FLUID DYNAMICS

M.A./MSc. Mathematics (Final)

MM-504 and 505 (A)

Directorate of Distance Education

Maharshi Dayanand University
ROHTAK - 124 001



Copyright © 2004, Maharshi Dayanand University, ROHTAK
All Rights Reserved. No part of this publication may be reproduced or stored in a retrieval system
or transmitted in any form or by any means; electronic, mechanical, photocopying, recording or
otherwise, without the written permission of the copyright holder.

Maharshi Dayanand University
ROHTAK - 124 001

Developed & Produced by EXCEL BOOKS PVT. LTD., A-45 Naraina, Phase 1, New Delhi-110 028



UNIT-I

UNIT-II

UNIT-III

UNIT-1V

UNIT-V

Contents

176

235

297



M.A./M.Sc. Mathematics (Final)
FLUIDDYNAMICS
MM-504 and 505 (A,)

Max. Marks : 100
Time : 3 Hours

Note: Question paper will consist of three sections. Section I consisting of one question with ten parts of 2 marks each
covering whole of the syllabus shall be compulsory. From Section II, 10 questions to be set selecting two questions from
each unit. The candidate will be required to attempt any seven questions each of five marks. Section III, five questions to be
set, one from each unit. The candidate will be required to attempt any three questions each of fifteen marks.

UNIT-I

Kinematics — Lagrangian and Eulerian methods. Equation of continuity. Boundary surface. Stream lines. Path lines and
streak lines. Velocity potential. Irrotational and rotational motions. Vortex lines.

Equations of Motion—Lagrange’s and Euler’s equations of motion. Bernoulli’s theorem. Equation of motion byflux method.
Equations referred to moving axes Impulsive actions. Stream function.

UNIT-II

Irrotational motion in two-dimensions. Complex velocity potential. Sources, sinks, doublets and their images. Conformal
mapping, Milne-Thomson circle theorem. Two-dimensional irrotational motion produced by motion of circular, co-axial and
elliptic cylinders in an infinite mass of liquid. Kinetic energy of liquid. Theorem of Blasius. Motion of a sphere through a
liquid at rest at infinity. Liquid streaming past a fixed sphere. Equation of motion of a sphere. Stoke’s stream function.

UNIT-III
Vortex motion and its elementary properties. Kelvin’s proof of permance. Motions due to circular and rectilinear vertices.

Wave motion in a gas. Speed of Sound. Equation of motion of a gas. Subsonic, sonic and supersonic flows of a gass.
Isentropic gas flows. Flow through a nozzle. Normal and oblique shocks.

UNIT-IV

Stress components in a real fluid. Relations between rectangular components of stress. Connection between stresses and
gradients of velocity. Navier-stoke’s equations of motion. Plane Poiseuille and Couette flows between two parallel plates.
Theory of Lubrication. Flow through tubes of uniform cross section in form of circle, annulus, ellipse and equilateral triangle
under constant pressure gradient. Unsteady flow over a flat plate.

UNIT-V

Dynamical similarity. Buckingham p-theorem. Reynolds number. Prandt’s boundary layer. Boundary layer equations in two-
dimensions. Blasius solution. Boundary-layer thickness. Displacement thickness. Karman integral conditions. Separations
of boundary layer flow.
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UNIT-1

Basic Concepts and Definitions
@) Let q=fu+jv+f<w,then

Iql=Vu?+vi+w? =q

D.C’saregivenbylzcosoc:%, m=cosP=—, n=cosy=—
Iql Iql I'ql

<

w

where 1, m, n, are components of a unit vector i.e. P+m’+n’=1
(ii) a.b=abcosO, axb=absinOn

(i) Vo= _(I) +_] % + k—q), where 0 is a scalar and
ax 0z

dy
V= 1(% + Jaiy + k% is a vector (operator)
@iv) divg= Vq—gz+§—;+%w,q (u, v, w)

If V.q=0,then q is said to be solenoidal vector.

(v)  dr=idx+jdy+ Edz,dq):a_“’dx +a_‘de L 99 4,
ox ady oz

and
V¢=f@+j@+A@,
ox “dy 0z
Therefore,
do=(Vo). dr
i ] K
_ _ |9 9 9
i Curlq=Vxq=— — —
A e *d ox dy 0z
u v oW

aw ov A.(au awj ~(dv du
=il ——-——|+] ———=— |+k| — ——
ay 0z oz Ox ox dy
(vii)  (a) Gradient of a scalar is a vector.

(b) Divergence of a scalar and curl of a scalar are meaningless.
(c) Divergence of a vector is a scalar and curl of a vector is a vector.
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2%, 2% 9%

i) V.V = V20 =
(vith ¢ \ ox* dy’ 0z’

where V? is Laplacian operator.
(ix) Curl grad ¢ =0, divcurl q=0
(x)  Curl curl q=grad div q-V?q

i.e. V?q =graddivq—curlcurlq
(xi)  Gauss’s divergence theorem

(a) [q-dS = [div q dv
S v

(b) [ixqdS = [curl q dv
S %

(xii) Green’s theorem
@) [Vo-VydV =[¢Vy-dS - [0V ydV
\% S v

= [yVo-dS - [yV?¢-dV
S v

SRR (- (TR )
(b) i OV y —yVi9)dv —i (¢ SV ¢an5

(xiii) Stoke’s theorem [q-dr = [curl q-dS = [curl q-AdS
(xiv) Orthogonal curviiinear cos-ordinates: S
Let there be three orthogonal families of surfaces
f1(%, ¥, 2) = 0, (X, ¥, 2) = B, f3(X, ¥, 2) = ¥ (1)
where x, y, z are Cartesian co-ordinates of a point P(x, y, z) in space. The
surfaces
o = constant, B constant, y = constant )

form an orthogonal system in which every pair of surfaces is an orthogonal

system. The values a, P, y are called orthogonal curvilinear co-ordinates.
From three equations in (1), we can get

x =x(0, B, V), y = y(o, B, ), z=z(aL, B, Y)

The surfaces (2) are called co-ordinate surfaces.
Let rbe the position vector of the point P(X, y, z)

ie. fzxiA+yj+zlA<=f(oc, B,y
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A tangent vector to the a-curve (b = constant, g = constant) at P is A unit

tangent vector is

s — Jr/da
' ]ot/da
or .
or a_orc:hlel
or ax dy > (oY
here h; = [— | =.[| — 22 =
where oo, \/[aocj +[aocj +[aocj

Similarly, €,,€; are unit vectors along B-curve and y-curve respectively such
that

i = hzéz’E =h;&;
9P Y
Further, dr= Edoc + EdB +Ed'y

oo p ay
=h; do &, +h,dBé, +h,dyé,
Therefore,
(ds)*= dr.dt =hjda’® + hidB* +hidy’

where h; da, hy dB, hs d v are arc lengths along a, B and 7y curves.
In orthogonal curvilinear co-ordinates, we have the following results.

L@L@L@

. oo 1%
W grado (hl 90’ h, 9B h, ay

(ii) If g =(q;.9,,93), then

. 1 0 0 0
div q= h h,h, {@(hzhﬁh)+a—B(h3h1Q2)+a—y(h1h2Q3)}

(i) Ifcurl g=&=(§,.E,.£,), then

1 0 0
&= {B_B(hﬁh)_a_y(hzqz)}

h,h;

1 0 0
&= hoh, {a_y(hlql)_ﬁ(hﬂﬁ}
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1 0
& {i(hz%)——(hl%)}

" hh, | o B
(iV) qu): ; i m% +i h3h1% +i hth@
hh,oh, [da h, do) 9Bl h, o) oyl h, ay)|

The Cartesian co-ordinate system (X, y, z) is the simplest of all orthogonal co-
ordinate systems. In many problems involving vector field theory, it is
convenient to work with other two most common orthogonal co-ordinates i.e.
cylindrical polar co-ordinates and spherical polar co-ordinates denoted
respectively by (r, 0, z) and (r, 0, y). For cylindrical co-ordinates, h; = 1, h, =
1, h3 = 1. For spherical co-ordinates, h; = 1, h, =, h3 =r sin 0.

1. Fluid Dynamics

Fluid dynamics is the science treating the study of fluids in motion. By the
term fluid, we mean a substance that flows i.e. which is not a solid. Fluids may
be divided into two categories

(i) liquids which are incompressible i.e. their volumes do not change when the
pressure changes

(ii) gases which are compressible i.e. they undergo change in volume whenever
the pressure changes. The term hydrodynamics is often applied to the science
of moving incompressible fluids. However, there is no sharp distinctions
between the three states of matter i.e. solid, liquid and gases.

In microscopic view of fluids, matter is assumed to be composed of molecules
which are in random relative motion under the action of intermolecular forces.
In solids, spacing of the molecules is small, spacing persists even under strong
molecular forces. In liquids, the spacing between molecules is greater even
under weaker molecular forces and in gases, the gaps are even larger.

If we imagine that our microscope, with which we have observed the molecular
structure of matter, has a variable focal length, we could change our
observation of matter from the fine detailed microscopic viewpoint to a longer
range macroscopic viewpoint in which we would not see the gaps between the
molecules and the matter would appear to be continuously distributed. We
shall take this macroscopic view of fluids in which physical quantities
associated with the fluids within a given volume V are assumed to be
distributed continuously and, within a sufficiently small volume 3V, uniformly.
This observation is known as Continuum hypothesis. It implies that at each
point of a fluid, we can prescribe a unique velocity, a unique pressure, a unique
density etc. Moreover, for a continuous or ideal fluid we can define a fluid
particle as the fluid contained within an infinitesimal volume whose size is so
small that it may be regarded as a geometrical point.

1.1. Stresses : Two types of forces act on a fluid element. One of them is

body force and other is surface force. The body force is proportional to the
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mass of the body on which it acts while the surface force is proportional to the

surface area and acts on the boundary of the body.

Suppose Fis the surface force acting on an elementary surface area dS at a

point P of the surface S. surface force

normal stress

Let F; and F, be resolved parts of F in the directions of tangent and normal at
P. The normal force per unit area is called the normal stress and is also called
pressure. The tangential force per unit area is called the shearing stress.

1.2. Viscosity : It is the internal friction between the particles of the fluid
which offers resistance to the deformation of the fluid. The friction is in the
form of tangential and shearing forces (stresses). Fluids with such property are
called viscous or real fluids and those not having this property are called
inviscid or ideal or perfect fluids.

Actually, all fluids are real, but in many cases, when the rates of variation of
fluid velocity with distances are small, viscous effects may be ignored.

From the definition of body force and shearing stress, it is clear that body force
per unit area at every point of surface of an ideal fluid acts along the normal to
the surface at that point. Thus ideal fluid does not exert any shearing stress.

Thus, we conclude that viscosity of a fluid is that property by virtue of which it
is able to offer resistance to shearing stress. It is a kind of molecular frictional
resistance.

1.3. Velocity of Fluid at a Point : Suppose that at time t, a fluid particle is at

the point P having position vector 1(i.e.OP =1)
Q(tr +S1,t+St)
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and at time t + Ot the same particle has reached at point Q having position
vector 1+ 0r. The particle velocity q at point P is

(f+80-f _ O _drf

q= Lt =
St—0 ot st—»0 ot dt

where the limit is assumed to exist uniquely. Clearly q is in general
dependent on both 1 and t, so we may write
q=q0=q(x,y,z1),

F=xi+ yj +zk (P has co-ordinates (x, y, z))

Suppose,
ﬁzuf+v}+wf<
and since
g=dr_dx; dys dzp
dt dt dt dt
therefore
Lod L dy

= , V=—, W .
dt dt dt

1.4. Remarks. (i) A point where q = 0, is called a stagnation point.

(ii) When the flow is such that the velocity at each point is independent of
time i.e. the flow pattern is same at each instant, then the motion is termed as
steady motion, otherwise it is unsteady.

1.5. Flux across any surface : The flux i.e. the rate of flow across any surface

S is defined by the integral
[p(@-f)ds
S

where p is the density, qis the velocity of the fluid and fiis the outward unit
normal at any point of S.
Also, we define

Flux = density X normal velocity X area of the surface.

2. Eulerian and Lagrangian Methods (Local and Total range of change)

We have two methods for studying the general problem of fluid dynamics.

2.1. Eulerian Method : In this method, we fix a point in the space occupied by
the fluid and observation is made of whatever changes of velocity, density
pressure etc take place at that point. i.e. point is fixed and fluid particles are
allowed to pass through it. If P(x, y, z) is the point under reference, then x, y, z
do not depend upon the time parameter t, therefore &¥&#&do not exist (dot

denotes derivative w.r.t. time t).
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Let f(x, y, z, t) be a scalar function associated with some property of the fluid
(e.g. its density) i.e. f(x, y, z, t) = f(r,t ), where 1 = X1+ yj +zKk is the position
vector of the point P, then

a_f: Lt f(r,t+0ot)—f(r,t)

1
ot §t—=0 ot 1

Here, % is called local time rate of change.

2.2. Lagrangian Method :- In this case, observations are made at each point
and each instant, i.e., any particle of the fluid is selected and observation is
made of its particular motion and it is pursued throughout its course.

Let a fluid particle be initially at the point (a, b, ¢). After lapse of time t, let the
same fluid particle be at (X, y, z). It is obvious that X, y, z are functions of t.
But since the particles which have initially different positions occupy different
positions after the motion is allowed. Hence the co-ordinates of the final
position i.e. (x, y, z) depend on (a, b c) also. Thus

X = fl(a’ b’ C’ t)’ y = fz(a’ b’ C’ t)’ Z = f3(a’ b’ C’ t)'

For this case, if f(X, y, z, t) be scalar function associated with the fluid, then
i_ Lt f(r+or,t+06t)—f(r,t)
dt  §t—0 ot

where & & & exist.

2)

df . o . .
Here d—lS called an individual time rate or total rate or particle rate of change.
t

Now, we establish the relation between these two time rates (1) & (2).
We have
f=1(x,y,1z1)
Therefore,
df _3tdx Ordy o dz of

dt oxdt dydt dzdt ot

of » of v of » (dxf dy » dzAj of
=|—i+—j+—k || —i+—j+—k |+ —
ox dy~ 0z dt dt” dt

=Vf G+—
a t

where
dx » dy ~ o dz
+ PR

a=—i +—k=(u,v,w
a dt dtJ dt ( )

11
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Thus
—=—+q-Vf 3)

2.3. Remarks. (i) The relation

at = a—f +q.Vf
dt ot

= at = (i + q.ij
dt ot

= i = 3 +q.V
dt ot

The operator di(also denoted by DBJ is called Lagrangian operator or material
t t

derivative i.e. time rate of change in Lagrangian view. Sometimes, it is called
‘differentiation following the fluid’.

(ii) Similarly, for a vector function F(x, y,z,t)associated with some
property of the fluid (e.g. its velocity, acceleration), we can show that

aF _oF
dt ot
Hence the relation (3) holds for both scalar and vector functions associated

with the moving fluid.
(iii)  The Eulerian method is sometimes also called the flux method.

+q-VF

(iv)  Both Lagrangian and Eulerian methods were used by Euler for studying
fluid dynamics.

) Lagrangian method resembles very much with the dynamics of a
particle

(vi)  The two methods are essentially equivalent, but depending upon the
problem, one has to judge whether Lagrangian method is more useful
or the Eulerian.

3. Streamlines, Pathlines and Streaklines

3.1. Streamlines : It is a curve drawn in the fluid such that the direction of the
tangent to it at any point coincides with the direction of the fluid velocity
vector q at that point. At any time t, let q= (u, v, w) be the velocity at each

point P(x, y, z) of the fluid. The direction ratios of the tangent to the curve at
P(x, y, z) are dr = (dx, dy, dz) since the tangent and the velocity at P have the

same direction, therefore qxdr =0
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ie. (u§+ v3+wlz)><(dxi+dyj+dzf<)=6
i.e. (vdy — w dy) i+ (wdx — udz)} + (udy - vdx)k =0
1.e. vdz — wdy = 0 = wdx — udz = udy — vdx
dx dy dz
> — == —
u v ow

These are the differential equations for the streamlines.
i.e. their solution gives the streamlines.

Streamline

In the figure, if q;.q,,q5,...... denote the velocities at neighbouring points Py,

P,, Ps,...., then the small straight line segments P,P,, P,P3, PsP,... collectively
give the approximate form of the streamlines.

3.2. Pathlines: When the fluid motion is steady so that the pattern of flow does
not vary with time, the paths of the fluid particles coincide with the
streamlines. But in case of unsteady motion, the flow pattern varies with time
and the paths of the particles do not coincide with the streamlines. However,
the streamline through any point P does touch the pathline through P. Pathlines
are the curves described by the fluid particles during their motion i.e. these are
the paths of the particles.

The differential equations for pathlines are

dr _ . dx dy dz
—=qie—=u,—= =

: : V,— =W o))
dt dt dt dt

where now (X, y, z) are the Cartesian co-ordinates of the fluid particle and not a
fixed point of space. The equation of the pathline which passes through the
point (Xo, Yo, Zo), which is fixed in space, at time t = 0 say, is the solution of (1)
which satisfy the initial condition that X = X, y = yo, z =29 when t = 0. The
solution gives a set of equations of the form

X = X(Xo, Yo, Zo, t)
y = ¥(Xo, Yo, Zo, 1) )

z = Z(Xo, Y0, Zo, t)

which, as t takes all values greater than zero, will trace out the required
pathline.

3.3. Remarks : (i) Streamlines give the motion of each particle at a given
instant whereas pathlines give the motion of a given particle at each instant.
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We can make these observations by using a suspension of aluminium dust in
the liquid.

(ii) If we draw the streamlines through every point of a closed curve in the
fluid, we obtain a stream tube. A stream tube of very small cross-
section is called a stream filament.

(iii) The components of velocity at right angle to the streamline is always
zero. This shows that there is no flow across the streamlines. Thus, if
we replace the boundary of stream tube by a rigid boundary, the flow is
not affected. The principle of conservation of mass then gives that the
flux across any cross-section of the stream tube should be the same.

3.4. Streaklines : In addition to streamlines and pathlines, it is useful for
observational purpose to define a streakline. This is the curve of all fluid
particles which at some time have coincided with a particular fixed point of
space. Thus, a streakline is the locus of different particles passing through a
fixed point. The streakline is observed when a neutrally buoyant marker fluid
is continuously injected into the flow at a fixed point of space from time
T = —oo. The marker fluid may be smoke if the main flow involves a gas such
as air, or a dye such as potassium permanganate (KMnQO,) if the main flow
involves a liquid such as water.

If the co-ordinates of a particle of marker fluid are (x, y, z) at time t and the
particle coincided with the injection point (Xo, Yo, Zo) at some time T, where T <
t, then the time-history (streakline) of this particle is obtained by solving the
equations for a pathline, subject to the initial condition that x = X, y = Yo,
Z =1zpatt=7T. As 7T takes all possible values in the angle — < T < t, the
locations of all fluid particles on the streakline through (xo, yo, Zo) are obtained.
Thus, the equation of the streakline at time t is given by

X = X(Xo, Yo, Zo, t, T)
y = y(Xo, Y0, Z0, £, T) [ (-0 ST H) )

z = z(Xo, Yo, Zo, t, T)

3.5. Remark: (i) For a steady flow, streaklines also coincide with streamlines
and pathlines.
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(ii) Streamlines, pathlines and streaklines are termed as flowlines for a
fluid.

4. Velocity Potential

Suppose that q = ui+ V} +wkis the velocity at any time t at each point
P(x, y, z) of the fluid. Also suppose that the expression u dx + vdy + wdz is an
exact differential, say — d¢.

Then, —d¢ = udx + vdy + wdz

ie. — %dx +@dy+%dz+@dt =udx + vdy + wdz where ¢ = 0(x, y, z, t)
X ay oz ot
is some scalar function, uniform throughout the entire field of flow.

Therefore,

u= _aq)’V:_aq)’W:_aq),%:O

ox dy oz ot

But

%ﬂ) = 0=0(x,y,2)
Hence

Goui+viewk=- 905,905, 900 _go

ox dy~ 0z

where ¢ is termed as the velocity potential and the flow of such type is called
flow of potential kind.

In the above definition, the negative sign in q =-V¢is a convention and it
ensures that flow takes place from higher to lower potentials. The level

surfaces O(x, y, z, t) = constant, are called equipotentials or equipotential
surfaces.

4.1. Theorem : At all points of the field of flow the equipotentials (i.e.
equipotential surfaces) are cut orthogonally by the streamlines.

Proof. If the fluid velocity at any time t be q= (u, v, w), then the equations of
streamlines are

dx dy dz
=== )

u v W

The surfaces given by

15
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q-dr =0 1ieudx + vdy + wdz=0 2)

are such that the velocity is at right angles to the tangent planes. The curves
(1) and the surfaces (2) cut each other orthogonally. Suppose that the
expression on the left hand side of (2) is an exact differential, say, —d¢, then

d¢ = udx + vdy + wdz 3)
where ¢ is velocity potential.

The necessary and sufficient condition for the relations.

_ 00 0 9

ox’ dy 0z
i.e. q=— V¢ to hold is
curl q =curl (-V¢) =0 4)
The solution of (2) i.e. dp =0 is

O(X, y, z) = const 5)

The surfaces (5) are called equipotentials. Thus the equipotentials are cut
orthogonally by the stream lines.

4.2. Note : When curl q= 6, the flow is said to be irrotational or of potential
kind, otherwise it is rotational. For irrotational flow, q =-V¢.

4.3. Example. The velocity potential of a two dimensional flow is ¢ = ¢ xy.
Find the stream lines

Solution. The stream lines are given by

dx _dy _dz

u v W
where q=(u, v, w)
For an irrotational motion (i.e. motion of potential kind)
we have

curl ¢ =0 =curl (Vo)

ie. q =- V¢, where ¢ is the velocity potential.
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From here,
(u, v, w)=— @,%,% =—(cy, ¢x, 0)
ox dy 0z
1.e u=-—cy,v=—cx,w=0

Therefore, streamlines are

dx _dy _dz

-cy -cx O
1.e. xdx-ydy=0,dz=0
i.e. xX—y'=a’z=K

which are rectangular hyperbolae

4.4. Example. If the speed of fluid is everywhere the same, the streamlines are
straight.

Solution. The streamlines are given by the differential equations.

dx _dy _dz

u vV W
where u, v, w are constants. The solutions are

VX — uy = constant, vz — wy = constant
The intersection of these planes are necessarily straight lines. Hence the result.

4.5. Example. Find the stream lines and path lines of the particles for the two
dimensional velocity field.

X
u=——,v=y,w=0
1+t Y

Solution. For streamlines, the differential equations are

dx _dy _dz
u vV W
Therefore,
(g By _de
X y 0

17
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Here t = constant = ty (at given instant), therefore the solutions are

(1+tp) logx =logy+ci,z=c¢;

or log x 0= logy+loga,z=c,.

1+t
or X =ay, Z = Cp.

which are the required stream lines.
For path lines, we have

dx dy dz

2

—=u,—=V,— =W
dt dt dt
Therefore,

dx  x dy _ dZ_0

G 1+cde d

= d—X:i,ﬂzdt,dz=0
x I+t y

= log. x =log(1+t) + log a, logy=t+logb,z=c

= x=a(1+t),y=bet,z=c

X—a

= y = be @ 1Z=¢C
which are the required path lines.

4.6. Note. In case of path lines, t must be eliminated since these give the
motion at each instant (i.e. independent of t).

4.7. Example. Obtain the equations of the streamlines, path lines and
streaklines which pass through ([, [, 0) at t = 0 for the two dimensional flow

u=1 1+i ,Vzl, w = 0.
ty ty ty

where [ and ty are constants having respectively the dimensions of length and
time.

Solution. We define the dimensionless co-ordinates X, Y, Z and time T by
writing
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x=Xy=Y¥z-2 -1
! ! ! g

such that dX = %dx, dyY = %dy, dZ = %dz, dT = tidt
0

and u=£l(1+T),V=il,w=0

0 to
Streamlines are given by

dx _dy_dz

u A\ W

toldX  toldY 1dZ
XI1+T)  YI 0

ax__dy_az
X1+T) Y 0

Integrating these, we get

Z = constant = C; (say) ()
and log X = (1+T) log Y + log C,, where C; is constant
=X=C, Y 2)

As variables X, Y, Z and T are independent and C; & C, are constants,
equations (1) & (2) give the complete family of stream lines at all times
t=tI. Inparticular, X=1=Y,Z=0and T=0= C; =0, C, =1 and we get
stream lineas Y = X i.e.y=xand z=0.

Pathlines are given by

X _xa+n. oy 2
dT dT dT

Now, X, Y, Z are the dimensionless co-ordinates of a fluid particle and are
functions of T.

dx T
Therefore, X =(1+T)dT =logX=|T+ X +logK,

19
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2
%:Y :>d7Y:dT =logY =T +logK,

= Y=K, el. “4)

dZ =0 = Z = constant = K3 &)

These are the parametric equations of path lines. The path line through P(1, 1,
0)ie. X=1=Y, Z =0, T =01s obtained when K; =K, =1,K;5=0

2
T+T

—X=ze 2,Y=e'.Z=0

Elimination of T gives.

R ) IS I T N

9

The pathline which passes through X =Y =1, Z=0 when T = T is given by
X = exp. T+1T2 —’c—l’c2 ,
2 2

Y =exp(T-1),Z=0

These are the parametric equations of the streaklines true for all values of T.
At T =0, the equations give

2
X = exp. (—’C—%j, Y =exp(-1), Z=0.

Eliminating T, we have.

—T=logYie. t=-logY
Therefore,

logY

2 j,zzo

X=exp (-t(l+71/2)= [e_T ][H;j = (Y)(M/z) = Y(l_

4.8. Article. To obtain the differential equations for streamlines in cylindrical
and spherical co-ordinates



21
FLUID DYNAMICS

We know that the streamlines are obtained from the differential equations

qxdr=0 (1)
where q is the velocity vector and T is the position vector of a liquid particle.
If the motion is irrotational, then

q=-v¢

Therefore, the differential equations (1) become

V- xdr= 0 2)
(i) In cylindrical co-ordinates (r, 6, z), we have
dr =(dr, rd6, dz)

and

Vo gmao-(212 %)

or 100 oz

Thus, the different equations (2) become

[@,l@,@j X (dr, rd®, dz) = 0
or 190 0z

dr rd® dz
= = = .
op/or  1/r-9¢/00 dd/oz

3)

(i1) In spherical co-ordinates (r, 0, ), we have

dr=(dr, rd®, r sin® dy)

W13 1 a
or 'r 90 rsin® Jy

and Vo = grad ¢ :(

The differential equations (2) become.

@,l@, ,1 % X (dr, rd®, r sin 8 dy) = 0
or rdo rsin6 dy

dr rd6 rsin 6dy

= = = 4
/o 15050 L 300y
r rsin 0
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Equations (3) and (4) are the required differential equations.

4.9. Example. Show that if the velocity potential of an irrotational fluid motion

. A . .

is ¢ = —ycosO,where (r, 6, ) are the spherical polar co-ordinates of any
r

point, the lines of flow lie on the surface r = k sinze, k being a constant.

Solution. The differential equations for lines of flow (streamlines) are

dr _ rd6 _ T sin Ody
W0 Lagae L ag/ay
r rsin ©

From first two members, we have

dr _ rd®
2A B
—y—-cosO 1(—1|1Azsin9J
r r r
dr _ 2.rd9 :gzzc?sede
cosO® sinO r sin 0

— logr=2logsin® +logk = r=ksin’0

Hence the result.

4.10. Note. In the above example, the velocity potential, in Cartesian co-
ordinates, can be written as

o= A(x2 + y2 + 22)_3/ 7. tan™" (Xj ,
X

where
X =1 81n0 cos Y, y =r sin0 siny, z =r cosO
are spherical polar substitutions.
Also, the streamlines r = k sin’0 can be written as r° = k 1° sin’0
= Y+ =k +y)
ie. x>+ y2 +22 =k x* + y2)2/3

which are the streamlines in Cartesian co-ordinates.
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4.11. Example. At the point in an incompressible fluid having spherical polar

co-ordinates (r, 6, V), the velocity components are (2M > cos®, MT’sin0, 0)
where M is a constant. Show that velocity is of potential kind. Find the
velocity potential and the equations of streamlines.

Solution. Here dT = drf +rdf 6 + rsin dy

q= OMT> cosOt + Mr> sin 00

Then,
. T ré rsin 0
curl g =—— . d/or d/d0 d/ oy
FY oM  cos® Mi’sin® 0
— P-0+18 0+ rsin OY(—2MF" sin 0+ 2M¢” sin 0)) = 0
r’sin®

Therefore, the flow is of potential kind.

Now, using the relation q =-V¢ = —(%—(Pf + lg—(gé + ;eg—(p(p} we have
roor rsin0 oy

2Mr cos O + Mr° sin 06 = —%f—l%é_‘;%ﬁ,
o rd® rsinb oy
From here,
% = 2Mr” cos 9,—% = Mr? sin e,% =0
Therefore,

d0  do d0
dp= —dr+—dO0+—d
R

= (=2Mr° cos 0)dr — (MF? sin 0)d6
=d (Mr? cos9)
Integrating, we get

O =Mr?coso

which is the required velocity potential.
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The streamlines are given by

dr rd® rsin 6dy

0 190 _ 1

or r 00 _rsineﬁ

. dr _1d®  rsin6dy
2Mr’ cos® Mr’ sin @ 0

(o)

From the last term, Y = constant.
From the first two terms, we get

dr  2cos6

r sin 0

d6=2cot0do

Integrating, we get
log r = log sin’@ + constant
= r1=A sin’0 , ¥ = constant

The equation Y = const. shows that the streamlines lie in planes which pass
through the axis of symmetry 6 = 0.

5. Irrotational and Rotational Motion, Vortex Lines

5.1. Vorticity. If q = (u, v, w) be the velocity vector of a fluid particle, then
the vector & defined by
& =curl g=Vxq

is called the vortex vector or vorticity and it’s components are (§;, &, &3),
given by

_ow o
9y oz

_du ow _ov du

T T T oy

d T ox oy

&

5.2. Vortex Motion (or Rotational Motion). The fluid motion is said to be
rotational if

E=curlg#0

5.3. Irrotational Motion. If & = curl =0, then the fluid motion is said to be
irrotational or of potential kind and then q =-Vo.
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5.4. Vortexline. It is a curve in the fluid such that the tangent at any point on
the curve has the direction of the vorticity vector &.

The differential equations of vortexlines are given by &xdr = 0

1.e. d—X = ﬂ = %
& & &
where E.=(E.En &)

5.5. Vortex Tube. It is the locus of vortex line drawn at each point of a closed
curve i.e. vortex tube is the surface formed by drawing vortex lines through
each point of a closed curve in the fluid.

A vortex tube with small cross-section is called a vortex filament.

5.6. Flow. Let A and B be two points in the fluid.
Then j{; q - dris called the flow along any path from A to B

If motion is irrotational then q =-V¢ and
flow = — [V~ dr = —[7 do = ¢(A) — &(B)

5.7. Circulation It is the flow round a closed curve. If C be the closed curve in
a moving fluid, then circulation I" about C is given by

I'=§q-dr = [A-curl dS=[A-&dS.
C S S

If the motion is irrotational, then q = -V¢ and thus,

I'=—§Ve-dr =—fdp =(A)-(A) =0,
C C
where A is any point on the curve C. This shows that for an irrotational
motion, circulation is zero.

5.8. Theorem :-The necessary and sufficient condition such that the vortex
lines are at right angles to the stream lines, is

_,[ 9% 9 do
(u’v’w)_“(ax’ay’az]

i.e. q=uVo, where 1 and ¢ are functions of x, y, z and t.

25
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Proof. Necessary condition:- We know that the differential equation

q-dr =0 is integrable if O pdx + Qdy + Rdz =0 is integrable if

a_Q _a_R +.+= 0
dz dy
q-curlqg=0 (exactness condition)
ie. q-E=0, E=curl g

This shows that the streamlines are at right angles to the vortex lines. Thus the
streamlines and vortex lines are at right angles to each other if the differential
equation q-dr = 0is integrable.

The exactness condition q -curlq =0 implies thatq = -Vo.

But curlg = curl(-V¢) = 0. Thus the vortexlines do not exist. The equations
q-dr =0 are therefore not exact.

So, there exists an integrating factor ((function of x, y, z, t) such that
w'q-dr =0 is integrable.

If this differential equation is integrable, then we can write
W' q-dr = d, where ¢ is a scalar function of x, y, z, t
—u'q-dr=Vo-dr 1®do= Vo dr
= q=uVo.
Sufficient condition :- Let us take g=u Vo = Vo=p'q
Then, curl q = curl (LV¢)
= E=Vx(UVY) =w(VX V) +VuxVd =Vux Vo
Therefore,

G- E=(VUxVe)-q =V (Voxq)

=Vu- (w'gxq) =0
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This shows that the directions of streamlines and vortexlines are at right angles
to each other.

6. Equation of Continuity

6.1. Equation of Continuity by Euler’s Method (Equation of conservation
of Mass): Equation of continuity is obtained by using the fact that the mass
contained inside a given volume of fluid remains constant throughout the
motion. Consider a region of fluid in which there is no inlets (sources) or
outlets (sinks) through which the fluid can enter or leave the region. Let S be
the surface enclosing volume V of this region and let fi denotes the unit vector
normal to an element S of S drawn outwards.
Let q be the fluid velocity and p be the fluid density.

n
4.

S \

First, we consider the mass of fluid which leaves V by flowing across an
element dS of S in time ot. This quantity is exactly that which is contained in a
small cylinder of cross-section 0S of length (q - fi) ot.

Thus, mass of the fluid is = density X Volume = p (q-n) St. 8S

S A
7N,

(q- )t

=>

Hence the rate at which fluid leaves V by flowing across the element S9 is

p(q-0)dS.

Summing over all such elements S, we obtain the rate of flow of fluid coming
out of V across the entire surface S. Hence, the rate at which mass flows out of
the region V is

By Gaussdivergence the
gp(ﬁ-ﬁ)ds =£(pﬁ)-ﬁd8 [F-AdS= [V -FdV.
S \%

27
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= [div(pq)dV (1)
\%

Now, the mass M of the fluid possessed by the volume V of the fluid is

M = [pdV, where p = p(X, y, z, t) with (X, y, z) the Cartesian

\%

co-ordinates of a general point of V, a fixed region of space. Since the space
co-ordinates are independent of time t, therefore the rate of increase of mass
within V is
am _d (

S
o "l P

J = | % dv | V. does notchange w.r.t.time (2)
v

y ot

But the considered region is free from source or sink i.e. the mass is neither
created nor destroyed, therefore the total rate of change of mass is zero and
thus from (1) & (2), we get

1P 4V 4+ [divipg)dV =0
v ot \%

= j{@ + div(pﬁ)} dv=0
vl ot

Since V is arbitrary, we conclude that at any point of the fluid which is neither
a source nor a sink,

g—f +.div(pq) =0

. op _
.. —+.V. =0 3
Le o +.V.(pq) (3)

Equation (3) is known as equation of continuity.
Corollary (1). We know that

div (pq) = pdivq +.q.(gradp)
Therefore, (3) takes the form

g—f+p(v’ﬁ)+(q’v)p=0 “)

Corollary (2). We know that the differential operator %is given by

D o9 _
= == .V
Dt at+(q )

Therefore, from (4), we obtain the equation of continuity as %Ft) +p(V-q)=0
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) Dp -
i.e. —+pdivg=0 5
D¢ TPdiva 5

Corollary (3). Equation (5) can be written as

IDp  divg=o0
p Dt

= 2(1o )+divg=0 (6)
D¢ ogP q

Corollary (4). When the motion of fluid is steady, then g—f = 0 and thus the

equation of continuity (3) becomes
div(pq) =0 IHere p is not a function of time i.e. p = p(X,y,z) (7)
Corollary (5). When the fluid is incompressible, then p = constant and thus

D

Dp _,

Dt
The equation of continuity becomes

divg =0 )
which is same for homogeneous and incompressible fluid.

Corollary (6). If in addition to homogeneity and incompressibility, the flow is
of potential kind such that q=—-V¢, then the equation of continuity becomes
single word

div(-V9.)=0 =V.(Vd)=0 =V¥d=0 9)
which is known as the Laplace equation.

6.2. Equation of continuity in Cartesian co-ordinates :- Let (x, y, z) be the

rectangular Cartesian co-ordinates.

Let q=ui+vj+wk (1)

andV:ii+ij+if< 2)

ox dy~ o0z

Then, the equation of continuity % +div(pq) =0 can be written as
op 9 0 0
—+—(@pu)+—(Ev)+—(pEw)=0 3
o aX(p) ay(p) aZ(p ) 3)

dp dp Ip W8p+ (au ov awjzo @)

lox "oy oz

which is the required equation of continuity in Cartesian co-ordinates.

29
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Corollary (1). If the fluid motion is steady, then g—f = O and the equation (3)
becomes

0 0 0

—(pu)+—((v)+—(@(pw)=0 5

aX(p) ay(p) aZ(p ) (&)
Corollary (2). If the fluid is incompressible, then p = constant and the
equation of continuity is V-q=0
. du ov ow
ie. —+—+—=0 (6)

0x dy 0z

Corollary (3). If the fluid is incompressible and of potential kind, then

equation of continuity is

V=0
. %0 9’0 9% _
1.e. 02 + P + %) =0,where q=-Vo¢.

6.3. Equation of continuity in orthogonal curvilinear co-ordinates: Let (u;,
uy, u3) be the orthogonal curvilinear co-ordinates and €,,€,,e;be the unit

vectors tangent to the co-ordinate curves.
Let q=q;& +q,¢, +q3¢; (D

The general equation of continuity is

op _
4V = 2
o +V-(pq)=0 2)

We know from vector calculus that for any vector point function f = (f1, £, 3),

1 d d d
—(h,h;f,)+——(h;h,f,) + —(h,h,f;) 3)

V-f=
h,h,h; | du, du, du,

where hy, h,, hs are scalars.
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Using (3), the equation of continuity (2) becomes

ap 1 0 ) d
h hsh ——(h;h 4
o Thibohy | u, 2P0 5~ hshipaz) 5 2PQ3)} @)

Corollary (1). When motion of fluid is steady, then equation (4) becomes

0 2 2

——(hyh3pqy) +———(h3h;pqy) +——(h;hypq3) =0 &)
Uy au 2 au 3

Corollary (2). When the fluid is incompressible, the equation of continuity is

(p = const)

d d d
——(h h3q1)+ (h3h,q,) +——(h;h,q;) =0 (6)
adu, du, du,

Corollary (3). When fluid is incompressible and irrotational then p = const

q=-Vo¢= _(hil Bil ,i 81?2 ,h—13 333 J(I) and the equation of continuity
becomes

o (h,h; 9o N o0 (h/hy Jdo N o0 (hh, 9o ~0 7
ou;\ h; du, ) du,\ h, du,) du;z\ h; du,

Now, we shall write equation (4) in cylindrical & spherical polar co-ordinates.
6.4. Equation of continuity in cylindrical co-ordinates (r, 0, z) . Here,

y=r,u=0,u3=z andh;=1,h,=r,h3=1

The equation of continuity becomes

op 1 0 0
a—f‘i‘r{—r(rp%)"‘%(ﬁ)%)“‘g(rp%)}=0

) op 10 0

i.e. Py ——( pq;) + (pqz)+—(pq3)=0 (3)
ot rad 0z

Corollary (1). When the fluid motion is steady, then equation (8) becomes
—(rpq1)+—(pqz)+r (pq3)— )

Corollary (2). For incompressible fluid, equation of continuity is

8q3
0z

Corollary (3). When the fluid is incompressible and is of potential kind, then
equation (8) takes the form

(rq1)+ (qz)+r =0 (10)



FLUID DYNAMICS

AR iR ala) av
or\ dr) 00\rod0) odz\ oz

where q =—V0; V is expressed in cylindrical co-ordinates.

6.5. Equation of continuity in spherical co-ordinates (r, 0, y). Here,
(uj,up,u3)=(r,0,¥) and h=1,hy=r,h3=rsin0

The equation of continuity becomes
ap 1
a_t r?sin®

{a (r s1n9pq1)+—<rsm9pqz)+—<rpq3)}

Jp
=+
ot r’sin0

{smﬁ—(r pqy) + e (smﬁpqz) + r—(pqa)} 0 (12)
Corollary (1). For steady case, equation (12) becomes
sin 9—(r pq1)+r (smOpq2)+r—(pq3)— (13)

Corollary (2). For incompressible fluid, we have

a(h

sin Gai(r q1)+rai(sm6q2)+r v

=0 (14)

Corollary (3). When fluid is incompressible and of potential kind, then

equation of continuity is

J (r smeaq)j (inea¢j+ ! aq) =0 (15)
or or) d0 00 ) Jy|sin® dy

where q =—V¢; V is expressed in spherical co-ordinates.
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6.6. Symmetrical forms of motion and equation of continuity for them. We
have the following three types of symmetry which are special cases of

cylindrical and spherical polar co-ordinates.

(i) Cylindrical Symmetry :- In this type of symmetry, with suitable choice of

cylindrical polar co-ordinates (r, 0, z), every physical quantity is independent

of both 0 and z so that

%:%ZOandQZQ(r,t)

For this case, the equation of continuity in cylindrical co-ordinates, reduces to

op 19
T =0 1
ot +r8r (pdir) M
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If the flow is steady, then equation (1) becomes
ai(pqlr) =0 = pqir = constant = F(t), (say).
r

Further, if the fluid is incompressible then q; r = constant = G(t), (say).

(ii) Spherical Symmetry :- In this case, the motion of fluid is symmetrical
about the centre and thus with the choice of spherical polar co-ordinates
(r, 8, Y), every physical quantity is independent of both 8 & . so that

i=i=0 and q=q(,t)
00 ay
The equation of continuity, for such symmetry, reduces to
ap 1 o 2
—+—.— r’)=0 2
o T2 5, Pair™) 2)

For steady motion, it becomes
J 2, 2 3
a—(pqlr )=0 = pq; r” = const = F(t), (say)
r

and for incompressible fluid, it has the form q; 1% = constant = G(1), (say).
(iii) Axial Symmetry :- (a) In cylindrical co-ordinates (r, 0, z), axial symmetry

means that every physical quantity is independent of 0 i.e. % =0 and thus the

equation of continuity becomes

op 1[9 0
| = - =0
o + : [ o (pqqr) + > (P%ﬂ}

(b) In spherical co-ordinates (r, 0, ), axial symmetry means that every

physical quantity is independent of W i.e. ai: 0 and the equations of
\T}
continuity, for this case, reduces to
—+——(pqr)+——— sin0) = 0.
ot r2or (payr”) rsin 0 00 (P4 )
6.7. Example. If o(s) is the cross-sectional area of a stream filament, prove
that the equation of continuity is

2(pc$)+i(pc$q)=0, where Os is an element of arc of the

ot 0s
filament and q is the fluid speed.

33
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Solution. Let P and Q be the points on the end sections of the stream filament.

> >
= N
P T 8 T\ O
f(s) f(s+8s)

The rate of flow of fluid out of volume of filament is
0
(Pqo)q — (pqo)p = g(pqc)p os
where we have retained the terms upto first order only, since s is
infinitesimally small

Now, the fluid speed is along the normal to the cross-section. At time t, the
mass within the segment of filament is pGds and its rate of increase is

0 0
a (pods) = & (po)ds
(2)

Using law of conservation of mass, we have from (1) & (2)

i(pcs)éis + i(pqcs)ESs =0 |Total rate =0
ot s

. 20 d
1.e. —(po)+—=—(poq) =0 3
at(p) aS(p q) 3)
which is the required equation at any point P of the filament.
6.8. Deduction :- For steady incompressible flow, %(pc) = 0 and equation (3)
reduces to
d 0
—(poq)=0 = —(0q)=0 = o0 q=constant
0s 0s
which shows that for steady incompressible flow product of velocity and cross-

section of stream filament is constant. This result means that the volume of
fluid a crossing every section per unit time is constant

distance volume
oq=c= cf =c= . =c

6.9. Example. A mass of a fluid moves in such a way that each particle
describes a circle in one plane about a fixed axis, show that the equation of
continuity is
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dp 0
et T =0,
ot " 20 (p2)

where o is the angular velocity of a particle whose azimuthal angle is © at time
t.

Solution. Here, the motion is in a plane i.e. we have a two dimensional case
and the particle describe a circley

00
r
Q9 X
Therefore, z = constant, r = constant
= i =0, i =0 (D
0z or

i.e. there is only rotation.
We know that the equation of continuity in cylindrical co-ordinates (r, 0, z) is

Pl (1pap) + o (o) () =0 )
Using (1), we get

g—f‘l'%a%(l)%) -0
= %+%%(prw) =0, where q = g = 1.
= %—f+%(pw):0

Hence the result

6.10. Example. A mass of fluid is in motion so that the lines of motion lie on
the surface of co-axial cylinders, show that the equation of continuity is

Ip
ot

where vy, v, are the velocities perpendicular and parallel to z.

19 0
— —_ =0
+ o0 (PV9)+ oz (pvz)

Solution. We know that the equation of continuity in cylindrical co-ordinates
(r, 0, z) is given by
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i;i)+li(p v )+1 (pV6)+ (pV ) O where q q= (Vr, Vg, V Z)
1‘

Since the lines of motion (path lines) lie on the surface of cylinder, therefore
the component of velocity in the direction of dr is zero i.e. v, =0
Thus, the equation of continuity in the present case reduces to

ap 10 0 B
i +;a—(P 9)"‘8 (pv,) =

Hence the result

6.11. Example. The particles of a fluid move symmetrically in space with
regard to a fixed centre, prove that the equation of continuity is

P 9P
a Yo’ 2 ar

where u is the velocity at a distance r

(r u)=0.

Solution. First, derive the equation of continuity in spherical co-ordinates.
Now, the present case is the case of spherical symmetry, since the motion is
symmetrical w.r.t. a fixed centre.

Therefore, the equation of continuity is

9P,
ot

)
= — 4 — . —ur"+—p.—(ur°)=0
2 p ar( )

., P, pI 2
= E'FU.E‘FI.—Z&(I' u)=0

Hence the result

6.12. Example. If the lines of motion are curves on the surfaces of cones
having their vertices at the origin and the axis of z for common axis, prove that
the equation of continuity is

00 cosech 8
+

o (pqr) ( v) =
Solution. First derive the equation of continuity in spherical co-ordinates (r, 6,
V) as
ap . 0 2 0 ) 20
—+ sinf— r°)+r— sinf)+r— =0
o T2 Sme{ o (pq;r™) % (pq; sin0) v (Pq3)
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In the present case, it is given that lines of motion lie on the surfaces of cones,
therefore velocity perpendicular to the surface is zero i.e. g, =0
Therefore, the equation of continuity becomes.

ap 1 1 0
— =0 wh Q. @3) =

3 ar (pqr )+ s aW(pq\u) where (q1, q2. q3)
(qr’q(-),q\y)

ap 1 28
= §+r—2[r g(pqr)+pqr(2r)}+ )=0

op 9 cosece 8

4 — 0
= vl r(p ) . ( Pqy) =

Hence the result

6.13. Example. Show that polar form of equation of continuity for a two
dimensional incompressible fluid is

i(ru) +ﬂ =0
or 00

Ifu-= Lzose,then find v and the magnitude of the velocity q, where q =

r
(u, v)

Solution. First derive the equation of continuity in polar co-ordinates (r, 0) in
two dimensions as

0 10
a"+——<p Q)+ <pq2>=o 12=0
t ro

In the present case p = constant
Therefore, the equation of continuity reduces to

0 0 _
B—(ru) +B—(v) =0,where q =(q1, q2, q3) = (u, v, W)
r or r 00

Hence the result.

