5.(a) z = y f(x) + x g(y) से स्वैच्छिक फलनों f(x) व g(y) का विलोपन कर आंशिक अवकल समीकरण बनाइए तथा इसकी प्रकृति (दीर्घवृत्तीय, अतिपरवलीय या परवलीय) x>0, y>0 क्षेत्र

Form a partial differential equation by eliminating the arbitrary functions f(x) and g(y) from z = y f(x) + x g(y) and specify its nature (elliptic, hyperbolic or parabolic) in the region x>0, y>0.

5.(d) आंशिक अवकल समीकरण:

$$(D^3 - 2D^2D' - DD'^2 + 2D'^3)z = e^{2x+y} + \sin(x-2y);$$

$$D \equiv \frac{\partial}{\partial x}, \quad D' \equiv \frac{\partial}{\partial y}$$

को हल कीजिए।

Solve the partial differential equation:

$$(D^3 - 2D^2D' - DD'^2 + 2D'^3)z = e^{2x+y} + \sin(x-2y);$$

$$D \equiv \frac{\partial}{\partial x}, \quad D' \equiv \frac{\partial}{\partial y}$$

URC-B-MTH

10

5

/6-(a) आंशिक अवकल समीकरण:

$$(x-y)y^{2}\frac{\partial z}{\partial x} + (y-x)x^{2}\frac{\partial z}{\partial y} = (x^{2} + y^{2})z$$

के बक्र : $xz = a^3$, y = 0 को अपने ऊपर समाहित करने वाले समाकल पृष्ठ को ज्ञात कीजिए।

Find the integral surface of the partial differential equation:

G-20 Maths

$$(x-y)y^{2}\frac{\partial z}{\partial x} + (y-x)x^{2}\frac{\partial z}{\partial y} = (x^{2}+y^{2})z$$

that contains the curve : $xz = a^3$, y = 0 on it.

20

, a is a constant.

7.(a)

आंशिक अवकल समीकरण :
$$z = \frac{1}{2}(p^2 + q^2) + (p - x)(q - y); \quad p \equiv \frac{\partial z}{\partial x}, \quad q \equiv \frac{\partial z}{\partial y}$$

का हल ज्ञात कीजिये जो कि x-अक्ष से गुजरता हो।

Find the solution of the partial differential equation:

$$z = \frac{1}{2}(p^2 + q^2) + (p - x)(q - y); \quad p \equiv \frac{\partial z}{\partial x}, \quad q \equiv \frac{\partial z}{\partial y}$$

which passes through the x-axis.

5.(a) निम्नलिखित व्यंजक :

$$\psi(x^2 + y^2 + 2z^2, y^2 - 2zx) = 0$$

के द्वारा दिए गए पुष्ठ कुल का एक आंशिक अवकल समीकरण बनायें।

Form a partial differential equation of the family of surfaces given by the following expression:

$$\psi(x^2+y^2+2z^2, y^2-2zx)=0.$$

10

6.(a) प्रथम कोटि रैखिककल्प आंशिक अवकल समीकरण

$$x\frac{\partial u}{\partial x} + (u - x - y)\frac{\partial u}{\partial y} = x + 2y$$
 में $x > 0, -\infty < y < \infty$ को $u = 1 + y$ के साथ $x = 1$ पर

अभिलाक्षणिक विधि के द्वारा हल करें।

Solve the first order quasilinear partial differential equation by the method of characteristics:

$$x\frac{\partial u}{\partial x} + (u - x - y)\frac{\partial u}{\partial y} = x + 2y \text{ in } x > 0, -\infty < y < \infty \text{ with } u = 1 + y \text{ on } x = 1.$$

7.(c) निम्नलिखित द्वितीय कोटि के आंशिक अवकुलन समीकरण को विहित रूप में समानीत करें और सामान्य हल ज्ञात करें:

$$\frac{\partial^2 u}{\partial x^2} - 2x \frac{\partial^2 u}{\partial x \partial y} + x^2 \frac{\partial^2 u}{\partial y^2} = \frac{\partial u}{\partial y} + 12x$$

Reduce the following second order partial differential equation to canonical form and find the general solution:

$$\frac{\partial^2 u}{\partial x^2} - 2x \frac{\partial^2 u}{\partial x \partial y} + x^2 \frac{\partial^2 u}{\partial y^2} = \frac{\partial u}{\partial y} + 12x.$$

20

2018

5.(a) दीर्घवृत्तज : $x^2 + 4y^2 + 4z^2 = 4$ के उन सभी स्पर्श-तलों के संकाय का आंशिक अवकल समीकरण ज्ञात कीजिए, जो xy समतल के लम्बवत नहीं हैं ।

Find the partial differential equation of the family of all tangent planes to the ellipsoid: $x^2 + 4y^2 + 4z^2 = 4$, which are not perpendicular to the xy plane.

