1), so that Rolle’s theorem is verified.

(ii)Let fix) = (x —a)™ (x — b)".

Since every polynomial is continuous for all values, fx) is also continuous in [a, b].

@ =mx—ay* 1 (x-0+x-a).nx-5b"1!
=(x-ay* 1 (x-bY"1[(m+n)x— (mb + na)l

which exists, i.e., f(x) is derivable in (a, b).

Also fla) =0 =flb).

Thus all the conditions of Rolle’s theorem are satisfied and there exists ¢ in (a, b) such that f*(c) = 0.

: (c—aytYe-by-lm+n)e—(mb+na)l=0 or c=(mb+na)im+n).

Hence, Rolle’s theorem is verified.

(2) Lagrange’s Mean-Value Theorem*

First form. If (i) f(x) is continuous in the closed interval [a, b], and

(if) f'(x) exists in the open interval (a, b), then there is at least one value ¢ of x in (a, b), such that

f(b) — f(a) _ ¢ ().
b-a

*Named after the great French mathematician Joseph Louis Lagrange (1736-1813) who became professor at Military

Academy, Turin when he was just 19 and director of Berlin Academy in 1766. His important contribution are to algebra,
number theory, differential equations, mechanics, approximation theory and calculus of variations.
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Consider the function 0 (x) = flx) - w x
Since flx) is continuous in [a, b] ; . ¢ (x) is also continuous in [a, b].
Since f’ (x) exists in (a, b) ;
¢’ (x) also exists in (¢, b) and = f' (x) - w (D)

Clearly, ¢ (a) = =0 (b).

Thus ¢(x) satisfies all the conditions of Rolle’s theorem.
There is at least one value ¢ of x between @ and b such that ¢’ (¢) = 0. Substituting x = ¢ in (1), we get

f} (C) = f(b) - f(a) _(2)
b-a

b—a

which proves the theorem.
Second form. If we write b = a + h, then sincea <c < b,
c=a+0hwhere0<0<1.
Thus the mean value theorem may be stated as follows :
If (i) fix) is continuous in the closed interval [a, a + h]and (ii) ' (x) exists in the open interval (a, a + h), then
there is at least one number 6(0 < 0 < 1) such that
f(a + h) = f(a) + hf'(a + 6h)
Geometrical Interpretation. Let A, B be the points on the

curve y = flx) corresponding tox =a and x =b so that A = |a, fla)l and B =
15, £ (B)]. (Fig. 4.2) v g
f®)-fla)
b-a
By (2), the slope of the chord AB = f*(c), the slope of the tangent of
the curve at C(x = ¢).
Hence the Lagrange’s mean value theorem asserts that if a curve ol X ol

AB has a tangent at each of its points, then there exists at least one point Fig. 4.2
C on this curve, the tangent at which is parallel to the chord AB.

Cor. Iff(x) = 0 in'the interval (a, b) then f(x) is constant in [a, b]. For, if x,, x, be any two values of x in (¢, b), then by (2),
flaeg) = fle)) = (xg —2,) fe) = 0 (x; <c < xp)
Thus, flx,) = flx,) i.e., flx) has the same value for every value of x in («, b).

Slope of chord AB =

Example 4.14. In the Mean value theorem fi(b) — fla) = (b — a) f'(c), -(2)
determine ¢ lying between a and b, if f(x) =x{(x - 1) (x - 2), a =0and b = 1/2. (Gorakhpur, 1999)
< . 1 1 3 3
s =, T
olution. fla) fb) 5l— 3 5
f(x) = 3x% - 6x + 2, fc) =3c2—6c+ 2
Substituting in ), g .- [% = 0) (3¢2 - 6¢ + 2)
or 12¢2 - 24c +5=0
+.(24) —12
whence L )24 X5x4 140764 =1764;0.236.
Hence ¢ = 0.236, since it only lies between 0 and 1/2.
b—a b-a

Example 4.15. Prove that (if 0 <a <b < 1), <tan?b-tan'a <

1+5° l+a

+ 0
thae £\ s, L8 14 _n 1 M i, 2009 ; V.T.U., 200
Hence show tha G el 535t 7 (Mumbai, 2009 ; V.T.U., 2006)
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Solution. Let fix) = tan™! «, so that £’ (x) = 2 = -
1+x
-1 -1
By Mean value theorem, tan b—tan” a -1 ,a<c<b (1)
b-a Lo
Now a<e<b, . 1l+a?<1l+c2<1+0b2
1 1 1 ie., 1 < 1 < 1
1+a? 1+c2>1+b2 1+6% 1+ 1+d°
; 1 tan' b—tan' a 1 ;
ie., < < [By )]
1+8° b-a 1+d”
Hence ~2 <tan'b-tanla < —az
1+b* 1+a
Now leta =1, b = 4/3.
Then U8  cqapid B 1B
1+16/9 3 4 1+1
; 1 4 1
ie., %_,_535 <tan1§<£-+g.
Example 4.16. Prove that log (1 + x) = /(1 + 6x), where 0 < 8 < 1 and hence deduce that =
XY
X <log(l+x)<x, x>a . (Mumbat, 2008)
-7 -y J\CE
Solution. Let flx) = log (1 + x), then by second form of Lagrange’s mean value theorem
Ra +h)=fla) +h fa + 6h), (0<06<1)
we have fx) = 0) + x f(6x) [Takinge =0, h = x]
or log (1 +x)=1log (1) +x.1/(1 + 6x) [ flx)=11+x)
Hence log (1 +x) = x/(1 + 0x) @ log(1)=0
Since 0<B<1, - OD<9x<xforx>0.
1 1
or l<l+6x<1l+x or 1>mx—>1+x
x x
i 2 Tt = 1+x
or x <log(l+x)<x,x>0. [By (i)l
1+x

(3) Cauchy’s Mean-value Theorem*
If (i) f(x) and g(x) be continuous in [a, b]
(iz) f'(x) and g (x) exist in (a, b)
and  (ii1) g (x) # 0 for any value of x in (a, b),
fb)-fla) fe)
gb)—gla)  f'(e)

then there is at least one value ¢ of x in (a, b), such that

() - fla)
£®) - g@) &%
Since flx) and g(x) are continuous in [a, b]
¢ (x) is also continuous in [a, b].
Again since f'(x) and g’(x) exist in (a, b).

Consider the function ¢(x) = fix) —

*Named after the great French mathematician Augustin-Louis Cauchy (1789-1857) who is considered as the father of
modern analysis and creator of complex analysis. He published nearly 800 research papers of basic importance. Cauchy is
also well known for his contributions to differentiai equations, infinite series, optics and elasticity.



DOWNLOADED FROM www.CivilEnggForAll.com

DirrerenTiaL CaLcuLus & s APPLICATIONS 145
() - fla)

¢’ (x) also exists in (g, b) and =f"(x) - £gb) - gla) g

Clearly, ola) = ¢(b).
Thus, ¢(x) satisfies all the conditions of Rolle’s theorem. There is therefore, at least one value ¢ of x
between a and b, such that ¢'(c) =0

fb) - fla)

2b)— gla) £’(c) whence follows the result.

e 0=f"e) -

»

(P.T.U., 2007 S ; V.T.U., 2006)

Obs. Cauchs"’s mean value theorem is a generalisation of Lagrange’s mean value theorem, where glx) =x.

Example 4.17. Verify Cauchy’s Mean-value theorem for the functions e* and ¢ in the interval (a, b).

Solution. filx) = e* and g(x) = ¢ are both continuous in [e, b] and both functions are differentiable in (a, b).
& ffx)=eg (x)=—e™
By Cauchy’s mean value theorem.

fb)—fla)  f'(c)
gb)-gla)~ g'(e)
=€ __ & iec=l@sb
&t -_g* & 2
Thus c lies in (a, ) which verifies the Cauchy’s Mean value theorem.
(4) Taylor’s Theorem* (Generalised mean value theorem)
If (i) fix) and its first (n — 1) derivatives be continuous in [a, a + h], and (ii) f" (x) exists for every value of x
in (a, a + h), then there is at least one number 6 (0 < 0 < 1), such that

2 n
f(a + h) = f(a) + hf'(a) + % f7(a) + ... + % f" (a + 6h) ..(1)

which is called Taylor’s theorem with Lagrange’s form remainder, the remainder R, being h_n' " (a + 6h).
n!

Proof. Consider the function
(a@+h—x)° (@a+h—x)
W =fx)+l@a+h-f @)+ — 57 @O+ + (7
where K is defined by
2 n
fa+h)=fla) + b’ (@) + % £ @)+ + % K A2)

(i) Since flx), f* (x), ..., f "~ (x) are continuous in [a, @ + k], therefore ¢(x) is also continuous in [a, @ + k),

(@+h-x)""1
(n—-1)!
(z2i) Also ¢(a) = dla + h). [By (2)1
Hence ¢(x) satisfies all the conditions of Rolle’s theorem, and therefore, there exists at least one number
00<0<1),suchthat ¢’ (a+06h)=0 ie., K=f"(a+06h)(0<B<1)
Substituting this value of K in (2), we get (1).
Cor. 1.Taking n = 11in (1), Taylor’s theorem reduces to Lagrange’s Mean-value theorem.
Cor. 2. Putting @ = 0 and & = x in (1), we get

[f"x) - K]

(i1) ¢’(x) exists and =

2 n
o) =f0) +x £ (O) + Gy £* (O + e+ o7 f7 (B). 3

which is known as Maclaurin’s theorem with Lagrange’s form of remainder.

*Named after an English mathematician, Brooke Taylor (1685-1731).
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Example 4.18. Find the Maclaurin’s theorem with Lagrange’s form of remainder for fix) = cos x.
J.N.T.U., 2008)

dri

n

Solution. fhx)=

Thus f0) = 1,

(cos x) = cos [%ﬂ + :c) so that fig, = cos (n/2)

£21(0) = cos (2n/2) = (- 1)*
[2+1(0)=cos [(2n + 1) W2] =0

Substituting these values in the Maclaurin’s theorem with Lagrange’s form of remainder i.e.,
xzn f2” (0) +‘__x_2f‘:1__ f2n+1 (&x)
(2n)! (2n + 1)

2n 2n+1
BN i g
(2n)! @2n+1)!
2 4 2n (_ 1)n+1 x2n +1

x X X
osx=1—-—+"—+..+(-=1)" + cos (6x)
e cosx 21" 41 N it @t

2
£(x) = £(0) + xf1(0) + % £7(0) + oo +

2
We get cosx=1+0+%(—l)+0+....+ (-=1)" (- 1) cos (6x)

Example 4.19. If fix) = log (1 + x), x > 0, using Maclaurin’s theorem, show that for 0 <0< 1,
2 3

x x
logl+x)=2x——+——.
nd 2 31+
L% Mag ; . {
Deduce that log (1 + x) <x— 2 i ts for x > 0. (J.N.T.U., 2005)
Solution. By Maclaurin’s theorem with remainder R;, we have
2 25 ;
f@) =£(0) +xf'(0) + 37 f"(0) + 37 "(6x) D)
Here flx) =log (1 + x), f0)=0
=1, £0)=1
1+x
”, -1 ",
f (x) = = fo)=-1
1+ x)
g 2 LS 2
and frx)= " f7(0x) =
1+ x)? 1 +6x)°
x° x°
Substituting in (i), we get log (1 +x) =x — 5 * m .(20)
Sincex>0and 6>0,0x >0
or (1+6x)3>1 ie, 1 <1
A+ 6x)°
2 3 g 8
x s x°  x
e — -+
T2 T 30sm 273
2 .3
Hence log(1+x)<x— %+% [By (i)
1. Verify Rolle’s theorem for (i) flx) = (x + 2)° (x — 3)* in (- 2, 3).
(i) y = e* (sin x — cos x) in (7/4, 5n/4). (i) flx) = x(x + 3) e Y2 in (- 8, 0).

* +ab
(iv) fix) = log {m} in (a, b). (V.1.U., 2005)
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2, Using Rolle’s theorem for flx) = x27 =1 (a — x)?", find the value of x between o and a where £ (x) = 0.
3. Verify Lagrange’s Mean value theorem for the following functions and find the appropriate value of ¢ in each case :

(1) flx) = (x = 1) (x— 2) (x — 3) in (0, 4) : (V.T.U., 2009)
(ii) f(x) = sin x in [0, 7] : (Nagpur, 2008)
(iir) flx) = logex in [1, e]. (Burdwan, 2003)
(iv) flx) =e*in [0, 1]. (V.T.U., 2007)

4. By applying Mean value theorem to

+— =0 for some x between 1 and 2.

ro| &
|-

n
flx) =log 2 . sin % + log x, prove that 2 log 2 . cos

5. In the Mean value theorem flx+h)=flx)+ hfx+6h),
show that 6 = 1/2 for flx) = ax? + bx + ¢ in (0, 1).

2
6. IfflR)=f0)+h [’ (0)+ % f“(8h), 0 < 6 < 1, find 6 when & =1 and flx) = (1 - x)%2
1
7. Ifx is positive, show that x > log (1 + x) >x — Ex2 (V.T.U., 2000)

8. Iff(x)=sin"'x, 0 <a <b < 1, use Mean value theorem to prove that
b-a 2 b-a

2 <sm‘1b—sin'la < —-—"—T
;](1-&) Ja-?)

9. Prove that b—;—(i <log (%](b;a for0<a <b.

4
Hence show that %< log & <% . (Mumbai, 2008)
10. Verify the result of Cauchy’s mean value theorem for the functions
(z) sin x and cos x in the interval la, b]. ! (LN.T.U, 2006 S)

(ii) log, x and 1/x in the interval [1, e].
11. If flx) and g(x) are respectively ¢* and e, prove that ‘¢’ of Cauchy’s mean value theorem is the arithmetic mean
between a and b. (Mumbai, 2008)
12. Verify Maclaurin’s theorem flx) = (1 — x)*? with Lagrange’s form of remainder upto 3 terms where x = 1.
13. Using Taylor’s theorem, prove that
3 B .5

x —1—<siux<x S forx >0
6 120’ 3

EXPANSIONS OF FUNCTIONS

(1) Maclaurin’s series. If fix) can be expanded as an infinite series, then

2 3
£(x) = £(0) + x £(0) + % £7(0) + % £7(0) + ... o0 (1)

If fix) possess derivatives of all orders and the remainder R, in (3) on page 145 tends to zero as n — o, then
the Maclaurin’s theorem becomes the Maclaurin’s series (1).

Example 4.20. Using Maclaurin’s series, expand tan x upto the term containing x°. (V.T.U., 2006)
Solution. Let flx) =tanx fo)y=0
: flx)=sec?x=1+tanZx flo)=1
f” (x) =2 tan x sec? x = 2 tan x (1 + tan® x)
=2tanx + 2 tan® x =0

f£7(0) = 2 sec®x + 6 tan? x sec?x

=2(1 +tan%x) + 6 tan® x (1 + tan® x)

=2 +8tan?x + 6 tan? x fr0)=2
f¥(0) = 16 tan x sec? x + 24 tan® x sec? x
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=16 tan x (1 + tan? x) + 24 tan® x (1 + tan® x)
=16 tan x + 40 tan® x + 24 tan® x f®0)=0
fY0) = 16 sec? x + 120 tan?x sec®x + 120 tanx sec’x.  fY(0) = 16

and so on.
Substituting the values of £(0), f'(0), etc. in the Maclaurin’s series, we get
2 3 4 5 3
x X % x x 2%
tanx=0+x. 1+§ ;2 EO+;.16+...=;¢+?+_1§.+

(2) Expansion by use of known series. When the expansion of a function is required only upto first few
terms, it is often convenient to employ the following well-known series :

e 6 o @ & o
+———%... M g e g
1. sin6=6- 31 51 71 2. sinh 6 = 9+3'+5'+7|
2 pd b 2 a4 o6
3. cosB—l—e—+e——9- 4. cosh6 = 1+9_+_9_+8_+
2! 4! 6! 21 41 g!
3 3 .5
5. tan 6 = e‘i‘el—‘l'E +. 6. tan"lxzx—x_+x__“_
3 15 3 5
2 3 4 2 .5 4
x x x x X
7. e*= l+x+;—+§ E+ 8. log(1+x)_x-~—+E-Z+
x2 I3 x4
9. log(l-x)=—|x+—+—+—+...
el (I 2 '3 4
10. Q1 +x)"= 1+m:+n(nt—1)x2+n(n—1)(n—2)x3+

3!

Example 4.21. Expand ¥ * by Maclaurin’s series or otherwise upto the term containing x*.
(Bhopal, 2009; V.T.U., 2011)

(sin x)®* (sinx)® (sin x)*
21 3! 4!

Solution. We have esi"* = 1 4 sin x +

24
4
x* x
= 1?|-x+ T +.
Otherwise, let flx) = etinx Fl0) =

: f’ (x) = e *cos x = flx) . cos x =1
7 &x)=f" (x) cos x — flx) sin x, ffio=1
f(x) = f"(x) cos x — 2f"(x) sin x — f(x) cos x, f70)=0
F2(x) = f""(x) cos x — 3f"(x) sin x — 3f" (x) cos x + f(x) sin x, fP0)=-3

and so on.

Substituting the values of f10), £/(0) etc., in the Maclaurin’s series, we cbtain

2

3
FNE=14x. 1+§ 1+§ 0+ ( 3) +..

—1+x+ﬁ—ﬁ +
= o~ g *t
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Example 4.22. Expand log (1 + sin® x) in powers of x as far as the term in x5. (Hissar, 2005 S)

3 5 2 a 5 2
S 1 t' n- i 2 —3 — x x p—- —_ xfi_g___
olution. We have sin®x [x 31 51 ] |:x (6 190 +.

4 4 6
e 2 a0 —a2 X 2
=i~ Trestag * g T Ap e hsa
£.r ¢
Now log (1 +sin?x)=log (L + ) =¢— 2ty e

Substituting the value of ¢, we get

6 2
inx)=a2-% ;20 . 1l .2 x 12
log (1 + sin® x) = x R 2(:: 3+J 3(x )3
4 6
B Ao G 2 Lo
—x2_58,4,.82 6
6 45

Ohs. As it is very cumbersome to find the successive derivatives of log(1 + sin?x), therefore the above method is
preferable to Maclaurin’s series method.

Example 4.23. Expand A5 % i ascending powers of x.

Solution. Let y=¢""" % In Ex. 4.9, we have shown that
(y)n =1, (yl)o =a, (y2)0 =a?, (y3)0 =a(l +a?), @4)0 =a?(22 + a?)
and so on.
Substituting these values in the Maclaurin’s series

y=()+ (3’11!)0:c (3’221)0 2 (3:;3')0 3 (31’;?0 4,

asin~' x " 0(12 +a ) 3 (12(22 +a ) 4
we get e =l+ax+ 2 2' 37 % 1

(3) Taylor’s series. If f (x + k) can be expanded as an infinite series, then

2 3
£l + b) = @) + b f/) + % ) + %f”’(x) oo (1)
If fix) possesses derivatives of all orders and the remainder R, in (1) on page 147, tends to zero as n — oo,
then the Taylor’s theorem becomes the Taylor’s series (1).
Cor. Replacing x by a and & by (x — @) in (1), we get

fiw) =fla) + (x - ) @) + £ - ;’" @)+ (" “) @) +.

Taking a = 0, we get Maclaurin’s series.

Example 4.24. Expand log, x in powers of (x - 1) and hence evaluate log, 1-1 correct to 4 decimal places.
(Bhopal, 2007 ; Kurukshetra 2006)

Solution. Let flx) = log,x f1) =
F@=, =1

fﬁ(x)=_ _1?, f”(1)=_
x
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7 (x) = % (=2
x
fi”(x)z'-— %’ fiu (0)2—6
x
etc. etc.

Substituting these values in the Taylor’s series

1)

ﬂx)=ﬂ1)+(x—1)f’(1)+ 90 %

f”(l)
(x=1° -1F (-1
2 3 4

Now putting x = 1.1, so that x — 1 = 0.1, we have
log (1.1) =1.1- 10.1? + 1(0.13- 1 (0.1)* +
= 0.1 - 0.005 + 0.0003 - 0.00002 + ... = 0.0953.

we get logx=(x-1)-

Example 4.25. Use Taylor’s series, to prove that

tan'(x + h) = tan~' x + (h sin 2) . s";z A0 heyed SRR s ey SN S
where z = cot™ 1 x. (Bhillai, 2005)

Solution. We have cotz=x (1)
= —cosec?z. dz/dx=1 or dz/dx=-sin?z ()

Now let flx + h) = tan (x + k), so that flx) = tan~! x
Fw=—t -1 _gin2, (By ()]

1+x 1+cot™z

£ @) =2sinz cosz % = sin 22 - (— sin22) [By (i)l

7 (x) =—12 cos 2z - sin? z + sin 2z - 2 sin z cos z] %

=—2 sin z [sin z cos 2z + sin 22 cos 2] (- sin? 2) = 2 sin® z sin 3z
and so on.
Substituting these values in the Taylor’s series

flx+h)= ﬂx)+hf(:r)+—f (x )+-f (x) + ..

we get the required result.

PROBLEMS 4.5

Using Maclaurin’s series, expand the following functions :

1 + X x3 xs
L. = gte 0
log (1 + x). Hence deduce that log T ettt
2. sinx (P.T.U., 2005) 8. /@ +sin 20) (V.T.U, 2010)
4, sinlx (Mumbai, 2007) 5. tan'x

6. log sec x (Mumbat, 2009 S ; V.T.U., 2009)
Prove that :

x 7at
7. secx=1+ﬁ+ 360 *

3 5 7 ’ L 3 5 7
9. sinl_.zizz{x—x 4 X %—+} 10. mn—l—w:l[x—x—«}i-ihu]

8. xcosecx =1+ — + (Mumbai, 2007)

+

5x*
4

1+x 85 X 2
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3 5 G
=1 x _Si_ 2x a5 ¢ -
11. sin7! (8x-42%) = 3[x+3 =5 +] 12. ?‘COSI—-]-!-I—?—-— i (Raipur, 2005)
) X4 6 ) i
13 eFnr=1422 + 2 4 X _, (Kurukshetra, 2009)
3 120
3 2 3 : 2 4 6
14, & “=e"2|1-x+% _% ;| (Mumbai, 2008) 15.log SBX__[x x| x
4. ¢ e [ A T (Mumbai 8) 15. log F AT T
i e _
16. log (1 +sinx) =x— fé-»fgﬁil’g o (S.V.T.U. 2009 ; J.N.T.U., 2006 S)
17, STae =1 L LA f 8Ll (V.T.U., 2006)
& 5% agtam T 41805
X 12 Id
18, 10g(1+?‘)=1032+ §+§—@ S (Bhapal,2008)
e’“_l:c.':t:3 af el 1% L WS 4
19 e*+1_2+4 5" (Bhopal, 2008 S) 20. 2{e‘—lJ_l+E ST 80 g1t " (Mumbai, 2007)
2 58
21. sinxcoshx=x+ E—% e
By forming a differential equation, show that
2 4 6
1.2 - 9% 2% 2 42 X
22. (sin!x) 22 42 70 +2-22. 4 51 + ...
o i, (180735 235
23. log1+ JQ+27)] = x— §3+245 5. 4.67 +
24. If y =sin (m sin™' x), show that (1 -2y, —xy, + m?y =0
Hence expand sin m6 in powers of sin 6. (S.V.T.U., 2008)
25. Using Taylor’s theorem, express the polynomial 2% + 7x% + x — 6 in powers of (x — 1) (Burdwan, 2003)

26. Expand (i) e* (Cochin., 2005) (if) tan! x, in powers of (x — 1) upto four terms.
27. Expand sin x in powers of (x — n/2). Hence find the value of sin 91° correct to 4 decimal places. (Rohtak, 2003)

28, Prove that log sin x = log sina + (x —a) cot a — 3 (x—a)? cosec?a + ...
29. Find the Taylor’s series expansion for log cos x about the point /3.

30. Compute to four decimal places, the value of cos 32° by the use of Taylor’s series. (Kurukshetra, 2006)
31. Calculate approximately (i) log,, 404, given log 4 = 0.6021. (Rohtak, 2005 S)
(i) (1.04)301 (Mumbai, 2007)

EZEH INDETERMINATE FORMS

Ingeneral Lt [f(x)/{(x)] = Lt f(x)/ Lt ¢(x). Butwhen Lt f(x) and Lt ¢(x) are both zero, then the
x=a

=0 X—=a Xx—=a

quotient reduces to the indeterminate form 0/0. This does not imply that Lt [f(x)/¢(x)] is meaningless or it
x—a

does not exist. In fact, in many cases, it has a finite value. We shall now, study the methods of evaluating the
limits in such and similar other cases :

(1) Form 0/0. If f (@) = ¢ (a) = 0, then

[x) f(x)
Lt Lt —
x—a q:(x) x—Pﬂ Q)(x)
By Taylor’s series,

fla)+ (x — a)f’ (a)+ (x a’ fa)+...
Lt flo) = Lt
x> 0x) x> oa) + (x — a)q>(a)+ - a)® ¢"(a) + ...
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_ fla+ix-a) fla)+..
Cxsa §l@) + L (x—a) §la) + ...
_f@_, @
¢'(a) x—a qf(x) st
This is known as L’Hospital’s rule.
In general, if

ﬂa)=f"(a)=f”(a)= ____—_fﬂ—l(a)zo,butf“{a);tﬂ,
and ola) = ¢'(a@) = ¢"(@)=...=¢" "1 (a) = 0, but ¢" (@) 20,
then from (1),

1 0 _f@_,, fe
xa q)(X) ¢,n(a) x>a ¢,n(x)
[Rule to evaluate Lt [fx)/¢(x)] in O/O form :

Differentiating the numerator and denominator separately as many times as would be necessary to arrive a
determinate form|.

xe* - log (1 +x)
R iy m

Example 4.26. Evaluate (i) Eta (V.T.U., 2004 ; Osmania, 2000 S)

x
2 &
@) xl-‘flx—l—-lﬂgx
Solution. (i) X iy form 2
x—0 JC2 0
X x
= Lt (xe” +e" - 1)—1/1 + x) (forng
x—0 2x 0
o opp e e p U0 0414141 .1
T x50 2 - 2 T2l
. X =% 0
R Ry v (form )
= LtldlL[)){% Let y = x* so that
x—= - -
AL +logx)—1
=B e gy =g
0 1dy 1
form — Lo = =x.= .
(m‘mo) i on xx+1 log x
or % () =x*(1 + logx) ..(@)
- Lt d(x™)/dx.(1+logx) +x"(1/x)—0
xr—1 1{.‘.\12
x 2 x
-t X (1+log :Jc_)2 +x (1/x) By ()]
x—1 x

11+0)* +1-1 b
3 =2
s X) —cC sin x

5
x

Example 4.27. Find the values of « and b such that Lt e Dee =1 (Mumbai., 2007)
-
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Solution. Lt Mol oo :) i [form Q)
x>0 x 0
- Lt a+bcosx—bx:."mx—ccosx D)
=0 5x
As the denominator is 0 for x = 0, (1) will tend to a finite limit if and only if the numerator also becomes 0
for x = 0. This requiresa +b —c =0 ..-(ii)

With this condition, (i) assumes the form 0/0.
—bsinx—-b(sinx+xcosx)+csin x

@)= Lt B
x—0 20x
- T (c — 2b) sin x — bx cos x (formg)
x>0 20_’(3 0
T (c—2b)cosx—b((2:osx—xsmx) i)
x =0 60x
_ &= 2(:3 b c—03b 1 Ciivon)

c—3b=0 ie, c=3b.