Now 1 = —ucosf :i —ucosOr ov _0
r2 aI' r2 86
ucos@+8v_0 ov _ —pcosb

_ = > — =
r? 00 20 r?

Integrating w.r.t 6, we get

37
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v —Usin O

r2

and thusl q l=q =vu? + v? :%

r
6.14. Equation of Continuity by Lagrange’s Method. Let initially a fluid
element be at (a, b, ¢) at time t = typ when its volume is dV, and density is po.
After time t, let the same fluid element be at (x, y, z) when its volume is dV
and density is p. Since mass of the fluid element remains invariant during its
motion, we have

podVy=pdVie. ppdadbdc=pdxdydz

or o da db de = p 2% YD 4 db de
d(a,b,c)
or pJ =po (D
where ] = M
d(a,b,c)

which is the required equation of continuity.
6.15. Remark. By simple property of Jacobians, we get
dJ _

~—JV.
dt a
) d dp dJ

Thus (1) gives —(p)) =0 = —J+p—=0

(g dt(p) a0 P

dp _ dp _ Dp _
= —J+pJV.-q=0 =—+pV-q=0 or—+pV-q=0

d p q d pVv-q Dt pVv-q

which is the Euler’s equation of continuity.

7. Boundary Surfaces

Physical conditions that should be satisfied on given boundaries of the fluid in
motion, are called boundary conditions. The simplest boundary condition
occurs where an ideal and incompressible fluid is in contact with rigid
impermeable boundary, e.g., wall of a container or the surface of a body which
is moving through the fluid.

Let P be any point on the boundary surface where the velocity of fluid is qand
velocity of the boundary surface is u.
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=>

u

q

q-u
AN

The velocity at the point of contact of the boundary surface and the liquid must
be tangential to the surface otherwise the fluid will break its contact with the
boundary surface. Thus, if n be the unit normal to the surface at the point of
contact, then

(@-u)-Ai=0 = q-A=u-f (1)

In particular, if the boundary surface is at rest, then u = 0 and the condition
becomes

q-0=0 2)

Another type of boundary condition arrives at a free surface where liquid
borders a vacuum eg. the interface between liquid and air is usually regarded as
free surface. For this free surface, pressure p satisfies

P=11 3)
where IT denotes the pressure outside the fluid i.e. the atmospheric pressure.
Equation (3) is a dynamic boundary condition.
Third type of boundary condition occurs at the boundary between two
immissible ideal fluids in which the velocities are q, & q, and pressures are p;
& p; respectively.

Now, we find the condition that a given surface satisfies to be a boundary
surface.

7.1. Article. To obtain the differential equation satisfied by boundary surface
of a fluid in motion

or
To find the condition that the surface.

F(r,t) =F(x,y,z,t) =0
may represent a boundary surface :-

If q be the velocity of fluid and u be the velocity of the boundary surface at a
point P of contact, then

(@-0)-A=0 =>q-A=u-h (1)
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where q —uis the relative velocity and n is a unit vector normal to the surface

at P.
The equation of the given surface is

F(r,t)=F(x,y,z,t)=0 2)
We know that a unit vector normal to the surface (2) is given by
. VF
n=——
| VFI
Thus, from (1), we get q-VF=u-VF 3)

since the boundary surface is itself in motion, therefore at time (t + 0t), it’s
equation is given by

F(T+01,t+8t)=0. “4)
From (2) & (4), we have

F(r+0r,t+06t)—F(r,t)=0
ie. F(r +0r,t+06t) —F(r,t + 8t) + F(r,t+t) —F(r,t)=0
By Taylor’s series, we can have

(or - V)F(r,t +ot) + St% {(Fr,0} =0

® F(x+6x,y+6y+z+62)=F(x,y,z)+8x£+8y§+62§+m
ox ady oz

=F(x,y,z) +0r-VF
= (E-VJF(T,H&HB—F:O
ot ot

Taking limit as dt—0, we get

(E VJF+ F_o

dt’ o

OF _ DF

—+@V)F=0 ie—=0 5
= at+(q ) Le Dt (5)

which is the required condition for any surface F to be a boundary surface

Corollary (1) If q = (u, v, w), then the condition (5) becomes

OF OoF OJF OF
—t+u—+v—+ =

w—=0
ot ox  dy 0z
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o iy oF
In case, the surface is rigid and does not move with time, then > =0and the
t

e oF OF oF
boundary condition is Uu—+v—+w—=
ox  dy 0z

Corollary (2) The boundary condition

OF OF OJOF OF
—fU—+V—F+W—=
ot  dx dy 0z

0 ie(q-V)F=0

0

is a linear equation and its solution gives

dt dx dy dz d. . .
—_—— == — =—1n Lagrangian view
I uw v w Dt dt

dx dy dz
f— _:ua_: V9_: w
dt dt dt

which are the equations of path lines.
Hence once a particle is in contact with the surface, it never leaves the surface.

Corollary (3) From equation (5), we have

_ —dF
-VF=——
d ot
_ VF _—JF/ot
= q- =
| VF I | VF|
_ . —OJFat
= q.n:—
| VF|

which gives the normal velocity.
Also from (1), we get

—JF/ot
| VFI

Tfi= ® g-fi=u A

which gives the normal velocity of the boundary surface.

7.2. Example. Show that the ellipsoid

X2 2 7 2
eI (Zj +H =1
a“k“t" b c

is a possible form of the boundary surface of a liquid.

Solution. The surface F(x, y, z, t) = 0 can be a possible boundary surface, if it
satisfies the boundary condition.
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E=E+ua—F+vE+WE=O (1)
Dt dt dx dy 0z

where u, v, w satisfy the equation of continuity

v.g=0ie 1V W @
ox dy 0z

2 2 2
X Al (Y z
Here, F(x,y,z,t) =——+—+kt || = | +|— -1=0
( y ) a2k2t2n {(bj (Cj}

2 2 2
Therefore, oF __ X2 +nkt™! (Zj + (Ej
ot 22K 220 b o
OF _ 2x  JF _2kt"y JF _2kt"z
ox a2k 9y b2 0z ¢

Thus, from (1), we get

2 2 2
—-x° 2n | (Y z
————+nkt" ||| +|=
a?k? ¢ ij (cj }

2xu.  2kt"yv N 2kt".zw

0
a’k?e?m, b2 c?
( nxj 2x ( nijkytn ( nszkztn
or ul—— | —+| V+— | ———+| W+ — =0
t a2k2t2n 2t b2 2t C2
which will hold. if we take
u—_nX=O, v+ﬂ=0, W+E=O
t 2t 2t
1.e. u=n—x, Vz—ﬂ, w:—E 3)
t 2t 2t

It will be a justifiable step if equation (2) is satisfied.

. n —-n _ -n
1e. —+—+—=0

t 2t 2t

which is true.

Hence the given ellipsoid is a possible form of boundary surface of a liquid.
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8. Acceleration at a Point of a Fluid

Suppose that a fluid particle is moving along a curve C, initially it being at
point A(ty = 0) with position vector 1, . Let P and P’ be its positions at time t

and t + Ot with position vectors T and 1 + 8T respectively.
Therefore, Ot = PP'

P’(time t+0t)

P(time t)

A(t0=0)

The points A, P, P” are geometrical points of region occupied by fluid and they
coincide with the locations of the same fluid particle at times ty, t, t + Ot

respectively. Let fbe the acceleration of the particle at time t when it
coincides with P. By definition

. (Change in particle velocity in time t)
3t—0 ot

f=

ey

But the particle vel. at time t is q(T,t) and at time t+0t it is q(r + or,t + Ot) .

Thus (1) becomes

‘ [q(r +dr,t+ ot) — q(1,1)]

f= 2
5t—0 ot 2)
Now,
q(r+9r,t+8)—q(r,t) _ q(r+8r,t+8t)—q(r,t+8t) L aet+ dt) — q(r,t + Ot)
ot ot ot
(3)
Since 1 is independent of time t, therefore
L 4@ t+8)-g@0 _oq @

5t—0 ot ot
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Using Taylor’s expansion, we get

q(r+0r,t+0t)—q(r,t +ot) = (or - V)q(r,t + dt)+€ (5)

where le | = 0[(8r)?]

[® F(x+0x, y +0y, z + dz) -F(x,y,z) = Sxi + Syi + ESZi (F(x,y,z)
0x ady 2

V4

2
1 0 d d

—| Ox—+dy—+dz— | .Fx,y,2) +......
+Q( X8x+ y8y+ Zazj (x,y,z) +

and

Sxaix+ 8y(%+82% = (or- V), where

57 =oxi+oyi+orkv=0+ 2310 %)
ox dy~ 0z

But Or is merely the displacement of the fluid particle in time Jt, therefore,
or =q(r,t)ot (6)
Thus, from (5), we obtain

Lt q(r+0r,t+0t)—q(r,t+dt)
8t—0 ot

=(q-V)q (7

where R. H. S. of (4) & (7) are evaluated at P(r,t). Hence, from (2), the
acceleration of fluid at P in vector form is given by

- 9q
=1 .V
f E” +(q-V)q (8)

8.1. Remark. We have obtained the acceleration i.e. rate of change of velocity
q. The same procedure can be applied to find the rate of change of any
physical property associated with the fluid, such as density. Thus, if F =
F(r,t) is any scalar or vector quantity associated with the fluid, it’s rate of
change at time t is given by

DF OF _
— =_—+(q-V)F
Dt at+(q )
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D d _ _.. .
The operator as—+(q-V)1s Lagrangian and operators on R.H.S. are

ot

D D . . o
Eulerian since 1 is independent of t. FIS also called material derivative.
t

In particular, if F = p, the density of the fluid, then

Dp dp _
—+=1@q-V
Dt ot @V

which is the general equation of motion for unsteady flow.

8.2. Components of Acceleration in Cartesian co-ordinates. Let u,v,w be the
Cartesian components of q and fj, f;, f3 that of f i.e. @ = (u,v,w), f = (f}, 3,

f3).
Then from equation.

- 9q
f=—2 -V)q, 1
at+(q )q (1)
we get

~du  du du du

+v

=t U—+V—t W
ot ox  dy oz

ov._dv  odv v
f,=—4+u—+v—+w—
ot ox  dy 0z

ow oJdw  ow ow
fi=—tu—+tv—tw—
ot ox ady 0z

f;

which are the required Cartesian components of f .

In tensor form with co-ordinates x; and velocity components q; (i = 1, 2, 3), the
above set of equations can be written as

9q; 9q;
fi=—+q.q,;, whereq,, =—
Hij» i
ot X
8.3. Components of Acceleration Curvilinear co-ordinates. Before
obtaining the acceleration components in curvilinear co-ordinates; we obtain a
more suitable form of equation (1). as

- Jq 1_2j _ _
f=—"4V|= —gx(V
8t+ (261 ax(Vxq)

45
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aq 1 £ oo o=
o [2 J +EXq , where E=curlq=Vxq .
We have
(q-V)q=(q- 1)—+(q J) +(q k) 2

For any three vectors K, B, 6, we have

Ax(BxC)=(A-C)B—(A-B)C
i.e.
(A-B)C=(A-C)B-Ax(BxC)

In particular, taking A= q, B= f, C= 3—(1 , we get
X

_ 2~ 0q 9q 0 a_q)
@i 0x (q axj qx(lxax
n 8 1_2 aq
=i—|— — 3
lax(Zq j qx(lxaxj .
Similarly,
_ =09 _+0 1_2j A 0q
— 4
q-] 3y =13 (zq qX(J 3 “)
_ AB 1_,) — (~_dq
k — - kx— 5
q- )az az(zq J qX( xazj (%)

Adding (3), (4) and (5), we get
e 1_ _ A~ dq
@-V)q= V(quj— qXZ(JX—qj

=v(%q2j—qX(qu)

Thus, from (1), we obtain

- _dq aq 1_,) — _
f= +V —gx(Vv
i (2qJ qx(Vxq)

aq 1 2 =
=, +V(2q j+&><q (6)
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Now, let (uj, up, u3) denote the orthogonal curvilinear co-ordinates.

Also let q = (ql,qz,q3,f: (fy, f5, f3) E: (&1, &, &3), where the terms have

their usual meaning. We know that the expression for the operator V in
curvilinear co-ordinates is

Vo 10 1 9 14
~{h, u, "h, du, h; dus J

where hy, hy, h; are scalar factors.

The components of & = curl g in the curvilinear system are given by

1 [ 9 p)
= ——(h ———h
&1 h,h, _auz (h3q3) au3 ( 2%)}
1 [ o 0
= ——h ———h 7
E_;z h,h, _au3 (h,q)) aul ( 3q3)j| (7)
1 [ a P)
= —+(h ———(h
&3 hh, _aul (h,q,) au2 ( 1%)}

Using these results in (6), we find that

d 1 9

f :%4_2_1118_111((112 +q22 +q32)+ (€,95 —&59,)
o 1 9

e gtz " 2h, au, (0> +:” +a:?J+ €501 -Ea) ®)
0 1 9

s = §t3 i 2h; dus (qlz +q22 +q32)+ (€19, —8,q))

which are the components of acceleration in curvilinear co-ordinates.

Now, we write the components of acceleration in cylindrical (r, 6, z) and
spherical (r, 0, V) co-ordinates.

8.4. Components of Acceleration in Cylindrical Co-ordinates (r, 0, z).
Here,

y=r,up=0u3=z. and h;=1,h,=r,h3=1

47
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Therefore, V= (i’li’iJ
or rdb oz
and
_11da; 0 _199; _da,
&l_r{ae dz rqz)} T r o0 oz
= -2 (g%
&= az((h) ar((h)— % o

1| d o o 10
&3:;[§(rq2 _&j| :&4_(1_2__&

00 or r r 00
Thus,
dq; 19 (2 2 > Jq, 45
fi= ——+—— e 3 S
oot +28r(q1 T2 ¥4 )+(q3 2

dJq, Q22 q, 0q,
_ n Y92
[qz or r r 00

94, dq, daq, dq; dJq, aq,
=—L4 + + + —~
o gy Ty T T T Ty

04, 43,909

2 or r r 09

dq, _ﬁ

_9q, 99, 9 99,
oz r

ot T T e

+4q;

If we define the differential operator

2=i_£+ i+q—2i+ ithen
Dt dt ot Moy 99 By

£ =P _qJEE_ﬁ ~
Dt r Dt r
D
Similarly, f2 = &+% E&—ﬂ (9)
Dt r Dt r >




FLUID DYNAMICS

Dq; _ Dw
Dt Dt

where (q1, 92 , q3) = (u, v, W)
Equation (9) gives the required components of acceleration in cylindrical co-
ordinates.

8.5. Components of Acceleration in Spherical Co-ordinates (r, 0, y). Here,

u=r,u=0, us=y andh;=1,h,=r,h3=rsin6

Therefore, V= i,li’Li
or rdf rsind dy
and
1

0 0
= — ino I
&1 2 Sine{ae (rsin6q;) allf (r(lz)j|

= 21 r(coseq3+sin9%j—r&
r°sin® 20 oy

= .1 Q5 cos 0+ sin e,%_aq_2
rsin 0 B oy

1 0 0
= — _— in©
2 rsine{aw @) or (rsin q3)}

_ %9 gneg, —rsing 3
rsin0| dy or

L I P I 94, _9q;
&= r[ar(r(h) ae((h)} = r{‘lz"‘r 90
Thus,

f) =

aql 10 2 2 2 qd; aql . . 8q3
—t—= + + + ———(Q3sin0—-rsin 00—
ot 2o0r (ql 42 ™ ) rsin0| oy 4 o or
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a(l3 q% 8q3 q, 9dq,
P —_ _+__
4 or r 12 or r 00

2 2
Dt r r Dt ot or r 90 rsin6Jdy
. Dq, q§+q§ Du v’+w? )
1.€. fl = — = -
Dt r Dt r
2 2
— tO —
Similarly, = 242 4, 9192 g3 ¢0t0 _ Dv  uv=w" cotd ’ (10)
Dt r Dt T
Dq; N q,95 +q,q; cotO _Dw N w(u+vcot9)

fy =

Dt r Dt r
Equation (10) gives the required comps of acceleration in spherical co-
ordinates.

8.6. Pressure at a point of a Moving Fluid. Let P be a point in a ideal
(inviscid) fluid moving with velocity q. We insert an elementary rigid plane

area OA into this fluid at point P. This plane area also moves with the velocity
q of the local fluid at P.

If §F denotes the force exerted on one side of SA by the fluid particles on the
other side,

then this force will act normal to dA.
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. 8F . . e
Further, if we assume that Lt —— exists uniquely, then this limit is called the
5A—0 QA

(hydrodynamic) fluid pressure at point P and is denoted by p.

8.7.Theorem :- Prove that the pressure p at a point P in a moving inviscid fluid
is same in all direction.

Proof :- Let q be the velocity of the fluid. We consider am elementary
tetrahedron PQRS of the fluid at a point P of the moving fluid, Let the edges of
the tetrahedron be PQ = d8x, PR = dy, PS = dz at time t, where 8x, dy, oz are
taken along the co-ordinate axes OX, OY, OZ respectively. This tetrahedron is
also moving with the velocity q of the local fluid at P.

X

Let p be the pressure on the face QRS where area is ds. Suppose that < /, m,
n> are the d.c.’s of the normal to ds drawn outwards from the tetrahedron.
Then,

18s = projection of the area ds on yz-plane.

= area of face PRS (triangle)

dyoz

1
= _oydz=
2yZ

Similarly,
0z0x

mds = area of face PQS = %SZ.SX =

and
Oxdy

nds = area of face PQR = %SX.?Sy =

The total force exerted by the fluid, outside the tetrahedron, on the face QRS is

51
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= —pds (li+mj+nk)
=—p (I8si+mds |+ ndsk)
=— % (SySZi + 0z0x 3 + Oxdy k)

Let py, py, p- be the pressures on the faces PRS, PQS, PRQ. The forces exerted
on these faces by the exterior fluid are

%p LO0ydz i, % P, 825xj, % p, 5xdyk respectively.

Thus, the total surface force on the tetrahedron is

—g(8y821+8z8xj+ 8x8y1§)+%px8y8zf
1 A1 -
+ Epy 5Z5X]+EPZ5X8yk

1 2 A A
= 5 (px —P)dyozi+ (p, —p)dzdx j+ (p, — p)dxdy k (1)

In addition to surface force (fluid forces), the fluid may be subjected to body

forces which are due to external causes such as gravity. LetF be the mean
body force per unit mass within the tetrahedron.

Volume of the tetrahedron PQRS is %h ds i.e. % Ox Oy 0z, where h is the
perpendicular from P on the face QRS.
Thus, the total force acting on the tetrahedron PQRS is = éel_: oxdydz (2)

Where p is the mean density of the fluid.
From (1) and (2), the net force acting on the tetrahedron is

% [Px — p)dydzi + (p, —p)0zdx j+ (p, — p)Oxdy k|+ % p Fox8ydz

. . D 1
Now, the acceleration of the tetrahedron is F(tland the massgp ox Oy &z of
fluid inside it is constant.

Thus, the equation of motion of the fluid contained in the tetrahedron is
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% [(Px — p)dydzi+ (p, — p)dzdx J+ (P, — p)dxdy 12]+ % p Fox8ydz

= %pSXSySZ(%?} (f=m a)

i.e.
(px—p) !

s+ (py —p)m3dsj+ (p, —p)nSslA(+%pﬁh55 = %phﬁs%

On dividing by Ss and letting the tetrahedron shrink to zero about P, in which
case h—0, it follows that
PP =0,pyp=0,pp=0

i.e.
Px =Py =pPz=p- (3)

Since the choice of axes is arbitrary, the relation (3) establishes that at any
point P of a moving ideal fluid, the pressure p is same in all directions.

9. Equations of Motion

9.1. Euler’s Equation of Motion of an Ideal Fluid (Equation of
Conservation of Momentum). To obtain Euler’s dynamical equation, we
shall make use of Newton’s second law of motion.

Consider a region T of fluid bounded by a closed surface S which consists of
the same fluid particles at all times. Let q be the velocity and p be the density
of the fluid.

Then p dt is an element of mass within S and it remains constant.

fi

/P

The linear momentum of volume T is
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M=| gpdt | mass X velocity = momentum.
T
Rate of change of momentum is
dM d . _ dq
—_—=— dt=| —pdr 1
dt dt { ap { dt P )

The fluid within 7 is acted upon by two types of forces

The first type of forces are the surface forces which are due to the fluid exterior
to 7.

Since the fluid is ideal, the surface force is simply the pressure p directed along
the inward normal at all point of S.

The total surface force on S is

[ p(-n)dS =—[ pndS =[] Vpdr (By Gauss div. Theorem) (2)

S S T

The second type of forces are the body forces which are due to some external
agent. Let F be the body force per unit mass acting on the fluid. Then F pdt

is the body force on the element of mass edt and the total body force on the
mass within T is

[Fpdt 3)

By Newton’s second law of motion, we have

Rate of change of momentum = total force

U

J‘% pdt =[Fpdt— [ Vpdt

dg =
= j(d—?p—Fp+ijdr=0

Since dt is arbitrary, we get

dq = =
—p-Fp+Vp=0
dtp ptVp
Le.
d_qzl_:_lvp 4)

dt p
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which holds at every point of the fluid and is known as Euler’s dynamical
equation for an ideal fluid.

9.2. Remark. The above method for obtaining the Euler’s equation of
motion, is also known as flux method.

9.3. Other Forms of Euler’s Equation of Motion. (i) We know that

d D 9 _

— = = + . V 5
dt Dt ot a
therefore equation (4) becomes.
q _ - = 1
Ay@vg=F--vp 5)
ot p

But (§-V)q = V(%q2j+zxq, E=curl g
Therefore, Euler’s equation becomes

a—q+v(lq2J+Exq=F—

Vp. 6
o > p (6)

1
p

Equation (6) is called Lamb’s hydrodynamical equation

(ii) Cartesian Form. Let q = (u, v, w),l_3= (X,Y,Z) and Vp = @’@’B_p ,
0x dy 0z
then equation (5) gives
8_u+u8_u+va_u+wa_u :X—l@
ot  dx  dy 0z p Ox
i+uﬁ+vi+ v _y_Lop (7)

o ox oy "oz pox
ow ow ow ow la_p

—+u—+v—+ =7Z-—

W — =
ot ox ady 0z p oz

Equation (7) are the required equations in Cartesian form.
(iii) Equations of Motion in Cylindrical Co-ordinates. (r, 6, z). Here,

q = (u,v,w), dr = (dr, rd6, dz)
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Vo dp 1dp dp
P= 1o ro0 oz

Let F = (Fr, F0, Fz).

Also, the acceleration components in cylindrical co-ordinates are

d_q_ du v? dv+ﬂd_w
dt

Thus, the equation of motion

dq =F- le. becomes
dt p

du_v'_p_19p

dt r " por

ﬁ.,.ﬂ:]?e_i@ (8)
dt r rp 90

dw _p 1%

dt p dz

(iv) Equations of Motion in Spherical co-ordinates (r, 0, y). Here,

q = (u,v,w), dr = (dr,rd0, rsin 6dy)

Vp =

dp 1dp 1 dp
or 'r 90 rsin® oy

Let F = (Fr, FO, Fy). The components of acceleration in spherical co-ordinates

are

dq _ d_u_v2+w2 dv. w?cot® uv dw  vwcot®
dt rodt r rdt r

dt e

Thus, the equation of motion take the form
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d_u_v2+w2_ ; 1 dp

dt r p or

2
dv w c0t6+ﬂ:Fe_i@ ©)
dt r r pr 00
d_w+vwc0t6:Fw_ 1 ap
dt r prsin 6 oy

9.4. Remark :- The two equations, the equation of continuity and the Euler’s
equation of motion, comprise the equations of motion of an ideal fluid. Thus
the equations

% +div(pq) =0

md§ﬂ+apvm=ﬁ—lvp
ot P

are fundamental to any theoretical study of ideal fluid flow. These equations
are solved subject to the appropriate boundary and initial conditions dictated by
the physical characteristics of the flow.

9.5. Lagrange’s Equation of Motion. Let initially a fluid element be at (a, b,
) at time t = tp when its volume is dV, and density is po. After time t, let the

same fluid element be at (X, y, z) when its volume is dV and density is p . The
equation of continuity is

0T = po (1)
where J= M
d(a,b,c)

The components of acceleration are

9°x 9%y 9%z
&= , , &=
ot> $= ot> ot?

Let the body force F be conservative so that we can express it in terms of a
body force potential function  as

F=-VQ (2)

By Euler’s equation of motion,

57
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d—q:?—lvp:—vg—lvp (3)
dt p p

Its Cartesian equivalent is

02 0Q 1dp
ot _§_Eax
&:_B_Q_l@ (4)
ot? dy pay
9’z 9Q 1dp
o paz

We note that a, b, c, t are the independent variables and our object is to
determine x, y, z in terms of a, b, ¢, t and so investigate completely the motion.

To deduce equations containing only differentiations w.r.t. the independent

variables a, b, ¢, t we multiply the equations in (4) by dx/da, dy/da, dz/da and
add to get

92x ox 82y8y+8 zdz  0Q 1dp

B R 5
2 da 2 a2 0a d’da da poa ©)
Similarly, we get
9°x ox 9%y ay 0’z0z _ 9Q 10dp
E R T T e (6)
o2 b o’ b o2 b pob
&Bx 82y8y 0%z oz _B_Q_la_p o

ot> a Jt?> oc 8t2 d o pac

These equations (5), (6), (7) together with equation (1) constitute Lagarange’s
Hydrodynamical Equations.

9.6. Example. A homogeneous incompressible liquid occupies a length 2/ of a
straight tube of uniform small bore and is acted upon by a body force which is
such that the fluid is attracted to a fixed point of the tube, with a force varying
as the distance from the point. Discuss the motion and determine the velocity
and pressure within the liquid.

Solution. We note that the small bore of the tube permits us to ignore any
variation of velocity across any cross-section of the tube and to suppose that
the flow is unidirectional.
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We u be the velocity along the tube and p be the pressure at a general point P at
distance x from the centre of force O. Also, let h be the distance of the centre
of mass G of the fluid, as shown in the figure.

[ [

)
U

X

Equations of motion of the fluid are :

(i) Equation of Continuity : Here, q = (u,0,0)
Therefore, equation of continuity becomes

a—u=():>u=u(t) €))
ox

(ii) Euler’s Equation : In this case, it becomes

a_u+@+x_la_p:_ux_la_p
ot Jx p Ox p Ox
g_‘tl - ux _ég_i (2) | using (1)

where —uxf is the body force per unit mass, L being a positive constant.

We observe that equation (2) can be written as

du 1d
= =px-—L 3)
dt p dx

Integrating w.r.t. X, we get

x—=pX _Pic (4)
p

where C is a constant and at most can be a function of t only. w.r.t. (X, y, z)

Let IT be the pressure at the free surfaces x =h—/ and x = h + [ of the liquid.
Then using these boundary conditions, equation (4) becomes

du 1 , T
h—l)—=——p(h—1)> ——+C
( )dt ZH( ) 0
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du 1 , I
h+l) —=—-—wh-0)"——+C
(h+0) &2 w(h—=1) 0

which on subtraction give

du
e uh ®)
But in the fluid motion all fluid particles move with the same velocity u and u
_dh
dt
.. Equation (5) becomes
d’h
7= Hh (©)

Now, we solve the different equation (6), which can be written as
D*+wWh=0
Here auxiliary equation is
D’+u=0 =>D=%,/ui

Therefore, the solution of (6) is

h=Acos(\/ﬁt+e)

where A and € are constants which can be determined from initial conditions.

To Calculate Pressure :— We have from (3) & (5)

p dx
o 1de_ uch —x)
p dx

Integrating w.r.t. x , we get

)2

7
p 2D @

The boundary condition x =h — [, p =11 gives



FLUID DYNAMICS
2
a = u.l— +D
p -2
2
ie. D=1II/p +%
Therefore, equation (7) becomes
N2 2
B = M +T11I/ p + i
p -2 2

- %—%[(h—x)z -]

R+ nth-x-1)]
p 2

9.7. Example. Homogeneous liquid is in motion in a vertical plane, within a
curved tube of uniform small bore, under the action of gravity. Calculate the
period of oscillation.

Solution. Let O be the lowest point of the tube, AB the equilibrium level of
the liquid and h the height of AB above O. Let a and B be respectively the
inclinations of the tube to the horizontal at A and B and 6 be the inclination of
the tube at a distance s along the tube from O. Let a and b denote the arc
lengths of OA and OB respectively and suppose that at time t, the liquid is
displaced through a small distance z along the tube from its equilibrium
position.

Due to the assumption of uniform small bore the flow is unidirectional along

the tube. y

A

Let the velocity be u(s, t).

The equation of continuity gives g_u =0 ()
S
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= u is independent of s
Euler’s equation of motion becomes

a—u+ua—u=—gsin6—l@

ot 0s p ds

Using equation (1), this gives

du Ea—u:—gsine—ld—p
dt odt p ds
ie. d_u = —gﬂ _l@
dt ds pds
Integrating it w.r.t. s, we find
ds
dy
) 6
d
. sinf= L
ds
sd—u =-gy— Pic
dt p

where C may be a function of time t at the most.
The boundary conditions at free surface are

@) p=Ilfory=h+zsina,s=0OM=a+zatM

(i) p=Ilfory=h-2zsinB,s=0ON=—(b—z)atN.

Using these boundary conditions in (3), we get

(a+2) fl—ltlz—g(h+zsinoc)—E+C

—(b-z) du _ —g(h —zsinP) _ +C
dt p

Subtracting these we get

FLUID DYNAMICS

2)

3)
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(a+b) ((11—11 =—gz(sino+sinf)

Since
_dz_ du_d%

l=—=—=—,
dt ~ dt  di®
equation (4) becomes

d’z . .
(a +b) d_ = —gz(sin o, + sin B)

(2
d?z
= o
where _ g(sinou+sin B)
a+b

We observe that equation (5) represents the simple harmonic motion.

period T is given by

T=—=2mn

21 { a+b

Ju

g(sin o+ sin )

“)

&)

It’s
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10. Bernoulli’s Equation (Theorem)

10.1. For Steady Flow. We shall obtain a special form of Euler’s dynamical
equation in terms of pressure. The Euler’s dynamical equation is

9a_z Ly, (1)
dt p

where q is velocity, F is the body force, p and p are pressure and density
respectively.
F be conservative so that it can be expressed in terms of a body force potential

function Q as

F=-VQ (2)

When the flow is steady, then ?)_(tl =0 3)

Therefore, in case of steady motion with a conservative body force equation
(1), on using (2) and (3), gives

V(lqzj—QXE:—VQ—le
2 p
dq o9 __._
®—=—+(@qV
T (@-V)q
dq oq (1_2j _ = Jq
—=—+V| = -qx d—=0
Ordt ot 2q GG an ot
1_, 1 _ =
= V(Eq +Qj+—Vp=qx§ “4)
Y

Further, if we suppose that the liquid is barotropic i.e. density is a function of
pressure p only, then we can write

le = Vj@
p p
Using this in (4), we get
VBG2+Q+Id—p}=QXE. (5)
p

Multiplying (5) scalarly by q and noting that

((@x&)=(qxq)-E=0, we get

al|

al]

-VF@2+Q+I@}:O (6)
2 P
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If § is a unit vector along the streamline through general point of the fluid and
s measures distance along this stream line, then since § is parallel to q,
therefore equation (6) gives

51 d O S is parallel to q
2-g?+0+12 =0 q=ks
os| 2 p 3

sV=—

s
Hence along any particular streamline, we have

lq2+§z+I@=C (7)
2 p

where C is constant which takes different values for different streamlines.
Equation (7) is known as Bernaull’s equation. This result applies to steady
flow of ideal. barotropic fluids in which the body forces are conservative.
Now, if § is a unit vector taken along a vortexline, then, similarly, we get

%§2+Q+f @:C along any particular vortexline. (Here, we
p

multiply scalarly by &)

10.2. Remark. (i) If gx& =0 ie. if & & are parallel, then streamlines and
vortex lines coincide and q is said to be Beltrami vector.

If E =0, the flow is irrotational.
For both of these flow patterns,

lq2+Q+I@=C
2 p

where C is same at all points of the fluid.
(ii) For homogeneous incompressible fluids, p is constant and

The Bernoulli’s equation becomes

1,
+-q°+Q=C
2q

o |
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so that if a is known, the pressure can be calculated.

10.3. For Unsteady Irrotational Flow. Here also, we suppose that the body
forces are conservative i.e. F = -VQ

For irrotational flow, q=-V¢ = Vxq=0

The equation of motion
a—q+v(1q2j—qx(wq)=ﬁ—lvp (1)
ot 2 p

in the present case becomes.

90 1_2J 1
~-V| = |+V|=q° |=-VQ--V
(Eh}r (Zq p P

= V(lﬁz +Q+ f@ —%j =0 | Barotropic fluid.
2 p Jt

Integrating, we get
L vaefP 2 @)
2 p Jt
which is the required equation.
jdp_p
p

If the liquid is homogeneous, then and the equation (2) become

1_, p_dd
—q~+Q+=——=1(t).
54 0 (t)

Further, for study case,

@ =0, f(t) = const
ot

lqz +Q+2 = const.
2 p

10.4. Example. A long straight pipe of length L has a slowly tapering circular
cross section. It is inclined so that its axis makes and angle o to the horizontal
with its smaller cross-section downwards. The radius of the pipe at its upper
end is twice that of at its lower end and water is pumped at a steady rate
through the pipe to emerge at atmospheric pressure. It the pumping pressure is
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twice the atmospheric pressure, show that the fluid leaves the pipe with a speed
U give by

U%= 2{gLsina+E]
15 p

where IT is atmospheric pressure

Solution. The assumption that the pipe is slowly tapering means that any
variation in the velocity over any cross-section can be ignored. Let the
velocity at the wider and of the pipe be V and the emerging velocity be U

(velocity at the lower end). The only body force is that of gravity, so F = —g}
and consequently Q = gy

0Q: dQ~ Q-

OF=-VQ = —qj=-VQ=-227_225 %°f
4 ox ayJ oz
dy
Bernoulli’s equation, Py %qz +Q=C | ® For water p is const.
p

p. 15 _
becomes —+5q +gy=C 1)

p

Applying this equation of the two ends of the pipe, we get

y

L
y
y=Lsina
21 1 m 1

+—=V?+glLsino=—+—U? (2)  Ifor
2 p 2

lowerend y =0

67
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Let a and 2a be the radii of the lower and upper ends respectively, then by the
principle of conservation of mass

n(2a)’V =ma*U

U
= V=" 3)

From (2) and (3), we obtain

1 (U? . 1 .,
II+—p — |+ ¢gpLsina=—pU
2‘{16] gp 2P

1 (., U? .
= —p| U —— |=IT+ gpLsina.
o2V e
15 . » .
= ng =II +gpL sina.

= U2:g gLsinoc+E
15 p

Hence the result.

10.5. Example. A straight tube ABC, of small bore, is bent so as to make the
angle ABC aright angle and AB equal to BC. The end C is closed and the tube
is placed with end A upwards and AB vertical, and is filled with liquid. If the
end C be opened, prove that the pressure at any point of the vertical tube is
instantaneously diminished one-half. Also find the instantaneous change of
pressure at any point of the horizontal tube, the pressure of the atmospheric
being neglected.

Solution. Let AB=BC=a

—e—

< N> D>

W—— x—>
—>
[
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When the liquid in AB has fallen through a distance z at time t, then let P be
any point in the vertical column such that

AM=z,BP=x,BM=a—z

If u and p be the velocity and pressure at P, then equation of motion is

du du 1dp
—Hu—=—g———= 1 lu =u(x,t
o lox ° pox 2 =9
and equation of continuity is
a_u =0 ie.u=ut)
0x
Therefore, equation (1) becomes
w__ 1o
ot p Ox
Integrating. w.r.t. X , we get
du 1
Xx—=—gx.——p+C 2
58 0 p 2)

Using the boundary condition p = 0 at x = a—z, we get
du
C=(a-z)—+gla-z
(a-z) o gla—-2)

Therefore, equation (2) becomes

xa—?z—gx—§+(a—z)g—l§+g(a—z)
1.e. P_ —(x—a+ z)(a—u + gj 3)
p ot

Now, we take a point Q in BC, where BQ = x” and let u’, p” be the velocity and
pressure at Q, then

P_ —(x'—a)%—li |z =0 and g is not effecting 4

p
Equating the pressure at B, when x =0, x” = 0, we get

du ou'
(a—2) (g + g} = ag | From (3) & (4)
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:_aa_u | ®u =-u

ot

Initially, when C is just opened, then z = 0, t =0 and we have

{3). .

du —-g . (du
= —-— =—= 1ie|— | =—-g/2 5
(at jt:O 2 (at jo : )
Therefore, from equation (3), initially, the pressure at P is given by
Po du
— =—(Xx—a —_ + | = _
0 ( )[( o jo g} Po =(P)=o
—g
=—(x—a
5 (x—a)
1
= po= Epg(a—X) (6)

But when the end C is closed, the liquid is at rest and the hydrostatic pressure

at P is
p1 = pgh=pg (a—x) Ih = AP = a—x (7

From (6) and (7), we get

1

Po :Epl

Thus, the pressure is diminished to one-half.
Now, from (4), initial pressure at Q is given by

Po_ oy 99) _ a_UJ Y -
0 (x a)( o jtzo—(x a)(at t=0—(a x)2

1 \
= Py =Epg(a—x)
When the end C is closed, the initial pressure (hydrostatic) p, at Q (or B or C)

is pga.
Therefore, instantaneous change in pressure
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1 1
=Py —Po'= pga—apg(a—x') = Epg(a"‘x')

10.6. Example. A sphere is at rest in an infinite mass of homogeneous liquid of
density p, the pressure at infinity being I1. Show that, if the radius R of the
sphere varies in any manner, the pressure at the surface of the sphere at any

time is
2/p2 2
n+Bd<R>+(d_Rj
2| dt? dt

Solution. In the incompressible liquid, outside the sphere, the fluid velocity q
will be radial and thus will be a function of r, the radial distance from the
centre of the sphere (the origin), and time t only.

The equation of continuity in spherical polar co-ordinates becomes
1d ,
——(("u)=0 1
S (1)

®q=(u,0,0), u=u(r,t), V= (;,0,0J
r

1.e. spherical symmetry.

— r’u = constant = f(t)

On the surface of the sphere,

r=R,u= &
Therefore,
f() =R* &
and thus
ru=R*K )
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We observe thatu — 0 as n — oo, as required.
From (1), it is clear that curl ¢ = 0

=> the motion is irrotational and q =-V¢
=> u=-—= = ——=— | From (2)
— o=t (3)
The pressure equation for irrotational non-steady fluid motion in the absence of

body forces is

p,l1_, 90
P2 L
p+2q ot (1)
ie. §+%u2—3—T=C(t). 4)

where C(t) is a function of time t.

Asr— oo, p = IT, u = fi* = 0, 0—0

so that C(t) = I1/p for all t 5)
Therefore, from (2), (3), (4) and (5), we get
5 0N\2
P_I, 9 LR L3 (6)
p p ot 2\ r?
But a—f:i(Rzl&):I@%zRFS@
ot dt

At the surface of the sphere, we have r = R and equation (6) gives

T L oree s r2)- L
p R 2

ol o |lu

=E+21&2+RI$L%F&2
p

:E+l(31&2+2RI$§ (7
p 2

Now,
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2 2
d ;E )+ (& =%(2RF¥<>+(1&>2

= (2R &4 2R2) + &2
= 2R B 32

Therefore, from (7), we obtain
1 | d*R?) (deZ
=I1+— +| —
P 2‘{ dt? dt

Hence the result.

10.7. Example. An infinite mass of ideal incompressible fluid is subjected to a

force pr™”” per unit mass directed towards the origin. If initially the fluid is at

rest and there is a cavity in the form of the sphere r = a in it, show that the
cavity will be completely filled after an interval of time ma™>(10p) "%

Solution. The motion is entirely radial and consequently irrotational and the
present case is the case of spherical symmetry. The equation of continuity is

izi(rzu) =0 =r"u = constant = f(t) (D
r’ dr

On the surface of the sphere, r =R, &= v (say)
Therefore,

? 8=1(t) =R*K

= ) = R’ &+ BoRE= R2%+2RV2

v R

3@=2V2+R£=2V2+R —
R dt dR dt

=2v? +Rv§—l: )

The Euler’s equation of motion, in radial direction, using &= u, is

du du 1 dp
—+u
ot or ' por



74

FLUID DYNAMICS

But ou _ﬁ(f(t)j _ &t) F = _ur—7/3

ot otl r2 2

So, we need to integrate the Euler’s equation

A0) a(l 2)_‘“ J(p
a2t )TV ale ®

Let us assume that the cavity has radius R at time t and its velocity then is
= v. Integrating (3) over the whole liquid (r = R to r = o) at time t, we

obtain
& +[1uz}° ZS_HFT _H"
r R 2 v 4 | 43 R P lx

Since the fluid is at rest at infinity, u. = 0. Also p. = 0, pr = 0 (cavity), thus

we get

R 2 4 RY3
dv 2 3u 1 .
= 2Rv —+3v" =—— | using (2
drR 2 R*3 e
To make it exact, we multiply by R? so that
Ry Ny ar2y2 o Mg
dR 2
3.2
_, ARV __3mpas
dR 2
Integrating, we get
ROv2=A— JMpRss &)

10

When R = a, K=y = 0, which gives A = ?—gasm.

Now, we take v = < 0 because as the cavity fills, R decreases with time.

Thus (4) gives
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d_R__(g_MJI/Z 253 _R53\"?
dt 10 R’

Therefore,

A [ R¥2dR

10 Ja (a5/3 _RS/3)1/2

623
= 55/2 sin®0do IR =2a’" sin’0i.e. R = a (sin 0)°°
a3
BT

Thus,

=g a5 (1()“)—1/2 '
Hence the result.

11. Impulsive Motion

Impulsive motion occurs in a fluid when there is rapid but finite charge in the
fluid velocity q over a short interval 8t of time t, or a high pressure on a
boundary acting over time Ot, or the rapid variation in the velocity of a rigid
body immersed in the fluid. Such type of actions are termed as impulsive
actions.

The situation of impulsive action is effectively modeled mathematically by
letting the body force or pressure approach to infinity while 6t—0 in such a
way that the integral of body force or pressure over the time interval ot remains
finite in this limit.

It the flow is incompressible, infinitely rapid propagation of the effect of the
impulsive action takes place, so that an impulsive pressure is produced
instantaneously throughout the fluid. Here, we consider only the
incompressible fluid with constant density p. The impulsive body force I and
impulsive pressure P are defined as

t+0t

1= 6Lt t Fdt
t—0
t+0t (1)
b= &[itm t pdt

We note that finite body forces such as gravity do not contribute to the

impulsive body force 1.
To determine the equation of impulsive motion, we consider the Euler’s

equation

75
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q q = 1
—=—=—+4+(q-V)q=F--V
Dt dt ot (@-V)a P P

Integrating w.r.t. time t from t to t + 8t and taking limit as t—0, we get

Le (¥ DAy 1y jH& 9 gy 14 | G V)dt
St—0vt

dt—0°t Dt St—0°t ot
= Lt ("% Fdt—1 L [ vpdt )
St—0vt p 3t—0 t

Assuming that fluid is accelerated impulsively at t = 0 and since we expect a
finite change in q as a result of the impulse, we get from (1) and (2)

a'—a=i—%VP 3)

where q and q' denote respectively the fluid velocity before and after the

impulsive action.
Thus, the equation of impulsive motion is

p(@—q) =pI- VP 4)

which holds at each point of the fluid.
In cartesian co-ordinates, (4) can be expressed as

, OP

p(u'—u) =pX ——
o0x

, , oP
pV-v)=pY ——
dy
’ 4 aP
pW=w)=pZ ——
0z

where
q=(uv,w),q'=,v,w), I=(X.Y,Z)
When there is no externally applied impulse, then I1=0 and equation (4)

becomes
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—VP=p(q-q) ®)

Further, if the motion is irrotational, then q=-V¢, q'=-V¢', where ¢ and ¢’
denote the velocity potential just before and just after the impulsive action,
then (5) becomes

P=p(¢"-0) (6)

Where we have ignored the constant of integration since an extra pressure,
constant throughout the liquid, would not effect the impulsive motion.

11.1. Corollary. If the fluid is at rest prior to the impulsive action, then the
velocity q generated in the fluid by the impulse is given by

g=1-1vp @)

o |-

IIn 3), put q=0and q'=q

For this case, equation (5) can be put as

—-VP=pq (®)
and equation (6) becomes

P=po ©)
Equations (6) and (9) give the relation between impulsive pressure P and the
velocity potential ¢.

11.2. Remark. From the above discussion, we observe that, likewise, an
irrotational motion can be brought to rest by applying an impulsive pressure
—p0 throughout the fluid.

11.3. Example. A sphere of radius a is surrounded by an infinite liquid of
density p, the pressure at infinity being I1. The sphere is suddenly annihilated.
Show that the pressure at distance r from the centre immediately falls to

n(l —Ej . Show further that if the liquid is brought to rest by impinging on a
r

. . a . . .
concentric sphere of radius 5 the impulsive pressure sustained by the surface

of the sphere is /7IIpa®/6.
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Solution. Let v” be the velocity at a distance 1" from the centre of the sphere at
any time t and p be the pressure. The equation of continuity (case of spherical
symmetry) is

2 dd'(r'zv)— —=r?v? =f(t) (D

Equation of motion is

a_v +v oV _1 ap | No body force
ot o p or'

or fo, v 1o

r'2 ar' p or'
Integrating w.r.t. ', we get

fgﬁ) 2 p

——+— =—=—+C
rr 2 p

Since '—> e = p =TI, v =0 so that C = IT/p.