6.(a) / अi

आंशिक अवकल समीकरण:

जहाँ $p=\frac{\partial z}{\partial x},\ q=\frac{\partial z}{\partial y}$ है, का व्यापक हल ज्ञात कीजिए, तथा इसके, वक्र: $x=t,\ y=t^2,\ z=1$

में से गुजरने वाले समाकल पृष्ठ को भी ज्ञात कीजिए।

Find the general solution of the partial differential equation:

$$(y^3x - 2x^4)p + (2y^4 - x^3y)q = 9z(x^3 - y^3),$$

where $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$, and find its integral surface that passes through the curve:

$$x = t, y = t^2, z = 1.$$
 15

7.(a) आंशिक अवकल समीकरण:

$$(2D^2 - 5DD' + 2D'^2)z = 5\sin(2x + y) + 24(y - x) + e^{3x+4y}$$
 को हल कीजिए

जहाँ
$$D \equiv \frac{\partial}{\partial x}$$
 , $D' \equiv \frac{\partial}{\partial y}$.

Solve the partial differential equation:

$$(2D^2 - 5DD' + 2D'^2)z = 5\sin(2x + y) + 24(y - x) + e^{3x+4y}$$

where
$$D = \frac{\partial}{\partial x}$$
, $D' = \frac{\partial}{\partial y}$.

2017

Q5. (a) (D

$$(D^2 - 2DD' + D'^2)$$
 $z = e^{x + 2y} + x^3 + \sin 2x$ को हल कीजिए जहाँ

$$D\equiv\frac{\partial}{\partial x}\,,\ D'\equiv\frac{\partial}{\partial y}\,,\ D^2\equiv\frac{\partial^2}{\partial x^2}\,,\ D'^2\equiv\frac{\partial^2}{\partial y^2}\,\, \overline{\xi}\,\,|$$

Solve $(D^2 - 2DD' + D'^2)$ z = $e^{x + 2y} + x^3 + \sin 2x$,

where

$$\mathbf{D} \equiv \frac{\partial}{\partial \mathbf{x}} \,, \ \mathbf{D'} \equiv \frac{\partial}{\partial \mathbf{y}} \,, \ \mathbf{D}^2 \equiv \frac{\partial^2}{\partial \mathbf{x}^2} \,, \ \mathbf{D'}^2 \equiv \frac{\partial^2}{\partial \mathbf{y}^2} \,.$$

Q6.

(a) आंशिक अवकल समीकरण

$$2 (pq + yp + qx) + x^2 + y^2 = 0$$

का पूर्ण समाकल ज्ञात कीजिए।

Find a complete integral of the partial differential equation

$$2 (pq + yp + qx) + x^2 + y^2 = 0.$$

15

7. (a) समीकरण

$$y^2 \; \frac{\partial^2 z}{\partial x^2} - 2xy \; \frac{\partial^2 z}{\partial x \; \partial y} + x^2 \; \frac{\partial^2 z}{\partial y^2} \; = \; \frac{y^2}{x} \; \frac{\partial z}{\partial x} + \frac{x^2}{y} \; \frac{\partial z}{\partial y}$$

को विहित रूप में समानीत कीजिए और अतएव इसका हल ज्ञात कीजिए। Reduce the equation

$$y^2 \; \frac{\partial^2 z}{\partial x^2} - 2xy \; \frac{\partial^2 z}{\partial x \; \partial y} + x^2 \; \frac{\partial^2 z}{\partial y^2} \; = \; \frac{y^2}{x} \; \frac{\partial z}{\partial x} + \frac{x^2}{y} \; \frac{\partial z}{\partial y}$$

to canonical form and hence solve it.

Q5. सभी प्रश्नों के उत्तर दीजिए:

Answer all the questions:

 $10 \times 5 = 50$

(a) $x^2 + y^2 + z^2 = cz$ द्वारा दिए गए गोलों के कुल के लम्बकोणीय पृष्ठों का व्यापक समीकरण जात कीजिए।

Find the general equation of surfaces orthogonal to the family of spheres given by $x^2 + y^2 + z^2 = cz$.