Now (iii) y Ltﬂbcosx—b;gsgx+bx sin x
X = x
bsinx _ b | [sinx] b

x50 60x  60xo0| =x :@=1'

ie,b=60,and .. ¢=180.
Form (i), @ = 120.

(2) Form co/co, It can be shown that L’Hospital’s rule can also be applied to this case by differentiating the
numerator and denominator separately as many times as would be necessary.

o Basatiphe 458, Boatunte [Tt 222,
d x—0 cot x
1 in®
Solution. t o Lo Lt e Lt PL (formo)
x—0 cot x x—'ﬂ—ooseczx x>0 X 0
e B 2 sin x cos x -0

x—0 1

Obs. Use of known series and standard limits. In many cases, it would be found more convenient to use
expansions of known functions and standard limits for evaluating the indeterminate forms. For this purpose, remember
the series of § 4.4 (2) and the following limits :

LI Lt a+0)' =e
x—=0 X x-0

e sinx—x - a?

Example 4.29. Evaluate Lt
T x50 4% 4 xlog(1- x)

Solution. Using the expansions of ¢, sin x and log (1 —x), we get

e sin x —x — x°

It &

x=0 x

+xlog(1-x)

1+x+lx +—~x + .. :yc—l 4o |—x—a2
2! 3!
Lt <

o)

x—=0

x+x(x
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(x+x2+1:x3 l:!-.f’"+...)—-.:lz’.—:u:2 —]lxs—ﬁ-x4+... 'l-le...-
_ 3 . i g = 3 e
=iy T =T VI U = S U PR &
x—0 =0 L 0 1.4 = ok o
(x T +3x +.. ) 2 Sx. 3 3,1: 3

) 1~§z+11‘2— -§x+—tn—
or y=e =e.e

B (X0 G T OF TN S i TS & ¥ . oz il
,__elil-;-( .2:x_.+3x ]+2|[ 2x+§:!52—...] +] —e.(1—§+ﬁx2+...]

(1----—-&-11:r:2 +.. )

N
Lt (1+x)‘ 1t 24
x—0 x =0 x
11
ety i ol
= Lt ( i 24x2+ )= i ____._54.2.'3;.‘. . =_&
x—0 x x>0\ 2 .24 B 2-
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(3) Forms reducible to 0/0 form. Each of the following indeterminate forms can be easily reduced to the
form 0/0 (or eo/e<) by suitable transformation and then the limits can be found as usual.

I. Form 0 x . If Lto flx) =0and Lt ¢(x) = o, then

X —3en

Lt [f(x).d(x)] assumes the form 0 x eo,
Xx—=a

To evaluate this limit, we write
f(x) - o(x) = flx)/ [1/¢ (x)] to take the form 0/0.
= ¢ (x)/[1/f(x)] to take the form cofes,

Example 4.31. Evaluate Lt (tan x log x) (V.T.U., 2009)
x—=0

Solution. Lt (tan xlog x)= Lt [log x) (ﬁ)rm 2]
x=0 x—0\ cot x od

e [ U= | g (s’
x—=0 _cosec2x x-30 x

& Td 2sin x cos x ol
x>0 1

IL. Form = —oo If Lt f(x) =co= Lt ¢(x), then Lt [f(x)- ¢(x)] assumes the form ec —co.
x-=a Xx—=a

X—=a

form

P

(=11
~

It can be reduced to the from 0/0 by writing
o L e S S
fa-40= |- e

Example 4.32. Evaluate Lt ( .1 —i).
solsinx x

Solution. Lt ( .1 —IJ— Lt w= Lt w [form Q)
r»0lsinx x) x50 xsinx x50 XCOSX+sinx

Lt sin x _ 0 _

x50 x(—sinx)+cosx+cosx O+1+1

III. Forms 09, 1=, «*. Ify = Lt [f)1*® assumes one of these forms, then logy= Lt ¢(x) log f(x) takes
xX—a

x—a

the form 0 x e, which can be evaluated by the method given in I above. Iflogy = I, then y = &'

e - o » \/x
Example 4.33. Evaluate (i) Lt (sin x)™"* (ii) Lt [E_:'_‘l_ifﬁJ (V.T.U., 2011)
x—n/2 x—0 3
1/2°
t
(zzt) Lt ( . x)
x 0
Solution. (i) Let y= Lt (sinx)*®"*,
x—=n/2
logy= Lt tanaxlogsinx= Lt Togsinx (form QJ
x—n/2 xronl2 cot x 0

Mb Lt (sinxcos x) =0

B x—onl2 — cosec x x—on/2

Hence y=el=1,
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1/x
. at +b" +¢c”
(zi) Let y= xl—fc- [T]

Lt log (@® +b" +¢*)—log 3

x—0 x

so that

log y

Lt (@® +b* +¢*)! (a* log a+ b log b + ™ log )
x=0 1

=(1+1+1)1(loga +logh +logc) = %]og (abc) = log (abe)V3.

y = (abc)B

3 1/x%
2 x L, 2.5
o 1x (x+ 3 +15I +...]
x

X

(ii1)

Lt

x—=0

= Lt

x—=0

2 9 142
= X , 4,4
= ;I-Qto(l"- 3 +15x +J

= Lt (1+tx2)vx2

x—0

= Lt [A+aD" ) = Lt of =e'. [
x>0 x—0

PROBLEMS 4.7

Evaluate the following limits :

HigHER ENGINEERING MATHEMATICS

o )

1. Lt [Lz_;z] 2. Lt [l_ 1 } (Burdwan, 2003)
x—0{ x sin“ x x50 %e X8 g
3. Lt (2xtanx— msecx) (V.T.U., 2008) 4. It [M]
£ | =0 X
6. Lt [Ji—mt2 x] 6" Tk a2
20\ ¥ x->1
i ¥ A (V.T.U., 2007) 8. Lt (secx)®™*
x—0 x—an/f2
9. Lt (1+sin 0™ 10. Lt (cos )M*
x>0 x—0
11. Lt (tano)™% (V.T.U., 2004) 12. Lt (cotx)!/'%8*
x—an/2 x>0
E-x sn 1/x
13. Lt (cosx)? 14. Lt ( )
x—n/2 x—=0 x
sin 2 Y/*° 9.1/ log (1-x)
15. Lt[ ] (V.T.U., 2001) 16, Lt (1—x°)""8
x=0 x x—»1
tan (mx/ 2a)
b B B (2-£J (V.T.U., 2010 ; Nagpur, 2009)
x—a a
1/x%
18 14 |2(eoshz-1) 1 A b L £ VLB (Osmania, 2000 S)
20 = rs2lx—2 logx—=1
1/x
X
20. Lt (#J . (V.T.U., 2008)
X—>
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[EX3 TANGENTS AND NORMALS — CARTESIAN CURVES
(1) Equation of the tangent at the point (x, ) of the curve y = flx) is

Y-y= %(X-—x).

The equation of any line through P(x, y) is
Y-y=mX-x)
where X, Y are the current coordinates of any point on the line (Fig. 4.3).
If this line is the tangent PT, then
m = tan y = dy/dx
Hence the equation of the tangent at (x, y) is

Fig. 4.3

Y—y= %(X—x) ..(2)

Cor. Intercepts, Putting Y = 0 in (2)
dy
dx
Intercept which the tangent cuts off from x-axis (= OT) = x - y dx/dy
Similarly putting X = 0 in (2), we see that
the intercept which the tangent cuts off from the y-axis

W x_ i
_y_d.x(X x) or X=x-y/

s E—
(=01 =y X e

(2) Equation of the normal at the point (x, y) of the curve y = f(x) is
Yoyu SE )
dy

A normal to the curve y = f(x) at P (x, y) is a line through P perpendicular to the tangent there at.
Its equationis Y-y =m’ (X —x)

where m’-dyldx=-1 or m’:—ll%:——dxfdy

Hence the equation of the normal at (x, y)is Y -y =— % (X —x).

Example 4.34. Find the equation of the tangent at any point (x, y) to the curve x2/3 4 y2/3 = 4213 Show
that the portion of the tangent intercepted between the axes is of constant length.

Solution. Equation of the curve is x¥3 + y%8 = g2, (D)

Differentiating (i) w.r.t. x,

dy N
Slope of the tangent at (x, y) = % =— (—]
dx x
Equation of the tangent at (x, y) is
Y-y=—(@x)B(X-x) ' (@)
Put Y = 0 in (if). Then X=x+x13 428
i.e., Intercept on x-axis = (x28 4 y2BplfS = (23 413 [By ()]
Put X = 0 in (ii). Then Yoy +9'8 o8
i.e., Intercept on y-axis = (128 4 y23) yVS = 28 13 [By (i)

Thus the portion of the tangent intercepted between the axes

£ J{(Intercept on x-axis)” + (Intercept on y-axis)?|

_ J[(a2"3-x”3)2 + (@132
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= J[aus(xzfa + yzfs)] =23 f(a)zfs [By ()]
= a, which is a constant length.

Example 4.35. Show that the conditions for the line x cos o +y sin o = p to touch the curve
(xla)™ + (.y/b)m =1 is (a cos a)m!fm—l) + (b sin wmi(m—ﬂ ___pmlfm-ﬂ'

nt mn
Solution. Equation of the curve is Z X =
m bm
m-—1

(1)
m-—1
Differentiating (i) w.r.t. x, i + @ =

m

a " dx
m m-1
Slope of the tangent at (x, y) = & (.b_) (x]
dx y

Equation of the tangent at (x, ) is

b m m-—1
S HIHES

m-1 m-1 m m
X Y » ;
or x — + 4 7 =Z—m+:—m=1 ...(t1) [By (i)
If the given line touches (i) at (x, y) then (ii) must be same as X cos o+ Ysino=p ..(iii)
Comparing coefficients in (ii) and (iii),
XM= 1 / ym -1 / . 1
cos O = sin oL = —
a™ b™" p
(me-1 @ €os o, [yjm_l b sin o
or — = | = =
a p b p
m_ m_ . .
. (e s e (] (5", By
p p a b
whence follows the required condition.

Example 4.36. Find the equation of the normal at any point 8 to the curve x = a (cos 0 + 8sin 0), y =a
(sin @ — 0 cos 0). Verify that these normals touch a circle with its centre at the origin and whose radius is
constant.

Solution. We have 20 = a(—sin 0 + sin 6 + 6 cos 6) = ab cos 6

j—z =a(cos B — cos 6 + 6 sin 6) = ¢b sin 6
dy _dy /dx _sin®
dx do6/ d8 cos®
Slope of the normal at 6 = — o 9
sin 0
Hence the equation of the normal at 6

y—aEin 0—boos @ % b aleon 0+ 0 ainol]
sin 0

iLe.,

ysin®—asin®6+a0sin6cos®=—xcosB+acos?6+a0sinbcosd
Le., x cos O +y sin 8 = alcos? 6 + sin? 6) = a.

Now the perpendicular distance of this normal from (0, 0) = a, which is a constant. Hence it touches a
circle of radius a having its centre at (0, 0).
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(3) Angle of intersection of two curves is the angle between the tangents to the curves at their point of
intersection.

To find this angle 8, proceed as follows :
(i) Find P, the point of intersection of the curves by solving their equations simultaneously.
(ii) Find the values of dy/dx at P for the two curves (say : m, m,).
(iii) Find £, using the tan 6 = —1 "2
1+ mym,
When m, m,=—1, 8 = 90° i.e,, the curves cut orthogonally.

Example 4.37. Find the angle of intersection of the curves x* = 4y (e
and ¥ =4x ()
Solution. We have x%=16y%= 16.4 x = 64x
or x(x® — 64) = 0 whence x = 0 and 4.

Substituting these values in (i), y = 0 and 4.
The curves intersect at (0, 0) and (4, 4).
For the curve (i), dy/dx = x/2. For the curve (ii), dy/dx = 2/y
At (0, 0), slope of tangent to (i) (= m,) = 0/2 = 0 and slope of tangent to (ii) (= m,) = 2/0 = e.
Evidently the curves intersect at right angles.

At (4, 4), slope of tangent to (i) (= m,) = 4/2 = 2 and slope of tangent to (ii) (= m,) = 2/4 = %
Angle of intersection of the curves

1
=tan™! 212 _ ¢ap! ik 18 =tan™!

1+ mymy 1+2-1

| oo

Example 4.38. Show that the condition that the curves ax® + by® = 1 and a’x® + b’y? = 1 should intersect
orthogonally is that

o) R R
i, 1 ol W
Solution. Given curves are axZ+by?=1 () and ax®+by%=1 ..(@0)

Let P(h, k) be a point of intersection of (i) and (ii) so that
ah?+bk?*=1 and ah2+bk2=1

K2 K1
—b+b —-d+a ab -a'b
or h?2=(b"-b)(ab’ —a’b), k2= (a — a'Mab’ —a’b) ...(iit)

Differentiating () w.r.t. x,
2ax + 2by dy/dx =0 or dy/dx=—ax/by.
Slmlla.rly for (ii), dyldx = — a’x/b’y
X m, = slope of tangent to (i) at P = — ah/bk ; m, = slope of tangent to (i) at P = — a’h/b’k
For orthogonal intersection, we should have mm, = — 1.

ie., % x% =li.e.,aa’h? + bb'k2 =0
Substituting the values of 2 and %2 from (iii),
aa’(b fb)+bb{afa): - b fb+a—a -0
ab'—ad'd ab’' —db bb’ aa’
X 1 1 1 1 " ; i
Le., — — —=—— — which leads to the required condition.

b b a a



DOWNLOADED FROM www.CivilEnggForAll.com

160 HicHER ENGINEERING MATHEMATICS

(4) Lengths of tangent, normal, subtangent and subnormal. Y
Let the tangent and the normal at any point P(x, ) of the curve meet the
x-axis at T and N respectively. (Fig. 4.4). Draw the ordinate PM. Then PT
and PN are called the lengths of the tangent and the normal respectively.
Also TM and MN are called the subtangent and subnormal respectively.

Let ZMTP = y so that tan y = dy/dx.

Clearly, ZMPN = v. .
(1) Tangent = TP = MP cosec y = y/(1+ cot? y) = y|[[1 + (dx/dy)?]

(2) Normal = NP = MP sec y = y\/(1 + tan? y) = y \/[1 + (dy/dx)?]
(3) Subtangent = TM =y cot y = y dx/dy
(4) Subnormal = MN =y tan y = y dy/dx.

Example 4.39. For the curve x = a(cos t + log tan t/2), y = a sin t, prove that the portion of the tangent
between the eurve and x-axis is constant.
Also find its subtangent.

Solution. Differentiating with respect to ¢,
dx i 1 2t 1 g cost/2 1
—=a|—sint+ -sec” — = | = a| —sin t + — .
dt tant/2 2 2 2sint/2 cos®t/2

= 2
=a|—-sint+ _1 =a(1—.sm ) =a cos®tfsint; ) =acost |
t sin ¢ dt

dy d-y/dx sin ¢
=l =geost . ———=tan t.
dedt] at = ° P

acos” §
Thus length of the tangent between the curve and x-axis
= yJl1+(dx/dy)*] =asint-J1 +cot? t) =asin ¢ . cosec t = a which is a constant.

Also subtangent = y;ﬁ =asint-cott=acost.
Yy

PROBLEMS 4.8

1. Find the equation of the tangent and the normal to the curve y(x — 2) (x —3) —x + 7 = 0 at the point where it cuts the
x-axis.
2. The straight line x/a + y/b = 2 touches the curve (x/a)* + (y/b)* = 2 for all values of n. Find the point of contact.
(Bhopal, 2008)

8. Prove that — + % = 1 touches the curve y = be */¢ at the point where the curve crosses the axis of y.
a

(Rhopal, 2009)
4. If p = x cos & + y sin @, touches the curve (wla )’ -V 4 (y/by/" -V = 1, prove that
p" = (a cos o)" + (b sin o).
5. Prove that the condition for the line x cos o + y sin & = p to touch the curve 2 y" = a™ * 7, is
prtEemm - pt = (m + nymt na™ M eos™ o sin® o

6. Show that the sum of the intercepts on the axes of any tangent to the curve Jx + J;; =@ is a constant.

7. If x, y be the parts of the axes of x and y intercepted by the tangent at any point (x, y) on the curve (x/a)*?
+ (x/b)?® = 1, then show that (x /a)? + (y,/b)* = 1. (Bhopal, 2008)
8. If the tangent at (x,, ¥,) to the curve x* + y® = a® meets the curve again in (x,, y,), show that
T2 pdar g,
*1 N
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9. Ifthe normal to the curve x%3 4+ 323 = 4?3 makes an angle ¢ with the axis of x, show that its equation is y cos ¢ — x sin
o =a cos 2¢.
10. Find the angle of intersection of the curves x? — 2 = a® are x? + y2 = a2/2.
11. Show that the parabolas y? = 4ax and 21® = gy intersect at an angle tan™ (3/5).

2 2 2 2
12. Prove that the curves -x—+-‘zb—=landx—, +-¥b,—=1 will cut orthogonally ifa — b =a'—b".
a a

13. Show that in the exponential curve y = be*'® the subtangent is of constant length and that the subnormal varies as
the square of the ordinate. (Madras, 2000 S)

14. Find the lengths of the tangent, normal, subtangent and subnormal for the cycloid:
x=alt +sint),y =a(l —cos 1),

15. For the curve x = a cos® 6, y = g sin® 0, show that the portion of the tangent intercepted between the point of contact
and the x-axis is y cosec 6. Also find the length of the subnormal.

POLAR CURVES

(1) Angle between radius vector and tangent. If ¢ be the angle between

the radius vector and the tangent at any point of the curve r = f(0), tan 6 = rg.

Let P(r, 6) and Q(r + &r, 6 + 80) be two neighbouring points on the curve
(Fig. 4.5). Join PQ and draw PM 1 OQ. Then from the rt. angled AOMP, MP = r sin 860,
OM = r cos 6.
: M@ =0Q —-0OM =r + dr —r cos 60
= 8r + r(1 - cos 80) = &r + 2r sin? 56/2.
MP _ rsin 50
MQ &+ 2rsin® §6/2 Fe- 4.4
In the limit as @ — P (i.e., 80 — 0), the chord PQ turns about P and becomes the tangent at P and o — ¢.
tan¢= Lt (tano)= Lt Ll 529
@-P 8 -0 dr + 2rsin” 80/ 2
C oLt r(sin 86/ 86)
80 -0 (6r/60) + rsin 66/2 - (sin 66/2 + 86/ 2)
_ r-1 N @
(dr/de)+r-0-1 dr
Cor. Angle of intersection of two curves. If §,, ¢, be the angles between the common radius vector and
the tangents to the two curves at their point of intersection, then the angle of intersection of these curves is ¢, ~ ¢,.

(2) Length of the perpendicular from pole on the tangent. If p be the perpendicular from the pole on
the tangent, then

If ZM@QP = ¢, then tan o=

- . . 1 1 1(dr)?
(L) p=r51n¢ (l-l-) .l:'_z__:r_z_'_r_“(ﬁ]
From the rt. Zed AOTP,p =rsin ¢
1 1 2 1 9
?=r—QCOSBC ¢D=r—2(1+mt ¢)
1 1(arY| 1 1(drY
=—|1l+—| — | L Bv (1
r2[ +r2 [dﬁ]] 1"2+ar"‘1 [de) [By (1)]

(3) Polar subtangent and subnormal. Let the tangent and the normal at any point P(r, 0) of a curve
meet the line through the pole perpendicular to the radius vector OP in T' and N respectively (Fig. 4.6). Then OT
is called the polar subtangent and ON the polar subnormal.
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Let ZOTP = ¢ so that tan ¢ = rd6/dr
Clearly, ZPNO = ¢ P(r, 0)
- (i) Polar subtangent

de
=0T=rt =r-rd6/dr=r2—
rtan¢=r-r r dr

(ii) Polar subnormal

=ON=rc0t¢=r.1£=g£
rdo do Fig. 4.6
Example 4.40. For the cardioid r = a(1 - cos 8), prove that
@) o=0/2 (i) p = 2a sin® 0/2
(iii) polar subtangent = 2a sin® % tan %
. dr :
Solution. We have — =asin 0
de
do ' 1
tan¢=r— =a(l- 0) -
Sy rdr + s asin 0
= 2 sin? 6/2 + 2 sin 0/2 cos 6/2 = tan ©/2. Thus ¢ = 6/2 (@)
Also p=rsind=a(l—-cosB)-sin@/2=a-2sin?O/2- sin 6/2
= 2a sin® 0/2 ...(i1)
Polar subtangent =r2d6/dr = [a(1 — cos 8)]? + a sin 6
= 4a sin* 0/2 + 2 sin 6/2 cos 6/2 = 2a sin? 6/2 tan 6/2. ...(iii)

Example 4.41. Find the angle of intersection of the curves r = sin © + cos 6, r =2 sin 6.

Solution. To find the point of intersection of the curves r = sin 6 + cos 6

r=2sin 6, ...(i1), we eliminate r.
Then 2sin0=sin®+cosBortan0=11i.e, 0=1/4.
5 dr :
For (7), =i cos 6 — sin 6
tan ¢ = rﬁzw which — e at 6 = n/4. Thus ¢ = n/2.
dr cos9-—sin©

Porlil), dridb=2c0s8 s tand=rS0=2FMO 4 i 6l Thus i =nl

dr 2cos6

Hence the angle of intersection of (i) and (ii) = ¢ — ¢’ = /4.

PROBLEMS 4.9

2y —y
x+y

. Show that in the equiangular spiral r = ae® *t%, the tangent is inclined at a constant angle to the radius vector.
. Show that the tangent to the cardioid r =« (1 + cos 6) at the points 6 = /3 and 8 = 2i/3 are respectively parallel and

perpendicular to the initial line. (V.T.U., 2006)

. Prove that, in the parabola 2a/r = 1 — cos 6,

(D)p=n—0/2 (##) m = a cosec B/2, and (ii1) polar subtangent = 2 a cosec 6.

. Show that the angle between the tangent at any point P and the line joining P to the origin is the same at all points

of the curve
log(x2 + y2) = k tan™! (y/x).
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6. Show that in the curve r = a6, the polar subnermal is constant and in the curve r 6 = a the polar subtangent is

constant.
7. Find the angle of intersection of the curves
(i) r=2sin6,and r =2 cos 0 (Bhopal, 1991)
(1) r =al(1 + cos 8) and r = b/(1 — cos 0). (V.T.U., 2008 S)
8. Prove that the curves r = a(1 + cos 6) and r = b(1 - cos 6) intersect at right angles. (V.T.U, 2011 S)
9. Show that the curves r’* = ¢” cos n8 and " = b" sin n8 cut each other orthogonally.
10. Show that the angle of intersection of the curves r = a log 8 and r = aflog 6 is tan! [2e/(1 - €2)]. (V.T.U., 2005)
mPEDAL EQUATION

If r be the radius vector of any point on the curve and p, the length of the perpendicular from the pole on
the tangent at that point, them the relation between p and r is called pedal equation of the curve.
Given the cartesian or polar equation of a curve, we can derive its pedal equation. The method is
explained through the following examples.

2 2

Example 4.42. Find the pedal equation of the ellipse :r_g + ‘:—2 =1 (D)
a
Solution. Equation of the tangent at (x, y) is &2 + % =1 ...(ii)
a
o -1
P, length of 1 from (0, 0) on (ii) =
Jix/a®P + (y12)2]
2 2
or Lol o0 .. i)
p° a* b
Also rZ=x2 442 ...(iv)
Substituting the value of y2 from (iv) in (i),
«®  r? b’
==

Then from (i), -;’—2 =

Now substituting these values of x¥a? and y?/b? in (iii),

11 -5 1{a*—+*
e

242 2,2 34, 4 2.2
or a%:rgy —b2+a2—ar -l G
[J) a”-b
Her ‘e required pedal equation.
Example 4.43. of the curves
(i) 2alr="1 M=a"cosn B (V.T.U., 2010)
Solution.
Takin;

log 2a — 1.,
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Differentiating both sides with respect to 6, we get
1dr 1

————7-sin9=cotg
rdé 1-cos9

tanc}):r% =—tan 0/2 = tan (- 0/2) i.e., =T — 6/2
r

Also p=rsin®=rsin(n—0/2)ie., p=rsin 6/2
; 1- 7
or p?=r2sin? /2 = re(%se} s ol By ()
Hence p? = ar, which is the required pedal equation.
(i7) From the given equation, nr”‘l% = —na" sin n
nr1 s
so that tan ¢ =rdb/dr=r - =— cot n6=tan (—+n9)
— na" sin no 2
ie., o =12+ nod

p=rsin § =rsin (g+n6] =rcos n® =r.(Ma") = rYa".

Hence p a™ = r'**1, which is the required pedal equation.

IEXN DERIVATIVE OF ARC

(1) For the curve y = f (x), we have

z Y
ds _ [. (%) ]
dx dx
Let P(x, y), Q(x + 8x, y + &y) be two neighbouring points on the curve AB
(Fig. 4.7). Let arc AP = s, arc PQ = 8s and chord PQ = &c.
Draw PL, QM 1s on the x-axis and PN 1 QM.
From the rt. Zed APNQ, 0
P@? = PN? + N@?
ie., 8c? = 8x? + &y?
sc 2 (5_}!)2
0 — =1+]=
' [ij e

Taking limits as @ — P (i.e.,, 8¢ — 0), Fig. 4.8

&)+ [(2]] o

If s increases with x as in Fig. 4.7, dy/dx is positive.

d dy\?
Thus d_asc = [1 + [a‘yJ J, taking positive sign before the radical. 1)

Cor. 1. If the equation of the curve is x = f(y), then

ds _ds dx_ 1+(ﬂf dx
dy dx dy dx dy
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o]

Cor. 2. If the equation of the curve is in parametric form x = fit), y = ¢(t), then
ds_ds dr_ 1+(d_y]2 dx
dt dx dt dx dt

Iy +(2-2T]

ds [(dx\? dy\®
& J(dtJ +(dt]] (3)
ds dy 2
Cor. 3. We have s 1+ = -J(l+tan y) =sec y
dx
= — ...(4
cosy=— (4)
Also sin y = tan y cos y = @_ﬁ
ds
5 dy
= —= (5}
sin y 5 (5)

deé

Let P(r, 9), Q(r + dr, 6 + 80) be two neighbouring points on the curve AB (Fig. 4.8). Let arc AP = s, arc PQ
= 05 and chord PQ = dc.