- 1 . _T-p
r' 2 p

Thus ()

When, sphere is suddenly annihilated i.e. 1" = a, v/ = 0, p = 0, then

—ﬁg_nm ie. ﬁo_m—- 3)

The velocity v* vanishes just after annihilation, so from (2) and (3), we get

Ma_N-p  _al_p

pr’ Y r

Thus, the pressure at the time of annihilation (r’ =r) is

B en-p 3p=H@—EJ
T T

which proves the first result.
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Now, let P be the impulsive pressure at a distance r’, then from the relation

-VP=pq, we get

—%= pv': = dP=—pv dr
From the equation of continuity, we have

Pv=1’v = f(t) 4)
So dP = —pv (r*/r'%) dr’ (5)

where r is the radius of the inner surface and v is the velocity there.
Integrating (5), we get

P =pv (r'/r') + C,

When r'—o0, P=0sothat C; =0
Thus P = pv(rz/r’) (6)

Equation (6) determines the impulsive pressure P at a distance r’. The velocity
v at the inner surface of the sphere (p = 0) is obtained from (2) as

_@4_1\,2 :E (7
r 2 p
d 2 2 dv dr 2 dv dr 2
From (4), Pft)=—(r“v)=r"—+Vv2r—=1r"——+2rv
()fgf) dt( ) dt dt dr dt
@zrv£+2v2
r dr
Thus (7) becomes
rv £+2v2 —lv2 =—E
dr 2 p
dv 3 , -II
or v—+—v =——
dr 2 p
= 2r'y ?+3V2r2 :ﬂrz IMultiplying by r*
T p

Integrating, we get
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v = —Ef +C,
3p
3

Sincer =a, v=0so we find C, = 211a

3p
Therefore, 1 v*= 23—1_1(313 -r?)

p

The velocity v at the surface of the sphere r = a/2, on which the liquid strikes,

18

g da’-@/2)’ 1410
3 @2 3p

From relation (6), using r = a/2, we get
p
P=- | —. — 8
A (3)

which determines the impulsive pressure at a distance r’ from the centre of the
sphere.
Thus, the impulsive pressure at the surface of the sphere of radius a/2 is given

by

2
p=P 413" _ FHpa’/e

4\ 3 p a/2

Hence the result
12. Stream Function

When motion is the same in all planes parallel to xy plane (say) and there is no
velocity parallel to the z-axis, i.e. when u, v are functions of X, y, t only and w
= 0, we may regard the motion as two-dimensional and consider only the
cases confined to the xy plane. When we speak of the flow across a curve in
this plane, we shall mean the flow across unit length of a cylinder whose trace
on the xy plane is the curve in question, the generators of the cylinder being
parallel to the z-axis.

For a two-dimensional motion in xy-plane, q is a function of x, y, t only and

the differential equation of the streamlines (lines of flow) are
d_x:g ie.vdx —udy =0 (D
u v
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and the corresponding equation of continuity is

LNy )
ox dy

We note that equation (2) is the condition of exactness of (1), it follows that (1)
must be an exact differential, dy(say). Thus

vdx —udy =dy= g—wdx +g—wdy
X y

so that u=_8_1|! V:8_1|I

dy ox

This function y is called the stream function or the current function or
Lagrange’s stream function.

Obviously, the streamlines are given by the solution of (1) i.e. dy = 0 i.e.
w = constant. (For unsteady flow, streamlines are given by y = f(t))
Thus, the stream function is constant along a streamline.

From the above discussion, it is clear that the existence of stream function is
merely a consequence of the continuity and incompressibility of the fluid. The
stream function always exists in all types of two dimensional motion whether
rotational or irrotational. However, it should be noted again that velocity
potential exists only for irrotational motion whether two dimensional or three
dimensional.

12.1. Physical Interpretation of Stream Function :-

Let P be a point on a curve
C in xy-plane. Let an
element ds of the curve
makes an angle 6 with x-

axis. The direction
cosines of the normal at P
are

(cos (90 +6), cos 6, 0)
1.€. (—sin 0, cos6, 0). 0
The flow across the curve C from right to left is

= [ q-fds,where i =—sin®i+cos6j,
C

q:uiA+vj
= [ (—usin®+ vcos0)ds
C
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| a—Wsin6+a—wcose ds
C ay ox

8_\|Id_x+8_l|fﬂ ds cosezd—x, s1n9=ﬂ
ox ds dy ds ds ds
_[ (awdx+ dyj
o L ox ady

= [ dy= (8~ ¥
C

where y, and yi are the values of y at the initial and final points of the curve.
Thus, the difference of the values of a stream function at any two points
represents the flow across that curve, joining the two points.

12.2. Corollary. If we suppose that the curve C be the streamline, then no fluid
crosses its boundary, then

(B-y)=0 = ys=ya
i.e. yis constant along c.

12.3. Relation Between ¢ and y (i.e. C—R equations) :-

We know that the velocity potential ¢ is given by

o[22
ox " dy

. aq> 20
€. = E— 1
ie u ax oy (1)
Also, the stream function yis given by

= a_l|l V= a_l|1 2)

dy ox

From (1) and (2), we get

90 aw a¢ oy
and —=-—— 3
ox ay dy  ox ©)

Equations in (3) imply
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VX =0and Vy=0
i.e. ¢ and yare harmonic functions.
Again, from (3), we get
V¢ = grad ¢ :—q=—(uiA+vj)
[0, vy
dy  Ox
_ Vi 9vs
dy  ox

= %(}xﬁﬂz—i’(ixl&)

- [V, W
ox 9y

= wafq: grad 1//><1A<
i.e. grad ¢ = (grad l//)XlA( =—kx grad ¥
ie. Vo = Vyxk (4)
Again, from (3), we note that

o2 %)

ox ox dy | dy
N 9oy 9900 _
0Xx 0x dy dy
ie. Vo-Vy =0 (5)

Thus, for irrotational incompressible two-dimensional flow (steady or
unsteady), ¢(x, y), ¥(X, y) are harmonic functions and the family of curves
¢ = constant (equipotentials) and y = constant (streamlines) intersect
orthogonally.

12.4. Exercise. Show that u = 2¢ xy, v = c(a® + x° —y2) are the velocity

components of a possible fluid motion. Determine the stream function and the
streamlines.

12.5. Remark. We shall consider the study of two dimensional motion later
on. At present we continue discussing three dimensional irrotational flow of
incompressible fluids.
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UNIT - 11

1. Three Dimensional Irrotational Flow

1.1. Acyclic and Cyclic Irrotational Motion. An irrotational motion is called
acyclic if the velocity potential ¢ is a single valued function i.e. when at every
field point, a unique velocity potential exists, otherwise the irrotational motion
is said to be cyclic. Clearly, only acyclic irrotational motion is possible in a
simply connected region.

For a possible fluid motion, even if ¢ is multivalued at a particular point, the
velocity at that point must be single-valued. Hence if we obtain two different
values of ¢, these values can only differ by a constant.

At present, we restrict ourself to acyclic irrotational motion for which we prove
a number of results related to ¢.

1.2.Mean Value of Velocity Potential Over Spherical Surfaces. Theorem :
The mean value of a ¢ over any spherical surface S drawn in the fluid
throughout whose interior V2¢ =0, is equal to the value of ¢ at the centre of the
sphere.

Proof. Let ¢(P) be the value of ¢ at the centre P of a spherical surface S of
radius r, wholly lying in the liquid and let ¢ denotes the mean value of ¢ over

S. Let us draw another concentric sphere ® of unit radius. Then a cone with
vertex P which intercepts area dS from the sphere S, intercepts an area d® from
the sphere ® and we have

=>

do r

ds r?
azl—z 2dS:r2d0) (D
Now, by definition

[odS |
. ods

*= [dS ~ 4m?s
S
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1 ) 1
= r°dow=—/|06dw
4mr? 'SM) 47t‘s[¢

90 1 90 1 . 90dS
T | Zdo= Bt i
or 47t£ or 4my or 1’

1 foli)
= —dS 2
4qr? £ or @)

2 .
| ® r" is constant on S

Since the normal fi to the surface is along the radius r, therefore on S, we have

00 do N
L =T _Vo. 3
or on o ©)
From (2) & (3), we find
0 1 .
— = Vo.ndS
o 4mr? i o0
= ! div(Vo)dt | Gauss theorem
Agr
T =
1
= 4m2{v2¢dx=0, V20 =0

where 7 is the volume enclosed by the surface S.

Thus 8_(1) =0 = ¢ = constant.
or

This shows that ¢ is independent of choice of r and hence mean value of ¢ is
same over all spherical surfaces having the same centre P. When S shrinks to
point P, then ¢ = O(P)

1.3. Corollary.  The velocity potential ¢ can not have a maximum or
minimum value in the interior of any region throughout which V2¢ =0.

Proof. If possible, suppose that ¢ has a maximum value ¢(P) at a point P. We
draw a sphere with centre P and radius €, where € is small. Then the mean
value 6 of ¢ must be less than O(P) i.e. 6 < ¢(P) as ¢(P) is maximum. This
is a contradiction to the mean potential theorem in which & = ¢(P). Thus ¢
cannot have a maximum value. Similarly ¢ cannot have a minimum value.

1.4. Theorem. In an irrotational motion the maximum value of the fluid
velocity occurs at the boundary.
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Proof. Let P be any interior point of the fluid and Q be a neighbouring point
also lying in the fluid. Let us take the direction of x-axis along the direction of
q at P. Let gp and qq denote the speed of particles at P & Q respectively.

, (%)
Then qp—(axjp

, ()", (%) (a_ﬂ
and qQ_[aXJQ+(aYJQ+ > .

Since V’¢=0 = 9 (Vo) =0 =V* (@j =0
o0x ox

0 o )
= a—q)satlsfles Laplace equation. Therefore, by mean value theorem
X
00 ) .. .
(corollary), a—cannot be maximum or minimum at P. Thus, there are points
X

such as Q in the neighbourhood of P such that

2 2
99 99 2 2
[a— > a— = dq >(p
X ) q X )p
=> ¢p cannot be maximum in the interior of fluid and its maximum value |q], if
any, must therefore occur on the boundary.

1.5. Note. q = | q| may be minimum in the interior of the fluid as q =0 at the
stagnation point. i.e. q iS minimum at stagnation points.

1.6. Corollary. In steady irrotational flow, the pressure has its minimum value
on the boundary.

Proof. From Bernoulli’s equation, we have
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B+lq2=constant 1
p 2

Equation (1) shows that p is least when q2 is greatest and by above theorem, q2
is greatest at the boundary. Thus, the minimum value of p must occur only on
the boundary.

1.7. Note. The maximum value of p occurs at the stagnation points, where q =

0.

1.8. Theorem. If liquid of infinite extent is in irrotational motion and is
bounded internally by one or more closed surfaces S, the mean value of ¢ over
a large sphere ., of radius R, which encloses S, is of the form

- M
=—+C
¢ R

where M and C are constants, provided that the liquid is at rest at infinity.

Proof. Suppose that the volume of fluid acrossing each of internal surfaces
contained within 2, per unit time, is a finite quantity say —47tM (i.e. —41tM
represents the flux of fluid across > or S). Since the fluid velocity at any point

90

of X is R radially outwards, the equation of continuity gives

d0
— dY = —41M 1
£ R T (H
But d¥ = R’dw

Therefore,
L1 R2p= M
4ny JOR

- 1790 ,-—M

0) PR
4ny OR R’
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M
=
4z E)R J bdeo
Integrating w.r.t. R, we get
1 [ ¢do= M.ic
Ay R
where C is independent of R.
= L ¢( J Mic
47 3 R
dx
AR
j— 2 = — +
4mR R
- M
= =—+C 2
¢ R 2)

To show that C is an absolute constant, we have to prove that it is independent
of co-ordinates of centre of sphere >.. Let the centre of the sphere 2 be

displaced by distance 0x in an arbitrary direction while keeping R constant,
then from (2),

90 oC
v _ 3
ox ox ©)
| ® R is constant
Also. 9 _o| 1 o Jodw _ L9

ox 0x 4y Ox

) 00 e

=0, since a_x =0 on 2, when R—o as the liquid is at rest at

infinity.

.. From (3), we get

E;_C =0 = Cis an absolute constant.
X
Hence
- M
0= R + C, where M and C are constants.
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1.9. Corollary. When closed surfaces within 2. are rigid then no flow can take
place across them, therefore, in that case M = 0 and 6 =C.

This shows that mean value of ¢ over any sphere enclosing solid rigid
boundaries is constant.

2. Kinetic Energy of Irrotational Flow

We shall prove that K.E. is given by

90

—dS,
on

_P
T_2£¢

where ¢ is the velocity potential.
We know that if T be the finite region occupied by the fluid, then the K.E. is

given by

1, _» 1, __

T=—[pq dt=—] p(@qdt
2 T 2’5
1 _
=~ [ p(Vo.vg)dT 1g=-V¢

2 T

If fluid density is constant, then
T= % [(Vovo)dt (1)
T

Now, div (¢ Vo) = V.(0V0) = V. Vo. + ¢ (V. V)
= V9. Vo + 0 V3
=Vp. Vo, 10VH=0

=>

Therefore, from (1) & (2), we get

T= %Idiv (OVo) dt = %f oVo. ndS | By Gauss theorem
T S

89
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P ovoi)is= P 020ds, where S =So+ 81+ +..+5,
25 2g on

denotes the sum of the outer boundary surface Sy and the inverse boundaries
S1, S,,..., S, and n is unit normal to S drawn out of the fluid on each
boundary.

Also T = —%j ¢%ds, where 0 is unit normal to S drawn inside the fluid on
S n

each boundary.

2.1. Kelvin’s Minimum Energy Theorem. The kinetic energy of irrotational
motion of a liquid occupying a finite simply connected region is less than that
of any other motion of the liquid which is consistent with the same normal
velocity of the boundary.

Proof. Let T be the K.E., q be the fluid velocity and ¢ be the velocity potential

of the given irrotational motion. Let T be the region occupied by the fluid and S
be the surface of this region, then

Pr - p
T:ﬂ q2d1:§{ (-V)* dt

_ P90
=5] 05,98

Let T, be the K.E. and q, be the velocity of any other motion of the fluid
consistent with the same normal velocity of the boundary S (or consistent with
the same kinetic boundary condition)

For both the motions, the continuity equation is satisfied i.e.

ey

V-q=0=V-g @)
The boundaries have the same normal velocity
ie. q-n=gq,-n
ie. (q-9)-0=0 3)

Now, let us consider

TI—T:%I (q12—q2) dt
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= 2] ba-@-o+@-ks
=2 0@ a0 @-9'a

==p] Vo.@-Dd+T] @-D’dr @)
T T
From vector calculus, we have

V0@ -9 1=V @ -9+ V-@ ~9)
ie. Vo @ -D= V0@ -D]-0V- (@ -1
Therefore, from (4), we find
Ti-T=-p[ V0@ -Dc+p[ 0V0@ -qdr
+0] @-0

=—p[ 0(@, -9 -AdS+p[ oV-(q, -Qdr
S T

+ % _[ (q,—-q 24t IBy Gauss theorem
T
- % [ @-or | using (2) & (3)
T
>0
= T,>T.

Hence the theorem.

2.2. Kinetic Energy of Infinite Liquid. Theorem : An infinite liquid is in
irrotational motion which is at rest at infinity and is bounded internally by solid
surface (s)S. Show that the K.E. of the moving fluid is

T= le jq)@ds
2 S aIl
where S = S; + S, + ... Sy denotes the sum of the inner boundaries Sy, S, ...,
Snx and 11 is normal to S drawn out of the fluid on each boundary.

Proof. Let X be a large surface enclosing the surface (s) S and T be the region
bounded by S internally and by . externally.

91
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Using the result of K.E. for finite liquids, we find that the K.E. T* for finite
region T is given by

s 2 P 690454 P20
T _2£¢andS+2£¢aHdS (1)

Now, div q = V2¢ = 0 throughout T and the divergence theorem accordingly
gives

[divgdt=0 = [fi-qdS=0
T SUX

= [A-VodS=0 = | R 4s-0

Suz sur on
= [Rus+[Pas=o @)
sall Eal’l

Since the surface S is solid, there is no flow across it, hence

j@ds =0 3)

S aIl
Therefore, from (2), we get

%ds =0 4)
zan

For the surface ., as 2 goes to infinity, the liquid is at rest
= q=0 =Vd=0 = ¢ =constant = C (say) 4)

Hence, as 2. goes to oo, the K.E. of the liquid is
Pr. 00 . P (99 .
T*—> T==0—dS+=c|—dS | Using (5
2 'l 0 on 2 i on )
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_ P2 -
=3 £ q)an ds | Using (4)

Hence the result

2.3. Remark. We note that the K.E. for finite and infinite liquid has the same
expression.

2.4. Theorem. Show that acyclic irrotational motion is impossible in a finite
volume of fluid bounded by rigid surfaces at rest or in infinite fluid at rest at

infinity and bounded internally by rigid bodies at rest.

Proof. If possible suppose that acyclic irrotational motion is possible and let ¢
be the velocity potential. Then, K.E. of the fluid is

P \V 2 P o0
2:[( ) e Z'S[ on > )

Where S is the sum of all the rigid boundaries when 7t is finite or the sum of
internal rigid boundaries when 7 is infinite.

Now, since the boundaries are rigid, then at every point of S, the normal
velocity is zero

i.e. % = ( at each point of S 2)

on
From (1) & (2), we get

[ q*dt=0 = ¢*=0= =0 ateach point of .

T
= liquid is at rest.
Hence there is no motion of fluid.
=> acyclic irrotational motion is impossible.
2.5. Corollary. If the solid boundaries in motion are instantaneously brought to
rest, show that the motion of the fluid will instantaneously cease to be
irrotational.

Proof. If possible, assume that the motion remains irrotational, then the K.E. is

given by
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P 90
T=—p[g2dt==p[ 622ds 1
2p{q T 2p£¢an (1

When the surface S (solid boundary) is brought to rest instantaneously, then

q =0 at each point of S.

= 0 = constant at each point of S.
00 .
= — =0 constant at each point of S.
n
= g=0int
= there is no motion.

Thus the motion is no longer irrotational.

2.6. Uniqueness Theorems. Theorem 1: If the region occupied by the fluid is
finite, then only one irrotational motion of the fluid exists when the boundaries
have prescribed velocities. OR Show that there cannot be two different forms
of acyclic irrotational motion of a given liquid whose boundaries have
prescribed velocities.

Proof. If possible, let ¢; and ¢, be two different velocity potentials
representing two motions, then
V2 = 0= V¢, (1)

Since the kinetic conditions at the boundaries are satisfied by both flows,
therefore at each point of S,

99, _ 99,
on  on @

Let¢:q)1—q)2

= V%9 = V2, — V2, = 0 at each point of fluid. and % = %_B(& =0 at
on dn odn

each point of S.
= ¢ represents a possible irrotational motion.

Also, the K.E. is given by

Pia?dar=P 6% gs = 9 _
2_[(q) d1_2£q>ands_0 =0
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= q =0 at each point of fluid.
= V¢ = 0 at each point of fluid.
:>V¢1—V¢2=O:>V¢1=Vq)2

which shows that the motions are the same. Moreover ¢ is unique apart from
an additive constant which gives rise to no velocity and thus can be taken as
zero (without loss of generality)

Theorem II. If the region occupied by the fluid is infinite and fluid is at rest at
infinity, prove that only one irrotational motion is possible when internal
boundaries have prescribed velocities.

Proof. If possible, let there be two irrotational motions given by two different
velocity potentials ¢; & ¢,. The conditions on boundaries are

90, _ 90,

on  on )

and q, =q, = 0 at infinity 2)
Let us write ¢ = 0; — ¢» 3)
= V=V -Vp=0-0=0

= motion given by 0 is also irrotational.
Further from (3), we get

99 _90; 99, _ | using (1)

on on on

= q-n=0 =q=0 on the surface

q=-Vo=-Vo, +Vo,
=(q,—q,=0at o | using (2)

Therefore =0 everywhere on the surface and also at infinity.

Hence we get ¢ = constant = ¢; — ¢, = constant “4)

Without loss of generality, we can take the constant on R.H.S. of (4) to be zero
(it gives no motion) and thus we get ¢; = ¢,
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2.7. Remark. The above two uniqueness theorems are useful in finding
solutions of V¢ = 0 subject to prescribed boundary conditions.
3. Axially Symmetric Flows

A potential flow which is axially symmetric about the axis 6 = 0, ® (i.e. z-axis
is taken as the axis of symmetry) has the property that at any point P, all the
scalar and vector quantities associated with the flow are independent of

azinuthal angle y such that aiz 0, where (r, 0, y) are spherical polar co-

ordinates.
z
P(x,y,z)
(r, 0, ¥)
r
0 e
Y
\V]
X Q

The equation of continuity div q= 0 for steady flow of an incompressible fluid
becomes.

19, , 1 d .
— + —(sinBqgy) =0 1
r? or rar) rsin 6 00 (5in 9g) M

For irrotational motion q=—-V¢, where ¢ is velocity potential and thus

From equation (1), we have

ii(# @}Li(sm e@j =0 (2)
r? or or r2sin© 00 00

Let a solution of (2) in separable variables r, 6 has the form

¢ =—-R(r) ©(6) 3)
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Using (3) in (2), we get

i[# i(R@)} : i[sinei(R(@)} =0
or or sin® 00 00
= @i(rza—Rj+ R i(sine(g—@ij
or or sin® 00 00
= ii(# d—Rj =— 1 i(sin e@j 4)
R dr dr ®sin6 do do

The L.H.S. of (4) is a function of r only while the R.H.S. is a function of 0
only. The equation can therefore be satisfied if and only if either side is a
constant, say n(n+1) and thus we get

1 d{ ,dR
——|1r"— |=nnh+1 5
R dr( drj ( ) ©)
and
i(sin 6@j+n(n+l)®sin6 =0 (6)
doe doe
To solve (5), we put
R=r" R _ mr™!
dr

Thus (5) = —-3(mr™ )= n(n+1)
r™ dr

= m i(rmJrl ): r"n(n+1)
dr

= m (m+1) " =r" n(n+1)
= (m2 + m—nz—n) =0

= (m—n) (m+n+1) =0

= m=norm=—(n+l)

Therefore, solution of (5) can be written as
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R(r) = A, 1 + Br ™+ (7

To solve (6), we put

cosf =
d_dud _ g9
de de du du

Therefore, equation (6) becomes.

— sinB@ i sin B(—sin G)E +n (n+1) Osin6=0
du du

= i(sin2 9@j+ nn+1)® =0
du du

:si (1—cosze)@ +n(n+1)®@=0
du du

= i{(l—u2)@}+n(n+l)®:0 ()
du du

Equation (8) is a Legendre’s Equation and possesses a solution known as

Legendre Function of the first kind P,(W)

Therefore,
® = P,(W)
Hence the general solution of (3) is of the form
o(r, 8) =-R(r) © (6)
=—[An 1" + B, 1 ™1 P, (cos 0) )

oo

( complete solution is the sum of all such solutions i.e. Y, ....... )
n=0

3.1. Uniform Flow. Consider the flow which corresponds to a potential given
by (9) with

A,=US,B,0, n=0,1,2, ...... ) | S is knonecker delta
Sii=1S;j=0fori#]

Where U is a constant.
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Since P; (cosB) = cosB, equation (9) becomes
o(r, ) =—Urcos 6 =-Uz |z =rcosb
Thus

which is a uniform streaming motion of the fluid with speed U along the
direction of z-axis or the axis 0 = 0.

3.2. Sphere at Rest in a Uniform Stream. Consider an impermeable solid
sphere of radius ‘a’ at rest with its centre at the pole of a system of spherical
polar co-ordinates (r, 0, ). The sphere is immersed in an infinite
homogeneous liquid with constant density p, which, in the absence of the
sphere, would be flowing as a uniform stream with speed U along the direction
6=0.

The presence of the sphere will produce a local perturbation of the uniform
streaming motion such that the disturbance diminishes with increasing distance
r from centre of sphere. We say that the perturbation of the uniform stream
tends to zero as r—oo.

In this problem z-axis is the axis of symmetry. Undisturbed velocity of
incompressible fluid is UKk ie. q=U k
= the velocity potential ¢y due to such a uniform flow would be

0o =—-Uz =—-Ur cosO

When the sphere is inserted, the undisturbed potential —Ur cos® of uniform
stream has to be modified by “perturbation potential” due to the presence of the
sphere. This must have the following properties.

@) It must satisfy Laplace equation for the case of axial symmetry

(i1) It must tend to zero at large distances from the sphere

So, we write  ¢(r, 0) =—-Urcos 0 + ¢; (r, 0) (r = a)
where ¢, satisfies the Laplace equation together with boundary conditions

20 _ 90, d0

— =-Ucos9+— — =01e. velocity normal to
or or or y
sphere is zero atr = a
0
:%=+Ucos@(r=a,a£6§n)
r

and
VOl — 0 as r—oo.

Hence a suitable form of function ¢ is
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0, =-B 2 cosO

So, we assume (in view of (9)) that
B
o(r, ) =—Ur cosO - coso (D)
r

The constant B is to be determined from the fact that there is no flow normal to

the surfacer = a i.e. (%j =0
ar r=a

= —U cosO + gcosezo =B =%Ua3
a

Thus (1) becomes
3

o(r, 0) = —Ur cosH —Izj—azcos 0
r

3
=-U (r + a_zJ cos0 2)

2r

Now, the uniqueness theorem II infer that the velocity potential in (2) is
unique.
The velocity components at P(r, 0, V), (r = a), are

3
qr:—%z U(l—a—3jcose

r
__l@—_U 1+£ sin 3)
4o r 00 2r3
__ 1 9 _,
rsin 0 oy

Different terms related to motion are obtained as follows.

(i) Stagnation Points : Stagnation points are those points in the flow where the
velocity vanishes i.e. q=0. Thus these points are obtained by solving the
equations
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r
and “4)

3
U(1+a—Jsin9=0

3
U[l—%Jcosezo

213

which are satisfied only by r = a, sin@ = 0. i.e. r = a, 8 = 0, © Thus the
stagnation points are (r = a, 8 = a) and (r = a, © = 7) on the sphere. These are

referred to respectively as the rear and forward stagnation points.

(ii) Streamlines : The equations of streamlines
dr _rd® _ rsinBdy
q; Je q\V

for the present case, become

dr rd® _ rsin 6dy

3 B 3 0
U 1= |cos® —U[1+ . |sin®
r 2r

= dy=0 = y=constant.

a’ a’
r(l — —3j cos 6dO = —(1 + —3j sin0O dr
r 2r

r=a

and

3 3
1(22—+1Jdr =—2cot0d0
ryr-—a
3-2
= (%jdr = —2cotBd8
r —ar

Integrating, we get

log (i —a’r™") =2 log sind + log C

1'3—33 )
= log =—log sin"0 + log C
r

. Cr
= sin’0 = ——— where C>0
P —a’

101
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For each value of C, above equation gives a streamline in the plane
Y = constant. The choice of ¢ = 0 corresponds to the sphere and the axis of
symmetry.

(iii) Pressure at Any Point : The pressure at any point of the fluid is obtained
by applying Bernoulli’s equation along the streamline through that point,
taking the pressure at o to be of constant value p.. Thus, in the absence of
body force, the Bernoulli’s equation for homogeneous steady flow is

Piliver=c
p 2

At infinity, p = p. and =V¢ = Uk, we get

c=P 1y
p 2
Thus
= po +2pU —Lp (V)2
P =P > >
= P=pPs+
2 2
1 1 2 a’ 2 2 a’ . 2
—pU " ——p|U"|1—— | cos"0+U"|1+—| sin" O
2P 2p[ ( r3J 2r’
IVb=—-q

1 2’ a2’ Y
= p=pw—EpU2H1—r—3J cos29+(l+§j sin29—1] )

which gives the pressure at any point of the fluid. Of particular interest is the
distribution of pressure on the boundary of the sphere. It is obtained by putting
r=ain (5) and thus

1 2’
p:pm—EpUz (14‘;} Sin29—1
T

1 2 9 -2 1 2 .2
=Po——pU | —sin“"0-1|= +—pU~* (4-9 sin“0
p 2p (4 j p.. 8p ( )

1
= Peo +§ pU2 (9cos’0 —5)
The maximum pressure occurs at the stagnation points, where 6 = 0 or ©. Thus

1
max = Poo +— U
p p 2P
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(Pmax- 18 also called stagnation pressure)

The minimum pressure occurs along the equatorial circle of the sphere where 0
=n/2

Therefore,

5 0
min. = Poo —— PU
p P 3 p
A fluid is presumed to be incapable of sustaining a negative pressure, thus

8p..

5p

At this stage the fluid will tend to break away from the surface of the sphere
and cavitation is said to occur. i.e. a vacuum is formed.

pmin.:0 =>U=

(iv) Thrust on the Hemisphere : Now, we find the thrust (force) on the
hemisphere on which the liquid impinges, r=a, 0 <0 < /2.

Let 8S be a small element at P (a, 6, y) of the hemisphere bounded by circles
at r = a and at angular distances 0 and 6 + 80 from axis of symmetry
(i.e. z-axis)

pcos 0 E
, 450
Z 8 E Z
e
Pmax '
pmin

The component of thrust on 8S is p cos® 8S. Hence the total thrust on the
hemisphere is along Z'O and is given by

pd
a

[=r0=ad0d
dS = (2ma sin 6)(ad0)
F= [p cosBdS

hemisphere

/2

= [pcosB (2ma sin) (adb)
0
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/2

= [ (2ma’) sin® cosO [pm + % pU*(9cos” 0 — 5)}1@
0
(using value of p at boundary)
2 |-
=Ta -—pU~ |.
oo

3.3. Sphere in Motion in Fluid at Rest at Infinity. Let a solid sphere of

2

radius ‘a’ centred at 0 be moving with uniform velocity —Uk in
incompressible fluid of infinite extent, which is at rest at infinity. Z-axis is the

axis of symmetry and k is unit vector in this direction. (As the sphere is
moving with velocity -Uk = the relative velocity of fluid if the sphere be
considered to be at rest is Uk .)

The boundary value problem for ¢ is now to solve

V=0 (1)
such that —a_a(b =-U cos0, (r=a) 2)
r
and
Vo) =0, (r—o0) 3)

The present case is also a problem with axial symmetry about the axis 6 = 0, 7,

SO

0 =¢(r, 8)
Also, since P;(cos0) = cosO | Legendre’s function

and the boundary condition (2) implies that the dependence of ¢ on 6 must be
like cos0, therefore ¢ has the form

0= —(Ar + %JPI (cosB) = —(Ar + %J cos0
r r

However, to satisfy (3), it is necessary that A = 0, and then from (2), we get B

:an3.
2

Thus the solution for ¢ is

1.3
0= ;? cos 4)
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From here, the velocity components are obtained to be

00 —Ua’ ~19¢p —Ua® .
_a_i) = r3 cos 0, e = Ta—g = —21.3 sin0, Qy = 0,

qr =

where (r, 0, ) are spherical polar co-ordinates. The various terms of
particular importance related to this motion are obtained as follows.
(i) Streamlines : The differential equations for streamlines are

dr _ rd® _ rsinBdy
q; de q\lf

) dr rdo rsin Ody
ie. 3 = 3 =

—Ua Ua” | 0

5 —Cos®  ———sinB
r 2r

= dy =0 = y = constant.
and

g: 2 cotf d® = logr=21logsin® + log C

r

= r=C sin’0

Therefore, streamline lines are given by r = C sinze, Y = constant

(ii) K.E. of the Liquid : Let S be the surface of sphere and p be the density of
liquid, then K.E. is given by

90 43

p
Ti==|0=— 5
1= J 0= (5)
Where 11 is the outwards unit normal. But for the sphere fi is along radius
vector
Therefore, (q)a—(bj = (— q)%j
on ) or)._,
1
= [E Uacos GJ (U cosB)
= 1 U?a cos’0
2

Therefore,
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2
Ti=2] Lutacos?0ds =222 [* cos?e (2ma sin) (ado)
2% 2 4 70

3 2
= mpa U _[ncoszesine do
2 0
0<0<T
Sy <L2nw
3 npa’U’ _00539
2 3 o
= l7tpa2 U’ —[inpa3j L0
3 3 4 )
L2
=—MU 6
1 (6)

where M' = %ﬂ: pa3 is the mass of the liquid displaced by the sphere.

Also, K.E. of the sphere moving with speed U is given by
T,= %M U’ )

where M = §n6a3 is the mass of the sphere, ¢ being the density of the

material of the sphere.

Therefore, from (6) and (7), total K.E. T is given by
T=Ti+T,= %(M+%)U2 ®)

The quantity M +% is called the virtual mass of the sphere.

3.4. Accelerating Sphere Moving in a Fluid at Rest at Infinity. The solution
derived above for ¢ is applicable when the sphere translates unsteadily along a
straight line. In the present case, we take U = U(t) and get the velocity
potential as

3
0=0¢(r,0,t)= — I;(tz)a cosO (1
r
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The instantaneous values of velocity components and K.E. at time t are given
by

_ 3 _ 3
g = U(3t)a c0s6,q,q = U(t)a

53 sin@, qu = 0 | similar to steady case
r r

_ v e e
and T= 2[M+2MJU(t) )

The pressure at any point of the fluid is obtained by using Bernoulli’s equation
for unsteady flow of a homogeneous liquid, in the absence of body force, as
p, 1=, 00

+=U - =1t
p 2 ot ®

3)

where f(t) is a function of time t only.

Let p be the pressure at infinity where the fluid is at rest, then from (3), we get

f(t) = 2= and thus
p

p p 2 ot

To find a , we proceed as follows :

Since U=-Uk =-U(t)k is the velocity of the sphere, the velocity potential
given in (1) can be expressed in the form

_1a’U-p
¢_ 2 r3

(&)

since 1 is the position vector of a fixed point P of the fluid relative to the
moving centre 0 of the sphere, it follows that

S
U= g(—r) (6)
Also, sincer’= T = r% =T a—f_ - lusing (6)
= (-1)-(-Uk)
=rU ¢ k)

=r U cosO
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:ﬁ =Ucos® (7
ot
Differentiating (5) w.r.t. time t and using (6) & (7), we get
2 2
% :la3 U Cosea—U+ U cos’ 8
ot 2 r’ r2 ot 1’
a’| Ucos® U? 3U%cos’6 & ou
= —— 4+ = —
2 r? r r ot
Also,
2.6 2.6
U?=q; +q; = v 6a cos29+U—isin26
r 4r
UZa®

= g (cos26+lsin2 Gj
r 4

The pressure at any point of the fluid can be obtained from equation (4).
In particular, at a point on the sphere r = a

%z_—zl[[&acose+U2 —3U% cos® 9]

2

and U= UT 4 cos’0 + sinze)

and the corresponding pressure is given by

P_Pe_ 1 0s0+LU%(9cos?05) (8)
p p 2 8

The force (thrust) acting on the sphere is given by

F = [ pcosB(2masin 0)(ad®)k

= 2na2ﬁjg[pm —%pl‘g’acos9+%pUz(9cos2 9—5)} cos0 sin6 dO

= %npa3[&ﬁ=l 4

(— na%jl&ﬁ ~ Ik
2.3 2

where M’ 25 na3p is mass of the liquid displaced. This shows that the force

acts in the direction oppositing the sphere’s motion.
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3.5. Equation of Motion of the Sphere. Let R be the external force per unit
mass in the direction of motion of the sphere. Let us use the result that the rate
of doing work is equal to the rate of increase in K.E.

Thus RU = de_1d (M +—jU2(t)
dt  2dt 2
| From (2)
= (M +MjUd—U
2 dt
= d_U =R _lM'd_U 9)
dt 27 dt

If the liquid is not there, then M’ = 0 and the equation of motion of the sphere
is
Md—U =R (10)
dt

Comparing equation (9) & (10), we note that the presence of the liquid offers a

. 1 .
resistance of the amount EM'(L_[‘;I to the motion of the sphere

Let R” be the external force per unit mass on the sphere when there is no liquid,

then
MR = external force on the sphere in the presence of the liquid.
=MR'-MR'=(M-M") R’
3 3
Since. M = 4nca M= 4mpa
3 3
R = (G—_pJR' (11)
c

From equations (9) & (11), we find

Mﬂ — (HJR'_l M'ﬂ
dt c 2 dt

S Ul o i S o i
2 ) dt o M
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M‘L—Uz M_ﬁ, R'= 0_‘1’ R’ (12)
t M + 0+5

This is the required equation of motion of a sphere in a liquid at rest at infinity.
From equations (10) & (12), we note that the effect of the presence of the

liquid reduces the external force in the ration 6 —p : 6 + p .

2
3.6. Remark. We have already studied the impulsive actions in Unit-I, where,
we had derived the relation between the impulsive pressure P and the velocity
potential ¢ as P = p¢. Here, we derive the expression for K.E. generated due to
impulsive action.

3.7. Kinetic Energy Generated by Impulsive Motion : Let us consider
incompressible fluid, initially at rest, which is set in motion by the application

of impulse Tl , Tz,...,im to rigid boundaries Sy, S,,..., Sy, respectively. The fluid
may be of finite or infinite extent. We know that the K.E. of the irrotational
motion generated in the fluid is given by

9 43

P ey

_P
T= zjsq)

where S =S, + S, +... +S,,, 11 is outwards unit normal on each S;
Let the velocity given to S; be U, (i =1, 2,..., m), then on S;, we have

2 . —
——=n.U. 2
on s )
g =-v¢
using (2) in (1), we get
Px 17 A
T:—Ei; Ui.fsi fiodS (3)

But the impulsive force exerted by the fluid on S; is ﬁi , where
R, = [ fiPdS=p[ f¢dS |P=p¢

4)
Thus from (3) & (4), we get

T=-1%7 & )
2 i=1



FLUID DYNAMICS

3.8. Example. Incompressible liquid of constant density p is contained within
a region bounded by two concentric rigid spherical surfaces of radii a, b (a <
b). The fluid is initially at rest. If the inner boundary is suddenly given a

velocity U1A<, where k is a constant vector, show that the outer surface
experiences the impulsive force

2mpUa’b’ ~
b’ -a’ 5
Also calculate the corresponding K.E. generated by the impulsive motion.
Solution. The motion generated in the fluid is irrotational =
G=-Vo = V?¢=0 which is the equation of continuity. The boundary
conditions which ¢ must satisfy, are

—%:Ucose (r=a) (D
or

—@=0 (r=>) (2)
or

with (r, 0, ) spherical

polar co-ordinates and

with 6 = 0 along the

direction of k.

The form of boundary conditions suggest a
solution of the form

¢ =—(Ar + BT?) cos (3)

which satisfy (1) & (2) if
A —2—]33 =U, A —2—]33 =0
a b
~Ua’® —Ua’d’

= A=—’ ==
b’ —a’ 2(b° —a?)
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Thus, the solution of the problem is

Ua® b*
= r+ cos 0
¢ b’ —a’ ( 2r? ]

Impulsive force acting on the outer boundary in the direction of k is

F=|f, (P),y cos8dsk

where P)r=b = (PD): b

pUa’ b?
= b+ cos0
b’ -a’ { 2b*

_3 2Ua’bcos
2 b’-a’
and for the outer sphere r = b,

dS =27 (b sinb) (bd6),0<O0<m

=3 pUa’b

02p3—a’

cos” O(27th” sin 8) dOk

Thus, impulsive force, F= I

3mpUa’b’k
b’ -a’

J Oﬂcos2 fsin 6 dO

2npUa’b’
B
Hence the result
Now, if ﬁl, ﬁz denote the velocity of spheres of radii a & b respectively and

ﬁl, §2 be the corresponding impulsive forces exerted by the fluid, then

— ~—  — — — 2mpUa’b’ -+
U, =UkU,=0R, =F== "5
KE,T=-130, R,

2

[0, R, +0, R,)=—2T, R

Also,

= R,-k=pf A-k@),.,dS

a



FLUID DYNAMICS 113

—-a 2a

3 3
=—p J-Sa cos9|:b3Ua 3 (a+ b 2]cos6} 21 (a sinB) (a dO)

( negative sign due to inwards normal i.e. on the inner sphere, pressure is

inwards)

3 3 3
=— bp}Ua 3 2a2 +2b .2na2_[(:c cos’0 sind do
—-a a

_ —2mpUa’(2a’ +b%)
3 b’ —a’
Thus, from equation (4), we get

_ 1mpU?a’(2a’ +b?)

T
3 b’ —a’

3.9. Deduction : If we let b—co, then it becomes the case of a sphere of radius
‘a’ moving in an infinite liquid at rest at infinity and we get

T= Lt L ; =—mpU’a’
b—e 3 a 3
l_ﬁ
= _anaﬁ]w = lMle

where M'1 = % 7tpa3 is the mass of liquid displaced by the sphere r = a

3.10. Example. (Motion of Two Concentric Spheres) : The space between two
spheres is filled with incompressible fluid. The spheres have radii a, b (a < b)
and move with constant speeds U, V respectively along the line of centres.
Show that at the instant when the spheres are concentric, the velocity potential
is given by

[(a3U —b3V)r+;(U - V)a3b3f2}cose

0=

b® —a’

Also determine the impulse which is required to produce the velocity U to the
inner sphere, when outer sphere is at rest.

Solution. Let p be the density of the liquid.
We are to solve V¢ = 0 under the boundary conditions
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90

T

and 9

T

UcosO, r=a

ey

=VcosO, r=b 2)

where U & V are taken in the same direction.
The solution of the Laplace equation is of the form
0 =—(Ar + B1?) cosH
o) 2B
= -— =|A—-—|cosH
(%)

r

and thus the boundary conditions give

A—2—]33=U, A—2—]33:V
a b
Solving for A & B, we find
B - 1(U-v)a’s® a’'U-b’V
2 at-bv*

a’—b’
Thus the velocity potential for this motion is

3 3 31,3
a’U-b"V 1 (U-V)a’b’ 1
¢=—|:( R Jr+§ 3 —:lcose

a’—-b? r?

{(a3U—b3V)r+;(U—V)a3b3f2}cose

b? —a’

Hence the result

Impulse :- When outer sphere is at rest, then V = 0 and from equation (3), we

get
3 3
o= bga 3(r+2b2}:ose 4)
—a r

M = 3 T a’c be the mass of inner sphere

Let

and M’ = 3 na3p is the mass of liquid displaced by the inner sphere.
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If I be the impulse, then by the principle of linear momentum, we have
I =MU + Total impulsive Pressure

ie. I=MU + ] (P); =, cos® dS

= Ua’

:MU"_p.[o b _a3

3
(a + 2b 5 jcos29 27 (a sinB) (a dO)
a

IP=po

373 | 13
N npUa”(2a 3+b )_[n
0

o3 cos’0 sind do
—-a

ie. 1=MU
2 mpa’UQ2a’ +b°)

=MU + 0 a3

. 3.3
MU, 1MUQa +bY)
2 b’ —a’

3.11. Deduction :- If b —co, then it will be the case of a solid sphere moving
in an infinite liquid and
I =MU + MU=(M+ﬂ]U
2 2
3.12. Remark. The problem in which we solve the Laplace equation V¢ = 0

when the normal derivative of ¢ i.e. ?is given on the boundary, then such
n

type of problem is called a Neumann problem whereas the solution of
V2¢ = 0 when the value of ¢ is given on the boundary, is termed as Dirichlet
problem.
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4. Sources, Sinks and Doublets (Three-dimensional Hydrodynamical
Singularities)

4.1. Source : An outward symmetrical radial flow of fluid in all directions is
termed as a three dimensional source or a point source or a simple source.

Thus, a source is a point at which fluid is continuously created and distributed
e.g. an expanding bubble of gas pushing away the surrounding fluid. If the
volume of fluid per unit time which is emitted from a simple source at O is
constant and equal to 47tm, then m is termed as strength of the source.

4.2. Sink : A negative source is called a sink. At such points, the fluid is
constantly moving radically inwards from all directions. Thus a simple sink of
strength m is a simple source of strength —m.

4.3. Velocity Potential due to a Simple Source of Strength m. Let there be
a source of strength m at a point 0. With O as the centre, we draw a sphere of
radius r around O.

The flow across the
sphere per unit volume
is given by

[q.AdS
S

In case of a source there is only the radial velocity i.e. q has only radial
component g .
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Therefore, the flow is

= [q, dS Iq.fi = q, since q and 1 have same directions i.e.
radial direction. S

=q (4n ).

Thus, we get

4mm = g, (47 )

= q="5= a(m] (1)

2 orlr
It is observed that curl q = 0 (except at r = 0), therefore for irrotational flow,

_ 9%
or

qr =

13 =-V¢ )
From (1) & (2), we find

¢=

m
T

which is the required expression for the velocity potential for a source.

4.4. Remarks. (i) For a simple sink of strength m, the velocity potential is ¢ =
m

T

(ii) A source or sink implies the creation or annihilation of liquid at a point.
Both are points at which the velocity potential (and stream function for two
dimensional case) become infinite and therefore, they require special analysis.

P

/X/ M Z-axis

4.5. A simple Source in Uniform Stream. Let us consider a simple source of
strength m at O in a uniform stream having undisturbed velocity Uk, kbe the
unit vector along z-axis which is taken as the axis of symmetry of the flow.
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We shall find the velocity potential at any point P(z, 0, y). From P, draw L on
OZ. LetOP =7, |[POZ =0;0OM =z

We observe that the velocity potential of the uniform stream in the absence of
source is

G=-vo = Uk=-2¢
0z
= % =-U=0¢=-Uz
0z
0 =-Uz=-Urcos 0 (D
and the velocity potential of the simple source is
m
= — 2)
r
Thus, the velocity potential of the combination is
0= 07+ ¢, =—-Ur cosO L
r
= —[UrcosG—EJ 3)
r
From here, the velocity components at P(r, 0, y) are
qr= _% = Ucose+22
r r
13 0<0<m
9:———¢:—Usin9 0<y<2n
r 00 3
2 =0
oy
1 do
= - _—= 0
W=7 sin 0 Jy

The stagnation points (q = 0) are given by U cos0 +E2 =0,sin6=0 =0=0
r

orT
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But 6 =0 gives r to be imaginary =0 =mandr = \/%

Thus there is only one stagnation point (\/% , n,OJ

4.6. Doublet (Dipole). The combination of a source and a sink of equal
strength, at a small distance apart, is called a doublet.

4.7. To Find the Velocity Potential of Doublet. Suppose that there is a
simple source of

strength m at O; and a
simple sink of strength m
at O,. Origin O is taken as
the mid point. of O; O,. It
is also assumed that there
is no other source or sink.
Let P be a fixed point
within the fluid and

O -h O h Oim)  z-axis
O_P:f, IP:_I’ 2P:f2, IPOOlZ 9

00, =h, 00,=-h, h=lhl

The velocity potential at P due to the combination of source and sink at O; and
02 is

¢ = ——— =
L n 1,
2 2
_ m(r, —17) _mry -1 )
T, L1, (1 +1,)
~ m(T, —1).(5, + 1))
N, (1 +1,)
— —_ T —_ —_ — fz H+_
But r,—1,=2handr, +1, =2r B B
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m(2h).(2r) _ 4mhT

Thus 0=
rr,(r, +1,) 11,(r +r,)

= L, where L = 2mh (D)
51, (r +1,)

In equation (1), let us first keep [ a finite constant and non-zero vector, so that

W = |1 is a finite constant and non-zero scalar. Let h — 0 along 0,0.

Then m—ec in such a way that [I remains the same finite non-zero constant

vector. In that case, both r;, r,—r and thus under this limiting process, (1)
results in

_ 20r _ urcos® pcos6

213 r r?

¢ 2)

The limiting source sink combination obtained at 0 when we keep the direction
of h fixed but let h—0 and m—eo with u = 2mh remaining a finite non-zero
constant, is called a three-dimensional doublet (or dipole). The scalar quantity
W is called the moment or strength of the doublet. The vector quantity [t = Wi
is called the vector moment of the doublet &[i (unit vector from 0, to 0)
determines the direction of the axis of the doublet from sink to source.

