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Preface to the Fourth Edition

Today, when we look back, it is more than twenty years since the first edition of the

book was published. Over the years, it has been subjected to a lot of changes

(improvements, if we dare say) keeping in mind the requirements of the readers for

whom it was intended. The present volume goes on to do the same and we have tried to

further improve upon the contents. Almost all the chapters have undergone revision

and a fairly large number of new examples and worked out problems have been added

to make the theory easier to grasp. The portion on Fields may seem to be taking the

back seat, but then it has had its share of revision in the previous editions. At places,

new/alternate proofs have been added and some reshuffling has also been done to

move certain results to bettersuited places.

The subject matter has been planned so as not to remain constrained by the syllabus

of a particular course.  It is meant for anyone and everyone pursuing a serious course

in Abstract Algebra. The book also comes to you in a bigger and better looking format,

designed to make reading more focused.

While thanking all those readers who have been advising us for improvements, a

word of thanks to that vast majority of silent admirers cannot be overlooked and we do

feel indebted to them for making the book a success that it is.

Utmost care has been taken to keep the misprints out and we hope we have been

successful in our effort. Since there is always room for improvement, it goes without

saying that any suggestions, howsoever trivial, would be highly welcome.

Vijay K Khanna

S K Bhambri



Preface to the First Edition

The present volume has grown out of our association with the teaching of Algebra to the

honours and postgraduate classes for the last several years and our exposure to the problems

faced by the students in grasping the abstract nature of the subject. This experience is the

foundation and, we hope, the strength of the text. Earnest efforts have been exerted to present

the subject matter in a well-knit manner so as not only to stimulate the interest of the student but

also to provide with an insight into the complexities of a subject of great intrinsic beauty.

The book is intended to serve as a text for undergraduate students especially those opting

for an honours course in Mathematics. However, postgraduate students will find it equally

useful.

The first chapter on Preliminaries is a curtain-raiser to the main contents of the book. It

gives a rather terse summary of the results from Set Theory (some of which we presume the

reader would already be familiar with). A few results from  Number Theory are incorporated in

the later half of this chapter. We debated between ourselves whether or not to give a ‘full

chapter status’ to Number Theory results, and after a careful thought decided to keep these as

only a part of the first chapter since we feared that a full chapter on these might impair the

balance of the book.

The main text can be divided into four sections on Groups, Rings, Vector spaces (Linear

Algebra) and Fields. Fairly sufficient ground has been covered in the first three sections. It is

only in the last section on Fields that we can possibly be accused of being stingy. But then there

are constraints and it was paucity of space and time (and not of ideas) that finally made us keep

Galois Theory out. Maybe in a subsequent edition it would find its way in.

Different concepts have been explained with the help of examples. A large number of

problems with solutions have been provided to assist one get a firm grip on the ideas developed.

There is plenty of scope (in the form of exercises) for the reader to try and solve problems on

his own. In all, a substantial variety of challenges (and rewards) is assured.

We are deeply indebted to all those authors whose books (research papers) on Algebra

influenced our learning of the subject and take this opportunity to express our sincere gratitude

to them. We are also thankful to those friends and colleagues with whom we had fruitful

discussions from time to time.

It is our earnest belief that no ‘work’ is ever complete till it has had its share of criticism

and hence we’ll be only too glad to receive comments and suggestions for the betterment of the

book.

Vijay K Khanna

S K Bhambri
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Glossary of Symbols

� : Belongs to

� : Does not belong to

� : There exists

� : Implies

� : Implies and is implied by

iff : If and only if

a � b : a divides b or b is a multiple of a

a b : a does not divide b

	 : Empty set

H�
�G : H is a subgroup of G

H���G : H is a proper subgroup of G

H�G : H is a normal subgroup of G

i
G
(H) : Index of H in G

[G:H] : In groups, index of H in G. In fields, degree of G over H

N : Set of natural numbers

Z : Set of integers

Q : Set of rational numbers

R : Set of real numbers

C : Set of complex numbers

Z(G) : Centre of group G

o(G) : Order of G

S
n

: Symmetric group of degree n

� : is isomorphic to



Sets

The notion of a set is most fundamental in Mathematics, but it is not our endeavour in this text
to enter into the axiomatic study of set theory. We’ll, instead, borrow the word ‘set’ from the
language and be content to refer to it as a collection of objects. To give it a more precise shape,
by a set, we will mean a collection of objects such that given any object, it is possible to
ascertain whether that object belongs to the given collection or not. For instance, we can talk
of set of all natural numbers, set of all students in a particular class, etc. If x is an element
(member) of a set A we say x belongs to A and express it as x  A. If y is not a member of
A we say y does not belong to A and write y  A. We shall use capital letters A, B, X, Y etc.
for denoting sets and small letters, a, b, c, x, y  etc. for the elements (or members or objects).

Two sets A and B are said to be equal if they contain precisely the same elements and we
write A = B.

A set can be described in various ways. For example, if A is the set containing
1, 2, 3, 4, 5, 6, we can write it as

A = {1, 2, 3, 4, 5, 6}
A = {1, 2, ........, 6}
A = {x  N | x  6}

where N is set of all natural numbers. The last notation reading as: those x in the set of natural
numbers which satisfy the property that x  6.

Preliminaries

1

Introduction

In this chapter we remind or acquaint the reader about some basic concepts in mathematics
that we reckon the reader would already be in the know of, but in case not, we strongly
recommend one to glance through the contents of this chapter before venturing into the
subsequent text. We basically explain the concepts of sets along with operations in sets and
then go on to define the all-important notion of a mapping/function(and permutations),
which finally lead us to the definition of a binary composition/operation.

In the second half of this chapter we take a peek at the results from number theory and
try to discuss most of the relevant results that could be useful in the main text. Having done
this chapter, one is fully equipped to understand and grasp the subsequent material that
follows.
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We do not repeat any element while writing the elements in a set. Again, the order in which
the elements are written is immaterial. Thus {1, 2, 3} and {2, 1, 3} mean the same set.

A set having no element is called an empty set or a null set or a  void set. It is denoted by
 or . Obviously any two empty sets are equal. A set will be called finite if either it is empty

or has finite number of elements, i.e., the elements can be listed by natural numbers such that
the process of listing stops after a certain definite stage. A set with infinite number of elements
is referred to as an infinite set.

The set {1,  2,  3, ..., 1000} is a finite set, whereas the set of all integers is infinite. Again
the set of all rational numbers whose square is 2 is an empty set.

We use the notation o(S) or | S | to mean the number of elements in the set S and read it
as order of S (sometimes also called its cardinality).

Subsets

We say a set A is contained in a set B (in symbols A  B) if every element of A is in B. A
is then called subset of B and B is called superset of A. If in addition to this there is at least
one element in B which is not in A, we say A is strictly contained in B (A  B) and call A
a proper subset of B. A  B means A is not a subset of B. Also A  B and B  A mean
the same.

It is clear then A = B if and only if A  B and B  A. Also, A  A,   A for any set A.

Definition: By union of two sets A and B, we mean the set A  B which contains all the
elements of A as well as B. Thus A  B = {x | x  A  or  x  B (or both)}.

By intersection of two sets A and B, we mean the set A  B which contains all the elements
of A and B. Thus  A  B = {x | x  A and x  B}.

The difference of two sets A and B is defined to be the set
A – B = {x | x  A,  x  B}.

In case B  A, then A – B is called the complement of B in A. If there is no confusion
regarding the set A, complement of B in A is denoted by B .

Example 1: Let  A = {1, 2, 3},  B = {3, 4, 5, 6}
Then A  B = {3}

A  B = {1, 2, 3, 4, 5, 6}
A – B = {1, 2}

Theorem 1: If A, B, C are sets then the following results hold:
(i) A  A = A,  A  A = A

(ii) A   = ,  A   = A
(iii) A  B = B  A,  A  B = B  A,  A  B  A  A  B
(iv) A  (B  C) = (A  B)  C,  A  (B  C) = (A  B)  C
(v) A  (B  C) = (A  B)  (A  C)

(vi) A  (B  C) = (A  B)  (A  C)
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Proof: We will prove (v),  and leave others for the reader to try as an exercise.
Let x  A  (B  C) be any element.
Then x A and x B C

 x  A and x  B  or  x  C.
If x  B,  then as x  A,  x  A  B
If x  C,  then as x  A,  x  A  C.
i.e. x  A  B  or  x  A C (or both, of course)

 x  (A  B)  (A  C)
 A  (B  C)  (A  B)  (A  C) ... (1)

Again, y  (A  B)  (A  C)
 y  A  B  or  y  A  C
 y  A  and  B  or  y  A and C
 y  A  and  y  B  or  C
 y  A  and  y B  C
 y  A  (B  C)
 (A  B)  (A  C)  A  (B  C) ...(2)

(1) and (2) give us the result.

Theorem 2: (DeMorgan’s laws). For sets A, B in a set X,

(i) X – (A  B) = (X – A)  (X – B)  or  (A B)  = A B
(ii) X – (A  B) = (X – A)  (X – B)  or  (A B)  = A B

Proof: (i) Let x  X – (A B) be any element.
Then x  X,  x  A  B

 x  X,  x  A,  x  B
 x  X – A, x  X – B
 x  (X – A)  (X – B)
 X –  (A  B)  (X – A)  (X – B) ...(1)

Again y  (X – A)  (X – B)
 y  X – A,  and  y  X – B
 y  X,  y  A  and  y  X,  y  B
 y  X  and  y  A  B
 y  X – (A  B)
 (X – A)  (X – B) X – (A B) ...(2)

(1) & (2) give us the result.
(ii) Prove similarly.

Definition: Given two elements a ,  b of a set of X, we define the ordered pair
(a,  b) to be the set {{a},  {a,  b}}. a is called the first component (or first co-ordinate) and
b is called the second component (or second co-ordinate).
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We show (a,  b) = (c,  d)  a = c,  b = d
If a = c,  b = d then the result is obvious.
Conversely, (a,  b) = (c,  d)

 {{a}, {a,  b}} = {{c}, {c, d}}

Since the two sets are equal, they contain same elements.
Thus, {a} = {c}  or  {a} = {c,  d}
If {a} = {c},  then  {a,  b} = {c,  d}

 a = c  and  b = d (as a = c)
Again, if {a}  = {c,  d}  then  {a,  b} = {c}

 a = c,  a = d,  a = c,  b = c
 a = c = b = d
 a = c,  b = d

Hence the result follows.
We thus notice, the order in which the elements are written is important in as much as

(a, b) is not same as (b, a) unless a = b, whereas, of course, the two sets {a, b} and
{b, a} are same.

Relations

Definition: Given two sets A and B, the cartesian product A is defined by
A  B = {(a, b) a  A,  b  B}. Thus  it is the set of all ordered pairs of elements from

A and B.
As an example, if A = {1, 2},  B = {3, 4, 5},  then

A × B = {(1, 3),  (1, 4),  (1, 5),  (2, 3),  (2, 4),  (2, 5)}
Also, then B × A = {(3, 1),  (3, 2),  (4, 1),  (4, 2),  (5, 1),  (5, 2)}

thus A × B may not equal B × A.
One can, of course, talk of A × A, which we also write as A2. Similarly, we can talk of A3,

A4 and so on. In fact, An = {(a1, a2, ..., an) | ai  A}, the set of all n-tuples (a1, a2, ..., an),
ai  A.

Any subset of A × B is called a (binary) relation from A to B, e.g.,
R1 = {(1,  3),  (1,  4),  (1,  5)}
R2 = {(1,  3)},  R3 = {(2,  3),  (1,  5)}

are all relations from A to B.
A relation from A to A is called a relation in A (or on A).
If R is a relation from A to B and (a, b) R, then we also express this fact by writing aRb

and say a is R-related to b.
If R1 is a relation from A to B and R2 is a relation from C to D then R1 and R2 are said to

be equal if A = C,  B = D and aR1b  aR2b,  a A,  b  B.
Let now, A be a non empty set. A relation R in A is called
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Reflexive: if (a, a)  R for all a  A

Symmetric: if whenever (a, b)  R then (b, a)  R

Anti-Symmetric: if (a, b) R,  (b, a) R  a = b

Transitive: if whenever (a, b),  (b, c) R then (a, c)  R

A relation R is called an equivalence relation if it is reflexive, symmetric and transitive.
A relation R on a set A is called a partial order relation, if it is reflexive, anti-symmetric and

transitive.

Example 2: If A = {1, 2, 3} then
R1 = {(1, 1),  (2, 2),  (3, 3),  (1, 3)} is reflexive
R2 = {(1, 1),  (2, 2)} is not reflexive
R3 = {(1, 2),  (2, 1)} is symmetric but not reflexive
R4 = {(1,  1),  (1,  2)} is neither reflexive nor symmetric, but is transitive.

Example 3: Let A be the set of all lines in a plane. Let R  A × A where
R = {(l, m) | l, m  A, l || m} then R is

Reflexive: as (l, l)  R for all l  A
as l || l for all l  A

Symmetric: as if (l, m)  R then l || m
 m || l
 (m, l)  R

Transitive: as if (l, m)  R,  (m,  n)  R
then l || m, m || n
 l || n  (l,  n) R

Thus relation of parallelism is an equivalence relation.

Example 4: Let Z = set of integers then the usual  is a partial order relation on Z as it is
Reflexive: as a  a for all a  Z
Anti-Symmetric: as a b,  b  a  a = b
Transitive: as a  b,  b  c  a  c.

Example 5: Let R = {(m,  n) m, n  Z,  m n} where by x y (x divides y) we mean,  z,
s.t., y = xz.

then R is a partial order relation. Verify?

Example 6: The relation of equality on integers is an equivalence relation.

Example 7: Let Z  = set of integers. Let n   0 be any fixed integer. For any
a, b Z, we define a relation

a  b (mod n) (read as a is congruent to b mod n)
 n divides a – b
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Then this is an equivalence relation as
Reflexivity: a  a (mod n)

as a – a is divisible by n
as 0 = a – a = 0n.

Symmetry: Let a  b (mod n)
Then n divides a – b
   c,  s.t.,  a – b = nc
 b – a = – nc = (– c)n
 b  a (mod n).
Transitivity: Let a  b (mod n),  b  c (mod n)
Then n a – b, n b – c
  c1 & c2 s.t., a – b = nc1

b – c = nc2
Now, a – c = (a – b) + (b – c)

= nc1 + nc2 = n (c1 + c2) = nc3

 c3  Z, s.t.,  a – c = nc3

 n divides a – c
or that a  c (mod n).

Equivalence Classes

Let X be a non-empty set and let ~ be an equivalence relation on X. For any a  X, we define
equivalence class of a by

cl(a) = {x  X x  a}
i.e., equivalence class of a contains all those members of X, which are related to a under the
relation ~. The following theorem gives us certain important properties of equivalence classes.

Theorem 3: Let ~ be an equivalence relation on a non-empty set X. Then for any
a, b  X

(i) cl(a) 
(ii) Either cl(a)  cl(b) = or cl(a) = cl(b)

i.e., two equivalence classes are either equal or have no element in common.

(iii) X = ( )
a X

cl a
a Xa X

cl a
a X

cl a

Proof: (i) Since a ~ a, by reflexivity
a  cl(a),  cl(a)  .

(ii) Let cl(a)  cl(b)  
Then  some x  cl(a)  cl(b)

 x  cl(a) & x  cl(b)
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 x ~ a & x ~ b
 a ~ x & x ~ b
 a ~ b.

Now if y  cl(a) be any element
then y ~ a and as a ~ b we find y ~ b

 y  cl(b)
thus cl(a) cl(b)
Similarly cl(b)  cl(a)
Hence cl(a) = cl(b).
(iii) Clearly any element x  X will be in at least one class, namely cl(x) and hence is a member
of 

a Xa Xa Xa X
cl(a).

Again, if 
a X

t
a Xa Xa X

cl(a) then t  cl(x) for some x and as cl(x) X,  t  X

Showing that X equals the union of all equivalence classes of X.

Definition: Let X be a non-empty set. Let K = set of non-empty subsets of X such that every
two distinct members of K are disjoint, then K is called a partition of X, if X equals the union
of all members of K.

In view of this definition, we can say that if X be a non-empty set, with an equivalence
relation defined on it, then the set of all equivalence classes of X partitions the set X.

Mappings or Functions

Let A and B be two non-empty sets. A relation f from A to B is called a mapping
(or a map or a function) from A to B if for each a  A,  a unique b B s.t.,
(a, b) f (and in that case we write b = f (a) and b is called image of a under f and a is called
pre-image of b under f ). We express this by writing f : A  B.

Thus mapping is that relation from A to B in which each member of A is related to some
member of B and no member of A is related to more than one member of
B, although more than one member of A can be related to the same member of B.
A is called the domain of f and B is called the co-domain of f. A mapping f : A  A is also
sometimes called a transformation of the set A.

The subset of B which contains only those members which have pre images in A is  called
range of f.

One can, of course, have more than one mapping from A to B.
A mapping f : A  B is called one–one (1–1) or injective mapping, if

f (x) = f (y)  x = y
or if x y  f (x) f (y)

Thus under one–one mapping all members of A are related to different members of B.
A mapping f : A B is called onto or surjective mapping, if range of f equals B, i.e., each

member of B has a pre iimage under f.
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A map which is both 1–1 and onto is sometimes referred to as a one-to-one correspondence
or a bijective map.

To check whether a map f : A  B is well defined or not, we need verify that
x = y  f (x) = f (y).

Example 8:  Let N = set of natural numbers. Define a map f : N N s.t., each a N is
connected to its square. Since each natural number has a unique square in N itself, we find
f will be a well-defined mapping. We express this by writing

f : N  N, s.t.,
f (x) = x2 for all x  N

We notice that in the notation of our definition
f = {(1,  1),  (2,  4),  (3,  9),  (4, 16),......}
  = {(x,  x2) x N}

Example 9: For any set A, the mapping f : A  A, s.t.,
f (x) = x for all x  A

is called the identity map. It is trivially a well defined one-one map. It is also onto.

Example 10: If Z = set of integers, then the map f : Z Z, s.t.,
f (x) = 2x

is 1–1 but not onto. f (x) = f (y)  2x = 2y  x = y
But 1  Z has no pre image.
Example 11: The map f : N  {1} , s.t.,

f (x) = 1 for all x  N
where N = set of naturals is onto map but not 1–1.