Draw PM 1 0OQ, then

d dr)’
(2) For the curve r = f(8), we have d: lr?- & [_r] ]

PM =r sin 80 and MQ = 0Q — OM =r + dr — r cos 80 = &r + 2r sin? 30/2
From the rt. Zed APM@,
PQ? = PM? + MQ?
or 8¢2 = (r sin 86)? + (&r + 2r sin? 56/2)?

{ET (53 a:] (g]g (rsinae}2+ & 2rsin 80/2)
30 3 80 P 30 30 )
:(ET rz(sinae)er(ng sin 2 sm86l2)
3¢ 30 30 2 88/2
Taking limits as @ — P

2 2
[ﬁ] =12, r2-12+(£+r-0-1) =r +(er
do do do

As s increases with the increase of 6, ds/d6 is positive. Thus

ds 2 [dr Jz

e == wll

de [’ o S
Cor. 1. If the equation of the curve is 0 = f{r), then

ds _ds d6_ (z] .do
de dr

dr deo dr
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ds o[ de)?
T 1+r B -(2)
ds de\? 2 1 ds de 2
- . — = —_— =.J[1 - s 2 =
Cor. 2. We have 5 1+[rdr)] (1+tan ¢]E—;f |:1+(r5)]4\f1+tan ¢] =sec¢
o= % (3)
Also sin ¢ = tan ¢ cos¢=r@-£
' dr ds
sin ¢ = r% ...(4)

PROBLEMS 4.10

Prove that the pedal equation of :
1. the parabola y* = 4a(x + a) is p% = ar.
2 2
2. the hyperbola :—2 —-% =1lisa?b?¥p?=r2—a? + b2
3. the astroid x = a cos®t, y =a sin® ¢ is 72 = a? — 3p2
Find the pedal equations of the following curves :

4. r=a (1 +cos @) (V.T.U., 2009) 5. r2=qg%sin?0
6. ™ cos mO =a™. (V.T.U., 2009) 7. r™ =a™ (cos mO + sin m0) (V.T.U.,, 2010)
B. r=gem. (V.T.U., 2007)
9. Calculate ds/dx for the following curves :
(i) ay? = x3. (ii) ¥ = ¢ cosh x/c.
10. Find ds/d6 for the curve x = a(cos 8 + 6 sin 8), ¥ = a (sin 8 — 0 cos 8) (V.T.U., 2007)
11. Find ds/d# for the following curves :
() r=a(l—-cosB) (V.T.U., 2004) (ii) 2 = a® cos? 20
(@) r= 1 sec? (V.T.U., 2007)
12. For the curves 0 = cos~ (/&) — (k2 — +®)/r, prove that r —gi = constant. (V.T.U., 2005)

2
13. With the usual meanings for r, s, 0 and ¢ for the polar curve r = £(6), show that -j—g +r cosec? 8 g;g- =
(V.T.U., 2000)

[EET) CURVATURE

Let P be any point on a given curve and @ a neighbouring point. Let arc  yi
AP = s and arc PQ = 8s. Let the tangents at P and @ make angle y and vy + 8y
with the x-axis, so that the angle between the tangents at P and @ = dy (Fig. 4.9). 8s Sy

In moving from P to @ through a distance &s, the tangent has turned

A
through the angle &y. This is called the fotal bending or total curvature of the arc
PQ.
The average curvature of arc PQ = % 0 ' L >
The limiting value of average curvature when Q approaches P (i.e., 8s — 0) Fig. 4.9

is defined as the curvature of the curve at P.

Thus curvature K (at P) = %g
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Obs. Since dy is measured in radians, the unit of curvature is radians per unit length e.g., radians per centimetre.
(2) Radius of curvature, The reciprocal of the curvature of a curve at any point P is called the radius of
curvature at P and is denoted by p, so the p = ds/dy.

(3) Centre of curvature. A point C on the normal at any point P of a curve distant p from it, is called the centre of
curvature at P.

(4) Circle of curvature. A circle with centre C (centre of curvature at P) and radius p is called the circle of
curvature at P.

(1) RADIUS OF CURVATURE FOR CARTESIAN CURVE y = f (x), is given by

1 +y,**”
p = —_—
Y2
We know that tan y=dy/dx =y, or y=tan(y,)
Differentiating both sides w.r.t. x,
dy _ 1 dly)_
dx 14 yl2 dx 1+ y12

2,3/2
)

2
ds _ds dx 5, 1+y  (+y
p:—:—_—: (1+y )_ =
dy dx dy 1 Y2 Yo
(2) Radius of curvature for parametric equations
x=flt), ¥ = 6.
Denoting differentiations with respect to ¢ by dashes,
dy _dy [dx _ .
"= = del @ =Y

yz=%(y1)=d[y] by —yxe 1

(1)

dt\x’) dx (x)* x
Substituting the values of y, and y, in (1)
w22 . 5 2 . 2.3/2
pie 1{1,] 5 —yF| & +y ) (Rajasthan, 2005)
x (x")? Xy —yx"

(3) Radius of curvature at the origin. Newton’s formulae*
(i) If x-axis is tangent to a curve at the origin, then

2
pat(0,0)= Lt {x_)
x—0

2y
Since x-axis is a tangent at (0, 0), (dy/dx), or (y,), =0
2
) e gor)
Z _|= 1t = Lt = — form
Also x[—'};u[2y) x—)0(2dy/dx} x—0 dzyldxz (y2)0 ¢
1+ 1 <2
at (0,0) = =——=Lt = eromi(l
ik (2 (¥2)y x-02y !

(if) Similarly, if y-axis is tangent to a curve at the origin, then

2
= y

* Named after the great English mathematician and physicist Sir Issac Newton (1642-1727) whose contributions are of
utmost importance. He discovered many physical laws, invented Calculus alongwith Leibnitz (see footnote p. 139) and
created analytical methods of investigating physical problems. He became professor at Cambridge in 1699, but his
‘Mathematical Principles of Natural Philosophy’ containing development of classical mechanics had been completed in 1687.
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(itz) In case the curve passes through the origin but neither x-axis nor y-axis is tangent at the origin, we
write the equation of the curve as
2
= flx) = fl0) + xf(0) + % fF70) + ... [By Maclaurin’s series]
=px +qx¥2 + ... [ A0)=0]
where p = f/(0) and g = f"(0)
Substituting this in the equation y = flx), we find the values of p and g by equating coefficients of like
powers of x. Then p (0, 0) = (1 + p2)*¥?q.

Obs. Tangents at the origin to a curve are found by equating to zero the lowest degree terms in its equation.

Example 4.44. Find the radius of curvature at the point (i) (3a/2, 3a12) of the Folium «* + y* = 3axy.
, (Anna, 2009 ; Kurukshetra, 2009 S ; V. T.U, 2008)
(i1) (a, 0) on the curve xy® = a’ — x°. (Anna, 2009 ; Kerala, 2005)

Solution. (i) Differentiating with respect to x, we get

3x2 + 3y? i: 3a(y+x£z]

dx
2 dy _ 22 : dy
or (y*—ax) x =ay— (1) s at (3a/2, 3a/2) =
Differentiating (2),
dy \dy ... d’y _ dy . ﬁ _
(2ydx ]dx + (y%2 —ax) F_adx -2x . 7 at (3a/2, 3a/2) = — 32/3a
_D+@y/do’P? _+DP? _ 8¢ . .
Hence p at (3a/2, 3a/2) = Lyl ds? =~ %% "8 (in magnitude).
(ii) We have y2= a3 -1 x2
2y dyldx = —2x or dyldx=-a3(2x%y)—xly
At (a, 0), dy/dx — <, so we find dx/dy from xy? = a3 — x3
2dx _ g dx
x—2y+y dy — 3x dy
dx _ —2xy dx
or —=——-— or — at(a,0)=0
d.}f 3x% + y2 dy
2, .2 dx dx
ﬁ_(3x +y)[— d——2x) (—2xy)[6x—&§+2y)
dy* (3x® + y%)?
2 2 . | = .
oF dizzt at (a, 0)= (3a +0)2(0 22a) 0_-2
dy (3a° +0) 3a
s 3/2
1+[_}
Hence at (a, 0) = l - m'm] _(1+0)312 o
e [dzx] T (2730 T 2°
7.2
dy (a,0)

Example 4.45. Show that the radius of curvature at any point of the eyeloid x = a (8 + sin 8),
y=a(l - cos B) is 4a cos 0/2. (V.T.U,, 2011 ; P.T.U., 2006)

Solution. We have dx _ a (1 + cos 8), dy _ a sin 6.
de de
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dy dy dx a sin 0 2sin 6/2 cos 6/2
—_— = — = = =t 912
dx~d6 " do alltcos®  pes’ 02 an

d’y _d(dy)de_1_26 1
dx? de “dx 2 2" a(l + cos 8)
2138029 1 1 SE4§

2% 2 2qcostorz a2
_ N +@dy/dx’T"*  4a(l +tan® 6/2)°"°
d%y/dx® sec’ 0/2
= 4a - (sec? 0/2)¥2 - cos* 6/2 = 4a cos 0/2.

Example 4.46. Prove that the radius of curvature at any point of the astroid x*'3 + y2/? = a®/3, is three
times the length of the perpendicular from the origin to the tangent at that point.
(J.N.T.U., 2005 ; Bhopal, 2002 S)

Solution. The parametric equation of the curve is
x=qacos3t,y=aqasind ¢
x' (= dx/dt) = — 3a cos? t sin t, ¥ = 3a sin®f cos ¢.
x”=—38a(cos’t— 2 costsin?t) =3a cost (2 sin? £ — cos? £)
¥”=8a (2sint cos?t —sint) = 3a sint (2 cos? t — sin? ¢)
x2+ "2 = 9a2 (cos® ¢ sin®¢ + sin® ¢ cos? t) = 9a? sin®f cos? ¢
x'y” —y x” = —9a2 cos? t sin?t (2 cos? t — sin? t)
—9a? cos? ¢ sin?¢ (2 sin? ¢ - cos?t) = — 9a? sin? £ cos? ¢

2 w2.3/2 TR | 3
X+ 27a” sin” t cos™ ¢ .
=( ya - =—3asint cos t.

xy" —¥x" "~ _9a? sin® t cos® t
Since dyldx = y'/x’ = —tant,
Equation of the tangent at (z cos® £, @ sin®#)isy —a sin®*t=—tant (x —a cos® t)
ie., xtant+y—-asint=0 .(2)
p, length of 1 from (0, 0) on (i) = Deb—agand a sin f cos t. Thus p = 3p.
' (tan® £ +1)

EExample 4.47. If p, and p, be the radii of curvature at the ends of a focal chord of the parabola y* = 4ax,
then show that p; 23 + p, /3 = (2a)y?/3. (Rohtak, 2006 S ; Kurukshetra, 2005)

Solution. Given parabola is ¥2 = 4ax or x = at?, y = 2at. If dashes denote differentiation w.r.t. ¢, then
x'=2at,y’ =2a ;x" =2a,y" = 0.

(fo +y:2)312 _(402 t2 +4a2)3f2

p at | (at?, 2at) = pr MW = 2a(1 + t2)32 (Numerically)
If P(¢,) and Q(t,) be the extremities of the focal chord of the parabola, then
b ty==1 fe, t;=—10 )
p, at P(t)) = 2a (1 + t2)¥2; p, at Q(t,) = 2a (1+ £2)*?
Thus PiB+p; B =2y B =1+t + 1 +DY
2
- (22)?8 ll*rltf +s ?tf} By ()]
=(Za) 2

Example 4.48. Show that the radius of curvature of P on an ellipse x* /a* +y*/ b% = 1 is CD*/ ab where CD
is the semi-diameter conjugate to CP. (J.N.T.U., 2002)
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Solution. Two diameters of an ellipse are said to be conjugate if each bisects chords parallel to the other.
If CP and CD are two semi-conjugate diameters and P is (a cos 6, b sin ) then D is a cos (B + g), b sin [e + g)

i.e., (—asin @, b cos 0).
Also C(0, 0) is the centre of the ellipse.

CD = J(a sin” 8+ b” cos” 6)
At P, we have x = a cos 6,y = b sin 6.

dy dy/d® bcos® -b d’y b 2, do_-b 3
de GldD G kg E g ek b g, Sy CORECE,
3/2
b? 2
1+— cot“0e
[+ (dy/do)?P'? _[ a® J
d*y/ dx* ~ 2 cosec® 6
a
_ a’ (a? sin? 0 + b2 cos® 6)*/2 Nusritally)
b cosec® 8 a® sin® @
_ ((12 sin® 0 + b? cos® sy _ cD?
ab T ab

Example 4.49. Find p at the origin for the curves
Wyt +P+a(x®+y2)-a’y=0 (i) y —x =22 + 2xy + 42

Solution. (i) Equating to zero the lowest degree terms, we get y = 0.
x-axis is the tangent at the origin. Dividing throughout by v, we have

2 2
Yrx. X va|X +y|-a2=0
Y Y

Let x — 0, so that Lt («%/2y) =p

X=poo
0+02p+al2p+0)-a?=0 or p=al2

(ii) Equating to zero the lowest degree terms, we gety = x, as the tangent at the origin, which is neither of
the coordinates axes.

Putting y = px + gx%2 + ... in the given equation, we get
Px+qx%2 + ... —x=x2+ 2x (px + qx¥2 + ...) + (px + gx%/2 + ...)2
Equating coefficients of x and x2,
p-1=0,9/2=1+2p+p? ie, p=landg=2+4-1+2-12=8.

p(0,0)=(1+p2)¥2fg = (1+ 1)¥28 = 1/2V2.
(4) Radius of curvature for polar curve r = f{0) is given by

_ (r + 1 Ly
%y 2r1 —
With the usual notations, we have from Fig. 4.10.
y=0+¢

Differentiating w.r.t. s,

ds
_ de (1 i d_¢) A1)
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Also we know that
N @ _r ey I _dar
tan¢=r = E or ¢=tan [-"1 J where r; = 6
Differentiating w.r.t. 6,
do 1 fpen - r12 —TT,
2 5 - 5 = ——s ..(2)
do ]_+(rlr) n ro+n

Also, gg NG +rd) ..(3)

Substituting the value from (2) and (3) in (1),

1___1 [1 + i =¥ ]
P Jr2+ r r+ rf
2, 237
ro 42 —rrn,
(5) Radius of curvature for pedal curve p = f(r) is given by
Ldr dr
p= dp
With the usual notation (Fig. 4.10), we have y =0 + ¢
Differentiating w.r.t. s,

1_dy_do  do
i s+ds ..-(1)
Also we know that p = r sin ¢
dp _ do
e sm¢+rcos¢ds
_,do, dr do
oz =i [By (3) and (4) of § 4.9 (2)]
_ (40, d0)_r
_r[derdS)_p (By (1]
Hence p:rg—;.

Example 4.50. Show that the radius of curvature at any point of the cardioid r = a (1 — cos 0) varies
as r. (V.T.U, 2003)

Solution. Differentiating w.r.t. 6, we get
ry=asin®,r,=acos@
(% + ;232 = [a?(1 - cos 0)? + a? sin? 0)%2 = ¢®[2 (1 - cos 0)13/2
r2—rry + 2r;2=a%(1 - cos 6)?— a? (1 — cos 0) cos 6 + 2a? sin? 6 = 3a? (1 — cos 6)

o+ rf i a® 2421 — cos 0)*'2
Thus =3 3 3
r‘ —rry +2n 3a”(1 - cos 6)
1/2
=%§-a(1—cosﬁ)u2 2‘/50‘(0) r.
Otherwise. The pedal equation of this cardioid is 2ap®= r? D)

Differentiating w.r.t. p, we get

dr_4ﬂp__4(1r3’2 o 7.

that 4a ?,r2 & whence =
P=2"dp P="dp " 3r 3r-(2a)

[+ p=r3%/{(2a) from ()]
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1) CENTRE OF CURVATURE at any point P (x, y) on the curve y = f (x) is given b

v, +y} 1+y2
—x— Y1( +yl),_=y+ +yl_

¥ ' Yo
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Let C (x, ) be the centre of curvature and p the radius of curvature of the curve at P(x, y) (Fig. 4.11). Draw

PL and CM 1s to OX and PN L CM. Let the tangent at P make an £y with the x-axis. Then ZNCP = 90° — ZNPC
=4NPT =y Y]
: ¥ =0OM =OL - ML = OL — NP

a+ yf)s'r2 ¥

Y2 Ja+ad

[~ tany=y,, - siny=

=x—psiny=x—

M 0

VL +39)

2
N Nnd+y7)
Y2
and ¥y =MC=MN+NC=LP+pcosy

[ secy= J{l +tan® y) = J(l +57)

2\3/2 2
=y+(1+y1) . 1 :y+1+y1
Y2 J(]_erf) Y2

Cor. Equation of the circle of curvature at Pis (x— X )?+ (y— y )*=p2

(2) Evolute. The locus of the centre of curvature for a curve is called its evolute and the curve is called an
involute of its evolute. (Fig. 4.12)

Example 4.51. Find the coordinates of the centre of curvature at any point of the parabola y° = 4ax.

Hence show that its evolute is
27ay? = 4(x - 2a). (V.T.U., 2000)
Solution. We have 2yy,=4a ie, y,=2aly
d _  Z2a _ 4a’
an Vg=—"F ~== Ty
Yy 4

If (%, ¥) be the centre of curvature, then

_nO+y) _ 2aly(+4a%y’)

X =x

Yo 741‘12/3’3

2 2 2
_ y +4a” _ dax +4a” s .
=x+ % =x+ % =3x+ 2u [+ ¥%=4ax] (D)

1+yl2 1+-1-h:zz2!;~'2
+ =3+ 2, 9
Y2 —4a’ly
B y(y2+4a2)_—y3 _72x3:2

-.(if)

4a® 4a? Ja
To find the evolute, we have to eliminate x from (i) and (i)
3 =_ 3
(5)2=4i—£(x 2“] or 27a(y)=4(x —2a).
a a 3

Thus the locus of (%, ¥) i.e., evolute, is 27 ay? = 4(x — 2a)3.
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Example 4.52. Show that the evolute of the cycloid x = a (8 — sin 0), y = a(l - cos 8) s another equal cycloid.
(Madras, 2006)
dy dx_ asin® (3]

E+_¢E_a(l—mse)=mt§'

d vy 2. 8) d8
EW‘ de(mt 2)'dx

1 _ 1
“all-cos0)  4gsin® 0/2

Solution. We have y, =

If (x, ¥) be the centre of curvature, then

2
:_tzx—M=a(9—si_nB)+cot E(—4asin49)(1+¢:ozﬁj
Yo 2 2 2

. cos B/2 . 40 2 0
=a(B—sin 0) + m.élasm 2.cosec 5
= a(0 - sin B) + 4a sin 6/2 cos 6/2 = a(6 — sin 0) + 2a sin 6 = a(6 + sin 6)

9
?=3’+1LvL =a(l-cos @) + (1+«:ot2 g)(——zlasin‘ g)

Ya
=a(l - cos 0) — 4a sin? 6/2 . cosec? 6/2
=a(l - cos 0) — 4a sin? 6/2
=a(l- cos 6)—2a(l1—-cos0)=—al(l-cosB)

Hence the locus of (%, ¥) i.e., the evolute, is given by

x = a(0 + sin 0), y= —a (1 — cos 0) which is another equal cycloid.
(3) Chord or curvature af a given point of a curve
(1) parallel to x-axis = 2p sin y
(if) parallel to y-axis = 2p cos y
Consider the circle of curvature at a given point P on a curve. Let C be the
centre and p the radius of curvature at P so that P@ = 2p. (Fig. 4.13)
Let PL, PM be the chords of curvature parallel to the axes of x and y respec-
tively. Let the tangent PT make an £y with the x-axis so that ZLQP = ZQPM = y.
Then from the rt. Zed APLQ, 0
PL = 2p sin yo Fig. 4.13
and PM = 2p cos y.

EEEN (1) ENVELOPE

The equationx cos o +y sin . =1 (1)
represents a straight line for a given value of o. If different values are given to o,
we get different straight lines. All these straight lines thus obtained are said to Y
constitute a family of straight lines.

In general, the curves corresponding to the equation flx, y, o) = 0 for
different values of «, constitute a family of curves and o is caelled the
parameter of the family. o

The envelope of a family of curves is the curve which touches each member (@] X
of the family. For example, we know that all the straight lines of the family (1)
touch the circle

2 +y2=1 .(2)
i.e., the envelope of the family of lines (1) is the circle (2)—Fig. 4.14, which may
also be seen as the locus of the ultimate points of intersection of the consecutive
members of the family of lines (1). This leads to the following :

Fig. 4.14
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Def. If flx, y, o) = 0 and flx, y, 0.+ 8a) = 0 be two consecutive members of a family of curves, then the locus
of their ultimate points of intersection is called the envelope of that family.

(2) Rule to find the envelope of the family of curves f(x, y, o) =0 :

Eliminate o from f (x, y, &) = 0 and W =0.

Example 4.53. Find the envelope of the family of lines y = mx + \/(1 +m?), m being the parameter.

Solution. We have (y —mx)2=1+ m? (D)
Differentiating (i) partially with respect to m,
2y —mx) (—x)=2m or m=xy/(x?—-1) .(ih)

Now eliminating m from (i) and (i)
Substituting the value of m in (i), we get

s \2 2
[y—— a4 ] =1+( :y 1} or y2=(x?-1)% +x%?

-1 x° -
or x2+y2=1 which is the required equation of the envelope.

Obs. Sometimes the equation to the family of curves contains two parameters which are connected by a relation. In
such cases, we eliminate one of the parameters by means of the given relation, then proceed to find the envelope.

Example 4.54. Find the envelope of a system of concentric and coaxial ellipses of constant area.

Solution. Taking the common axes of the system of ellipses as the coordinate axes, the equation to an
ellipse of the family is

2
% + ';—2 = 1 where a and b are the parameters. (i)
a
The area of the ellipse = nab which is given to be constant, say = 72,
' ab=c? or b=c%a. (1))
2 2
Substituting in (@), x—2 + % =1 or x2a2+(y%et)a2=0 (777
a® (c/a”)

which is the given family of ellipses with a as the only parameter.
Differentiating partially (izi) with respect to a,
-22a3+2(»¥cHa=0 or a?=c2xly ...(iv)
Eliminate a from (ii) and (iv).
Substituting the value of a? in (iif), we get
22(ylc2x) + (y¥c*)cxly) = 1 or 2xy = ¢2
which is the required equation of the envelope. P
(3) Evolute of a curve is the envelope of the normals to that curve (Fig. 4.12)

Example 4.55. Find the evolute of the parabola y? = 4ax. (Madras, 2003)

Solution. Any normal to the parabola is y = mx — 2 am —am? .0
Differentiating it with respect to m partially,

0 =x — 2a — 3am? or m = [(x — 2a)/3a]"?
Substituting this value of m in (i),

x—2a )2 x—2a
(e e 532
3u 3a

Squaring both sides, we have
27ay? = 4(x — 2a)?
which is the evolute of the parabola. (cf. Example 4.51).
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!!!l (1) INCREASING AND DECREASING FUNCTIONS

In the function y = flx), if y increases as x increases (as at A), it is called an increasing function of x.
On the contrary, if y decreases as x increases (as at C), it is called a decreasing function of x.
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Let the tangent at any point on the graph of the function make an 2y Y

with the x-axis (Fig. 4.15) so that B
dyldx = tan y

At any point such as A, where the function is increasing 2y is acute i.e., D
dyl/dx is positive. At a point such as C, where the function is decreasing 2y is
obtuse i.e., dy/dx is negative. o v \d

Hence the derivative of an increasing function is + ve, and the derivative
of a decreasing function is — ve.

Fig. 4.15

Obs. If the derivative is zero (as at B or D), then y is neither increasing nor decreasing, In such cases, we say that the
function is stationary.
(2) Concavity, Convexity and Point of Inflexion
(i) If a portion of the curve on both sides of a point, however small it may be, lies above the tangent (as
at D), then the curve is said to be concave upwards at D where d%y/dx? is positive.
(it) If a portion of the curve on both sides of a point lies below the tangent (as at B), then the curve is said to
be Convex upwards at B where d%y/dx? is negative.
(iiz) If the two portions of the curve lie on different sides of the tangent thereat (i.e., the curve crosses the
tangent (as at C), then the point C is said to be a point of inflexion of the curve.

dZy dS
At a point of inflexion —5 =0 and —#0.
¥ a2 dx

(1) MAXIMA AND MINIMA

Consider the graph of the continuous function y = flx) in the interval (x,, y
x,) (Fig. 4.16). Clearly the point P, is the highest in its own immediate
neighbourhood. So also is P;. At each of these points P,, P, the function is said
to have a maximum value.

On the other hand, the point P, is the lowest in its own immediate
neighbourhood. So also is P,. At each of these points P, P, the function is said
to have a mintmum value.

Thus, we have
Def. A function fi(x) is said to have ¢ maximum value at x = a, if there
exists a small number h, however small, such that f(a) > both fla — h) and fla + h).

A function f(x) is said to have ¢ minimum value at x = a, if there exists a small number h, however small,
such that f(a) < both f(a - h) and f(a + h).

Obrs. 1. The maximum and minimum values of a function taken together are called its extreme values and the
points at which the function attains the extreme values are called the turning points of the function.

Obs. 2. A maximum or minimum valueofaﬁmdwnzsnotneoesmnlyt}wgmatestorleastvalmaftheﬁmctwn in any
finite interval. The maximum value is simply the greatest value in the immediate neighbourhood of the maxima point or the
minimum value is the least value in the immediate neighbourhood of the minima point. In fact, there may be several maximum
and minimum values of a function in an interval and a minimum value may be even greater than a maximum value.

Obs. 3. It is seen from the Fig. 4.16 that maxima and minima values occur alternately.

(2) Conditions for maxima and minima. At each point of extreme value, it is seen from Fig. 4.16 that
the tangent to the curve is parallel to the x-axis, i.e., its slope (= dy/dx) is zero. Thus if the function is maximum
or minimum at x = a, then (dy/dx), = 0.

Around a maximum point say, P, (x = @), the curve is increasing in a small interval (a - h, a) before L, and
decreasing in (a, a + k) after L, where A is positive and small.

Le., inta—h,u),dyldx=>0;atx=a,dy/dx =0 and in (a, a + h), dy/dx < 0.