From (2), the velocity components are given by

_ 00 _2ucos®
Coor r’
_ 109 _usin®
T roe
qQy=0

The streamlines due to the doublet are given by

dr 1d® _ rsin6dy
2ucos®  usin® 0
r’ r’
dr
= dy =0 = vy =constant and — = 2cot dO

r

= r=A sin’0
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4.8. Doublet in a Uniform Stream. Let there be a doublet of vector moment
n= Llf( at O in a uniform stream whose velocity in the absence of the doublet is

Uk (U = constant).

P(r,0,y)

<—F
- Uk

=]

O M Z

Let P be a point in the fluid having spherical polar co-ordinates (r, 0, V), the

direction OZ of the doublets axis being the line © = 0. We shall find the
resultant velocity potential due to the combination of the uniform stream and
the doublet. We know that the velocity potential due to the uniform stream is

01 = Uz = Ur cosO (1

and the velocity potential due to a doublet at O, is

0 = MOS0 @)

T

Thus, the resultant velocity potential at P. due to the combination, is
=0 + ¢ = (Ur+ pt?) cosd

From here, the velocity component are

20 2u
qr = 3 = —(U—r—3]cose

10 .
qe=—;a—g=(U+%jsm0

r
1 %:0
rsin 0 oy

Qy =

Stagnation points are determined by solving.

[U—ﬂjcosezo,(U+£3jsme=o 1g=0

I'3 r
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1/3
which are satisfied when sin@ =0 and r = (%lj

Thus, we have the two stagnation points.

GHREEE

which lie on the axis of symmetry.

1/3
If we writer=ai.e. a= (Z—I?j ie. U= %U a3, then for the region r > a, we

obtain the same velocity potential as for a uniform flow past a fixed
impermeable sphere of radius a and centre 0. Thus, for r > a, the effect of the

. 1 . . . .
sphere is that of a doublet of strength pu = EUal3 situated at its centre, its axis

pointing upstream. So the sphere can be represented by a suitably chosen
singularity at its centre.

4.9. Line Distribution of Sources. Let us consider a uniform line source AB
of strength m per unit length. This means that the elemental section of AB at a
distance. x from A and of length dx is a point source of strength mox.

P
T d
o/,
________ M
A — X —0xX B x,—

X1

Let P be a point in the fluid at a distance r from this element, then the velocity
mox

potential at P due to the point source is
r

The total velocity potential at P due to the entire line distribution AB (= 2I) is

o=m] == (1)
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Let AM = x;, BM = x,, where AM is the orthogonal projection of AP on AB.
Also, let PM =d, AP =1, BP =1, . Since * = (x; —x)* + d* = (x;—x)* + 11° —

X 12, therefore from (1), we get

2/ dx

* =07+ —x7)

o=m [

2/

Cm log{(x1 —x)+\/(xl —x)2 + (] —xf(}
-1

=m[log{(x1 —X)+\/(X1 -x)* +(r12 _X12)H(2)1

=m llog(x1 +r1)—10g{X2 +\/mﬂ

B 1
ol
= [10g(x+\/xz +a’ )]i

[®x;-2l=%x;-AB =%,

X +T,
=mlog| —1—L |, where 1} —x} =d* =1} —x3.
Again, the relation 1> —X; =1, — X,
L+Xx, I1,—X, I+1,+X —X
N 17X _h=Xy _LTh+X =Xy
r+r, +21
n+r, =2l
r,+r, +21
Thus, ¢=mlog| L —2——
n+r, -2l

a+l!

]

=mlog(
a_

2)

where 2a is the length of major axis of the ellipsoid of revolution through P
having A and B as foci since for such an ellipsoid r; + r, = constant. It follows
from here that the equipotential surfaces ¢ = constant are precisely the family

of confocal ellipsoid r; + r, = 2a obtained when a is

allowed to vary.
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Expression for Velocity :- The velocity at P is given by q =-V¢ = —(@j n

on

3)

B

Let P be any point on the ellipsoid specified by parameter a and P’ the
neighbouring point on the ellipsoid specified by parameter a + da, where
PP'=8n

_ d a+l|. 1 1 |da, 2lm oa,
Thus q=-m—|lo n=-m————|—n=———-—n 4
a an[ 8 l} [a+l a—l}an a’—1%on @

The normal at P to the a-surface bisects the angle 2a between the focal radii
AP, BP.

Now,
(r1 + &r1)? = 112 + (8n)> — 2r; dn cos (180—0x)
A
=1, + (&n)* + 2r; dn cosa
2 w22
cosC = tbT—c” ¢ b
2ab
=c?=a’?+b?-2abcosC
B a C
= 2r; Or; = 2r; On cos oL + (Sn)2 - (5r1)2
= dr; = dn cosa | (8r))* = (8n)?
= % =cosq
on
Similarly, 2 = cosat
on

Since, 2a=r1;+1>

124
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da dr, Or,
= 2—=—+—=.=cos 0+ cos 0L =2 cos O
on on dn
9a_ cos ol
on
and thus from equation (4), the velocity of fluid at P is given by
— {ZImcos Oc}ﬁ
a’—1°

5. Hydrodynamical Images for Three Dimensional Flows

Let us consider a fluid containing a distribution of sources, sinks and doublets.
If a surface S can be drawn in the fluid across which there is no flow, then any
system of sources, sinks and doublets on opposite sides of this surface S may
be said to be images of one another w.r.t. to the surface. Further, if the surface
S be considered as a rigid boundary and the liquid removed from one side of it,
the motion on the other side will remain unaltered.

5.1. Images in a Rigid Impermeable Infinite Plane. (i) Image of a source in
a plane : consider a simple source of strength m situated at A(a, 0, 0) at a
distance a from an infinite plane YY"

We shall show that the
appropriate image system
for this is an equal source
of strength m at A’(—a, 0,
0), the reflection of A in
the plane.

<

To prove this, we consider
two equal sources f
strength m at A(a, 0, 0) &
A’ (—a, 0, 0) with no rigid
boundary. Let Py be any Y
point on the plane YY’.

Then the fluid velocity at

Py due to the two sources

is

o
s
e
Rl
L
=

~
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—_ m e m m,., m-_
= AP, + A'P, q=—ft=—T
= ary Ty =277
Py
(m) o (m)
A=200) | _, A@00)
0
© AP, +A'P,
m — 2m — = o
= An ) PO):W(OPO) = (AO+0P,) +(A', + OP,)
0 0

=20P,

This shows that at any point Py of the plane YY’, the fluid flows tangentially to
the plane x = 0 and so there is no transport of fluid across this plane.

Let ¢ denotes the velocity potential then, at all points Py on the plane YY’, the
normal component of velocity is zero

0

_, 9
on

a source at A’, as required.

(ii) Image of Doublet in a
Plane : Consider a pair of
sources —m at A and m at
B, taken close together and
on one side of the rigid
plane YY’. The image
system is —m at A’, m at
B’, where A” & B’ are
respectively the reflections
of A and B in the plane
YY’. In the limiting case,
when B—A along BA in
such a way as to form a
doublet at A, we find that
the image of

= 0. Hence, the image of a source at A in the rigid plane YY” is

Y
B’(m) B(m)
P4
A’(—m) A(-m)
v
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a doublet in an infinite impermeable rigid plane is a doublet of equal strength
and symmetrically disposed to the other w.r.t the plane.

5.2. Example. A three dimensional doublet of strength (L whose axis is in the

direction OZ is distant a from the rigid plane z = 0 which is the sole boundary
of liquid of constant density p, infinite in extent. If p.. be the pressure at oo,

. . av5
show that the pressure on the plane is least at a distance > from the doublet

Solution. Let there be a
doublet of strength L at
the point A with OA = Y
aand YY  (ie. z =0)
be the infinite plane.
Then the image system —as

is an equal doublet of 0 A Z
strength w at A’, the
reflection of A in the
plane z = 0, and the
axis along ZO. The Y’
line OZ is taken as the (z=0)
initial line 6 = 0 and

plane z=01s 0 = 7/2.

so that P(r, 0, y) is confined to the region 0 <0 < /2. Let AP=1, AP=n,
and o, o be the angles which these lines make with the axis of the doublets as
shown in the figure.

Then, the velocity potential at P is

Y : P(I‘,G,\P)
I I :
o |
(x 1
2 o, ()%
Awa 0 |a A M Z
[Lcoso,  LcosOl,
0= . T €]
| v
> =r’+a’ —2racos0
where ) ) ) )
r; =r°+a” +2racos0

(By cosine formulae in A POA, POA")
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But cosoy =
L I I
A'M A' + M +
and cos (180 —a) = = 0+0 _a rcoso
T ) I,
(a+rcos0)
= cosQp=—— 7"

I

Using these relations in (1), we get

L (rcos@—a U | —(a+rcos0)
e

3 - 3
n 1)

{rcose—a rcose+a}
=u

Further from (2), we have

21 i:2r—2acos6 :i:—r—acose
or r r

d 3 |
Similarly, % _I+acosb a_rl _ rasin®
r I 0 I

ai _ _rasin®
20 r,

Thus from (3), the velocity components are given by

3

3
I

o o Jr, I or

Q= _9%9 _ u{ﬁ—{%J%(rcose +a)-— cos® + 3(£ji4(w059— a)

L

3)

_u{cose 3(r+acos9)(rcos9+a) cos9+3(r—acose)(rcose—a)
= —- _

|

|

153 r25 r13 r15
) (rcos®—a) @ ) (rcos@+a) aﬁ
1dp W|rsin® 00 ) rsin® 20
qo=—"—"".=— +3 - -3
roé r| r ! ry ry

128
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u rsin© N 3rasin 6(rcos0—a) 3 rsin 0 +3rasin9(rcose+a)

r|or 1 r; r;

qQy =0

When the point P lies on the plane YY” or 6 = /2, we have rl2 = r22 =" +a’
and so at (r, /2, ), the velocity components are

qr=—6pra/(r’ + %)%, qe=0,q, =0.
Along the streamline through this point, Bernoulli’s equation is

1_, Po
+—q~ =const =—-,
2q

Y

o |

where q =0 at infinity.

Thus, the pressure at any point on the plane YY” is given by
1 2,2.2/,2 | 235
p:pm—Ep[36u a’r /(r +a”) ]

. 18pu2a’r?
ie. p() =po—————

(2 +a2)’
Now,

p'(r) = % =36pu’a’r(4r? —az)/(r2 +a?)°
r

which gives  p’(r) =0 whenr = %a

a a
I——1<0,p|=+|>0
p(z j p(z j

., ) . . a
i.e. p’(r) changes sign from negative to positive when r passes through —

Also

S a
= p is minimum atr:z 0=m/2
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i.e. at the point Py [%,n/ 2,\1!)

The distance PyA is given by

[EJZ +a’ = ﬁa

2

. . 5 .. .
Hence p is least at a distance > a from the doublet and the minimum value is

. _2puzﬁl
pmm. poo 2 5 a6

5.3. Images in Impermeable Spherical Surfaces. We have already studied
the effect of placing a solid impermeable sphere in a uniform stream of

incompressible fluid, taking the case of axial symmetry. Here, we discuss the
disturbance produced when a sphere is placed in more general flow.

We shall make use of Weiss’s Sphere Theorem which states as follows :

“Let ¢(r, 6, y) be the velocity potential at a point P having spherical
polar co-ordinates (r, 6, ) in an incompressible fluid having irrotational
motion and no rigid boundaries. Also suppose that ¢ has no singularities
within the region r < a. Then if a solid impermeable sphere of radius a is
introduced into the flow with its centre at the origin of co-ordinates, the new
velocity potential at P in the fluid is

E ﬁ _l a2/r
o(r, 0, y) + r(b : 0,y aIO 0(R,0,y)dR, (r>a)

2

a ) . . ,
where r and — are the inverse points w.r.t the sphere of radius a.”
r

Here, the last two terms refer to perturbation potential due to the presence of
the sphere.

1)) Image of a Source in a Sphere : Suppose a source of strength m is
situated at point A at a distance f(> a) from the centre of the sphere of
radius a.
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Let B be the inverse point of A w.r.t. the sphere, then OB = a*/f

A(£,0,0)

The velocity potential at P(r, 0, ) in the fluid due to a simple source of
strength m at A(f, 0, 0) is

m
q)(r’ e) - E

(OP)? +(0A)* — (AP)? _ 2 +f? —(AP)?

From A OAP, cosO =
2(OP)(OA) 2rf

= AP = r? +£2 = 21f cos©
Thus, the velocity potential is

o(r, 0) = m(r* + = 2rf cos0) ™"
(D

Introducing a solid sphere in the region r < a, where a < f, we obtain on using
Weiss’s sphere theorem, a perturbation potential

2
iq)(a—,ej—l J27 o(R, 8) dR
T T a

4 ) -1/2 5
ie. @{a—z+f2—2a—fcos6} TR+ £ - RS
r |r r a
cosf] * dR
(ma/f) _2 a2/r dR

1.e.

0
Jr’—2r@’/f)cosO+ (@2 /f)> @ JR>—2Rfcos®+f>

This shows that the image system of a point source of strength m placed at
distance f(> a) from the centre of solid sphere consists of a source of strength
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2
ma . .oa%, . . .
v at the inverse point Tm the sphere, together with a continuous line

distribution of sinks of uniform strength — per unit length extending from the
a
centre to the inverse point.

(ii) Image of a doublet in a sphere when the axis of the doublet passes
through the centre of the sphere :- Let us consider a doublet AB with its axis

BA pointing towards the centre O of a sphere of radius a. Let OA =f, OB =f
+ &f. Let A’, B” be the inverse points of A & B in the sphere so that

(m) (-m)

OA’ = a’/f, OB’ = a*/(f+5f).

At A, B we associate simple sources of strengths m and —m so that the strength
of the doublet is i = mdf, where L is to remain a finite non-zero constant as
m—oo and 6f—0 simultaneously.

2 2 2 2 -1
BA=OA —OB' =& _ & _a af of
£ f+of f £\ f

2 2 2
a a a !
= —— 4 —? to the first order

f f

2
= a;—28f to the first order

Now, from the case of “Image of source in a sphere”, the image of m at A

. ma , ) . . P ,
consists of ra at A’ together with a continuous line distribution from O to A

of sinks of strength m per unit length and the image of —m at B consists of
a

a , . . . L ,
at B” together with a continuous line distribution from O to B” of

(f + of)

m .
sources of strength — per unit length.
a
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The line distribution of sinks and sources from 0 to B’ cancel each other
leaving behind a line distribution of sinks of strength m per unit length from
a
2
B” to A’ i.e. sink of strength Mpa=1 a—28f = %(mﬁf) = H_i‘ at B”. The
a a (f f f

source at B’ is of strength

-1
—ha —ma 1+8—f —_ma 1—§ , to the first
f +of f f f f
order terms
:—ma_l_ﬂsf:—ma_i_ﬁ
f £2 f f2

o . ., ma a ,
which is equivalent to a sink Tat B' and a source ?—2at B’

. . a , . ’ .
As there is already a sink ?—2 at B’, therefore source and sink at B” neutralize.

Finally, we are left with source %at A’ and a sink. %at B’. Thus, to the

first order, we obtain a doublet at A” of strength

2
ma ma a

— (B'A)= — —-&f
f( ) f f?

ma’ o pa’

£3 £3

Hence in the limiting case as 6f—0, m—>c, we obtain a doublet at A of

strength W with its axis towards O, together with a doublet at the inverse point
3
’ a cq - .
A’ of strength Lllc—3 with its axis away from O.

6. Stream Function for an Axi-Symmetric Flow (Stoke’s Stream Function)

If the streamlines in all the planes passing through a given axis are the same,
the fluid motion is said to be axi-symmetric. We have already considered such
flow for irrotational motion in spherical polar co-ordinates. (r, 0, V) in which
the line 6 = 0 is the axis of symmetry.

Suppose the z-axis be taken as axis of symmetry, then qo = O and the fluid
motion is the same in every plane 0 = constant (meridian plane) and suppose
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that a point P in the fluid may be specified by cylindrical polar co-ordinates (r,
0, z). Thus, all the quantities associated with the flow are independent of 6.
The equation of continuity in cylindrical co-ordinates, becomes

0 0
§(rqr)+g(rqz) =0

| PN ]
ie. 5 (19,) === -(rq,) ()

This is the condition of exactness of the differential equation
rqdz —rq,dr=0 (2)

This means that (2) is an exact differential equation and let L.H.S. be an exact
differential d'¥(say)

Therefore,
rq;dz —rq, dr=d¥ = a—‘Pdr +8_‘sz
or z
which gives
¥ oV
—=-1q,,— =1q, 3
or 1z 0z d ©)

The function ¥ in (3) is called Stoke’s stream function.

The equation of streamlines in the meridian plane 6 = constant at a fixed time t
is

& _dz
9. 4.
= q.dr=q,dz

Using (3), we get
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= Y = constant = C
which represent the streamlines.

6.1. Stoke’s Stream Function in Spherical Polar Co-ordinates (r, 0 ) :
We consider the axi-symmetric motion in r, 6 plane such that qy =
0. The equation of continuity in spherical polar  co-ordinates becomes

10 , 1 d, .
—— —(rsinBgy) =0
7 ar(r qr)+r2 Sineae(rsm de)
ie. %(rzsineqr):%(—rsineqe) (1)

This is condition of exactness for the different equation
r sin® qg dr — 1 sin6 g, d6 = 0 )

Thus the expression on L.H.S. of (2) is equal to an exact differential function
Y such that

rsin® qg d; — q, r* sin6 dO = d¥ = Y 4+ e
or 00

0¥ : b4 2 .
= ——=(,rsin0,—=—q,r"sin6.
or 10T e T

6.2. Remark. In the above cases, the motion need not be irrotational i.e.
velocity potential may not exist. In case of irrotational motion, it can easily be
shown that the velocity potential ¢ and the Stoke’s stream function ¥ do not
satisfy C—R equations due to the fact that ¥ is not harmonic.

6.3. Stoke’s Stream Function for a Uniform Stream : Let a uniform stream
with velocity U be in the direction of z-axis such that q = UK. Then, from the
relations

__1o¥ _1d¥
4= r or A r oz
£ ror oz
= ik ——Ur,a—lP:O

or 0z
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2
r ) ..
= Y =-U 7, where the constant of integration is found to be

Z€10.

In spherical polar co-ordinates we have
\P:-%ugnm2=—gm%m2&

6.4. Stoke’s Stream Function for a Simple Source at Origin : In case of
simple source

q=f@it

But we have already calculated that for a source of strength m at origin.
_ m, . . .
q =— I(r > 0) in spherical polar co-ordinates.
r

. m .
1.e. (G go) = T (1

-

Also, we know that in spherical polar co-ordinates,

1o 1w

L 2
r2sin® 00 de rsin® odr 2)

qr=-

From (1) & (2), we get

m_o_ 1w
r? r2sin® 00~ or

= a—\P:—msine,a—‘on
0 or

= ¥ =m cosO.

A constant may be added to this solution and this is usually done to make ¥ =
0 along the axis of symmetry 6 = 0. In such case,

WY=m (cos 6 —1)
For a sink of strength m at origin, the Stoke’s stream function is

Y =m (1—cos0)
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6.5. Stoke’s Stream Function for a Doublet at Origin : We assume that the
flow is due to only a doublet at origin O of strength p. Taking the axis 6 = 0 of
the system of spherical co-ordinates to coincide with the axis of the doublet,
we find that the velocity potential at P(r, 0, y) is

o=1%9 ;50 1)
T
00 _2ucos®  10d¢ _usin6

= qr = Q=0 (2

_—,q = =
or 3 0 rdo r’
But the relations between the velocity components and the Stoke’s stream
function W are

Loav
r’sin@ ae’q" rsin® odr

From (2) and (3), we get

qr =

3)

¥ _ 2usinBcos® 9V _psin’ 6
20 r ’ or r2

Integrating, we get

N —usin’
r

6.6. Stoke’s Stream Function due to a Uniform Line Source : Let a uniform
line source of fluid extends along the streamline segment AB of length .
Consider an element QQ’ of length 8z at a distance z ( = AQ) from A. Thus we
have a simple source of strength m 8z, where m is the constant source strength
per unit length of the distribution along AB.

Let QP =r, |PQB=Q, PM =d

The Stoke’s stream
function 0% at P for the
simple  source  of
strength mdz at Q is
mdz(cos6-1). Then,
the value of the Stoke’s
stream function ¥ at P
due to entire line source —z Q¥ B« b —M z-axis
AB is given by 0=0

Y= mfé(cose—l)dz = m_[écos 0dz —mfédz
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In APQM, cosg= M _ QB+BM
! [+b-2z PQ PQ
=m dz —ml

_l—-z+b _ [—z+Db
r Jd>+(+b-2)

O &+ +b-2)

Putting/+b-z=x = dz=—-dx

When z=0,x=1+Db,
when z=1[,x=Db
Therefore,
b X(—=dx)
¥Y=m ———ml
or \P _ %J.;-Fb (d2 + XZ)—1/2 (2X) dX _ ml

—m/

I+b
_ m!\/d2 +x2]

20 1/2

b

= m @+ +0)? A b7 |
= m[AP - BP] - mAB
= m[AP - BP - AB] .

As p is the only variable point, the simpler form m (AP-BP) can be taken for
evaluating velocity components at P. The stream surfaces are

Y = constant i.e. AP — BP = constant.
These are confocal hyperboloids of revolution about AB, with A and B as foci.

We have shown earlier that the equipotentials were confocal ellipsoids of
revolution about AB with the same foci. Also it is well known result that two
families of confocals intersect orthogonally.

6.7. Stoke’s Stream Function for a Doublet in a Uniform Stream : Let a
doublet of vector moment uﬁ is situated at origin O in a uniform stream whose
undisturbed velocity is —U k.
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In spherical polar co-ordinates (r, 0, V), the Stoke’s stream functions for each
separate distribution are

Y, = %Ur2 sin’0 (for uniform stream, q = ~Uk )

¥, = _H sin°0 (for doublet at origin)
Hence the stream function for the combination is

¥ (r, 0) = GUH —u/rjsinz 0
The equation of the stream surfaces are ¥(r, 0) = constant.

In particular, the stream surfaces for which ¥ = 0 are given by

(%Urz—u/rjsinz(%:O

= sin@ = 0 or lUr2—E=0
T

1/3
= 0 =0, wi.e. the z-axis orr = (2—[?} , the surface of the sphere

) 1/3
with centre O and radius (FHJ .
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7. Irrotational Motion in Two-dimensions

Suppose that a fluid moves in such a way that at any given instant, the flow
pattern in a certain plane within the fluid is the same as that in all other parallel
planes within the fluid. Then at the considered instant, the flow is said to be
two-dimensional flow or plane flow. Any one of the parallel planes is then
termed as flame of flow.

If we take the plane of flow as the plane z = 0, then at any point in the fluid
having cartesian co-ordinates (X, y, z), all physical quantities i.e. velocity,
density, pressure etc, associated with the fluid are independent of z.

Thus g = q (X, y,t) p=p(x,y,t) etc

Plane flows, as described above, cannot be achieved in reality, but in certain
important cases, close approximation to planarity of flow may occur.

We have already considered such flow when defining Lagrange’s stream
function. We consider here some special methods for treating two-dimensional
irrotational motion.

7.1. Use of Cylindrical Polar Co-ordinates. For an incompressible
irrotational flow of uniform density, the equation of continuity Vzcb =0 for the
velocity potential ¢(r, 0, z) in cylindrical polar co-ordinates (r, 6, z) is

10( ap) 1 9% 0%
~9 RN, 209,99 1
rar(rarj+r2 862+822 M

If the flow is two dimensional and the co-ordinate axes are so chosen that all
physical quantities associated with the fluid are independent of z, then ¢ = ¢(r,
0) and (1) simplifies to

10( ad) 1 9%
T2 70 2
( j+r2 00?2 @

——|r
ror\ or
Let us seek solutions of (2) by putting

0(r, 8) = —f(r) 2(6) 3)

in (2) for separation of variables. Thus, we get

1d 1
2®) ——[rf' )]+ (g"(®)=0
rdr r
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dr..
ra[rf (1‘)]: gvv(e)

— 4
f(r) {C)) @

1.e.

Thus, L.H.S. of (4) is a function of r only and R.H.S. is a function of 0 only.
As r and 0 are independent variables, so each side of (4) is a constant A(say).
Thus, we have

CrOEtm _, 2" 0,

b

f(r) g(9)
ie. 7@+ /() A f(r) =0 (5)
and 27(0) +A g(0) =0 (6)

Equation (6) has periodic solutions when A > 0. Normally the physical
problem requires that g(® + 2m) = g(0) and this is satisfied when A = n* for
n=1,2,3,....

Thus, the basic solution of (6) are

g(0) = ¢ cos nO + ¢, sin nO (7
Now, (5) is of Euler-homogeneous type and it is reduced to a linear different
. . . - de 1
equation of constant co-efficients by puttingr=¢ i.e. t =logr = i =—
ror

df _df dt_1df

Also, f'r)= —=—.—=—
dr dt dr rdt
2
nd o= L ()8 140)
dr? dr\dr) drirdt
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d*f df
2 o

= rf = ———"
® dt> dt

Therefore, equation (5) reduces to

2
o _dt df e
dt> dt dt
2
= %—HZfZO
dt

It’s solution is
+
f=exp(+nt)=e™ = (et) to gt

ie. f=c3r4+cyr " (8)

A special solution of (2) is obtained by linear superposition of the forms (7) &
(8) to give

o(r, 6) =—1(r) g(6)
=—(Au" +B, ") (Cycosnb + D, sinnB)  (9)

The most general solution is of the form

O(r, ) =— i( Anr" +Bo1r") (G, cos nO + D, sin n0) (10)

n=1
7.2. Particular cases. (i) for n = 0, we have
f=ki +kt=k;+kylogr
and g=ks+ k40
so that another solution of (2) is
o(r, 6) = —(ki + ko log 1) (k3 + ks 0)
(>ii) for n = 1, we get a special solution as
O=-rcos®, ¢=-1sinO, o =—1"'cos O, ¢=—1 " sin0

7.3. Example. Discuss the uniform flow past an infinitely long circular
cylinder.
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Solution. Let P be a point with cylindrical polar co-ordinates (r, 6, z) in the
flow region of an unbounded incompressible fluid of uniform density moving

irrotationally with uniform velocity —Ui at infinity past the fixed solid
cylinderr<a

When the cylinder r = a is introduced, it will produce a perturbation which is
such as to satisfy Laplace equation and to become vanishingly small for large r.
This suggests taking the velocity potential for r > a, 0 <6 < 27 in the form

o(r, 0) = Ur cos — Ar ' cos 0, (D

where the velocity potential of the uniform stream is Ux = Ur cos0 and due to
perturbation, it is —Ar~' cos® which —0 as r—eo and gives rise to a velocity
pattern which is symmetrical about 8 = 0, . (the term r ' sin® is not
there since it does not give symmetric flow)

As there is no flow across r = a, so the boundary condition on the surface is

@=0, whenr=a )
or
Applying (2) in (1), we get A = —Ua? for all 8 satisfying 6 < 0 < 27.

Thus, the velocity potential for a uniform flow past a fixed infinite cylinder is

2

o(r, ) = U cosd (r+a—J,r>a,OSGS2n 3)
T

From here, the cylindrical components of velocity are (q=-V¢)

2
qr= _% =-Ucos G(I—a—j

or 2
2
q9=_l%:1Usme P+ :Usin9(1+a2/r2)
rod r r
9
:=—— =0
q oz

We note that as r—oo, q; = —U c0s0, q¢ = U sin® which are consistent with the
velocity at infinity —U1 of the uniform stream.

7.4. Example. A cylinder of infinite length and nearly circular section moves
through an infinite volume of liquid with velocity U at right-angles to its axis
and in the direction of positive x-axis. If the section is specified by the
equation.
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r=a(l +€ cosnB)

where n is positive integer and € is small, show that the approximate value of
the velocity potential of the fluid is

n+l n—1
Ua {3 cosO+¢e (EJ cos(n+1)0—€e (EJ cos(n — 1)9}
r

T r

Solution. Let the tangent at a point P on the plane of cylinder makes angles «,
(m—a) with the radial line OP drawn from 0 as shown in the figure

N

At large radial distances r from OZ, the fluid velocity becomes vanishingly
small.

Let us assume the velocity potential ¢(r, 8) of the form —r* k6 (k = I,
2,....).
Thus, we seek a solution of the form

o, 0) =— 3 ™ (A cos k8 + By sin ko) (1)
k=1

(If we take k = 0, this would add on to ¢ an arbitrary constant Ay).

At 8 =0 and 0 = 7 on the boundary, q¢ = 0 which is satisfied by taking Bx = 0
k=1,2,.....)

Thus, the velocity potential simplifies to the form

o, 0)=—3 A1 ™ cos k8 )
k=1

which approximately remains unaltered on replacing 6 by 27—6.

At any point (1, 0,z) of the fluid, the cylindrical polar velocity components are

(@=-Vo)

oo

q = _? =Yk Ap. r ¥V cos kO
r k=1
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qe = _l% = —gk Ak' I'_(k+1) sin kO
r k=1
d0
:=——=0
a oz

At P on the boundary, since (T —) is the angle between the tangent and the
radius vector OP, therefore

ldr d
cot (T—Q) = ;@ = E(log r)
r_/n-
= —cot oL = % [log a(1+€cosnB)] /
)
1

= ———(—a€ nsin nO)
a(l+ e cosnb)

€ nsinnd . do
= cotol= ——— sin (m—o) =r— (3)
1+ € cosnB ds
The normal component of velocity Uy of the boundary at P is cos (m—at) = %
S

Un = U sin (x —0)
= U (sin o cos 6 — cosa sin 0)

ie. Ux = UlcosO(1+ € cosnB) —sin B € nsinno] @

\/(1+e cosn(9)2+e2 n? sin” n@

As there is n0 transport of
fluid across the surface
and n6 breakaway from it,
so Uy is also the normal
velocity component of the
fluid. €n sin nf

1+€ cos n6

o

Thus,

Un =q; sin &L + gg COS O..
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[— i kA, r % cos kG}(H € cosnb) [— i kA, r * sin ke}(e nsin no)
k=1 k=1
+

\/(l+e cos ne)2 + (€ nsin ne)2 \/(l+e cos ne)2 + (€ nsin ne)2

—>'kAa " (1+€ cosn®) " “*P[coskB(I+ e cosnb) +sinkO € nsinnb]
k=1

\/(1+e cos ne)2 + (€ nsin ne)2

®)

Equating the two forms for U,, we get

— i kA, a * " (14 € cosnB) “*[coskB(1+ € cosnB)+ e nsin kOsinnb]
|

= Ulcos 8(1+€ cos nB) — en sin O sin n6] (6)
We further simplify (6) for the terms upto 1st order in €.

L.H.S. of (6)

= i k Aka_(k“) [1-€ (k+1)cosnB][coskb+ e coskBcosnb+ € nsin kBsinnb]
k=1

= - ZkAka_(k“) [coskO—e (k +1)coskBcosnb

k=1

+€ coskBcosnB+ € nsinkOsinnb]

= - > kA,a " [coskB-e k coskBcosnd+ e nsinkOsin n6]
k=l

=— Z kA a D {cos kO — %{cos(n +k)0 + cos(n —k)0}

k=1

+ ETH{cos(n —k)0—cos(n+ k)e}}

==Y kAa {coske —%(n +k)cos(n +Kk)0 + %(n —K)cos(n — k)e} (7)

k=1

R.H.S. of (6)
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= Ul cosO+ %{Cos(n +1)0+ cos(n — 1)9}—€7n{cos(n ~1)0—cos(n + 1)9}}

=U|cosO+ %{(1 +n)cos(n+1)0+ ({1 —n)cos(n — 1)0}} (8)

Correct to the first order of approximation, from (6), (7) & (8), comparing
coefficients of cos 0, cos (n—1)0, cos(n+1)0, we get

_IA‘1

U= —+ = A =-Ua’ @  In+k#l
a
I | D) 1
- |(mn-DA, _a +5A1a e(n-1) ZEUE (n—1)
In (7) cos k6 — cos(n—1)6
cos (n—k)0 — cos (n—1)0
similarly for n+1
and - [(n +DA,,a " —%Ala_2 e (n+ 1)} = —%U e (n+1)
= A, =Uea", A, =-Ue a™?

All Ay other than A;, A,—;, Apy are zero. Putting the value of these three non-
zero co-efficients in (2), we get

O(r, 0) = —[Ar" cosO + Ay 1"V cos (n=1) 8 +Au, 1™ cos (n+1)0]

n+l n—1
= Ua {3 cosO+¢€ (EJ cos(n+1)6—e (EJ cos(n — 1)9} .
r r

T

Hence the result.
8. The Complex Potential

Here, we confine our attention to irrotational plane flows of incompressible
fluid of uniform density for which the velocity potential ¢(x, y) and the stream
function y(x, y) exist. Here (x, y) specify two dimensional Cartesian co-
ordinates in a plane of flow. Let us write

W =0(x, y) +iy(x, y) (D

We suppose that all four first-order partial derivatives of ¢ & y with respect to
X, y exist and are continuous throughout the plane of flow. Now, the velocity

q = (u, v) has components satisfying q =—-Vo.

147
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L9 _ oy 90 _dy

L AL 2
ox ay dy ox @

Thus ¢ and v satisfy the C-R equations and so W must be an analytic function
of z =X +iy
Therefore, we can write (1) as
W =1(z) = ¢ +Hiy 3)
The function W = f(z) is called the complex potential of the plane flow.
8.1. Complex Velocity. We have
W=¢+iyand z =x +y
Differentiating partially w.r.t. X, we get

oW _09 ;0¥ _0d0 99

= =—u+iv

ox odx oJx OJx dy
But oW _dW dz _dW 0% _

ox dz ox dz ox
Thus. d—Wz—u+iv

dz

:—dﬂ=u—iv:qcose—iqsin9
dz

=((cosB —1isinB) =q e®

The combination u —iv is known as complex velocity

W a2 44?2

Thus, speed q =‘ _W
dz

. . W
and for stagnation points, dd_ =0
z

8.2. Example. Discuss the flow for which complex potential is
W =7

Solution. We have
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W:q)+i\|1:22:(x+iy)2:X2—y2+2ixy

= 0(x, y) = X°—y’, Y(X,y)=2xy

The equipotentials, ¢ = constant, are the rectangular hyperbolae
x> — y* = constant having asymptotes y = + x.

The streamlines, Y = constant, are the rectangular hyperbolae xy = constant

having the axes x = 0, y = 0 as asymptotes Also dd_W =2z, therefore the only
z

stagnation point is the origin. The two families of the hyperbolae cut
orthogonally in accordance with general theory.

8.3. Complex Potential for a Uniform Stream. Let the uniform stream
advance with a velocity having magnitude U and being inclined at angle o to
the positive direction of the x-axis.

Then, we have u = U cosa, V = U sina and thus

L
dz

The simplest form of W, ignoring the constant of integration, is
W=-Uze™
i.e. 0 + 1y =-UX + iy) (cos 0—i sin V)
= —U(x cos o+ y sin &) —U'i (y cos oL — X sin o)
Equating real and imaginary parts, we get
¢ =-U(x cos ot + y sin o)
Y =-U(y cos o — X sin Ot
Thus, the equations of equipotentials are
X COS O + y sin O = constant (D)

These equations represent a family of parallel streamlines. The equations of
the streamlines are

y cOsQL — X sinQ = constant 2)
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These equations represent another family of parallel streamlines inclined at
angle a to the positive x-direction. The two family of streamlines intersect
orthogonally in accordance with general theory.

8.4. Line Source and Line Sink. Line source and line sink are the two-
dimensional analogues of the three-dimensional simple source and sink. Let A
be any point of the considered plane of flow and C be any closed curve
surrounding A. We construct a cylinder having its generators through the
points of C and normal to the plane of flow. Suppose that in each plane of
flow, fluid is emitted radically and symmetrically from all points on the infinite
line through A normal to the plane of flow and such that the rate of emission
from all such points as A is the same. Then the line through A is called a line
source. We may take the closed curve C to be a circle having centre A and
radius r.

Suppose the line source
emits fluid at the rate

2mmp units of mass per C
unit length of the source
per unit time, in all A

directions in the plane of
flow (say, xy-plane). We
define the strength of the
line source to be m. A line
source of strength —m is
called a line sink.

An example of a line source is a long straight hose with perforations along its
length, commonly used for watering lawns for long periods of time.

8.5. Complex Potential for a Line Source. Let there be a line source of
strength m per unit length at z = 0. Since the flow is radial, the velocity has the
radial component g, only. Then the flow across a circle of radius r is (by law
of conservation of mass)

2 r qo)p = 2mmp

m
= qG=—
T

The complex potential is obtained from the relation

_d_W:u_iv:qrcose—iqrsine
dz

= (; (cosO — 1 sin0) :Ee_ie
r
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AW __m o _-m_-m
dz r re®  z

Integrating, we get

W=-mlogz
where we have ignored the constant of integration.
We can write it as

O+ iy =—mlog (re')

=-mlogr—1m0

= 0=— mlogr, y=—m0
Thus, the equipotentials and streamlines have the respective forms

r = constant, © = constant

1.e. X2+ y2 = constant, tan”! Yo constant

X
1.e. x2+y2=C1,y=C2x.

Thus the equipotentials are circles and streamlines are straight lines passing
through origin.

If the line source is at z = 7, instead of z = 0, then the complex potential is
W =-m log (z—z)

For a line sink of strength m per unit length at z = zy, the complex potential is
W =m log (z—zy).

If there are a number of line sources at z = z;, 7,...,2, of respective strengths
m;, my,..., m, per unit length, then the complex potential is

W =-m, log(z —z,) — m; log (z—27,)....... —m, log (z—z,).

8.6. Complex Potential for a Line Doublet. The combination of a line source
and a line sink of equal strength when placed close to each other gives a line
doublet. Let us take a line source of strength m per unit length at z = a ¢'* and
a line sink of strength m per unit length at z=0

Therefore, the complex potential due to the combination is
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W = —m log(z — a¢'*) + m log (z—0)

io

i
=-m log 7% . —mlog(l _ae j
z

Z

aeloc a2 ella a3 e310L
=m + +

V4 272 3z°

In the figure,
OP = a = s where a is the distance between the source and sink.
As a—0, m—oo so that ma — L and thus, we get

eioc
w=H
z
If the line sink is situated at z = 7, then the complex potential is
io
e
w=H
If o = 0, then the line source is on x-axis and thus.
w=_H!
If there are number of line doublets of strengths W, W, ....... W, per unit length
with line sinks at points z;, z,,....... , Zn and their axis being inclined at angles
oy, O,....., O, with the positive direction of x-axis, then the complex potential
is given by
eioc1 eioc2 eiocn
W= +U, Foeenne +U,
A -7, -7,

8.7. Example. Discuss the flow due to a uniform line doublet at origin of
strength W per unit length and its axis being along the x-axis.
Solution. We know that the complex potential for a doublet is

Hel(x

W =

and when the doublet is at origin having its axis along x-axis, then =0, zo =0
w=H__H _ H(x—iy)
z x+iy x*+y?

. ux . My
= P+iy=—————i———
X" +y X" +y
_ K _ Uy
= 0= 2 27 V= 2
X" +y X" +y
Thus the equipotentials, ¢ = constant, are the coaxial circles
x> +y* =2kix (1

and the streamlines, y = constant, are the coaxial circles
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X2 +y* =2kyy )

Family (1) have centres (k;, 0) and radii k; and family (2) have centres (0, k)
and radii k,
The two families are orthogonal

Streamlines

Equipotentials

8.8. Milne-Thomson Circle Theorem :Let f(z) be the complex potential for a
flow having no rigid boundaries and such that there are no singularities within
the circle Izl = a. Then on introducing the solid circular cylinder Izl = a, with
impermeable boundary, into the flow, the new complex potential for the fluid
outside the cylinder is given by

W =1(z) +f (a/2), 1zl > a

Proof. Let C be he cross-section of the cylinder with equation Izl = 1.
Therefore, on the circle C, Izl=a =z z= a? =7 =alz

where z is the image of the point z w.r.t. the circle. If z is outside the circle,
then Z = a’/z is inside the circle.  Further, all the singularities of f(z) lie
outside C and the singularities of f(a’/z) and therefore those of f(a%/z) lie
inside C. Therefore f(a%z) introduces no singularity outside the cylinder.
Thus, the functions f(z) and f(z) + f(az/z) both have the same singularities
outside C. Therefore the conditions satisfied by f(z) in the absence of the
cylinder are satisfied by f(z) + f (a*/z) in the presence of the cylinder. Further,
the complex potential, after insertion of the cylinder Izl = a, is

153
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W =1(z) +f (a%/2) = f(z) +f (Z)
=1(z) +1(z)
= a purely real quantity
But we know that W = ¢ + iy

It follows that y =0

This proves that the circular cylinder IzI = a is a streamline i.e. C is a
streamline. Therefore, the new complex potential justifies the fluid motion and
hence the circle theorem.

8.9. Uniform Flow Past a Fixed Infinite Circular Cylinder. We have
already dealt with this problem using cylindrical polar co-ordinates. Here, we
use the concept of complex potential.

The velocity potential due to an undisturbed uniform stream having velocity
~Ui (U is real) is Ux = U Re(z).

Since z is an analytic function, the corresponding complex potential is

f(z)=Uz
Thus

f(z)=f(z)=Uz=Uz=Uz
and so

f (a%/z) = Ua’/z .

With the cylinder Izl = a present, by circle theorem, the complex potential, for
the liquid region Izl > a, is

W =1(z) + f (a’/z)
a2
ie. 0+iy= U(z+—j
Z

Taking z = re'®, where r > a, equating real and imaginary parts, we get

2

0 =Re(W) =U cosO (r + a—j | Same expression as derived earlier
r
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r

2
v = Im(W) = U sinf (r - a—j

2
The perturbation term f (a%/z) = v gives the image of the flow in the
z

cylinder. This image represents a uniform line doublet of strength Ua® per unit
length and axis in the direction i

9. Images in Two Dimensions

In a two dimensional fluid motion, if the flow across a curve C is zero, then the
system of line sources, sinks, doublets etc on one side of the curve C is said to
form the images of line sources, sinks, doublets etc on the other side of C. To
discuss the images in two dimensions, we use complex potential.

9.1. Image of a Line Source in a Plane. Without loss of generality we take
the rigid impermeable plane to be x = 0 and perpendicular to the plane of flow
(xy-plane). Thus we are to determine the image of a line source of strength m
per unit length at A(a, 0) w.r.t. the streamline OY. Let us place a line source
per unit length at A’(—a, 0).

I Iy

m 92 91 X
Aa0) |0 ™A@o)

The complex potential of strength at a point P due to the system of line
sources, is given by

W =-m log z—a) —-m log(z + a)

=-m log [(z—a) (z+a)]

=—m log lrleiel rzeiez Jz —mlog[rlrzei(e”ez)]
= 0 + 1y =—m log (1] 1) —im (0; + 0,)
= Yy =-m (6; + 6y)

If P lies on y-axis, then PA =PB = | PAB =|PBA
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1.e. R—elzez :>91+92=TC
Thus Yy = —m7 = constant

which shows that y-axis is a streamline. Hence the image of a line source of
strength m per unit length at A(a, 0) is a source of strength m per unit length at
A’(—a, 0). In other words, image of a line source w.r.t. a plane (a stream line)
is a line source of equal strength situated on opposite side of the plane (stream
line) at an equal distance.

9.2. Image of a Line Doublet in a Plane. Let us consider the rigid
impermeable plane to be x = 0 and perpendicular to the plane of flow (xy-
plane). Thus we are to determine the image of a line doublet w.r.t.

Y

B’ m

m
OLR\;HI —m/\loc X

the stream line OY. Let there be line sources at the points A and B, taken very
close together, of strengths —m and m per unit length. Their respective images
in OY are -m at A’, m at B’, where A’, B” are the reflections of A, B in OY.

The line AB makes angle oo with OX. Thus A'B' makes angle (m—o) with
OX. In the limiting case, as m—, AB—0, we have equal line doublets at A

and A” with their axes inclined at o, (T—0t) to & Hence, either of the line
doublet is the hydrodynamical image of the other in the infinite rigid
impermeable plane (stream line) X =0

9.3. Image of Line Source in a Circular Cylinder (or in a circle). Let a line
source of strength m per unit length be present at a point z = d in the fluid; d >
a. Let us then insert a circular cylinder Izl = a in the fluid. The complex
potential in the absence of cylinder is —m log (z—d) and after the insertion of
cylinder, by circle theorem, we get

O + iy = W = —m log (z—d) —m log(a*/z)—d
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=0 A'(z :azld)\ A(z=d)

—m m m

m

2
=-m log (z—d) —-m log K——dj (—% + ZH
z

=—m log (z—d) -m log (z—a*/d) + m log z + constant (1)

Ignoring the constant term, we observe from (1) that the complex potential
represents a line source at z = d, another line source at the inverse point z =
a’/d and an equal line sink at the centre of the circle. Thus the image of a line
source of strength m per unit length at z = d in a cylinder is an equal line
source at the inverse point z = a’/d together with an equal line sink at the centre
z = 0 of the circle. Further, (1) can be written as

0+iy = —m{log{(x —d)* + y2}1/2 +itan_1( y dﬂ
<=

1/2

2 \2
a 2 . -1 y
-m |logq| x——| + +itan | ————
g( dj Y (x—az/dj

+m[10g(x2 +y2)”2 +itan_ll} .Ilogz:10g+i(9r:w/x2 +y2 ,0
X
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y + y
_ 2
= —-m tan! x—d x-a“/d +mtan_11
Y y X
2
x—dx—-a“/d
x2+y2:a2
:az_yzzxz
:—mtan_lz+mtan_11=0.
X X

Thus, the circular cylinder is a streamline i.e. there is no flow of fluid across
the cylinder.

9.4. Image of a Line Doublet in a Circular Cylinder (or in a Circle). Let
there be a line doublet of strength W per unit length at the point z = d, its axis
being inclined at an angle o with the x-axis. The line doublet is assumed to be
perpendicular to the plane of flow i.e. parallel to the axis of cylinder. The
complex potential in the absence of the cylinder, is

When the cylinder Izl = a is inserted, the complex potential, by circle theorem,
becomes

io io

W=Me + Zue
z—d (a“/z)-d

io —io

_be™  uez

Cz-d 2
d(z—aA)

_ ueia . uzei(n_o‘)

SEE

io

i(m—o)
ue ue na
= + + (1)
z—d d d? ,_a’?
=2

If the constant term (second term) in (1) is neglected, then the complex
potential in (1) is due to a line doublet of strength W per unit length at z = d,

2 ei(n—oc)
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2
inclined at an angle o with x-axis and another line doublet of strength % per

unit length at the inverse point z = a’/d inclined at an angle T—o with x-axis.

Thus the image of a line doublet of strength i per unit length z = d inclined at
2
angle o with x-axis is a line doublet of strength %per unit length at the

inverse point a’/d which is inclined at an angle T—o with x-axis.

\[z—d

Z=a

—-m —-m

9.5. Remark. The above two cases i.e. (iii) and (iv) alongwith ‘uniform flow
past a fixed infinite circular cylinder’ are applications of Milne-Thomson circle
theorem.