10

(e) आंशिक अवकल समीकरण

$$(y + zx) p - (x + yz) q = x^2 - y^2$$

का व्यापक समाकल ज्ञात कीजिए।

Find the general integral of the partial differential equation

$$(y + zx) p - (x + yz) q = x^2 - y^2.$$

10

Q7. (a) आंशिक अवकल समीकरण

$$\frac{\partial^3 z}{\partial x^3} - 2 \frac{\partial^3 z}{\partial x^2 \partial y} - \frac{\partial^3 z}{\partial x \partial y^2} + 2 \frac{\partial^3 z}{\partial y^3} = e^{x+y}$$

को हल कीजिए।

Solve the partial differential equation

$$\frac{\partial^3 z}{\partial x^3} - 2 \frac{\partial^3 z}{\partial x^2 \partial y} - \frac{\partial^3 z}{\partial x \partial y^2} + 2 \frac{\partial^3 z}{\partial y^3} = e^{x+y}$$
 15

Q8. (a) लम्बाई $10~{\rm cm}$ तथा अचर अनुप्रस्थ-परिच्छेद का क्षेत्रफल $1~{\rm cm}^2$ की चाँदी की एक छड़ में तापमान ${\rm u}({\rm x},{\rm t})$ ज्ञात कीजिए । गान लीजिए घनत्व $\rho=10~{\rm G}~{\rm g/cm}^3$, ऊष्मा चालकता ${\rm K}=1\cdot04~{\rm cal}~/~({\rm cm}~{\rm sec}~{\rm °C})$ तथा विशिष्ट ऊष्मा $\sigma=0\cdot056~{\rm cal/g}~{\rm °C}$. छड़ पूर्णत: पार्श्विक वियुक्त (perfectly isolated laterally) है, सिरों को 0°C पर रखा गया है तथा प्रारम्भिक तापमान ${\rm f}({\rm x})=\sin{(0\cdot1}~{\rm \pi x})~{\rm °C}$ है । ध्यान रखिए कि ${\rm u}({\rm x},{\rm t})$ तापीय समीकरण ${\rm u}_{\rm t}={\rm c}^2~{\rm u}_{\rm xx}$ का अनुगमन करता है, जहाँ ${\rm c}^2={\rm K}~/~(\rho~\sigma)$ है ।

Find the temperature u(x,t) in a bar of silver of length 10 cm and constant cross-section of area 1 cm². Let density $\rho=10.6$ g/cm³, thermal conductivity K=1.04 cal / (cm sec °C) and specific heat $\sigma=0.056$ cal/g °C. The bar is perfectly isolated laterally, with ends kept at 0°C and initial temperature $f(x)=\sin{(0.1~\pi x)}$ °C. Note that u(x,t) follows the heat equation $u_t=c^2u_{xx}$, where $c^2=K$ / ($\rho\sigma$).

5. (a) आंशिक अवकल समीकरण

$$(y^2+z^2-x^2)\,p-2xyq+2xz=0$$
 जहाँ $p=\frac{\partial z}{\partial x}$ तथा $q=\frac{\partial z}{\partial y}$, को हल कीजिए।

Solve the partial differential equation

$$(y^2+z^2-x^2) p-2xyq+2xz=0$$
 where $p=\frac{\partial z}{\partial x}$ and $q=\frac{\partial z}{\partial y}$.

(b)
$$(D^2 + DD' - 2D'^2)u = e^{x+y}$$
 को हल कीजिए, जहाँ $D = \frac{\partial}{\partial x}$ तथा $D' = \frac{\partial}{\partial y}$.

Solve $(D^2 + DD' - 2D'^2)u = e^{x+y}$, where $D = \frac{\partial}{\partial x}$ and $D' = \frac{\partial}{\partial y}$.

6. (a) $p\cos(x+y)+q\sin(x+y)=z$, जहाँ $p=\frac{\partial z}{\partial x}$ तथा $q=\frac{\partial z}{\partial y}$, को व्यापक हल के लिए हल कीजिए।

Solve for the general solution $p\cos(x+y)+q\sin(x+y)=z$, where $p=\frac{\partial z}{\partial x}$ and $q=\frac{\partial z}{\partial y}$.

Find the solution of the initial-boundary value problem

$$u_t - u_{xx} + u = 0$$
, $0 < x < l$, $t > 0$
 $u(0, t) = u(l, t) = 0$, $t \ge 0$
 $u(x, 0) = x(l - x)$, $0 < x < l$

8. (a) द्वितीय-कोटि आंशिक अवकल समीकरण

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} - 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} + x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$$

को विहित रूप में समानीत कीजिए तथा इसका व्यापक हल ज्ञात कीजिए।

Reduce the second-order partial differential equation

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} - 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} + x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$$

into canonical form. Hence, find its general solution.

5. (a) आंशिक अवकल समीकरण $(2D^2 - 5DD' + 2D'^2)$ z = 24(y - x) को हल कीजिए। Solve the partial differential equation $(2D^2 - 5DD' + 2D'^2)$ z = 24(y - x).