Example 12: Let f : R3 R3 s.t.,
f (x, y, z) = (x + z, x + y + 2z, 2x + y + 3z)

be the mapping defined on R3. We show it is not onto.
Let (a, b, c)  R3 be any element. If (x, y, z) is its pre image under f, then we should have

f (x, y, z) = (a, b, c)
i.e., (x + z, x + y + 2z, 2x + y + 3z) = (a, b, c)
i.e., x + 0 + z = a

x + y + 2z = b
2x + y + 3z = c should hold

In matrix form, we have

1 0 1
1 1 2
2 1 3

x
y
z

1 0 1 x
1 1 21 1 2 y1 1 2 y
2 1 3 z

 = 
a
b
c

a
bbb
c

Augmented matrix is
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2 2 1 3 3 1

3 3 2

1 0 1 1 0 1 1 0 1
1 1 2 0 1 1 0 1 1
2 1 3 1 0 1 0 0 0

a a a
b b a b a
c c a c b a

R R R R R R
R R R

1 0 1 1 0 1 1 0 1a a a1 0 1 1 0 1 1 0 1a a a1 0 1 1 0 1 1 0 1
1 1 2 0 1 1 0 1 1b1 1 2 0 1 1 0 1 1b1 1 2 0 1 1 0 1 1b a1 1 2 0 1 1 0 1 1b a1 1 2 0 1 1 0 1 11 1 2 0 1 1 0 1 1b a1 1 2 0 1 1 0 1 1b a1 1 2 0 1 1 0 1 1 b a1 1 2 0 1 1 0 1 11 1 2 0 1 1 0 1 1b1 1 2 0 1 1 0 1 11 1 2 0 1 1 0 1 1b a1 1 2 0 1 1 0 1 11 1 2 0 1 1 0 1 11 1 2 0 1 1 0 1 1b1 1 2 0 1 1 0 1 11 1 2 0 1 1 0 1 1b a1 1 2 0 1 1 0 1 11 1 2 0 1 1 0 1 11 1 2 0 1 1 0 1 1b a1 1 2 0 1 1 0 1 1 b a1 1 2 0 1 1 0 1 11 1 2 0 1 1 0 1 1b a1 1 2 0 1 1 0 1 1 b a
2 1 3 1 0 1 0 0 02 1 3 1 0 1 0 0 0c2 1 3 1 0 1 0 0 02 1 3 1 0 1 0 0 0c a2 1 3 1 0 1 0 0 02 1 3 1 0 1 0 0 02 1 3 1 0 1 0 0 0c a2 1 3 1 0 1 0 0 0 c b a

2 2 1 3 3 1R R R R R R2 2 1 3 3 1R R R R R R2 2 1 3 3 1

3 3 2R R R3 3 2R R R3 3 2

 

Hence solution of above equations exists only when c – b – a = 0. Thus we cannot find
a pre image for elements (a, b, c)  R3 where c – b – a = 0 does not hold. Hence f is not onto.

Equality of Mappings

Two mappings f and g from A to B should be equal if they ‘behave’ exactly in the same way.
We formalise this in

Theorem 4: Two maps f : A B and g : A  B are equal iff f (x) = g (x)
for all x  A.

Proof: Let f = g.
Let a  A be any element and let f (a) = b.
then (a, b)  f  (a, b)  g

 b = g(a)
or that  f (x) = g (x) for all x.
Conversely, let f (a) = g(a) for all a  A
Let x  f be any element, then  x = (a, f (a)) for some a  A.
Since f (a) = g(a), x = (a, g (a)) g
i.e., x  f  x g
or that f g
Similarly, g  f
and hence f = g.

Definition: Let f : A  B be a mapping and suppose C and D are subsets of A and B respectively,
s.t., f (x) D for all x C.  We say f  induces the map g : C D where g(x) = f (x) for
all x  C and in that case g is called a restriction of f.

Composition of Mappings

Let f : A B and g : B  C be two mappings.
We define a mapping (to be denoted by gof) from A to C by the rule

gof (x) = g( f (x)) for all x  A
That it is well defined is confirmed by the fact that

x = y
 f (x) = f (y)
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 g( f (x)) = g( f (y))
 (gof )x = (gof )y

One can, of course, extend this idea to more than two mappings.

Remark: gof is also denoted by g f.

Theorem 5: If f : A  B and g : B  C are one-one (onto) mappings then so is gof.

Proof: Let f and g be one-one
Since (gof ) x = (gof ) y

 g( f (x)) = g( f (y))
 f (x) = f (y) [as g is 1 – 1]
 x = y [as f is 1 – 1]

We find gof is one-one.
Again, if f, g are onto, and c  C be any element, then  b B s.t., g (b) = c

(g being onto). Again, for this b B,  some a A s.t.,
f (a) = b as f is onto
Now (gof ) a = g( f (a)) = g (b) = c
Hence gof is onto.
The converse of the above theorem does not hold (see exercises).

Theorem 6: A mapping f : X  Y is one-one onto iff  a mapping g : Y  X such that gof
and fog are identity maps on X and Y respectively.

Proof: Let f : X  Y be one-one onto.
Define a mapping g : Y  X,  s.t.,

g(y) = x iff f (x) = y
Since f is onto, for any y YY  an x X s.t.,  f (x) = y and as f is one-one, this x is unique

and hence g is well defined.
Now gof is a map from X  X
For any x  X let f (x) = y, then by definition of g

g(y) = x
Now (gof ) x = g( f (x)) g(y) = x
Showing thereby that gof is identity map.
Similarly fog will also be identity map.
Conversely , let f : X  Y  be a map for which it is possible to find some

g : Y X such that fog and gof  are identity maps on Y and X respectively.
Let f (x1) = f (x2)

Then g ( f (x1)) = g( f (x2)) [g is well defined map]
 (gof ) x1 = (gof ) x2
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 x1 = x2 [gof is identity map]
 f is 1 – 1

Again, let y  Y be any element
Then y = ( fog)y ( fog is identity map)

= f (g(y))
thus for y  Y,  g(y)  X, s.t., f (g(y)) = y i.e., g( y) is pre-image of y, hence f is onto.

Remark: The above mapping g is called inverse of f and is denoted by f – 1. It is easy to see
that f – 1 will also be 1–1 onto.

We can restate the above theorem as:

Theorem 7: A map f is invertible iff it is one-one onto.

Remark: If g is a mapping such that gof is identity map, then g is called left inverse of f.
Similarly, one can define right inverse of f.

If f : X X has both right and left inverses then it is easily seen that the two are equal.

Problem 1: Let X be a non empty set. Show that f : X  X is one-one iff f has a left inverse.

Solution: Suppose f is one-one.

Let x0  X be any fixed element

Define g : X  X,  s.t.,

g(x) = y if  y  X s.t., f (y) = x

= x0 otherwise.

Suppose g(x) = y and g(x) = y , then f (y) = x and f ( y ) = x, i.e., f ( y) = f ( y )  y = y
as f is 1 1 and so y is uniquely determined. Thus g :  X  X  is well defined mapping.

Conversely, let g be a left inverse of f

Let      f ( x1) = f ( x2)

Then x1 = (gof ) x1 = g( f(x1)) = g( f (x2)) = (gof ) x2 = x2 or that f is 1–1.

Remark: One can show that f is onto iff it has a right inverse.

Problem 2: Let f : Z  Z be defined by

f ( x) = x, if x is even

      = 2x – 1 if x is odd

Show that f is 1–1 but not onto. Find a left inverse of f.

Solution: Suppose f is onto. Since 3 Z, it has a pre image. Let f ( x) = 3. Then by definition
of f, x cannot be even, i.e., x is odd and thus f ( x) = 2x – 1 = 3  x = 2 which is a contradiction.
Hence f is not onto.

Define now g : Z  Z, s.t.,
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g(2x) = 2x

g(2x – 1) = x

then (gof )(2x) = g ( f ( 2x)) = g(2x) = 2x

(gof )( 2x – 1) = g( f ( 2x – 1)) = g(2(2x – 1) – 1) = 2x – 1

i.e., g will be left inverse of f and by previous problem f is 1 – 1.

Definition: Let f : A  B be a function. Let X A then we define f(X) = {f (x) x X},
which is, of course, a subset of B, it is called image of X.

Again, if Y  B then f –1 (Y) = {a  A f (a) Y}, which is a subset of A.
(f –1 here is only a notation and not essentially the inverse function). It is called pre-image of Y.

Theorem 8: Let f : X  Y be a function then
(i) A1 A2 f (A1)  f (A2)

(ii) f (A1  A2) = f (A1)  f (A2)

(iii) f (A1  A2)  f (A1)  f (A2)
(iv) f –1 (B1  B2) = f –1(B1) f –1(B2)

(v) f –1(B1 B2) = f –1(B1)  f –1(B2)
(vi) B1 B2  f –1(B1)  f –1(B2)

where A1, A2 are subsets of X and B1, B2 are subsets of Y.

Proof: We leave it for the reader to try.

Theorem 9: If f : A B, g : B C, h : C D be maps then
(i) ho(gof ) = (hog)of

(ii) If i : A  A, j : B  B be identity maps then
foi = f and jof = f

Proof: (i) ho(gof ) and (hog)of are both maps from A  D
Since for any x  A
[(hog)of] x = (hog)( f (x)) = h (g f (x)))
[ho(gof)] x = h(gof )x) = h (g( f (x)))
h((gof)x) = (ho(gof))x
we get result (i).

(ii) Since foi and f are both maps from A B and also for any x  A
(foi)x = f (i(x)) = f (x), we find foi = f
Again, jof and f are maps from A B and for any x  A
( jof )x = j( f (x)) = f (x)
 jof = f

Cor.: If f : A  A be any mapping and i : A  A be identity map, then foi = iof = f.
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Binary Compositions

If a, b are any two natural numbers then we know that a + b is always a natural number and
has a definite unique value. Thus + (addition) is an operation that joins two elements of N the
set of naturals to give us a unique element of the same set N. This ‘joining process’ reminds
us of the definition of a map. If we define a map

f : N N  N, such that
f ((a, b)) = a + b

then the definition of mapping is satisfied and it is nothing but what we have mentioned above.
Thus addition on natural numbers N is a map from N  N  N. We call such maps Binary
compositions or Binary operations. In general a mapping  f : A  A A is called a binary
composition or binary operation in A (or on A). One could, of course, have more than one
binary composition on the same set. In fact, multiplication is another binary composition on
N whereas subtraction is not (why?). Subtraction would be binary composition on integers.

The mapping f : Q Q Q, s.t.,

f (a, b) = 
2

ab

where Q = rationals is a binary composition on Q.
We sometimes express the above by saying that  is a binary composition defined on Q

by 
2

aba b
2

aba b . In fact this notation is generally more convenient to use.

A binary composition  is called commutative if

a b = b a for all a, b
and is called associative if

a (b c) = (a b) c for all a, b, c
Addition on natural numbers is both commutative and associative binary composition. If we

define  on N by a  b = a2 + b then it is easy to see that  is a binary composition on N
but is not associative.

If  is a binary composition on a set X and a, b X be any two elements, then
a b  X, by definition. This fact is also sometimes expressed by saying that X is closed under

. The name is quite appropriate in as much as when two elements are ‘joined’ through the
composition, the resulting element remains inside the set itself. In other words, the system
remains closed under the operation. The concept of binary composition is most fundamental
in the study of algebra and in fact forms a pedestal for the systems that we shall come across
later in the text.

Exercises
1. Prove the following, for sets A, B, C

(i) A  B,   B  C  A  C
(ii) A  B  A  B = B,   A  B  A  B = A
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(iii) If A  B = A  C and A  B = A  C then B = C
(iv) Show by examples that conclusion in (iii) fails if any of the two conditions does

not hold.
2. A  B = (A  B)  (B  A) is called symmetric difference of two sets A and B. Show

that it is equal to (A  B) – (A  B). Show also that
A  B = B  A,  A  (B  C) = (A B)  C.

3. Prove the results if theorem 1.
4. Let A = {1,  2,  3,  4}. Give example of a relation in A which is (i) equivalence relation,

(ii) partial order relation, (iii) reflexive, not symmetric, (iv) symmetric, not reflexive,
(v) reflexive, transitive not symmetric, (vi) transitive but not reflexive or symmetric.

5. Define a relation R on Z the set of integers by
xRy iff x2 + y2 is a multiple of 2. Show that R is an equivalence relation. Show further
that it has only two equivalence classes.

6. Show by an example that we can have maps f and g such that fog is one-one (onto)
whereas f or g is not one-one (onto).

7. If A be a finite set then  show that any one-one map f : A  A is also onto.
8. Let f : A  B be a map between two finite sets, show that

(i) If f is 1-1 then o(A)  o(B)
(ii) If f is onto then o(B)  o(A)

(iii) If o(A) = o(B) then f is 1-1 and onto iff it is either 1-1 or onto.
9. Let A and B be two sets with n elements each. Show that the number of one-one onto

maps from A to B is n!.
10. Let f : A  B be an invertible mapping. Show that the inverse is unique.
11. Show that the set of all odd integers is not closed under subtraction. What can be said

about set of all even integers?
12. Show that matrix addition and matrix multiplication are binary compositions on set of

matrices.

Permutations

Let S be a non empty set. Any 1-1, onto mapping f : S S is called a permutation (or a non
singular transformation) of S. We shall use the notation A(S) to denote the set of all permutations
of S. To have some more information about A(S) we first consider

Example 13: Let S = {1,  2,  3}
Consider the maps f : S  S,  s.t.,

f (1) = 2
f (2) = 3
f (3) = 1

and g : S S, s.t.,  g (1) = 2,  g (2) = 1,  g (3) = 3 then both f,  g are permutations on S.
Again the identity map I : S  S, s.t.,  I(x) = x for all x S is also a permutation. It is easy
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to check that the maps fog,  gof and fof are also permutations of X. (In fact, we have already
shown that , 1-1 onto maps implies , etc. are 1-1 onto in case these maps exist.)
Hence the set A(S) contains I,  f,  g,  fog,  gof,  fof. Since the number of ways in which 3
elements can be connected with 3 elements in 1-1 onto way is 3! = 6, these would be all the
members of A(S).

We thus have a non-empty set A(S) having these six members. In view of the results proved
earlier we find

( for all , ,  A(S)
oI  = Io = for all   A(S)

Again as each one-one onto map is invertible, we notice each member of A(S) has an inverse,
which would also be one-one onto and hence be a member of A(S).

All these properties taken together give us a system called a group, which we shall be
discussing in the next chapter.

In fact, this particular A(S) is also denoted by S3 and is called symmetric group of degree
3. We have considered the set S having three elements. If the set S contains n elements, we
have a similar situation and get A(S) or Sn, which would finally turn out to be a group (to be
called symmetric group of degree n). These groups are called permutation groups (or
transformation groups). See ahead under groups.

Number of elements in Sn will be n  as number of 1-1 onto maps from
{1, 2, ...... n} to itself is n . Notice there are n possible choices for selecting image of 1 under
a 1-1 onto map. After selecting image of 1 we are left with n – 1 choices to select image of
2 and like this there are n – 2 choices left for image of 3. Proceeding this way we observe
that Sn will have n(n – 1) (n – 2) ...... 2.1 = n  members.

One could denote the elements of the set S by x1,  x2,  x3 etc. instead of 1,  2,  3,  but for
convenience we use 1,  2,  3.

We now introduce a notation to represent permutations. Consider the above set A(S) = S3.
The mapping f (as defined above) could be written as

f = 
1 2 3
2 3 1
1 2 3
2 3 12 3 1

where first row consists of all members of S and the second row consists of their respective
images.

Similarly, g = 
1 2 3
2 1 3
1 2 31 2 3
2 1 32 1 3

Again since fog will be given by
( fog)1 = f (g(1)) = f (2) = 3
( fog)2 = f (g(2)) = f (1) = 2
( fog)3 = f (g(3)) = f (3) = 1

we can write fog = 
1 2 3
3 2 1
1 2 3
3 2 13 2 1
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In fact, the computation as done above could be achieved through the product

fog = 
1 2 3 1 2 3
2 3 1 2 1 3
1 2 3 1 2 3
2 3 1 2 1 32 3 1 2 1 3

by starting from right bracket towards the first (left) bracket. For instance
   g        f          g            f           g f
1 

g
 2,  2 

      f
 3 2 

    g
1,  1 

      f
 2 3 

   g f
 3,  3 

   g f
1

or that under fog 1  3, 2  2, 3  1.

In this manner we can compute the product of any number of permutations.
We simplify this notation a little further. Since in each representation, the first row is same

we omit writing it and simply represent f by (123), fog by (13), g by (12) etc.
In f, 1  2,  2  3,   3 1.
In fog, 1 3,   3  1. Since 2 is not mentioned it is understood 2 2.
Again in g, 1  2,  2 1 and 3 remains fixed, i.e.,  3  3.
The computation of the product is also done similarly by starting from the right. For instance
fog = (123)(12) = (13)
In fact, all the members of S3 in our new notation can be listed as I, (123),

(12), (13), (23), (132).
Suppose now that S = {1, 2, 3, 4, 5, 6}

and  f = 
1 2 3 4 5 6
2 3 5 6 1 4
1 2 3 4 5 6
2 3 5 6 1 42 3 5 6 1 4

then in our single row representation f will be written as (1235)(46).
1 2,  2 3,  3 5 and as 5 1 and 1 occurs at the first place, so we close the bracket.

We start again by considering 4, the element which had not yet figured in the first bracket and
find 4  6 & 6 4. Thus we get the second bracket (4 6). These brackets (1 2 3 5) and (4
6) are called cycles of the permutation. It is very clear from the example that either a permutation
will be a cycle itself or we can write it as a product of cycles, where no element will be common
in any two cycles, which will be called disjoint cycles. We formalize these results through the
following theorems and definitions.

Theorem 10: Let S be a non empty set and f a permutation of S. For a, b  S, define a relation
~ on S by a ~ b  f n (a) = b for some integer n. This relation ~ is an equivalence relation.
[f n = fofof ....... of n times].

Proof: a ~ a as f 0 (a) = i (a) = a where i or I is identity map.
a ~ b   n,  s.t.,  f n(a) = b

 a = f –n(b)  b ~ a
where f –n the inverse of f n exists as f is 1–1 onto.

Finally, a ~ b, b ~ c   integers m, n s.t.,
f m(a) = b,  f n(b) = c
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Clearly then f m + n (a) = (  )n m
of f  a = f n (  ( ))mf a  = f n (b) = c

 a ~ c
Hence  is an equicalence relation and thus partitions S into disjoint equivalence classes.

Remark: Many a time we write fg in place of fog, for convenience and thus
fof = ff = f 2 etc.

Definition: The equivalence class of any element a  S is called orbit of a (under f ).
Thus cl(a) = {x SS x ~ a}

= { f n(a) n integer} = orbit of a.
see page 155 also.