9.6. Example. What arrangement of sources and sinks will give rise to the

a2
function W = log (z — —J ?
z

Also prove that two of the streamlines are a circler=aand x =0

2 2.2
Solution. We have W = log(z —a—j = log(Z a J

z z
1.e. 0 + iy = log (z°—a’) — log z
=log (z—a) + log (z+a) — log z (D

This represents a line source at z = 0 and two line sinks at z = + a, each of
strength unity per unit length. We can write

0 + 1y = log(x—a + iy) + log(x +a + iy) — log(x +iy)

y +tan”! y —taln_lz
X—a X+a X

= y=tan
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y n y
=tan | X=4 )§+a tan~' ¥
y X
1—
x? —a’
_ 2x _
=tan”' 2—2)/2 —tan~ ¥
X“—y“—a X
(7.2 2, .2
_ X"+ +a
=tan || S 2)
X“+y“—a’ )X

Since Y = constant is the equation of the streamlines, therefore equations for
streamlines are

y (x> + y2 +ad)=(x"+ y2 —a%)x tan o
where o is a constant.

In particular, if we take o0 = 7/2, then we get the streamlines as

(x2+y2—a2)x=0
. 2,2 2
1.e. X" +y —-a"=0, x=0
1.e. X +y =a’ x=0
1.e. r=a,x=0.

Hence the result.

9.7. Example. A two dimensional doublet of strength p.LiA per unit length is at a

point z = ia in a stream of velocity —V1i in a semi-infinite liquid of constant
density occupying the half plane y > 0 and having y = 0 as a rigid impermeable

boundary, i being the unit vector in the positive x-axis. Show that the
complex potential of the motion is

W = Vz + 2uz/(z* + a°)

Also show that for 0 < @ < 4a’V, there are no stagnation points on the
boundary and that the pressure on it is a minimum at the origin and maximum

at the points ( + a\/g , 0).
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Solution. We know that the image of the line doublet uf at point A(0, a) is a

line doublet uf at point A’(0, —a)

<—
-vi

A(0,a)

ot

Therefore, the complex potential of the system is

w=vz+ B B
Z—1a Z+1a

- Vz+ 22“Z2 = Vz+2uz (P +a%)
Z-+a

From here, we get

il_w: V +2u@’ - 2% (@ + 297
z

On the boundary y = 0 and thus z = x, therefore,

SV _dW =V +2u (a>—x?) (a® + x7) 2
dz dx
For stagnation points aw =0
dx
=3 Vx* +2x* (Va? —p) + Va* + 2ua’ = 0 (1)

which is a quadratic in x* whose discreminant is
A =4[(Va® —p)* -V (Va* + 2pa?)]

=41 (n —4a’V)

From here, A < 0 if 0 < 1 < 42V, showing that the quadratic equation (1) has
no real root. Therefore there is no stagnation points on the boundary y = 0.

161
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Applying Bernoullis equation along the streamline y = 0, we have

2
1 22
B + §|:V + 2“%} = constant
e a’ +x
p + lq2 = constant.
e 2
2
22
P is maximum when X = {V + %} is minimum and conversely.
a~ +X

From here, we get
X" =V+2u @ -x%) @ +x)7
Differentiating w.r.t. X, we get

Lye xr 2 —4px (3a’x%) (@> +x) " X OS
2 dx

For extreme values of X, we have X" = 0 which gives
x =0, + a\/g .

We observe that X’ changes sign from positive to —ve when x passes through
zero and thus X is maximum at x =0 = p is minimum at x = 0 i.e. at (0, 0) i.e.
the origin.

Similarly X" changes sign from negative to positive as x passes through + a3
showing that X is minimum at X = + a+/3 and thus p is maximum at (+
av3,0).

10. Blasius Theorem

In a steady two dimensional irrotational flow given by the complex potential W
= {(z), if the pressure forces on the fixed cylindrical surface C are represented
by a force (X, Y) and a couple of moment M about the origin of co-ordinates,
then neglecting the external forces,

. 2
X—iY:£j [d—WJ dz
27C \ dz

2
M = Real part of | — p z(d—wj dz
27°C  dz
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where p is the density of the fluid

Proof. Let ds be an element of arc at a point P(x, y) and the tangent at p makes
an angle O with the x-axis. The pressure at P(x, y) is pds, p is the pressure per
unit length. pds acts along the inward normal to the cylindrical surface and its
components along the co-ordinate axes are

pds cos (90 + 0), pds cosO
i.e. —pdssin®, pdscosO

The pressure at the element ds is

y
pds sin@
W pds cosO
pds
)
O
X
dF =dX +idY
= —p sinO ds + ip cosO ds
= ip (cosO + 1 sinB) ds
pds sin O along negative x — axis
= —pds sin 0 along positive x — axis
=ip (d—x+iﬂjds cosezd—x, sinezﬂ
ds ds ds ds

=ip (dx +1idy) =ip dz (1)

The pressure equation, in the absence of external forces, is
Py 1 q* =constant
p 2
|

or p=-_pa’+k 2)
Further aw =—u+1v=—qcosH +iq sind

dz
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=—q (cosB —1sinf) =—q g0 3)
. dx .dy . i0
anddz=dx+idy=|—+i— |ds=(cos O +1isinf)ds=e" ds 4
ds ds
The pressure on the cylinder is obtained by integrating (1). Therefore,

F=X+iY = [. ipdz= [, i(k-1/2pq’) dz

=P fdz 1©f. dz=0

From here ;

X—iY:%jC q> e ds
i -2i0, i
:Epjc (qF e e®ds

. 2
_p g (ﬂj dz | using (3) & (4)

The moment M is given by

M= [ ‘fXdl_:‘:fc [(pds sinB) y +(pds cos6) x]

o

?xdﬁ
i ] k
= X y 0
—pdssin® pdscosO

= [ p(x dx + ydy]

= ch [k—%pqzj (xdx + ydy)
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1
:kjc d[E(X2 +y2)}—% [o q° (xdx + ydy)

= —% [o q’(xdx +ydy) | ® 1% integral
vanishes.
-p 5 . dx = cos6ds
= —=]. ¢’ (xcosb +y sin6) ds .
y Jc dy = sin 6ds

—R.P. of _—2" [ a*(x +iy)(cos @ ~isin G)ds}

_ —P 2. -0
=R.Pof 5 J'Cq ze ds}

=R.P of[_?e [o 2(q%e® )eieds}

2
=R.P. of —EIC z(d—wj dz|.
2 dz

Hence the theorem.

11. Two-dimensional Irrotational Motion Produced by Motion of
Cylinders

Here, we discuss two-dimensional irrotational motion produced by the motion
of cylinders in an infinite mass of liquid at rest at infinity (the local fluid moves
with the cylinder). The cylinders move at right angles to their generators
which are taken parallel to z-axis. Thus we get the xy-plane as the plane of
flow. For the sake of simplicity, we take the cylinders of unit length. For such
motion, the stream function y or velocity potential ¢) is determined in the light
of the following conditions.

@) y satisfies Laplace equation i.e. VZ\V = 0 at every point of the liquid.

(ii) Since the liquid is at rest at infinity, so

a—W=0anda—w

=0 at infinity.
ox dy
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(iii)  Along any fixed boundary, the normal component of velocity must be

dy

zero so that —=01.e.
Js

Y = constant, which means that the boundary must coincide with a
streamline.

(iv)  On the boundary of the moving cylinder, the normal component of the
velocity of the liquid must be equal to normal component of velocity of
the cylinder.

Further, we observe that the two-dimensional solution of the Laplace equation
Vzw = 0, in polar co-ordinates (r, 0), is

y=A,r"cosnd + B, " sin 6

where n is any integer, A, and B, being constants. Also, all the observations
made for , are valid for velocity potential ¢, where ¢ and y satisfy C—R
equations.

11.1. Motion of a Circular Cylinder. Let us consider a circular cylinder of
radius a moving with velocity U along x-axis in an infinite mass of liquid at
rest at infinity. The velocity potential ¢ which is the solution of V¢ = 0, must
satisfy the following conditions.

(1) [— @j =Ucos0

or
(i1) —% and —1@ — 0 asr—oo
or rdo
X
A suitable form of ¢ is
B
0(r,0)= (Ar+—j cosH (D
r
— _9% = (— A+ Ej cosO )
or r2

Applying conditions (i) and (ii) in (2), we get

(— A +£2Jcose =Ucos0,(—A + 0.B) =0 for all 6.
a
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= —A+£:U,A:0
a2

- A=0,B=Ua?

2

Thus o(r, 8) = U2 cos6 3)

T

The second condition of (ii) is evidently satisfied by ¢ in (3)

But % = 18_111 (C—R equation)
o 1 00
1oy  Ua?
SO, - == cos0
r 00 r?
2
1.e. a_\p =— Ua cos©
00 r

Neglecting constant of integration, we get

2

v=-—J2 Gng @)
r
. Ua® .
Thus W=¢+iy= (cosB — 1 sinB)
_ Ua® B Ua®
ol 7

which gives the complex potential for the flow.

11.2. Remarks. (i) For the case of ‘Uniform flow past a fixed circular
cylinder’, using circle theorem, we have obtained the complex potential as

W = (z) + f(a’/z)

2

:Uz+Ua—
z

where the cylinder moves with velocity U along positive direction of x-axis. If
we give a velocity U to the complete system, along the positive direction of x-
axis, then the stream comes to rest and the cylinder moves with velocity U in
x-direction.



168

FLUID DYNAMICS

Thus, we get

2 2

W=Uz+ U2 _yz=Y2
Z Z

(ii) Similarly, if we impose a velocity U in the negative direction of x-axis
to the complete system in the present problem, then the cylinder comes
to rest and the liquid flows past the fixed cylinder with velocity U in
negative x-axis direction and thus we get

Ua?
z

+ Uz.

(iii) If we put Ua’ = 1, then we get

which shows that the complex potential due to a circular cylinder with velocity
U along x-axis in an infinite mass of liquid is the same as the complex potential
due to a line doublet of strength W = Ua® pre unit length situated at the centre
with its axis along x-axis.

11.3. Example. A circular cylinder of radius a is moving in the fluid with
velocity U along the axis of x. Show that the motion produced by the cylinder
in a mass of fluid at rest at infinity is given by the complex potential

2

W=0+1y =
o+iy z—Ut

Find the magnitude and direction of the velocity in the fluid and deduce that

for a marked particle of fluid whose polar co-ordinates are (r, 0) referred to the
centre of the cylinder as origin,

2 2
l£+ d_e = H(a—e‘e —e‘le] and (r_a_] sin O = constant

1 - 2
r dt dt rilr r

Solution. The cylinder is given to be moving along x-axis. At time t, it has
moved through a distance Ut. Taking z = Ut as the origin, the complex
potential is

2

W=0+1y =
o+iy z—Ut
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2 2
Therefore _dw = Ua = Ua e 7 _Ut=re®
dz  (z-Ut)* 2

2

) ) U ..
1.e. u—iv= i (cos 20 — 1 sin 20)

r

2 2

= u= 2 c0s 20, VZUi sin 20

r r

2

Therefore, q= u?+v? = Ua

The direction of velocity is tan o = Y —tan20 = 0=20
u

When the cylinder is fixed and its centre is at 0, then

2 2

W=0Uz+ Ua =U(x+1y)+ Ui (x —1y)
r
) ) . Ua? ..
1.e. 0 + 1y = Ur (cos0 + 1 sinB) + (cosB—1isin 6)

r r

2 2
= ¢=UrcosG+Ua—Cose, w:U(r—a—jsine

The streamlines are given by Y = constant

2
a’ | .
= (r - —J sin@ = constant
r
Further,
2
g:_%:—Ucos6+Ua cosO Iq
dt or r’
2 .
r@ = —lﬁ = Usin6+Ua—Slne
d roe r

1dr .d6 Ucos® Ua’cos® iUcos® . Ua’sin®
——t+i—=- + + +i

rdt dt r r r r

3

169
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Hence the result.

11.4. Equation of Motion of a Circular Cylinder. Let a circular cylinder of
radius a move with a uniform velocity U along x-axis in a liquid at rest at

2
infinity. The complex potential for the resulting motion, is ¢ + iy =W = Ua ,
z

where origin is taken at the centre of the cylinder.

2 2
Thus, 0= Ua cosf, y=- sin®
T T
SO [%j =-U cosB
or r=a

Let T; be the K.E. of the liquid on the boundary of the cylinder and T, that of
the cylinder. Let ¢ and p be the densities of material of the cylinder and the
liquid respectively. Then

P, 90
Ty=-L[¢o=Ld
: 2£¢an °

:_% (fn(q)?j add, s=a =ds=ad® |/=10
r r=a

2
= %jozn (Ua cos OJ (U cos®) adb
a

2.2
= pU2a L)zn cos” 0 dO
2.2 2 2
= mpU~a” _ (nazp)U_:M.U_’
2 2 2

where M =1t azp = mass of the liquid displaced by the cylinder of unit length.
K.E. of the cylinder, T, = %MUz, M = ma’c

Thus, total K.E. of the liquid and cylinder is
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T:T1+T2:%(M+M’)U2 (1)

Let R be the external force on the cylinder in the direction of motion. We use
the fact that rate of change of total energy is equal to the rate at which work is
being done by external forces at the boundary.

RU = li(M+M’) U?
2 dt

work done  force. distance

time time
= force. velocity

_M+M 2Ud_U
2 dt
=(M+M’)Ud—U
dt
— MEZR_M'd_U ()
dt dt

Equation (2) is the equation of motion of the cylinder. This shows that the
presence of liquid offers resistance (drag force) to the motion of the cylinder,
since if there is no liquid, then M” = 0 and we get

M—=R 3)

..R . .
Now, lfﬁ= external force on the cylinder per unit mass be constant and

conservative, then by the energy equation, we get
1 I i, R
) M+M)U —-M -M )M r = constant 4

where 1 is the distance moved by the cylinder in the direction of R. Diff. (4)
w.r.t. t, we get

dU

M+ U M-y Ru=o
dt M

' 2 _ 2
MdU_M MR:nca Tpa

@ . R
dt M+M'  7ca’+mpa’

or
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ie. mdV_o=Pp (5)
dt o+p
which gives another form of equation of motion
IfU=(u,v)and R = (X, Y), then
Md_u:G_—pX’ Mﬂ:G_—pY (6)
dt o+p dt o+p

Are the equations of motion of the cylinder in Cartesian co-ordinates.
Comparing (3) and (5), it can be said that the effect of the presence of the
liquid is to reduce external forces in the ratio

G—p:G+p.

11.5. Motion of two co-axial cylinders. Let us consider two co-axial
cylinders of radii a and b (a < b). The space between them is filled with liquid
of density p . Let the cylinders move parallel to themselves in directions at
right angles with velocities U and V respectively, as shown in the figure

The boundary conditions for the velocity potential ¢ which is the solution of
V=0, are (q=-V9)

@) —% =UcosO, r=a (D)
or

(ii) —% =VsinO, r=b 2)
or

A suitable form of velocity potential is

0= (Ar+%}cos6+(€r+2}in9 3)

T

= —:(A—%Jcos9+(C—22Jsin6 “4)
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Using (1) & (2) in (4), we get

—U cosb = (A—chose+(C—stin9
a’ a’

-V sinf = (A—%}cos@+(€—%)sin6
b b

Comparing co-efficients of cos® and sin6, we get

B D
A-—=-U, C-==0
8.2 8.2
A—b52=0, c-b%:—v

Solving these equations, we obtain

Ua’ _ —Ua’b? co Vb>  Va’b’

A=_ 5 - 5 s - T 5 5
a’—b? a’—b? a’—b? a’—b?

Thus, (3) becomes

Ua? b2 Vb a’
=— r+— |cosO+ r+— [sin®
¢ az_bz( rj az_bz( r

2 2 2 2
= P ose— 2 [+ |sine (5)
b” —a r b” —a r

The expression for Y can be obtained from

90 _1oy
or 1 00
i.e. a_\u = r@
00 or

= Ua® r—ﬁ cos0— Vb r—ﬁ sin ©
b%-a’ r b%-a’ r

Integrating and neglecting the constant of integration, we get
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2 2 2 2
Y= bga 2(r—b—]sin6+bz\/b z(r—a—]cose (6)
—a

Tr —a Tr

It should be noted that the values of ¢ and y given by (5) and (6), hold only at
the instant when the cylinders are on starting i.e. the initial motion.

11.6. Corollary. If the cylinders move in the same direction then the boundary
conditions are

90

@) ——=UcosBO,r=a

or

(i) —% =VcosO, r=b
or

Using these conditions in (4), comparing co-efficients of cos@ and sin® and
then solving the resulting equations, we get

2 uR2 _ 212
A:Uz2 Y B ;szaf ,C=0,D=0
—a —a
21,2
So, o= ——|(Ua2 = Vb2 )r - LYEP oo
b" —a r
21,2
and y=——-" (Uaz—Vb2)r+M sin 0
b" —a r

11.7. Example. An infinite cylinder of radius a and density G is surrounded
by a fixed concentric cylinder of radius b and the intervening space is filled
with liquid of density p. Prove that the impulse per unit length necessary to
start the inner cylinder with velocity V is

2

 [(c+p) b — (o-p) &’V
a

b2

Suppose that V is taken along the x-axis.

Solution. Let the velocity potential be

0= (Ar+%)cos@+(€r+2jsin9 (D

T

The boundary conditions are (q =—-V )

(i) —%:Vcose,r:a
r
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90
ii -— =0,r=b
(ii) o
Applying these conditions in (1) and then comparing co-efficients of cos® and
sin, we get
B D
A-——=-V, C——=0
a’ a’
A _b% =0, C- b% =0
Solving for A, B, C, D, we obtain
Va? Va’b?
e

Thus, the potential (1) is

2,2
= 21 2(Vazr+Va b Jcose
b-—a r

Now, the impulsive pressure at a point on r = a (along x-axis), is

2 2
P= (p ¢)r:a = bgva ) (I‘-l—b—]COS |r:a

= bfvaz (a+b?)cos0
—-a

The impulsive pressure on the mole cylinder is

Jozn bf\_/zz (a> +b%) cosB. a cosO dO

Now, change in momentum = the sum of impulsive forces

2 2
Therefore, 122G (V=0) = I — ma’p (b ra JV

b* —a’
2, .2
= I=na20V+na2p(Ez+a2]V
—-a
Thus, impulse due to external forces, is
2
v
1= "2 [ 6 (b)) + p(b® + %))
b” —a

2
AY
= b’f‘_az [(6 +p) b* ~(6-p) &)

Hence the result.
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UNIT - 111

1. Vortex Motion

So far we have confined our attention to the cases involving irrotational motion
only. But the most general displacement of a fluid involves rotation such that

the rotational vector (vortex vector or vorticity) &=curlg#0. Here we

consider the theory of rotational or vortex motion. First of all we revisit some
elementary definitions.

Lines drawn in the fluid so as at every point to coincide with the instantaneous
axis of rotation of the corresponding fluid element are called vortex lines.
Portions of the fluid bounded by vortex lines drawn through every point of an
infinity small closed curve are called vortex filaments or simply vortices and
the boundary of a vortex filament is called a vortex tube.

If C is a closed curve, then circulation about C is given by

I'= §qdr=[f.curlqdS =[A.EdS =[E.dS
S S S

The quantity ‘ﬁ -E‘SS is called the strength of the vortex tube. A vortex tube
with a unit strength is called a unit vortex tube.

We shall observe some important results for vortex motion which are
consequences of the following theorem due to Lord Kelvin.

1.1. Kelvin’s Circulation Theorem (Consistency of circulation). The
circulation around a closed contour C moving with the inviscid (non-viscous)
fluid is constant for all times provided that the external forces (body forces) are
conservative and the density is a function of pressure only.

Proof. The circulation round a closed curve C of fluid particles is defined by

I'= §qdr,
C

where q is the velocity and 1 is the position vector of a fluid particle at any
time t.
Time derivative of I" following the motion of fluid is

dr

d . d_
U _dyg ar=¢3 G- dr
o " qardr=ig@-do
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dg - _ d ._
=¢|—-dr+q-—(dr
i[dt Ty )}

9 e 9y )
_i{dt dr+q dq} (1) ‘@ dt(dr) d(dtj dq

Since the system of forces is conservative; therefore F=-VQ, where Q is a
potential function Euler’s equation of motion is

d—qzﬁ—lvp=—vg—lvp )
dt p p

Multiplying each term of (2) scalarly by dr, we get

ie. —dr=-dQ-— 3) @drv=d

C
A

1 d
L]
2 A cP

d

=0-§2 )
cP

where A is any point on the closed contour C. Now, if density is a function of

. d .
pressure only, then the integral ff—p vanishes and hence we get
C
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d_F =0 = I = constant for all time

dt

Corollary (1). In a closed circuit C of fluid particles moving under the same
conditions as in the theorem,

[curl q.dS = [E.dS = constant 5)
s s

where S is any open surface whose rim is C. To establish (5), we note that, by
Stock’s theorem,

[curlq.dS = §q.dr =" = constant
S C

This shows that the product of the cross-section and angular velocity at any
point on a vortex filament is constant all along the vortex filament and for all
times.

Corollary (2). Under the conditions of the theorem, vortex lines move with the
fluid.

Proof. Let C be any closed curve drawn on the surface of a vortex tube. Let S
be the portion of the vortex tube rimmed by C. By definition vortex lines lie
on S. Thus

0= [curl q.dS = §q.dr | ® on surface circulation is zero
s C

Let C be a material curve and S be a material surface, then
d. . _ D . _
— [(n.curl q)dS =[—(n.curl q)dS=0
" i ( qQ) i Dt ( qQ)

Thus fn.curl ¢ remains zero, so that S remains a surface composed of vortex
lines. Consequently vortex lines and tubes move with the fluid i.e. vortex
filaments are composed of the same fluid particles. This explains why smoke
rings maintain their forms for long periods of time.

Corollary (3). Under the conditions of the theorem, if the flow is irrotational in
a material region of the fluid at some particular time (e.g. t = 0 or t = ty), the
flow is always irrotational in that material region thereafter.

i.e. If the motion of an ideal fluid is once irrotational it remains irrotational for
ever afterwards provided the external forces are conservative and density p is a
function of pressure p only.
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Proof. Suppose that at some instant (t = to), the fluid on the material surface S
1s irrotational

Then, & =0 (1)
for all points of S.

Let C be the boundary of surface S, then

I'= §qdr = [(f.curl q)dS = [(A.E)ds =0 | using (1)
C S S

But by Kelvin’s circulation theorem, I" is constant for all times. Hence
circulation I is zero for all subsequent times. At any later time,

[A.EdS=0
S

If we now take S to be non-zero infinitesimal element, say AS, then

AEAS =0 = E =0 at all points of S for all times and the

motion is irrotational permanently. This proves the permanency of irrotational
motion.

1.2. Remarks (i) The above three corollaries are properties of vortex filaments.

(ii) The Kelvin’s theorem is true whether the motion be rotational or
irrotational In case of irrotational motion, & =0 and thus I'=0

(iii)  From the results of the theorem, we conclude that vortex filaments must
either form closed curves or have their ends on the bounding surface of
the fluid. A vortex in an ideal fluid is therefore permanent.

1.3. Vorticity Equation. Euler’s equation of motion for an ideal fluid under
the action of a conservative body force with potential € per unit mass is

Dq dq (1_2j _ = 1
—=—+V| = -qx§=-VQ-—-V 1
o= o VST maxE o VP e))
where the vorticity & =curl =V xq. If the fluid has constant density, then
taking curl of equation (1), we get

aq 1

\% ><—+V>{V(lﬁ2ﬂ—Vx(Q><E)= Vx(—VQ——VpJ
ot 2 P
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= an—q—Vx(QXE)zo
ot
0 - =
= g—(VXq)—VX(qX§)=0
= %wx(axE)
=& -V)q-@q-V)§
= aa—‘t°+<a-V>E=<E-V>a
t
. D _ =z o
ie. Ft—(ﬁ V)q ()

which is the required vorticity equation.

Equation (2) is called Helmholtz’s vorticity equation. For two-dimensional

motion, the vorticity vector & is perpendicular to the velocity vector q and the

R.H.S. of (2) is identically zero. Thus, for two dimensional motion of an ideal
fluid, vorticity is constant.

In the case, when body force is not conservative, equation (2) becomes

%:(E.V)mwﬂﬁ

where F is body force per unit mass.

1.4. Example. A motion of in viscid incompressible fluid of uniform density
is symmetrical about the axis r = 0 where (r, 0, z) are cylindrical polar co-
ordinates. The cylindrical polar resolutes of velocity are [q.(t, z), 0, q.(1, z)].
Show that if a fluid particle has vorticity of magnitude &, when r =1y, its
vorticity when at general distance r from the axis of symmetry has magnitude &
= (Eo/ro)r, if any body forces acting are conservative.

Solution. The vorticity vector & satisfies the vorticity equation

—=(&-V)q ey

Now,
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T 0
S| B T
r| or 09 0z
q,(r,z) 0 q,(,2)

|®N>

:%{f%{qz(r,z)}%ré{%qr(r,z)—%qz(r,z)}+2(0)}
aq, 9q, |
— |8 Tz g 2
{az ar} @
Therefore,
- =(.0 alo .0
V=E[tZL+86-2L 432
V) é(rar—i_ r86+zazj
dz or or r1dd oz
1(dq, dq, )0 A -
P r __~1z |~ e :O:e
r(az arjae ' ‘
zww 1(0q, dq,\0 , .
Th Vg=-| —2r_“z | Z
. EV)g r(az arjae(qrr—i_qZZ)
_ 4. (9%, 9, |of
r| dz or |00
q,(9q, 9q,\sn ,OF A 0z
= A/ Mol Zop Zoo 3
r\ 0z arj 20 20 ©)
e .
Hence (§.V)q=—¢ | using (2) %)
r
. From (1) & (4), we get
DE qr =
S _ 4 5
Dt rg )

Now, g, = q.T', so equation (5) becomes
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DE -
r—i’ =q.t& (6)
) _ _Dr D
Since 2 =12 :>r.—r=r—r
Dt Dt
r Dr_ Dr . Dr Dr Dr

——=— > Tr—= =T.
r Dt Dt Dt Dt Dt

Using this in (6), we get

,DE_Drg
Dt Dt
_ Dj_gg
=S rD—g—EE:O = Dt Dt_j
Dt Dt r’
= D é =0 :>§:const:&—0
Dt r r I,

Hence the result.
2. Vorticity in Two-dimensions

For an incompressible fluid in the xy-plane, we have

_ 0 d
= ) 707 V: _7_70
4=u.v0) (ax ady J

av
ox

_ gy
ox dy
which shows that in two-dimensional flow, the vorticity vector is perpendicular
to the plane of flow.

Therefore, &=Vxq=(0,0,—— g_u)
y
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Also, §= ‘

Thus E=k¢&
Now, for this case, the Helmholtz’s vorticity equation
dg

2 = (E.-V)q gives
" €-V)q g

dE ~

0 = & =constant

i.e. & = constant.

which shows that in the two-dimensional motion of an incompressible fluid,
the vorticity of any particle remains constant.

Here, we may regard & as a vortex strength per unit area.

Also, in terms of stream function, we have

Loy
dy ox
2 2
Therefore, E=k a—‘f +8_12|I =k Viy
ox~ dy
ie. £E=Viy

This gives vorticity in terms of the stream function.

2.1. Circular Vortex. The section of a cylindrical vortex tube whose cross-
section is a circle of radius a, by the plane of motion is a circle and the liquid
inside such a tube is said to form a circular vortex.

If ® is the angular velocity and ma® the cross-sectional area of the vortex tube,
then circulation

F=§q-dr=| curl g-ndS={ curl g-dS
C S S

= o [dS = oma® =k(say)
S
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This product of the cross-section and angular velocity at any point of the vortex
tube is constant along the vortex and is known as the strength of the circular
vortex.

2.2.Rectilinear or Columnar Vortex Filament. The strength k of circular
vortex is given by k = oma®. If we let a—0 and w—co such that the product
oT’ a remains constant, we get a rectilinear vortex filament and represent it by
a point in the plane of motion. Such vortex filament may be regarded as
straight gravitating rod of fluid lying perpendicular to the plane of flow. It is
also termed as a uniform line vortex. The strength of a vortex filament is
positive when the circulation round it is anticlockwise and negative when
clockwise.

2.3. Different Types of Vortices. We may divide vortices into the following
four types

1)) Forced vortex in which the fluid rotates as a rigid body with constant
angular velocity.

(ii) Free cylindrical vortex for which the fluid moves along streamlines
which are concentric circles in horizontal planes and there is no
variation of total energy with radius.

(iii)  Free spiral vortex which is a combination the free cylindrical vortex
and a source (radial flow)

(iv)  Compound vortex in which the fluid rotates as a forced vortex at the
centre and as a free vortex outside.

2.4. Complex Potential for Circulation about a Circular Cylinder
(Circular vortex). In case of a doubly connected region, the possibility of
cyclic motion does exist and as such we proceed to explain it presently in the
case of circle.

If the circulation in a closed circuit is 27k, then k is called the strength of the
circulation.

Let us consider the complex potential
W=0¢+iy=iklogz (1)
On the circular cylinder lzl=a,z=a e
Thus, W =ik log (a eie) =ik (log a +10)
ie. 0 +1y =-k6 +ikloga

= 0 =-k0, y =k log a = constant.
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This shows that the circular cylinder is a streamline and thus equation (1) gives
the required complex potential for circulation about a circular cylinder.

When the fluid moves once round the cylinder in the positive sense, 0 increases
by 21 and then

01 =—k (0 +21) = —kO —27k
= ¢ — 2nk
Therefore, circulation = 27tk = ¢ —¢,
= decrease in ¢ moving once round the circuit.

Hence there is a circulation of amount 27tk about the cylinder.

Also, dw _ ik
dz z
dW | k
:> = —_—— | = —
dz r
ie. k=rq

Therefore, k=qwhenr=1
Thus k is the speed at unit distance from the origin.

2.5. Complex Potential for Rectilinear Vortex (Line Vortex). Let us
consider a cylindrical vortex tube whose cross-section is a circle of radius a;
surrounded by infinite mass of liquid. We assume that vorticity over the area
of the circle is constant and is zero outside the circle.

Let y be the stream function, then

E=Viyk

. oy oy
1e. =Viy = +
s v x> 9y’

2 2
_9y loy 107y
or> ror r? 00’

Since there is a symmetry about the origin Y is a function of r only and so
R
00’
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€= li(rd—w} forr<a
rdr\ dr

=0, forr>a
i.e. i(rd—qj} =rE, forr<a

=0,forr>a

Integrating, we find

2
rd—wzér—+A, forr<a
dr 2

=B, forr>a

We are interested in the fluid motion outside the cylinder |z| = a. Therefore,
integrating the second of the above result, we get

y=Blogr+C,forr>a.

The constant C may be chosen to be zero. Further, for r > a, the vorticity is
zero and the fluid motion is irrotational, therefore velocity potential ¢ exists
and is related to y as

_19¢_ov _B
rod or r
= 0=-BO6+D
= ¢ =—B6, neglecting D

Let k be the circulation while moving once round the cylinder, then
k = decrease in value of ¢ on describing the circuit once
=-B [0—(0+2m)] = 2nB
= B =k/2n = K(say)
Thus, ¢ =—-K0 and y =ZK log r
Hence W = ¢ + iy = —k0O + iK logr

=iK (logr + i0)
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=iKlogz = iilogz.
2n
If the rectilinear vortex is situated at the point z = z,, then by shifting the
origin, we get
W =iK log (z-z)

If there are vortices of strengths K;, K,, ...K, situated at z;, z,..., 7,
respectively, then the complex potential is

W =iK, log(z—z,) +iK; log(z—z,) +...+ 1K, log(z—z,).
2.6. Remarks (i) By a vortex, we mean a rectilinear vortex or line vortex.
(ii) K =k/2m, where K is the strength of a vortex and k that of circulation

2.7. Complex Potential for a Spiral Vortex. The combination of a source
and a vortex is called a spiral vortex or a vortex source.

Let us consider a source of strength m and a vortex of strength K both at the
origin. Then the complex potential is

W =-mlogz+iK logz
= (—m + iK) log z = (—m + iK) log (reie)
= (—m + iK) (log r +10)
= 0+iy=—mlogr—K6+i(-m6 + Klogr)
Therefore, 0=—(mlogr+K0), y=—m0 +Klogr
If we go once round the origin, then ¢ decrease by 21K and y be 2mm.

2.8. Example. Find the complex potential for the motion due to a system
consisting of a coincident line-source of strength m per unit length and line-
vortex of strength K per unit length in the presence of a circular cylinder of
radius a, whose axis is parallel to and at a distance b( > a) from the line of the
source and vortex. Show that the cylinder is attracted by a force of magnitude

21p a* (m? + K?)/ b(b*—a?)
per unit length.

Solution. We suppose the line-source and line-vortex to be at the origin, then
the complex potential is
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W=-mlogz +iKlogz= (iK-m) log z (D

When the circular cylinder |z—bl = a (b > a) is inserted, the complex potential,
by circle theorem, becomes

2
W = (iK-m) log z + (-iK-m) log ( 4 bj )
where _
lz—bl=a= ( z—b) (z=b) =a’
_ a2 _ 2
= z-b= — = z= +b
b z—Db

By Blasius theorem, force on the cylinder C is given by

aw )’
X—-1Y =-mp[ sum of residues of (d—J within C ]
z

3)

{iK—m iK+m a’ }2 @)

z  a’+bz—byz-b
aw )’ a’
The only singularities of (—J withinCareatz= bandz=b - 5 since z

dz

= 0 is not inside C.

Now,
2 2
residue (z= b)= -2 (K%J Only product term of (4)
and will contribute
2 2 2
residue (z =b— a—) = w .
b (b”—a”)

Therefore, from (3), we get

b 1
X—iY = -27tp (K*+ m? -
p( ) [b2 . b}

= —2mpa’(K* + m?)/b(b*~a’)
Thus
Y =0, X=-2npa’(K*>+m?)/b(b*-a’).
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The negative sign implies that the cylinder is attracted towards the origin
where the spiral vortex is situated.

2.9. Complex Potential for a Vortex Doublet. Two equal and opposite
vortices placed at small distance apart, form a vortex doublet.

Let us consider a vortex of strength K at z = ae'® and another vortex of strength
—K at z = 0, then the complex potential is

W = iK log (z—ae'*) —iK log z

P (0] io
:iKlog(Z ac jziKlog(l—ae J
V4 Z

As a—0, K—oo, then Ka—u and we obtain

. io i(o—m/2)
—1Uue €
A o

Z Z

This is the required complex potential for a vortex doublet at the origin.

Meia
z
Thus, it follows that the complex potential of a vortex doublet is the same as

that for a doublet with its axes rotated through a right angle.

Also, we note that the complex potential for a doublet at the origin is

2.10. Image of Vortex in a Plane. Let us consider two line vortices of
strengths K and —K per unit length at A(z = z;) and B(z = z,) respectively. The
complex potential due to these line vortices is

W = ¢ +iy =iK log(z—z,) —iK log(z —z,)

- P
= vy =Klog ! =Klogr—1
Iy 1
Ifry =1, then y =K logl =0
Thus the plane boundary OP is a streamline so that
there is no flow across OP. Hence the line vortex at B(-K) 0 A(K)
B with strength —K per unit length is the image of
the line vortex at A with strength K per unit length OA=0B

so that A and B are at equal distances from OP. lz—z,l =1y, lz—2,] = 1>
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2.11. Remark. In case of two dimensions (as for sources, sinks and doublets),
a vortex means a line vortex and strength means strength per unit length.

2.12. Image of a Vortex in a Circular Cylinder (or in a circle ). Let a vortex
of strength k be present at z = d, then the complex potential is iK log (z—d).
When the cylinder Izl = a is introduced into the fluid, the complex potential, by
circle theorem, becomes

2
W = iK log (z—d) — iK log (a— - dJ
V4

2
1.e. 0 + 1y = iK log(z—d) —iK log (z - %J + iK' log z + constant

ey

=iK log{(x—d)2+y2}1/2+itan_1[ Y H

X —

1/2

5 \2
—iK | log (x—%} +y? +itan™ Y

+iK | log/x* +y* +itan™ 1}

X

where we have ignored the constant term

a{(acose—d)2 +a”sin’ 9}1/2

1/2

5 \2
(acos@—adj +a’sin’0

lzl=a =>z=ae®
= X =acosb,

y=asin®

=K log d = constant.
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This shows that the cylinder is a streamline. Thus (1) represents the complex
potential of the fluid motion. From (1), we observe that the image of a vortex
of strength K at z = d is a vortex of strength —K at the inverse point z = a’/d
together with a vortex of strength K at z = 0 i.e. centre of the circle.

2.13. Circulation about a Circular Cylinder in a Uniform Stream. Let a
liquid be in motion with a velocity —U along the x-axis. The complex potential

due to the stream is Uz. If the circular cylinder of radius a is introduced inside
2

the liquid, then the complex potential, by circle theorem, becomes Uz + vl
z

Let there be a circulation k about the cylinder. The complex potential due to
circulation is ik log z. Thus the complex potential of the whole system is

2

W=Uz+U2 tiklogz (1)
VA
_ dW 2 ik
= _g=W_yopd Lk
dz 722z

At the stagnation points, ¢ =01i.e.q=0

2 .
Kk
= U—Ui +E=0
7z V4
= Uz +ikz—-Ua’=0
2
= z:—£+ __k
2U 4a°U?

Since a and U are constants, therefore the flow potential term depends very
much on the magnitude of k. We shall consider three cases.

Case I. When k < 2aU i.e. % <1, we put
4a°U
2 L,
207 =sin” B and then
z=—iasin B +acos P

Thus the stagnation points are (a cos 3, — a sinf3) and (—a cosf3, — a sinf3)

Further Izl=al+cosB—isinPBl=a



192
FLUID DYNAMICS

.. The stagnation points lie on the boundary of the cylinder. They lie on the
line MN below the diameter AB as shown in the fig. The velocity increases
above MN and decreases below MN.

Further, from Bernoull’s equation,

1
Py 5 q* =constant

p
we observe that the pressure decreases above MN and increases below MN.

Thus, there is an increase of pressure by the liquid due to circulation. If there
is no circulation, then k = 0 = sinB=0

= B=0,m,z=+a

Therefore, MN coincides with AB and thus the stagnation points are at A and
B. Therefore we conclude that the circulation brings the stagnation points
downwards and put an upward thrust on the cylinder.

2

Case II. When k = 2aU i.e. % =1, then sinf = 1
4a”U

= B=m/2, z=—ia = lzl=a
and thus the stagnation points coincide at C, the bottom of the cylinder.

2 2

k
> 1, then we put Z = coshP so that

Case III. When k > 2aU i.e. 5 =
a“U

42°U?
z =a (—i cosh B + sinh )

=—ia eB, —iae®
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.. The stagnation points lie on y-axis.
Further I(—iae®) (—iae ™)l = a

this shows that the stagnation points are inverse points w.r.t. the circular
boundary of the cylinder. One of these points lie inside and other is outside the
cylinder. The point which is inside the cylinder does not belong to the motion.

B ,outside the circle

B

lz, = —jaeP = ae

lz, =l —iae P |=ae” ,inside the circle

p B

since ae " <ae’.

We know that at the stagnation points (critical points), there are two
branches of the streamlines which are at right angles to each other. Thus the
liquid inside the loop formed at the stagnation points will not be carried by the
stream but will circulate round the cylinder

Pressure (Force) on the circular cylinder :- From (1), we have

2 .
dW:U_Ua +§
dz 72 z

Therefore, by Blasius theorem,
ip (dWY
SOy (P
2 e\ dz

2
= —7tp (sum of the residues of ((L—WJ within the circle |zl = a)
V4

2
. Wi . .
By Cauchy's Residue theorem as ((L—j is a meromorphic function
z

where X, Y are components of the pressure of the liquid and p is the density of
the liquid

2 2\2 . 2 2
Now, (d—wj _p ] JAKUL ) K
dz P 7 P ;2

The only pole inside the cylinder Izl = ais z = 0 i.e. a simple pole. The residue
at z =0 is 2ikU

Therefore, X —1y =—mp(2i kU)
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=  X=0,Y =2nkpU

This represents an upward thrust on the cylinder due to circulation. The lifting
tendency (k # 0) is called the Magnus effect. The moment M is obtained to be
zero, since residue is zero in that case.

2.14. Exercise. Show that the complex potential

2

W = U(z +a—J+ik log z represents a possible flow part a
z

circular cylinder. Sketch the streamlines, find the stagnation points and
calculate the force on the cylinder.

z—1ia

z+ia
complex potential of a steady flow of liquid about a circular cylinder, the plane
y = 0 being a rigid boundary. Find the force exerted by the liquid on unit
length of the cylinder.

2.15. Example. Verify that W = iK log ( j, K and a both real, is the

Solution. Putting W = ¢ + iy, we get

0 +iy = iK log 22
z+ia
. —1i ..ogy—a . 3 y+
=ik logIZ Fl|+1tanlu—1tan1y a
lz+i1al X X
_ W:Kloglz_%al
lz+ial

The streamlines = constant are given by

lz—1al

— = constant = A (say)
lz+ial

For A # 1, these are non-intersecting coaxial circles having z = + ia as the
limiting points i.e. circles of zero radius. In particular, for A = 1, we get a
streamline which is the perpendicular bisector of the line segment joining the
points + ia and it is the radical axis of the coaxial system. No fluid crosses a
streamline and so a rigid boundary may be introduced along any circle
A = constant of the coaxial system, including the perpendicular bisector A = 1

We note that for A =1, Iz —ial = Iz + ial

= X+ (y-a)l=x"+(y+a)* =y=0
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Hence we can introduce rigid boundaries along
@) a particular circle A = constant (# 1)
(ii) along the planey=0 (A= 1)

and this establishes the result of the
first part of the question. The
circular section C of the cylinder
and the rigid plane y = 0 are shown
in the fig. Circle C is any member
of the above mentioned A-system of
coaxial circles and it encloses the
point A(0, a) whereas the point MITTTT T I T I T ITTIT 1> X
B(0, —a) is external to it. y=

Since W =iK [log (z —ia) — log (z + ia)]

. W,zdw:iK( 1‘ _ 1.j
dz z—1a z+1a

Therefore, by Blasis theorem,

2
—1Y——pf dWJ dz
2\ dz
r 2
ie. X-iY="] iK( S ﬂ dz
2¢ \z—1a z+ia
_' 2
=1KPJ 12+ 12_ .2 _ldz
2 &l (z-ia)® (z+ia)® (z—ia)(z+ia)

The integrand has double poles at z = + ia. Out of these poles only z = ia lies
within C.  Thus, we find residue at z = ia. It is only the last term of the
integrand which gives a non-zero contribution to the contour integral and the
appropriate residue at z =1ia is

Lt (z—ia); = ;2=._—1:l
z—ia (z—1a)(z+1a) 2ia 1a a
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Hence by Cauchy-Residue theorem, we get

w2 . —
X-ivy= & p[(Zni)l} _ Imkp
2 a a

which shows that the liquid exerts a downward force on the cylinder of amount
2

nK"p
a
to be zero and thus M =0

per unit length. In case of moment M, the sum of residues is obtained

2.16. Motion of a Vortex Filament. We find the velocity of the point P(z)
due to a vortex filament K at z = z;. We know that, the complex potential is

W =iK log (z—z)

I\ K —iK -iK _
- q = — = — = 5 = e
dz z-z, Re' R

where z — zg = Re®®.

AP =R, arg (z—z9) =9

u—iv=s ——
Re

= 7K cos0-isin®)

= U=£sin9, V=Ecose,q:E
R R R
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Therefore, Y- —cot0 =tan(90 + 0)
u

Thus, the direction of motion at P is perpendicular to AP with speed K/R in the
sense given by the rotation of the vortex at A.

3. Motion of Rectilinear Vortex (Line Vortex)

The stream function y at a distance r < a (the radius of a cylindrical vortex) is

determined by E= V2\|I. Using polar co-ordinates, we get
2
VZ\V = d_\|2!+_d_\p’ where Y is a function of r only, due to
dr r dr

. d*y
symmetry | ie.—- =0
Thus, we get

Viy = 1i[rd—"’j:§,r<a (1)

Integrating (1) and noting that & is constant, we obtain

g+ ®)

dy 1
dr 2 r

But the radial and transverse components of velocity are

__1oy _ov¥
TTre Ty
1 A

=0, go=_r1E+—
2 I

The velocity cannot be infinite at the origin (r=0) and so A=0
1
Therefore, Qo = 5 E=0atr=0

Thus there is no motion at the centre of a circular vortex. Therefore, in case of
a rectilinear vortex (line vortex), its motion is not due to itself but due to the
presence of other vortices. Thus, if motion is due to n vortices of strengths K
at the points z, (s = 1, 2,...,n), then the complex potential at a point P(z), not
occupied by any vortex, is
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W= i 1 K log (z—z;) 3)
s=1
and the complex velocity is given by
n K
u—iv:—d—W:—Zi( : j “)
dz =1 \(Z—2g

Further, the complex velocity of the vortex of strength K;, which is produced
only by the other vortices, is

n K
ur—ivr=—2i( > J,wheresir. 5

The result (5) is practically obtained as
W = W-iK, log (z — z,)

so that

3.1.Centroid of Vortices. Let there be two vortices of strengths K; and K, at
points A(z=z;) and B(z = z,) respectively, then

W =iK, log (z—z)) + iK; log (z—27,)

The velocity of A is due to the presence of other vortex at B and vice-versa.
Thus

g:(_ﬂj _ —iK,
z=171

dz z,-2,
and
%:(_d_Wj _ —iKy K
dz =2y L2 7Ly 21—
Therefore,
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or KH 4K, —0 e [RiztKaz
K, +K, del K, +K,
Integrating, we get
K
LI% — Constant
The point 111—K222 divides AB in the ratio K, : K;. This point remains
1 T K,
fixed (not necessarily a stagnation point) and is called the
centroid G of the vortices at A and B.
Further
AG GB  AB { B

K, K, K,+K,

Therefore, AG = LAB
K, +K,
0
V=r o=r—
dt
The velocity of A is
K
|ll1 —iV1| =2
AB
K,AB K, +K
= —2 — 22 =AG.0
K,+K, (AB)
K, +K
where 0= 1—22
(AB)

Thus, A moves with a velocity AG.® perpendicular to AG. Similarly B moves
with a velocity GB.® perpendicular to GB. So AB rotates with an angular
velocity ®. Further, neither vortex has a component of velocity along AB, it
follows that AB remains constant in length.

3.2. Vortex Pair. A pair of vortices of equal and opposite strengths is called a
vortex pair.
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Let K and —K be the strengths of the two vortices at A(z = z;) and B(z = z,)
respectively. Then the complex potential is

W =iK log (z—z,) — iK log (z—2z,)
=W + W, (say)
The velocity at A is due to the presence of the vortex at B and vice-versa.
Therefore the velocity at A is given by

K -K

N N

A| (z=2)) B

. dw, iK
u—ivy = | — 1 =
z=7]

Similarly, the velocity at B is

. dw,
U —1Vp = | — iz
VASYA

-iK iK

Zy =7y Zy—1Z,

2

= qi = —iVI—£
1 1 1 AB,

K
su, —iv, l=—— llz; — z,l = AB
q. 2 2 AB 1 2

Therefore, both the vortices have the same velocity.