Thus dy/dx (which is a function of x) changes sign from positive to negative in passing through P,, i.e., it
is a decreasing function in the interval (@ — h, a + h) and therefore, its derivative d?y/dx? is negative at P, (x = a)

Similarly, around a minimum point say P,, dy/dx changes sign from negative to positive in passing

through P,, i.e., it is an increasing function in the small interval around L, and therefore its derivative d%y/dx? is
positive at P.,.
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Hence (2) f(x) is maximum at x = a if f'(a) = 0 and f"(a) is — ve [i.e., f'(a) changes sign from + ve to — ve]
(i) f(x) is minimum at x = a, if f'(a) = 0 and f"(a) is + ve [i.e., f’(a) changes sign from — ve to + ve]
Obs. A maximum or a minimum value is a stationary value but a stationary value may neither be a maximum nor
a minimum value.
(3) Procedure for finding maxima and minima
(£) Put the given function = f(x)
(it) Find f'(x) and equate it to zero. Solve this equation and let its roots be a, b, ¢, ...
(iti) Find f”(x) and substitute in it by turnsx=aq, b, c, ...
Iff"(a) is - ve, f(x) is maximum at x = a.
If f"(a) is + ve, f"(x) is minima at x = a.
(iv) Sometimes f”(x) may be difficult to find out or f”(x) may be zero at x = a. In such cases, see if f'(x)
changes sign from + ve to — ve as x passes through a, then f(x) is maximum at x = a.
If f’(x) changes sign from — ve to + ve as x passes through a, f(x) is minimum at x = a.
If f'(x) does not change sign while passing through x = a, f(x) is neither maximum nor minimum at x = .

Example 4.56. Find the maximum and minimum values of 3x* — 2x° — 6x° + 6x + 1 in the interval (0, 2).

Solution. Let fx)=3x"— 24— 622 + 6x + 1
Then f)=123-6x2-12x +6=6(x2-1)(2x - 1)
Y f'(x)=0whenx==%1, %

So in the interval (0, 2) f(x) can have maximum or minimum at x = % or 1.
Now f7(x) = 36x2 — 12x — 12 = 12 (3x% — x — 1) so that f”(%) =-9and f"(1)=12.

f(x) has a maximum at x =  and a minimum at x = 1.
4 3 2
Thus the maximum value = f(lJ = 3[1] - 2(1) - 6(1) + G[lJ +1= 2i
2 2 2 2 2 16
and the minimum value = f(1) = 3(1)* - 2(1®*-6(1)2+ 6(1)+ 1 = 2.

Example 4.57. Show that sin x (1 + cos x) is @ maximum when x = /3.
(Bhopal, 2009 ; Rajasthan, 2005)

Solution. Let f(x) = sin x (1 + cos x)
Then f(x) = cos x (1 + cos x) + sin x (- sin x)
=cosx (1l +cosx)—(1-cos2x)=(1+cosx)(2cosx—1)

f(x) =0 when cos x = % or—1ie,whenx=m/3ornmn

Now ff(x)=—sinx(2cosx—1)+ (1 +cosx)(—2sinx)=—-sinx(4 cosx + 1)

so that f7(w3) = - 3J2/2 and f"(n) = 0.

Thus f(x) has a maximum at x = /3.

Since (1) is 0, let us see whether f(x) changes sign or not.

When x is slightly < 7, f'(x) is — ve, then when x is slightly > =, f(x) is again — ve i.e., f'(x) does not change
sign as x passes through n. So f(x) is neither maximum nor minimum at x = 7.

(4) Practical Problems

In many problems, the function (whose maximum or minimum value is required) is not directly given. It
has to be formed from the given data. If the function contains two variables, one of them has to be eliminated
with the help of the other conditions of the problem. A number of problems deal with triangles, rectangles,
circles, spheres, cones, cylinders etc. The student is therefore, advised to remember the formulae for areas,
volumes, surfaces etc. of such figures.

Example 4.58. A window has the form of u rectangle surmounted by a semi-circle. If the perimeter is
40 ft., find its dimensions so that the greatest amount of light may be admitted. (Madras, 2000 S)
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Solution. The greatest amount of light may be admitted means that the area of
the window may be maximum.

Let x ft. be the radius of the semi-circle so that one side of the rectangle is 2x ft.
(Fig. 4.17). Let the other side of the rectangle y ft. Then the perimeter of the whole figure

=mx + 2¢ + 2y = 40 (given) and the area A = Jmx?® + 2xy. (@)

Here A is a function of two variables x and y. To express A in terms of one variable

x (say), we substitute the value of ¥ from (i) in it. Fig. 4.17
A= %nxz +x[40 — (m+ 2)x] =40 x - (g+2)x2
Then ﬂ =40 - (n+ 4)x
dx

For A to be maximum or minimum, we must have dA/dx=01ie, 40-(n+4)x=0

or x=40/(m + 4)
From (i), y = é— [40 — (n +2)x] = % [40 — (n+ 2) 40/(n + 4)] = 40/(n + 4) i.e.,x =y
d?’A p S .
Also > = — (1 + 4), which is negative.

Thus the area of the window is maximum when the radius of the semi-circle is equal to the height of the
rectangle.

Example 4.59. A rectangular sheet of metal of length 6 metres and width 2 metres is given. Four equal
squares are removed from the corners. The sides of this sheet are now turned up to form an open rectangular
box. Find approximately, the height of the box, such that the volume of the box is maximum.

Solution. Let the side of each of the squares cut off be x m so that the height of the box is x m and the sides
of the base are 6 — 2x, 2 — 2x m (Fig. 4.18).

Volume V of the box r- B
=x(6 — 2¢) (2 — 2x) = 4(x® — 422 + 3x) B T 8-2x 1 x
dv i 2—2x!
Then = =4(3x%-8&+3 0 = 3 ;
dx :_ x !
For V to be maximum or minimum, we must have Fig. 4.18

dVlidx=0i.e.,3x>-8x+3=0

8+./[64 —4%x3x3]
= 2.2 or 0.45 m.

6
The value x = 2.2 m is inadmissible, as no box is possible for this value.

d*v L
Also = 4(6x — 8), which is — ve for x = 0.45 m.

dx®

Hence the volume of the box is niaximum when its height is 45 cm.

Example 4.60. Show that the right circular cylinder of given surface (including the ends) and maximum
volume is such that its height is equal to the diameter of the base.

Solution. Let r be the radius of the base and 4, the height of the cylinder.

Then given surface S = 2nrh + 2nr? (D) and the volume V = nr2h (i)

Hence V is a function of two variables r and A. To express V in terms of one variable only (say r), we
substitute the value of k& from (i) in (ii).

dv 1

2
Bl ]=lSr—m'3 s —=—8-3nrl
2 2

2nr

Then V = nr? [ 5
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For V to be maximum or minimum, we must have dV/dr = 0,
ie., 18-3rr?=0 or r= (S/6n).

d2v o .
Also 2 = — 6xr, which is negative for r = \/(S/6xn).
r

Hence V is maximum for r = /(S /6m).

ie., for 6nr2 =8 = 2nrh + 2nr? i.e., for h = 2r, which proves the required result. [By ()]

Example 4.61. Show that the diameter of the right circular cylinder of greatest curved surface which can
be inscribed in a given cone is equal to the radius of the cone.

Solution. Let r be the radius OA of the base and o. the semi-vertical angle of the given cone (Fig. 4.19).
Inscribe a cylinder in it with base-radius OL = x.
Then the height of the cylinder LP
=LAcota=(r—x)cota
The curved surface S of the cylinder
=2nx. LP = 2mx(r — x) cot o g
= 2n cot o (rx — x?)

%=2nmta(r—2x}=0forx=rf2. @

2 Fig. 4.19
dx2
Hence S is maximum when x = r/2.

R,
tn

and = — 41 cot o

Example 4.62. Find the altitude and the semi-vertical angle of a cone of least volume which can be
cireumscribed to a sphere of radius .

Solution. Let i be the height and « the semi-vertical angle of the cone so that its radius BD = k tan o
(Fig. 4.20).

The volume V of the cone is given by
1 1
= En(htan o)’ k= é-nh3tan2u.

Now we must express tan o in terms of A.
In the rt. Zd AAEO,
EA = J(OA? - &%) = lth - a}* — a®] = \(K? — 2ha)
tan ¢ = Eq = __a___
EA  \(#? - 2ha)

2
Thus 1% =lﬂh3 - g

———_— . 3 - h2
3 h? — 2ha

h—2a

1
=—na
3

dV 1 o, (h—2a0)2h—h*-1 1 5 h(h-4a)
=—na” - =—ne" -—-

dh 3 (h — 2a)° 3 (h — 2a)

Thus % = 0 for h = 4a, the other value (h = 0) being not possible.

Also dVidh is — ve when h is slightly < 4a, and it is + ve when £ is slightly > 4a.
Hence V is minimum (i.e. least) when i = 4¢

and o=sin} {é) =sin™? [3%1) =sin! %



DOWNLOADED FROM www.CivilEnggForAll.com

DirrerenmiaL Calcurus & s APPLICATIONS 181

Example 4.63. Find the volume of the largest possible right-circular eylinder that can be inscribed in a
sphere of radius a.

Solution. Let O be the centre of the sphere of radius a. Construct a cylinder as shown in Fig. 4.21. Let
OA=r.

Then AB = \J(OB? - 04?) = [(@® - r?)
Height A of the cylinder =2-AB = 2./(a% — r?).
Thus volume V of the cylinder

=mr2h = 2mr? \J(a® - r?)
dv 1 " 4
= =21 {2r,/(¢;;2 -r?)+r2. E(aﬂ-ﬂ) V2 (- 2r))

_ 2mr(2a® - 3r%) Fig. 4.21
(a® -r?)

The dV/dr = 0 when 12 = 2a%/3, the other value (r = 0) being not admissible.

d*v (@® - r*)(2a® - 9r®) - r(2a® - 3r®) x L(a® - r*)™"'2 . (-2r)
Now > =2n z_ 2
dr (@® —-r°)

(@® — r?)(2a® - 9r?) + r%(24% - 3r?)

=2n
2 _ 2302

which is — ve for r2 = 2a¢%/3.

(e
Hence V is maximum for r2 = 2¢%/3 and maximum volume

=212 (a® — r?) = 4133 3.

Example 4.64. Assumung that the petrol burnt (per hour) in driving a motor boat varies as the cube of its
‘velocity, show that the most economical speed when going against a current of ¢ miles per hour is %c miles per
hour. 14

Solution. Let v m.p.h. be the velocity of the boat so that its velocity relative to water (when going against
the current) is (v — ¢) m.p.h.

Time required to cover a distance of s miles = hours.

Since the petrol burnt per hour = kv3, k being a constant.
The total petrol burnt, y, is given by

s v? dy w-03? -v®-1
=k :ks Pt ——=ks
4 v-c v—c dv (v— )
ks_vz(2v—3c)
- w-ef

Thus dy/dv = 0 for v = 3¢/2, the other value (v = 0) is inadmissible.
Also dy/duv is — ve, when v is slightly < 3¢/2 and it is + ve, when v is slightly > 3c/2.
Hence y is minimum for v = 3¢/2.

PROBLEMS 4.13

1. (i) Test the curve y = &* for points of inflexion ? , {Burdwan, 2003)
(ii) Show that the points of inflexion of the curve y? = (x — a)? (x — b) lie on the straight line .
3x+a=4b. (Rajasthan, 2005)
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2. The function f(x) defined by flx) = a/x + bx, f(2) = 1, has an extremum at x = 2. Determine ¢ and b. Is this point (2, 1),
a point of maximum or minimum on the graph of f(x) ?
3. Show that sin”0 cos?6 attains a maximum when 8 = tan* (p/g). (Rajasthan, 2006)

4. If a beam of weight w per unit length is built-in horizontally at one end A and rests on a support O at the other end,
the deflection y at a distance x from O is given by

Ely = %(2&-3&3 + ),

where [ is the distance between the ends. Find x for y to be maximum.
5. The horse-power developed by an aircraft travelling horizontally with velocity v feet per second is given by

2
aw

H=—+by,
v

where a, b and w are constants. Find for what value of v the horse-power is maximum.

6. The velocity of waves of wave-length . on deep water is proportional to m, where a is a certain constant,
prove that the velocity is minimum when A = a. .
7. Inasubmarine telegraph cable, the speed of signalling varies as x? log, (1/x), where x is the ratio of the radius of the
core to that of the covering. Show that the greatest speed is attained when this ratio is 1/e.
8. The efficiency e of a screw-jack is given by e = tan 6/tan (6 + @), where ¢ is a constant. Find @ if this efficiency is to
be maximum. Alse find the maximum efficiency.
9. Show that of all rectangles of given area, the square has the least parameter.
10. Find the rectangle of greatest perimeter that can be inscribed in a circle of radius a.
11. A gutter of rectangular section (open at the top) is to be made by bending into shape of a rectangular strip of metal.
Show that the capacity of the gutter will be greatest if its width is twice its depth.
12. Show that the triangle of maximum area that can be inscribed in a given circle is an equilateral triangle.

13. An open box is to be made from a rectangular piece of sheet metal 12 cms x 18 ems, by cutting out equal squares
from each corner and folding up the sides. Find the dimensions of the box of largest volume that can be made in this
manner.

14. An open tank is to be constructed with a square base and vertical sides to hold a given quantity of water. Find the
ratio of its depth to the width so that the cost of lining the tank with lead is least.

15. A corridor of width b runs perpendicular to a passageway of width a. Find the longest beam which can be moved in
a horizontal plane along the passageway into the oonidor;}’

16. One corner of a rectangular sheet of paper of width a is folded so as to reach the opposite edge of the sheet. Find the
minimum length of the crease.

17. Show that the height of closed cylinder of given volume and least surface is equal to its diameter.

. !
18. Prove that a conical vessel of a given storage capacity requires the least material when its height is V2 times the
radius of the base. (Warangal, 1996)

19. Show that the semi-vertical angle of a cone of maximum VﬂI}.I]II'E and given slant height is tan~! V2.

20. The shapeof a hole bored by a drill is cone surmounting a cylinder. If the cylinder be of height 7 and radius r and the
semi-vertical angle of the cone be o where tan o = h/r, show that for a total fixed depth H of the hole, the volume
[

removed is maximum if A = % 1'% ). (Raipur, 2005)

21. A cylinder is inseribed in a cone of height . If the volume of the cylinder is maximum, show that its height is h/3.

22. Show that the volume of the biggest right circular cone that can be inscribed in a sphere of given radius is 8/27 times
that of the sphere.

23. A given quantity of metal is to be cast into a half-cylinder with a rectangular base and semi-circular ends. Show
that in order that the total surface area may be a minimum, the ratio of the length of the cylinder to the diameter
of its semi-circular ends is W/(m + 2). - .

24. A person being in a boat a miles from the nearest point of the beach, wishes to reach as quickly as possible a point
b miles from that point along the shore. The ratio of his rate of walking to his rate of rowing is sec .. Prove that he
should land at a distance b — & cot « from the place to be reached. \ ,

25. The cost per hour of propelliné a steamer is proportional to the cube of her speed through water. Find the r‘we.iatwe
speed at which the steamer should be run against a current of 5 km per hour to make a given trip at the least cost.
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ASYMPTOTES

(1) Def. An asymptote of a curve is a straight line at a finite distance from the origin, to which a tangent to
the curve tends as the point of contact recedes to infinity.

In other words, an asymptote is a straight line which cuts a curve on two points, at an infinite distance
from the origin and yet is not itself wholly at infinity.

(2) Asymptotes parallel to axes. Let the equation of the curve arranged according to powers of x be
ag"+(ay +b)x" "1+ (@ + by + c)x" "2+ ... 0 i)
Ifa, =0 and y be so chosen that a,y + b, = 0, then the coefficients of two highest powers of x in (1) vanish
and therefore, two of its roots are infinite. Hence a y + b, = 0 is an asymptote of (1) which is parallel to x-axis.

Again if a, a;, b, are all zero and if y be so chosen that a2y2 + b,y + ¢, = 0, then three roots of (1) become
infinite. Therefore, the two lines represented by agy? + b,y + ¢, = 0 are the asymptotes of (1) which are parallel to
x-axis, and so on.

Similarly, for asymptotes parallel to y-axis.
Thus we have the following rules :

L To find the asymptotes parallel to x-axis, equate to zero the coefficient of the highest power of x in the
equation, provided this is not merely a constant.

IL To find the asymptotes parallel to y-axis, equate to zero the coefficient of the highest power of y in the
equation, provided this is not merely a constant.

Example 4.65. Find the asymptotes of the curve
Py v x+y+1=0.

Solution. The highest power of x is 2% and its coefficient is y% — y.
The asymptotes parallel to the x-axis are given by
y(y—1)=0te,byy=0andy=1.
The highest power of y is y? and its coefficient is x? — x.
The asymptotes parallel to the y-axis are given by
x(x—1)=0ie,byx=0andx=1.
Hence the asymptotes arex=0,x=1,y=0and y = 1.
(3) Inclined asymptotes. Let the equation of the curve be of the form

2, ) + 2" 1o, )+ 2" 2, (yx)+...=0 ..(1)
where ¢, (y/x) is an expression of degree r is y/x.
To find where this curve is cut by the liney = mx + ¢, ...(2)

put y/x = m + ¢fx in (1). The resulting equation is
2", (m +clx) + 21§, (m+clx)+x"~2¢, _,(m+c/x)+..=0
which gives the abscissae of the points of intersection.
Expanding each of the ¢-functions by Taylor’s series,
2

xn {%(m) + £¢n'(m) + c—’ ¢'n”(m) + -..} + x" =1 {¢n— l(m) +£ ¢’n—1(m) * "'}
X 21 X

2
+x"=2{p, _,(m)+..1=0
or x"¢,(m) + x"~ 1 {ed’ (m) + ¢, _,(m)}

2
+xn-2 {%¢n”(m)+0¢;-1(m)+¢n2(m)} +....=0 ...(3)

If the line (2) is an asymptote to the curve, it cuts the curve in two points at infinity i.e., the equation (3)
has two infinite roots for which the coefficients of two highest terms should be zero.

ie., ¢,(m)=0 ..{(4) and c¢,(M)+¢,_ ;(m)=0 ..(8)
If the roots of (4) be m,, m,, ... m,, then the corresponding values of c (i.e. ¢, c,, ....... c,) are given by (5).
Hence the asymptotes are

Y=MX+CpY = MyX + Cyy e ,y=m_x+e¢,.
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Solution. (f) Puttingx=1andy = mmthethlrddegrveeterms
do(m)=m®-2m?2-m + 2, .. ¢,m)= 0 givesm®-2m?-m+2=0
or m2-1)(m-2)=0whencem=1,-1, 2.
Also putting x = 1 and y = m in the 2nd degree terms, ¢,(m) = 3m? - Tm + 2
do(m) _ 3m® —Tm +2
0z0m) " 3m® —am -1
=—1whenm=1,=—2whenm=-1,=0whenm = 2.
Hence the asymptotes arey =x -1,y =-x~2and y =
(ii) Putting x = 1 and y = m in the third degree terms,
¢5(m) =1 + 3m — 4m?
0,(m) = 0 gives 4m® -3m-1=0, or (m-1)(2m+172?=0
whence m=1,-1/2,-1/2.

B o=

Similarly, $o(m) =0
o= Blm _ 0

0s(m) 3 _12m°
=0whenm = 1,=%formwhenm=— %
Thus (when m = - 1) c is to be obtained from

2
o )+ ¢y () + 4, (m) =0

2
or -“'2—(-24m)+c..0+(—1+m)=o
Putting m = — 1/2, 6¢2 — 3/2 = 0 whence ¢ = + 1/2.

Hence the asymptotes arey =x,y =— x+ 3,y =— 3x— 3.

(u:)Puttmgx landy =m in the third degree terms, ¢, (m) = (1 +m).
¢5(m) = 0 gives (m + 1) = thencem:—l—l-l

Snmlarly, ¢, (m) =21 +m)?, ¢, (m)=—1-9m, ¢,(m) =

For these three equal values of m = — 1, values of ¢ are obtained from-
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3 2
%? by (m) + % 0," (m) + ¢ ¢y (m) + ¢, (m) =0

b c?
or E(6)+?(4)+c(—9)+2=0 or ¢3+2c2-9+2=0.

Solving for ¢, we havec = 2, - 2 + /5.
Hence the three asymptotes are
y=—-x+2,y=—x—2+ Jg,yz—x—2— J5.
4. Asymptotes of polar curves. It can be shown that an asymptote of the curve 1/r = f(8) is
rsin (0 — o) = Uf' (),
where o.is a root of the equation [ (8) = 0
and ' (o) is the derivative of f(0) w.r.t. Bat 6 = o.

Example 4.67. Find the asymptote of the spiral r = al®.
Equation of the curve can be written as 1/r = 8/a = fi8), say.
0)=0,if0=0(=w). Alsof'®)=1/a .. f(o)=1a.
The asymptote is r sin (6 — 0) = 1/f(0) or rsin@=a.

PROBLEMS 4.14

Find the asymptotes of
1 2?4y = Buxy (Agra. 2002) 2. (x2—a? 02 - 6D =a? b? (Osmania, 2002)
3. (axP +(bly)P=1  (Burdwan, 2003) 4. 2% +xv2 +ay +y2 + 3x=0.
5. 4x®+ 22— Bxy?—y3—1—xy-3%=0. (UPT.U., 2001)
6. 2(x-y)P-a2@2+y?)=0 (Kurukshetra, 2006)
7. x+yPx+2y+2)=(x+9 -2) (Rajasthan, 2006)

8. Show that the asymptotes of the curve x? 2 = a2 (x? + ¥?) form a square of side 2a.
9. Find the asymptotes of the curve x2%y —xy? + xy +¥2 +x —y = Oand show that they cut the curve again in three points

- which lie on the linex + y = 0. (Kurukshetra, 2006)
Find the asymptotes of the following curves :
10. r=ctan®. (Rohtak, 2006 S) 11. 7 = (sec 8 + tan 6)
12. 7 sin 0 =2 cos 20. (Kurukshetra, 2009 S) 13. rsinn 8 =a.

(1) CURVE TRACING

In many practical applications, a knowledge about the shapes of given equations is desirable. On drawing
a sketch of the given equation, we can easily study the behaviour of the curve as regards its symmetry asymp-
totes, the number of branches passing through a point etc.

A point through which two branches of a curve pass is called a double point. At such a point P, the curve
has two tangents, one for each branch.

If the tangents are real and distinct, the double point is called ¢ node P
[Fig. 4.22 (a)].

If the tangents are real and coincident, the double point is called a
cusp [Fig. 4.22 (b)].

If the tangents are imaginary, the double point is called a conjugate
point (or an isolated point). Such a point cannot be shown in the figure.

(2) Procedure for tracing cartesian curves.

1. Symmetry. See if the curve is symmetrical about any line.

(i) A curve is symmetrical about the x-axis, if only even powers of ¥ occur in its equation.

(e.g., ¥? = 4ax is symmetrical about x-axis).

P
Fig. 4.22 (o) Fig. 4.22 (b)
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(ii) A curve is symmetrical about the y-axis, if only even powers of x occur in its equation.
(e.g., x% = 4ay is symmetrical about y-axis).
(zit) A curve is symmetrical about the line y = x, if on interchanging x and y its equation remains unchanged,
(e.g., * + y? = 3axy is symmetrical about the line y = x).
2. Origin. (i) See if the curve passes through the origin.
(A curve passes through the origin if there is no constant term in its equation).
(1) If it does, find the equation of the tangents thereat, by equating to zero the lowest degree terms.
(iii) If the origin is a double point, find whether the origin is a node, cusp or conjugate point.
3. Asymptotes. (i) See if the curve has any asymptote parallel to the axes (p. 183).
(i) Then find the inclined asymptotes, if need be. (p. 183).
4. Points. (1) Find the points where the curve crosses the axes and the asymptotes.
(it) Find the points where the tangent is parallel or perpendicular to the x-axis,
(i.e. the points where dy/dx = 0 or o).
(itf) Find the region (or regions) in which no portion of the curve exists.

Example 4.68. Trace the curve y? (2a — x) = x°.
(P.T.U., 2010, V.T.U., 2008 ; Rajasthan, 2006 ; U.P T.U., 2005)

Solution. (z) Symmetry: The curve is symmetrical about the x-axis. y
[~ only even powers of y occur in the equation. =5
(iz) Origin : The curve passes through the origin
[- there is no constant term in its equation. %
The tangents at the origin are y = 0, y = 0[Equating to zero the lowest degree terms.] © X
Origin is a cusp
(i17) Asymptotes : The curve has an asymptote x = 2a.

[~- co-eff. of y*is absent, co-eff. of y? is an asymptote.

(iv) Points : (@) curve meets the axes at (0, 0) only. (b) ¥2 = x3/(2a — x)
When x is —ve, y? is —ve (i.e. y is imaginary) so that no portion of the cuve lies to the left of the y-axis. Also

when x > 2a, y? is again —ve, so that no portion of the curve lies to the right of the line 3x = 2a.
Hence, the shape of the curve is as shown in Fig. 4.23. This curve is known as Cissoid.

Fig. 4.23

Example 4.69. Trace the curve y° (a — x) = x*(a + x). (V.T.U, 2010 ;: B.P.T.U., 2005)

Solution. (Z) Symmetry : The curve is symmetrical about the x-axis. v :

(1) Origin : The curve passes through the origin and the tangents at the i

origin are y2 = x2, N [ lx=a

. S e T 7%

ie. y=xandy=-x. .. Origin is a node. NV o
(iti) Asymptotes : The curve has an asymptote x = a a0 o N : X

(iv) Points : () Whenx =0,y =0; wheny =0,x =0 or - a. AL v

The curve crosses the axes at (0, 0) and ( —a, 0). i

Wehavey=+x (a L x] Fig. 4.24
a-x

When x > @ or < —a, y is imaginary.
No portion of the curve lies to the right of the line x = @ or to the left of the line x = —a.
Hence the shape of the curve is as shown in Fig. 4.24_ This curve is known as Strophoid.

Example 4.70. Trace the curvey =x2/(1 - x%).

Solution. (i) Symmetry : The curve is symmetrical about y-axis.
(i1) Origin : It passes through the origin and the tangent at the originisy = 0 (i.e., x-axis).
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(iii) Asymptotes : The asymptotes are given by 1 —x2=0orx =% 1 and JY
y==1
(iv) Points : (a) The curve crosses the axes at the origin only. (b) When s Sy
x — 1 from left,y — =
When x — 1 from righty — — o
When x> 1, y is — ve (0} X
Hence the curve is as shown in Fig. 4.25. y=-1
\ Ir
Fig. 4.25
Example 4.71. Trace the curve a®y? = x%(a® - x2). (P.T.U., 2009 : V.T.U., 2008 S)
Solution. (i) Symmetry. The curve is symmetrical about x-axis, y-axis v
and origin. 2 o
(i1) Origin. The curve passes through the origin and the tangents at Ny 3’
the origin are a%? = a%? i.e.,y = £ x. | 0 [P i
(zit) Asymptotes. The curve has no asymptote. (-a, o)% (a, O)X
(iv) Points. (a) The curve cuts x-axis (y = 0) at x = 0, + ¢. and cuts y-axis r N
(x=0)aty =0ie.,(0,0)only. 3 E
dy x(a® - 2x%) -
b) 2 =———-—— —~atlq,0) Fig. 4.26

ay
i.e., tangent to the curve at (a, 0) is parallel to y-axis. Similarly the tangent at (- a, 0) is parallel to y-axis.