Theorem 11: If S is a finite set and f A(S) then  a +ve integer m such that orbit of x is
{x, f (x), f 2(x),......., f m – 1(x)}.

Proof: Since S is finite, A(S) has finite number of elements.
As f A(S),   f 2,   f 3 , ... all are in A(S) and as order of A(S) is finite, after a certain stage

some power of f will be identity of A(S). Let m be the smallest +ve integer such that f m(x)
= x.

Now x, f (x),  f 2(x), ....,  f m – 1(x) will all be distinct as if f i(x) = f j(x) for some i,  j,
0 i > j m–1.

then f i – j (x) = x
But i – j < m leads to a contradiction to the choice of m. Hence x, f (x), f 2 (x), ....,

f m–1(x) are distinct elements of the orbit of x. To show the orbit contains no other elements
suppose x  is any other element in the orbit, then  some integer n s.t.,

f n(x) = x
But n = mq + r for some integers q, r, where 0 r m–1
 x  = f n(x) = f mq + r(x) = f r. f m q(x) = f r[ f m q(x)]

= f r(x), 0  r  m–1

 x  is one of the earlier members, proving our theorem.

Cyclic Permutations

Let S be a finite set. A permutation f of S is called a cyclic permutation or a cycle if  elements
x1, x2, ....., xn in S s.t.,

f (x1) = x2, f (x2) = x3, ........f (xn –1) = xn’ f (xn) = x1

and all other elements remain fixed under f i.e., f (x) = x for all other x  S.
We denote f by (x1  x2 .....xn) in that case and say it is a cycle of length n. It is also called

n-cycle. In particular a cycle of length 2 is called a transposition.
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Cycles of a Permutation

Suppose we have a permutation

f = 1 2 3 4 5 6 7
2 4 6 1 7 3 5
1 2 3 4 5 6 7
2 4 6 1 7 3 52 4 6 1 7 3 5

  = (124)(36)(57) then (124), (36), (57) are called cycles of the permutation f.
We formalise it in

Definition: Let S be a finite set and x  S. Let f A(S). We know  a +ve integer m s.t.,
x, f (x), f 2(x) ... f m–1(x) are all distinct and f m (x) = x. We call

(x f (x) f 2(x) ... f m–1(x)) a cycle of f.

Example 14: Consider the permutation

f = 
1 2 3 4 5 6 7 8
8 7 5 4 6 2 1 3
1 2 3 4 5 6 7 8
8 7 5 4 6 2 1 38 7 5 4 6 2 1 3

here,  f (1) = 8, f 2(1) = f (8) = 3,  f 3(1) = 5, f 4(1) = 6, f 5(1) = 2,
f 6(1) = 7, f 7(1) = 1

Thus (1835627) is a cycle of f.
Again f (4) = 4, f 2(4) = 4 etc. So (4) is another cycle of f.

Problem 3: Find orbits and cycles of the permutation

f = 
1 2 3 4 5 6
6 5 4 3 1 2
1 2 3 4 5 6
6 5 4 3 1 26 5 4 3 1 2

Solution: Consider 1,
f (1) = 6, f 2(1) = 2, f 3(1) = 5, f 4(1) = 1

thus (1625) is a cycle and {1,  6,  2,  5} is orbit of 1,  6,  2,  5
Again, if we consider 3,

f (3) = 4,   f 2(3) = 3
thus (34) is a cycle and {3, 4} is orbit of 3 and 4.

Remark: Notice that an orbit is a set, members of which are the constituents of the
corresponding cycle.

Theorem 12: Let f be a non trivial permutation (i.e., different from identity) of
S = {1, 2,......n}. Then f can be represented as product of disjoint cycles each of length greater
than or equal to 2. Also the representation is unique except for the order in which the cycles
occur.

Proof: Since f is non trivial there exists at least one orbit with more than one element. Let O1,
O2, ... Ok be the orbits each with two or more elements. Any orbit we know is of the form
{a, f (a),  f 2(a),... f m–1(a)} for some a S, and some m > 1. The corresponding cycle of
this orbit is
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(a f (a) f 2(a) .... f m –1(a))
Let the corresponding cycles of the orbits O1, O2, ..., Ok be f1, f2, ..., fk.
We claim f = f1 f2 ... fk

Let x S be any element. If x belongs to a trivial orbit of f then f (x) = x and x will not
belong to any of O1, O2 ,.... Ok (orbits are equivalence  classes and thus distinct orbits have
no elements in common). Thus x remains fixed under f1, f2,.. ... fk
i.e., ( f1 f2 ....fk)x = x = f (x)

Suppose now x belongs to one of O1, O2, ... ., Ok say x  Ot and suppose
Ot = {a, f (a), f 2(a), ..., f m–1 (a)}

Then x = f p (a) for some p  m – 1
 f (x) = f ( f p(a)) = f p + 1(a)

Again ( f1 f2 .... fk) x = ft (x) as x  Ot means x remains fixed under every cycle other than
ft (by definition).

But ft(x) = ft ( f p(a))
= f p + 1 (a)

Note ft = (a f (a) f 2(a) .... f m – 1(a))
Thus ( f1 f2....fk) x = f p + 1 (a)
or that ( f1 f2 .... fk) x = f (x) for all x

 f = f1 f2 .... fk

That f1, f2 ....., fk are disjoint is clear as the corresponding orbits being equivalence classes
are disjoint.

To prove uniqueness, suppose f is also equal to g1 g2...gm.

Let g1 = (i1 i2 ... ir),  i1, i2,..., ir  S
and g = g2 g3 ... gm

Then f = g1g
clearly now i1, i2,...,ir do not appear in any cycle in g. Thus

g(a) = a if a = i1, i2, ..., ir

and f (a) = g1(a) if a = i1, i2, ....., ir

In other words {i1, f (i1), f 2 (i1), ..., f r–1(i1)}
= {i1, g1(i1), g2

1 (i1), ..., g1
r–1(i1)}

= orbit of f
 g1 = ft for some t

So in this way for each gi  a corresponding fj s.t., gi = f j.
Since f = f1 f2 .....fk = g1g2 ....gm we can cancel the equal ones on both sides, resulting into

k = m (for otherwise product of some cycles of length  2 is identity, which not true).
Hence uniqueness follows.
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Disjoint Permutations

Two permutations f and g of a set S are called disjoint if (i) for any x  S ,
f (x) x  g(x) = x and (ii) for any x  S, g(x) x  f (x) = x.

For instance, f = (12) and g = (13) are not disjoint in S3 as f (1) = 2 and g(1) = 3 1.
Again in S5,  f = (132),  g = (45) are disjoint.

Theorem 13: Any two disjoint permutations commute.

Proof: Let f and g be any two disjoint permutations of set S. We show fog = gof.
Let x  S be any element.
Suppose f (x) x then g(x) = x.
Let f (x) = y then y x.
Now ( fog) x = f (g(x)) = f (x) = y.
Also (gof ) x = g ( f (x)) = g(y) = y
because if g(y) y
then f (y) = y

 f (y) = f (x)
 y = x ( f being 1–1), a contradiction.

Hence fog = gof for all x  S such that f (x) x. Again if x  S be such that
f (x) = x then g(x) x. Proceeding as above, we again get fog = gof which proves the theorem.

In view of the results that we have proved we find any permutation can be expressed as
a product of disjoint cycles. Note for instance,

f = 
1 2 3 4 5 6 7 8 9
3 4 2 1 6 5 8 9 7
1 2 3 4 5 6 7 8 9
3 4 2 1 6 5 8 9 73 4 2 1 6 5 8 9 7

 = (1324)(56)(789)

Again any cycle (1234) can be written as (14)(13)(12)
i.e., it can be written as a product of transpositions and combining the two results we notice

any permutation can be expressed as a product of transpositions (not essentially disjoint). Since
(1234) can also be written (43)(42)(41), we find the representation as product of transpositions
is not unique.

The above f can be expressed as

f = (14)(12)(13)(56)(79)(89)
  = (14)(12)(13)(56)(79)(89)(12)(12) etc.

Problem 4: Show that inverse of (1234) is (4321).

Solution: Although the result is clear by definition of inverse, we notice, if we multiply (1234)
with (4321) in the way explained above then as

(1234)(4321) = I
we get (1234)–1 = (4321)
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In fact for any cycle (123 ... n)
(123 ..... n)–1 = (n n–1 ..... 321)

Problem 5: Find different powers of the cycle (1234).

Solution: (1234)2 = (1234)(1234) = (13)(24)

(1234)3 = (1234)(13)(24) = (1432)
(1234)4 = (1234)(1432) = I.

Problem 6: Show that (ab)2 = I for any transposition (ab).

Solution: Obvious.

Problem 7: Show that nth power of an n-cycle is I (n = 1, 2, 3, ...).

Solution: One can proceed as in the previous problems.

Problem 8: If f = (a1 b1)(a2 b2)(a3 b3)(a4 b4)

then f –1 = (a4 b4)(a3 b3)(a2 b2)(a1 b1)

Solution: Consider the product
(a1 b1) (a2 b2) (a3 b3) (a4 b4) (a4 b4) (a3 b3) (a2 b2) (a1 b1)

which comes out to be I proving our assertion.

Theorem 14: Suppose f is a permutation of a finite set S. Then in all expressions of f as product
of transpositions, either the number of transpostions is always even or always odd.

Proof: Suppose there exists a permutation f in Sn for which the theorem does not hold. Then
we have two representations of f,

f = (a1 b1)(a2 b2) ... (an bn)
f = (c1 d1)(c2 d2) ... (cm dm)

where n is even and m is odd.
Since f –1 = (cm dm)(cm–1 dm–1) ... (c2 d2)(c1 d1) we find

I = fo f –1 = (a1 b1) ... (an bn)(cm dm) ... (c1 d1)

= (x1 y1)(x2 y2) ... (xt  yt) (where t = n + m = odd)
Again as any transposition ( ) = (1 )(1 )(1 ) the above expression can be written as

I = (1x1)(1y1)(1x1)(1x2)(1y2)(1x2) ... (1xt)(1yt)(1xt)

which would still have odd number of transpositions in the R.H.S.
Consider any (1u) in the R.H.S. Since L.H.S. is identity (1u) must occur twice (or even

number of times) in R.H.S. so as to have ‘identity effect’ ultimately.
Note u 1 then 1 u will give u  u. Thus each transposition in the R.H.S. occurs even

number of times meaning that R.H.S. should have even number of transpositions, a contradiction,
proving our theorem.
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Definition: A permutation is called even (odd) permutation if it can be expressed as a product
of even (odd) number of transpositions.

In view of the previous theorem, we need look for only one representation to identify even
or odd permutations.

The following results are rather trivially proved
(a) The product of two even permutations is even as sum of two even numbers is even.
(b) The product of two odd permutations is even as sum of two odd numbers is even.
(c) The product of an even and an odd permutation is odd as sum of an even and an odd

number is odd.
(d) Inverse of an even (odd) permutation is even (odd). Indeed

f = (a1 b2) (a2 b2) ... (an bn).
 f –1 = (an bn) (an–1 bn–1) ... (a1 b1)

(e) Identity permutation is always even.

Example 15: The permutation

1 2 3 4 5 6 7
3 4 1 5 6 7 2
1 2 3 4 5 6 71 2 3 4 5 6 7
3 4 1 5 6 7 23 4 1 5 6 7 2

= (13)(24567)
= (13)(27)(26)(25)(24) is an odd permutation,

whereas the permutation (12)(1576) is even as
(12)(1576) = (12)(16)(17)(15).

Problem 9: Show that a cycle of even length is an odd permutation and a cycle of odd length
is an even permutation.

Solution: Consider the cycle (1234) of even length. Since (1234) = (14)(13)(12) which is odd
permutation, our result is proved for a cycle of length 4. It is now trivial that the result is
generalised to any cycle. Indeed

(123...n) = (1n)(1n–1) ... (13)(12)
proves our assertion.

Problem 10: Compute a–1ba where a = (135)(12), b = (1579).

Solution: We have a = (135)(12)
= (1235)

 a–1 = (5321)
Thus a –1 ba = (5321)(1579)(1235)

= (3795).

Theorem 15: Let  = (a1...an1)......(b1...bnk
) be a permutation of a finite set S, written as

product of disjoint cycles. Let o(S) = n and n1 + ... + nk = n. Then
–1 = ( ( a1) ... (an1)) ...... ( ( b1) ... ( bnk

))
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for all   Sn.

Proof: Let  S = {a1,..., an1,..., b1,..., bnk
}

Then (S) = { (a1),... (an1),... (b1),... (bnk
)}

Since  : S  S is 1–1, all elements in (S) are distinct. Also  is onto
 (S) = S.

Now (  –1)(  xi) = ( )( –1  xi)
= ( )(xi)
= ( (xi))
= ( (xi + 1))

 –1 takes any element (xi) of (S) = S to (xi + 1) and so does the mapping
( a1 ... an1) ... ( b1 ... bnk

)
–1 = ( a1 ... an1) ... ( b1 ... bnk

)

Remark: It follows from the above that the cycle structure of It follows from the above that the cycle structure of is same as that of
–1 for all Sn as has k cycles of length n1,..., nk and same is true for

–1. Note that must be written as the product of disjoint cycles.
e.g., take  = (1234),  = (12)(23)
Then –1 = (12) (23) –1  ( 1 2) ( 2 3) = (13)(34)
as R.H.S. (13)(34) takes 4 to 1 and (12)(23) –1 takes 4 to 2.

Problem 11: Let S  = {1,  2,  3 , 4}.  Find all  permutations of S such that
(12)(34) –1 = (13)(24).

Solution: Now (12)(34) –1 = ( 1 2) ( 3 4)
( 1 2) ( 3 4) = (13)(24)

Again (13)(24) = (31)(24) = (13)(42) = (31)(42)
(24)(13) = (24)(31) = (42)(13) = (42)(31)

So,  has 8 choices, namely
1 = 1, 2 = 3, 3 = 2, 4 = 4, i.e.,  = (23)
1 = 3, 2 = 1, 3 = 2, 4 = 4, i.e.,  = (132)
1 = 1, 2 = 3, 3 = 4, 4 = 2, i.e., = (234)
1 = 3, 2 = 1, 3 = 4, 4 = 2, i.e.,  = (1342)
1 = 2, 2 = 4, 3 = 1, 4 = 3, i.e., = (1243)
1 = 2, 2 = 4, 3 = 3, 4 = 1, i.e., = (124)
1 = 4, 2 = 2, 3 = 1, 4 = 3, i.e., = (143)
1 = 4, 2 = 2, 3 = 3, 4 = 1, i.e., = (14)

Remark: As in the previous problem, we sometimes take the liberty of writting x
for (x).
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Problem 12: Show that there does not exist a permutation  of S = {1, 2, ..., 8} such that
(123) –1 = (13)(578).

Solution: Now (123) –1 = ( (1) (2) (3)) and it does not have cycle of length 2 while
(13)(578) has a cycle of length 2. So, there does not exist  such that

(123) –1 = (13)(578).

Problem 13: Let A(S) = set of all permutations on a set S. Show that either all permutations
are even or exactly half are even.

Solution: If all permutations are even there is nothing to prove. Suppose now A(S) has odd
as well as even permutations and   m even and n  odd permutations. Then
m + n = o(A(S)).

Let e1, e2,..., em be distinct even permutations. If a be any transposition then
ae1, ae2,..., aem are odd and will be distinct [aei = aejj ei = ej].

Since  in all, n odd permutations
m n

Similarly interchanging roles of m, n we’ll get n  m and hence m = n.

Remark: Since identity is even permutation, all members of A(S) cannot be odd permutations.

Aliter: Let E and O be the sets of even and odd permutations of A(S) respectively.
Define  : E  O, s.t.,

( ) = (12)
Then as  is even, (12) will be odd.
Also,  =  (12) = (12)  ( ) = ( )
Showing that  is well difined.
Again, ( ) = ( )  (12) = (12)

 (12) (12) = (12) (12)
  = 

i.e.,  is 1–1.
Also for any  will be odd and thus (12) will be even and

( (12)) = (12) (12) = 
Shows  is onto.
Hence  o(E) = o(O).

Exercises
1. Find the orbits and cycles of the set S = {1,2,3,4,5,6,} under the following permutations

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
( ) , ( ) , ( )

2 1 5 6 4 3 2 3 4 5 6 1 2 3 1 6 5 4
i ii iii

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
, ( ), ( ) , ( ), ( ), ( )ii, ( ) , ( )iii, ( )

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
, ( ) , ( ), ( )ii, ( ) , ( )iii, ( )

2 1 5 6 4 3 2 3 4 5 6 1 2 3 1 6 5 4
, ( ) , ( )

2 1 5 6 4 3 2 3 4 5 6 1 2 3 1 6 5 4
, ( )

2 1 5 6 4 3 2 3 4 5 6 1 2 3 1 6 5 4
, ( ) , ( )

2 1 5 6 4 3 2 3 4 5 6 1 2 3 1 6 5 4
, ( ), ( )ii, ( ) , ( )iii, ( )

2. Express the following  permutations as product of disjoint cycles
(i) (123)(234)(456)(67)
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(ii) (12)(13)(14)(15)(16)
(iii) (24)(26)(28)(13)(15)(17)

3. Find out which of the following are even (odd) permutations
(i) (123) (12)

(ii) (12345) (123) (45)
(iii) (12) (14) (153)

4. Express the following permutations as product of transpositions
(i) (123 ......n)

(ii) (123)(4576)
(iii) (24)(345)

5. Find the orbits of all elements under the permutation

1 2 3 4 5 6 7 8 9
2 1 3 6 4 5 9 7 8
1 2 3 4 5 6 7 8 9
2 1 3 6 4 5 9 7 82 1 3 6 4 5 9 7 8

 in S9.

6. Show that (ab)i = ai bi holds for all a, b in S3 where i = 6, 7 but it does not hold for
i = 8.
(See remark after Problem 3 Page 58).

Some Results from Number Theory

In this section we discuss a few results pertaining to numbers although we do not plan to go
through their axiomatic construction.

Definition: A non zero integer a is said to divide an integer b if b = ac for some integer c and
we express it as a b.

The following results can then be proved

(i) a b, b c then a c
(ii) a b, a c then a b + c
(iii) a 0, a a
We now prove a well known result through

Theorem 16: (Euclid’s Algorithm)
Let k > 0 be an integer and j be any integer. Then  unique integers q and r such that j

= kq + r, where 0  r < k.