Further, W = iK log 274

= ¢+i\V=iK{10g S +i(91—92)} ‘9=tan_ll
-2, X

= vy =Klog ! =K10gr—1
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) r
Therefore, the streamlines, \y = constant, are —- = constant.
r
2

which are co-axial circles.

Thus the streamlines in case of a vortex pair are co-axial circles which have A
and B as limiting points.

3.3. Example. A vortex of circulation 27k is at rest at the point z = na (n > 1),
in the presence of a plane circular impermeable boundary |zl = a, around which
there is circulation 2wAk. Show that

1

n’-1

A=

Show that there are two stagnation points on the circular boundary z = ae'®

symmetrically placed about the real axis in the quadrants nearest to the vortex
given by
cos® = (3n°-1)/2n’.
and prove that 0 is real.
Solution. The circulation of vortex is 27k and thus the strength of vortex is k

Therefore, complex potential due to the vortex is

f(z) = ik log (z—na)

= f(z)= —ik log (z —na) | k,n, a and the
function form are real.
= fla? /)= —ik log (——naJ

z

The complex potential, when the circular cylinder Izl = a is introduced into the
fluid, becomes f(z)+ f (az/z), by circle theorem.

Now, there is a circulation 2tAk around the cylinder. This is equivalent to the
line vortex at z = 0 of strength Ak.

Thus the total complex potential is

2
W =ik log (z—na) —ik log (a_ - na) +iAk log z
z
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=ik log (z—na) —ik log (z —3J+ iAk log z + ik log z + constant.
n

= ik log (z—na) —ik log (z —3] +ik (A +1) log z + constant (D
n

This is equivalent to the complex potential due to a vortex of strength k at
z=na, -k at z=a/n and (A +1)k at z = 0 as shown in the figure

na
1 1
T T

O(z=0) A’ (Z = EJ A (z=na)

n
(A+1Dk -k k

The velocity at point A is due to the motion of other two vortices (i.e.
excluding first term in (1))

Therefore,

(d_wj _| ik J{ik(xﬂ)]
dz ),_.. a na
na——

n

(Differentiating (1) and put z = an excluding Ist term of (1))

The vortex at A is at rest if

dw

dW :k(k+1)_ k
dz

=0
Z=na na na — E

=0

= A=

Hence the result

Now, from (1), we get

Puttingz =a ¢ and simplifying, we get
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dW  ike®  2n’cos®-3n” +1 1
=— 5 > usng A =—
dz a (n“—2ncos®+1)(n” —1) n- -1

The stagnation points on the circle, if any, are given by

d—W =0 for z = ae'®
dz
Thus
d_W =0 =2n°cos®—3n’+1=0
dz
3n% -1
= cosO = 2)
2n?

Now, we know that —1< cos 8 < 1 i.e. IcosOl < 1 therefore R.H.S. of (2) must lie
within these limits for 6 to be real

Let us write

3n’-1 3 1

fn = =
m 2n° 2n  2n?

Then

f(1)=1, and also, f’(n) =_i2+i4
2n° 2n

3 2
=—(1-—mn)<0forn>1
2n*

From here, we note that f ‘(n) < 1 for n > 1. Thus for n > 1, f(n) decreases
monotonically from 1 at n =1 to 0 as n—eo. For all n >1, real values of 6 are
obtained from (2). Two distinct values of 0 are obtained for any given n > 1,
one of the values is 0 = o, where 0 < o0 < /2 and the other is 0 =2n—qL.
Hence the two stagnation points are symmetrically placed about the real axis in
the quadrants nearest to the vortex.

4. Vortex Rows

When a body moves slowly through a liquid, rows of vortices are sometimes
formed. There vortices can, when stable, be photographed. Here we consider
infinite system of parallel line vortices and two dimensional flow will be
presumed throughout.
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4.1. Single Infinite Row of Vortices. We shall find the complex potential of
an infinite row of parallel rectilinear vortices (line vortices) of same strength K
and a distance ‘a’ apart.

First, let there be 2n+1 vortices with their centres on x-axis and the middle
vortex having its centre at the origin. The vortices are placed at points
z=+na,n=0,1,2,...... , symmetrical about y-axis. The complex potential
due to these vortices is

>

—3a —2a -a O Ia 2|a 3a

W =iKlog z + iK log (z—a) + iK log (z—2a) +.....4+ 1K log (z—na)

+ iK log (z+a) + iK' log (z +2a) + ...... + iK log (z + na)

=iKlogz (z2 —az) (22—22a2) (z2 - 32a2) ......... (zz—nzaz)
2 2 2 2
nz z z z z
=iKlog —|1-— || 1- I———— ... 1-
+iK log & (1) (a2 22 a2 3%%......... na%)
T

. |7/
Ignoring the constant term and putting — =0, we get
a

. 0> 0> 0>
W =iK logf (I—FJ(l—nzan ............. (1_n2n2j

Making n— oo, we find

W = iK log sin® = iK log sin (1)
a

The velocity of the vortex at origin is given by

qeo = _di [W —iKlog Z]Z=0 |® The motion is due to other vortices
z
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= ——{iK logsin nz_ iKlog z}
a z=0

a z=0
which is indeterminate form and — 0 as z — 0. Hence the velocity at z = 0 is
zero. Similarly, all other vortices are at rest. Thus, the infinite row of vortices

does not induce any velocity by itself.

Now, the velocity at any point of the fluid other than the vortices is given by

_dw —iKnC nz

q=u—-iv=—— —
d dz a a
co E( +1y)
—iKm T . —iKm Sa xrly
= cot| — (X +1y) | = p-
a a sin— (X +1y)
a
oI . . T .
| —iKn ZCOSE(X +1y) smg(x —1iy)
a ZSinE(X+iy)sinE(x—iy)
a a
. 2nx . 2myi
) sin—— —sin
_ —1iKn a a
a 27ty . 27X
cosS——1—cos
a a
. sin 2 _ 1sinh 21y
_ —1Kn a a
4 | cosh 21y _ cos 27X
a a
—Kn sinh 21y Kn sin 27X
N u= a a v = a a

coshﬂ—cos@ cosh@—cos@

a a a a
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Also, we have W = ¢ + 1y = iK log sinE
a

and W = 0 — iy = —iK log sin >
a

(0 +iy) — (0 —iy) = iK log sin =~ —(— iK logsin Ej

a a

= 21y =iKlog sinE sin nz
a a

Streamlines, y = constant, are found to be

cosh 2y _ cos%= constant.
a a
4.2. Double Infinite Row of Vortices. Let us suppose that we have a system
consisting of infinite number of vortices each of strength K evenly placed
along a line AA’ parallel to x-axis and another system also consisting of
infinite number of vortices each of strength —K placed similarly along a
parallel line BB”. Let the line midway between these two lines of vortices be
taken as the x-axis.

k

e [on Car Vanulin

T I I [N
z,—2a Z1—a 7 Z+a zZ1+2a

s

Z,—2a Z—a Zr+a Zr+2a

Let one vortex on infinite row AA’ be at z = z; and one vortex on infinite row
BB’ be at z = z,, so that the system consists of vortices K at z = z; + na and
vortices—K atz=z,+na,n=1, 2, ....

The complex potential of the system is

W:iKi log

[(z—z1 —na)(z—z, +na)
n=0

(z—z, —na)(z—z, +na)
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oo _ 2 2.2
=iKZlog{(Z z)_—n'a }
0

(z —22)2 —n’a?

A (z—zl)z—nza2

=iK log

+1K > log
-7, I,Z:i (z—2,)* -n’a’

A ﬁ{l—(z—zl)z/nzaz}

=iK log
1—(2—22)2/n2a2

&)

Z_ZZ n=1

o0 2
Now, since sinf = 0 H (l - (3 5 J V 0 real or complex,
n°m

n=1

T(z—12,;) _ ™z—12,)
a B a

in z—zy) _ n(z—zl)ﬁ (l— (Z_Zl)zJ

a a n2a2

we get, on setting 0 =

n=1

a a n=1 n’a’

in Mz—-2,) _ n(z—zz)ﬁ (1_ (Z—ZZ)ZJ

Therefore, equation (1) takes the form.

. (z-z
smng

W =iK log sz) )
2

a

sinT
The velocity at any point P(z), not occupied by a vortex filament, is

u—iv= —(L—W =—iKA [cot A (z —z;) — cot A (z—2»)], where A= Tt/a
z

= 2iKA sin Mzy—z1)/[cos Mzr—21) — cosA (2z—z1 —25)] (3)

To find the velocity (u;, v;) of the vortex K at z = z;, we have

Uy —ivy = _[i{w —iKlog(z - Zl)}:|
dz

72=17]
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=iK{kcotk(z—zz)—kcotk(z—zl)+ ! }
=2,
Since

[cotk(z -z,)—

———— | >0 as z—z;
7\,(2—21)}

Therefore,

u; —ivy = iKA cotA (z1— 2»), A = m/a
“4)

4.3. Karman Vortex Street. This consists of two parallel infinite rows AA’
and BB’ of vortices of equal spacing ‘a’ so arranged that each vortex of
strength K of AA” is exactly above the mid-point of the join of two vortices of
BB’ each of strength —K ; as shown in the figure

y
i|b
A a+1lrb 2a—=|-1b 3ar—1b A
ib
X
(@
-1
B } } } ; B’
a 3a Sa
——ib —=ib — il
2 2 2

Therefore, the complex potential, in this, case is

sin = (7 — ib)
W =iK log a

sinn(z—a+ibj
a 2

( Similar to (2) of previous article on putting z; = ib, z, = %—ib).

The velocity of the vortex at z =1b is

u —ivy = EiK cotz(ib - % + ibj | Similar to (4) of previous article
a a

= EiK cot n(@ —lj
a a 2
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EiK cot(_—fc + anbj
a 2 a

TiK (Znibj
———tan

a a

ﬁ tanh _27tb

a a

= u; = Ktanh@, v, =0.
a a

It can be shown that each of vortices at the rows. AA” and BB” move with the

209

same velocity. This means that the vortex configuration remains unaltered at

all times, since both AA” and BB’ have the same velocity Etanh@in X-

a a

direction. Hence the street moves through the liquid with this velocity.

4.4. Example. If n rectilinear vortices of the same strength k are symmetrically
arranged along generators of a circular cylinder of radius ‘a’ in an infinite
liquid, prove that the vortices will move round the cylinder uniformly in time

47a’

K(n-1)

Solution. Since then rectilinear vortices of
strength k are symmetrically distributed
around the circular cylinder, the angular
distance between any two consecutive

... 2m .
vortices is —. Let the line through the
n

centre of the cylinder and one of the
vortices be taken as x-axis Thus, the
vortices are at points

7 = ae(), ae27t1/n’ a e4'71',1/n"””ae271',(n—1)1/n

which are n distinct roots of the equation
n n
z —a =0

1®@z"-a"=0

Total complex potential of the system is

. Also find the velocity at any point of the fluid.

/\ / N\

!
\ 7

\/ // \_/

generators

~—_| 1
~—J1__| —

1

a I

‘ Centre of cylinder ‘

n _ _n _27r _ .2mit/n

—>Z =a ¢ —>z=a

W =iK log (z—a) + iK log (z—ae”™™) +............

= iK log (z—a) (z—a e*™™)
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=iK log (z" —a")
The velocity at any point outside the vortices is
. dW  —niKz""
u—iv=— =
dZ Zn _ an
The velocity at the point z = a is
d .
= |-—[W-iKlogz-a)],,
dz
= —iKi{log z ~1a }
dz z-a |
=K i[log(zn_1 +az" 4.2 )]Z:a
dz
K[(n—1)z"* +a(n-2)z"> +....+a" *] _,

=E[(H—l)+(n—2)+ ........ +2+1} Kn-1

a n

Therefore, time period is given by

T= 2ma T dis tan‘ ce
K(n-1) velocity
2a
2
i.e. T= &
K(n-1)

Hence the result.

4.5. Remark. If we use K = ;i.e k =27nK , then
T

4ma®  8m’a’
k (n—Dk

E(n—l)

T=

4.6. Example. Three parallel rectilinear vortices of the same strength K and in
the same sense meet any plane perpendicular to them in an equilateral triangle
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of side a. Show that the vortices move round the same cylinder with uniform
2

speed in time

2mpi/3

Solution. Here, the vortices are situated at points z = re where p=0, 1, 2,

A

a

0O 4

f >67)“\’\
D a2 C

From A OCD, %zrcosSOo =r§

a . . .
= r = —, where r is the radius of the cylinder.

V3
The complex potential of the system is

2mi/3 47ti/3)

W =iK log (z—reo) + iK log (z—re*™"") + iK log (z—re
=iK log (z3 — r3)

For the motion of vortex at A, we have

Up —1Va = —i[w —iKlog(z - r)]Z:r
dz

33
= —iKi{logZ d }
dz z—r | _

= Ki[log(r2 +2° + Zr)]z=r
dz

=K[222+} -
r+z +z" |, r

Therefore, if T be the time period during which the vortex A moves round the
cylinder, then

NG

T o 2m® 2mf a ) 2ma’
K/r K K 3K

Hence the result.
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5. Wave Motion in a Gas

When studying impulsive motion of incompressible fluids, we have observed
that a small disturbance applied at any point of such a fluid is transmitted
instantaneously throughout the whole field of the fluid. In case of
compressible fluids, such as air, a small disturbance applied at a point of the
fluid is propagated throughout the fluid as a wave motion. Before studying
wave propagation, in compressible fluids, we first discuss some elementary
concepts of wave motion. We first treat wave motion in one-dimension and
then generalize the results to propagation in two or three dimensions.

A wave is a disturbance in a medium such that there is no permanent
displacement of the medium and the energy is propagated to the distant points.

5.1. One-dimensional Wave. The one-dimensional wave equation is

%0 1 9%
Vo= —=——t 1
¢ ox? ¢? at? M

The function ¢ = ¢(x, t) is known as wave function. We find that

o(x, t) = f(x—ct) 2)

is a solution of the wave equation (1). The shape of the disturbance ¢ is known
as wave profile. Fort =0, we get

0
¢ =f(x)

and the graph varies with t. We note that /-\/

O0x +cT,t+T)=A{[(x +cT)—c (t + T)]
= f(x—ct) 0 )
=0(x, ) (3)

This shows that the value of ¢ at distance x and time t is equal to the value of ¢
at distance x + cT and time t + T, i.e., the wave profile at time t has moved
through a distance cT along the x-axis at time T with constant speed c.

(0 (0
1 )
) (0
! |
Oéx Oex+cT%

>
(Profile at t) (Profile at t +T)
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Thus the shape of the wave profile in (3) remains unchanged when it has
moved a distance cT. For this reason the wave profile represented by equation
(2) is called a wave without change of shape or undistorted wave. Equation
(2) represents a wave which propagates with time. Such a wave is also termed
as progressive wave. Similarly, the function defined by

O(x, t) = g(x +ct) “)

satisfies the wave equation (1) and it represents a disturbance moving without
distortion in the negative x-direction with speed c.

5.2. Principle of Superposition. We note that a wave equation is a second
order homogeneous linear partial differential equation. If ¢; and ¢, are two
solutions of it, then ¢; + ¢, is also a solution. Hence ¢ = ¢; + ¢, also represents
a wave. This principle is called the principle of superposition for wave motion.
Clearly, the combination

o(x, t) = f(x—ct) + g(x + ct) )

represents the superposition of a forward and a backward travelling wave, each
moving with speed c. From equation (5), we can show that

=222 (©6)

where equation (6) is known as the one-dimensional wave equation and the
form ¢ in (5) is its general solution.

5.3. Wave Equations in Two and Three Dimensions. If a disturbance takes
place in three dimensions in such a way that the disturbance is constant over
any plane perpendicular to the direction of propagation, then the wave is called
a plane wave and any such plane is called a wave-front. If such a wave is
travelling with speed ¢ in a direction specified by the unit vector n = [/, m, n],
then the function f(/x + my + nz —ct) satisfies these requirements since the
wave fronts have equations /x + my + nz = constant at any considered time.
Similarly g(/x + my + nz + ct) would represent a disturbance travelling in the
direction —n with the same speed. Hence the function

0x,y,z, ) =f(Ix+my+nz—ct) + glx+my+nz+ct) (7)

represents the superposition of plane waves travelling with speeds c¢ in the
directions + n. Finding the second-order derivatives of ¢ w.r.t. X, y, z, t and
using the fact that P+m’+n’=1, we get the wave equation in three

dimensions as
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Voo 20, %0 9% _ 1 2%

8
ox? oy’ az c? ot? ®)

Equation (7) gives the general solution of (8). The solution (7) can also be
expressed as

o=fH-F-ct)y+g@ F+co )

In two dimensions (xy-plane), the wave equation is

2 an) 1 82¢
Vo= 20,00 _10% 10
q) 2 ay2 C2 atZ ( )

o.)‘m
>

having general solution
o(x, y, t) = f(Ix +my —ct) +g(/x + my + ct) (11)
where I + m”> = 1.

5.4. Spherical Waves. Let us consider the three dimensional wave equation

1 9%
Vip= T 12
(0 e (12)

in spherical polar co-ordinates (r, 0, y). It can be written as

aq) 2a¢ 1 (S. a¢}
or? rar rzslne 00 00

1 9% _19% (13)
r’sin® dy?  c? ot?

If there is spherical symmetry so that ¢ = ¢(r, t), equation (13) reduces to

9%, 200 _10%
al o o

or

1 92

<¢> <o

—5 @9 (14)

The general solution of the one-dimensional wave equation gives the solution
of (14) for r¢ as
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r¢ = f(r —ct) + g(r + ct)

or

o(r, t) = 1 {f(r—ct) + g(r + ct)} (15)
r

The above solution represents concentric spherical wave fronts with centre O
and having radii which increase or decrease with speed c. Here, the wave

profiles change because of the factor 1 in the solution.
r

5.5. Progressive and Stationary Waves. Upto now, we have considered
various types of wave equations whose solutions represent the superposition of
wave fronts travelling in opposite directions with speed c. In each case, the
wave profile remains unaltered, except in the case of spherical waves where it

is diminished by the factor l Such waves, plane of spherical, are called
r

progressive waves because of their movement in some direction.

Now, let us consider one-dimensional wave equations in the special forms

f(x —ct)=acos m(i - tj,
) (16)

g(x +ct) =acos m(i + tj
c

where a, ¢, m are constants. If the wave profile is either a sine or a cosine
function, then the waves are harmonic waves. Thus, (16) represents harmonic
waves. Superposition of the functions in (16), gives

o(x, t) = f(x—ct) + g(x + ct)

mx

=2a cos [ Jcos (mt) (17)

C

This type of disturbance is known as stationary wave, since its profile does

. . o 1
not move. Thus at all times ¢ = 0 at the fixed positions where x = (p + ch_n ,

m
where p is an integer. These determine the positions of zero displacement,

. cm . o .
called nodes. The points where x = P jetermine the positions of maximum
m

displacement, called antinodes. In both forms f(x—ct), g(x+ct), the amplitude

. . e . . 2m
is a. The period or periodic time in each case and also in ¢, is —, denoted by
m
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T. The angular frequency is m and the frequency in cycles per unit time,

) 1 . )
denoted by n, is 22 so that n = ? i.e. n'T = 1. If, keeping t constant, we
oL

) 2nc . .
increase or decrease x by an amount —— or whole-number multiple of it, then
m

all f, g, ¢ remain unaltered. The quantity 2me is called the wavelength of the
m

harmonic wave or of he combination of harmonic waves which ¢ represents.

The wavelength is denoted by A. Thus, A = 2me . The number of waves in a

m
unit distance is called the wave number. If k is the wave number, then Ak = 1

e k= % Also, we observe that the amplitude of ¢ is 2a cos (m t), which

varies with time. Further, if in the forms for f and g, the cosines are replaced
by sines, then similar results follow.

Another convenient way of representing a progressive harmonic wave is by
considering either real or imaginary part of

a exp {im(t u%]},i =J-1.

The harmonic wave motions are of two types as follows.

@) Transverse : If the vibrations occur in planes at right angles to the
direction of propagation, then the waves are known as transverse
waves. e.g. light waves

(ii) Longitudinal : When the vibrations occurs in the direction of
propagation, then the waves are called longitudinal waves. e.g. sound
waves.

As an another illustration, one-dimensional longitudinal waves propagate on a
rod and transverse waves propagate on a string.

5.6. Some Elementary Concepts of Thermodynamics. The measurable
quantities of a compressible substance are its pressure p, density p and
temperature T. It is found that these quantities are connected through a
functional relation of the form

f(p, p, T) =0 ey

where f is a single-valued function of the variable p, p, T. Such an equation (1)
is known as the equation of state of the substance. The form (1) depends on
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the nature of the substance and for certain kinds of gas it is of very simple
form.

For some gases, the molecules have negligible volume and there are virtually
no mutual attractions between the individual molecules. Such a gas is said to
be a perfect gas and its equation of state (1) takes the simple form

p=RpT or pv=RT 2)

1. . .
where v = — is the volume of unit mass of the gas and R is a constant for the

p
particular gas under consideration. Let Q be the amount of heat added to unit
mass of a substance so as to produce a temperature increment 0T. Then the rate

of increase of heat added with temperature rise is £ This defines a quantity

known as the specific heat of the substance, which is the heat addition per unit
mass of the substance required to produce unit temperature rise. The quantity

0 . o . .
%may not be unique. For gases, it will depend on the manner in which the

heat has been supplied. We can associate a specific heat at constant pressure,
denoted by C,, and a specific heat at constant volume, denoted by C,, which
are defined as

_({9Q _(9Q
Cp‘[aij’CV‘(aTl )

These quantities in (3) are unequal.

For a perfect gas, the kinetic theory shows that C, and C, are constant and that
C,/Cy =7 )

where 7y is a constant termed as the adiabatic constant.

From first law of thermodynamics, the relation for dQ, for a perfect gas, using
pv = RT, can be written in the form

C C
dS=—Ldv+—Cdp 5)
v p

where dS = @
T
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C C
sothati —r =i —r
op\ v ovl p

This shows that dS is an exact differential. So we may integrate it to get
S—=So=C,logv+C,logp

S-S,
C

or log (pv") =

v

or pv' = exp(S; S ] (6)

v

The quantity S is called the entropy per unit mass and dS is the entropy
differential. Flows for which S is constant are called isentropic and from
equation (6), we find that they are characterised by

pv' = constant, i.e., p = K p¥ 7)

1 )
where v =— and K is a constant.

p

The change in a substance from a fixed state A to a fixed state B may be
effected in many ways. A change from A to B in which the temperature T is
kept constant is said to be isothermal. In case of a perfect gas, since p = RpT
is the equation of state, an isothermal change would be governed by Boyle’s
law given by p o< kp i.e. pv = constant.

An adiabatic change is one in which there is not heat exchange between the
working substance and its surroundings. If a change is made so that the
entropy of every single particle of the working substance remains constant,
then such a change is termed as isentropic. When the entropy of every single
particle of a substance of fixed mass is the same and remains constant in any
change, then the change is said to be homentropic. The constant under
reference is the same for each considered small quantity of gas in isentropic
flow but a different constant attaches to each such quantity. For homentropic
flow, however, the constant is the same throughout the entire volume of gas.

6. The Speed of Sound in a Gas

We suppose that a small disturbance is created within a non-viscous gas such
that
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1)) The disturbance is propagated as a wave motion, known as a sound
wave, by small to-and-fro motions of the medium without
resulting in mass transport of the medium itself.

(ii) Before the disturbance, the fluid is at rest and thus the motion is
irrotational so that a velocity potential ¢ exists at each point of the fluid.
The fluid velocity at any point is q =-Vo.

(iii)  The squares and products of all disturbances from the equilibrium state
specified by pressure py and density po can be neglected. Also q = Iql
is so small that q2 can be neglected.

(iv)  The isentropic law p = kp” holds as a consequence of assuming that
changes take place so rapidly that heat exchanges and hence entropy
changes are negligible, where v is an adiabatic constant.

We write p = po(1 + s), where s is the condensation of the medium. This is a
dimensionless quantity expressing the fractional increment of local fluid
density during the disturbance over the undisturbed density po of the medium.
It is a function of time t and space co-ordinates (X, y, z) if the motion is three-
dimensional. The equation of continuity

op _

—+V. =

at+ (pq) =0 (D
becomes

Js

— =V -A{(1+s)Vo} = 2

o {(I1+s)Vo} =0 ()

If we assume that the velocity —V¢ is so small in magnitude that sV¢ is
negligible, then (2) simplifies to

¥ _ oo
==V 3)

In the absence of body forces, the equation of motion becomes

20

) - a = constant @

where we have neglected q2.

Assumption (iv) implies that p = kp?, where k = p_(; Therefore,
Po
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d _ _
dp p 0
v-1
=a%(iJ =aj(l+9)" " ~ a’,
0
where s is small and
a2 =1P0 5)
Po
Hence
d dp d d
9 _ J(—P.—Pj: a2 i
p dp p
=a,’ log p + constant (6)
From (4) and (6), we obtain
% =allog p + constant
ot
=a,’ {log po + log (1 +s)} + constant
~ a02 s + constant, to the first order.
Absorbing the constant into s, we get
d _
— =a9'$S 7
5~ (7)
Eliminating s from (3) and (7), we have
324) 2 o2
—=a V 8)
ot? \

Equation (8) is a wave type equation and shows that small disturbances are
propagated in the gas with speed

12 12
e
dp Po

This speed is called the speed of sound in the gas. A vibrating tuning fork
would produce disturbances propagating with such a speed. Equation (9) is



FLUID DYNAMICS 221

obtained under isentropic conditions. When we wish to emphasize this we

write
p ),

7. Equation of Motion of a Gas

We know that the equation of continuity for a compressible fluid is
op _
—+V. =0 1
o (Pq) (1)
and Euler’s equation of motion is
q _ o = 1
1@ v)g=F-—vp @
ot p
In the case of steady motion under no body forces, (1) and (2) become
V-(pq) =0 (3)
o 1
(q-V)q=-—Vp “4)
p
For such flow, Bernoull’s equation becomes

%qz + fd—pp: constant 5

In the special case of isentropic flow for which the entropy of each particle
remains constant along any streamline and for each such particle p = kp’ so
that (5) reduces to

%qz + [ kr p¥? dp = constant

v-1
or lqz +kL = constant
2 -1
2
or lqz + 2 constant (6)

2 vy—1
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where a® = (@j
p ),

In (6), the constant is same along any streamline, but unless the flow is
homentropic, it will vary from one streamline to another. The condition for
constant entropy of a fluid particle in its steady motion along a streamline is

(q-V)S=0 )

since the total rate of change of the particle’s entropy S per unit mass is
g—f+(q-V)S in the general time-varying case. In addition, the equation of
state may be taken in either of the equivalent forms

f(p, p, T)=0 €))

or
p=F(,S) 9)

where the forms f, F are known. Equation (9) is more convenient for
discussing the cases of isentropic and homentropic flows. Equations (3), (4),
(7) and (8) or (9) are distinct equations for determining p, p, q and S.

Bernaulli’s equation is really derived from the equations of motion, but the
forms (5) and (6) are very useful. Thus the problem of determining the nature
of gas flow is solvable.

Now, since
I 1) — =
@V)g=V7q" |-ax&
scalar multiplication of (4) by q gives
_ 1_ 1_
q'V(—q2j=——q-Vp (10)
p
Using the equation of state in the form (9), we get
dp= 9P dp+(@j ds
p ) aS),

so that
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op Bpj
Vp=|—| V — | VS
p (apjs p+(as p

For homentropic flow,
VS =0and Vp = a’ Vp,

then (10) becomes

From (3), we get

pV-q +(Vp)-q =0

and so
G'V(laz}azva (11)

Equation (11) is anther important result.
8. Subsonic, Sonic and Supersonic Flows

Let q be the speed of a gas at a certain location and let a be the local speed of

sound, where
1/2 1/2
SERCE
dp P

Then the local Mach number M is defined to be the dimensionless parameter
M = g/a.

Now, we consider the following three cases

Case (i) : When q = a, M = 1 then the flow is said to be sonic since the speed
of gas flow and the local speed of sound are the same.

Case (ii) : When M < 1, q < a then the flow is subsonic i.e. the speed of the
gas flow is less than the local speed of sound.

Case (iii) : When M > 1, q > a then the flow is termed as supersonic i.e. the
speed of gas flow exceeds the local speed of sound.

Subsonic and supersonic flows have many different physical features. To
know what type of flow pattern is realized, we should know the Mach number.
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We examine these physical features by discussing the nature of spherical sound
waves in a moving stream of gas.

8.1. Theorem : Show that for subsonic flow, the spherical disturbances speed
throughout the entire field, whereas for supersonic flow, the disturbances are
confined to the interior of the cone, the region outside the cone being
unaffected by the disturbances.

Proof : Let us consider a source O emitting spherical sound waves in a gas at
rest. Spherical wave fronts centred at O travel outwards from O and at time t
after starting from O, the disturbance is spread uniformly over the surface S
of the sphere with centre O and radius a.t, as shown in the figure 1.

S

Figure 1.

Now, suppose that the gas flows with uniform velocity v past the source.
Then at time t, every particle of S is displaced through a distance v t relative to
S’ and the disturbance which was initially at O is now on the surface S” of a
sphere with centre P and radius a.t, where OP =vt. Here, M = v/a. When M <
1, v<aand O lies within . When M > 1, v > a and O lies outside S*. We
discuss these two cases in turn.

Case (i) : When M < 1, let Py, P, Ps,... denote the centres of the spherical
disturbances at times t, 2t, 3t,..., the radii of the corresponding spheres
being at, 2at, 3at,....

Also, O_P1 = Vt,O_P2 = 2Vt,O_P3 =3Vt ..., as shown in the figure 2.

Figure 2

It is seen that the disturbances at times t, 2t, 3t,..., are on the boundaries of
non-intersecting spheres.
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Case (ii) : When M > 1, then O lies outside the spheres as shown in the figure
3. Itis seen that the

Figure 3

spheres intersect. They have an envelope which is a right circular cone having
vertex O and axis OPP,Ps.....

From the above two cases, we conclude that for subsonic flow the spherical
disturbances spread throughout the entire field while for supersonic flow the
disturbances are confined to the interior of the cone, the region outside the
cone being silent, i.e., supersonic flow is characterised by a domain of
dependence, which in the above case is the conical interior.

Corollary (1). In figure 3, let i be the semi-vertical angle of the right-circular
cone, then

. at 2at 3at

sinl= —=—=—

vt 2vt  3vt
e sinu—i—L
.€. M

The angle p is termed as the Mach angle and it is real only when M > 1. It
does not exist for subsonic flow. The cone is called a Mach cone.

Corollary (2). In two dimensions, the spheres in the above models become
circles and the cone becomes pair of Mach lines or Mach waves.

8.3. Remark. If an aircraft is flying overhead at subsonic speed, any observer
on the ground will hear the disturbance once the sound waves have spread out
to meet him. However, if the aircraft is travelling at supersonic speed,
disturbances will be confined to a domain of dependence relative to the aircraft
and the observer will hear noise only when he comes within this domain.
Thus, one may see a supersonic aircraft or missile travelling overhead but only
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hear the sound some little while afterwards when the domain of dependence
encloses him.

9. Isentropic Gas Flow

We have obtained that Bernaulli’s equation for isentropic gas flow along a
streamline is

1_2 a2

—(q~ +——=constant
2 vy—1

(1)

The L.H.S. of (1) shows that the maximum value of q, denoted by qmax., Occurs
whenever a = 0. Such case corresponds to gases expanding to zero pressure
and is entirely theoretical i.e. cannot be obtained in practice. Also we
introduce the critical speed of sound a. which is defined to be the value of a
when g = a, and the stagnation speed of sound a, corresponding to q = 0 i.e.
when the fluid is locally at rest. Then (1) can be written as

1_2 a2 1 2
_ + -
2q ’Y—l 2qmax
2
S AL P 2)
2(v-D v-1

Equation (2) gives three different forms of the constant on R.H.S. of (1).

Since a° = Y_p, other forms of (2) are

Y

lgp e YD W ©
2% o= " 2= p.  (r-p,

where p. is critical pressure, p. is critical density for local sonic flow with

q = a, whereas, po is stagnation pressure, pPo is stagnation density for local
condition of rest q = 0.

Now, for a perfect gas

w__WT_o ¢ )
p(y-1 y-1 °

where C, Ry/(y-1) is the specific heat at constant pressure. Thus Bernoulli’s
equation along a streamline can be written as
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%qz +C,T=C,T (3)

Here, T is the local temperature in Kelvins and Ty is the stagnation temperature
at a point on the same streamline where q = 0. Dividing both sides of (5) by
C,T, we get

Ty _y,Lg2p(r=D

To
T 2 Yp
1 2
=1+ E(V_I)M (6)
2

where M? = Cl_2: pqz/yp, M being the Mach number. For isentropic flow, we
a

have the relations

(y-1/ -1
ﬁzvpo/Vp:&:(P_on Y:(P_ij @)
a2 Po p T p P

so that

p B 1 _Y/(Y_l)

L= 1+—(y-DM? (8)
p L 2 i

r qU(y-1)

Po 14 Liy-npm2 ©)
p L 2

Other isentropic relations, which are easily found from (5), are

2 2
T lla)yrlie (10)
T, 2 \a, y+1\ a.

which result in the following relations for p/po and p/po

2 7Y/(v-D » /(-
Po_fprlfe -2l (1
Po 2 \a, y+1\ a.

5 WD > WD
P _ 1_Y_—1[1J {1_7_—1 9 } (12)
Po 2 \a, v+1\ a.
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At sonic or critical speeds M =1), p=p«, p = p«, T =T and so

y/(y-1)
P | = (13)
Po y+1

1(y-1)
P~ _ 2 (14)
Po v+1
T.

:L (15)

T, v+1

For air, y ~ 1.400, equation (13), (14), (15) result in

Pr 0508 P ~0.630, -
Po P T,

~0.833.

10. Reservoir Discharge through a Channel of Varying Section (Flow
Through a Nozzle)

Let us consider a reservoir containing stationary gas at high pressure po,
density po, temperature Ty. An open-ended axially symmetric channel is fitted
to the reservoir and we assume that the gas discharges steadily and
isentropically into the air at the open section where the pressure is less than py.
Let the section of the channel vary so slowly that to a first order of
approximation, the velocity is constant across any section. However, the
velocity varies from section to section. Here, the flow can be considered as
one-dimensional.

At a location of the channel where the cross-sectional area is A, let p be the

pressure, p be the density and u be the gas speed. For steady flow, the equation
of continuity across the section is

PuA = constant
Differentiating, we get
pudA + pAdu+uAdp=0

= d—A+@+d—u:0 (1)
A p u
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Po(high)
\
Po Us A
To ——
Figure 1.
Bernoulli’s equation is
lu2 +] d_p = constant )
p
Differentiating (2), we get
udu + @ =0 3)
p
Putting dp = azdp in (3) and eliminating @ from (1) and (3), we obtain
p
(1w - 94 @)
u A

where M = u/a i.e. the local Mach number. We discuss the following two
cases.

Casel: If M < 1, equation (4) shows that a decrease in A produces an increase
in u and conversely. Thus, to accelerate subsonic flow through a channel it is
necessary to decrease the channel section A downstream of the flow.

Case Il : If M > 1, equation (4) show that A and u increase or decrease
together. Thus, to accelerate supersonic flow it is necessary to widen the
channel downstream of the flow.

Also, on putting dp = a’ dp in (3), we get

CLREVERS (5)

P u

which indicates how the fluid density varies with changing Mach number. In
fact equation (5) shows that for a given speed increment there is a density drop
whose magnitude increases with increasing Mach number. Further, for M > 1,
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the drop in density is so large that the channel must expand to satisfy
continuity requirements.

From equation (4), if dXA =0, then either M =1 or du = 0. The case du =0 is

realized in incompressible flow where the speed of the flow reaches a
maximum at the stage when the channel section attains a minimum area of
cross-section. For compressible fluids, M may be unity when the section A is a
minimum.

To summarise the above results we may say that if, starting with subsonic flow
in a channel, we decrease the section downstream, then the flow is accelerated
until the section has attained a certain minimum at which the Mach number is
unity. If beyond this minimum section we now widen the channel, then the
flow can be accelerated downstream of the section to produce supersonic flow.
This illustrates the principle of flow through a nozzle. The minimum section
is termed as throat, as shown in figure 2.

~_

M<1 M=1 M<1
—>

Throat

Figure 2

10.1. Maximum Mass Flow Through a Nozzle. We consider a channel
which is tapering steadily to a minimum section at the outlet. Let A be the
section at the outlet of the channel where the velocity is u, pressure p and
density p. Then, applying Bernoulli’s equation along a stream-line from the
reservoir to the section A, we get

luz +(LJB:(LJP_0 (1)
2 Y-1)p Y-1)po
so that
5 1/2
u= YpO (1_pp0] (2)
(Y=Dpy PoP

1/y
Using Po _ (P_oj , (2) becomes
p P
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5 a-nry) 12
uo | 2wy 1_[1] 3
(Y=Dpy Po

The mass flux per unit time across the section A is
m=puA=puA(p/py)"” 4)

Using u from (3) in (4), we get

5 27y y-ny) 12
A m[gJ 1{1} 5)
Y=1 {po Po

To find the stationary values of m for fixed A and variable p/py, we write
P = p/py so that

m2 =k (PZ/Y _ P(y+1)/y) (6)
where k is constant

Differentiating (6) w.r.t. P, we get

om 9 _KO*D sy ] 2 pamnny o
dp Y y+1

dp _ - VoD _

P =0 when P = (2/(+1))"" = P, ®

Also, ((11—1;1 <0 when P > P*,((lj—rlil > (0 when P < P, These inequalities depend on

the assumption that for any gas ¥ > 1. From these inequalities, we conclude
that m is maximum when P = P,

y/(y=D
ie. P _ (LJ 9)
y+1

172
e = A 27 2 T (10)
max. = v+ PoPo v+1
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Thus, we find that P, = p—*, where p. is the pressure at a point where M = 1.
Po

It therefore follows that for maximum isentropic mass flow, conditions at the
exit plane are sonic.

From (5) and (10), we obtain

1/2 17y (y-)/y
m :(y+1) l(v+1)1/(y_l)(£J 1_[1]
m Y_l 2 Po Po

(1)

1/2

which gives the variation of m/my,,x. with p/po.
11. Shock Waves

Shock waves are not waves in real sense. These are plane discontinuities,
pulse-like in nature and are sometimes more appropriately called shock fronts.
For the formation of shock waves, we consider a piston which is being driven
with uniform velocity u into a long open tube, known as shock tube.

Gas
moving

— ////

—> U Rest

AN

u
— Shock

The gas particles within the vicinity of the piston acquire the uniform velocity
u but those some way ahead of the piston are at rest. A plane normal
discontinuity or shock front travels forwards with velocity U(> u) into the
virgin gas as the piston advances into the tube. The shock is the mechanism by
which the gas between it and the piston acquires the velocity u. The existence
of the shock can be detected experimentally by certain delicate kinds of
photographic methods such as shadowgraph. The velocity U > a, the local
speed of sound in the fluid. A simple physical explanation of the shock
formation in this case is as follows :

Suppose we approximate the continuous motion of the piston by a set of
forward-moving pulses, each of short duration. When the piston makes the
first short movement forward, a small disturbance is propagated forward into
the gas at the speed of sound. This small amplitude wave (or sound wave)

heats the gas slightly and since a o JT, where T is the temperature, the
second pulse will be propagated as another sound wave at a speed slightly in
excess of the first one. Similarly, the third pulse will be propagated at a speed
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slightly in excess of the second and so on. Thus the discreet pulses cause a
train of sound waves of ever increasing velocity to be propagated through the
gas.  The model discussed here is a simplified model explaining shock
formation in the tube when the piston is activated with constant velocity.

Let us consider another more analytical model in which first of all we consider
a sound wave of velocity a moving into a gas at rest (figure. 1). The pressure
ahead of the wave is p, then density p and the particle velocity zero. The
pressure immediately behind the wave is p + dp, the density p + Op and
the particle velocity du. Here, the disturbance is assumed to be weak so dp, dp,
du are small. Figure 2 shows the equivalent model obtained when the sound
wave is brought to rest by imposing a backward velocity a on the entire
system.

p+2p E p+3p p
g+ p 0 p+6p g
—J
— —> a 2 <«
Figure 1. Figure 2.

Let us consider figure 2, where we apply the equation of continuity across the
stationary wave to obtain

pa=(p +dp) (a— du) (1)

Here, we have considered the mass flux per unit time across unit area of the
wave.

Thus dp/p = du/a

v-1
But 2= YP y{p—()j(ij )
p Po A\ Po

So, we have

d _ _
du = a?P _ Y1/2 p%)/z poy/z p(y 3)/2 dp

which, on integration, gives

1/2._1/2
Y Po (y=1)/2 (=172
———(p" —Po )

p=—2_
o~ y-1 pi”
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(y-1)/2
= (ﬂ) [ﬂ] 1 3)
Y—1)\ po

(0/po) T = 1+%(v—1) (wao) @)

Hence
where ay is the speed of sound in the undisturbed gas. Now
A ERARCA TN
LR -
P J\TPo P J\Po Po

a = a0 (/po) T2 = ag + %(v—l)u ©)

o

ol
(=R

Hence

Now, each small disturbance propagates itself at a velocity equal to local speed
of sound relative to the fluid. Thus if the fluid moves with velocity u, then
velocity of propagation of disturbance

:u+a:a0+%('y+1)u (7
Hence in a short time interval 7, the distance moved by the disturbance is
1
(u+ar= {ao +§(y+l)u}r (8)

Equation (8) shows that in a given interval 7, the points of high velocity move
farther to the right than those of low velocity. The type of shock wave just
considered is a normal shock, since it is perpendicular to the incident gas
stream. Another type of shocks are oblique shocks which are inclined at
oblique angles to the direction of flow.
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UNIT -1V

1. Stress Components in a Real Fluid

Let 8S be a small rigid plane area inserted at a point P in a viscous fluid.
Cartesian co-ordinates (xy, z) are referred to a set of fixed axes OX, OY, OZ.

Suppose that 3F,is the force exerted by

the moving fluid on one side of S, the Z

unit vector fnbeing taken to specify the R
normal at P to 8S on this side. We know P &n

that in the case of an inviscit fluid, 81_:n 18

5E

n

aligned with fi. For a viscous fluid, S
however, frictional forces are called into Y
play between the fluid and the surface so

that 8F, will also have a component

tangential to &S. We suppose the ‘“y
Cartesian components of 8F, to be
(OFux, OFyy, OF,,) so that

8F,= 8F,y 1 + 8F,y j+ OF,, k.

Then the components of stress parallel to the axes are defined to be Gy, Ouy,
Gz, Where

o 8an _ dF ,
T 50 88 dS
oF d
Gy = ny _ - ny ’
3S—0 oS ds
BFHZ dF,,
an = t —Y = .
85-0 OS ds

In the components Gy, Ony, Ons, the first suffix n denotes the direction of the
normal to the elemental plane 8S whereas the second suffix x or y or z denotes
the direction in which the component is measured.

If we identify fi in turn with the unit vectors iA, j, k in (O_X), (O_Y), (O_Z) , which

is achieved by suitably re-orientating 8S, we obtain the following three sets of
stress components
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Oxx> Oxys Oxz ;
Oyx, Oyy, Oyz ;
Ozx, Oy, Oz -

The diagonal elements Oy, Oyy, G, of this array are called normal or direct
stresses. The remaining six elements are called shearing stresses. For an
inviscid fluid, we have

Oxx = Oyy =0z =P
Oxy = Oxz = Oyx = Oy; = Ozx = Oyzy = 0

Here, we consider the normal stresses as positive when they are tensile and
negative when they are compressive, so that p is the hydrostatic pressure. The
matrix

Ox O Xy Oxz

Oy« Oyy Oy (D

is called the stress matrix. If its components are known, we can calculate the
total forces on any area at any chosen point. The quantities (1, j = X, y, z) are
called the components of the stress tensor whose matrix is of the form (1).
Further we observe that Gj; is a tensor of order two.

2. Relation Between Rectangular (Cartesian) Components of Stress

Let us consider the motion of a small rectangular parallelopiped of
viscous fluid, its centre being P(X, y, z) and its edges of lengths dx, Oy, dz,
parallel to fixed Cartesian axes, as shown in the figure.

O
X

Let p be the density of the fluid. The mass pdx dy oz of the fluid element
remains constant and the element is presumed to move alongwith the fluid. In
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the figure, the points P; and P, have been taken on the centre of the faces so

that they have co-ordinates (X — 67)( LY, zj and (x + 67)( LY, zj respectively.

At P(x, y, z), the force components parallel to &, OY,O_Z on the

surface area dy. 0z through P and having 1 as unit normal, are

(0xx0y 8z, Oyy Oydz, Oy, Oydz)

8X . oo, .
At Pz[x +7,y,z , since 1 is the unit normal measured outwards from the

fluid, the corresponding force components across the parallel plane of area
dyoz, are

d
{Gxx +§ 90 dydz,96, +8—X had'] dydz, GXZ+8—X 90y, dydz |.
2 ox Y oo2 ox 2 ox

For the parallel plane through Pl(x—%{,y, zj, since —1 is the unit normal

drawn outwards from the fluid element, the corresponding components are
oo}
—_ GXX _§ a(;_xx SySZ’ — ny_s_x Xy Sysz’ — GXZ_S_X aGXZ Sysz
2 ox 2 ox 2 ox

The forces on the parallel planes through P; and P, are equivalent to a single
force at P with components

anx aGXY anz
ox  0x  oOx

} Ox Oy oz

together with couples whose moments (upto third order terms) are
— Oy, 0x dy 0z about Oy,
Oxy 0xJdy0z about Oz.

Similarly, the pair of faces perpendicular to the y axis give a force at P having
components

acyx ’ acyy ’ acyz 5x By 52
dy dy dy

together with couples of moments

237
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— Oyx Ox Oy Oz about Oz,
Gy, Oxdydz about Ox.

The pair of faces perpendicular to the z-axis give a force at P having
components

anx acZy anz
9z 9z 0z

}Sx Oy 0z

together with couples of moments
— G,y 0x dy 9z about Ox,
G« 0x0ydz about Oy.

Combining the surface forces of all six faces of the parallelopiped, we observe
that they reduce to a single force at P having components

0 0 0 0 0
aGXX + ny + aczx i GX}’ + ny + GZY , aze + Gyz + aczz BX Sy SZ,
ox ay 0z ox dy 0z ox dy 0z

together with a vector couple having Cartesian components

[(Gyz — Oyy), (Czx — Oxy), (Oxy — Oyx)] Ox dy Oz.

Now, suppose the external body forces acting at P are [X, Y, Z] per unit mass,
so that the total body force on the element has components [X, Y, Z] p 0x dy

8z. Let us take moments about i —direction through P. Then, we have

Total moment of forces = Moment of inertia about axis X Angular
acceleration

ie. (0,,~0,) &x Sy &z + terms of 4" order in &x, 8y 8z = terms of 5™ order in
Ox, Oy, 0z.