(c) We have y = g .,fa2 —x? which is real forx2 <a?ie.,-a<x <a.

The curve lies betweenx =c and x =—«a
Hence the shape of the curve is as shown is Fig. 4.26.

Example 4.72. Trace the curvey =2° — 12x - 16. (P.T.U., 2008)

Solution. (i) Symmetry. The curve has no symmetry.
(ii) Origin. It doesn’t pass through the origin.
(#ii) Asymptotes : The curve has no asymptote. (=2, 0) yd

(iv) Points. (a) The curve cuts x-axis (y = 0) at (— 2, 0), (4, 0) and m
cuts y-axis (x = 0) at (0, — 16). (0, —16))

At (-2, 0), % =0 Le.,tangent is parallel to x-axis at (- 2, 0).

d T2-82
At (4, 0), Ey =36 i.ec.,tan® = 36 i.e., tangent makes an acute Fig. 4.27

angle tan™! 36 with x-axis at (4, 0).
Also % =0at3x2-12=0 or x=#2ie.,tangentis also parallel to x-axis at (2, — 32).

(c)y >casx d>eccandy > —ccasx —>»—oo;yis+veforx>4andyis—ve forx < 4.
Hence the shape of the curve is as shown in Fig. 4.27.

Example 4.78. Trace the curve 9ay® = (x - 2a) (x - 5a)® ) (J.N.T.U., 2008)

Solution. (i) Symmetry. The curve is symmetrical about the x-axis.
(it) Origin. The curve does’nt pass through the origin.
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(iit) Asymptotes. It has no asymptotes.

(iv) Points. (a) The curve cuts the x-axis (y = 0) at x = 2a, and x = ba. i.e., at A (2a, 0) and B(5a, 0).
It cuts the y-axis (x = 0) at y2 = — 50 ¢%/9, i.e., y is imaginary.
So the curve doesn’t cut the y-axis.

b)y= (- 5‘1;\[_"( g2 i.e.,y is imaginary for x < 2a. So the curve exists only for x > 2a.
a

© dy _ + x —3a

dx " 2Ja Jx - 20) i e
At A (2a, 0), —d% — oo L.e., tangent is parallel to y-axis. O| A “TBN X
At B (5a, 0), dy =+ g 3 t.e., there are two distinct tangents.

d« "~ 3 Fig. 4.28

So there is a node at B (5a, 0).
Hence the shape of the curve is as shown in Fig. 4.28.
Example 4.74. Trace the curve 23 + y° = 3axy (Kurukshetra, 2005 ; U.P.T.U., 2003)

3a sin B cos 6
or L N e
sin” @+ cos” ©
Solution. (i) Symimetry : The curve is symmetrical about the line y = x.
(1) Origin : It passes through the origin and tangents at the origin are Yi
xy=0,ie,x=0,y=0.
Origin is a node.
(iit) Asymptotes : (a) It has no asymptote parallel to the axes.
(b) Putting ¥y = m and x = 1 in the third degree terms,
Oy (m)=1+m? ¢, (m)=0givesm =—1.

_ ¢2(m)__[—3am] _a.
o5(m) am2 ) m
=—a,whenm=-1.

Fig. 4.29

 EhN - ] is an asymoptote.

Hence y=-x-a (i.e.,
bl ¢ —a

(iv) Points : (a) It meets the axes at the origin only.
(b) When y = x, 2x3 = 3ax?, i.e. x = 0 or 3a/2. i.e., the curve crosses the line y = x at (3a/2, 3a/2).
Hence the shape of the curve is as shown in Fig. 4.29. This curve is known as Folium of Descartes.

Example 4.75. Trace the curve x° + y3 = 3uax”.

Solution. () Symmetry : The curve has no symmetry.

(zt) Origin : The curve passes through the origin and the tangents at the Y
origin arex = 0 and x = 0. 0 B

The origin is a cusp. % I°7°%

(z21) Asymptotes : (a) The curve has no asymptote parallel to the axes. N, E

(b) Putting x = 1, y = m in the third degree terms, we get o C X

0sm)=mP+1; . ¢ym)=0,givesm=—1. o

2

== __ -3 fem=1 Fig. 4.30 )

030m) ~ 3m?
Thus x + y = a is the only asymptote.

The curve lies above the asymptote when x is positive and large and it lies below the asymptote when x is
negative.
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(iv) Points. (a) The curve crosses the axes at O (0, 0) and C(3a, 0). It crosses the asymptote at A(a/3, 2a/3).
(b) Since y2 dy/dx = x(2a —x). . dy/dx =0 for x = 2a.

(c) Now y = [x2 (3a —x)] V3.

When 0 < x < 3a, y is positive. As x increases from 0, y also increases till x = 2¢ where the tangent is
parallel to the x-axis. As x increases from 2¢ to 3a, y constantly decreases to zero.

When x > 3a, y is negative.

When x < 0, y is positive and constantly increases as x varies from 0 to — o,

Combining all these facts we see that the shape of the curve is as shown in Fig. 4.30.

Example 4.76. Trace the curve ¥° (x - @) = x°(x + a).

Solution. (f) Symmetry : The curve is symmetrical about the x-axis.
(ii) Origin : The curve passes through the origin and the tangents at the origin are y*> = — x> j.e.,y=xix,
which are imaginary lines. .. The origin is an isolated point.
(i1i) Asymptotes : (a) x = a is the only asymptote parallel to the y-axis.
(b) Putting x = 1 and ¥ = m in the third degree terms, we get
0y (m)=m?-1.
$,(m)=0givesm=x1

C= ¢2 (m)
oz(m)

—a(m® +1)
2m
=zxaform==x1.
Thus the other two asymptotes arey =x+a;y=—-x—a.
(iv) Points : (a) The curve crosses the axes at (- a, 0) and (0, 0).
It crosses the asymptotesy =x +aandy =—x —a at (—q, 0). Fig. 4.31
!x+a_
B)y==« t\{(;_z)
When x < ¢ and x > — @, y is imaginary.
no portion of the curve lies between the lines x = @ and x = — a. Thus the vertical asymptote must be
approached from the right.

2 2
@8y £-msa
dx (x—a)"“(x+a)

dyldx =0, whenx = ¢ (1 + /5 )a = 1.6a approx.

1/2

[rejecting the value %(1 — J5)a which lies between — ¢ and «]

and dyldx — =, when x = + a.
Thus the tangent is parallel to the x-axis at x = 1.6a and perpendicular to the x-axis at x = + a.
Hence the shape of the curve is as shown in Fig. 4.31.

(3) PROCEDURE FOR TRACING CURVES IN PARAMETRIC FORM : x = f{t) and y = ¢(t)

1. Symmetry. See if the curve has any symmetry.
(1) A curve is symmetrical about the x-axis, if on replacing t by - t, f(t) remains unchanged and ®(t) changes
to - ().
(it) A curve is symmetrical about the y-axis if on replacing t by - t, f(t) changes to — f(t) and (1) remains
unchanged.
(iit) A curve is symmetrical in the opposite quadrants, if on replaocing t by - t, both f(t) and ¢(t) remeins
unchanged.
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2. Limits. Find the greatest and least values of x and y so as to determine the strips, parallel to the axes,
within or outside which the curve lies.

3. Points. (a) Determine the points where the curve crosses the axes.

The points of intersection of the curve with the x-axis given by the roots of ¢(¢) = 0, while those with the

y-axis are given by the roots of fit) = 0.

(b) Giving t a series of value, plot the corresponding values of x and y, noting whether x and y increase or
decrease for the intermediates values of t. For this purpose, we consider the sign of dx/dt and dy/dt for
the different values of ¢.

(c) Determine the points where the tangent is parallel or perpendicular to the x-uaxis, (i.e., wheredy/dx =0
or — o),

(d) When x and y are periodic functions of t with a common period, we need to study the curve only for one
period, because the other values of ¢t will repeat the same curve over and over again.

Obs. Sometimes it is convenient to eliminate ¢ between the given equations and use the resulting cartesian equa-
tion to trace the curve.

Example 4.77. Trace the curve x = a cos® t, y = a sin® t or £2/3 + y2/3 = 213,
Y (P.T.U., 2009 S ; U.P.T.U., 2005 ; V.T.U., 2003)

Solution. (i) Symmetry. The curve is symmetrical about the x-axis.
[+ On changing ¢ to — ¢, x remains unchanged but y changed to — y]

(@i)Limits. v |x|<eaand|y|<ea.
The curve lies entirely within the square bounded by the lines x = + a,
y==a.
(iii) Points : We have % =—3a cos? ¢t sint,
dy =3a sin?t cos ¢, dy =—tant.
dt dx
dy/dx = 0 When = 0 orm Fig. 4.32

and dy/dx — =, when t = W2.
The following table gives the corresponding values of , x, y and dy/dx.

As t inereases x ¥ dy/dx varies Portion traced
from 0 to /2 +ve and decreases +ve and increases from 0 to o AtoB
from a to 0 from 0 to e
from /2 to T + ve and increases +ve and decreases from o to 0 BtoC
numerically from from a to 0
Oto-a

As t increases from = to 2n, we get the reflection of the curve ABC in the x-axis. The values of ¢ > 2n give
no new points.
Hence the shape of the curve is as shown in Fig. 4.32 and is known as Astroid.

Example 4.78. Trace the curve x = a (0 + sin 8), y= a (1 + cos 6). (L.N.T.U., 2009 S)

Solution. (1) Symmetry. The curve is symmetrical about the y-axis.
[ On changing 8 to — 6, x changes to — x and y remains unchanged]
Thus we may consider the curve only for positive value of x, i.e., for 6 > 0.
(i1) Limits. The greatest value of y is 2a and the least value is zero.
Hence the curve lies entirely between the lines y = 2a and y = 0.
(iii) Points. We have

ax =a(l + cos 0), Lo :asineandﬁ =— tan 6/2. X B=-n) Ol BO=m X
do o dx Fig. 4.33
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dy/dx =0 when08=0 or 2nanddy/dx — - whent=rm.

The following table gives the corresponding values of 6, x, y and %x‘)—' -

As 8 increases x ¥ dy/dx varies Portion traced
from 0 to 1t increases from decreases from from O to < AtoB
0 to an 2a to 0
from = to 2n increases from increases from from < to 0 BtoC
an to 2an 0 to 2a '

As 0 decreases from 0 to — 2r, we get the reflection of the curve ABC in the y-axis.

The curve consists of congruent arches extending to infinity in both the directions of the x-axis in the
intervals ... (- 37, — 1) (- 7, 7) (7, 3m), ...

Hence the shape of the curve is as shown in Fig. 4.33 and is known as Cycloid.

Obs. 1. Cyeloid is the curve described by a point on the circumference of a circle >
which rolls without sliding on a fixed straight line. This fixed line (x-axis) is called the base --—--=---4----—-p-~
and the farthest point (A) from it the vertex of the cycloid. o)

The complete cycloid consists of the arch B’AB and its endless repetitions on both

sides.
2. Inverted cycloid: x =a (8 + sin ), y = a(1 — cos 8). Fig. 4.34
The complete inverted cycloid consists of the arch BOA and an endless repetitions of

the same on both sides. Here AB is the base and O the vertex of this cycloid. (Fig. 4.34).

(4) PROCEDURE FOR TRACING POLAR CURVES

1. Symmetry. See if the curve is symmetrical about any line.
(1) A curve is symmetrical about the initial line OX, if only cos 6 (or sec 0) occur in its equation. (i.e., it
remains unchanged when 0 is changed to —0) e.g., r = a (1 + cos 0) is symmetrical about the initial line.

(ii) A curve is symmetrical about the line through the pole 1 to the initial line (i.e., OY), if only sin €
(or cosec ) occur in its equation. (i.e., it remains unchanged when 6 is changed to t—- 6) e.g., r =a sin 36
is symmetrical about OY.

(iii) A curve is symmetrical about the pole, if only even powers of r occur in the equation (i.e., it remains
unchanged when r is changed to —r) e.g., r2 = a2 cos 26 is symmetrical ahout the pole.
2. Limits. See if r and 0 are confined between certain limits.
(i) Determine the numerically greatest value of r, so as to notice whether the curve lies within a circle or not
e.g., r = a sin 30 lies wholly within the circle r = a.
(it) Determine the region in which no portion of the curve lies by finding those values of © for which r is
imaginary e.g., r2 = a? cos 20 does not lie between the lines 0 = /4 and 6 = 31/4.
3. Asymptotes. If the curve possesses an infinite branch, find the asymptotes (p. 183).
4. Points. (i) Giving successive values to 0, find the corresponding values of r.

(ii) Determine the points where the tangent coincides with the radius vector or is perpendicular to it (i.e.,
the points where tan ¢ = r d8/dr = 0 or o).

Example 4.79. Trace the curve r = a sin 30. (UP.T.U., 2002)
Solution. (i) Symmetry. The curve is symmetrical about the line through the T
pole L to the initial line. c ~ by

(it) Limits. The curve wholly lies within the curver=a. (' ris never>a) ‘ !
(iit) Asymptotes. 1t has no asymptotes.

(o) Points. (@) tan ¢ = 99 250 2. _ 1 ¢an 3¢
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¢=0,when0=0, 3, ...
6 = /2, when 0 = U6, T2, ..... Hence the curve of the curve
(b) The following table gives the variations of r, 8 and ¢ :
As 0 varies from r varies from ¢ varies from Portion traced from
0 to 16 Otwa 0 to /2 - Oted
/6 to n/3 atol /2 to 0 AtoO
/3 to /2 Oto—a 0 to w/2 OtoB

As 0 increases from 7/2 to «, portions of the curve from B to O, O to C and C to O are traced by symmetry

about the line 6 = /2.
Hence the curve consists of three loops as shown in Fig. 4.35 and is known as three-leaved rose.

Obs. The curves of the form r = a sin nb or r = a cos n® are called Roses having

(z) n leaves (loops) when n is odd,
(iz) 2n leaves (loops) when n is even.

Example 4.80. Trace the curve r = a sin 20.(Four Leaved Rose) (V.T.U., 2009)

Solution. (i) Symmetry. The curve is symmetrical about the line through the pole,l to the initial line.
(it) Limits : The curve lies wholly within the circle r = a (.~ r is never >a)

(iii) Points : (a) As 8 increases from r varies from Loop
L
0 to 3 Otoa
no:l1,
n..n
4 to B ato0
3
% to ?11: Oto—-ca
no:2,
3r fa to 0 te. etc
2 °3 - etc. etc.
(b) talrlq):rﬂa:l tan 20 ;
dr 2

= —o F R
¢=0,when06=0, §,:'l:,32,21'|:...

0= = wheng= L 31 51 Tm
2’7 4’4’4’ 4
Hence, the shape of the curve is as shown in Fig. 4.36.

Example 4.81. Trace the curve r° = a® cos 26. (V.T.U., 2007 ; Kurukshetra, 2006 ; B.P.T.U., 2005)

Solution. (i) Symmetry. The curve is symmetrical about the pole,
(i) Limits : (a) The curve lies wholly within the circle r = a.

(b) No portion of the curve lies between the lines 6 = /4 and 6 = 3n/4.

. _ @__ _ (n )
(u.a)Pmnt.s.(a}taan—rdr =—cot 20 = tan k§+29

Le., ¢=T—2t=+29 s $=0,when 8 =-mw4; 6=m/2when8 = 0.

Thus, the tangent at O is 6 = — /4 and the tangent at A is 1 to the intial line.
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(b) The variations of r and 0 are given below :
As O varies from r varies from Portion traced
0 to n/4 ato0 ABO
3n/d tow Otoa och

As 0 increase from 7 to 27, we get the reflection of the arc ABOCD in the initial line. Hence the shape of
the curve is as shown in Fig. 4.37. This curve is known as Lemniscate of Bernoulli.

[ 5

Example 4.82. Trace the curvéf-r =a+ bfavras é (Lﬁﬁzacgn) {7 ' ; tiF . y' A Al

Solution. (i) Symmetry. It is symmetrical about the initial line.

(i) Limits : The curve wholly lies within the circler=a + b
(- risnever>a+b)

(iii) Points : (o) when a > b.
As 0 increases from 0 to /2 ; r decreases froma + b toa
As 0 increases from /2 to ©t ; r decreases fromatoa - b
The shape of the curve is as shown in Fig. 4.38 (i).

(B) when a < b.

As 0 increases from 0 to 7/2 ; r decreases froma + b to a
As 0 increases from 7/2 to o ; r decreases from ¢ to 0
As 0 increases from o, to 7t ; r decreases from Otoa - b

Fig.4.38

when o = cos™! (- %)

In this case, the curve consists of two parts, one of which forms a loop within the other and the shape is as
shown in Fig. 4.38 (ii).

Example 4.83. Trace the curve ré = a. ot o f : ¥ : & (,Sgi"m!l)"1
Solution. () Symmetry. There is no symmetry. Y
(i) Limits : There are no limits to the values of r. —
The curve does not pass through the pole for r does not become zero for any real  ---f------------------
value of 6. /‘—_—
(i) Asymptotes : 1_8 _ fle) j'\
r a @ j X

f(B)=0for0=0;Ff"(0) = 1a, f(0) = Va.
Asymptote is r. sin (6 — 0) = 1/f*(0)
ie., y =r sin 0 = ¢ is an asymptote.
(iv) Points : As 0 increases from 0 to «, r to positive and decreases from < to 0.
Hence the space of the curve is as shown in Fig. 4.39.

Fig. 4.39

Example 4.84. Trace the curve s +y% = 5ax’y?.

Solution. (i) Symmetry. The curve is symmetrical about the line y = x.
On interchanging x and y, it remains unchanged.]
(iz) Origin : It passes through the origin and the tangents at the origin are
given by
x¥?y?=0,ie,x=0,x=0;y=0,y=0.
Hence the curve has both node and the cusp at the origin.
(iii) Asymptotes : (a) It has no asymptotes parallel to the axes.
(b) Putting x = 1, y = m in the fifth degree terms, we get
Gs(m)=1+m® - ¢ (m)=0givesm =~ 1.
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= ¢?(m)=_ ~ 5am’ =aform=-1.
¢5{M) Em"l
Hencey =—x+a or x+y=aisan asymptote.
(iv) Points : Since it is not convenient to express y as a function of x or vice versa, hence we change the
equation into polar coordinates by putting, x = r cos 8 and y = r sin 0. The equation of the curve
becomes :

c=

_ basin®@cos’® 5  sin® 20

cos®0+sin®@ 4 cos® 8+sin® 0

As 0 increases from =« to 2x, the curve will retraced.
Hence the shape of the curve is as shown in Fig. 4.40.
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Q}\\AP Tg,,,

Partial Differentiation and lts Applications

o 1. Functions of two or more variables. 2. Partial derivatives. 3. Which variable is to be treated as constant.
4, Homogeneous functions—Euler’'s theorem. 5. Total derivative—Diff. of implicit functions. 6. Change of

| variables. 7. Jacobians. 8. Geometrical interpretation—Tangent plane and normal to a surface. 9. Taylor's |
theorem for functions of two variables. 10. Errors and approximations; Total differential. 11. Maxima and minima

| of functions of two variables. 12. Lagrange’s method of undetermined multipliers. 13. Differentiation under the |

L integral sign—Leibnitz Rule. 14. Objective Type of Questions. JI

(1) FUNCTIONS OF TWO OR MORE VARIABLES

We often come across quantities which depend on two or more variables. For example, the area of a
rectangle of length x and breadth y is given by A = xy. For a given pair of values of x and y, A has a definite value,
Similarly, the volume of a parallelopiped (= xyh) depends on the three variables x(= length), y(= breadth) and
h(=height).

Def. A symbol z which has a definite value for every pair of values of x and ¥ is called a function of two
independent variables x and y and we write z = f (x, y) or ¢(x, y).

We may interpret (x, y) as the coordinates of a point in the XY-plane and z as the height of the surface
z =f(x, y). We have come across several examples of such surfaces in Chapter 4.

The set E of points (x, y) such that any two points P, and P, of R can be so joined that any arc P, P, wholly
liesin R, is called as region in the XY-plane. A region is said to be a closed region if it includes all the points of its
boundary, otherwise it is called an open region.

A set of points lying within a circle having centre at (a, b) and radius & > 0, is said to be neighbourhood of
(@, b) in the circular region R : (x —a)? + (y — b)% < &2

When z is a function of three or more variables «x, y, t, ..., we represent the relation by writing z =
fix, ¥, t, ...). For such functions, no geometrical representation is possible. However, the concepts of a region and
neighbourhood can easily be extended to functions of three or more variables.

(2) Limits. The function f{x, y) is said to tend to the limitl as x - a and y — b if and only if the limit l is
independent of the path followed by the point (x, v) as x = a and y — b and we write

Lt f(x,y)=1

x—oa
y—=b

In terms of a circular neighbourhood, we have the following definition of the limit :

The function f (x, y) defined in a region R, is said to tend to the limit l as x — a and y — b if and only if
corresponding to a positive number g, there exists another positive number & such that | f(x,y) -1 | <& for
0 < (x—a)? + (y - b)? < & for every point (x, y) in R.

(3) Continuity. A function f{x, v) is said to be continuous at the point (a, b) if

Lt f(x,y) exists and = f (q, b)

x—a
y=b

197
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¥

If a function is continuous at all points of a region, then it is said to be continuous in that region.
A function which is not continuous at a point is said to be discontinuous at that point.

(4) As in the case of functions of one variable, the following results hold :
L If xI:’ta f(x, y) =land x{.’t& glx, y) =m,
y=b yob
then (i) If Lt [fetgxy=lzm @ Lt [flxy).gx)=l.m

yob yb
@) Lt [f(x,y)/ glx, y)) =Um (m #0)
xX—a
y—b
IL If f (x, y), g (x, y) are continuous at (a, b) then so also are the functions
fx,y)+g (x,y),f(xy) .8« ) and f (x, y)g(x, ¥)
provided g (x, ¥) # 0 in the last case.

PARTIAL DERIVATIVES

Let z = f (x, ¥) be a function of two variables x and y.
If we keep y as constant and vary x alone, then z is a function of x only. The derivative of z with respect to
x, treating y as constant, is called the partial derivative of z with respect to x and is denoted by one of the symbols



DOWNLOADED FROM www.CivilEnggForAll.com

3: ai,f(x ».D,f.  Thus %=&Ltuﬂx+ax’£_ﬂx'y)
5
Similarly, the derivative of z with respect to y, keeping x as constant, is called the partial derivative of z
with respect to y and is denoted by one of the symbols

dz of (x, y + &) — f(x, y)
S LeN DL Thus 2o 1y [myr®-flny
Similarly, if z is a function of three or more variables x,, x,, x4, ... the partial derivative of z with respect to x,, is
obtained by differentiating z with respect to x,, keeping all other variables constant and is written as dz/0x,.
In general f, and f are also functions of x and y and so these can be differentiated further partially with
respect to x and y.

2 2 2
Th d(d)_dz 9z a(az] %2 or Ff orr
* et o T Tl =
d(k)_ =z ?*f a(az]_a% °f
3 E)om ™ ak = migly)-Tr ek eh
It can easily be verified that, in all ordinary cases,
2’z _ o’z
dxdy dydx”
Sometimes we use the following notution
9z dz %z _ 32 9%

Ezp’?@‘:q’éx?_ axay S;F

Solution. We have 2z =23 + 3 — 3axy.
3x

% 2+O—3ay(l)=3x2—3ay,and%=0+3y2—3ax(1)=3y2—
2

Also 372 2 (et~ 3ay) =6, gyai—gy(axz 3ay) = -
az %(33'2 3uw~c)—f-.‘uy,:au:lda?x;Y %(Byz—?»ax):—sa

Solution. We have iu--_-xﬁ.;_l_ 2y.tan L+ 2_;_(_£]
% 1+ (y/x)? y 1+ (x/y)
3 2
= —23:1:5:111’1i-ij'cykz=:s:.—.‘2.)'1:an”l .
x“+y Y x+y ki

#It is important to note that in the subscript notation the subscripts are written in the same order in which we
differentiate whereas in the ‘@’ notation the order is opposite.
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u a'{ -1 x} 1 1 2_112 xa_yz
L2 oy _2ytan ' 2} =1-2y. — = —-1- = :
oy oxt Y ) 1+@/y? Y 2+y? Py
Similarly, % =2¢tanly/x—y
Pu a[ ay ]I2—3'2
and ——==—{2x tan™ = =———, Hence the result.
dox 3y x T2y

Solution. We have % =f'@+ch). % Ge+ct)+ 4 (x—cb) %(x—ct}=f’(x+ct)+¢'(x—ct}

and &=f"(x+ct)+¢”(x—ct) @
3
Again % =f'(x+ct) %(x +et) + ¢ (x —ct) % (x—ct)=cf’ (x - ct) — ¢’ (x - ct)
and % =f"@+ct)+c? ¢’ (x—ct) = [f (x +ct) + ¢ (x —ct)] ..(i)

2. 2
From (i) and (ii), it follows that 92 — 29 2 |
ot? o>

Lk
2
2 3
i _Q_( 2§§) __ 8 a1t o e (_&)
a\" )Tz e gr o a
1 9 2@9)_ 81 1% 2| ur
rzar(r e -{ 2t" et Je
¥ 90 _ n-1 e n ot ” =(nt”hl +lr2tu-2) ot
ot 4#2 4
. 1 a( 2 39) 20
Since — 2 (2Z)=2,
el = U= Al
(_ % -1 +i_’;2 t"'z) oAt (ntu—l +%r2£n-2) T (n +g) 1 e
n

*See footnote p. 18.
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Solution. We have %=—%(x“’+J.r2+22)‘3"2.21::=—a_«:(:u:z+;yv2+zz)'3"‘l
and %=—1[1.(x2+y2+z2)‘3'2+r(—3l2)(12+y2+22)5ﬁ.2x]
=— (2 + 5% + 2252 [x% + 9% + 22 - 3a?] = (a2 + y% + 22) 92 (242 — 32 — 2?)
Similarly, g;v =2+ 92 + 22752 (— 22 + 2% — 2% and sz =(x2 4+ 92 + 22y 52 (_ x2 _ 42 4 222)
Hence %—+§3§ gz—z =(Z+y2+22752 (0)=0.