Proof: Let S = {j – kq q is an integer, j – kq  0}.
Then S , as take q = – jj .
Now when j > 0, then j – kq = j + kj > 0  j – kq  S
and if j < 0, then j – kq = j – kj

= j (1 – k) 0
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 j – kq S
j = 0, then  j – kq = j – k.0

= j = 0
 j – kq  S

In any case, S .
By well ordering principle, S has least element, say r S.

r  S  r = j – kq for some integer q
 j = kq + r. Also r  0

Suppose  r  k
Then j – kq  k

 j – k (q + 1)  0
 j – k (q + 1)  S

But j – k (q + 1) < j – kq as k > 0, contradicting r = j – kq is least element of S.
 0  r < k.

Uniqueness: Suppose j = kq + r = kq  + r , 0 r, r  < k. Then k(q – q ) = r  – r.
Suppose rr  > r. Then rr – r > 0. But kk rr – r  k rr – r. Since r, rr  < k, rr – r < k, a contradiction.

 rr  >/ r. Similarly r >/  rr  r = rr   kq = kq   q = q .
An important application of this result is the basis representation theorem.

Theorem 17: (Basis Representation Theorem).
Let b > 0 be an integer and let N > 1 be any integer. Then N can be expressed as

N = ambm + am–1bm–1 + ... + a1b + a0,

where m and ais are integers such that m > 0 and 0  ai < b. Also then these ais are uniquely
determined. (b is called base of representation of N).

Proof: If N < b,
then  N = 0bm + 0bm–1 +... + 0b + N
is the representation of N as required.
Let N  b > 0. By Euclid’s algorithm  integers q, r such that

N = bq + r,  0  r < b N
Since N – r > 0,  bq > 0  q > 0 as b > 0.
If q < b, then N = bq + r is the required representation of n.
If q  b > 0, then as above by Euclid’s algorithm  integers q1,  r1 such that

q = bq1 + r1,  0 r1 < b  q
Since q – r1 > 0,  bq1 > 0  q1 > 0 as b > 0.
Now N = bq + r = b(bq1 + r1) + r

 N = b2q1 + br1 + r
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If q1 < b, then it is the required representation of N. In this way, after finite number of steps,
we shall get

N = am b
m +am–1bm–1 + ... +a1b +a0

where ai s are integers such that
0 ai < b for all i = 1,..., m.

Uniqueness of ai s follows as:

Suppose N = cm b
m + cm–1 b

m–1 + ... + c1 b + c0 where each ci is an integer such that
0  ci < b. We can choose same m in both the representations of N because if one representation
of N has lesser terms we can always insert zero coefficients and thus make the number of
terms to be same.

0 = (am – cm)bm + ... + (a1 – c1)b +(a0 – c0)
Let ai – ci = di.

Then dmbm + ... + d1b + d0 = 0.
We have to show that di = 0 for all i.
Suppose for some i, di  0. Let k be the least subscript such that dk  0
Then dkb

k + dk+1bk+1 + ... + dmbm = 0

 dkb
k = –(dk+1bk+1 + ... + dmbm)

 dk = –(dk+1b + dk + 2b2 + ... + dmbm – k)

 dk = – b(dk+1 + dk+2b + ... + dmbm–k–1)

 b dk

 b dkk

 b dkk

But ak , ck < b  ak – ckk < b
  dk < b,

So, we get a contradiction
di = 0 for all i = 1,..., m
ai = ci for all i = 1,..., m

Note: When the integer N is expressed as
N = ambm + ... + a1b + a0, 0  ai < b,

we write N = (am am–1 ... a1a0)b
and say that N is amam–1 ... a0 to the base b.
For example,

132 = 1.102 +3.10 + 2 (Here base is 10)
Then as above

132 = (132)10
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So, numbers that we usually write are to the base 10.
Again, if we want to write 132 to the base 2, we first write
1 3 2 = 27 + 22 = 27 + 0.26 + 0.25 + 0.24 + 0.23 + 1.22 + 0.2 + 0
and by basis representation theorem, then

132 = (10000100)2

Problem 14: If a, b are integers with b  0, show that there exist unique integers

q and r satisfying a = bq + r where – 1
2

b < r< r  1
2

b .

Solution: By Euclid’s algorithm, there exist unique integers q , r r such that
a = q b  + rr , where 0 rr < b

(as b > 0 when b  0).

Case 1: 0 rr  1
2 b

Take rr  = r, q  = q (if b > 0), q  = –q (if b < 0)

Since – 1
2 b < 0  rr  = r 1

2 b ,

– 1
2 b  < r 1

2 b

Also a = q b + rr  becomes
a = qb + r if b > 0

and a = (–q) (–b) + r if b < 0
= qb + r

where – 1
2 b < r 1

2 b

Case 2: 1
2 b  < rr b

Take rr  = r + b
q = q – 1 if b > 0

= – q – 1 if b < 0

Now 1
2 b < rr  = r + b

 – 1
2 b < r

Also rr  = r + b < b

 rr < 0 < 1
2 b

– 1
2 b < r < 1

2 b

Again a = b  q  + rr becomes
a = b(q – 1) + r + b when b > 0

= bq + r
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Also, when b > 0, a = b q + rr becomes
a = –b (–q –1) + r – b

= bq + r

where – 1
2 b < r < 1

2 b

The Greatest Common Divisor

A special case in Euclid’s algorithm arises when the remainder is zero. We discuss it in this
section.

Definition: An integer d > 0 is called greatest common divisor (g.c.d.) of two integers a, b
(non zero) if

(i) dd a,  d d b
(ii) If c a,  c b  then  c d
We write d = g.c.d.(a,  b) or simply d = (a,  b).

Remarks:
(i) (a,  0) = a ,  (0,  b) = b

Clearly, a a,  a 0
If c a,  then  c a  (a, 0) = a
Similarly (0,  b) = b

(ii) If a b,  then  (a,  b) = a
a a,  and  a b  a b

If c a,  c b,  then  c a
 (a,  b) = a

(iii) g.c.d. of a and b does not depend on signs of a and b
i.e., (a,  b) = (– a,  b) = (a, – b) = (–a, –b)
Let d = (a,  b).  Then  dd a,  dd b  dd –a,  d b
c –a,  c b  c a,  c b  c d

 d = (–a,  b). Similarly for others.

We now show the existence and uniqueness of g.c.d. of integers a and b.

Theorem 18: Let a, b be two integers. Suppose either a  0 or b  0. Then  greatest
common divisor d of a, b such that

d = ax + by for some integers x, y.
d is uniquely determined by a and b.

Proof: Let S = {au + bv u, v are integers and au + bv > 0}.
If a > 0,  then  a = a.1 + b.0 > 0  a  S.
If a < 0,  then  –a = a(–1) + b.0 > 0  –a  S.
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Similarly, if b > 0 then b  S  and  if b < 0 then –b  S. Since one of a and b is non zero,
either ±a  S or ±b  S. In any case S  .
By well ordering principle S has a least element, say d.
Now d  S  d = ax + by for some integers x and y. Also d > 0.
Let a = dq + r, 0  r < d.
Let r  0. Since r = a – dq

= a – (ax + by)q
= a(1 – xq) + b(–yq) > 0

 r  S.
But r < d, contradicting the fact that d is least element of S. So, r = 0.

Therefore, a = dq  dd a.
Similarly, dd b.
Suppose, c a,  c b  c ax + by = d.

So, d is a greatest common divisor of a and b.
If d  is also greatest common divisor of a and b, then d a, d b,  d d  Similarly, dd a, dd b
 d d. Since d, d  > 0, d = d . So d is uniquely determined by a and b.

Remark: x and y in above theorem need not be unique.
For, d = ax + by

 d = a(x – b) + b(a + y)
If x – b = x, a + y = y  b = 0 = a, which is not true. So either

x –b x or a + y  y.

Definition: If g.c.d.(a,  b) = 1, then a and b are said to be relatively prime or coprime.

Cor. 1: Two integers a,  b are relatively prime if and only if  integers x, y such that
ax + by = 1.

Proof: Suppose a,  b are relatively prime. Then g.c.d.(a,  b) = 1. By above theorem  integers
x, y such that ax + by = 1.

Conversely, let ax + by = 1 for some integers x, y. Let d = g.c.d.(a,  b). Then
d | a, d | b  d | ax, d | by  d | ax + by = 1  d = 1.

So, a, b are relatively prime.

Cor. 2: If g.c.d.(a,  b) = d, then g.c.d. ,a b
d d
a ba b
d d

,
d d

,
d d

,  = 1.

Proof: g.c.d.(a,  b) = d
  integers x, y such that

d = ax + by

 1 = a bx y
d d
a bx yx y
d d

x y
d d

x y
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 g.c.d. ,a b
d d
a ba b
d d

,
d d

,
d d

,  = 1 by Cor 1.

Cor. 3: If a bc, with g.c.d.(a,  b) = 1, then a c

Proof: g.c.d.(a, b) = 1   integers x, y s.t.,
ax + by = 1  acx + bcy = c

Now a ac, a bc  a acx, a bcy
 a acx + bcy = c

Cor. 4: If g.c.d.(a, b) = 1 and g.c.d.(a, c) = 1, then g.c.d.(a, bc) = 1.

Proof: Since g.c.d.(a , b) = 1,  integers x,  y such that ax + by = 1. Also,
g.c.d.(a, c) = 1,  integers u,  v such that au + cv = 1.

1 = (ax + by) (au + cv)
= a (axu + cxv + byu) + bc (yv)

By Cor. 1, g.c.d.(a,  bc) = 1.
We now give a practical method of finding greatest common divisor of two integers. We

first prove the following result.

Lemma: If a = bq + r,  then  g.c.d.(a,  b) = g.c.d.(b,  r).

Proof: Let g.c.d.(a,  b) = d.
Then  d d a, dd b  dd a, dd bq  dd a – bq = r. Suppose c b, c r.
Then c bq,  c r  c bq + r  c a,  c b  c d. Thus d = g.c.d. (b,  r).
Let a,  b be two integers.
Since g.c.d.(a,  b) = g.c.d.( a b ), let a  b > 0.
Let a = bq1 + r1, 0  r1 < b.
If r1 = 0, then b a  and  g.c.d.(a,  b) = b.
Let r1  0. Divide b by r1 to get integers q2 and r2 s.t.,

b = r1q2 + r2, 0  r2 < r1

If r2 = 0, then g.c.d.(b,  r1) = r1 and so by above lemma, g.c.d.(a,  b) = r1

If r2  0, then proceed as above till we get remainder as zero,

We have a = q1b + r1, 0 < r1 < b
b = q2r1 + r2, 0 < r2 < r1

r1 = q3r2 + r3, 0 < r3 < r2
. . . . . . . . . .
rn–2 = qnrn–1 + rn’ 0 < rn < rn–1

rn–1 = qn+1rn + 0

By above lemma,
g.c.d.(a, b) = g.c.d.(b, r1) = ...... = g.c.d.(rn’ 0) = rn
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So, last remainder nr  is g.c.d. of a and b.
For example, to determine g.c.d.(56, 72), we divide 72 by 56 to get,

72 = 56 + 16
56 = 16  3 + 8
16 = 8  2 + 0.

Since last non zero remainder is 8, g.c.d.(56, 72) = 8.
Also, 8 = 56 – 16  3

= 56 – (72 – 56)  3
= 56  (4) + 72 (–3)
= 56x + 72y where x = 4, y = –3

which shows us the way to find x, y s.t.,
g.c.d. (a,  b) = ax + by

Theorem 19: Let k > 0. Then g.c.d.(ka, kb) = k g.c.d.(a, b).

Proof: Let g.c.d.(a,  b) = d
Then dd a, dd b  kdkd ka, kdkd kb
Also  integers x, y s.t.,

d = ax + by
 kd = kax + kby

Let c ka, c kb then c kax, c kby
 c kax + kby = kd
 g.c.d. (ka, kb) = kd = k g.c.d. (a, b)

(Note, as k > 0, d > 0 we get  kd > 0)

Cor.: For any integer k 0, g.c.d. (ka, kb) = kk  g.c.d.(a, b).

Proof: For k > 0, result follows form above theorem.
Let k < 0. Then g.c.d.(ka,  kb)

= g.c.d.(–ka, –kb)
= – k g.c.d.(a, b) by above theorem
= kk  g.c.d.(a, b)

Definition: The least common multiple of two non zero integers a and b, denoted by
l.c.m.(a,  b) is the positive integer m s.t.,

(i) a m,  b m
(ii) if a c,  b c, with c > 0, then m c.

Theorem 20: For positive integers a and b
g.c.d.(a, b)  l.c.m.(a, b) = ab
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Proof: Let d = g.c.d.(a, b)

Now . asab b ab ba a
d d d d

.ab b ab ba aa a.a a.
d d d d

 is integer

Also . asab a ab ab b
d d d d

.ab a ab ab bb b.b b.ab a ab ab bab a ab a
d d d d

 is integer

Let m = ab
d

, then a m and b m

Suppose now a c, b c. Since (a, b) = d,  integers x, y s.t., d = ax + by.

( )c cd c ax by c cx y
m ab ab b a
c cd c ax by c c( )c cd c ax by c c( )c cd c ax by c cc cd c ax by c c( )c cd c ax by c c( )
m ab ab b a
c cd c ax by c c( )c cd c ax by c c( )c cd c ax by c cx yc cd c ax by c cx y
m ab ab b a

x y
m ab ab b a

x yx yx y
m ab ab b a

x y
m ab ab b a

x yx yx y integer

 m c.

Thus m = l.c.m. (a,  b), i.e., ab
d

 = l.c.m. (a,  b)

or that ab = g.c.d. (a,  b)  l.c.m. (a,  b).

Problem 15: Let g.c.d. (a,  b) = 1.
Show that g.c.d.(a + b,  a2 – ab + b2) = 1 or 3.

Solution: Let g.c.d.(a + b,  a2 – ab + b2) = d
Then dd a + b,  d d a2 – ab + b2

 dd (a + b)2 = a2 + b2 + 2ab,  d d a2 – ab + b2

 dd 3ab
Let g.c.d.(d,  a) = e
Then e dd a + b  e a + b and e a

e (a + b) – a = b
So, e g.c.d.(a,  b) = 1  e = 1

g.c.d.(d,  a) = 1
Similarly, g.c.d.(d,  b) = 1

dd 3  d = 1 or 3.

Problem 16: Let g.c.d.(a, b) = 1. Show that g.c.d.(an, bn) = 1 for every integer n  1.

Solution: Since g.c.d. (a,  b) = 1,  integers x, y such that ax + by = 1.
 (ax + by) (ax + by) = 1

 a2x2 + 2abxy + by2 = 1
 a2x2 + b(2axy + y2) = 1

 g.c.d.(a2, b) = 1
In this way we will get

g.c.d.(an, b) = 1 or g.c.d.(b, an) = 1
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Proceeding as above, we get
g.c.d.(bn, an) = 1

Definition: By a Linear Diophantine equation we mean an equation ax + by = c in two unknowns
x and y, where a, b, c are given integers and one of a, b is not zero. The name is due to the
mathematician Diophantus. A natural question arises as to when would such an equation have
a solution? The answer is provided by

Theorem 21: The linear Diophantine equation ax + by = c has a solution if and only if dc has a solution if and only if d c
where d = g.c.d. (a,  b). If x0, y0 is a particular solution, then the other solutions are given
by

0 0,b ax x t y y t
d d
b ax x t y y tx x t y y tx x t y y t0 0x x t y y t0 00 0x x t y y t0 00 0,0 0x x t y y t0 0,0 00 0d d0 0d d0 0x x t y y t
d d

x x t y y t0 0x x t y y t0 0d d0 0x x t y y t0 00 0,0 0x x t y y t0 0,0 0d d0 0,0 0x x t y y t0 0,0 0

for varying integer t.

Proof: Suppose ax + by = c has a solution.
Let x = x0, y = y0 be a solution.
Then ax0 + by0 = c. Let d = g.c.d.(a,  b).

dd a, dd b  dd ax0, dd by0

 dd ax0 + by0 = c
Conversely, let dd c. Let c = dk.
Since d = g.c.d. (a,  b),  integers x0, y0 s.t.,

ax0 + by0 = d  a(x0k) + b(y0k) = dk = c
 ax + by = c has a solution x = x0k,  y = y0k.

To prove the second assertion, let x0, y0 be a given solution of ax + by = c.
Let x , y  be any solution of ax + by = c.

ax0 + by0 = ax  + by  = c
 a(x0 – x ) = b(y  – y0)

 0( ) ( ),o
a bx x y y
d d 0( ) ( ),0( ) ( ),0
a b( ) ( ),a b( ) ( ),( ) ( ),x x y y( ) ( ),
d d

x x y y
d d

x x y y( ) ( ),x x y y( ) ( ),
d d

( ) ( ),x x y y( ) ( ),
d d 0( ) ( ),0( ) ( ),0
a b( ) ( ),a b( ) ( ),x x y y( ) ( ),x x y y( ) ( ),( ) ( ),x x y y( ) ( ),
d d

x x y y
d d

x x y y( ) ( ),x x y y( ) ( ),
d d

( ) ( ),x x y y( ) ( ),  where d = g.c.d. (a, b)

 0( )
b a x x
d d

( )( )x x( )( )

Since g.c.d. , 1.a b
d d
a bg.c.d. , 1.g.c.d. , 1.g.c.d. , 1.g.c.d. , 1.g.c.d. , 1.g.c.d. , 1.g.c.d. , 1.a bg.c.d. , 1.a bg.c.d. , 1.g.c.d. , 1.g.c.d. , 1.
d d

g.c.d. , 1.
d d

g.c.d. , 1.
d d

g.c.d. , 1.g.c.d. , 1.