Thus, to the third order of smallness in dx, Oy, 0z, we obtain

(Gy, — Oyy) Ox Oy 0z =0

Hence, as the considered fluid element becomes vanishingly small, we obtain
Gy, = Oyy.

Similarly, we get

Ozx = Oxzs Oxy = Oyx
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Thus, the stress matrix is diagonally symmetric and contains only six
unknowns. In other words, we have proved that

Gij=0j, (1, =X, Y, 2)
i.e. 0jj is symmetric.
In fact, o is a symmetric second order Cartesian tensor.

2.1. Transnational Motion of Fluid Element. Considering the surface forces
and body forces, we note (from the previous article) that the total force

component in the f—direction, acting on the fluid element at point P(x, y, z), is

0
9 + O + 90 1 Ox 0y 0z + X pox Oy 0z (1)
ox ady oz

where (X, Y, Z) is the body force per unit mass and p being the density of the
viscous fluid. As the mass p 0x dy Oz is considered constant, if q = (u, v, w)
be the velocity of point P at time t, then the equation of motion in the
i —direction is

d
(aﬁxx 4 0w ﬁ“szax 8y 8z + p X 8x By 5z = (pdx &y zsz)‘cil—‘t1

ox ay 0z
or 90 + oS + 99 rpx =pdu (2)
ox dy 0z pE=Pp dt

Ifu=u(,y, zt), then

du du du du du d d _
—=—+u—+v—+w— where —=—+q-V
dt dt ox  dy oz dt adt

Thus, (2) becomes

ou du du du 1(do,, 9o, 0o,
—+tu—+V—F+w—=X+— + + 3)
ot ox  dy oz pl ox ady oz

Similarly the equations of motion in jandf( directions are

0 0 0
KA +l( O Pw Gzyj 4)

ox ady oz
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ow  ow  dw ow 1(ds, 9o, do,,
—+u—+V—+w—=7Z+— + + 4)
ot ox ady 0z pl ox ady 0z

Equations (3), (4), (5) provide the equations of motion of the fluid element at
P(x,y, 2).

In tensor form, if the co-ordinates are x;, the velocity components u;, the body

force components Xj, where i = 1, 2, 3, the equations of motion can be
expressed as

i

du 1
+u.u,.=X.+—0;:(1,1=1, 2, 3).
at j oL i P JvJ(J )

3. Nature of Strains (Rates of Strain)

The change in the relative position of the parts of the body under some force, is
termed as deformation. By Hooke’s law, the stress is proportional to strain in
case of elastic bodies, while in case of non-elastic bodies the stress is
proportional to the rate of strain.

Strain is of two kinds, the normal and the shearing. The ratio of change in
length to the original length of a line element is called normal (or direct)
strain. The shearing strain measures the change in angle between two line
elements from the natural state to some standard state. We shall consider two
dimensional case and then extend it to three dimensions. Let us consider a
rectangular element ABCD of an elastic solid with co-ordinates of A as (X, y)
and length of sides as Ax and Ay in the natural state.

Let the point A. be defined to a point A’(x +&, y +1) then

B(x +Ax, y) goes to B'(x +§ +Ax +g—g AX,y +n+g—nAX)
X X

(x,y+Ay) (x+Ax,y+Ay)
D C
AX
A(X,y) B(x+Ax,y)

(Before deformation) (After deformation)
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The point D(x, y +Ay) goes to the point
9§ on

D'x +§+—=Ay, y+M + Ay + — Ay).
ay ay
. 7 /7 a&
Therefore, projected lengths of A’B” along x and y axes are Ax + — Ax and
X
% Ax
ox
Thus,
2 2
(A" B’ = [Ax + %ij + (a—” AXJ (1)
ox ox
The normal strain along x-axis is defined by
_ A'B-AB
XX AB
= AB =(l+ex) AB=(1 + €xx) AXx | AB=Ax 2)

From (1) & (2), we have

2 2
(1+€ x)* (AX)* = (AXx)* HH%j +(@j }

o0x ox
2 2
= (14+€,)° = (1 +%] +(@)
ox ox
From here, to the first order terms only, we get
-
ox

Similarly, the normal strain along the y-axis is

)
Sy = a_;.

The shearing strain Yy, at the point A is the change in the angle between the
sides AB and AD. The right angle | DAB between AB and AD is diminished

by Yxy = 01 + 0, = tanB; + tan6,, 6; & 6, being small.
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1.e.

Exy = %(yxy) 5 (gz gi} ,  upto first order.

We observe that the strains have the nature of change in displacement in a
given unit length in a given direction. Hence strain is a tensor of order two.

In the case of fluids, there is no resistance to deformation but only to the time
rate of deformation. Hence in fluid dynamics the rate of change of strain with
time i.e. rate of strain is to be used in place of strain in elasticity. Thus, for

viscous fluids, replacing strains by rates of strain, the corresponding results are
obtained to be

e - (333) (aij 9 =
ot \ dx ox \ ot ox ox
0 0

10 81] 98| _1(dv du
Exyy=— —t—
23t | ax ay 20 ax ady

In case of three dimensions, these become

Jdu ov ow
Ex—3 Ewm3 EnT=
ox 7 oy oz

c —l( ) 1 a_V+a_u
) Tay 21 9x ady

(A)
=5 ) =5 dy oz
1 1({dw ou
€ E(YZX)_E[B_ gj
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where u, v, w are the velocity components of the viscous fluid along X, y, z
axis respectively.

The six quantities € xx, €yy, €72, Yxy» Yyz» Yox i (A) are called components of the
rates of strain or gradients of velocity

3.1. Transformation of Rates of Strain. v P(x,y)
We shall obtain the rates of strain in term Y e (Y
of the new co-ordinates x’, y’, changing e

from x, y to x, y’. Let us obtain the new - LN o X
axes by rotating the original axes through I
angle 0 and let /= cosO, m =sin0 9 ! X
Then X =Ix+my,y =-mx +ly
= x=IX"-my,y=mx"+1y
d d
Further, —xX)Y=—(x+m
o (x") o ( y)
= v =lu+mv
and VvV =-mu+ v
Also, (OPY =x* +y* =x? +y? | © they are still perpendicular
NOW, E/XX: a—u:(a—uja_x+ a_u a_y
ox' \ox Jox' | dy )ox'
, Ju ov Ju ov
or e'=|l—+tm—||+|]—+m— |m
ox ox ay ady

Similarly €'yy= g—; =m’en+ 1 ey —Imyy
Ju' ov'
Yyy = e v 2Im (€ yy — € ) + (I°=m?) v,

which are the rates of strain of the new system in terms of rates of strain in the
original system. If we put back I = cos0, m = sin6, then
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, S +e S —€
e =50 TSy S O 6004 T gin g
2 2
' €xx TE €Ex € Xy .
€= »o_ * cos 26—Y—ys1n 20 B)
2 2 2
' 1 . € xx _ny . ny
e . =— =——— 22 5in20+—-co0s 20

These equations give the transformation formulae for the rates of strain.

We observe that the rate of strain is also a tensor of order two, there must exist
at least two invariants of the rate of strain to the choice of co-ordinate systems.
These can be obtained as follows.

2 2
et e y="+m) (exx+ €yy)

’ ’
€ xx € yy —

ou 9 - _
:exx+eyy:£+a—;’=dw q. q=(u,Vv) (D)

(Y )®
Y = (P e +m’ €y + Imy,y) (M € + P €4y — I Y,,)

1
-2 (Ey -+ (P — m®) 1]

2
=(l4+2l2 m2+m4)exxeyy—i(l4+2l2 m2+m4)

e
4

2)

=€xx Eyy —

Equation (1) shows that the divergence of the velocity vector at a given point is
independent of the orientation of the co-ordinate axes. Equation (2 is related to
the dissipation function. i.e. loss of energy due to viscosity.

Let us now consider the general case of the rates of strain in three dimensions.
The direction cosines between X, y, z and X', y’, z” are related as follows.
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X y Z
’
X [ 1 mi n;
y [ my ny
7/ [ m3 n3

The relations between co-ordinates in the two systems are

X' =Lx +myy nz

y = bLx + myy + nyz

7' = 3Xx + m3y + n3z
and

x=lx"+bLy +57

y =mx" + mpy + mzz’

z=mx +ny +n3z’
From here, we get

v =0Lu+mv+nmw

v = lLu + myv + npw

w = l3u + m3v+ n3w

We shall use these relations to find out the rates of strain w. r. t. the new co-

. 7 ’ ’
ordinates x’, y’, z".
Let us work out

i du' Jdu'dx du'dy OJu' dz
€= et b
ox' dx dx' dy dx' 0z ox'

( ou ov awj
=|l,—+m —+n,— |[[
ox ox ox

( Jdu ov 8WJ
+ |, —+m —+n, — |m,
dy dy dy
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[ Ju ov BWJ
+|l,—+m,—+n,— |n,
0z 0z 0z

ov  du
= 112 exx+m12 Eyy t 1’112 €+ Ilim| —+—
ox dy

ov  dw (aw auJ
+mn; | —+—|+n,/ +—
dz dy ox 0z

2 2 2
=l €+ my Eyy + 1 €Enth mjYxy +mj Hl'YyZ+H111'YZX

Similarly, we have

ov'
€'yy= ay = 1% €, + My’ eyy+n2 € 2z + [ My Yyy + Moy Yy, + Noln Vox
, aW'_lz 2 2 / /
€ zz—?— 3 Exx +M3 eyy"'n3 €zt 3m3ny+m3n3sz+n33sz
Z

v _ﬁ_i_a_u ov' 0x avay ov' az du' dx au ay ou' dz
YUox' oy 9x Ix' ay ox' 82 ax 9x ay ay ay' 82 ay

=2lihbex+2mmy ey +2nm €,

+ (limy + myly) Yyy + (mny + nymy) Yy, + (N1l + [102) Yix

’sz = ai-i— v’ =2l I3 €4« + 2mym;3 Eyy t 2non3 € 4,
dy' 0z’
+ (lbms + mol3) Yyy + (Mon3 + nom3) Yy, + (N2l + bngz) Vix
’YZX = a—u-i-ai: 25311 € xx + 2m3 my Eyy t 2n3n; €,
dz'  ox'

+ (l3my + m3ly) Yyy + (M3ng + n3my) Yy, + (03ly + l307) Vix
From here, we find
’ , 2,52, 2 2 2 2
ewteywrte, =(iF+hL +h)ex+ (M +my” +ms’) €yy
2 2 2
+ (0" + 2" +n3%) €4, + (Iimy + Lbmy + [3mg3) Yy
+ (m1n1 + monp + 1'I131’l3) 'sz + (Illll + Ilzlz + 1’13[3) Vax

=€xtEyw+eEy
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where we have used the orthogonality relations
I+ 1L+ 15" =1etc

and lim; + [Lm, + [3m3 = 0 etc.

Thus we conclude that
€xtely +t€u=ExteEyt+ey

du odv ow
_ A _

_du_ov ow _ .o
ox dy 0z v

is invariant.

Similarly,

7 ’ 7 ’ ’ ’ 1
€€y +E e m+e e XX—Z[(ny)2+(sz)2+(sz)2]

1
=Ex € yy + € yy €zt €2z Exx _Z [(’ny)2 + (’sz)2 + (sz)z]

is also invariant.

3.2. Remark. The stress tensor o and the rates of strain €j; follow the same
rules of transformation. Thus, the three equations in (B) can also be written for
stress components so that we get the relations between the original and the new
stress components as

. 6,+G, O, -G .
6y =—— 2 +——cos20+0,, sin20
2 2 ’
. 6,406, G6,-0 .
Oy = 2P F ¥ 05200, sin20 ©
2 2 ’
\ Gy —O .
G,y =————2>sin20+0,, cos20
> y

4. Relations Between the Stress and Gradients of Velocity
(Equivalence of Hooke’s Law in Case of Viscous Fluids)
In elasticity, generalized Hooke’s law gives a relation between the stress and

the strain components.

For viscous fluid, the following assumptions are to be made to find the
relations between the stress and the rate of strain.
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(1) The stress components may be expressed as linear functions of rates of
strain components.

(i) The relations between stress and rates of strain are invariant w.r.t
rotation and reflection of co-ordinate axes (symmetry).

(i11))  The stress components reduce to the hydrostatic pressure when all the
gradients of velocity are zero.

. du

1.e. Gxx:—p:ny:GZZ,eXX:a—x=0:eyy:ezz.

First we consider two dimensional case and then we extend it to three
dimensions.

Under the assumption (i), we can write
Oxx=AjExx+Bi €y +Ci Yoy + Dy
Oyy=Arexx+Brey+Cr¥y+Ds (D)

Oxy=Az€xx+ B3z ey +C3%y+Ds
where A’s, B’s, C’s and D’s are constants to be determined.
From the assumption (ii), we have
ow=A1€w+B1e’y+CiY+D
Oyw=Arex+Bre’yy +Co Yy + Do 2)

G’Xy =Aj3 E’xx + B3 E/yy +C; ’ny + D3

But the relations between the original and the new stress components are (from
equation (C))

. Gy tO Gy, —O
XX XX .
Oy = 2 ¥ c0s20+0 , sin 20
2 y
Gy +O Gy —O
XX XX .
c,, = wo_ * c0s20—0.. sin20 3)
yy 2 2 Xy
Gy —O
o XX vy .
Oy =~ sin20 + 6, cos 20

Using the equation (1) in 1% of (3), we get
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. 1 1 1
Oy = §(A1 +Az) Exx + 5 (Bi+By) €4y + B (Ci+C2) Yy
1 1
+ E (D1+D2) +E (Al—Az) € xx COS 20
1 1
+ 5 (B1—B,) €y cos 20 + E (C1—C2) Yxy cos 20

+ % (Di1—D3y) cos 20 + (Azexx + B3 €yy + C3Yyy + D3) sin 20

Also, the relations between the original and the new rates of strain are

. e +€ = Voo
e =—2 W, X W cos26+%sm29

XX 2 2

' € xx t+e €x —€ Xy .
e = » o Al COSZG—YTYstG (5)

yy 2

' €x —F€ . X
Viy = —Tyysm 26+Y7ycos 20

Using equation (5) in 1*' of equations (2), we get

: A A A
G, = 71(6xx +Eyy) +71 (€ xx — E€yy) COS 20 +71 Yxy Sin 20

B B B
+ 71(6“4- eyy)—71 (€ xx — Eyy) COS 26—71 Yxy Sin 20

— Ci(exx— €yy) sin 20 + C; Y,y cos 20 + Dy (6)

Comparing co-efficients in (4) & (6), we get

A A
71 (1+cos 20) + 72(1—005 20) + A3 sin 20

A B
= 71(1 + cos 26) + 71 (1-c0s 20) —C; sin 20 | e

B B
71 (1+cos 20) +72 (1—cos 20) + B; sin 26

A B
= 71(1 — cos 20) + 71 (14c0s 20) + C; sin20  leyy

“)
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C C
71 (14+cos 20) + 72 (I—cos 20) + C; sin 26
A B
= 71sin 20 —71 sin 20 + C; cos 20 | Vxy

D D
71 (1+cos 20) + 72(1—C0s 20) + D3 sin 20 =D,

From these equations, we get
A, =B, = B(say), B = A| = A(say)
C2 = A3 = - C1 = —B3 = —C(say)

C
T

,D; =D, =D (say), D; =0

The stress components in terms of the rates of strain are now obtained to be

Oy = A€, +Be, +Cy,, +D

o, =Be,, +Ae,, —Cy, +D (7)

yy
A-B
Oyy = —C(e —eyy)+TyXy

To find A, B, C and D, we make use of the assumption that there is symmetry
of the fluid about the co-ordinate axes.

Let us take the symmetry w.r.t. the y-axis. If (x;, y;) are the new co-ordinates
of the point with co-ordinates (X, y), then

X1I=="XY1=Y
1.e. U =—-u,vi=V

The rates of strain w.r.t. (x;, y;) co-ordinates are

~du;  —du_ du du Odu dy

EX'X'_axl C0x,  0x 0x, aya_x1

L 0% _ 1 % _
ox ox, ox,
Similarly,
Sy =€y Ty, = Ty
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and
lexl = GXX’GYD’l = ny, me = _GXY

Using these in (7), we get

=Ae,, tBe,, —Cv,,, +D

XXy XX
Gym :Bexlxl +Ae Yivi +CYX1Y1 +D (8)
A-B
leyl _C(lexl _€Y1Y1)+ 2 YXIYI

The relations (7) are invariant where there is a symmetry w.r.t. any co-ordinate
transformation and so

=A€,,, tBe,, +Cv,, +D

lexl XX yiy
=Be +Ae "y —C Yy, T D 9

Gym XX
A-B
GXIYI - _C(E XX _EY1Y1)+ 2 YXlYl

Comparing (8) & (9), we find C = 0. According to the assumption (iii), we
have

Oxx =Oyy =P, Exx =€y, =0
Thus from (7), we find D = —p, since C = 0.
The last equation in (7) becomes

A-B
Oxy = 5 Yxy = U Yxy, Where @ =

efficient of viscosity.

is called the co

The relations in (7) are now,
Ox=Aex+Bey-—p=(A-B)ex+B(ex+ey)—p

=2uex+BV-q-p
q=(u,v)
_du oV _

Ew TEW=

— 4 —=V.
Woox  dy

el

Oy =21 €yy + BV-q—p.
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Oxy = 1 Yy = 21 €xy

These are the required relations between the stress components and the rates of
strain in two dimensions.

For three dimensional case, we can write.
_ Ju _
Oxx = 2u€xx +Bvq_p = zua—"‘;bvq—P
X

G,y =21E,, +BV-§—p:2ug—V+W-q—p (10)
y

5, = 2nE,, +BY - G-p=2u 2 417 G p
Z

\
ov du
Oxy=WUYxy=H a_X+a_y ,
0 0
Gyz:uvyz:u(a—‘;+a—n " (11)
(e
== R =H ox oz )

where B = A.

AlSO, Oxx+ Oyy + Gy, =2M(Exx + Eyy + €4,) +3A V- q-3p
=2uV-q+3A V-q-3p
= (2w +3A) V-q-3p

For incompressible fluid V-q = 0.

= Oxx + Oyy + O, = —3p

e Oy +Oyy 10, —
3

This shows that the mean normal stress is equal to the hydrostatic pressure (i.e.
constant)

4.1. Remarks : (i) For compressible fluids, B =A = —2—3M
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(ii) Equations (10) and (11) may be combined in tensor form. Thus, if x;
denote the Cartesian co-ordinates, u; the velocity components (i = 1, 2,
3), then (10) & (11) may be collectively written as

Gij = (AB—p) Sj + W(uij + ujy), G, j =1, 2, 3)
where 0 =div q =uj,;,

p= —l Gii, 8 = 0 for incompressible flow,

A= —% K for compressible flow.

(iv)  For viscous fluids, stress is linearly proportional to rate of strain. This
law is known as Newton’s law of viscosity and such fluids are known
as Newtonian fluids.

4.2. The Co-efficient of Viscosity and Laminar Flow :

The figure shows two parallel planes y = 0, y = h, a small distance h apart, the
space between them being occupied by a thin film of viscous fluid. The plane

y = 0 is held fixed and the upper plane is given a constant velocity Ui. IfUis
not very large, the layers of liquid in contact with y = 0 are at rest and those in

contact with y = h are moving with velocity Ui i.e. there is no slip between
fluid and either surface. A velocity gradient is set up in the fluid between the
planes. At some point P(x, y, z) in between the planes, the fluid velocity will

be Ui, where 0 <u < U and u is independent of x and z. Thus, when y is
fixed, u is fixed i.e. fluid moves in layers parallel to two planes. Such flow is
termed as Laminar flow. Due to viscosity of the fluid there is friction between
these layers. Experimental work shows that the shearing stress on the moving
plane is proportional to U/h when h is sufficiently small. Thus, we write this
stress in the form
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Oyx = limE— d_u
yx—uh_)oh—udy

where U is the co-efficient of viscosity. In aerodynamics, a more important
quality is the Kinematic co-efficient of viscosity v defined by

v =Wwp.

For most fluids u depends on the pressure and temperature. For gases,
according to the Kinetic theory, | is independent of the pressure but decreases
with the temperature.

5.  Navier-Stoke’s Equations of Motion (Conservation of Linear
Momentum)

Let us consider a mass of volume T enclosed by the surface S in motion at time
t. Let dt be an element of volume, then the mass of this element is pdrt, p
being the density of the viscous fluid.

Let the element moves with the velocity q. The inertial force on the element
is

pdt (Z—?j |F = ma

The resultant of inertial forces (or the rate of change of linear momentum) is

_ da

F, =prd—°t1dr (1)
Let X be the body force per unit mass, then the resultant of body force is

F, =J/[pXdr )
The surface force on an element dA of the surface is given by the vector

fzfxfx +fyiy +fziZ

= (P,.dA)i, + (P, dA)i, +(P,.dA)i, 3)

A

where 1,,1,,1,are unit vectors, dAis the vectorial area of the element and

Px, Py, Pz are components of stress vector, given by
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A A

P,
P =c,i +0,i,+0,1i IT'=1ix; (4)
PZ

yz 'z
~ ~

=0, iAX +6, iy +0,,1,
The resultant of the surface forces is given by
K =i, J/P dA+i,[[P,dA +i,][P,dA (5)
Using Gauss divergence theorem this can be written as

F =i, [I[V-Pdr+i J[[V-Pdr+i, [[[V-Pdr (6) |©dA=hdS

Let us use the law of conservation of momentum. By this law, the time rate of
change of linear momentum is equal to the total force on the fluid mass.
Equating the resultant of body and surface forces with that of inertial forces,
we obtain.

J'J’J'pc(il_?d,c:jjj'pidnc+’i\xJ.J.J.V.l_)xdfc+’i\yJ.J-J-V’l_)yd't'i‘,i\z.[jj.v’l_)zdfc 7

Since dt is an arbitrary volume element, so we have

ol

pazp§+v- i, +V P, i, +V-P,i, (8)

This is the required equation of motion in vector form using the values of
P ,P, P, we get

X2y’ zo

_ 0
V-P, = W | OO , 90y,
ox dy 0z
V.P - Jo . do . dJo,
Yooox ady 0z
_ d
V. Px — anx + GZY aGzz
ox ay 0z

and let q=(u, v, w), X = (X, Xy, X,) then the equations of motion can be put
as
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du do,, 90, do,,
P—=p X + +

dt ox dy 0z

dv 00 v J0 vy asyz

— = + + + 9
P PN TT Ty ©)

0

pd_W - sz + asz + GZY + aGzz

dt ox ady 0z

These are the equations of motion in terms of the stress components. (We have
also drawn these equations previously)

Also, we know that

¥l

0
+q-V=—+u—+v—+w—
1 ot

d
dt
and the relations between stress and rates of strain are
Oy = Zpa—u+kV-Q—p
ox
ov _
o, =20—+AV-q—-p
vy dy

5, =ML 407 G

o =y, = MY
w TRy SH SO

6. =y I L9
v “ay oz )

oz
n =H ox 0z

Using these in (9), we get
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du_ o 9 [2a_u_zv.-j Lol (u ov], 9 [@a_wj
Pac P T T Mk T3 ay“ay BX_BZHBZ ox
dv dp 3 ov 2_ Y o (ov ow)| o (ov au
—=pX, — 4| 2 -2V =+ | =
P ~ P4y ay+ayH dy 3 qj}az{”[afayjfax{“(aﬁayﬂ

dw dp 9 ow 2_ _ 0 ow du 0 ow odv
WV _ox PN _Zyg] |+ Ly M L Y
P TP BZ+BZ{M[ dz 3 qﬂ-l_ax {H( ox +azﬂ+ay[”( dy +BZH

where A = —z—;compressible fluids.

The equation in (10) are called Navier-Stoke’s equations for a viscous
compressible fluid.

5.1. Deductions (i) If pu = co-efficient of viscosity = constant, then Navier-
Stoke’s equations (10) become

du op 1 d(du odv ow )
—=pX, ——+-U—| —+—+—|+UV
Pac ~ P Tk 3H8X(8X dy Bz] wYu
du op 1 d(du odv ow )
—=pX, ——+-U—| —+—+— |+UV
Pa TP T T3 ax(ax dy Bz] o
dw op 1 Od(du odv oJw )
—=pX,——+-U—| —+—+— |+UV
P TP Ty 3“82(8)( dy BZJ Hew

which can be expression in vector form as

dq Jaq , —} - — M _
L =p|=2+(q-V)q|=pX-Vp+uV>qg+=V(V-
pdt p{at q-V)q|=p p+uvV-q 3 V-q)

(ii) For incompressible fluid, p = constant,

Il = constant, V'q:a—u+ﬁ+aw—0

ox dy F
Thus the equations become
dg _dq

| [T
—="24+@-V)g=X-—Vp+-V
T ot (q-V)q o p o q
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ie. A_x-P

where v = u/p is called the Kinematic co-efficient of viscosity.

For steady motion with no body forces, we have

(q.v)q:__Vp+Ev2q a_q:(),X:()
p P ot

(iii)  If there is no shear at all i.e L =0, then

dq dq _ _ <= Vp
T o (q-V)q 0

These are Euler’s dynamical equations for an incompressible non-viscous
fluid.

5.2. Equations of Motion in Cylindrical Co-ordinates (r, 6, z). In
cylindrical co-ordinates (r, © z), we have q = (qx, Qe, q,) and the
acceleration is given by.

q_:(d 6 |.:(d > d
daq _: [&_q_e}rie[ (le+(lr(lej+iz q,

d "l dt r
(1)

where i,, iy, 1, are the unit vectors in the directions of r, 0, z increasing.

Yy
N

z

dz

e | N

dr

(The surface forces are obtained on cylindrical volume)

Thus, in cylindrical co-ordinates; the resultant inertial force is
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dq, qé ~(dqe 9q,9e ~ dq,
= — |+ + + drt 2
HIl: ( dt r ‘o dt r & dt P @

The components of stress vector, E, E), E in cylindrical co-ordinates are
given by

P =10, +19($r9+1zcrZ

| ol
II

1 +19099 +l 2902

w
Il

z 1, Gy +19629 +lszz

In cylindrical co-ordinates we have

— 1l 9 0 0 G
V- = —| — -— - -
Pr r _al' (rcrr)+ 20 (Gr9)+ oz (rcrz):| r

— 13 0 0 1,0,
V-P, = ;_a (rog, ) +— 30 (Cgg) +— 3 (rog, )_ re
V-P :%_%(rc )+; (csze)+aa (rczz)_

Therefore, the equations of motion in vector form
dq <  ° = 2 = 2 S
paz pX+i,(V-P)+ig(V-Py)+i,(V-P,))

reduces to

d 2 1] 0 0 0
p(%_qrej pX, +— {a—(rc )+a (r69)+8

=PXr+ aGrr +186r9 +aGrz +6rr — GOy
or r 00 0z r

d 0 10 0
p(&JF%J =PXg +2-(09) + —=0(Ggo) +=—(Cy,
dt r r a



260 FLUID DYNAMICS

& — pX + aGrz +l aGez + aczz Oy

p z +
dt or r 90 0z r

WhereY:(Xr,Xe,XZ),iE£+qri+q_9i+qzi
dt ot or r d9 0z

The relations between the stress components and the rates of strain, in
cylindrical co-ordinates are

O =2U err—z—;V-Q—p
2 _
Gee=2M€ee—?uV'q—p A=—-

G, =21 EZZ—Z—;lV-Q—p

Oro = U Yo, Orz = U Yz, Goz = WYz, where

aqr 1aq9 qr
€= ) €Egp=——=_F+—,

or BT 00

daq, dqg qo , 19q,
€= s =+

0z Tio or r r 00
Yoo = 1092, %Mo _94, 94,

T r 00 oz Ve 0z or

Using the above relations, the equations of motion (Navier Stoke’s equation) in
cylindrical co-ordinates become

dg, qq dop 9 [ 9, 2
Qe _bo |_px P, 91 1,%r 2y,
p( dt rj P& ar+ar{“ o 3 d
4190, (199 9 _do
rad| (r 00 or r

L9 H(aqr 199, )|, 2u(dq, 199 g,
0z 0z or

dge 9,96 1dp 10[ (29qp 29, 2
20 8 =X e — | S22y T
p( dt r P rdd rdo " .
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+ 90199 9%
or r 00 or r

+ i u laqz +% +£ 1%4_%_(1_9
oz r d0 oz r\rdd o r

0
aqr +l q6+aqz +£

where V-q = .
q or r 09 0z r

5.3. Special cases. (i) If p = constant and L = constant, then V-q = 0 and the
equations of motion are

dq, qg 0 .20
of 94 9o :pXr__Pw(qur_q___&j
dt r or r

d . 19 2 9q,
o &_mj:pxe___m“(czq“r_ 9 _q_ej

dt r r 00 200 2
dq dp 2
—2 =pX, ——+u V-,
p dt pX, py nwv-q
2 2 2
where V? = 8_+li+ 1 J J

__+_
or? ror r290% 9z°

(ii) If the fluid is non-viscous then i = 0 and if it is incompressible, then
V-q =0, p =constant and the equations of motion become

2
p %_q_e — Xr_@
dt r or

dt r o0

dge | 9,94 1 dp
e e |y
P P2e r 00
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dq dp
Hzl_px F

p( dt j P2 oz

These are Euler’s dynamical equations in cylindrical co-ordinates.

5.4. Equations of Motion in Spherical Co-ordinates (r, 0, y). We know that
the velocity and acceleration. components in spherical co-ordinates (r, 0, V) are

gr=rcos 9 sined—e+sin2 Gg, qy = rd—e,
dt dt dt
. o dy
=rsin® —
Qy dt

and a;
dt r
dge . 9,90 9y cOO
g = + -
dt r r
d coto
a‘v - q\|j + qrq\y n qu\y

dt r r

The equations of motion for a viscous incompressible fluid of constant
viscosity L are :

pi—?=pY—Vp+uV2§

In spherical co-ordinates,

oo (@1 1 ap)
or 10 rsin6 dy

X = (Xr’XQ’X\U)
Let us simplify
Viq=V(V-q)-Vx(VxQ)

J . 1 oquy
— 0 + v
rsin6 00 (sinBq) rsinf dy

ButVﬁ:li(rzqr)+
r or
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h;i, h,i; hji

v
Futher  Vxg= hlh 3/r 300 9/dy
e h,q, hyq, h3q\|,

. ir rie rsinOf\V

/or 9/30 9oy

q, r1qy rsinbq,

r2sin®

1 20 . 0 ~ aqr d .
= R {h{%(rsmeqw) —w(rqe)} + 19r{ v —g(rsm qu)}

NN 3,
+ 1wrsm0{g(rq9)— aqe H

Then

—_ 2 2 0 2 9q
Viq=1i,|V?q, ——q, - —(sinfqy) — —
a { a r2q r2sin0 00 do r2sin® oy

i v - de +£8qr_ 2cos® 9q,
0  r2sin20 r2 90 rZsin20 oy

oo qy 2 dq, 2cosO dq,
+1\|,Vq\|,—2_2+2_ o 2020 9
r’sin“0 r“sin® dy r°sin“ 0 Jdy

Thus, the equations of motion for a viscous incompressible fluid in spherical
co-ordinates are

o[da da*ay|_ o %
dt r "ooor

2 0 2 9
+u| Vi, -=q, - —(sinBqy) — —
!{ b T 2 ine 00 100 2 ine oy
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2 dq 2cos® 9q
+ V2 _ Je + = r v
Ll[ 1o 2in?0 12 90 rsin’0 oy

d cot9
q\y + qrq\y + qeq\y _ X\u _ 1 a_p
dt r r rsin© oy

dy 2 aqr_l_ 2cos6 aqe}

+u| Vi, -
L{ Ay r’sin?0 r’sin® dy  r’sin’0 Jy

2
where V? = ! a(rz aj+ ! i(sinij+; J

r2or dr) rZsin6 00 r? sin298\|1_2

If we put 1 = 0 in the above equations, we get the equations of motion for ideal
fluid.

6. Steady Flow Between Parallel Planes

For a viscous incompressible fluid in steady flow, the Navier Stoke’s equation
with negligible body forces, are

dt p p

In Cartesina co-ordinates; these are

du du du 1 dp (
Ut Vet W = ———+V

9’u 9%u d%u
ox 9y oz p ox

+—t
ox? 9y’ 9z°

O Forsteady case,(:i—lt1 = au +(q-Vu=(q- V)u,i =0

ot ot
= u—+vi+w— u
ox  dy 0z
du du du
SU—+V—+W—
ox  dy oz
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ow  ow ow 1 dp ’w 9’w 9°w
tW—=———+v + + (1)
ox ay oz p 0z ox* 9y’ 0z’

The equation of continuity for incompressible flow is

du dv ow
LA A LA 2 1OV-q =0
8x+8y+az @ .

The equations (1) are non-linear 2" order partial differential equations and
there is no known general method for solving them. However, we shall find
some exact solutions of the Navier-Stoke’s equations in some special cases.
This is one of those cases.

Let us consider a two dimensional steady laminar flow of a viscous in
compressible fluid between two parallel straight plates. Let x-axis be the
direction of flow, y-axis be perpendicular to it and z-axis be parallel to the
width of the plates and let h be the distance between the plates.

We have the conditions

v:O,W:OandiEO 3)
0z

From the continuity equation (2), we have

a—u=03U=U(Y) “4)
ox

/

Z

The second equation of equations (1) gives

—?=0 = p=pKX) )
y
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The 3™ equation of equations (1) is identically satisfied and the 1% equation
gives

2 2
O=_l@+vd_l;:>£:lld—u ®E=V (6)
p dx dy dx dy2 p

. . . dp . . .
Since u is a function of y only, so d—p is either a function of y or a constant.
X

But from (5), p is a function of x alone.

dp. . o
Hence < is constant. i.e. pressure gradient is constant.

dx

Integrating equation (6) w.r.t y twice, we get the general solution to be

2
u=t Y AyiB 7)
pdx 2

where A and B are constants to be determined from the boundary conditions.
Now we take the following particular cases

6.1. Couette’s Flow : It is the flow between two parallel planes (flat plates)
one of which is at rest and other moving with velocity U parallel to the fixed
plate. Here, the constants A and B in (7) are determined from the conditions

u:O,y:O}

and u=U,y=h 8)

h

0 u=0

P B

Using these conditions, we get
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2
B=0, U =l(@jh—+ Ah

pldx ) 2
. A:E_L(@J,B:o )
h  2pldx

Therefore, the solution (7) becomes

2
u= l(d_pjy—+y E_i(d_pj (10)
pldx ) 2 h  2pldx
_ Y -hy ‘hy(d_P}ﬂ *)
2u dx h
2
h 2udx h h

We note that equation (10) represents a parabolic curve.

This equation is known as the equation of Couette’s flow. Thus the velocity
profile for Couetle’s flow is parabolic. The flow Q per unit breadth is given by

h n| 1 dpy? U hdp
= ud = _— 4 _ d
Q JO Y IO {mdx 2 y(h 2 dx Y

3
= ﬂ_h_@ ()
2 12udx
3
:£+h—P, P:_d_p (12)
2 12u dx
In non-dimensional form (11) can be written as
LR S pApEni (13)
U h h h
2
where o= h (— @j (14)
20 dx

o is the non-dimensional pressure gradient. If o > 0, the pressure is decreasing
in the direction of flow and the velocity is positive between the plates. If o <

0, the equation (13) can be put as
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2
u_y ay
—=2(+a)——= 15
TR ()

The pressure is increasing in the direction of flow and the reverse flow begins
when o < -1

| ® y is small. i.e.
y* is neglected

Ifoa=0 (i.e.j—p = j, then the particular case is known as simple Couette’s
X

flow and the velocity is given by

u_y

U h
which gives u = 0 where y = 0 i.e. on the stationary plane.

(i) Average and Extreme Values of Velocity : The average velocity of a
Couette’s flow between two parallel straight plates is given by

uo:%jéludy (16) | ®u=u(y)

Using the value of u from (13), we get

1 .y Uy y y
w=—" Y yuad{1-Y||d
‘ hjo{h h( n)|”

Uh? h? hn’
=7 TS
2h 2h? 3h

= E+E:(l+ng (17)
2 6 2 6
2 2
_U widp U by dp (18)
2 12udx 2 12u dx

In the case of a simple Couette’s flow, the velocity increases from zero on the

. . .. . U
stationary plate to U on the moving plate such that the average velocity is R

When the non-dimensional pressure gradient is o = =3, then from (17), we get
up = 0. This means that there is no flow because the pressure gradient is
balanced by the viscous force.
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For maximum & minimum values of u, we have

dy h h?
=>y= [H—aJh (19)
20
From here, % =1, whena =1
and % =0, when o0 = -1

So, from (13), we get

U= 1+a+a 1+a 1_1+oc U
20 20, 20

2
_(+a) U
40

and thus u is maximum for o = 1 and minimum for o0 < —1.

(ii) Shearing Stress : The shearing stress (drag per unit area) in a Couette’s
flow is given by

du U paU(, 2y
Gp=pu oy = B2 20
y udy Hh h( hj (20)

= % , for a simple Couette’s flow (o0 = 0).

When y = %, then the second term in (20) vanishes. Thus the shearing stress

is independent of o on the line midway between the flow. The shearing stress
at the stationary plane is positive for o > —1 and negative for a0 < —1.
| y =0 at stationary plate

The velocity gradient at the stationary plate is zero for o = —1 and the shearing
stress is zero for o=-1.

Thus 6y« 20 when o Z—1.
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Further, drag per unit area on the lower and the upper plates are obtained from
(20) by puttingy =0 and y = h, as

WU paU opU pay
h h h h

combining the two results, drag per unit area on the two plates is

WU, poU U hdp

h h ~ h 2dx

(***)

WU Ph o, dp
h 2 dx

6.2. Plane Poiseuille Flow : A flow between two parallel stationary plates is
said to be a plane Poiseuille Flow.

The origin is taken on the line midway between the plates which are placed at a
distance h and x-axis is along this line.

The conditions to be used in this problem are

u=0,wheny=+ 20

0| =

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

Using these conditions in (7), we get

2
A-omo g
dx ) 8

and thus the solution (7) is

. l(d_Pj(y_z _EJ o)
pldx A 2 8
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This represents a parabola and thus the laminar flow in a Plane Poiseuille Flow

is parabolic.

(i) Average and Maximum Velocity : For extreme values of u, we have

d_u = 0 and thus from (22), we get

dy
l[dp j y=0 =y=0
p\ dx
2
Thercfore . Uper = [ @J 3)
Sul dx

The average velocity in the plane Poiseuille flow is defined by
1 h/2
=— [ udy
h_n/2

Using the value of u from (22), we get

) 2
f h dp( 4y2 de
h

2 SWdx
_2[zhidp)_ 2y (24)
"3l 8n 4, ) 3

From (23) & (24), decrease in the pressure is given by

dp_ 8w _-8u3 -l
dx h2 max. h2 9 0 h2

u, (25)

. dp. .
This further shows that d_p 1s a negative constant.
X

(ii) Shearing Stress : The shearing stress at a plate (lower plate) for a plane

Poiseuille Flow is

_|pdu} __Ldph
(ny) —h_(udny:h Mu' D)

= T Unax. (26)
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The local frictional (skin) co-efficient Ct is defined by

_ O _du - fpuy

Cf max.
p u(%/z h 2

_ﬂ(g up J_ 12v 12

ph{2u2/2) hu, R

(S

h
Where R, = "ol s the Reynolds number of the flow based on the average
v

velocity and the channel height.
7. Theory of Lubrication

The hydrodynamic theory of Couette flow can be applied in the study of
lubrication by considering an example of the slipper bearing which consists of
a sliding block moving over a stationary guide and inclined at a small angle
with respect to the stationary pad. The gap between the sliding block and the
pad is always much smaller than the length of the block and is filled with a
lubricant, usually oil. For such a case viscous forces are predominant. The
theory of lubrication was first developed by Osborne Reynolds in 1886, and the
discussion is due to Lord Rayleigh (1918).

load
y

—> U

slipper block

\

bearing guide

In order to make the motion steady, a system of co-ordinates is chosen in
which the slipper block is stationary and the pad moves with a uniform velocity
U in the x-direction. Since the slipper block is inclined relative to the guide, a
pressure difference is set up in the gap between the slipper and the guide. At
high velocities, extreme pressure difference can be created to support heavy
loads in the direction normal to the guide. Let the block be so wide in the z-
direction that the problem may be treated as two-dimensional.
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Y
A
(O —
h; A
h(x) n
o] v X
U

Let (a, h;), (b, hy) and (x, h) be the co-ordinates of A, B and any point on AB.
Since the addition of a constant pressure throughout the fluid will make no
difference to the solution, so we may for convenience assume that p = 0
beyond the ends of the block. Since the inclination of the plane faces is small,
(i.e. the faces are nearly parallel) the velocity u at any point is given by

2 —
u = y_hyd_p +E( from (*) of previous article) and the
2u dx h
flow Q in x-direction is
3
Q= hy _ b7 dp (from (%) of previous article)
2 12udx

The condition of continuity requires that Q must be independent of x i.e. Q =
Q(y). Hence

3
th —h—ﬂ = constant = l hoU
2 12pd, 2

= @—wu h—h’ (1)
d, h?

where hy is the value of hat the points of maximum pressure (s.t.:—p = OJ .

X

Now, the equation of AB is

h2 _hl

h—h; =

(x—a)
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— 2
dx b—a l @

where [ is the length of the block and dh is the slope of the line AB.

dx
From (1) and (2), we get
dp dp dx 6uUl (1 h
F=—t = - 3)
dh dx dh h,-h,\h h

Integrating, we find

ouU! [—l+h—°J+C

" h,-h,\ h 2n’
h, - 2h
- MO o =20, ¢ @)

We now determine hg and C so that

p =0 when h =h; and when h =h,

This gives
hy = 2h1h2, C= ey
h, +h, (h, =h)(h, +h,))
h—h,)(h—h
and thus p= 6HUZ(2 21)(2 2)
h“(h; —hy)
o 6LUl (h, —h)(h—h,) )

Pe T h?

This suggests that p > 0 if h; > h; i.e. the stream contracts in the direction of
motion. P > 0 yields thrust rather than a suction. So we conclude that a
necessary condition for lubrication is that the relative motion should tend to
drag the fluid from the wider to narrower part of the intervening space i.e. the
stream should be convergent.

The total pressure (thrust)P is given by

P= I: pdx = I:}z p(j—ijdh
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l h, .
= dh | using (2
—— [, p 4e)

2 — —
- 6;21Ul " (h, h)(zh hy) o
(h2 =h2)(h, —h,) "™ h

(6)

6uUl>  n, (h—h;)(h—h,)
= 2 -[h 2 dh

To find the integral in (6), we observe that

v (h—h,)h—h “( hh, h, h
[ (h=h, ) z)dh:th [1+ ! 2——1——2th
1

h; h2 h2 h h

hp

h,h
= {h— lh 2 —h, logh—hzlogh}
hl
= —2(h1—h2) + (h1 + hz) log h_
2

h—h,)(h—h h,—h
1 th ( 1)(2 2)dh:10g(h1/h2)—2 L2
h, +h,°h h h, +h,

k—1
=logk=2| ~=2| k=h/h,.
g (k+1j 1

Thus (6) becomes

__6uur? k-1
P_hﬁ(k—l)z{logk 2(k+1ﬂ @

Now, the tangential stress (drag) at the section h is

uu , hdp

| From (%) of previous article.
h 2dx

(G yx)yn =
and thus the total frictional force experienced by the moving fluid is

b
F= j (G 4y ) yop dx
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=.[b {E+E6pU(h_h0ﬂdx | using (1)

=pu ™ (E—ﬁj L _4h  lusing @)

Wl n, (u 1 6hh,
——— 12 g

_ 2ot zlogk—s(ﬁj )
h,(k-1) k+1
Comparing (7) and (8) we see that the ratio F/P of the total friction to the total

load is independent of both pn and U, but proportional to h if the scale of h is
altered.

It has been found by Reynolds and Rayleigh that the value of k which makes P
2
U o g75HY

a maximum is 2.2 (approx.) and that this makes P = 0.16 h
2 2

For this case, F/P =4.7 hTz .

By making h, small enough compared to /, we can ensure a small frictional
drag i.e. good lubrication.

8. Steady Flow Through Tube of Uniform Circular Cross-section
(Poiseuille’s Flow or Hagen-Poiseuill’s Flow)

We consider a laminar flow, in the absence of body forces, through a long tube
of uniform circular cross-section with axial symmetry.

Let z-axis be taken along the axis of the tube and the flow be in the direction of
z-axis. Since the flow is along z-axis, the radial and transverse components of
velocity are absent.
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Thus g =qe =0 q4=(q,-9¢-9,)
The continuity equation for a viscous incompressible fluid gives.

9,

5 =0 =q,=q,r) (1) |0O axial symmetry i.e. independent of 0
zZ

The equations of motion in cylindrical co-ords are

dt r 2900 t?
dq op 2
—2 =pX_ ——+uV

d o d 1d d
where —=—+q, —+ +q, —,
or r 00 0z

and X=(X,,Xy.X,)

In the present case % =0and ¢q,;=qe=0, X=0

Thus from the first two equations, we get

dp Ip
= ===0 =>p=p(z 2
o 20 p=p(2) 2
The third equation gives.

0= _a—ap+uV2qZ | ®q,=q,(r)andris constant w.r.t. t.
z

dp _ oo d’q,  1dq
or — =uVv =yl —z4+-—2% 3
AR T M[ o T odr )

92 19 1 9% 92
In cylindrical co-ordinates V> =— 4+ —— +———+——
(Incy o Tror 290 Tan?)
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since q, is a function of r only (from (1)) and p is a function of z only
(from (2)).

Equation (3) can be put as

2
P{rd 4. +dq—2]=r@

dr? dr dz
ie. a4 r& _rdp
dr{ dr u dz

Integrating, w.r.t. r, we get.

2

dr  pldz) 2
ie. da, =L(d—pjr+é
dr  2u\dz r

Integrating again, we get

Q.= i(@jrz +Alogr+B 4)
up\ dz

where A and B are constants to be determined from the boundary conditions.

The first boundary condition is obtained from the symmetry of the flow
such that

dq,

=0 onr=0 5
dr )

and the second boundary condition is
q.=0,whenr=a (6)

where a is the radius of the tube. Using these conditions, we get

A=0, B =—i(@ja2 :L(_@jaz
4u\ dz 4u\ dz

Thus, the solution (4) becomes
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_ L(=dp) 2 >
qz—4u( dZJ(a 1) @)

This represents a paraboloid of revolution and thus the velocity profile is
parabolic.

(i) The Max x Average Velocity : For extreme values of q,, we have
d,

q | ® q is a function of r only
T

From (7), it implies that r = 0 and thus

2
a d
(max. = _(_ _pj (8)
4u\ dz
dp . .
where 4 is a negative constant.
V4

From (7) and (8), the velocity distribution, in non dimensional from, is given

by
r 2
by _(_j
qmax a

The average velocity is defined by

1 2 a
QO=E Jon JO g, rdrdo

Using the value of q,, we get

N
Qo 8H dz ) q max.