3x% —3y2 Ju 3y2 —3zx Ju 3z2% - 3xy

Solution. We have % — s =—= s e
x3+y3+23-3xyz dy x3+y3+zs—3xyz oz x3+y3+zs—3xyz

au du au 3(x2 +y g —xy yz — zx)
wty e 24y +2® —3uyz

_ 3(? +y2 +z-2—xg—yz—zx) __ 3 (V.T.U., 2009)
(x+y+2) (& +y° +2° —ay—yz—2x) *¥+ytez

Now (9,0 1)2 _(.31 2 i)(au u au]
[Eo:+i}y+az Sxtyte &ty T
(9,0, 69) 3
-(ax+3y+az] [x+y+z)
3 3 3 9

[}
|

(x+y+2)° _(x+y+ 2’ (x+y+2)f - (x+y+2)’

Solution. We have x? (@2 + u) ' +y2 (B2 +u) 1+ 22 (2 +u)'l=1 (D)
Differentiating (i) partially w.r.t. x, we get

Zx(a'~’+u)“1—x2(a2+u)‘2%— 2(b2 4+ u)y?2 g; 22(c2+u)‘2—-0

or 2z _ & + ¥ " v |ou
+u @@+ B +w? (@ +w?
ou 2x %2 2 ¥?
or Gu__ 2* wherev= S i
i (q? +up @®+u® B+ a_:)2 (c® +u?

Similarly differentiating (i) partially w.r.t. y, we get

2y ={ x° y 2 }a_uo Jdu 2y

+ + =
> +u |a®+ w B +uw)? P rw?| W

5 ®* +wov
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Similarly, differentiating (i) partially w.r.t. z, we get
: 2 2
22z = 2_x gt 23(2 7+ '22 _2__3!#“%: =
B +uw) (@ +uw)® B +uw)’ (¢ +uw) d

ou)? (au)z w)? 4| 22 2 y? 4
oL T (LA N (o N + it L ... (it)
(ar) dy (32) P (GRS 7 S (%) S () o M

u 2” 2y° 22°
Als 2 —-— 2 -
5 ( a.’)' " zaz) {(ﬂ2 + u + .(6-2 + uy * (62 +u

2 2
=i{ =y ¥ e }=% [By ()] ...(ii7)

V0@ +u) @ +w (@ rw
Hence the equality of (ii) and (iif) proves the result.

Solution. We have 9% =« log, x and ﬁ =y~ 1 logx+ 2. 1 =" 1(ylogx+1)
oy dxdy x

Fu _ 9 ;
ax;;y g =1 (y log x + 1)] @)

’ 2 /
Again W _yy-land QU =1 014y (—};x” logx) =2~1(1+ylogx)

83 123 1 .
P ax b -1 (ylogx + 1)) _.(iD)
From (i) and (ii) follows the required result.
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| ParmiAL DiFFEReNTIATION AND [T APpLicATIONS -
.

(1) Consider the equationx =r cos 9,y =r sin 0 (1)

To find dr/dx, we need a relation between r and x. Such a relation will contain one more variable 0 or y, for
we can eliminate only one variable out of four from the relations (1). Thus the two possible relations are

r=xsec @ -(2) and rP=x24+y? ..(3)

Now we can find dr/dx either from (2) by treating 8 as constant or from (3) by regarding y as constant. And
there is no reason to suppose that the two values of dr/dx so found, are equal. To avoid confusion as to which
variable is regarded constant, we introduce the following :

Notation : (dr/dx), means the partial derivative of r with respect to x keeping © constant in a relation
expressing r as a function of x and 6.

Thus from (2), (ar/dx), = sec 6.

When no indication is given regarding the variable to be kept constant, then according to convention (d/0x)
always means (d/dx), and 9/dy means (9/dy),. Similarly, J/or means (9/dr), and 9/06 means (9/06),.

(2) In thermodynamics, we come across ten variables such as p (pressure), v (volume), 7' (temperature), W
(work), ¢ (entropy) etc. Any one of these can be expressed as a function of other two variables e.g., T = f (p, v),
T =g®l ¢)

As we shall see, these respectively give rise to the following results :

aT aT

dT = Edp + 5 dU ...(i)
dT = %dp + % do D)

Now, dT/dp appearing in (i), has been obtained from T as function of p and v, treating v as constant, we
write it as (d7/dp),.
Similarly, 87/dp occurring in (ii), is written as (aTIBp)¢.

L5
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ou ’ ar azu ” ar : ’ agr

.Weh skl el d =% = e L Lt

Solution. We have = ) = an ~ 7 [ax) +f"(r) ™
2 2
Similarly, Pu _ oy (3_") 0. 2L
o %y dy

%;ugyiz =F* ). [(%Jﬂ(%ﬂ +f (r)[ gy—]

Now to find 97 9 etc., we write r = (x2 + y2)12

dx’ dy
or _ (x2+y2)1!2 23:—— and ar r.l-x.driox r—x/r__y_z__
o 8:52 r2 2 3
. or _y r x
] =L S e
Similarly, By d 3y2 3
Substituting the values of dr/dx etc. in (i), we get
Pu  u _ g ﬁyz i_z_n 1.,
?+$2-—f (r L2+r2 +f(r) 3t s =)+ =f1n)
Example 5.10. If x = ¢"“*°® cos (r sin Bﬂandy e”""“ sin fi'sm @gﬁet}w&‘k ¢ o ):r@’ ’n,_..‘{
32 4 ,’.'_ ,.. .;-..4',_|i " ‘n f
Henceshowthat%+r§;+r2§= ; AL Vi 1 g ALK MES M, -.-" ’.
Solution. We have x = ¢" %59 ¢os (r sin 0)
%—é =" % (—rsin@).cos (rsinB) + ¢ °° [—sin (rsin 0)] . r cos 6
=—re" ™59 [sin O cos (r sin 0) + cos O sin (r sin 9)]
=—re" ™0 gin (0 + r sin ) ..(D)
and %}=e‘““’se.cose.cos(rsine)fef“’"‘“sinﬁ(rsine)sin9
r
=e" 8 co5 (0 + r sin 0) ...(ii)
Similarly, y = e"©=® gin (r sin 0) gives
% =re" 5% cos (0 + r sin 0) ..(i21)
and ? = ¢" € gin (0 + r sin 6) ...(iv)
r
From (i) and (iv), 9% — _, % ()
d0 or
F .. d.”,g_ a_x Avi
rom (1i) and (iif) =5 r = (vi)
0%x 0° y 823)
F (v), Lo (T =
s 262 "oeor " aroe
3 2
From (vi), ox _19y which gives &:_l@_y__‘_lay
or r do art y2 00 r orod
0°x ox . 2 9% Py P °y
Bl L b i =0.
¥ '3 >2 T aroe e o6 " aroe
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(1) HOMOGENEOUS FUNCTIONS

An expression of the form ax" + a,x" 1y + a,x" =232 + ... + @, y" in which every term is of the nth degree,

is called a homogeneous function of degree n. This can be rewritten as
xlag + a,(y/x) + ay(y/x) + .. + a, (Y.

Thus any function fix, y) which can be expressed in the form x™ §(y/x), is called a homogeneous function
of degree n in x and y.

For instance, x° cos (y/x) is a homogeneous function of degree 3, in x and y.

In general, a function f(x, y, 2, ¢, ...) is said to be a homogeneous function of degree n inx, y, 2, t, ..., if it can
be expressed in the form x"¢ (y/x, z/x, t/x, ...).

(2) Euler’s theorem on homogeneous functions*. If u be a homogeneous function of degree n in x and y,

then
Ju du _
x-3—§+y§§—nu.
Since z is a homogeneous function of degree n in x and y, therefore,

u=x"f(y/x)

u _pen-1p(Y pfy Sl BV o (,z)_ ﬂz.-['l]

ox e f(x]+x"f [x]'y( xB] na fx it x
- W _npr (Y] 1 pfY u,  ou_ nof¥)_
and % =2 [xj'x x f[x].Hencexax+yay— f[x]—nu.

In general, if u be a homogeneous function of degree n in x, y, 2, £, ..., then,

ou odu  du  du
—_ —t 22—t - ...=nU.
xax”ay“az”at

24y _ o 1+(y/2)
3x+4y  3+4y/x)’

Solution. Since z=logu=

* After an enormously creative Swiss mathematician Leonhurd Euler (1707-1783). He studied under John Bernoulli and
became a professor of mathematics in St. Petersburg, Russia. Even after becoming totally blind in 1771, he contributed to
almost all branches of mathematics.
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206
z is a homogeneous function of degree 2 in x and y.
By Euler’s theorem, we get
dz dz ;
—_——ty— = 22' ---('—)
i yi}_y
dz 1du dz _1du
But “_2%% and —=——
ox u dx dy udy
Hence (i) becomes
10 1 du
x- ;;auﬂ}’-;g =2logu or x%+y% = 2u log u.
RN AF 3 s ! : 3, S E SN 1 L g
Example 5.12. If u = sin? ¥ 23 |50 o value of #24 + 341 2% | (UP.T.U, 2000)
| x +y +ZE ax -@ k ’ " J .
Solution. Here u is not a homogeneous function. We therefore, write
i s x+2y+38z =T 1+ 2y/x) +3(=z/x)
- T8+ 1+ (/0P (2l
Thus ® is a homogeneous function of degree — 7 in x, ¥, 2. Hence by Euler’s theorem
4004y 80, 00 :
ax y& 3 :(— 7)&) ...(!)
But @—cosugﬁrag:(:(:nsu,a—ma—m=cosu—uL
ox ox’ 9y dy’ oz 0z
. (i) becomes  x cos ua—u+ymsua—u+zmsu% =-Tsinu or xa—u-p-ya—u-..za—u =—Ttan u.
&y oz ox dy oz
Exampls &.18. 751 —ﬁﬁs—ergogfm ﬁng_thewiueﬂfxﬂu_:; ﬂu'{_;:&#_‘:.\ T
2 om gl IR LKy s e ) 1 =y e
' " (Mumbai, 2009)
. x3y323 xy+yz+zx ;
Solution. Let v = 3 3 3 and w = log > 2 3 ...(5)
Xty +z X +y +z
so that u=v+w
3
Since v = 8 (y/:\:)‘:(zlx) 7 » therefore v is a homogeneous function of degree 6 in x, y, z.
1+ (y/x)° +(2/x)
Henos by Buleds fheoren ¥ ny 242 ~gp (ii)
ence by Euler’s theo axyay = =
X EuE
Since w = log {—+—2-% x2 therefore w is a homogeneous function of degree zero in x, ¥, 2.
1+[l + E)
x x
ow Jw ow
H by Euler’s th — et y—Fz— = ... (Eii)
ence by Euler’s theorem :rax+yay+zaz L
Addint (i7) and (iii), we obtain
x[@ﬂ_‘”} ﬁﬂ_‘”}z[aiﬂ—w]
x ) Ny v 2 w8
§.3.8
o Bl O B g FYE [By (i)

+ 2
ox dy dz A:3+_-y3«i—2:3
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Solution. By Euler’s theorem, .'vcE +y % =nz

o T dy
> e s . %z & 9%z 0z
Differentiating (i) partially w.r.t. x, we get xg + % + y&x&y = ng
Le. x&+y_£}2_z__(n_l)ﬁ
’ »?  oxdy ox
9% 82 azz dz
differential (i) partially w.r.t. y, we get x—— + — =n—
Again ting (i) p y vwewk B B_y ay >
. %z 9% oz
ie., x——+ y—=(n-1)—
wdy oy Y
Multiplying (#2) by x and (iii) byy and adding, we get
2 2
23 +2xy— 28_z=(n 1)[x—+y—]=n(n—1)z

i)

--.(i1)

[By ()]

Solution. Here u is not a homogeneous function but z = sin u = = J_ is a homogeneous function of
s i y
degree 1/2 in x and y.
By Euler’s theorem, x%-{-y% %z
or X COS u %-r- msu%—lsmu
Ty T
ou du 1 .
Thus x$+y§ Eta.nu ..(D)
Differentiating (i) w.r.t. x partially, we get
.va:ili{}ét-yﬁ=lsei:21£.ca—“L or x&+ ﬁ:[lseczu—lJa—u (if)
o o Tty 2 p® 2 Yy 2 o
Again differentiating (i) w.r.t. y partially, we get
(O Pu 1o du u , u_(1_ 5 G
ayax By2 b 2 W or x%+yy—[§sec u-— )& ...(ii1)
Multiplying (iZ) by x and (iif) by ¥ and adding, we obtain
%u u 2% (1 _ o du ou
xz—2+2xy$a;+y 5‘;,‘7:[59& u—l] x-£+ a
or 2a""'+2acy— 2 0%u (lseczu—l)(ltanu] [By ()]
a3y Y B \2 2 yi
_ 1 sinu 1lsinu _ _sinu(2cos2 u-1)
T cosu 2cosu 4 cos® u
H 232 Pu L% sin u cos 2u
ence Ol g —————— .
oue? oxay dy 4 cos” u
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m !! TOTAL DERIVATIVE

Ifu = f(x, y), where x = §(t) and y = y(¢), then we can express u as a function of t alone by substituting the
values of x and y in f (x, y). Thus we can find the ordinary derivative du/dt which is called the total derivative of
« to distinguish it from the partial derivatives du/dx and ou/dy.
' Now to find du/dt without actually substituting the values of x and y in f (x, y), we establish the following
Chain rule :

siE)
Proof. We have u = f (x, y)
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PArTIAL DIFFERENTIATION AND 175 APPLICATIONS 209
Giving increment 8t to ¢, let the corresponding increments of x, y and « be dx, &y and du respectively.
Then u+du=f(x+d,y+d)

Subtracting, Su=[f(x+8c,y+d)—flxy

=1f(c+ 8,y +8)—f o,y + )+ {f (x,y + 8y) - flx, ¥)}
Bu _ fa+8y+ ) fony+8) & fy+d)-fny) &
&t & ot oy &t
Taking limits as 8¢ —» 0, & and &y also — 0, we have

du _ 2 {f(x+ﬁr,y+ﬁyi-f(x.y+5y)ﬂdx+ L {f(x'y+§y)—f(x.3ﬂl

dt 850|850 o dt &0 By [ a
3 of(x, y +8y)| dx af(x y) dy
Ey—)l) Sy dt dy dt

[Supposing df (x, y)/ox to be a continuous function of y]
= g%‘l : % + af(;; ) . % which is the desired formula.

Cor. Taking f = x, (i) becomes, fi: %‘ + % % ...(iL)

Obs. If u = f(x, y, 2). where x, y, z are all functions of a variable ¢, then Chain rule is

du _du dx+3u dy+an dz
Soxdt 9y dt @ oz dt ..(ii)

(2) Differentiation of implicit functions. If f (x, ¥) = ¢ be an implicit relation between x and y which
defines as a differentiable function of x, then (ii) becomes

-9 _ o dy
: 1
This gives the important formula ay =— gg g: [% # OJ

for the first differential coefficient of an implicit function.
Example 5.16. Given u = sin (x/y), x = ¢ and y = %, find duldt us a function of t. Verify yodr result by
direct substitution.

Solution. We have ﬂ aﬁ ﬁ E)_u d_y e +( - |2t
dt ox dt oy dt y y

= cos (e!ft?) - e!/t? — 2 cos (e’:‘tz) e‘a’t3 = (t = 2)!!3}:3‘ cos (et/t2)
Also u = sin (x/y) = sin (e//t?)

du &) =t 1-2 , {c\
= = cos t—2 ¥ = = e cos —-Q-J as before.

- Example 5.17. If x increases at the rate of 2 em/ sec at the instant when x = 3 em. and y = 1 em., at what
rate must y be changing in order that the functwn 2xy — 3x% shall be neither increasing nor. decreasmg 2

Solution. Let u = 2xy — 3x%, so that
du du dx du dy dx o, dy :
. =2 -39
+ = (2y — 6xy) ; (2x — 3x°) : (2)

dt  ox dt ay dt
when x = 3 and y = 1, dx/dt = 2, and u is neither increasing nor decreasing, i.e., du/dt = 0.

. (i) becomes 0=(2—6x3)2+(2x3—3x9)%

d € - .
or d—‘j =— % em/sec. Thus ¥ is decreasing at the rate of 32/21 cm/sec.
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"

Solution. From f(x,y} x3+y + 3xy — 1, we have
Q= Bf/af _3%+3y _ *+y D)

38y2+3x 4z

du _du du dy

Fial Tl e =(1-logxy +x - 1/x) + (xfy) - dyldx.

Hence duldx =1+logxy - x(x2 + y)l_;q,r(y2 + :.r) [By ()]

Solution. Let v= y—x=l_l and w= z—x=l_1 .(2)
xy x Y xz X 2z
so that w=ulv, w)
B e N S L), Bl L) —
& v dx dw dx dw\ x2) w\ x%)
Ju Ju du o
A P o el
or x = T (it)
du du du ou ow ou(1) du ., o
AI —_ ==——t— —=— — _0 (
S0 okl 3y+aw Y av[sz-'-Bw() [Using (i)
- f?gu:% ..(iir)
G Ju odu dv Jdu dw Ju du (1 . .
Similarl bk L R VI o L ] e [Using ()]
¥ % B R Bv(o)+8w[z2] e
o S Aiv)

d*y _ d_(ﬁ) __d [g) __ qldpld) - pldqlds) b
dx*  dx\dx) dx\gq ¢
Using the notations : r = %g—=%:1, 5= %:%,t: gyig.=g§,
we have %=%+%_%=Hs(_p,qj__qr;ps



DOWNLOADED FROM www.CivilEnggForAll.com

PartiAL DIFFERENTIATION AND ITS APPLICATIONS m
Substituting the values of dp/dx and dg/dx in (ii), we get

d’y __L[q[qr—ps]_p[qs—pt” _ q’r—2pgs+pt

d* ¢ q q q°

PROBLEMS 5.5

1. fz=u?+v?and u=at?, v =2at, find dz/dit. (P.T.U., 2005)

2. Ifu=tan ' (v/x) wherex =ef —e?, and y = ¢! + e, find du/dt. (V.T.U, 2003)

3. Find the value of d_;: given u = y2— 4ax, x = at?, v = 2at. (Anna, 2009)
«

4. Atagiven instant the sides of a rectangle are 4 ft. and 3 ft. respectively and they are increasing at the rate of 1.5 ft./
sec. and 0.5 ft./sec. respectively, find the rate at which the area is increasing at thal instant.

5. [fz=2xy?-38x%vand if x increases al the rate of 2 em. per second and it passes through the value x = 3 cm., show that
if y is passing through the value y = 1 cm., y must be decreasing at the rate of 2% cm. per second, in order that z
shall remain constant.

6. Ifu=x2+y2+z%andx =e?,y=e cos 3¢,z = e gin 8t. Find % as a total derivative and verify the result by direct

substitution.
7. If § (ex —az, ¢y — bz) = 0, show that %-—“% =T
of op dz of 99

8, Iff(x,9) =0, ¢ (y.2)=0,showthat = ——=—-—_

9. If the curves f(x,y) = 0 and ély, z) = 0 touch, show that at the point of contact, ?5 % :% . %:i §
oY d [df)[&f] P*f (af)?a ( Zf]
10. 1If = {0, shi h oLl et Be O el )| B addady e et e P, N Ralhl i
ey ’S-"w“t(ay) a2 \ae) oy \awy )\ v) o 7y
IEX3) CHANGE OF VARIABLES
If u=flx,y) ..(1)
where x=d(s, ) and vy = ¥(s, 1) il 2)

it is often necessary to change expressions involving i, x, y, dw/dx, du/dy ete. to expressions involving u, s, t, du/ds,
dulot ete.

The necessary formulae for the change of variables are easily obtained. If ¢ is regarded as a constant,
then x, y, u will be functions of s alone. Therefore, by (i) of page 208, we have

du_Jdu é_'_ Ju Jy @3
ds 0x s Jdy Os
where the ordinary derivatives have been replaced by the partial derivatives because x, ¥ are functions of two
variables s and ¢.
du_dJdu ox 3u Jy

.. Similarly, regarding s as constant, we obtain — = —, —+ — ...(4)
. ot ox ot dy it

On solving (3) and (4) as simultaneous equations in Ju/dx and du/dy, we get their values in terms of du/os,
Jufot, u, s, t.
If instead of the equations (2), s and ¢ are given in terms of x and y, say: s = E(x, y) and £ = (=, y),
...(5)

then it is easier to use the formulae a_u ﬂJ ds % i ..(6)

Eb:axax o o
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(T

du o

ds dy ot dy

The higher derivatives of u can be found by repeated application of formulae (3) and (4) or of (6) and (7).
!

du -
or ds
Similarly, Qu_du or ou Os du o __ du ou ...
dy or dy ds dy ot dy Ir s
ou Ju or du 9ds Ju It ou du
d_ —=-——_—- —_— — _'—=-_ — ns
- % e R B R W R )

dz odz Ox

5 & T
Solution. We have 92 _92 9 0z 9y
du dx Jdu oy

(e“ cos v) + Lo (e* sinv) ...(0)

(—e" sin v) + % (" cos v) (i)

= 2 = 1 _,E_}_z_ L jai 3 % o E
x—+y-:—(e"cosv)l: e“smvax+e wsval":l+(e“smv)[e“msv ax+e smvay]

oz

5 z _ 5
=(e® cos? v + e® sin’v) —=e™ —
ay

oy
Now squaring (¢) and (ii) and adding, we get

(ﬁjz"'(ﬁ]z:ezu msu_i.};z_-i-sinuiz-nz-l-ez“ —si.nvé-l-cu;}en.!Ez
du) v Cox dy ox dy

or g2t [[%]2 + (%]il = cos? v[%)g +sin? v [%)2 +2sin v cos v %%

2 9
+sinzv(£J +cos? v 2 ——‘25]'.!11.:(:(:;5:;g-z-95
ox dy ox dy

9 2
= (cos? v + sin? v) (E] + ]
dx dy
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Hence () (2] o (2] 4 (2]
' ox oy ou ) |
.Emmple5.23. Ifx +y = 2¢%cos ¢ and x -y = 2ie® sin §, show that ¢ Od _- ‘ ‘ : "4
%u  Pu “u
ﬁ-'-ﬁ:‘txy-ax_ay (Nagpur, 2009 ﬁPTU 2@2}
Solution. We have x=e"(cos o +1sin)=e"_ e [See p- 205]
and y=eP(cosp—ising)=e®. e @
Here u« is a composite function of 6 and ¢.
du_du dx du iy
20 ox 90 dy 90
=%.(ee.e"")Jrg(ee.e'£¢)=x%+y%
= axdeyd D)
00 du dy
Also fu_u G Bu dy % e oy Foe om0 L 00
W o o0 dy & dy Jx v
—(.)—*ix——iyi (it)
d dy '
Using the operator (i), we have
Yu_d () (0, 0) 0, o)
%% 0000 Y ay x ')
o\ ax) ax ay U a) Py My
axz BxJ T awdy T dyox by
2 2 2
28 Qu g du ou du
x 2y ——+ Y — +x— — ()
w Py Y T Y
- ine i), Ou_ 9 (o) (. 2 oY(. du . ou
Similarly using (ii), = [ ) ( = _)[ pd _J
22 aplae) " )" un "y
%u *u %u ou ou =
=h12F+%'ﬁ_y2§y-§_x.é;_y_{}; ...(iv)
32 u %u

Adding (iii) and (iv), we get gé“““r " 4@5@;
E) u %u 3 S LOT R s
Example 5.24 Transform the equation — v By—-—_ﬂ into polar cmrdznates; & M PTY, 2010).
: ] e e

Solution. We have x =rcos 6,y =rsin @ and r = ,/(x? + y?),0 = tan™? (y/x)

ar x 20 y sin 0
—=—F——— =c¢os0and —=- ==

x  Jix? +y%) x a4yt r
du Bu ar au 90 _ Ju sin 6 Ju

Thus,
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3 siand s 2 9 cos0 D
=cos @ ——"—x — Similarly, — = Ll
> r = S e A

2o Y emee 20y

2
_mge_a_u_2sm9msﬁ aau+ Bau+am 60u 2sin@cosB8du .

or? r ordo 1"2 202 r or r? 20
_ % 'ai'au] ] d  cosO a)( o eas.a.au]
and AR g o WL s
| & ay[ay (sm at s W\t
_ geazu 2sinBeos® d%u msaa?u cosﬁau _ 25in6cosO du
fin or? r 8r39 r? 392 r or r2 or
Pu % Pu 1 % 1ou
Adding (i) and (i7), we get A 1,
E Xy P 2w
2. 2.
Hence the transformed equation is %+%%+ ﬁ?“':l].

¥ #lo

(i)
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(1) JACOBIANS

If u and v are functions of two independent variables x and y, then the determinant

quldx  duldy
vl duldy

d(u, v) ( i, )
ordJ|—]|.
Ax, ¥) X,y

Similarly the Jacobian of u, v, w with respect to x, y, z is

duldx Juldy Jduloz
Nu, v, w)
3(—_) =| dvfdx Jdufdy duldz
X, Y, 2 .- )
2 dwldx dwldy dwlde
Likewise, we can define Jacobians of four or more variables. An important application of Jacobians is in connection
with the change of variables in multiple integrals (§ 7.7).

(2) Properties of Jacobians. We give below two of the important properties of Jacobians. For simplicity,
the properties are stated in terms of two variables only, but these are evidently true in general.