0 0
b bx x x x
d d
b b

0 00 0
b bx x x x0 0x x x x0 0d d0 0d d0 00 00 0
b bx x x xx x x xx x x x0 0x x x x0 00 0x x x x0 00 0x x x x0 00 0d d0 0


0

bx x t
d

x x t
0

bx x tx x t
d0

x x t , t is an integer
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 0 0( )b a b bx x t t y y
d d d d
b a b bx x t t y y0 00 0d d d d0 0d d d d0 00 00 0( )b a b bx x t t y yx x t t y yx x t t y yx x t t y yx x t t y y0 0x x t t y y0 00 0x x t t y y0 00 0x x t t y y0 00 0x x t t y y0 00 0x x t t y y0 0( )x x t t y y( )0 0( )0 0x x t t y y0 0( )0 00 0d d d d0 00 0x x t t y y0 0d d d d0 0x x t t y y0 0

 0 0
a at y y y y t
d d
a aa at y y y y tt y y y y t0 0t y y y y t0 0t y y y y t0 0t y y y y t0 0d d0 0d d0 0t y y y y t
d d

t y y y y t0 0t y y y y t0 0d d0 0t y y y y t0 0t y y y y t
d d

t y y y y t0 0t y y y y t0 0d d0 0t y y y y t0 0
a at y y y y t0 0t y y y y t0 00 0d d0 00 0t y y y y t0 0d d0 0t y y y y t0 0

It can be easily seen that for all values of 0 0, ,b at x x t y y t
d d
b at x x t y y t, ,t x x t y y t, ,0 0
b at x x t y y tt x x t y y t0 0t x x t y y t0 0d d0 0d d0 0t x x t y y t
d d

t x x t y y t0 0t x x t y y t0 0d d0 0t x x t y y t0 0
b at x x t y y tt x x t y y t0 0t x x t y y t0 00 0t x x t y y t0 0, ,t x x t y y t, ,0 0, ,0 0t x x t y y t0 0, ,0 00 00 0d d0 00 0t x x t y y t0 0d d0 0t x x t y y t0 00 0, ,0 0t x x t y y t0 0, ,0 0d d0 0, ,0 0t x x t y y t0 0, ,0 0  is a solution of ax

+ by = c as

0 0
b aa x t b y t
d d
b ab aa x t b y t0 0a x t b y t0 0a x t b y ta x t b y ta x t b y ta x t b y t0 0a x t b y t0 00 0a x t b y t0 0
b aa x t b y ta x t b y ta x t b y tb aa x t b y tb a
d dd d0 0a x t b y t0 0a x t b y t0 00 0a x t b y t0 0a x t b y t0 0d d0 0d d0 0a x t b y t
d d

a x t b y t0 0a x t b y t0 0d d0 0a x t b y t0 0

= 0 0 .ax by c0 0 .ax by c0 0ax by c0 0

Problem 17: Determine all the solutions in the integers of the following Diophantine equation
56x + 72y = 40.

Solution: We first find g.c.d.(56, 72).

Now 72 = 56 + 16
56 = 3  16 + 8
16 = 2  8

Hence, g.c.d.(56, 72) = 8.
8 = 56 – 3  16

= 56 – 3  (72 – 56)
= 4  56 – 3  72

 40 = 56  20 + 72  (–15)
 x = 20,  y = – 15,  is a solution of 56x + 72y = 40.

By above theorem any other solution is given by 72 5620 , 15
8 8

t t72 5672 56t tt t20 , 1520 , 1520 , 1520 , 15t tt t20 , 15t t20 , 1572 5620 , 1520 , 1572 5620 , 1572 56t tt t20 , 15t t20 , 15
8 8

20 , 15
8 8

t t20 , 15
8 8

20 , 15
8 8

20 , 15t t20 , 15t t20 , 15

= (20 + 9t,  – 15 – 7t) for any integer t.

Prime Numbers

An integer p > 1 is called a prime number if 1 and p are the only divisors of p.

Theorem 22: If a prime number p divides ab, then either p divides a or p divides b.

Proof: Let ab = pc for some integer c.
Suppose p does not divide a.
Then g.c.d.(a, p) = 1

p ab and g.c.d.(a, p) = 1
 p b

We generalise the above result in the following theorem.
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Theorem 23: If p divides a1a2 ... an, then p divides ai for some i.

Proof: We prove the result by induction on n.
If n = 1, then result is clearly true.
If n = 2, the result follows from above.
Let the result be true for naturals less than n.
Suppose p a1 ... an= (a1 ...an–1)an

 p a1 ...an–1 or p an

If p divides a1 ...an–1, then by induction hypothesis p divides ai, for some i.
So result is true in this case also.
By induction result is true for all n > 1.

Composite Numbers

A composite number is an integer n > 1 such that n is not prime.

Problem 18: Prove that if 2n – 1 is prime, then n is prime.

Solution: Let 2n – 1 = p = prime.
Let n be not prime.
Then n = rs, 1 < r, s < n

p = 2n – 1
   = 2rs – 1 = (2r)s – 1
   = xs – 1, x = 2r > 2 as r > 1
   = (x – 1) (xs – 1 + xs – 2 + ... + x + 1)

Either x – 1 = 1 or xs – 1 + ... + x + 1 = 1
x – 1 = 1  x = 2,  which is not true

and xS – 1 + ... + x + 1 = 1
 xs – 1 + ... + x = 0,  which is not true

n is prime.

Problem 19: Prove that n4 + 4 is composite if n > 1.

Solution: n4 + 4 = (n2 + 2)2 – 4n2

= (n2 + 2 – 2n) (n2 + 2 + 2n)
n > 1  n 2  n2 2n  n2 – 2n  0

 n2 – 2n + 2  2
Also n2 + 2 + 2n > 1

 n4 + 4 is composite as both n2 + 2 + 2n and n2 + 2 + 2n < n4 + 4.
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Congruences

Let a,  b,  c,  (c > 0) be integers. We say a is congruent to b modulo c if c divides
a – b and we write this as a  b (mod c). This relation ‘ ’ on the set of integers is an equivalence
relation as seen earlier.

Addition, subtraction and multiplication in congruences behave naturally.
Let a  b (mod c)

a1 b1 (mod c)  c a – b,  c a1 – b1

 c  (a + a1) – (b + b1)

 a + a1 b + b1 (mod c)
Similarly a – a1  b – b1 (mod c)

Also c a – b,  c a1 – b1

 c aa1 – ba1,  c ba1 – bb1

 c (aa1 – ba1) + (ba1 – bb1)
 c aa1 – bb1

 aa1  bb1 (mod c)
We may, however, not be able to achieve the above result in case of division.

Indeed 
1 1

ora b
a b

 may not even be integers.

Again, cancellation in congruences in general may not hold.
i.e., ad  bd (mod c) need not essentially imply

a  b (mod c)
For example, 2.2 2.1 (mod 2)
but 2  1 (mod 2)
However, cancellation holds if g.c.d.(d,  c) = 1.
i.e., if ad  bd (mod c)
and g.c.d.(d, c) = 1
then a  b (mod c).

Proof: ad bd (mod c)

 c ad – bd
 c d (a – b)
 c a – b as g.c.d.(c, d) = 1
 a b (mod c).

Problem 20: If a b (mod n), prove that g.c.d.(a, n) =  (b, n).

Solution: Let d = g.c.d.(a, n)
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Then dd a,  dd n. But n a – b
dd a – b,  dd a

 dd a – (a – b) = b
dd b,  dd n

Let c b,  c n  c b,  c a – b as n a – b
 c a – b + b = a
 c a,  c n
 c d as d = g.c.d.(a,  n)
 g.c.d.(b,  n) = d

Problem 21: Establish that if a is an odd integer, then
2n

a   1 (mod 2n +2) for any n 1.

Solution: We prove the result by induction on n.
Let n = 1. Then

2n

a = a2

and 2n + 2 = 23 = 8

Let a = 2k + 1. Then
a2 = 4k2 + 4k + 1

= 4k (k + 1) + 1
a2 – 1 = 4k (k + 1)

= multiple of 8 as either k is even or k + 1 is even.
a2 1 (mod 8)

So, result is true for n = 1.
Assume that the result is true for  n = k.

Then a2k  1 (mod 2k + 2)
Now a2k + 1 – 1 = (a2k)2 – 1

= (a2k – 1) (a2k + 1)
= (multiple of 2k + 2) (a2k + 1) by induction hypothesis.

But  a = odd  a2k = odd  a2k + 1 = even
a2k + 1 – 1 = multiple of 2k + 3

a2k + 1  1 (mod 2k + 3)
So, result is true for n = k + 1.
By induction, result is true for all n  1.

Problem 22: Show that for any integer a,
a3  0,  1,  or 8 (mod 9)



1. Preliminaries 39

Solution: Let a = 3k + r,  0 r < 3
If r = 0,  then a = 3k

 a3 = 27k3 0 (mod 9)
If r = 1,  then a = 3k + 1

a3 = 27k3 + 1 + 9k2 + 9k
 a3 1 (mod 9)

If a = 3k + 2,  then  a3 = 27k3 + 8 + 27k2 + 36k2

 a3  8 (mod 9)

a3 0, 1 or 8 (mod 9).

Problem 23: If ca cb (mod n), then a b ,
nmod
d
nnmod
d

,mod
d

mod

where d = g.c.d.(c,  n).

Solution: d = g.c.d. (c,  n)

 1 = g.c.d. ,
c n
d d
c nc n
d d

,
d d

,
d d

,

Also ca  cb (mod n)
 ca – cb = nk for some integer k


c ca b
d d
c ca ba bc ca bc c
d d

 = n k
d

 ( )n c a b
d d

( )( )a b( )

 as g.c.d. ,n c na b
d d d

c na b as g.c.d. ,as g.c.d. ,as g.c.d. ,as g.c.d. ,c nas g.c.d. ,c nas g.c.d. ,
d d

as g.c.d. ,
d d

as g.c.d. ,
d d

as g.c.d. ,  = 1

 a  b .nmod
d
nnmod
d

.mod
d

mod

Problem 24: Find the remainder obtained by dividing 1! + 2! + 3! + 4! + ... + 100! by 12.

Solution: Each number 4! onwards is a multiple of 12.
1! + 2! + 3! + 4! + ... + 100! 1! + 2! + 3! + 0 + ... + 0 (mod 12)
 1! + 2! + 3! + 4! + ... + 100! 9 (mod 12)
 9 is the required remainder.

Problem 25: Find the remainder when 250 is divided by 7.

Solution: Now 23  1 (mod 7)
 (23)16 116 1 (mod 7)

 248 1 (mod 7)
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 248 22  22 (mod 7)
 2 0  4 (mod 7)

 4 is the remainder.

Problem 26: What is the remainder when the sum 15 + 25 + 35 + ... + 995 + 1005 is divided
by 4.

Solution: Note 1 1 (mod 4)  15  1 (mod 4)
22 0 (mod 4)  25  0 (mod 4)
32 1 (mod 4)  35  3 (mod 4)

 35 – 1 (mod 4)
42 0 (mod 4)  45  0 (mod 4)

 15 + 25 + 35 + 45  1 + 0 – 1 + 0  0 (mod 4)
Any numbers after these will be of the form 2k + 1,  2k + 2,  2k + 3,  2k + 4,

k > 1.
Now(2k + 1)2 1 (mod 4)  (2k + 1)5  2k + 1 1 (mod 4)

(2k + 2)2 0 (mod 4)  (2k + 2)5 0 (mod 4)
(2k + 3)2 1 (mod 4)  (2k + 3)5   2k + 3  – 1 (mod 4)

(2k + 4)2 0 (mod 4 )  (2k + 4)5  0 (mod 4)
15 + 25 + 35 + 45 + ... 995 + 1005  0 (mod 4)

So, remainder is 0 when above number is divided by 4.

Chinese Remainder Theorem

Theorem 24: Consider ax  b (mod c), where a, b, c are integers such that d = (a, c) divides b.
Let x = x0 be a solution. Then the given congruence has exactly d mutually incougruent

solutions modulo c.

Proof: Let 0
cx x t
d0
cx x t0x x t0 d

where t is any integer..

Consider 0
ca x t
d
cca x t ca x t
dd0a x t0a x t0a x ta x t
d

a x t

0
aax t c
d0
aax t cax t c0ax t c0 d

b (mod c)

Then 0
cx t
d
cx t
d

is a solution of ax b (mod c) for any integer..

Let 0 0 0 0, , 2 , , ( 1) ,c c cS x x x x d
d d d0 0 0 0, , 2 , , ( 1) ,, , 2 , , ( 1) ,0 0 0 0, , 2 , , ( 1) ,0 0 0 0
c c c, , 2 , , ( 1) ,c c c, , 2 , , ( 1) ,0 0 0 0S x x x x d0 0 0 00 0 0 0, , 2 , , ( 1) ,0 0 0 0S x x x x d0 0 0 0, , 2 , , ( 1) ,0 0 0 00 0 0 0, , 2 , , ( 1) ,0 0 0 0S x x x x d0 0 0 0, , 2 , , ( 1) ,0 0 0 00 0 0 0, , 2 , , ( 1) ,0 0 0 0S x x x x d0 0 0 0, , 2 , , ( 1) ,0 0 0 0S x x x x dS x x x x d, , 2 , , ( 1) ,S x x x x d, , 2 , , ( 1) ,, , 2 , , ( 1) ,S x x x x d, , 2 , , ( 1) ,, , 2 , , ( 1) ,S x x x x d, , 2 , , ( 1) ,c c cS x x x x dc c c, , 2 , , ( 1) ,c c c, , 2 , , ( 1) ,S x x x x d, , 2 , , ( 1) ,c c c, , 2 , , ( 1) ,
d d d0 0 0 0d d d0 0 0 0, , 2 , , ( 1) ,
d d d

, , 2 , , ( 1) ,0 0 0 0, , 2 , , ( 1) ,0 0 0 0d d d0 0 0 0, , 2 , , ( 1) ,0 0 0 0

Then every integer in S is a solution of ax  b (mod c). We show that no two integers are
mutually congruent modulo c.
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Let 0 0
c cx i x j
d d0 0
c cx i x j0 0x i x j0 00 0x i x j0 0x i x jc cx i x jc c
d d0 0d d0 00 0x i x j0 0d d0 0x i x j0 0x i x j
d d

x i x j  (mod c), 0  i, j < d, i  j.

Then c divides (i – j) c
d

. Let i > j,  So, d divides (i – j),  a contradiction as both i and j

are less than d. This proves our assertion.
Let y be a solution of ax  b (mod c) other than x0. Then ax0  ay (mod c) implies c divides

a(x0 – y). So, c
d

 divides a
d

(x0 – y).

Since, , 1,c a c
d d d
c a c, 1,c a c, 1,c a c, 1,
d d d

, 1,
d d d

, 1,c a c, 1,c a c, 1,c a c, 1,, 1,c a c, 1,c a c, 1,
d d d

, 1,, 1,
d d d

, 1,
d d d

, 1,, 1,, 1,, 1,
d d d

, 1,
d d d

, 1,, 1,  divides x0 – y or y – x0.

So,  0
cy x t
d0
cy x t0y x t0 d

, for some integer t. Therefore, 0 ,cy x t
d0
cy x t0y x t0 d

for some integer t.

Let t = dq + r, 0  r < d.

Then y = x0 + (dq + r) c
d

  x0 + qc + r c
d

=  x0 +  r c
d

 (mod c), 0  r  d

Since, x0 + r c
d

S, any solution of ax  b (mod c) is congruent to some integer in S modulo c.

Thus, there are exactly d mutually incongruent solutions modulo c.

Cor: Let (a, c) = 1. Then there exists an integer a such that 1aa 1 (mod c). a is uniquely
determined modulo c, called the inverse of a modulo c.

Proof: Since (a, c) = 1, there exists unique solution of ax  1 (mod c) by above theorem. So,
there exists an integer a such that 1aa 1  (mod c). a  is uniquely determined modulo c by above
theorem.

We now prove the Chinese remainder theorem.
Theorem 25: (Chinese Remainder Theorem): Let n1, n2,...,nr be pairwise relatively prime
integers. Consider the following system of congruences

a1x  b1 (mod n1)
a2x  b2 (mod n2)
...
arx  br (mode nr)

where ai and ni are relatively prime integers for all i. Then there exists an integer x that satisfies
the above system of congruences. Further, any two solutions of the above system of congruences
are congruent modulo M, where M = n1 n2....nr.
Proof: Consider ai x bi (mod ni)

Since (ai, ni) = 1, there exists an integer ci such that aici  bi (mod ni) for all i.
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Let .i
i

Mm
n
M

 Then (ni, mi) = 1 for all i,

for, let p be a prime dividing (ni, mi). Then p|ni, p|mi = n1n2 ...ni  1ni + 1...nr implies
p|ni, p|nj ( j  i) contradicting (ni, nj) = 1 for i  j.

By above theorem there exists an integer im  such that 1i im m 1  (mod ni) for all i.

Consider 1 1 1 2 2 2 r r rX c m m c m m c m m1 1 1 2 2 2 r r rX c m m c m m c m mX c m m c m m c m mX c m m c m m c m m1 1 1 2 2 2X c m m c m m c m m1 1 1 2 2 2 r r rX c m m c m m c m mr r r

Then 1 1 1 2 2 2i i i i r r ra X a c m m a c m m a c m m1 1 1 2 2 2i i i1 1 1 2 2 2i i i1 1 1 2 2 2 i r r ra X a c m m a c m m a c m ma X a c m m a c m m a c m ma X a c m m a c m m a c m m1 1 1 2 2 2a X a c m m a c m m a c m m1 1 1 2 2 2i i ia X a c m m a c m m a c m mi i i1 1 1 2 2 2i i i1 1 1 2 2 2a X a c m m a c m m a c m m1 1 1 2 2 2i i i1 1 1 2 2 2 i r r ra X a c m m a c m m a c m mi r r r

i i i ia c m mi i i ia c m mi i i ia c m mi i i i (mod ni) as each term except ith term contains ni

bi (mod ni) for all i as aici  bi (mod ni) and 1i im m 1 (mod ni)
So, X is a common solution of the given system of congruences.

Suppose, y is also a common solution.
Then ai X ai y (mod ni) for all i

Since (ai, ni) = 1 for all i
X y (mod ni) for all i.

So, ni | X – y for all i
Therefore, M = l.c.m of n1, n2...,nr divides X  y.

Hence, X  y (mod M)

Note: See Problem 41 on page 247 also.
Problem 27: Solve the following system of congruences,

x  3 (mod 4), x  4 (mod 5), x  6 (mod 7)
Solution: Here c1 = 3, c2 = 4, c3 = 6, M = 140

        m1 = 35, m2 = 28, m3 = 20

Consider 1 1 1m m 1(mod 4). Then 35 1im 1 (mod 4)

becomes 13 1m3 1(mod 4). So, 1 3m 3

Consider 2 2 1m m 1(mod 5). Then 28 2 1m 1(mod 5)

becomes 23 1m3 1(mod 5). Then, 2 2m 2

Consider 3 3 1m m 1(mod 7). Then 20 3 1m 1(mod 7)

becomes 36 1m6 1(mod 7). So, 3 6m 6

Therefore, 1 1 1 2 2 2 3 3 3X c m m c m m c m m1 1 1 2 2 2 3 3 3X c m m c m m c m mX c m m c m m c m mX c m m c m m c m m1 1 1 2 2 2 3 3 3X c m m c m m c m m1 1 1 2 2 2 3 3 3

315 224 720
1259 139 (mod 140)
315 224 720
1259 139 (mod 140)

So, X = 139 is a solution.