The average velocity is therefore half of the maximum velocity

The volume of fluid discharged over any section per unit time (i.e. volumetric
flow) is defined as

Q= I(? Jz. 2mrdr

Using (7), it is obtained to be
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4 2
gu\ dz) 2 4u\ dz 2 '
(ii) Shearing Stress : The shearing stress in Poiseuille’s flow is given by

Oy = _H& — _ui(@j(zr) — _L(@j
dr 4u\ dz 2\ dz

On the boundary of the tube, we have

a(dp) a —dpj 2u
Oi)=a=—"—"| — |=—| —— |=—. max 10
(Gr) Z(dzj 2( dz a Qmax. (10)

The local frictional (skin) co-efficient Cs for laminar flow through a circular
pipe is

C _ (Grz)rza _ 2“ qmax
f= 2/ 2
p %/2 ap %/2

w2 Sl 16
pa q(% pa qO Re

Where R, = 2aq/v is the Reynolds number. When R. is less than the critical
Reynolds number, which is 2300 in this flow problem, the flow is laminar but
if R. > 2300, the flow ceases to be laminar and becomes turbulent. Thus, in
this problem, R. < 2300.

4
8.1. Example. Establish the formula %nil(pl—pz) for the rate of steady flow
1)

of an incompressible liquid through a circular pipe of radius ‘a’, p; and p;
being the pressures at two sections of the pipe distant 1—apart. Also find the
drag on the cylinder.

Solution. First we prove equation (9) and then we note that % is the change
z
in pressure per unit length and thus in the present case
dp _pr—py
dz l

Therefore, from equation (9), we get
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_ P1 — P2
= SH[ ! j

Also, the drag on the cylinder is
F = ZTEal (Grz)rza

dp
dz

= —ma’l =

=’ (p1—p2)-
Hence the result.
9. Steady Flow Between co-axial Circular Cylinders

Let us consider the steady flow of a viscous fluid parallel to the axis in the
annular space between two co-axial cylinders of radii r; and rp(rp> r1). The
velocity for such flow is

Q= R [dpjr +Alogr+B (1)
m

(from equation (4) of previous article) where A and B are constants to be
. . dp, .
determined from the boundary conditions, d—pbelng the constant pressure
z

gradient.
The boundary conditions are
g-=0atr=rjandr=rn, 2)

Applying (2) in (1), we get

2 2 2 1\2
L(@ju _ _L(@j&, I,
4u\dz Jlogr /1, 4u

and

B= 1 [dpJ @bgn —r}
4u\ dz logn

Thus the velocity distribution in the annular space between two co-axial
cylinders is
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n? —1)r2
G =~ 1[ j{(l )+ ﬂmg(iﬂ )
4pud logn I

The volumetric flow in this case is

Q=[" [ q.rdrdo

_ Jzn Jnr1

2u \ dz 2 2 4 4
2 12
N (n° =D,
logn

sl

_ —_M(d_Pj p2r’ ot (=D fr?
au\dz) ' 2 4 logn

Dr;

_n(dpj{n o n4r14+i

% —2-n*+1+2
logn

2 2
(’=br? ) [x

2) 2 4

2

~Hotogn—1n? +1}}

o4 2 12
. (@j % —n* —14+2n* —on2 - B D7
8K z)| logn

4 B 2 2
-mr, (d n- -1
_ _1[_PJ -0 =D° @)
8u \dz)| logn

The average velocity qo in the annulus is given by

— Q — —1'12 (@j 2 -
O o sw )Y

2
n —1} )

logn

The shearing stress on the inner and outer cylinders are

dq z
(¢} o = | bL—
( rz )r—rl ( Ir jr:rl
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2 \,2
=‘“i(@j g 4 (D
4u dz r; logn

_-a(fel
~ 4\dz logn

dq,
O )iey, = | UL——
( v )r—r2 (H dr jr:rz

2 2

-1

_Ldp[ 2o
4 dz r, logn

=_f_1(@j 2n- 0D
4\ dz nlogn

10. Steady Flow Between Concentric Rotating Cylinders (Couette’s Flow)

and

We consider the flow between two concentric rotating cylinders with radii ry, rp
(r, > 1) having viscous fluid in between them. We assume that the flow is
circular such that only the tangential component of velocity exists. Let w; and
w3 be the angular velocity of the inner and outer cylinders respectively.

The continuity equation in cylindrical co-ordinates (r, 0, z) reduces to

?—g: 0, = qo=qe() e

ey

where ¢,=q,=0

Now, the Navier-Stoke’s equations for viscous in compressible fluid in
cylindrical co-ordinates are

dq, qg 0 . 20
of 49 90 |_ x __pw(vzqr_q___&j
dt r or r

dqe | 9:90 1dp 22909, 9o
—+ = |=pXyg———+WY V Qg +—————
p( dt r P=e r do Y e r
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d 9
Pt =pX, -=2

+uv?
dt 0z HY 9.

Here, ¢, = q, = 0; X = (X;, Xo, X,) =0, qo = qo(T)

From the last two equations, we have

9p 1dp 2 _ Yo
—=0——+u V'qg—— |=0 2
Y - 90 H( Je 2 (2)
and the first equation gives
2
)
pe =P 3)
r or

The L.H.S. of (3) is a function of r and thus p is a function of r only. i.e.
P_,
20

.. Equation (2) reduces to

92 19 1 9> 92
Vige- 0 - v2=2 4%, 9% 9
a r? or ror r?900% 9z°

d? d
de +l&_q_e:0

=
dr? r dr ?
2

= o, df96)_ @)
dr? drr

Integrating, we get

%+q—e =2C,
dr r
d
= r&+q9 =2c:1r:>i(rq9)=2c:1r
dr dr

Integrating, we get

c
rqe=cCir’+C = qo=C| I+ —> (5)
r
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which is the general solution, where c; and c; are constants to be determined
from the boundary conditions.

The boundary conditions are
qo=r1; @, whenr=r
and o =12 0, whenr =1, } (6)
® on the surface, v = r% =S V=1

d/ 0.
[=10 = —=r—ie.v=rm
dt dt

Using these in (5), we obtain

2 2 2.2
, €y = (N
2 2 22
I —I I —h

Ci =

Thus the solution (5) in the present case is

1'121'22 (('02 B ('01) (8)

1
o = ﬁ{(rzz ®, —1’o)r -

Iy —1q r

In particular, if the inner cylinder is at rest i.e. ®; =0, 0, = w(say), 1, =a, 1, =
b, then the solution becomes

2 2
o= 22 (r—a—] ©)

b? —a’ r
The radial pressure, given by (3), is

2 2
%:p%:%[cfrz +:—§+2c1c2J | using (5)

T r

2
_ 2 S 2¢i¢,
-p(clr+ R

Integrating w.r.t., we get

2.2 2

cir c;
= ——=+2c,c, logr |+c 10
p p|: 7 21‘2 1v2 g :| 3 ( )
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If p=p; whenr =1y, then

2.2 2
G C
p1=p|————5+2cc,logr |+c¢3
{ 5 2r12 1€2 1}
2.2 2
= C3=P1—P{%—2Cr_22+2010210gr1}
1

Hence the pressure is given by

2_ .2 2
of T7 -1y e[ 1 1 r
=p1+p|c ——=| ——— |+2¢,c, log—
p=hp1 p{ l( 2 ] 2(1.2 rlz) 1~2 grlil

where ¢ and ¢; are given by (7).

The formula for shearing stress is

dgg 9 d(qe
[e) = _—— | = — ==
0 H{ dr 1 " rdr r
_ | dfer+ey/r
- u{r dr( r H
d Cy 2c,
= L. ra(Cl +r—2j = I.Lr[—r—3j

_ —2ue, _ —2ur 15 (0, — ®,)

r’ r2(r22 —r12)

The expressions for the shearing stress on the outer and the inner cylinder are

_ 2
()i, = 2u(0, — o)1y

ry -t
2u(®, — o,)r;
(Gre)r:rl = 2

2
L, -1

11. Steady Flow in Tubes of Uniform Cross—Section

Here, we consider the incompressible unaccelerated flow through a tube of any
uniform cross-section. We neglect body forces. Thus, we have
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dg == = o _
—4=0,F=0,V-g=0 1
m q (D)

and the Navier-Stoke’s equations in vector form become

0=—YP, Ry
p P

ie. Vp =uviq )

Let us work with fixed co-ordinate axis ox, oy, oz with oz taken parallel to the
flow so that

q=wk, 3)

where q(u, v, w),u=0,v=0

From equation of continuity o + o + ow =0,
0x dy 0z
ow
we get a—=0 = w=w(X,y) 4)
Z

Thus from equation (2), (3) & (4), we obtain

2 2
95, 95, g [0, OTw
ox dy~ o0z ox? oy’
o _, Op
P_0,Poyg 5
= ox ay ©)
ap ’w  9°w
d —= 6
a oz H( ox ’ asz ©

Equations (5) show that p is a function of z only, therefore, we can write

dp ’w  9°w
—F _ 7
dz H( ox* * dy> @

The L.H.S. of (7) is a function of z only while R.H.S. is a function of x, y only.
Thus each side is a constant, say —P, the negative sign being taken since p
decreases as z increases. Then the problem of solving the Navier-Stoke’s
equations reduces to the problem of solving the partial differential equation.
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82W+82W:_£ P:—dp

8
ox>  ay’ u dz ®

subject to the condition that w vanishes on the walls of the tube for a viscous
fluid.

To obtain the solutions of (8), we first establish a uniqueness theorem. A form
which is a little more general than that required here, is as follows :

11.1. Uniqueness Theorem. If

0’w  9%w
+ =f(x,
oy (X,y)

at all points (X, y) of a region S in the plane ox, oy bounded by a closed curve ¢
and if f(x, y) is prescribed at each point (x, y) of S and w at each point of C,
then any solution w = w (X, y) satisfying these conditions is unique.

Proof. The given equation is

’w  9*w
=f(x, 9
ot oy (x,y) 9

Let w = w; (X, y) and w = wy(X, y) be two solutions satisfying equation (9) in
the region S together with the prescribed boundary conditions on C

1.e. wi; =wyon C
We are to prove that w; = w, in S.
For this, we write

W =w;—w» (10)

2 2 2 2 2 )
Then, aw+awz 3W1+8w1 _ aW2+a W,
ox* oy’ ox® oy’ x> oy’
=f(X, Y)—f(X’ y):O

°W  9*W
+
x> oy’

=0inS (11)

Also, on curve C, W =0, (12)
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Since w; = w, on C.

Now, consider

2 2 2 2
= j(alj +8ﬂ2 +Wavzv+a\;v dx dy
$ |\ ox dy ox dy

[ using (11)

il {a( o (Waa_vyvﬂ o

i(W—d - Wa—wdx] by Green’s Theorem.
c 9y
=0,asW=0onC.

2
Now,I=0 = (BWJ + M =0 in S which will be true only if aﬂ =0,
0x dy ox

oW _ = 0 at each point of S.

dy
= W =constant in S.
Since W = 0 on C, we infer from the continuity of W that W = 0 throughout S.

Hence w; = w; in S which establishes the uniqueness of the solution. Under the
reference of the uniqueness theorem, we now find the solution of equation (8)
for tubes having different types of uniform cross-section.

11.2. Tube having Uniform Elliptic Cross-Section : Suppose that the elliptic
cross-section of the tube has the equation

289
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X2

2
a

v

T

-1=0 (13)

o

Then, we must solve

0%w +82w P

=—— (14)
ox?  ay’ u
subject to the condition w = 0 on the cross section (13).
We first observe that the function
2 2
w:k(l—x—z—Z—zJ (15)
a

satisfies the boundary condition, namely w = 0 on the elliptic cross-section.
Regarding k as constant and on substituting w into the partial differential
equation (14), we find

k(__zz_%j:__l)
a b n

24,2
N k= P32 b . (16)
2u(a’ +b?)

Thus from equation (15) & (16), we get
2,2 2 2
we Py X Y a7
2wa” +b7)
The uniqueness theorems shows that w, given in (17) is the required solution.

The volume discharged through the tube per unit time is

Q= [[w dxdy
S

Pa’b? [ 1 1
=—° —  Iffdxdy-—][x%dxdy ——]] 2dxd}
2u@ +b)L I TR

212 B 2 2
= Raz—bz nab—iznaba——%nabb—
2u(a’ +b%)| a 4 b 4
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nP( a’b’
TES

Mean velocity =

Q _Q _Pfa%
[[dxdy mab 4ula?+b?

11.3. Remark (circular cross-section). When b = a, then the cross-section of
the tube becomes a circle of radius a and, then

4 2 2
w=q,= ia_z l_x_z_y_z
2u 2a a a

:i(az—xz—yz):i(a2—r2 ’
4n 4u
Ix2+y2=r2

whereP:—d—p
dz

6 4

andQ:n—P a_2 :nPa

4u | 2a 8u

mean velocity = % =Pa’ / 8.
na

These results have already been obtained.

11.4. Tube having Equilateral Triangular Cross-Section. Suppose that the
cross-section of the tube is the equilateral triangle bounded by the lines

X
X=ay=+—F— (19)
J3
If we take
2 1o
w =k(x—a) (y —gx j (20)

2
=l{y2(x—a)—x?(x—a)}

then w = 0 on the boundary of the tube.
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y
60) 30 x=a X
0
60
y=— x/ 3
Substituting for w in
2 2

Sw, ow__P @1

ox~  dy u
we obtain

1{[— 2x +§j +(2x — 2a)} _-F

3 il
= k= Eld (22)
4pa
Thus, by the uniqueness theorem,
3P , 1 zj
w=—(x—a -—X 23
42 ( )(y 3 (23)
is the unique solution
The volume discharged per unit time is
a X/ 3
Q= [[wds=2[dx [wdy | due to symmetry
S 0 0

3P ., x/V3 5 x2
ZMaIO X (I) (x a)(y 3 |

_ Pa*
60\/5u
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11.5. Remark. If we take the cross-section to be

(x—a) (x £/3y +2a)

_____________ X =a, X

4
then Q= 2—\7/_Pi
204/3 M (=2a. 0)

| Replace a by 3a in the above example

12. Unsteady Flow Over a Flat Plate

So far we have discussed the examples of exact solutions of the Navier-Stokes
equations for steady flows. Here, we consider the case of unsteady flow.

The simplest unsteady flow is that which results due to the impulsive motion of
a flat plate in its own plane in an infinite mass of fluid which is otherwise at
rest. This flow was first studied by Stokes and is generally known as Stokes
first problem.

Let x-axis be taken in the direction of motion of the plate, which is suddenly
accelerated from rest and moves with constant velocity U,. Let y-axis be
perpendicular to the plate. The motion is two-dimensional and the only non-
zero component of velocity is u, where q = (u, v, w). Further, u is a function

of y and t only. i.e. u = u(y, t). The pressure in the whole space is constant.
The Navier-Stokes equations in the absence of body forces, for the present
case, become

Jdu o%u

u_,ou 1
R (1)

The initial and boundary conditions are

u=0whent=0 forall y 2)
u=U,aty=0

when t>0 3)
u=0aty=oc

We observe that the partial differential equation (1) is the same as the equation
of heat conduction, diffusion etc. It can be reduced to an ordinary differential
equation if we make the following substitution (principle of similarity of flow)

u
U, f(m) “)
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y

5
ot &)

is the similarity parameter.

where n=

We have,

du_dudn_,, off -y
ot onot  omlaied?

du_dudn_, off 1 J
dy mady ol 2vvt

P (i) afmin_y, (1)
dy2 dy\dy) amlady oy  "onm?l4nt

Thus, in terms of the new variables, equation (1) reduces to

of 9°f
— (2n)=—
an( n) o’

2
ie. d_1: + an—f =0 (6)
dn dn

and the corresponding boundary conditions are
f(0) = 1 and f(e0) =0 (7)

The second condition in (7) includes the initial condition (2).

% =-2n=log f'= —n2 +log C,
2
The solution of (6) is =>f'=Ce™

2
=f=C/[je " dn+C,

2
f)=Cy [ge™ dn+C, ®)

Using the boundary conditions (7) in (8), the constants of integration C; and C,
are obtained to be
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Co=landC=— + 2 ©)

Pedn  Nm

The velocity distribution, from equation (4), is therefore given by

u 2 2
L= f=1-—=[) e dn
U, ﬁfo

= (1—erf n) (10)

the integral
2 2
erffn=—=["¢e™" dn (11)
n \/;jo

is called the error function or the probability integral and tables for it are
readily available.

The velocity distribution (10) is tabulated as follows.

n erf n u
U
0 0 1
0.01 0.01128 0.98872
0.05 0.05637 0.94363
0.1 0.11246 0.88754
0.2 0.22270 0.77730
0.4 0.42839 0.57161
0.6 0.60386 0.39613
0.8 0.74210 0.25790
1.0 0.84270 0.15720
1.2 0.91031 0.08969
1.4 0.95229 0.04771
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1.6 0.97635 0.02365
1.8 0.98909 0.01091
2.0 0.99532 0.00468
24 0.99931 0.00069
2.8 0.99992 0.00008
oo 1.00000 0

We observe that the velocity decreases continuously and tends to its limiting
value zero as M tends to infinity. However, for all practical purposes, this value
is reached at about m = 2.0 and therefore the corresponding value of y, which
we shall denote by 9, from (5), is

&= 4t (12)

Thus distance is a measure of the extent to which the momentum has
penetrated the body of the fluid. It is proportional to the square root of the
product of kinematic viscosity and time. If vt is small, then & will be small and
once again we shall have a boundary layer flow.
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UNIT-V

1. Dynamical Similarity

We have observed that due to non-linear character of the fundamental
equations governing the flow of a viscous compressible fluid, there are no
known general methods for solving them. Only in few particular cases and that
too under restricted conditions, exact solutions of these equations, for all
ranges of viscosity, exist and a few of them have already been considered.
However, attempts have been made to simplify these equations for two
extreme cases of viscosity, very large and very small, and we have well
established theories for these cases which are respectively known as “Theory
of slow motion” and “Theory of boundary layers”. But the cases of moderate
viscosities cannot be interpreted from these two theories. Further, even in
these two extreme cases, we find great mathematical difficulties and therefore
most of the research on the behaviour of viscous fluids have been carried out
by experiments.

In practical cases, such as designing of ships, aircrafts, underwater projects etc,
it is usually necessary to carry out experiments on models and to relate their
behaviour to that of the actual object (prototype). In fact, the model and the
prototype should be what is called as dynamical similar. Mathematically
speaking, two physical systems are equivalent if the governing equations and
the boundary conditions of the two systems are the same. Such systems are
called dynamically similar system. One obvious condition is that the model
should be geometrically similar to the prototype which means that we can
obtain the actual object from the model by enlarging or contracting its size in
every direction in the same proportion. This eliminates the consideration of
boundary conditions in the discussion of dynamical similarity and so we have
to consider only the governing equations. In short, we can say that two fluid
motions are dynamically similar if with geometrically similar boundaries, the
flow patterns are geometrically similar. Further, two geometrically similar
flows are dynamically similar if forces acting at every point are similar i.e. the
forces are acting in same direction having same ratio in magnitude.

We now discuss the conditions under which the fluid motions are dynamically
similar. In other words, we have to find out those parameters which
characterize a flow problem. There are two methods for finding out these
parameters (i) inspection analysis (ii) dimensional analysis. In the first case,
we reduce the fundamental equations to a non-dimensional form and obtain the
non-dimensional parameters from the resulting equations. This procedure
should always be used when the basic differential equations for a problem are
available. In the second case, we form non-dimensional parameters from the
physical quantities occurring in a problem, even when the knowledge of the
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governing equations is missing. We discuss these two methods with particular
reference to the flow of a viscous compressible fluid.

1.1. Remark. (i) Some authors do not differentiate between the two methods
and study both of them under the head of dimensional analysis.

(i) In two dynamically similar systems, usually, all the non-dimensional
numbers cannot be matched and so strictly speaking, perfect dynamical
similarity is rare. So, many times we match only the important non-
dimensional numbers.

1.2. Inspection Analysis, Reynolds Number. We know that the Navier-
Stokes equation of motion of a viscous incompressible fluid in the x-direction
is

)]

— U —F+V—F+W—=X———+V +
ot ox  dy 0z p Ox ox? 9y’ 9z°

du Jdu du du 1 dp (azu N 0%u aqu
Suppose L, U, P denote a characteristic length, velocity and pressure
respectively. Then the length, velocities and pressure in (1) may be expressed
in terms of these standards. Thus, we write

x=Lx",y=Ly,z=Lz7 2)
u=Uu,v=Uv,w=Uw 3)
p=Pp’ “4)

where all primed quantities are pure numbers having no dimensions. Then,
since L/U is the characteristic time, we get

du_ dUw) _U%ow
o 9ILU't) L ot
du d(Uu) _U? du’

u— =(Uu")

— et
ox o(Lx') L ! ox' e

1op _10(Pp) _ P op'
pox pd(lx') pL KX

9%u _ 9% (Uu") :Eazu' et
ox?  9(Lx")? L?ox“

Substituting these results in (1) and simplifying, we obtain
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ou' ou
+U'—+vV

du du LX P Jp
— — W= -
o' ox' oy dz U? pU? X'

v (azu' 9%u' azu'J 5)

+ + +
UL aXv2 ay|2 aZ|2

The L.H.S. of (5) is entirely dimensionless, so R.H.S. must be also
dimensionless. Thus, it follows that the three quantities

\% P LX
UL’ pU2 ’ U2

(6)

must be dimensionless quantities.

In order to produce a faithful model of a given incompressible viscous flow, it
is essential to keep these three numbers constant. Based on these numbers we
have the following definitions.

1.3. Reynolds Number. The first non-dimensional number in (6) ensures
dynamical similarity at corresponding points near the boundaries where
viscous effects supervene. Its reciprocal is called the Reynolds number and is
denoted by R. so that

This is named after Osborne Reynolds who first introduced this number while
discussing boundary layer theory. This is most important of viscous force over
the inertia force. It can be easily seen from the equation of motion that the

inertia forces (terms like pua—uj are of the order pU%L and the viscous
X

2
forces (terms like ug—gj are of the order uU/Lz.
X

Therefore,

inertia forces pU2 / L pUL UL

= R
viscous forces pU / 12 u v

(&

Thus, Reynolds number is the ratio of the inertia force to the viscous force. It
is infact a parameter for viscosity. If R. is small, the viscous forces will be
predominant and the effect of viscosity will be felt in the whole flow field. On
the other hand, if R, is large the inertial forces will be predominant and in such
a case the effect of viscosity can be considered to be confined in thin layer,
known as boundary layer, adjacent to the solid boundary. When R, is
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enormously large, the flow ceases to be laminar and becomes turbulent. The
Reynolds number at which the transition, from laminar to turbulent, takes place
is known as critical Reynolds number.

Further, we can write Re as R. = L/(v/U), where v/U represents the viscous
dissipation length. Thus, in other words, the Reynolds number is the ratio of
length of the body to the viscous dissipation length.

1.4. Pressure co-efficient. The second non-dimensional number in (6) ensures
dynamical similarity in two fluids at points where viscosity is unimportant.
Such points would occur at stations remote from the boundaries. This number

from the

is called pressure co-efficient and is denoted by Cp. Thus Cp = 5

pU
. . ., 0
equation of motion, we note that the pressure forces [terms like 2P |are of
X
order P/L. Thus, we can write

Pressure forces  P/L P c
Inertia forces  pU2/L  pU®  ©

i.e. Cp gives the relative importance of the pressure force to the inertia force.
Usually, it is taken as unity.

1.5. Force Coefficient. The third non-dimensional number in (6) tells how to
scale body forces. This number is called force co-efficient, denoted by Cg
which is similar to Cp.

body forces  pX LX

Thus Cg = = =
" Inertia forces pU?/L  U?

If Cr is small, the body forces can be neglected as compared to the inertia
forces. Reciprocal of this number is rather more important and is called
Froude number, denoted by F;. Thus

L

C, LX

r—

This number is particularly used in cases when body forces are the
gravitational forces. Thus,

inertia forces pUz/ L U_2
gravity forces pg gl

F, =
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It is important only when there is a free surface, e.g. in an open channel
problem. In such cases too the force due to gravity may be neglected in
comparison to the inertia force if F; is large i.e. if

I

F, _ inertia force y viscous force _ viscous force o
R gravity force intertia force gravity force

€

1.6. Dimensional Analysis. In the previous case, we reduced the governing
equations of a viscous compressible fluid to a non-dimensional form and
obtained the dimensionless parameters. An alternative method, with which the
non-dimensional parameters may be formed from the physical quantities
occurring in a flow problem is known as dimensional analysis. In dimensional
analysis of any problem, we write the dimensions of each physical quantity in
terms of fundamental units. Then, by dividing and rearranging the different
units, we get some non-dimensional (universal) numbers. Thus, dimensional
analysis can put the quantities influencing a physical phenomenon into a useful
form for the interpretation of data. It is not a tool for solving problems
explicitly but a powerful method for establishing and the grouping of the
relevant variables that are likely to appear if the analytic solution is at all
possible. The major advantage of the use of dimensional analysis is most
apparent where complete analytic solution of the physical problem is not
possible.

There are, generally, three accepted methods of dimensional analysis due to
Buckingham, Rayleigh and Bridgeman. We shall discuss Buckingham’s Pi-
theorem here as it is the simplest one among the three methods.

1.7. Buckingham =-theorem. The 7-theorem makes use of the following
assumptions

(1) It is possible to select always m independent fundamental units in a physical
phenomenon (in mechanics, m = 3 i.e. length, time, mass or force)

(i1) There exist quantities, say Q;, Q,..., Q, involved in a physical
phenomenon whose dimensional formulaec may be expressed in terms of m
fundamental units

(ii1) There exists a functional relationship between the n dimensional quantities

Ql’ QZ?'“’ Qn’ Say
0(Q1, Qz,..., Q) =0 ey

(iv) Equation (1) is independent of the type of units chosen and is
dimensionally homogeneous i.e. the quantities occurring on both sides of the
equation must have the same dimensions.

301
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Statement :- If Q, Q,,..., Q, be n physical quantities involved in a physical
phenomenon and if there are m(< n) independent fundamental units in this
system, then a relation

¢(Ql7 Q27---’ Qn) =0
is equivalent to the relation
f(nl’ 752,- L] nn—r) = O’

where T, M,..., T, are the dimensionless power products of Qi, Qa,..., Q,
taken r + 1 at a time, r being the rank of the dimensional matrix of the given
physical quantities.

Proof. Let Q;, Q»,..., Q, be n given physical quantities and let their dimensions
be expressed in terms of m fundamental units u;, uy,..., uy in the following
manner

Q] = lu?”ugz'...u?nmlj
Q] = luf‘zugﬂ...ufn‘ﬂj

[Qn] - lu f‘ln u;ZH u ?nrrm J

so that a;; is the exponent of u; in the dimension of Q; . The matrix of
dimensions i.e. the dimensional matrix of the given physical quantities is
written as

Qi Qx Qu
e A
uj: a1 ap........ din
Up: any dr...... Ao
\_ Um! ap, Ay, veeees a . J

This mxn matrix is usually denoted by A.

Now, let us form a product 7 of powers of Qy, Qo,...... , Qn, say



FLUID DYNAMICS

m=Q" Q...QM

X X X
ajp Ay a1)1(312 axn 32)2 (31 a a )“
[(u1 uuiet ) P2 uim uptus e

In order that the product & is dimensionless, the powers of uj, u,,..., uy, should

. 0
be zero ie. MO, L", T etc. Thus, we must have
anpxXit+apXoteenn.... +a, X, =0
Xy +apXy+.o..ol + Ay Xp = 0
a +Xi+a X+ ...... +a,X=0

This is a set of m homogeneous equations in n unknowns and in matrix form
can be written as

Xo
AX=0,X=
M

Now, from matrix algebra, we know the result that if there are m homogeneous
equations in n unknowns, then the number of independent solutions will be
n—r, where r is the rank of the matrix of co-efficients, and any other solution
can be expressed as a linear combination of these linearly independent
solutions. Further there will be only r independent equations in the set of
equations.

Thus if r is the rank of the dimensional matrix A, then the number of linearly
independent solutions of the matrix equation AX = 0 are n-r. So,
corresponding to each independent solution of X, we will have a dimensionless
product 7 and therefore the number of dimensionless products in a complete
set will be n—r

Therefore, 0(Qr, Qayeeennee ,Q=0
= f(m, Ty, , Tnr) =0

Hence the theorem.
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1.8. Method for w-products. To find out the w-products in a complete set, we
adopt the following steps.

) Write down the dimensional matrix of n physical quantities, involving
in a physical phenomenon, having in independent fundamental units.

(ii) Find the rank of the dimensional matrix. If the rank is r(say), then the
number of 7’s will be n—r.

(iii))  Select r quantities out of the n physical quantities as base quantities,
keeping in view that these r quantities should have different dimensions
and the dimension of any of the fundamental unit should not be zero in
all of them.

(iv)  Express @, Tp,...., T a power products of these r quantities raised to
arbitrary integer exponents and one of the excluded, but different in
different 7’s, (n—r) quantities.

W) Equate to zero the total dimension of each fundamental unit in each 7-
product to get the integer exponents.

Thus, the Pi-theorem allows us to take n quantities and find the
minimum number of non-dimensional parameters T;, Tp,...., T, as associated
with these n quantities.

1.9. Application of n-theorem to Viscous Compressible Fluid Flow. We
now follow the above mentioned fire steps to find out ©-products and see the
application of m-theorem and see the application of m-theorem to the simple
case of viscous compressible fluid flow. Suppose that in the considered fluid
flow, the physical quantities involved are

L’ U’ p’ X’ P’ H

and the fundamental units in which the dimensions of all these quantities can
be expressed are mass [M], length [L] and time [T]. The above six quantities
have dimensions as follows

Quantity Dimensions

L-length [L]

U-velocity [LT !

p-density [ML™

X-force per unit mass [LT_Z] — force [MLT_Z]

P-pressure force per unit area) [ML ™ T %]

LL-viscosity ML T
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(i) The dimensional matrix for the present problem is
/L U e X P u\
M:| O 0 1 0 1 1
L: 1 1 -3 1 -1 -1

T: Q -1 0 -2 -2 —y

(i) The rank of the above matrix is 3, so the number of independent
dimensionless products will be 6-3 = 3.

(iii) Let us take L, U, p as base quantities.

n, =L"Up"X
(iv) Let T, =L"Up*P
T, =LX7UX8pX°M

) Now,

[m,1=[(L)" (LT™")*2 (ML) (LT )]
— [Lxl+x2—3x3+lM X3 T—x2—2 ]
[75]=[(L)* (LT™)* (ML)* (ML'T™%)]

— [Lx4+x5—3x6—lM X6+1T_X5_2 ]

[m3]=[0)" (LT~ (ML) (ML™'T™)]
— [Lx7 +Xg —3x9—1M Xg +1T_X8_1 ]

If m;, 7, T3 are dimensionless, then we must have
X1+X2 =3x3+1 =0 X4+ X5 3% —1=0| x74+Xg—3%x9—1=0
x3=0 X+l =0 Xo+1 =0
—Xx,—2=0 —x5—2 =0 —xg—1=0

Solving these equations, we get
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X1 = 1 X4 = 0 X7 = -1
X2:_2 X5:—2 X8:_1
x3=0 Xe=—1 Xg =—1
Thus, we get
m=L'U?p"'X= %
m=L"U?p'P= Pz
pU

=L U o u= w/ pP_ VvV

’ P RE0 T

which are the same dimensionless quantities obtained in equation (6) of the
inspection analysis

1.10. Remark. If we include the energy equation and equation of state in our
study, then, in the general case of viscous compressible fluid dynamics, there
are 9 physical quantities and the fundamental units in which the dimensions of
all these quantities can be expressed are length, mass, time and temperature (Q)
and thus there are 9—4 = 5 non-dimensional numbers.

2. Prandtl’s Boundary Layer (case of small viscosity)

The simple problems of fluid motion which can be considered are divided into
two classes according as the corresponding Reynolds number is small or large.
In the case of small Reynolds number, viscosity is predominant and the inertia
terms in the equations may be regarded as negligible. The case of large
Reynolds number in which the frictional terms are small and inertia forces are
predominant, was investigated by the German Scientist Ludwig Prandtl in
1904. He made an hypothesis that for fluids with very small viscosity i.e. large
Reynolds number, the flow about a solid boundary can be divided into the
following two regions.

(1) A thin layer in the neighbourhood of the body, known as the boundary
layer, in which the viscous effect may be considered to be confined. The
smaller the viscosity i.e. the larger the Reynolds number, the thinner is this
layer. Its thickness is denoted by d. In such layer, the velocity gradient normal
to the wall of the body is very large.

(i1) The region outside this layer where the viscous effect may be considered as
negligible and the fluid is regarded as non-viscous.

On the basis of this hypothesis, Prandtl simplified the Navier-Stokes equations
to a mathematical tractable form which are termed as Prandtl boundary layer
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equations and thus he succeeded in giving a physically penetrating explanation
of the importance of viscosity in the assessment of frictional drag. The theory
was first developed for laminar flow of viscous incompressible fluids but was,
later on, extended to include compressible fluids and turbulent flow. However,
we shall consider only the case of incompressible fluids.

In the discussion of unsteady flow over a flat plate, we had obtained that

5= 4t

i.e. the boundary layer thickness is proportional to the square root of kinematic
viscosity. The thickness is very small compared with a linear dimension L of
the body i.e. d << L.

2.1. Boundary Layer equation in Two-dimensions. The viscosity of water,
air etc is very small. The Reynolds number for such fluids is large. This led
Prandtl to introduce the concept of the boundary layer. We now discuss the
mathematical procedure for reducing Navier-Stokes equations to boundary
layer equations. The procedure is known as order of magnitude approach.

Let us consider a flow around a wedge submerged in a fluid of very small
viscosity as shown in the figure

y
U
\ """ Boundary
layer
\\ .
U. — \/
0]

Boundary layer flow along a wall

At the stagnation point O, the thickness of the boundary layer is zero and it
increases slowly towards the rear of the wedge. The velocity distribution and
the pattern of streamlines deviate only slightly from those in the potential flow.
We take the x-axis along the wall of the wedge and y-axis perpendicular to it,
so that the flow is two-dimensional in the xy-plane. Within a very thin
boundary layer of thickness 8, a very large velocity gradient exists i.e. the
velocity u parallel to the wall in the boundary layer increases rapidly from a
value zero at the wall to a value U of the main stream at the edge of the
boundary layer.
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The Navier—Stokes equations, in the absence of body forces, for two
dimensional flow, are

du du du —1dp d0’u d%u
—tu—+V—=— AtV —+— (1)
ot dx dy p Ox ox*> 9y’

2 2
ﬂ-i—uﬂ-FVi:—l@-l-V M_Fﬂ (2)
ot ox dy p dy x> dy >

The equation of continuity is

8_u+8_v:0 3)
ox dy

In studying the unsteady flow over a flat plate, we found that the thickness of
the boundary layer & is proportional to the square root of the kinematic
viscosity v which is indeed very small. For this reason § < < x except near the
stagnation point 0 where the boundary layer begins. In order to compare the
order of magnitude of the individual terms in the above equations, we put them
in non-dimensional form by introducing the non-dimensional notations

xt= X yra Y e e t*ZL,p*ZL 4)

\'%
! 8§ U vV /U P..

where I, 8, U, V and p.. are certain reference values of the corresponding
quantities x, y, u, v and p respectively. The non-dimensional quantities are all
of order unity. The continuity equation in non-dimensional form is

k k

Uadu N Voov _ )

[ ox* O dy*
Integrating, we get

Ut ou* Vi oovE

—.[ dy * +—J- dy*=0

[ Y ox* oY dy*

0 0
1

\Y S du*

or E:_T-([ e y*, where (v¥) .y =1 (6)

Since the integral in (6) is of the order of unity, the ratio i is of order ?

Therefore V < < U.
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We now obtain the non-dimensional form of (1) using (4) such that

UZou* U? _odu* UV__du* —p,op* vU[0*u* [*9%u*
— +—ut* + v * = +— +—=—
[ ot* ] ox* 8 ay* pl ox* 12 |ox** &2 8y*2
or

du N du* V lv*au __ P Op +L 0 u*+l_8 u )
ox *2  §% gy *?

ar | ax* U S ayr  pulax* R,

1 181 & 1 1
) 52
The order of the terms involved are indicated.
U 1 Y% 2 . . 12
Reynolds number, R, = — = R ZE: 0(d)” as & is proportional to v'“.
v

c

Similarly, the non-dimensional form of (2) is

*

Lo 1 okt 8 ) oy

UVav* UV _ov*¥ V> v+
+_

p.. Op* V o2v# vV 92v#
== +V| — +—

2
Xav* \Y >x<E)V* Vo *av*

Uats U ax* U2s ay*

or

5 5 & L
5

~P [ dp*  VVI 82V*+1282V*
pUZ 8dy* [2U? | ox** §%0y*?

_pmiap*_kLX an*+ian*
pU2 Say* Re U aX*2 52 ay*2

38 1 5% (8)

We neglect the terms of the order of & and higher as d is small. We then revert
back to the dimensional variables to obtain
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du Jdu du lop 9%u
a gt en 9
o Vox oy pox " ay? ©)
d
Lo =p=px (10)
dy
and LAY (11)
0x dy

Equations (9—11) are known as Prandtl’s boundary layer equations with
boundary conditions
= = O’ = ()
u=v y } (12)

u=U(x,t),y > o

Since p is independent of y, for given x, p has the same value through the
boundary layer from y = 0 to y = 8. Thus, in boundary layer theory, there are
only two variable terms u and v instead of three u, v and p in the Navier-Stokes
equations. This is a great simplification in the solution of the differential
equations.

Now, U is the velocity outside the boundary layer. The Euler’s equation in the
main stream (potential flow of non-viscous fluid) is obtained from (9) by
taking v= 0 and

V=O,a—u:O fory > 9
dy

Thus, we get

ou UaU: 1 dp

LA (e 13

8t+ ox p dx (13)
From (9) and (13), we obtain

ou du du JdU oU  9%u

—+tu—+V—="-+U—+V— 14

o tox Yoy T e T ax gy (14
and a_u+a_v:0 (15)

ox dy

Although these equations are obtained for a rectilinear flow but they hold for
curved flow if the curvature of the boundary is small in comparison to the
boundary layer thickness.
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The integration of (14) and (15) can be simplified if we can reduce the number
of variables by introducing the stream function y.

u—a—w V——a—\ll (16)

oy’ ox

where

The continuity equation is automatically satisfied. The boundary layer
equation (14) in terms of y is

Oy oy O’y dyd'y _ Iy ,0U dU

=v—-+U — (17)
dtdy dy dxdy Ox dy” dy’ ox ot
The boundary conditions (12) reduce to
ox dy
(18)

8_\|1 =U(X,t), y > o
dy

The exact solution of (17) was given by H. Blasius in 1908, for the case of
steady flow (9/0t =0) past a flat plate (U = constant).

3. The Boundary Layer Along a Flat Plate (Blasius Solution or Blasius —
Topfer for Solution)

Let us consider the steady flow of an incompressible viscous fluid past a thin
semi-infinite flat plate which is placed in the direction of a uniform velocity
U.. The motion is two-dimensional and can be analysed by using the Prandtl
boundary layer equations. We choose the origin of the co-ordinates at the
leading edge of the plate, x-axis along the direction of the uniformal stream
and y-axis normal to the plate. The Prandtl boundary layer equations, for this
case, are

du du _d%u
Uu—+Vv—=V—r1 (1)
ox dy oy’
du + v _ 0 )
ox dy
where u, v are the velocity components and v is the kinematic viscosity.
y
UDQ
—> U.. — H
)
u

Y
Yz iR
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The boundary conditions are

3)

u=v=0 when y =0
u=U when y — oo

In this problem, the parameters in which the results are to be obtained, are U..,
v, X, y. So, we may take

Ui = F(x, y, v, Us) = F(n) )

oo

Further, according to the exact solution of the unsteady motion of a flat plate,
we have

T 5)

oo

where x is the distance travelled in time t with velocity U.. Hence the non-
dimensional distance parameter may be expressed as

y_ Y S ©)

n= 5 Jvx/U - VX

Thus, it can be seen that 1 in (4) is a function of X, y, v, U as in (6)

The stream function y is given by

dy dy
= d =—, = —_——
v=ludy Y VT
=~ JUF) Y an
dn
= U. IVJ—XIF(m dn=4vxU_ f() (7)

The velocity components in terms of 1 are (dash denotes derivative w.r.t. )

ao Q¥ _owon _ oo == ®)
X

~dy amoy
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dy 1 [vu, 1
S e o (RN Py, (23,2

1 |vU 1 U
= VeE— [ f) Sy )
2 27 X
1 U U
= [ {,/—“’ yf'(n)—f(n)J
2 X VX
1 |[vU_
=3 mf'(m)—fm) )
Also,
du_d'y .0
g_axay_u"" f (n)g
1 N U, 1
:_EUoof (n)y T X3/2
10
=—-——nf"(n) (10)
2 X
0 0 U
—u=Um—(f"(n))=Um,/—°° " (m) (1)
ady dy VX
o2u U2
Moo fnl 12
P (12)

Using these values of u, v and their derivatives in (1), we obtain

Ut
1U " "
[—ETnf n >j+_ = -~ = ')
U2
=y Lo p)
VX
2 2 2
or I P (D =
2x

Or _Tlf/f//+nf/f//_ff//=2f///

)
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or 217 +f£f7=0
ie. 2d—§+fd—£=0 (13)
dn dn

The boundary conditions (3) in terms of f and 1 are obtained as follows

u =0 when y=0implies f’(n)=0whenm =0

and
v=0 =nf'(n)-fm)=0 =1fm)=0
Therefore,
fm)=f'M)=0whenn =0
(14)
u = U, when y—eo implies that U., f’(1) = U, when n—eo
Therefore,

£°(n) = 1 when 1) —>o0 (15)

Thus we have reduced the partial differential equation (1) to ordinary
differential equation (13), known as Blasius equation, where 1 is the similarity
parameter.

The third order non-linear differential equation (13) has no closed form
solution, however, Blasius obtained the solution in the form of power series
expansion about 1 = 0.

Let us consider

f(n)_co+cm+—n +|3n + e (16)

f =c;+ s A R 17

‘M) =ci+cm 2n |3n a7

f”(n)_cz+C3n+—n + 51] ....... (18)
12 I3

f”’(n)_C3+C4n+—n + 611 ....... (19)
|2 |3
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The constants ¢;’s are determined from the boundary conditions (14), (15) and
the differential equation (13). From (14), we get

C0:C1:0

From (13), we have

0=(2c3 +2cm +csnN° +.....) + (Co + ciM +|C—2 N +....) (cz +c3 n+T—4n2 +..)
12 2

i.e. (2cz3+cocp) + (2c4 + cpc3+ ¢ co)N
CnC C2
+les+22 e +—2Mmi+... =0
12 2

2
ie. 2c3+2cam + [05 +%}n2 +...=0

Equating the co-efficients to zero, we get

C3=C4=Ce=C7=Co=Ci0=0

2
c? 11 ;4 375 4
Cs=——=, Cg=—C,, C;;=——-C
5 |_2 8 4 2 11 3 2
The solution (16) is
2.5 8 11
c cr M 11 3m° 375 41
f) = 2?21 4 3L 2241 4 . 20
M 2 VT s T8 T s 20)

The constant c; is determined by the condition (15) i.e.

df
— =1 as n—oo

dn
We write (20) as
fm) =
s @P? 1@’ et 375 P!t
L2548 8

= ¢5*F(e5 n) 1)
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Therefore,

Thus, lim ¢33F'(cY*n) = lim f'(m) =1
Moo Moo

Therefore,

3/2

1

lim £'(c}*n)

U

cr= (22)

where ¢, is determined numerically by Howarth (1938) as 0.33206. Thus f(n)
in (20) is completely obtained which helps in finding u and v from (8) and (9).
Hence the Blasius solution.

The shearing stress Ty on the surface of the plate can be calculated from the
results of the Blasius solution. Thus, we have

(auJ nu..£(0)
T():H B — =
y=0

dy Jvx/U

=—22pU (23)

where R, =xU,, /v is the Reynolds number.

The frictional drag coefficients or local skin friction coefficients Cs is

o T _ 0664

. - (24)
~pU2 e,
5P

The total frictional force F per unit width for one side of the plate of length / is
given by

I
F= [ 7, =0664 pU2 J—’ (25)
0

oo

Equation (25) shows that frictional force is proportional to the 3/2th power of
the free stream velocity U, .

The average skin-friction co-efficient of the drag co-efficient is obtained as
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2
F 0.664PU_ T75- 1328
= 7 = (26)

;pUil 5PUZJ R,

Cr=

Where R, =ZU—°°.
! v

3.1. Characteristic Boundary Layer Parameters : (i) Boundary Layer
Thickness. The boundary layer is the region adjacent to a solid surface in
which viscous forces are important. According to the boundary conditions (3),
the velocity u in the boundary layer does not reach the value U., of the free
stream until y—oo, because the influence of viscosity in the boundary layer
decreases asymptotically outwards. Hence it is difficult to define an exact
thickness of the boundary layer. However, at certain finite value of m, the
velocity in the boundary layer asymptotically blends into the free stream
velocity of the potential flow. If an arbitrary limit of the boundary layer at
u =0.9975 U. is considered, the thickness of the boundary layer is found to be

5=564 | VX - S0 27)
U. R,

X

(ii) Displacement Thickness : The boundary layer thickness being somewhat
arbitrary so more physically meaningful thickness is introduced. This
thickness is known as displacement thickness, which is defined as

U8 = | (U.-u)dy (28)

y=0

where the right-hand size signifies the decrease in total flow caused by the
influence of the friction and the left-hand side represents the potential flow that
has been displaced from the wall. Hence the displacement thickness 0, is that
distance by which the external potential field of flow is displaced outwards due
to the decrease in velocity in the boundary layer.

. < u
1.€. 81 = (J;(l —U—de (29)

oo

Using the expressions for UL and y from (8) and (6) respectively, we find 9,

oo

for the flow on a flat plate, as

8= |2 T a-f)d
1 UJ( )dn

w 0
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Ux ..
= == lim [n—f)]
U, noee
vx _ 1.7208x
U, /Rex

(iii) Momentum Thickness : Analogous to the displacement thickness,
another thickness, known as momentum thickness (3,), may be defined in
accordance with the momentum law. This is obtained by equating the loss of
momentum flow as a consequence of the wall friction in the boundary layer to
the momentum flow in the absence of the boundary layer. Thus

=1.7208 (30)

p, U2 =p Ju(U.. —u)dy

y=0

S:mil_Ld 31
or 2 ({Uw( UJy (31)

oo

Again, using (8) and (6), we obtain &, for the case of the flow on a flat plate, as

VX F o o)
S, = U_wi f£/(1-f ") dn

0664 | X 2 0004% (32)
U. R,

X

Comparison among various thicknesses of the boundary layer is shown in the

figure. We note that

Y U..

A

82 < 81 <9d.
0.9975 U.,

| — U°° —u
(Velocity deficit)
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