L If J = Hu, v)dx, y) and J' = d(x, y)(u, v) then JJ’ = 1.
Let u=f(x,y)and v = glx, y).
Suppose, on solving for x and y, we get x = §(u, v) and y = y(u, v).

is called the Jacobian* of u, v with respect to x, y

and is written as

Then a_uzlz a_u_ﬁ_k_aﬁ_jal,
ou dx du oJdy Ju
u Ju dx oJu Iy
—=0= —. — 4+ —. =, .
2 % dy W (@)
W _o- % ox v &y '
du  ox ou dy ou’
a_v =1= a'_U % + a_U Q
and v X
T < owdx duldy % ox/du  dx/dv 7| oufdx  Oduldy . ox/ou  dyidu
T | dv/idx  du/dy vfdu  dyldu _i dx  duldy ox/dv  dyldv |
(Interchanging rows and columns of the 2nd determinant).
1 0 1 By vi f (i)
=ls 1/=1 [By virtue of (i)]

II. Chain rule for Jacobians. If u, v are functions of r, s and r, s are functions of x, y, then

Au,v)  du,v) Ar,s)
Ax,y) dr,s) Ax,y)

du,v) Ar,s) _|owdr dulds . drfox  odsfox
ar,s) Ax, y) odvlor  dulds orfdy 0dsldy
[Interchanging rows and columns of the 2nd det.]
du dr uds dudr o ds
_|orTox 9s ax dr dy 9s dy| _|dwox duldy| o(u,v)
Tl or a3 v oar  as | [wx duRy| Axy)
or ' dx ds dx Jdr' dy ds oy

* Called after the German mathematician Carl Gustav Jacob Jacobi (1804—1851), who made significant contributions to
mechanics, partial differential equations, astronomy, elliptic functions and the calculus of variations.
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g x _ o &b _ Do
Solution. (i) We have g—msﬁ,-a—e——rsmﬂ and ar—smﬂ,ae— rcos©
dx,y) |cos® —rsin@ -
d(r, 6) sin® rcos®
- ox o ox
(i1) We have By , — =—psing¢g, — =0,
g o % psin ¢ .
dy dy dy oz oz oz
— =sint, — =pcosdp. — =0and — =0, — =0, — =1
o 2 Pt R =
_ _ cos® —psin® 0
a'a £] .
(x_yz_)z sind peos¢ O] =p.
ap, 9, 2)
0 1
_ . ax_ ox s, oo
(iii) We have ;-smﬂwse,-as-rcosecoseh,%-—rsmosmq:,
 _ &y : L
?ar—_mnesrn¢,ae-rmsﬂs1n¢,+~-rmnecus¢,
and %-msﬂ, — _—rsina,%a-o

_ sin@cosd reosBcos¢ —rsinOsin¢
9%, %2) _lGn@sing rcosOsind rsinBeosd | =rsin 6.
ar, 6, ) cos 0 —rsin @

Solution. We have 21 = _ %% Y % e By %

-3“1_ 312 xl’axa x
Uy X Wy _ X Oy _ X
R I
and 3 _ % s X Dy 4%
ox; X3 %y X3 Oxg x2
M O || XX X3 *
 ox, I x 0 N
0nypys) |z By Wz || % @M X
dx1%px3) | Ox; Oxp Oxy || xp x %
Wy Py Ds|l X -
dx; Oxg 0xg || g X3 x3
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—XpXg  XgXy XXy -1 11

= ; Xq —XaXy X __xlzxgxg 1 -1 1
= xzxg 2 xﬂ 3 x‘B 1 lx2 — .’.C2 gxg

129 oy wm  —uxm el 1 3 A

=—11-1)-1-1-D+ 11+ 1D=0+2+2=4.

du du du
ox dy oz 1 6y -32°
Solution. M = ﬁ&_’ .‘22 .Qu_ = |8xyz 4x’z 4x’y
dx, y,2) dx dy oz . 4
-y X z
w ow dw
x dy oz
" ; 1 -6 0
At the point (1,-1,0) =222 10 0 -4|=4(C1+6)=20.
ix, v, 2) 1 -1 ©

o

Solution. We have ou,v) _ Ay, v) ” ox, y)
Jar,8) dx,y) dr,0)

Since u = x2 —y2, u = 2xy

W
a(u.v}_ ox dy _ 2x -2y B % 5 )
Ax,y) | v _|2y ga| ~ 3 +8) i)
dx  dy
Sincex =rcos 8,y =r sin 6,
a
d(x,y) jor 00| |cos® —rsin®|
Ar.0) |d | |sin0 rcose| " i)
ar 00
A, v) 5 g  pnos -
Hence, T 4(x%+9y?).r=4(? cos? 0+ r?sin?0). r=4r° [Using (id) & Gii)]

(3)Jacobian of Implicit functions. If u,, u,, u, instead of being given explicitly in terms x;, x,, x,, be
connected with them equations such as
fl(ul' uzv ug: xl? xzv 13) = Or fz (u_[v uzv us: x], xzv xa—) = Oyﬁg (ul! uzv usv xl! xg_: xg) = 01 then

A, g, tg) _ 113 Wfyo o f) | Ay )

A%y, Xg, x3) Nxy, X, x3)  ANuy, Uy, 1g)

Solution. Let fi=u—xyz,f=v-a?-y? -2, fizw-x-y-2z
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a(x:y’z) af:falf) a(f:f Df} ;
Weh a2/ bl Y (B | 1> /2:137  “AM1272273 (D)
¢ have ou, v, w) ( ¥ Hu,v,w)  INx, y,2) -
oFo for o) ofifox Ofildy Ofildz| |-yz —xz —ay
Now, ﬁ: ofpldx Ofyfdy Ofpldz|=|—-2x -2y -2z
85 Alx Ofsldy offoz| | -1 -1 -1
=—2x —y)y —z)z —x) -(E8)
100
and HhFf) 1o 4 of =1 . i)
u, v, w)
001

Substituting values from (i) and (iii) in (i), we get

HGD2D 1y 5 U2 — yXy — 2Nz — )] = 12 — 3Ky — )z ).
du, v, w)
(4) Functional relationship. If u,, u,, u, be functions of x,, x,, x; then the necessary and sufficient
condition for the existence of a functional relationship of the form f(u,, u,, uy) =0, is

J[u’l' Uy, '5‘3) »
X1, X9, X3

Solution. We have % \f(1~y ) - < au = +\/(1—x2 )
Ja—a%) ¥ \,(
and E 1 A
= Ja-x'¥ Ja-y
du du /(1 g L, (B ’
Hu,v) |ox oy | \} J(l ¥?)
Ax,y) |dv |
fox oy \}l—x") J(l»y
- xy -1+ a4 =0
CJla-aHa-y Jla- 2 -y
Hence u and v are functionally related i.e., they are not independent.
We have v=sin"!x +sin!y =sin! [x\lil— ¥2) + 30 - 22)]
Le., u=sinv

which is the required relationship between u and v.
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7. UF=xu+v—y, G=u?+uvy+uw, H=2u—0v + vw, compute dF, G, Hw, v, w).
8 Hu=x+y +z,nv ¥ + 2, uvw =2, show that dx, y, 2V w, v, wi. = u?v.
(Kurukshetra, 2009; P.T.UL, 2009 S; V.T.U., 2003)

9. fud+v3=x +’y and u? + v? = X% + 3, show that 22 A s 4 . WrPLU, MMCAJ
E mx, y) 2 ﬂ'u(u - U] Al i ] { ] I
o ey 2 & ou, v) 4
10. Ifu= R andv=tan'x +tanty, find — 2" 33 . Are 1 and v functionally related. If so, ﬁﬂduthm reiationsﬁg.
X %y

Wagpur 20081

11. Ifu=3x+2y -2, v=x-2y +2z and w =x(x + 2y — z), show that they are funcuonally related. and find the relation.
(Nagpur, 2009)

{

(1) GEOMETRICAL INTERPRETATION

If P(x, v, z) be the coordinates of a point referred to axes OX, OY, z zZ
OZ then the equation z = f(x, ¥) represents a surface. (Fig. 5.1)

Let a plane y = b parallel to the XZ-plane pass through P
cutting the surface along the curve APB given by

z=f(x,b).

As y remains equal to b and x varies then P moves along the
curve APB and 9z/dx is the ordinary derivative of f (x, b) w.r.t. x.

Hence dz/dx at P is the tangent of the angle which the tangent at
P to the section of the surface z = fix, y) by a plane through P parallel to
the plane XOZ, mukes with a line parallel to the x-axis.

Similarly, dz/dy at P is the tangent of the angle which the tan-
gent at P to the curve of intersection of the surfuce z = f (x, y) and the X / T
plane x = a, makes with a line parallel to the y-axis.

(2) Tangent plane and Normal to a surface. Let P(x, y, 2) Fla 58
and @(x + &, ¥y + &y, z + 6z) be two neighbouring points on the surface F(x, y, z) = 0. (Fig, 5.2) (i)
Let the arc P@ be &s and the chord PQ be 8¢, so that (as for plane curves)
Lt (8s/8c) =

The direction cosines of PQ are — L By & Le., E E ﬁ E % §
8¢’ 3¢’ 8¢ 8s 8¢ 8 8’ 8s &
When s — 0, @ — P and P@) tends to tangent line P7. Then noting that the coordinates of any point on arc
P@ are functions of s only, the direction cosines of PT are
dx dy dz -
e e -..lif)
oF dx+aF dy*raF dz
ox'ds dy 'ds 3z ds
This shows that the tangent line whose direction cosines are given z
by (i1), is perpendicular to the line having direction ratios
JoF JF oF
FoR iy L)
Since we can take different curves joining @ to P, we get a number of
tangent lines at P and the line having direction ratios (iii) will be perpen-
dicular to ell these tangent lines at P. Thus all the tangent lines at P lie in
a plane through P perpendicular to line (iiz).

Differentiating (i) with respect to s, we obtain

Flx,y,2)=0

Hence the equation of the ta.ngent plane to (i) at the point P is 0 Y
9% X-x) (Y ) + (Z )=
vy X) + g V) + z)= %

where (X, ¥, Z) are the current coordinates of any pomt on this tangent plane. Fig. 5.2
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Also the equation of the normal to the surface at P (i.e., the line through P, perpendicular to the tangent
plane at P) is
X-x Y-y Z-z
OFfox  oFdy JFfz’

Example 5.31. Find the equations of the'tangent ﬂane and the normal tathe surfacez® =4(1 +x% +y°) at
(2,2, 6). i

Solution. We have Flx,y,2) = 4x2 + 492 — 22 + 4.
! OF/ox = 8x, oF/dy = By, 0F/dz = — 2z, and at the point (2, 2, 6)

OF/ox = 16, JF/dy = 16, oF/oz = —
Hence the equation of the tangent plane at (2, 2, 6) is 16(X — 2) + 16(Y — 2) —-12(Z — 6) =

Le., 4X+4Y-3Z+2=0 (1)
Also the equation of the normal at (2, 2, 6) [being perpendicular to (i)] is
X-2 Y-2 Z-6
4 4 3

PROBLEMS 5.8 1B

Find the equations of the tangent plane and normal to each of the following surfaces at the given points :
1. 222+ y*=8-2zat(2,1,—8) (Assam, 1998) 2. % +yd4Bxyz=3at(1,2,-1) E(Osmanm,mm
3. xvz= a"at(xl,yl, ! 4. 2022 —3xy —dx=Tat(1,-1,2).
6. Show the plane 3x + 12y — 6z — 17 = 0 touches the conicoid 322 — 6y% + 922 + 17 = 0. Find also th&pmnt afﬂnntacj,.

2 2 «f s 3
6. Show that the plane ax + by + ¢z + d = () touches the surface px? + gy2 + 2z = 01FE—+%-+M o B Ii “F

7. Find the equation of the normal to the surface x% + y2 + 22 = g2, _ (P.T. U., 2009 S}

TAYLOR’S THEOREM FOR FUNCTIONS OF TWO VARIABLES

Considering f (x + h, ¥ + k) as a function of a single variable x, we have by Taylor’s theorem*
of(x, y+ k) 4 h? 9%f(x, vy + k)
dx 2! o2
Now expanding f (x, ¥y + k) as a function of y only,
2 42
o xy) Kk Iflxy)
dy 2t
o (x,y)  F* *f(x,y)

()

fa+hy+R=fxy+k) +h

fl,y+R)=Ffl,y)+k

(i) takes the form f(x + h,y + ) =f(x,yv) + k % gy 2
aJ ofx,y) K Pf(x,y) B 92 Any | |
+h$lf(x’y)+k ay +E a:y? S +2_!ax_2 f(x,y)'l'k'—-'éy——+.,.J
2 2 2
Hence, f(x+h,y+k)=f(x,y)+ hg+kgyf 2'[h2 ?)xf 2hk%+k2 ,;a}ny+'" e

d d 1 d ad
In symbols we write it asf(x + h,y + k) = f(x, y) + hé;+k§ f+§ h§£+k§§ f+..
Taking x = ¢ and y = b, (1) becomes

fla+h,b+k)=f(a,b)+[hf (a,b) +kffa,b)] + % W%, (a, b) + 2hkf,, (a, b) + k? fla, Ol + ...

*See footnote on page 145.
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Puttinga + h=xand b+ k=ysothath=x-a, k=y-b, we get
f(x,y) = f(a, b) + [(x-a) £, (a, b) + (y - b) £, (a, b)]

+ o5 (-2, @ b) + 26x-a)y -b) £, @, D) + V-BEE @bl e (D)

This is Taylor’s expansion of fix, y) in powers of (x — a) and (y — b). It is used to expand f(x, ¥) in the
neighbourhood of (a, b).
Cor. Puttinga =0, b =0, in (2), we get

1
f(x, y) = £(0, 0) + [x£_(0, 0) + yf_ (0, 0)] + 21 [x* £, (0,0) + 2xy £ (0, 0) + y*f (0, 0)] + ... (3)

This is Maclaurin’s expansion of f (x, y).

Example 5.32. Expand ¢ log (1 +y)in powers of x and y upto terms of third degree '
' (V.T.U, 2010 ; P.T.U., 2009 ; J.N.T.U., 2006)

Solution. Here flx,y)=¢e"log (1 +y) f(0,0) =
f(x.y)=e*log (1 +y) f;((0,0):O
1
f;,(x;;}’):exm fv(o, 0)=1
frx,y) =e*log (1 +y) £, (0,0)=0
1
fiy (0, 9) = exm £,,(0,0)=1
fy@y)=-e(1+y)? f,(0,0)=-1
A (x.y) e“log(1+y) Foce (0 0=0
PR |
£, xy %5 y)=€‘—1+ fiy (0, 0)=1
foy @, ¥)=—€* (1 +y)? [y (0, 0)=-1
[y @, 7) = 2¢% (1 + y)3 fiyy (0,00 =2

Now Maclaurin’s expanswn of f(x, y) gives

1
f &, 5)=£(0,0) +£,(0, 0) + ¥£,(0, 0) + o (x*£,,(0, 0) + 2xy £, (0, 0) + ¥* £, (0, 0)}
1
+ 31 0 £ul0,0) + 322y, (0, 0) + Bxy*£,, (0, 0) +* £, (0, O)} + ...
1
e log (1 +y)=0+x(0) +y(1) + o1 {x? (0) + 2xy(1) + y* (-1)}

1
+ 3 {x3(0) + 3x%y(1) + Bay2(=1) + yH(2)} + ...
1 1 1
=y +xy- §y2+ E(xzy—xy2)+ §y3+

Example 5.33. Expand x%y + 3y — 2 in powers of (x — 1) and (y + 2) using Taylor’s theorem.
(P.T.U., 2010 ; V.T.U., 2008 ; UPTU 2006' Arhw,Qﬂﬂﬂ

Solution. Taylor’s expansion of f (x, ¥) in powers of (x —a) and (x — b) is given by

flx,y)=f(a,b) +[(x-a)f (a,b) +(y— b)f(a b)]+—[(t a)zf (a, D)

1
+20 - a)y b f(a, b) + 0 — bR, (a, b + 57 [k —al £, (@, b)
+3@-aR(y-b)f, (a,b)+3@-a)y-blf, (a,b)

+(y—b}3)‘;m (@,b)] + ... -(2)
Hencea=1,b=—-2and f(x,y)=x% + 3y — 2
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f(1,-2)=-10,f,=2ty,f,(1,-2) =— 4 f, =2 + 3, £,(1, - 2) = 4 .. = %,
[L=-2)=-4f =2f,Q,-2)=2f =0,f,(1,-2)=0;f,, =0,f, . =(1,
oy, =2 =2,f (1,-2)~0, fiodlls _9)=0
All partial denvatwes of hlghel order vamsh
Substituting these in (i), we get

-2)=0;

1
oy +3y—-2=-10+[(x-1) (-4 +(y +2) 4] + E[(x—l)z(—4)+2(x—1)(y+2)(2)

1 ;
+(y+2200)] + g[(x—1)3(0)+3(x—1)2(y+2)(2)+3(x—1)(y+2)2(0)+(y+2)"(0)]
=—10-4x-D+4 @ +2D-2x-1P2+2x-1D(y+ 2) + (x - 12 (y + 2).

Example 5.34. Expand f (x, y) = tan™! (vhx) in powers of (x - 1) and (y - 1) upto th -degpe terms. Hence
compute f(1.1, 0.9) approximately. (V.T.U, 2010 ; JN.T.U., 2006 ; IFP'PU 2006)
Solution. Herea = 1,b = 1 and f(1, 1) = tan™1 (1) = w/4.
o o T L. - =
ﬂ_m f:‘-(lll)__2l )‘;_x2+y2’ f_:}’(l’-l)iz
9.8
20 ) y =% .
o = m‘. f“(I, 1)= 97 fq (x2+y2)2’ fxy(l’l)_o
- 2xy 1
w> (x + 92 )2 f.;’)'(l’ D=- £) 2
2y° — 62y _ 2% — 6ay? 1
= ey 1, )=-- =—a—5 a0 1,1)=-5
fx‘.\‘,‘t (x.. + y2)3 f‘u‘:k ) =y (x3 +y2)3 fm ) 2
6x%y — 2y° 1 _61:v2—2x3 : 1
,;.V.v" (x* + 52 }-i & fx}ivtl’ = 2° fVW_ ? +}'2)3 d tm’.‘b‘(‘]’ D= 2

Taylor’s expansion of f (x, y) in powers of (x — 1) and (v — 1) is given by
1 1
Fay)=fQ, D+ Hle-DAA, D+ - DA, DI+ 57 [(x—l)zfn_(l, D+ 2x— 1)y —
foL D+ =12/, 15+ —!(x-l)“f 1, 1)+ 3~ 12 (-1 £, (1, 1)
+ 3(x - 1)y —1)9,‘m,(1 1+ (y - 1)3f,(1 1D} +...

h]
tan-! (a = Ei—{{x—l)(— l} +(y—-1 l +—{(x 1)2—+2(x—1)(y ~1X0) + (y - 1)? ——]}
x/ 4 2/ J 1

1 s 1) [_l) F— 12 —Il
+d'{(x 1)[ 2J+3(:\‘ 1) (y-1) + 3(x - 1) (y 1) +(3’ 1)} J‘

=X e D-O- D -1 -1 - %{(x—1)3+3(x—])2(}'~1)

—8x -1 —-12-(y -1 +...

Putting x = 1.1 and y = 0.9, we get

T 1 1 1 " : .

. = — = (0% - ——{(0.1)* = 3(0.1* = 3(0.1 - (= 0.1)3

f(1.1,0.9) 7] 210 Z)+4(U) 12{(0 ) (0.1)* — 3(0.1)° —( )
= (0.7854 — 0.1000 + 0.0003 = 0.6857.

[EETH (1) ERRORS AND APPROXIMATIONS

Let f(x, y) be a continuous function of x and y. 1f 8x and &y be the increments of x and y. then the new value
of flx, y) will be f (x + &x, y + 8y). Hence
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5f=f(x + &t,y + &y)—f(x,y).
Expanding f (x + 8x, ¥ + &y) by Taylor’s theorem and supposing &x, &y to be so small that their products,
squares and higher powers can be neglected, we get

of of :
of = . ox + = Sy, approximately.

Similarly if f be a function of several variables x, y, z, t, ..., then

& = %&x +%6y+%ﬁz+§&+ ... approximately.

These formulae are very useful in correcting the effect of small errors in measured quantities.

(2) Total Differential
If u is a function of two variables x and y, the total differential of u is defined as
du du
du = gdx+§dy A1

The differentials dx and dy are respectively the increments & and 8y in x and y. If x and y are not independent

dx
variables but functions of another variable ¢ even then the formula (1) holds and we write dx = @ dt anddy = i—y dt. Similar

definition can be given for a function of three or more variables.

Solution. Let x be the diameter and y the height of the can. Then its volume V = % 2y
Vv m
8V = E&C Ey-—&y—z(%&«t-xzﬁy)

When x =4 cm.,y =6 cm. and dx =8y = 0.1 cm.

b1
8V = —(2x4x6x0.1+42x0.1)=1.67tcm3

Also its lateral surfaceS = nxy
88 = mly dx + x &y)
Whenx 4cem.,y=6cm. and §x =8y = 0.1 cm., we have 8S = =m(6 x0.1+4x0.1)=mem2

Solution. We have T = 2n/(l/g)

1 1
or logT:log2n+Elogl——logg
1 11 11
T =0t 5785, %
8T 1/8

or 1 % "
T 100 = [,: 100 2 100 |=5(1+25)=1.750r- 0.75

Thus the maximum error in T = 1.75%
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Solution. Let the volume of the balloon (Fig. 5.3) be V, so that
2 2 4
V—W2h+ §W3+ E‘n:r":mzh+ —1'[1'3

4
8V = 2nrérh + mr?dh + _ n3rdr
8V mr{2hdr+ rdh + 4rérl
or Tf_ =

m‘zh—kg—mj
_ 2Ah+2r)0r +réh 2(4+3)(.01)+15(05)
rh+§:r-2 15x4+
_ 0.14 + 0.075 0.215
T 6+3 9

1% 5
Hence, the percentage change in V = 100 i— 2L

(1.5)%

Fig. 5.3

— =2.39%
\' 9

find the approximate error in the cost.

Example 5.38. In estimating the cost of u pile of bricks measured as 2 m x 15 m % 1.2 m, the tape is
stretched 1% beyond the standard length. If the count is 450 bricks to I cu. m. and bricks ms:t T 530 per IOﬂﬂ,

: L wro, 2001)
Solution. Let x, y and z m be the length, breadth and height of the plle so that its vnlume V=xyz
or

logV=Ilogx+logy+logz .. §K:§xfﬁ+.§ %
x y =z
Since V=2x15x1.2=236 m? and L

x y 2z 100
3
oV =36 100 = 1.08 IIIS.

Number of bricks in 8V = 1.08 x 450 = 486

. 530
Thus error in the cost = 486 x

1000 = ¥ 257.58 which is a loss to the brick seller

Example 5.39. The height h and semi-vertical angle v.of a cone are measured. and ﬁ-u;n them A, the total
area of the surface of the cone including the base is caleulated. If h and & are in error by small quqﬁtaﬂs Sh
and o respectively, find the corresponding error in the area. Show ﬁ&rfheﬂtkat tf o= 1% Tl
h will be appmx;maialy compensated by an error of — 0.33 degm?q ino.

or of + 1% in.
/I I ] ' : " )
Solution. If r be the base radius and [ the slant height of the cone, (Fig. 5.4), then tuta] area

s

l a
A = area of base + area of curved surface
=l +mrl =nr(r +1)
= 1h tan o (h tan o + h sec o)
= mh? (tan? o + tan o sec )
&A B8A
A = A - Oh+ — = do
= 2nh(tan® o + tan o sec a)dh

+ mh? (2 tan o sec? o + sec® ¢ + tan o sec o tan o)do.
which gives the error in the area A

Putting 6k = h/100 and o« = /6, we get

Fig. 5.4
12 1 2l 5[ 1 4 '
dA = 2rth [— +—=.—=|—+mh*|2 — s
JEJ V3 J:iJloo [ 3
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2
= 27 | o Brh? b

100
The error in k will be compensated by the error in o, when
8A=0ie, 2k +2J3nh2 80 =0
100
or 8o = — ol radians = — ar x 57.3° = -0.33°.
10043 1.732

Example 5.40. Show that the approximate change in the angle A of a triangle ABC due to small changes
da, 8b, be in the sides a, b, ¢ respectively, is given by i

= E‘{‘_ (8a ~ 8b cos C — 8¢ cos B)
where A is the area of the triangle. Verify that 8A + 8B + 8C = 0. -

Solution. We know that a2 = b2 + ¢2— 2bc cos A

so that 2ada = 2bdb + 2cdc — 2(cdb cos A — bde cos A + be sin A 84)
& besinA8A=ada—(b-ccosA)Sb—(c—b cosA) &¢
or 2A8A =ada - (ccosA+acosC—ccosA)8b—(acosB +bcosA-bcosA)be

[+ b=ccosA+acosC etc. ...(0)]
=ada —a cos C b —a cos B ¢

or 8A=%(&1—8boosc-—ﬁcoosB)
By symmetry, we have
8B= b (8b -8 cos A—da cos C)
2A
8C = % (8¢ — 8a cos B — 8b cos A)
6A + 8B + 8C = 51&— (a—bcosC—-ccosB)bda +(b—ccosA—acosC)db
+(c-acos B - b cos Al

=%[(a—a)5a+(b—b)8b+(c—c)ﬁc]=0 [By ()]

Example 5.41. If the sides of a plane triangle ABC vary in such a way that its circumradius remains

da ~db et = .
com.‘tant,prouethatwsA+mB_+msc =0. .

Solution. The circumradius R of AABC is given by
a b c

R A e Saal
o a=2RsinA [~ R is constant
Taking differentials, da = 2R cosAdA or wds“ - = 2RdA
o db de
imilarl = =
Similarly, oo = 2RdB, T~ = 2RAC

da db de _
msA+cosB+cosC =2R (dA + dB + dC)

Now A+B+C=m,givesdA+dB +dC =0 ..(2)

da db de _ 5
cosA  cosB cosC_U [By ()

Thus
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PROBLEMS 5.9

1. Expand the following functions as far as terms of third degree :

() sin x cos y (V.T.U., 2009) (ii) e* siny at (- 1, n/4) (Anna, 2009)
(iit) xy? + cos xy about (1, W/2). (Hissar, 2005 S ; V.1.U., 2003)
2. Expand f(x, y) = 2" in powers of (x — 1) and (y — 1). (U.T.U., 2009)

3. Iff(x,y) = tan! xy, compute f (0.9, — 1.2) approximately.
4. If the kinetic energy k = wv%2g, find approximately the change in the kinetic energy as w changes from 49 to 49.5

and v changes from 1600 to 1590. (V.I.U., 2006)
6. Find the possible percentage error in computing the resistance r from the formula Ur = 1/r, + Ur,, if ry, r, are both
in error by 2%. \

6. The voltage V across a resistor is measured with an error i, and the resistance R is measured with an emrkShow
that the error in calculating the power W(V, R) = V¥R generated in the resistor, is VR 2 (2Rh — VE).

(V.T.U., 2009)
7. Find the percentage error in the area of an ellipse if one per cent error is made in measuring the major and minor
axes. (V.T.U., 2011)

8. The time of oscillation of a simple pendulum is given by the equation T = 2n.[(Z/g) . In an experiment carried out to
find the value of g, errors of 1.5% and 0.5% are possible in the values of/ and T respectively. Show that the error in

the calculated value of g is 0.5%. 3 (Cochin, 2005)
9, If pv? =k and the relative errors in p and v are respectively 0.05 and 0.025, show that the error in & is 10%.
(Mysore, 1999)

10. Ifthe H.P. required to propel a steamer varies as the cube of the velocity and square of the length. Prove that a 3%
increase in velocity and 4% increase in length will require an increase of about 17% in H.P.