Problem 28: Find three consecutive integers, first of which is divisible by square of a prime,
second divisible by cube of a prime and third divisible by fourth power of a prime.
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Solution: Let x, x + 1, x + 2 be three consecutive integers such that x  0 (mod 52),
x  1 (mod 33), x  2 (mod 24)

Then c1 = 0, c2 = 1, c3 = 2, M = 10800
m1 = 432, m2 = 400, m3 = 675

Consider 2 2 1m m 1(mod 27). Then 400 2 1m 1(mod 27)

becomes 222 1m22 1(mod 27) or 25 1m25 15 125 125 1m5 1 (mod 27). So, 2 16m 16

Consider 3 3 1m m 1(mod 16). Then 675 3 1m 1(mod 16)

becomes 33 1m3 1 (mod 16). So, 3 5m 5

Therefore, 2 2 2 3 3 3X c m m c m m2 2 2 3 3 3X c m m c m mX c m m c m m2 2 2 3 3 3X c m m c m m2 2 2 3 3 3

6400 6750
350

6400 6750
350

Hence, 350, 351 and 352 are the required integers.
Before we finish with this chapter we recall the Well Ordering Principle, which states that

any non empty subset of real numbers which is bounded below has least element. It is sometimes
denoted by W.O.P.

Exercises
1. Prove that if a and b are integers with b > 0, then there exist unique integers q and

r satisfying a = qb + r, where 2b  r < 3b.
2. Use Euclid’s algorithm to establish that

(i) every odd integer is of the form 4k + 1 or 4k + 3.
(ii) the square of any integer is either of the form 3k or 3k + 1.

(iii) the cube of any integer is of the from 9k, 9k + 1 or 9k + 8.
3. If (a, b) = 1, show that (a + b, a – b) is either 1 or 2.
4. If (a, b) = 1, show that

(i) (2a + b,  a + 2b) = 1 or 3
(ii) (a + b,  a2 + b2) = 1 or 2

(iii) (ac, b) = (c, b)
5. Given x and y, let m = ax + by, n = cx + dy, where ad – bc = ±1. Prove that

(m, n) = (x, y).
6. Let n = 22n + 1. Prove that if n < m, then n divides m – 2. ( n is called Fermat

number).
7. Prove that if n  m, ( n, m) = 1.
8. Prove that l.c.m.(ab, ad) = a [l.c.m.(b,  d)].
9. Prove that if a,  b are non zero integers, then g.c.d.(a, b) l.c.m.(a,  b).

10. Prove that if 2n + 1 is prime, then n is a power of 2.
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11. Let d = (826, 1890). Use Euclid’s algorithm to compute d and then express d  as a
linear combination of 826 and 1890.

12. Show that an bn implies a b.
13. Determine all solutions in the positive integers of the following Diophantine equation

172x + 20y = 100. (Ans. (5, 7))
14. Find the remainder when 4165 is divided by 7.
15. Give an example to show that a2  b2 (mod n) need not imply that a  b (mod n).
16. Prove that if ab  cd (mod n) and b  d (mod n) with g.c.d.(b, n) = 1, then a 

c (mod n).
17. If a   b(mod n1), and a c(mod n2), prove that b  c (mod n) where

n = (n1,  n2).
18. Which of the following congruences hold
(i) 12,  345,  678,  987,  654,  321  0 (mod 12,  345,  678)

(ii) 12,  345,  678,  987,  654,  321  0 (mod 12,  345,  679)
19. Solve the system of congruences
(i) x  5 (mod 7), x  3 (mod 5), x  2 (mod 8), x  2 (mod 3)

(ii) x  4 (mod 5), x  6 (mod 8), x  2 (mod 3)

20. Prove that if  a ,
2
k ,
2
k b

2
k
2
k and a  b (mod k), then a = b.

21. Prove that if bd  bd  (mod p) where p = prime and p b then d  d (mod p).

If A and B are two non-empty sets then any subset of A×B is called a relation
from A to B.
A relation f from A to B is called a function or a mapping from A to B, if for every a
in A there exists a unique b in B s.t., (a, b) belongs to A × B, and in that case we
write b =  f(a) and b is called image of a under f. We express this by writing
 f: A B. Thus a mapping from A to B is a rule that connects each element of A to
a unique element of B
A mapping  f: A B is called one-one if  f (x) = f (y)  x = y. It is called onto, if for
every b in B there exists an a in A s.t., f(a) = b, and a is then called pre-image of b.
A mapping  f: A × A A is called a binary composition or a binary operation.
Thus a binary composition ‘joins’ two elements of a set to give a unique element
of the same set.
A one-one onto mapping from A A is called a permutation.
Prime and composite numbers, congruence relations, g.c.d., l.c.m., Basis
representation theorem, Chinese remainder theorem have been discussed in the
later part of this chapter.

A Quick Look at what's been done
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Definition: A non empty set G, together with a binary composition * (star) is said to form
a group, if it satisfies the following postulates

(i) Associativity: a * (b * c)  = (a * b) * c, for all a, b, c  G
(ii) Existence of Identity:  an element e  G, s.t.,

a * e = e * a = a for all a  G
(e is then called identity)

(iii) Existence of Inverse: For every a  G,  a   G (depending upon a) s.t.,
a * a  = a  * a = e
(a  is then called inverse of a)

Remarks: (i) Since * is a binary composition on G, it is understood that for all a, b  G,
a * b is a unique member of G. This property is called closure property.

(ii) If, in addition to the above postulates, G also satisfies the commutative law
a * b = b * a for all a, b  G

then G is called an abelian group or a commutative group.
(iii) Generally, the binary composition for a group is denoted by ‘.’ (dot) which is so

convenient to write (and makes the axioms look so natural too).
This binary composition ‘.’ is called product or multiplication (although it may have

nothing to do with the usual multiplication, that we are so familiar with). In fact, we even
drop ‘.’ and simply write ab in place of a . b.

In future, whenever we say that G is a group it will be understood that there exists a
binary composition ‘.’ on G and it satisfies all the axioms in the definition of a group.

If the set G is finite (i.e., has finite number of elements) it is called a finite group otherwise,
it is called an infinite group.

Groups

2

Introduction
In the previous chapter we studied the notions of relations, maps and in particular binary
compositions. We now come to the study of different algebraic structures or algebraic
systems, which means a non empty set with one or more binary compositions. We start
with groups which occupy a very important seat in the study of abstract algebra.
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We shall always (unless stated otherwise) use the symbols e for identity of a group and
a–1 for inverse of element a of the group.

Definition: By order of a group, we will mean the number of elements in the group and
shall denote it by o(G) or | G |.

We now consider a few examples of systems that form groups (or do not form groups).

Example 1: The set Z of integers forms an abelian group w.r.t. the usual addition of integers.
It is easy to verify the postulates in the definition of a group as sum of two integers is

a unique integer (thus closure holds). Associativity of addition is known to us. 0 (zero) will
be identity and negatives will be the respective inverse elements. Commutativity again being
obvious.

Example 2: One can easily check, as in the previous example, that sets Q of rationals, R
of real numbers would also form abelian groups w.r.t. addition.

Example 3: Set of integers, w.r.t. usual multiplication does not form a group, although
closure, associativity, identity conditions hold.

Note 2 has no inverse w.r.t. multiplication as there does not exist any integer a s.t.,
2 . a = a . 2 = 1.

Example 4: The set G of all +ve irrational numbers together with 1 under multiplication
does not form a group as closure does not hold. Indeed 3 . 3  = 3  G, although one
would notice that other conditions in the definition of a group are satisfied here.

Example 5: Let G be the set {1, – 1}. Then it forms an abelian group under multiplication.
It is again easy to check the properties.

1 would be identity and each element is its own inverse.

Example 6: Set of all 2 × 2 matrices over integers under matrix addition would be another
example of an abelian group.

Example 7: Set of all non zero complex numbers forms a group under multiplication defined
by

(a + ib) (c + id) = (ac – bd) + i (ad + bc)
1 = 1 + i.0 will be identity,

2 2 2 2
a bi

a b a b
a bia bia b

2 2 2 2a b a b2 2 2 2a b a b2 2 2 22 2 2 2i2 2 2 2i2 2 2 22 2 2 2a b a b2 2 2 2  will be inverse of a + ib.

Note a + ib non zero means that not both a & b are zero. Thus a2 + b2  0.

Example 8: The set G of all nth roots of unity, where n is a fixed positive integer forms
an abelian group under usual multiplication of complex numbers.

We know that complex number z is an nth root of unity if zn = 1 and also that there exist
exactly n distinct roots of unity.

In fact the roots are given by 2 /ir ne2 /ir n2 /ir n2 /
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where r = 1, 2, ..., n and eix = cos x + i sin x.
If a, b  G be any two members, then an = 1, bn = 1 thus (ab)n = an bn = 1.

 ab is an nth root of unity
 ab  G  closure holds.

Associativity of multiplication is true in complex numbers.
Again, since 1. a = a . 1 = a, 1 will be identity.

Also for any a  G, 1
a

 will be its inverse as 1 n

a
1 n1
aa

 = 1
na

 = 1.

So, inverse of e2 ir/n is e2 i(n –r)/n and identity is e2 i0/n = 1
Commutativity being obvious, we find G is an abelian group.
As a particular case, if n = 4 then G is {1, – 1, i, – i}

Example 9: (i) Let G = {± 1, ± i, ± j, ± k}. Define product on G by usual multiplication
together with

i2 = j2 = k2 = – 1, ij = – ji = k
jk = – kj = i
ki = – ik = j

then G forms a group. G is not abelian as ij  ji.
This is called the Quaternion Group.

(ii) If set G consists of the eight matrices

1 0 1 0 0 0 0 1 0 1
, , , , , ,

0 1 0 1 0 0 1 0 1 0
i i

i i
1 0 1 0 0 0 0 1 0 11 0 1 0 0 0 0 1 0 11 0 1 0 0 0 0 1 0 1i i1 0 1 0 0 0 0 1 0 1

, , , , , ,, , , , , ,
0 1 0 1 0 0 1 0 1 0

, , , , , ,
0 1 0 1 0 0 1 0 1 0

, , , , , ,
0 1 0 1 0 0 1 0 1 0

, , , , , ,
0 1 0 1 0 0 1 0 1 0i i0 1 0 1 0 0 1 0 1 0i i0 1 0 1 0 0 1 0 1 0

, , , , , ,
0 1 0 1 0 0 1 0 1 0

, , , , , ,
0 1 0 1 0 0 1 0 1 0

, , , , , ,
0 1 0 1 0 0 1 0 1 0i i0 1 0 1 0 0 1 0 1 0

, , , , , ,
0 1 0 1 0 0 1 0 1 0

, , , , , ,
i i

, , , , , ,
0 1 0 1 0 0 1 0 1 0

, , , , , ,

0 0
,

0 0
i i

i i
0 0i i0 0i i0 0i i

,
0 0i i0 0i i0 00 0

,
0 0

,
0 0

,
i i0 0i i0 0

,
0 0

,
i i

,
0 0

,
0 00 0i i0 00 00 0i i0 0

, where i = 11

then G forms a non abelian group under matrix multiplication. (Compare with part (i)).

Example 10: Let G = {(a, b) | a, b rationals, a  0}. Define * on G by
(a, b) * (c, d) = (ac, ad + b)

Closure follows as a, c  0  ac  0
[(a, b) * (c, d)] * (e, f ) = (ac, ad + b) * (e, f )

= (ace, acf + ad + b)
(a, b) * [(c, d) * (e, f )] = (a, b) * (ce, cf + d)

= (ace, acf + ad + b)
proves associativity.
(1, 0) will be identity and (1/a, – b/a) will be inverse of any element (a, b).
G is not abelian as

(1, 2) * (3, 4) = (3, 4 + 2) = (3, 6)
(3, 4) * (1, 2) = (3, 6 + 4) = (3, 10).
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Example 11 (a): The set G of all 2 × 2 matrices of the form 
a b
c d
a b
c dc d

 over reals, where ad

– bc  0, i.e., with non zero determinant forms a non abelian group under matrix multiplication.
It is called the general linear group of 2 × 2 matrices over reals and is denoted by

GL(2, R).

The matrix 
1 0
0 1
1 0
0 10 1

 will act as identity and

the matrix 

d b
ad bc ad bc

c a
ad bc ad bc

d bd b
ad bc ad bcad bc ad bcad bc ad bcad bc ad bcad bc ad bcad bc ad bc

c ac ac ac a
ad bc ad bcad bc ad bcad bc ad bcad bc ad bc

 will be inverse of 
a b
c d
a b
c dc d

.

one can generalise and prove
(b) If G be the set of all n × n invertible matrices over reals, then G forms a group under

matrix multiplication.

(c) The set of 2 × 2 matrices over R with determinant value 1 forms a non abelian group
under matrix multiplication and is called the special linear group, denoted by SL(2, R).

One can take any field (e.g., Q, C or Zp) in place of R in the above examples.

Example 12: Let G = {2r | r = 0, ±1, ±2, ...}
We show G forms a group under usual multiplication.
For any 2r, 2s  G, 2r. 2s = 2r + s  G
Thus closure holds.
Associativity is obvious.
Again as 1  G, and x . 1 = 1 . x = x for all x  G
1 is identity.
For any 2r  G, as 2–r  G and 2r. 2–r = 20 = 1,
we find each element of G has inverse. Commutativity is evidently true.

Example 13: Group of Residues : Let G = {0, 1, 2, 3, 4}. Define a composition 5 on G
by a 5 b = c where c is the least non –ve integer obtained as remainder when a + b is
divided by 5. For example. 3 5 4 = 2, 3 5 1 = 4, etc. Then 5 is a binary composition
on G (called addition modulo 5). It is easy to verify that G forms a group under this.

One can generalise this result to
G = {0, 1, 2, ..., n – 1}

under addition modulo n where n is any positive integer.
We thus notice

a n b = 
if
if

a b a b n
a b n a b n
a b a b nifa b a b nifa b a b na b a b na b a b na b a b n
a b n a b nifa b n a b nifa b n a b na b n a b na b n a b na b n a b n
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Also, in case there is no scope of confusion we drop the sub suffix n and simply write
. This group is generally denoted by Zn.

Example 14: Let G = {x  Z | 1  x < n, x, n being co-prime} where Z = set of integers
and x, n being co-prime means H.C.F of x and n is 1.

We define a binary composition  on G by a  b = c where c is the least +ve remainder
obtained when a . b is divided by n. This composition  is called multiplication modulo n.

We show G forms a group under .
Closure: For a, b  G, let a b = c. Then c  0, because otherwise n | ab which is not

possible as a, n and b, n are co-prime.
Thus c  0 and also then 1  c < n.
Now if c, n are not co-prime then  some prime no. p s.t., p |c and p |n.
Again as ab = nq + c for some q
We get p |ab [p |n  p |nq, p |c  p |nq + c]
 p |a or p |b (as p is prime)
If p |a then as p |n it means a, n are not co-prime.
But a, n are co-prime.
Similarly p |b leads to a contradiction.
Hence c, n are co-prime and thus c  G, showing that closure holds.
Associativity: Let a, b, c  G be any elements.
Let a  b = r1, (a  b)  c = r1  c = r2

then r2 is given by r1c = nq2 + r2

Also a b = r1 means
ab = q1n + r1

thus ab – q1n = r1

 (ab – q1n)c = r1c = nq2 + r2

 (ab)c = r2 + nq2 + nq1c = n(q1c + q2) + r2

or that r2 is the least non-negative remainder got by dividing (ab)c by n.
Similarly, if a  (b c) = r3 then we can show that r3 is the least non –ve remainder

got by dividing a(bc) by n.
But since a(bc) = (ab)c, r2 = r3

Hence a  (b  c) = (a b)  c.
Existence of Identity: It is easy to see that

a  1 = 1 a = a for all a  G
or that 1 will act as identity.
Existence of Inverse: Let a  G be any element then a and n are co-prime and thus we

can find integers x and y s.t., ax + ny = 1
By division algorithm, we can write

x = qn + r, where 0  r < n
 ax = aqn + ar
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 ax + ny = aqn + ar + ny
 1 = aqn + ar + ny

or that ar = 1 + (–aq – y)n
i.e., a  r = 1. Similarly r  a = 1. If r, n are co-prime, r will be inverse of a.
If r, n are not co-prime, we can find a prime number p s.t., p | r, p | n

 p | qn and p | r
 p | qn + r
 p | x
 p | ax also p | ny
 p | ax + ny = 1

which is not possible. Thus r, n are co-prime and so r  G and is the required inverse of
a.

It is easy to see that G will be abelian. We denote this group by Un or U(n) and call it
the group of integers under multiplication modulo n.

Remark: Suppose n = p, a prime, then since all the integers 1, 2, 3, ..., p – 1 are co-prime
to p, these will all be members of G. One can show that

G = {2, 4, 6, ..., 2(p – 1)}
where p > 2 is a prime forms an abelian group under multiplication modulo 2p.

Example 15: Let G = {0, 1, 2} and define * on G by
a * b = | a – b |

Then closure is established by taking a look at the composition table

0 1 2*
0 0 1 2
1 1 0 1
2 2 1 0

Since a * 0 = | a – 0 | = a = 0 * a, 0 is identity
and a * a = | a – a | = 0 shows each element will be its own inverse.
But the system (G, *) fails to be a group as associativity does not hold.
Indeed 1 * (1 * 2) = 1 * 1 = 0
but (1 * 1) * 2 = 0 * 2 = 2

Example 16: Let S = {1, 2, 3} and let S3 = A(S) = set all permutations of S. We showed
in the previous chapter that this set satisfies associativity, existence of identity and existence
of inverse conditions in the definition of a group. Also clearly, since f, g permutations on
S imply that fog is a permutation on S the closure property is ensured. Hence S3 forms a
group. That it is not abelian follows  by the fact that fog gof (see details in previous
chapter under permutations). This would, in fact, be the smallest non abelian group and we
shall have an occasion to talk about this group again under the section on permutation
groups.
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Remark: Let X be a non empty set and let M(X) = set of all maps from X to X, then A(X)
M(X). M(X) forms a semi group (see definition ahead) under composition of maps. Identity

map also lies in M(X) and as a map is invertible iff it is 1-1, onto i.e., a permutation, we
find A(X) the subset of all permutations forms a group, denoted by SX  or Sym(X) and is
called symmetric group of X. If X is finite with say, n elements then o(M(X)) = nn and o(SX)
= n  and in that case we use the notation Sn for SX.

In the definition of a group, we only talked about the existence of identity and inverse
of each element. We now show that these elements would also be unique, an elementary
but exceedingly useful result. We prove it along with some other results in

Lemma: In a group G,
(1) Identity element is unique.
(2) Inverse of each a G is unique.
(3) (a–1)–1 = a, for all a  G, where a–1 stands for inverse of a.
(4) (ab)–1 = b–1 a–1 for all a, b  G
(5) ab = ac  b = c

ba = ca  b = c for all a, b, c  G
(called the cancellation laws).