- **6.** (a) समीकरण $\frac{\partial^2 z}{\partial x^2} = x^2 \frac{\partial^2 z}{\partial y^2}$ को विहित रूप में समानीत कीजिए। Reduce the equation $\frac{\partial^2 z}{\partial x^2} = x^2 \frac{\partial^2 z}{\partial u^2}$ to canonical form.
- 7. (a) एक कंपमान डोरी (लम्बाई = π , स्थिर सिरे, $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$) का विक्षेप ज्ञात कीजिए, यदि प्रारंभिक वेग शून्य हो और प्रारंभिक विक्षेप $f(x) = k(\sin x \sin 2x)$ हो।

 Find the deflection of a vibrating string (length = π , ends fixed, $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$) corresponding to zero initial velocity and initial deflection

$$f(x) = k \left(\sin x - \sin 2x \right) \tag{15}$$

- **8.** (a) हल कीजिए $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$, 0 < x < 1, t > 0, दिया है कि
 - (i) $u(x, 0) = 0, 0 \le x \le 1$
 - (ii) $\frac{\partial u}{\partial t}(x, 0) = x^2, \quad 0 \le x \le 1$
 - (iii) u(0, t) = u(1, t) = 0, सभी t के लिए

Solve
$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$$
, $0 < x < 1$, $t > 0$, given that

- (i) $u(x, 0) = 0, 0 \le x \le 1$
- (ii) $\frac{\partial u}{\partial t}(x, 0) = x^2, \quad 0 \le x \le 1$
- (iii) u(0, t) = u(1, t) = 0, for all t

Form a partial differential equation by eliminating the arbitrary (a) functions f and g from z = y f(x) + x g(y).

10

10

15

15

Reduce the equation (b)

$$y \frac{\partial^2 z}{\partial x^2} + (x + y) \frac{\partial^2 z}{\partial x \partial y} + x \frac{\partial^2 z}{\partial y^2} = 0$$

to its canonical form when $x \neq y$.

Solve (a)

$$(D^2 + DD' - 6D'^2) z = x^2 \sin(x + y)$$

where D and D' denote $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$.

Find the surface which intersects the surfaces of the system (b) z(x + y) = C(3z + 1), (C being a constant) orthogonally and which passes through the circle $x^2 + y^2 = 1$, z = 1.

(c) A tightly stretched string with fixed end points x = 0 and x = l is initially at rest in equilibrium position. If it is set vibrating by giving each point a velocity $\lambda \cdot x (l - x)$, find the displacement of the string at any distance x from one end at any time t. 20

2012

Section 'B'

5. (a) Solve the partial differential equation

$$(D-2D')(D-D')^{2}z = e^{x+y}.$$
 12

6. (a) Solve the partial differential equation px + qy = 3z. 20

- (b) A string of length l is fixed at its ends. The string from the mid-point is pulled up to a height k and then released from rest. Find the deflection y(x, t) of the vibrating string.
 - (b) The edge r = a of a circular plate is kept at temperature $f(\theta)$. The plate is insulated so that there is no loss of heat from either surface. Find the temperature distribution in steady state.

SECTION-B

5. (a) Solve the PDE

$$(D^2 - D'^2 + D + 3D' - 2) z = e^{(x - y)} - x^2y$$

12

(b) Solve the PDE

$$(x+2z)\frac{\partial z}{\partial x} + (4zx - y)\frac{\partial z}{\partial y} = 2x^2 + y$$

- 6. (a) Find the surface satisfying $\frac{\partial^2 z}{\partial x^2} = 6x + 2$ and touching $z = x^3 + y^3$ along its section by the plane x + y + 1 = 0.
 - (b) Solve

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \quad 0 \le x \le a, \ 0 \le y \le b$$

satisfying the boundary conditions

$$u(0, y) = 0, u(x, 0) = 0, u(x, b) = 0$$

$$\frac{\partial u}{\partial x}(a, y) = T \sin^3 \frac{\pi y}{a}.$$

(c) Obtain temperature distribution y(x, t) in a uniform bar of unit length whose one end is kept at 10° C and the other end is insulated. Also it is given that y(x, 0) = 1 - x, 0 < x < 1.

Section 'B'

- 5. Attempt any five of the following:
 - (a) Solve the PDE $(D^2 - D')(D - 2D')Z = e^{2x+y} + xy.$ 12
 - (b) Find the surface satisfying the PDE $(D^2 - 2DD' + D'^2)Z = 0$ and the conditions that $bZ = y^2$ when x = 0 and $aZ = x^2$ when y = 0. 12
- **6.** (a) Solve the following partial differential equation

$$zp + yq = x$$

 $x_0(s) = s$, $y_0(s) = 1$, $z_0(s) = 2s$
by the method of characteristics. 20

(b) Reduce the following 2nd order partial differential equation into canonical form and find its general solution

$$x u_{xx} + 2x^2 u_{xy} - u_x = 0. . 20$$

(c) Solve the following heat equation $u_t - u_{xx} = 0$, 0 < x < 2, t > 0u(0, t) = u(2, t) = 0, t > 0

$$u(0, t) = u(2, t) = 0, t > 0$$

 $u(x, 0) = x(2-x), 0 \le x \le 2.$ 20