11. The range R of a projectile which starts with a velocity v at an elevation @ is given by R = (v2 sin 2¢)/g. Find the

percentage error in R due to an error of 1% in v and an error of %-% in o. (Kurukshetra, 2009)

12. In estimating the cost of a pile of bricks measured as 6 m x 50 m x 4 m, the tape is stretched 1% beyond the standard

length. If the count is 12 bricks in 1 m® and bricks cost ¥ 100 per 1000, find the approximate error in the cost.
(U.T.U., 2010 ; U.P.T.U., 2005)

13. The deflection at the centre of a rod of length / and diameter d supported at its ends, loaded at the centre with a
weight w varies at wi®d-*. What is the increase in the deflection corresponding to p% increase in w, g% decrease in
[ and r% increase in d ?

14. The work that must be done to propel a ship of displacement D for a distance s in time ¢ is proportional to (s2D?%/t?).
Find approximately the increase of work necessary when the displacement is increased by 1%, the time is
diminished by 1% and the distance diminished by 2%.

15. The indicated horse power / of an engine is calculated from the formula [ = PLAN/33,000, where A = nd%/4.
Assuming that error of r per cent may have been made in measuring P, L, N and d, find the greatest possible error
in .

16. The torsional rigidity of a length of wire is obtained from the formula N = 8n I1/¢?r*. If | is decreased by 2%, r is
increased by 2%, t is increased by 1.5%, show thatl the value of NV is diminished by 13% approximately.

(V.T.U., 2003)

3 %3 dy + g =0.
Ja-2% Ja-»» Ja-2)
[Hint. 2(x —yz) dx + 2(y —zx) dy + 2(z —xy) dz = 0. Also (x —y2)?2 = (1 —y?) (1 - 2?), ...]

17. 1fx? + 3% + 22 — 2xyz = 1, show that

(1) MAXIMA AND MINIMA OF FUNCTIONS OF TWO VARIABLES

Def. A function f (x, y) is said to have ¢ maximum or minimum at x = a, y = b, according as
fla+h,b+k)<or>fla,b),
for all positive or negative small values of h and k.
In other words, if A = f(a + h, b + k) —f(a, b), is of the sume sign for all small values of h, k, and if this sign
is negative, then f(a, b) is @ maximum. If this sign is positive, f (a, b) is @ minimum.
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Considering z = f(x, ¥) as a surface, maximum value of z occurs at the top of an elevation (e.g., a dome) from which the
surface descends in every direction and a minimum value occurs at the bottom of a depression (e.g., a bowl) from which the
surface ascends in every direction. Sometimes the maximum or minimum value may form a ridge such that the surface
descends or ascends in all directions except that of the ridge. Besides these, we have such a point of the surface, where the
tangent plane is horizontal and the surface looks like leather seat on the horse’s back [Fig. 5.5 (¢)] which falls for
displacement in certain directions and rises for displacements in other directions. Such a point is called a saddle point.

Maxifmum ﬁ
\ e Mixfh\num

(@) ) (c)
Fig. 5.5

Note. A maximum or minimum value of a function is called its extreme value.
(2) Conditions for f(x, y) to be maximum or minimum
Using Taylor’s theorem page 235, we have A= f(a + h,b + k) - f(a, b)
W o 20°f Pf  ,29°f .
[ +h=— aylhb {h 2 + 2hk—— axay +k ) ..(0)
For small values of A amd k, the second and higher order terms are still smaller and hence may be
neglected. Thus
sign of A = sign of [hf,(a, b) + kf(a, b).
Taking i = 0 we see that the right hand side changes sign when k changes sign. Hence f (x, ¥) cannot have
a maximum or a minimum at (a, b) unless fy(a, b)=0
Similarly taking & = 0, we find that f(x, y) cannot have a maximum or minimum at (e, b) unless f,(a, b) = 0.
Hence the necessary conditions for f (x, y) to have ¢ maximum or minimum at (a, b) are that
f(a, b)=0,f(a,b)=0.
If these conditions are satisfied, then for small value of A and £, () gives

sign of A = sign of [%T(hzr + 2hks + kzt):l wherer =f (a,b),s= fﬂ(a, b)and t = f,la, b).
Now  h2r+ 2hks + k2t = —}[(hzrﬂ + 2hkrs + kzm] - —}[(hr + ks) + 22 (rt — 321]

Thus sign of A = sign of 5-{(ir + ks)” + Kt - 57} i)

In (ii), (hr + ks)? is always positive and k%(rt — s®) will be positive if £ — s > 0. In this case, A will have the
same sign as that of r for all values of i and k.

Hence if rt — s2 > 0, then f(x, y) has ¢ maximum or a minimum at (a, b) according as r < or > 0.

If rt — s? < 0, then A will change with & and k& and hence there is no maximum or minimum at (a, d) i.e., it
is a saddle point.

If rt — s2 = 0, further investigation is required to find whether there is a maximum or minimum at (a, b) or
not.

Note. Stationary value. f(a, b) is said to be a stationary value of f (x, y), if f (a, ) =0 andf(ﬂ b)=01i.e. the function
is stationary at (a, b).

Thus every extreme value is a stationary value but the converse may not be true.
(3) Working rule to find the maximum and minimum values of f(x, y)
1. Find dfldx and dffdy and equate each to zero. Solve these us simultaneous equations in x and y. Let (a, b),
(¢, d), ... be the pairs of values.
2. Calculate the value of r = 0%f/ 02, s = 9*f/0xdy, t = 0%/ dy? for each pair of values.
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3. WIfrt-s:>0andr<0at(a,b),f(a,b)isa max. value.
@) Ifrt —s*>>0and r > 0at (a, b), f (a, b) is a min. value.
(tii) If rt — 5% < 0 at (a, b), f (a, b) is not an extreme value, i.e., (a, b) is a saddle point.
(iv) If rt — s% = 0 at (a, b), the case is doubiful and needs further investigation.
Similarly examine the other pairs of values one by one.

Example 5.42. Examine the following function for extreme values :

fix, y) = x* + y* = 2x2 + 4y — 292, (J.N.T.U., 2003)
Solution. Wehave f =4x%—4x+4y ;_f;,=4y3 +4x -4y
and r:fﬂ:12x2—4,s=fﬂ:4,t=fﬂ=12y2—4 1)
Now f,=0, f; =0givex®—x+y=0, ..(0) 3 +x—-y=0 (73]

Adding these, we get 4(x* +4%) =0 or y=-x.
Putting y = — x in (i), we obtain x® — 2x = 0, i.e. x = /2, - 2, 0.
Corresponding values of y are — /2 , J2 . 0.
At (2,-2),rt —s% =20 x 20 — 4% = + ve and r is also + ve. Hencef(\fé, ~/2) is a minimum value.
At (- J2,+/2) also both rt —s? and r are + ve.

Hence f (- J2,/2), is also a minimum value.

At (0, 0), rt —s? = 0 and, therefore, further investigation is needed.

Now (0, 0) = 0 and for points along the x-axis, where y = 0, f(x, ) = x* — 2x% = x%(x? — 2), which is negative for points
in the neighbourhood of the origin.

Again for points along the line y = x, f (x, ¥) = 2x* which is positive.

Thus in the neighbourhood of (0, 0) there are points where f (x, ¥) < f(0, 0) and there are points where f(x, ) > f(0, 0).

Hence (0, 0) is not an extreme value i.e., it is a saddle point.

Example 5.43. Discuss the maxima and minima of flx, y) = ¥*y*(1 =x - y).
(Anna, 2009 ; J.N.T.U., 2006 ; Bhopal, 2002)

Solution. We have [, = 3x%? — 4xdy? — 3u%y ; f, = 2y — 2xty — Bxy?

and r=fxx=6xy2—12x22—6xy3;s=fw=6x2y—8x3y—9x2y2;t=fw=2x3—2x4—ﬁx3y.

When f.=0,f,=0,we have x%y%(3 — 4x — 3y) = 0, x%(2 - 2x - 3y) = 0
Solving these, the stationary points are (1/2, 1/3), (0, 0).
Now rt—s?2=x%?[12(1-2x—y) (1 —x — 3y) — (6 — 8x — 9y)?]

1 1 1 1 2 1

D T ., it | = —

A2 1), rt-st= L 9[12(1 1 3)(1 : 1] 6—4 3)] L >0

11 21 1 1) 1
AISO ."—6("2"5*1 § 5'2?)— 9 <0

‘ . ; 11/ 1 1) 1
Hencef(x,y)hasamaxlmumat(lm,lla)andmaxmumvalue_8 9(1 2 3)_432.

At (0, 0), rt — s = 0 and therefore further investigation is needed.

For points along the line y = x, f (x, y) = 2%(1 — 2x) which is positive for x = 0.1 and negative forx=—-0.1i.e.,
in the neighbourhood of (0, 0) there are points where f (x, y) > f (0, 0) and there are points where f (x, y) <f (0, 0).
Hence £ (0, 0) is not an extreme value.

Example 5.44. In a plane triangle, find the maximum value of cos A cos B cos C. _
(V.T.U., 2010 ; Nugpur, 2009 ; Anna, 2005 S)

Solution. We have A+B+C=nsothatC=n—-(A + B).
cos A cos B cos C = cos A cos B cos [n— (A + B)]
= —cos A cos B cos (A + B) = f (A, B), say.
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We get % =cos B [sin A cos (A + B) + cos A sin (A + B)]
= cos B sin (2A + B)
L
and B =cos A sin (A + 2B)
o o
A =0, B 0 only when A = B = /3.
Also r—a—f—2cosBcos(2A+B),t—a—f—2c05ncos(n+2B}
0A® oB*
_Pf _
S_HABB = cos (2A + 2B)

WhenA=B=w3,r=—1,5s=—-1/2,t =—1so that rt — s = 3/4.

These show that f (A, B) is maximum for A = B = /3.

ThenC=n—-(A+B)=

Hence cos A cos B cos C is maximum when each of the angles is 7/3 i.e., triangle is equilateral and its
maximum value = 1/8.

LAGRANGE’S METHOD OF UNDERTERMINED MULTIPLIERS

Sometimes it is required to find the stationary values of a function of several variables which are not all
independent but are connected by some given relations. Ordinarily, we try to convert the given function to the
one, having least number of independent variables with the help of given relations. Then solve it by the above
method. When such a procedure becomes impracticable, Lagrange’s method* proves very convenient. Now we
explain this method.

Let u=f(xv,2) ..(1)
be a function of three variables x, y, z which are connected by the relation.
olx,y,2)=0 ...(2)

For u to have stationary values, it is necessary that
Julox = 0, duldy = 0, du/dz = 0.

du u Ju _
dx+ > dy +— = dz =du = -(3)
. 5 o LeLo) o0 0 5 _ g0 _
Also differentiating (2), we get % dx + F dy +~—az dz =d$p=0 ...(4)

Multiply (4) by a parameter A and add to (3). Then

+xa¢]dx+[ +’ha¢]d +[—+'ha¢)dz 0
[a » "y)?
; o ; 90 9 _ 9% _
This equation will be satisfied 1f Y ?L = 0 £ .4 ?Lay 0, . iy laz 0.
These three equations together w:th (2) wxl] determine the values of x, y, z and A for which u is stationary.
Working rule : 1. Write F =f (x, v, 2) + A(x, y, 2)
- ons & _o & _ o OF _
2. Obtain the equations = =0, 5 0, e = 0.
3. Solve the above equations together with é (x,y,z) = 0.

The values of x, y, z so obtained will give the stationary value of f(x, y, z).

Obs. Although the Lagrange's method is often very useful in application yet the drawback is that we cannot
determine the nature of the stationary point. This can sometimes, be determined from physical considerations of the

problem.

#*See footnote page 142.
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the box requiring least material for its construction. (Kurukshetra, 2006 ; P.T.

and

Example 5.45. A rectangular box open at the top is to have uo!ume of 32 cubic fi. Find the dﬁnﬂﬂ&gﬂs o}"
U., 2006 ; U.P.T.U., 2005)

Solution. Let x, y and z ft. be the edges of the box and S be its surface.

Then S =xy+ 2z + 22x )
xyz =32 ...(21)

Eliminating z from (i) with the help of (i), we get S = xy + 2(y + x)E =xy + 64[1 ;}

0S/0x =y —64/x2=0 and 09S/dy =x—-64/y%=0.

Solvmg these, we get x =y = 4.

Now r = 0%8/0x% = 128/x3, s = 0%28/0xdy = 1, t = d%S/dy? = 12842

At x=y=4,rt—s2=2x2—-1=+veand r is also + ve.

Hence § is minimum for x = y = 4. Then from (ii), z = 2.

Otherwise (by Lagrange’s method) :

Write F=2xy+ 2yz + 2zx + Mxyz — 32)

Then %—F =y 420 4y = (i)
%yF— =x+2z+kzx=0 ...(iv)
L =2y +2+day=0 (V)

Multiplying (iii) by x and (iv) by y and subtracting, we get 22x —2zy =0 or x=}y.

[The value z = 0 is neglected, as it will not satisfy (ii)]

Again multiplying (iv) by y and (v) by z and subtracting, we get y = 2z.

Hence the dimensions of the box arex =y =22 = 4 ..(vi)
Now let us see what happens as 2z increases from a small value to a large one. When z is small, the box is

flat with a large base showing that S is large. As z increases, the base of the box decreases rapidly and S also
decreases. After a certain stage, S again starts increasing as z increases. Thus S must be a minimum at some
intermediate stage which is given by (vi). Hence S is minimum whenx =y =4 ft and z = 2 ft.

Example 5.46. Given x + y + z = a, find the maximum valve of x™y"z". ' .‘ ~ (Anna, 2009)

Solution. Let  f(x,y, z) =x™y"2" and ¢(x,y,2) =x +y +z —a.
Then Flx,y,2)=f(x,y,2) + L §(x, 5, 2)
=x™"2P + Mx+y+2z—a).
For stationary values of F, %% =0, % 0, % =0
mx™ly"2P + A =0, nx™ y" 2P + A= 0, px"y"2P 1+ A=0

or — A = mx"lynzl = pxm yn-1 zP = pymynzr-l
L ﬂ:£:£:m+n+p=m+n+p [ x+y+z=a
X ¥y z x+y+z a
The maximum value of f occurs when
x=amfm+n+pl,y=anfim+n+p),z=ap/im+n+p)
min+p om n_p
Hence the maximum value of flx, y, 2) = < L T - p
(m+n+pmt"te
Example 5.47. Find the maximum and minimum distances of the point (3, 4, 12) from thesphwxs +y%
+22=4 (U.T.U, 2010)

Solution. Let P(x, y, z) be any point on the sphere and A(3, 4, 12) the given point so that
AP’ = (x - 32 + (y — 42 + (2 — 12)2 = f (x, y, 2), say (1)
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We have to find the maximum and minimum values of f (x, y, ) subject to the condition

O, y,2) =22 +y2+22-4=0 ..(if)
Let Flx,y,2)=f(x,y,2) + M(x, ¥, 2)
=(x-83P+(y-4P2+(2z-122+ Mx2 +y2 + 22 - 4)
OF _ o _ aF o6 OF o0 9
Then G = 26D+ S0 =20 -4+ 2y, G =2 12+ 2
F . oF _ oF
E—U,ay—oand % =0 give
x-3+A=0,y-4+My=0,2-12+2z=0 I (777)]
which give e B8 Fod Eln
x ¥ z

_ Ma-37+ (-0 4127 F
R U1

\f(xz +y2 +2%)
Substituting for A in (ii7), we get

il L L B, 08
1+A 1+ Jf"7 1xJf" 1xf
9+16+144 169

LR e -
X“+y +z (liJF)z (li\[}F)z
: i 169
Using (iz), l=———— or 1z ==+13, =12, 14.
i T2 Jf Jf

[We have left out the negative values of \/t_“ , because Jf =APis + ve by (2)]
Hence maximum AP = 14 and minimum AP = 12.

Example 5.48. Show that the rectangular solid of maximum volume that can be inscribed in a sphere is

a eube. ; (Kurukshetra, 2006 ; U.P.T.U., 2004)
Solution, Let 2x , 2y, 2= be the length, breadth and height of the rectangular solid so that its volume
V = 8xyz (D)

Let R be the radius of the sphere so that x? + y2 + 22 = R? ..(i0)
Then F(x, v, 2) = 8xyz + Ma? + y% + 22 - R?)

and OF/0x=0,0F/dy=0and dF/dz=0 give

8yz + 2xA=0,82x + 2yA =0, 8xy + 22A =0
or 242\ = — 8xyz = 2y%A = 227\

Thus for a maximum volume x =y =z.
i.e., the rectangular solid is a cube.

Example 5.49. A tent on a square base of side x, hus its sides vertical of height y and the top is a regular
pyramid of height h. Find x and y in terms of h, if the canvas required for its construction is to be minimum for
the tent to have a given capacity.

L

Solution. Let V be the volume enclosed by the tent and S be its surface area (Fig. 5.6).
Then V= cuboid (ABCD, A’B’C'D’) + pyramid (K, A’B'C'D’)

=x%y + %xzh =x2(y + h/3)
S = 4(ABGF) + 4A KGH = 4xy + 4-%(:c-[ﬁl4’)

= duy + xJ(x? + 4h%) [o KM = J(KL® + LM?) = Jh® + (x/2)°]
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For constant V, we have K
2 A
8V=2x(y+h/3)&x+x2(5y)+%8h=0 £\
fon-LE NS K
For minimum S, we have £ ED E-- /2y 4
8S = [y + J(a® + 4h%) + x -%(;;2 + 4RV ox) & Al 2
+4xBy + x- L2 + 4R2)y V2 . 88k =0 4
2 ROy ==slc
By Lagrange’s method, o 5
[y + o + 487) + 22 (6 + 4R2V V2 4 A - 2x(y + B/3) =0 (D) A B
dx+X-22=0 D) Fig. 5.6
4hx(x? + 4Ry V2 4 ) -x2/3 =0 (1))

(ii) gives A = — 4/x. Then (iif) becomes
4hx(x® + 4h% V2 _4x/3=0 or x=+5h
Now putting x = J5 h, A =—4/x in (i), we get

4y+3h+§h—%-2x(y+h13)=0 or 4y+%h—8y—% =0, ie, y=hi2

Example 5.50. If u = a®® + b%2 + ¢®2? where x™ + y! + 2! = 1, show that the stationary value of u is given

byx=2Xala,y=ZXalb, z=2alec. A : (Kerala, 2005)
Solution. Let u=Ff(x7y, 2)=a%2 + b3y2 + 322
and oo, y,2)=x1+y l4z71-1
Let Flx,y,2) =f(x,y,2z) + L o(x, 5, 2)

=a%? + %2+ 22+ M ey 2l 1)

Then =0, ~0 and 2 =0give

% ey %
2032 -Mx2=0, 263y -Ap%=0, 2%2-N2%2=0
or 2033 = A, 2633 = A, 26328 = A

which give ax =by =cz =k (say) i.e., x = kla,y = kb, z = kic.
Substituting these inx? +y1+2z1=1, wegetk=a+b +¢c
Hence the stationary value of u is given by
x=Xala, y=3%a/b and :z=TZalc.

Example 5.51. Find the volume of the greatest rectangular parallelopiped that can be inscribed in the
ellipsoid

—;iz— + ﬁz— 7 (U.T.U., 2010 ; Anna, 2009 ; Madras, 2006)

Solution. Let the edges of the parallelopiped be 2x, 2y and 2z which are parallel to the axes. Then its
volume V = 8xyz.

Now we have to find the maximum value of V subject to the condition that

2 .2 2
x° Yy =z .
—+5+5-1=0 =(2)
a2 b ¢
2 2 2
Write F=8xyz+l[£2—+-y——+%—1J
a® b ¢

Then = =8yz+ A [*2—) =0 ..(ii)
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oF _ 2y _ oF _ 2z) _ :
5 8zx + A [b—z) =0 ...(3i1) = 8xy + l(f} =0 ..(iv)

Equating the values of A from (i) and (iii), we get x%/a? = y%/b?

Similarly from (iii) and (iv), we obtain y%/b% = 2%/c? . x%a? = y?/b? = 2%/c?

- o gl £ ¥ 2 1
Substituting these in (i), we get x%/a? = 3 Le T i3
These givex = a3,y = b3,z = 3 ..(v)

When x = 0, the parallelopiped is just a rectangular sheet and as such its volume V = 0.
As x increases, V also increases continuously.
Thus V must be greatest at the stage given by (v).

8abc
Hence the greatest volume = .
33

PROBLEMS 5.10

1. Find the maximum and minimum values of
(i) 2® + y* — 3axy : (UP.T.U, 2005) (ii) xy + a®x + a%/y.
(ii0) 23 + 3xy% — 1522 — 1592 + 72x  (Mumbai, 2007) (iv) 2x? —y2) —x* + y* (Osmania, 2003)
(v) sin x sin y sin (x + y).
2. Ifxyz = 8, find the values of x, y for which u = 5xyz/(x + 2y + 42) is a maximum.
(S.V.T.U., 2007 ; Kurukshetra, 2005)
8. Find the minimum value of x* + 2 + 22, given that
@D ayz=a® (P.1.U., 2009 ; Osmania, 2003) (ii) ax + by +ez=p. (V.T.U., 2010 ; U.P.T.U., 2006)
(iii) xy + yz + zx = 3a2 (Anna, 2009)
4. Find the dimensions of the rectangular box, open at the top, of maximum capacity whose surface is 432 sq. cm.
(Madras, 2000 S)
The sum of three numbers is constant. Prove that their product is maximum when they are equal.
Find the points on the surface 22 = xy + 1 nearest to the origin. (Burdwan, 2003 ; Andhra, 2000)
Show that, if the perimeter of a triangle is constant, the triangle has maximum area when it is equilateral.
Find the maximum and minimum distances from the origin to the curve 522 + 6xy + 52— 8 = 0.
The temperature T at any point (x, y, z) in space is T = 400 xyz2. Find the highest temperature on the surface of the
unit sphere x% + y2 + 22 = 1. (V.T.U., 2009 ; Hissar, 2005 S)
10. Divide 24 into three parts such that the continued product of the first, square of the second and the cube of the third
may be maximum. (Bhillai, 2005)
11. Find the stationary values of 1 = x2 + y2 + 22 subject toax® + by% + ¢z®= land Ix + my + nz=0. (S.V.T.U., 2008)

< i A

DIFFERENTIATION UNDER THE INTEGRAL SIGN

If a function f (x, o) of two variables x and o (called a parameter), be integrated with respect to x between

b
the limits ¢ and b, then j f (x, &) dx is a function of o : F(«), say. To find the derivative of F(o), when it exists,

it is not always possible to first evaluate this integral and then to find the derivative. Such problems are solved
by the following rules :
(1) Leibnitz’s rule*

If f(x, o) and w be continuous functions of x and «, then

b b
‘;l—a [ L f(x, o) dx] = L af(ax(; ) dx where, a, b are constants independent of o.

*See foot note on p- 139.
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b
Let [ flxmdx =Flo),

b b b
then Fla+80)-F@) = [ flxa+8dx- j flx, )dx = j' [f(x, o+ 80) — f(x, )ldx

- 50 J‘b of (x, o + 08c)

{ flx, 0.+ h) - f(x, @) = hf (x, 0. + 6R)
o

where 0 < 0 <1, by Mean Value Theorem

F(o+ 8a) — F(o) j‘b f (x, 0 +8-0)
= dx
a Jo.

dx, (0<08<1)

Proceeding to limits as 8o, — 0,
ceeding its as o — ﬁuL_tm 5o

b of (x, o)

T = e~ dx which is the desired result.

or

o
Solution. Let F(o) = ..ll : il 8 (D)

log x

3 [2* 1 x% log X

fen J- Bn: L long I logx
1 & a+1 |1 d
= dx = x_ ot L [... a t = t . ]
on u+10 1+ dt(n) i login

Now integrating both sides w.r.t. o, F(o) = log (1 + o) + ¢ (7]

From (i), when o. = 0, F(0) = 0
From (i), F(0) = log (1) + ¢, i.e., ¢ = 0. Hence (ii) gives, F(a) = log (1 + o).

-(2)

Solution. We have J': dx

a+beosx J(,,_B — b2)
Differentiating both sides of () w.r.t. @,

~af 1 ] a T
..-o 2 \GihaE dx:b;{ (az_bz)}

l.e. J"‘ i = ﬂ‘["‘%) (az_bﬁ)-m,m

0 (a+bcos x)?

0 (a+bcos x)° T @ -"
Now differentiating both sides of (i) w.r.t. b,

o i

_[: —(a+bcosx)? cosxdx= n[—%)(az—bgl'm -(—2b)
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0 (a+bcos x)? :(az_bz).w‘

(2) Leibnitz’s rule for variable limits of integration
If fix, o), T2 D
Jdo

d
do

provided §(o) and (o) possesses continuous first order derivatives w.r.t. o.
Its proof is beyond the scope of this book.

j‘“ Cos x b

be continuous functions of x and o., then

{o) (@)
J”" f(x, a)dx} g Iw M) o+ Y friiiony of - 2 F1ot0), o
() o) ol do da

Example 5.54. Evaluate Iu Yeg (14X 4y and henae shoti that
(1]

I+x°
1 log (1+x) b1d ' .
L 1442 dx:Equez (Hissar, 2005 S)
a 1
Solution. Let Fo) = | log A ) i )
0 1+x
2
e by i above e, 7 ) = j.uiflog(1+ax)\dx+d(a)_]og(1+a )_0
0 do\ 1+x2 do  1+a?
_ r‘ x log (1 + o) ..
= 5 ...(11)
0 (1+ o)1+ x?) 1+a
Breaking the integrand into partial fractions,
o x dx o o dx 1 o  2x o o dx
.[ Z 2.[ 1 * 2 .[ g+ 2,[ 3
0 (1+o0x)1+x%) l+o” 70 1+ox 2(1+0°) 70 1+x 1+0° 70 1+x
1 o 1 2y |« o =1 ks
=— log(l+ox) [ + ————x|log(1+x°)| +——|tan™ x
+a2[ . o 21 + o?) |°g |0 1+a2| |0
_ log(1+0®) P log(1 + o?) ,atan” o
1+a® 2(1 + a?) 1+0?
log(1 + o tan™!
Substituting this value in (@), F" (o) = 260+ %), atan”_ o
21+ o) 1+
Now integrating both sides w.r.t. o,
-1
F(oc)=ljlog(1+a2)- L sda + ﬂaﬂ—zada [Integrating by parts]
2 1+o l+a
1 2 -1 2o a1 otan™ o
==|log(l+0®)-tan™ o - ‘tan™ ado |+ | ————do+¢
2[ & Il+0:2 :| 1+0?
= %log(1+c¢2)-tal:|‘l oa+c N (713

But from (i), when o = 0, F{0) = 0.
From (iit), F(0) =0 + ¢, i.e., ¢ = 0. Hence (iii) gives, F(o) = % log(1+ o?)tan! o

log(1 + x)

1
Putting 0. = 1, we get Iﬂ ST
+

dx = F(1) = g—loge 2.
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