Proof: (1) Suppose e and e  are two elements of G which act as identity.
Then, since e  G and e  is identity,

e e = ee = e
and as e  G and e is identity

e e = ee  = e
The two  e = e
which establishes the uniqueness of identity in a group.

(2) Let a  G be any element and let a  and a  be two inverse elements of a, then
aa = a a = e
aa = a a = e

Now a = a e = a (aa ) = (a a)a  = ea  = a .
Showing thereby that inverse of an element is unique. We shall denote inverse of a
by a–1.

(3) Since a–1 is inverse of a
aa–1 = a–1a = e62

which also implies a is inverse of a–1

Thus (a–1)–1 = a.
(4) We have to prove that ab is inverse of b–1a–1 for which we show

(ab) (b–1a–1) = (b–1a–1) (ab) = e.
Now (ab) (b–1a–1) = [(ab) b–1] a–1

= [(a(bb–1)] a–1

= (ae) a–1 = aa–1 = e



52 A Course in Abstract Algebra

Similarly (b–1a–1) (ab) = e
and thus the result follows.

(5) Let ab = ac, then
b = eb = (a–1a)b

= a–1(ab) = a–1 (ac)
= (a–1 a)c = ec = c

Thus ab = ac  b = c
which  is called the left cancellation law.
One can similarly, prove the right cancellation law.

Example 17 (a): Let X = {1, 2, 3} and let S3 = A(X) be the group of all permutations on
X. Consider f, g, h  A(X), defined by

f (1) = 2, f (2) = 3, f (3) = 1
g (1) = 2, g (2) = 1, g(3) = 3
h (1) = 3, h(2) = 1, h(3) = 2

It is easy then to verify that fog = goh
But f  h.
(b) If we consider the group in example 10, we find

(1, 2) * (3, 4) = (3, 6) = (3, 0) * (1, 2)
But (3, 4)  (3, 0)
Hence we notice, cross cancellations may not hold in a group.

Theorem 1: For elements a, b in a group G, the equations ax = b and ya = b have unique
solutions for x and y in G.

Proof: Now ax = b
 a–1(ax) = a–1b
 ex = a–1b

or x = a–1b
which is the required solution of the equation ax = b.
Suppose x = x1 and x = x2 are two solutions of this equation, then

ax1 = b and ax2 = b
 ax1 = ax2

 x1 = x2 by left cancellation
Showing that the solution is unique.
Similarly y = ba–1 will be unique solution of the equation ya = b.

Theorem 2: A non empty set G together with a binary composition ‘.’ is a group if and only
if

(1) a(bc) = (ab)c for all a, b, c  G
(2) For any a, b  G, the equations ax = b and ya = b have solutions in G.
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Proof: If G is a group, then (1) and (2) follow by definition and previous theorem.
Conversely, let (1) and (2) hold. To show G is a group, we need prove existence of identity
and inverse (for each element).

Let a  G be any element.
By (2) the equations ax = a

ya = a
have solutions in G.
Let x = e and y = f  be the solutions.
Thus  e, f  G, s.t., ae = a

fa = a
Let now b G be any element then again by (2)  some x, y in G s.t.,

ax = b
ya = b.

Now ax = b  f. (a . x) = f . b
 (f . a) . x = f . b
 a . x = f . b
 b = f . b

Again y . a = b  (y . a) . e = b . e
 y . (a . e) = b . e
 y . a = be
 b = be

thus we have b = f b ...(i)
b = be ...(ii)

for any b G
Putting b = e in (i) and b = f in (ii) we get

e = fe
f = fe

 e = f.
Hence ae = a = fa = ea
i.e.,  e  G, s.t., ae = ea = a

 e is identity.
Again, for any a  G, and (the identity) e  G, the equations ax  = e and

ya = e have solutions.
Let the solutions be x = a1, and y = a2

then aa1 = e, a2a = e
Now a1 = ea1 = (a2a)a1 = a2(aa1) = a2e = a2.
Hence aa1 = e = a1a  for any a  G
i.e., for any a  G,  some a1  G satisfying the above relations  a has an inverse.

Thus each element has inverse and, by definition, G forms a group.
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Remark: While proving the above theorem we have assumed that equations of the type ax
= b and ya = b have solutions in G. The result may fail, if only one type of the above
equations has solution. Consider for example:

G to be a set with at least two elements. Define ‘.’ on G by a . b = b for all a, b  G.
then a . (b . c) = a . c = c

(a . b) . c = b . c = c
shows associativity holds.

Again as ab = b, the equation ax = b has a solution for any a, b G.
We notice that G is not a group, as cancellation laws do not hold in G.
As let a, b  G be any two distinct members, then

ab = b
bb = b  ab = bb

But a  b.

Definition: A non empty set G together with a binary composition ‘.’ is called a semi-group
if

a . (b . c) = (a . b) . c for all a, b, c  G
Obviously then every group is a semi-group. That the converse is not true follows by

considering the set N of natural numbers under addition.
The set G in example 15 is not a semi group.

Theorem 3: Cancellation laws may not hold in a semi-group.

Proof:  Consider M the set of all 2 × 2 matrices over integers under matrix multiplication,
which forms a semi-group.

If we take A = 
1 0
0 0
1 0
0 00 0

, B = 
0 0
0 2
0 0
0 20 2

, C = 
0 0
3 0
0 0
3 03 0

then clearly AB = AC = 
0 0
0 0
0 0
0 00 0

But B  C.
Set of natural numbers under addition is an example of a semi-group in which cancellation

laws hold.

Theorem 4: A finite semi-group in which cancellation laws hold is a group.

Proof: Let G = {a1, a2, ..., an} be a finite semi-group in which cancellation laws hold.
Let a  G be any element, then by closure property

aa1, aa2, ..., aan
are all in G.

Suppose any two of these elements are equal
say, aai = aaj for some i  j
then ai = aj by cancellation
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But ai  aj as i  j
Hence no two of  aa1, aa2, ..., aan  can be equal.
These being n in number, will be distinct members of G (Note o(G) = n).
Thus if b  G be any element then

b = aai for some i
i.e., for a, b  G the equation ax = b has a solution (x = ai) in G.
Similarly, the equation ya = b will have a solution in G.
G being a semi-group, associativity holds in G.
Hence G is a group (by theorem 2).

Remark: The above theorem holds only in finite semi-groups. The semi-group of natural
numbers under addition being an example where cancellation laws hold but which is not a
group.

Theorem 5: A finite semi-group is a group if and only if it satisfies cancellation laws.

Proof: Follows by previous theorem.

Definition: A non empty set G together with a binary composition ‘.’ is said to form a
monoid if

(i) a(bc) = (ab)c  a, b, c  G
(ii)  an element e  G s.t., ae = ea = a  a  G
e is then called identity of G. It is easy to see that e is unique.
So all groups are monoids and all monoids are semi-groups.
When we defined a group, we insisted that  an element e which acts both as a right as

well as a left identity and each element has both sided inverse. We show now that it is not
really essential and only one sided identity and the same sided inverse for each element could
also make the system a group.

Theorem 6: A system < G, . > forms a group if and only if
(i) a(bc) = (ab)c for all a, b, c  G
(ii)  e  G, s.t., ae = a for all a G
(iii) for all a  G,  a   G, s.t., aa  = e.

Proof: If G is a group, we have nothing to prove as the result follows by definition.
Conversely, let the given conditions hold.

All we need show is that ea = a for all a  G
and a a = a for any a  G
Let a  G be any element.
By (iii)  a   G, s.t., aa  = e

 For a   G,  a   G, s.t., a a  = e (using (iii))
Now a a = a (ae) = (a a)e = (a a)(a a )

= a (aa )a  = a (e)a  = (a e)a  = a a = e.
Thus for anya  G,  a   G, s.t., aa  = a a = e
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Again ea = (aa )a = a(a a) = ae = a
ae = ea = a for all a  G

i.e., e is identity of G.
Hence G is a group.
(See Problem 6 for another proof).
It would now be a routine exercise to prove

Theorem 7: A system < G, . > forms a group if and only if
(i) a(bc) = (ab)c for all a, b, c  G
(ii)  e  G, s.t., ea = a for all a  G
(iii) for all a  G,  some a  G, s.t., a a = e.

A natural question to crop up at this stage would be what happens, when one sided
identity and the other sided inverse exists. Would such a system also form a group? The
answer to which is provided by

Example 18. Let G be a finite set having at least two elements. Define ‘.’ on G by
ab = b for all a, b  G

then clearly associativity holds in G.
Let e  G by any fixed element.
Then as ea = a for all a  G
e will act as left identity.
Again a . e = e for all a  G
 e is right inverse for any element a  G.
But we know G is not a group (cancellation laws do not hold in it).
Hence for a system < G, . > to form a group it is essential that the same sided identity

and inverse exist.

A Notation: Let G be a group with binary composition ‘.’. If a  G be any element then
by closure property a . a 

 be a group with binary composition ‘.’. If 
 G. Similarly (a . a) . a 

 be a group with binary composition ‘.’. If 
 G and so on.

It would be very convenient (and natural!) to denote a . a by a2 and a . (a . a) or (a . a). a
by a3 and so on. Again a–1. a–1 would be denoted by a–2. And since a . a–1 = e, it would
not be wrong to denote e = a0. It is now a simple matter to understand that under our
notation

am . an = am+n

(am)n = amn

where m, n are integers.
In case the binary composition of the group is denoted by +, we will talk of

sums and multiples in place of products and powers. Thus here 2a = a + a, and na = a
+ a + ... + a (n times), if n is a +ve integer. In case n is –ve integer then n = – m, where
m is +ve and we define na = – ma = (– a) + (– a) + ... + (– a) m times.

Problem 1: If G is a finite group of order n then show that for any a  G,  some positive
integer r, 1 

If G is a finite group of order n then show that for any a 
 r 

If G is a finite group of order n then show that for any a 
 n, s.t., ar = e.
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Solution: Since o(G) = n, G has n elements.
Let a  G be any element. By closure property a2, a3, ... all belong to G.
Consider e, a, a2, ..., an

These are n + 1 elements (all in G). But G contains only n elements.
 at least two of these elements are equal. If any of a, a2, ..., an equals e, our result

is proved. If not, then ai = aj for some i, j, 1  i, j  n. Without any loss of generality, we
can take i  j

then ai = aj

 ai . a–j = a j . a–j

 ai–j = e where 1  i – j  n.
Putting i – j = r gives us the required  result.

Problem 2: Show that a finite semi-group in which cross cancellation holds is an abelian group.

Solution: Let G be the given finite semi-group. Let a, b  G be any elements.
Since G is a semi-group, by associativity

a(ba) = (ab)a
By cross cancellation then ba = ab  G is abelian.
Since G is abelian, cross cancellation laws become the cancellation laws. Hence G is a

finite semi-group in which cancellation laws hold.
Thus G is a group.

Problem 3: If G is a group in which (ab)i = aibi for three consecutive integers i and any
a, b in G, then show that G is abelian.

Solution: Let n, n + 1, n + 2 be three consecutive integers for which the given condition
holds. Then for any a, b 

 + 2 be three consecutive integers for which the given condition
 G,

(ab)n = anbn ...(1)
(ab)n+1 = an+1bn+1 ...(2)
(ab)n+2 = an+2bn+2 ...(3)

Now (ab)n+2 = an+2bn+2

 (ab)(ab)n+1 = an+2 bn+2

 (ab)(an+1bn+1) = an+2 bn+2

 ban+1 = an+1b (using cancellation) ...(4)
Similarly (ab)n+1 = an+1bn+1

gives (ab)(ab)n = an+1bn+1

i.e., (ab)(anbn) = an+1bn+1

 ban = anb
 ban+1 = anba
 an+1b = anba using (4)
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 ab = ba.
Hence G is abelian.

Remark: Conclusion of the above result may not follow if the given result holds only for
two consecutive integers.

Consider, for example, the Quaternion group. One can check that (ab)i = aibi for i = 4, 5
but the group is not abelian.

See also Exercise 6 on Page 25.

Problem 4: Suppose (ab)n = anbn for all a, b  G where n > 1 is a fixed integer.
Show that (i) (ab)n–1 = bn–1an–1

(ii) an bn–1 = bn–1an

(iii) (aba–1b–1)n(n – 1) = e for all a, b  G

Solution: (i) We have
[b–1(ba)b]n = b–1(ba)nb

and [b–1(ba)b]n = (ab)n

(ab)n = b–1(ba)nb
 (ab)n–1ab = b–1(bnan)b
 (ab)n–1 = bn–1an–1 for all a, b  G

(ii) Now (a–1b–1ab)n = a–nb–nanbn

and (a–1b–1ab)n = a–n(b–1ab)n

= a–nb–1anb
a–nb–nanbn = a–nb–1anb

 anbn–1 = bn–1an for all a, b  G
(iii) Consider (aba–1b–1)n(n–1)

= [(aba–1b–1)n–1]n

= [(ba–1b–1)n–1an–1]n by (i)
= [ba–(n–1)b–1an–1]n = [b(a–(n–1)b–1an–1)]n

= bn(a–(n–1)b–1an–1)n = bna–(n–1)b–nan–1

= a–(n–1)bnb–nan–1 by (ii)
= e for all a, b  G.

Problem 5: Let G be a group and suppose there exist two relatively prime positive integers
m and n such that ambm = bmam and anbn = bnan for all a, b 

Let G be a group and suppose there exist two relatively prime positive integers
 G. Show that G is abelian.

Solution: Since m, n are relatively prime, there exist integers x and y such that
mx + ny = 1.

For any a, b we have
(ambn)mx = (ambn)(ambn)......(ambn) mx times

= am(bnambn......bnam)bn
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= am(bnam)mx–1bn

= am(bnam)mx(bnam)–1bn

= amcm(bnam)–1bn where c = (bnam)x

= cmam(bnam)–1bn

= cm ama–mb–nbn = cm = (bnam)mx

Similarly (ambn)ny = (bnam)ny

giving (ambn)mx + ny = (bnam)mx + ny

 ambn = bnam for all a, b  G ...(1)
Now ab = amx + ny bmx + ny

= amx . (any bmx)bny

= amx(am km)bny where d = ay, k = bx

= amx(km dn)bny by (1)
= amx . bmx . any . bny

= (ax)m . (bx)m . (ay)n . (by)n

= (bx)m . (ax)m . (by)n. (ay)n

= bmx(amx . bny) . any = bmx (bny . amx) . any

= bmx + ny . amx + ny = ba.
Hence G is abelian.

Remark: In the following problem we give another proof to theorem 6 done earlier.

Problem 6: Let G be a semi-group, Suppose  e  G, s.t., ae = a  for all a  G and for
each a  G, 

Let G be a semi-group, Suppose 
 a

Let G be a semi-group, Suppose 
 

Let G be a semi-group, Suppose 
 G, s.t., aa

Let G be a semi-group, Suppose 
 = e. Show that G is a group.

Solution: We first show that G satisfies the right cancellation law.
Let ac = bc.
As given  c   G, s.t., cc  = e

(ac)c  = (bc)c
 a(cc ) = b(cc )
 ae = be  a = b.

We now show that e is left identity.
Consider, (ea)a = e(aa ) = e . e = e
Also aa = e

aa = (ea) = a
By right cancellation law,

a = ea for all a  G
e is also left identify of G.

Again (a a)a  = a (aa ) = a e = a
and ea  = a

 (a a)a  = ea
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 a a = e by right cancellation law
 a  is also left inverse of a

So, G is a group.

Problem 7: If in a semi-group S, x2y = y = yx2 x, y, then show that S is abelian.

Solution: x2y = y  x2y2 = y2

yx2 = y x, y  S
 xy2 = x x, y  S
 x2y2 = x2

So x2 = y2  x, y  S
Now x2y = y  y2y = y  y3 = y  y  S
Also yx2y = y2 ...(i)
Now xy2 = x  xy2x = x2 ...(ii)
By (i) and (ii), xy2x = yx2y
Since y = y3  y  S, we get

xy = (xy)3 = xy xy xy
= xy xy x3y = x(yx)2x(xy)
= (yx)x2(yx) (xy)
= yx3 yx2y = yxy x2y
= (yx)xy2x
= yx2y2x
= y(y2x) (as y = yx2)
= y3x
= yx (as y3 = y)

Thus xy = yx  x, y  S
Hence S is abelian.

Problem 8: If G is a semi-group such that given a  G,  unique a   G such that aa  a
= a, then show that G is a group.

Solution: Let e, f be idempotents in G, i.e. , e2 = e, f 2 = f. (See Exercise 8).
We show (ef)2 = ef.

Now ef  G   g G, s.t.,
(ef ) g (ef ) = ef ...(i)

Also ef (gefg) ef = (efgef ) gef = (ef ) gef = ef
 g = gefg ...(ii)

Again, (ef ) (ge) (ef ) = efgef = ef
 ge = g ...(iii)
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Also, ef (fg) ef = efgef = ef
 fg = g ...(iv)

Now g2 = (ge) (fg) by (iii) and (iv)
= g(ef ) = g by (ii)

i.e., g is an idempotent.
Also, g3 = g2g = gg = g  ggg = g
But g(ef ) g = g and so g = ef and
Thus ef is an idempotent, i.e., (ef )2 = ef
Now (ef ) f (ef ) = (ef ) (ef ) = ef
and (ef ) e (ef ) = ef
 f = e showing thereby that G has unique idempotent, say e.
Now aa a = a  (a a)2 = a a  a a is an idempotent.

 a a = e.
Similarly aa  = e
Now a = aa a = ae

a = aa a = ea
 ae = ea = a  a  G
 e is identity of G.

Also given a  G, aa  = e = a a showing that a  is inverse of a.
Hence G is a group.

Exercises
1. Check whether the following systems form a group (a semi-group) or not

(a) G = set of rational numbers under composition * defined by a * b = 
2

ab , a,

b  G

(b) G = {± 1, ± i}, where i = 11  under multiplication.
(c) G = {1, w, w2} where w is cube root of unity under multiplication.
(d) Set of all 2 × 2 matrices over integers under matrix multiplication.

(e) Set of all matrices of the form
cos sin
– sin θ cos θ
cos sincos sin
– sin θ cos θ– sin θ cos θ

,   R, under matrix

multiplication.
(f ) Q = set of all rational numbers under * where a * b = a + b – ab.
(g) G = {2, 4, 6, 8} under multiplication modulo 10.
(h) G = {1, 2, 3} under multiplication modulo 4.
(i) G = {(a, b) | a, b  Z} under * defined by

(a, b) * (c, d) = (ac + bd, ad + bc).
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2. Let M = | , reals, 0
a a

a b a b
b b
a a

| , reals, 0a b a b| , reals, 0
a a

| , reals, 0a b a b| , reals, 0a b a b| , reals, 0a b a b| , reals, 0| , reals, 0| , reals, 0a b a b| , reals, 0| , reals, 0| , reals, 0a b a b| , reals, 0| , reals, 0a b a b| , reals, 0a b a b| , reals, 0| , reals, 0| , reals, 0a b a b| , reals, 0| , reals, 0| , reals, 0a b a b| , reals, 0| , reals, 0a b a b| , reals, 0a b a b| , reals, 0| , reals, 0| , reals, 0a b a b| , reals, 0| , reals, 0| , reals, 0a b a b| , reals, 0| , reals, 0| , reals, 0a b a b| , reals, 0| , reals, 0| , reals, 0a b a b| , reals, 0| , reals, 0| , reals, 0a b a b| , reals, 0| , reals, 0| , reals, 0
b bb b

| , reals, 0
b b . Show that M is a semi-group under matrix

multiplication and has a right identity and a left inverse for each element. Show that
M does not form a group.

3. Let G be the set {± e, ± a, ± b, ± c} where

e = 
1 0
0 1
1 0
0 10 1

, a = 
1 0
0 1
1 0
0 10 10 10 1

, b = 
0 1
1 0
0 10 1
1 01 0

, c = 
0 1
1 0
0 1
1 01 0

.

Show that G forms a group under matrix multiplication.
4. Let (G, o) be a group. Define * on G by a * b = boa. Is (G, *) a group?

5. Let R  = R –{0}, where R = reals. Define * on R
by x * y = xy if x > 0

= x/y if x < 0

Show that ( R , *) is non abelian group.
6. Show that a group G is abelian iff (ab)2 = a2b2.
7. Prove that a group in which every element is its own inverse is abelian.
8. In a group G, an element a is called Idempotent if a2 = a. Show that a is idempotent

iff a = e.
9. Find all the elements in U15, that satisfy a2 = 1.

10. Show that if G be a group of even order then it has at least one element
(  e) which is its own inverse.

11. (i) Show that the power set of a finite set X is a finite semi-group under intersection,
has identity and all elements are idempotent.

(ii) Show that a finite semi-group G with identity is a group iff G contains only one
idempotent.

12. For any a, x in a group, show that (x–1 ax)n = x–1 anx where n is a positive integer.
13. If in a semi group S, xk +1 = x for some k  1 and xykx = yxky  x, y  S then show

that S is abelian.
14. Show that a monoid is a group if and only if cancellation laws hold in it.

Subgroups

We have seen that R, the set of real numbers, forms a group under addition, and Z, the set
of integers, also forms a group under addition. Also Z is a subset of R. It is one of the many
situations which prompts us to make

Definition: A non empty subset H of a group G is said to be a subgroup of G, if H forms
a group under the binary composition of G.

Obviously, if H is a subgroup of G and K is a subgroup of H, then K is subgroup of G.
If G is a group with identity element e then the subsets {e} and G are trivially subgroups

of G and we call them the trivial subgroups. All other subgroups will be called non-trivial
(or proper subgroups).
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Thus it is easy to see that the even integers form a subgroup of (Z, +), which is a
subgroup of (Q, +) which is a subgroup of (R, +).

Again the subset {1, 1} will be a subgroup of G = {1, 1, i, i} under multiplication.
Notice that Z5 = {0, 1, 2, 3, 4} mod 5 is not a subgroup of Z under addition as addition

modulo 5 is not the composition of Z. Similarly, Z5 is  not a subgroup of Z6 etc.
We sometimes use the notation H  G to signify that H is a subgroup of G and

H < G to mean that H is a proper subgroup of G.
It may be a little cumbersome at times to check whether a given subset H of a group

G is a subgroup or not by having to check all the axioms in the definition of a group. The
following two theorems (especially the second one) go a long way in simplifying this exercise.

Theorem 8: A non empty subset H of a group G is a subgroup of G iff
(i) a, b  H  ab  H

(ii) a H  a–1  H.

Proof: Let H be a subgroup of G then by definition it follows that (i) and (ii) hold.
Conversely, let the given conditions hold in H.
Closure holds in H by (i).
Again a, b, c  H  a, b, c  G  a(bc) = (ab)c
Hence associativity holds in H.
Also for any a  H, a–1  H and so by (i)

aa–1  H  e  H
thus H has identity.
Inverse of each element of H is in H by (ii).
Hence H satisfies all conditions in the definition of a group and thus it forms a group and
therefore a subgroup of G.

Theorem 9: A non void subset H of a group G is a subgroup of G iff a, b  H
 ab–1  H.

Proof: If H is a subgroup of G then, a, b  H  ab–1  H (follows easily by using definition).
Conversely, let the given condition hold in H.
That associativity holds in H follows as in previous theorem.
Let a  H be any element (H  )
then a, a  H  aa–1  H  e H.
So H has identity.
Again, for any a  H, as e  H

ea–1  H  a–1  H
i.e., H has inverse of each element.
Finally, for any a, b H,

a, b–1  H
 a(b–1)–1  H  ab  H

i.e., H is closed under multiplication.
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Hence H forms a group and therefore a subgroup of G.

Remark: If the binary composition of the group is denoted by +, the above condition would
read as a, b 

 If the binary composition of the group is denoted by +, the above condition would
 H  a – b 

 If the binary composition of the group is denoted by +, the above condition would
 H. Note also that e is always in H.

The following theorem may not prove to be very useful in as much as it confines itself
to finite subsets only but nevertheless it has its importance.

Theorem 10: A non empty finite subset H of a group G is a subgroup of G iff H is closed
under multiplication.

Proof: If H is a subgroup of G then it is closed under multiplication by definition, so there
is nothing to prove.

Conversely, let H be a finite subset s.t.,
a, b  H  ab  H

Now a, b, c  H  a, b, c  G
 a(bc) = (ab)c

 Associativity holds in H.
 H is a semi-group.
Again, trivially the cancellation laws hold in H (as they hold in G) and thus H is a finite

semi-group in which cancellation laws hold. Hence H forms a group.

Aliter: Let H be a finite subset s.t., a, b  H  ab  H
We show a  H  a–1  H.
If a = e then a–1 = a  H
Let a  e, then by closure a, a2, a3...  H
Since H is finite, for some n, m, an = am, n > m
i.e., an–m = e, n – m > 1 as a  e
i.e., an–m–1. a = e

 an–m–1 = a–1

where n–m–1  1 and therefore,
an–m–1  H. Hence a  H  a–1  H and thus H is a subgroup of G (Theorem 8).

Example 19: Consider the group U20 = {1, 3, 7, 9, 11, 13, 17, 19} under multiplication
modulo 20 (See Page 49).

Then H = {1, 11} K = {1, 9, 13, 17} are subgroups of U20 as these are closed under
multiplication modulo 20. For instance, 9 

= {1, 9, 13, 17} are subgroups of 
20 13 = 17, 9 

= {1, 9, 13, 17} are subgroups of 
 17 = 13 etc.,

whereas T = {1, 7, 13, 19} is not a subgroup as  7  7 = 9 T.
See next example also.

Example 20: Let Un = {x  Z|1  x < n, (x, n) = 1} then this forms a group (See
Page 49).

Let m be any divisor of n and let
Un(m) = {x  Un |x = 1mod m} then Un(m) forms a subgroup of Un. See exercises.
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Thus, in previous example n = 20 and m = 5 and 4 in H and K, i.e., H = U20(5) and K = U20(4).
Recall x = 1 mod m means m|(x  1) or that x = mt + 1, t = 0, 1, 2...
Definition: Let G be a group. Let

Z(G) = {x 
be a group. Let

 G | xg = gx for all g  G}
then Z(G) is called centre of the group G.

Theorem 11: Centre of a group G is a subgroup of G.

Proof: Let Z(G) be the centre of the group G.
Then Z(G) 

(
 

) be the centre of the group 
as e 

) be the centre of the group 
 Z(G)

Again, x, y  Z(G)  xg = gx
yg = gy for all g  G

 g–1 x–1 = x–1 g–1

g–1 y–1 = y–1 g–1 for all g  G
Now g(xy–1) = (gx)y–1 = (xg)y–1

= (xg)y–1 (g–1g)
= xg(y–1 g–1)g = xg(g–1 y–1)g
= x(gg–1)y–1g
= (xy–1)g for all g  G
 xy–1  Z(G)

Hence Z(G) is a subgroup.

Remark: Obviously, G is abelian iff Z(G) = G.

Definition: Let G be a group. a  G be any element. The subset N(a) = {x  G | xa = ax}
is called normalizer or centralizer of a in G.

It is easy to see that normalizer is a subgroup of G. (See page 71 also.)

Problem 9: Find centre of S3.

Solution: We have S3 = {I, (12), (13), (23), (123), (132)}
Centre of S3, Z(S3) = {   S3 |  =  for all   S3}
Since (12)(13) = (132)

(13)(12) = (123)
We find (12), (13) do not commute.
 (12) & (13) do not belong to Z(S3)
Again, (23)(132) = (12)

(132)(23) = (13)
 (23), (132) do not belong to Z(S3)
Also, (123)(12) = (13)

(12)(123) = (23)
Shows (123)  Z(S3)
Hence Z(S3) contains only I. (See also Problem 55 Page 151)
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Problem 10: Let G be the group of all 2×2 non singular matrices over the reals. Find centre
of G.

Solution: If 
a b
c d
a b
c dc d

 be any element of the centre Z(G) of G then it should commute with

all members of G. In particular we should have
0 1 0 1
1 0 1 0

a b a b
c d c d

0 1 0 1a b a b0 1 0 1
1 0 1 0c d c d1 0 1 0c d c d1 0 1 0

 b = c, a = d

Also
1 0 1 0
1 1 1 1

a b a b
c d c d

1 0 1 0a b a b1 0 1 0
1 1 1 1c d c d1 1 1 1c d c d1 1 1 1

 gives

a b b
c d d
a b ba b b
c d dc d dc d dc d dc d d

 = 
a b
a c b d
a b
a c b da c b da c b da c b d

 a + b = a, b = c = 0

Hence any member 
a b
c d
a b
c dc d

 of Z(G) turns out to be of the type 
0

0
a

a
0a

0 a0 a
.

In other words, members of the centre Z(G) are the 2×2 scalar matrices of G.

Problem 11: Let G be a group in which
(ab)3 = a3b3

(ab)5 = a5b5, for all a, b  G
Show that G is abelian.

Solution: We first show that b2  Z(G) for all b  G.
We know (a–1ba)3 = a–1 b3a
By given condition (a–1ba)3 = a–3 (ba)3 = a–3 b3a3

 a–1 b3a = a–3 b3a3

 a2b3 = b3a2 for all a, b  G
Similarly, (a–1 ba)5 = a–1 b5 a

(a–1 ba)5 = a–5 b5a5

 a–1 b5a = a–5 b5a5

 a4b5 = b5a4  a4b3b2 = b5a4

 (a2)2 b3b2 = b5a4  b3a4b2 = b5a4

 a4b2 = b2a4  aa3b2 = b2a4

 ab2a3 = b2a4

 ab2 = b2a for all a, b  G
b2  Z(G) for all b  G

Now (ab)4 = (ab)5 (ab)–1 = a5b5b–1 a–1

= a5b4a–1 = a5a–1b4, as b2  Z(G) = a4b4
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(ab)i = aibi for three consecutive integers i = 3, 4, 5
So, ab = ba for all a, b  G, by problem done earlier.
Hence G is abelian.

Problem 12: Show that N(x–1 ax) = x–1 N(a)x for all a, x  G.

Solution: Let y  N(x–1 ax)
then (x–1 ax) y = y (x–1 ax)

 y–1 x–1 axy = x–1 ax
 xy–1 x–1 a = axy–1 x–1

 xy–1 x–1  N(a)
 xy–1 x–1 = b  N(a)

y–1 = x–1 bx
 y = x–1 b–1 x, b–1  N(a) as b N(a)
 y  x–1 N(a)x

N(x–1 ax)  x–1 N(a) x
Let z  x–1 N(a)x  z = x–1 cx, c  N(a)

z(x–1 ax) = (x–1 cx) (x–1 ax)
= x–1 cax
= x–1 acx as c  N(a)
= (x–1 ax) (x–1 cx)
= (x–1 ax)z

 z  N(x–1 ax)
 x–1 N(a)x  N(x–1 ax)
 x–1 N(a)x = N(x–1 ax) for all a, x  G.

It would be an easy exercise to show that intersection of two subgroups will be a subgroup.

In fact, one can prove that if {Hi | i  I} be any set of subgroups of a group G then ii I
H

i I ii I
HiHii I
H

will be a subgroup of G.

Problem 13: Show that union of two subgroups may not be a subgroup.

Solution: Let H2 = {2n | n  Z}
H3 = {3n | n  Z}

where (Z, +) is the group of integers. H2 and H3 will be subgroups of Z. Indeed
2n– 2m = 2(n – m)  H2

Now H2  H3 is not a subgroup as 2, 3  H2  H3
but 2 – 3 = –1  H2  H3
Can union of two subgroups be a subgroup? The answer is provided by

Theorem 12: Union of two subgroups is a subgroup iff one of them is contained in the
other.
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Proof: Let H, K be two subgroups of a group G and suppose H  K
then H  K = K which is a subgroup of G.

Conversely, let H, K be two subgroups of G s.t., H  K is also a subgroup of G. We show
one of them must be contained in the other. Suppose it is not true, i.e.,

H  K, K H
Then  x  H s.t., x  K

 y  K s.t., y  H
Also then x, y H  K and since H  K is a subgroup, xy  H  K

 xy  H or xy  K
If xy  H, then as x  H, x–1 (xy)  H  y  H, which is not true.
Again, if xy  K, then as y  K, (xy)y–1  K  x  K which is not true.
i.e., either way we land up with a contradiction.
Hence our supposition that H  K and K  H is wrong.
Thus one of the two is contained in the other. (See exercises also).

Definition: Let H be a subgroup of a group G. For a, b  G, we say a is congruent to b
mod H if ab–1  H.

In notational form, we write a  b mod H.
It is easy to prove that this relation is an equivalence relation. Corresponding to this

equivalence relation, we get equivalence classes. For any a 
It is easy to prove that this relation is an equivalence relation. Corresponding to this

G, the equivalence class of
a, we know will be given by

cl(a) = {x G | x a mod H}.

Definition: Let H be a subgroup of G and let a  G be any element.
Then Ha = {ha | h  H} is called a right coset of H in G.

We show in the following theorem that any right coset of H in G is an equivalence class.
To be exact we state and prove:

Theorem 13: Ha = {x  G | x  a mod H} = cl(a) for any a  G.

Proof: Let x  Ha
Then x = ha for some h  H

 xa–1 = h
 xa–1  H
 x  a mod H
 x  cl(a)

thus Ha  cl(a).
Again let x  cl(a) be any element.
Then x  a mod H

 xa–1  H
 xa–1 = h for some h  H
 x = ha  Ha
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thus cl(a)  Ha
and hence Ha = cl(a).
Having established that right cosets are equivalence classes, we are free to use the results

that we know about equivalence classes. We can, therefore, say now that any two right
cosets are either equal or have no element in common and also that union of all the right
cosets of H in G will equal G.

Remark: Note that a coset is not essentially a subgroup. If G be the Quaternion group then
H = {1, – 1} is a subgroup of G. Take a = i, then Ha = {i, – i} which is not a subgroup
of G. (it doesn't contain identity). See theorem 15 ahead.

Lemma: There is always a 1 – 1 onto mapping between any two right cosets of
H in G.

Proof: Let Ha, Hb be any two right cosets of H in G.
Define a mapping f : Ha  Hb, s.t.,

f (ha) = hb
Then h1a = h2a  h1 = h2  h1b = h2b

 f (h1a) = f (h2a)
i.e., f is well defined.

f (h1a) = f (h2a)  h1b = h2b  h1 = h2   h1a = h2a
Showing f is 1–1.
That f is onto, is easily seen, as for any hb  Hb, ha would be its pre image.
The immediate utility of this lemma is seen, if the group G happens to be finite, because

in that case the lemma asserts that any two right cosets of H in G have the same number
of elements. Since H = He is also a right coset of H in G, this leads us to state that all right
cosets of H in G have the same number of elements as are in H (G, being, of course, finite).
We are now ready to prove

Theorem 14 (Lagrange's): If G is a finite group and H is a subgroup of G then o(H)
divides o(G).

Proof: Let o(G) = n.
Since corresponding to each element in G, we can define a right coset of H in G, the

number of distinct right cosets of H in G is less than or equal to n.
Using the properties of equivalence classes we know

G = Ha1  Ha2  ...  Hat
where t = no. of distinct right cosets of H in G.

 o(G) = o(Ha1) + o(Ha2) + ... + o(Hat)
(reminding ourselves that two right cosets are either equal or have no element in common).

 o(G) = o(H) + o(Ha) 
times
...

t
... o(H) using the above lemma

 o(G) = t. o(H)
or that o(H) | o(G)
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and we have proved a very important theorem.
But a word of caution here. Converse of Lagrange's theorem does not hold. See under

permutation groups.

Remarks: (i) If G is a group of prime order, it will have only two subgroups G and {e}.
See theorem 25 also.

(ii) A subset H G with more than half the elements of G cannot be a subgroup of G.
We have been talking about right cosets of H in G all this time. Are there left cosets also?

The answer should be an obvious yes. After all we can similarly talk of
aH = {ah | h  H}, for any a  G

which would be called a left coset. One can by defining similarly an equivalence relation
(a  b mod H  a–1 b  H) prove all similar results for left cosets. It would indeed be an
interesting ‘brushing up’ for the reader, by proving these results independently.

We now come to a simple but very important

Theorem 15: Let H be a subgroup of G then
(i) Ha = H  a  H; aH = H  a  H

(ii) Ha = Hb  ab–1  H; aH = bH  a–1 b  H
(iii) Ha (or aH) is a subgroup of G iff a  H.

Proof: (i) Let Ha = H
Since e  H, ea Ha  ea  H  a H.
Let a H, we show Ha = H.
Let x  Ha  x = ha for some h  H
Now h  H, a H  ha H  x H  Ha  H
Again, let y  H, since a  H

ya–1  H
 ya–1 = h for some h  H
 y = ha  Ha
 H  Ha

Hence Ha = H.
(ii) Ha = Hb

 (Ha)b–1 = (Hb)b–1

 Hab–1 = He
 Hab–1 = H
 ab–1  H using (i)

(iii) If a  H then Ha = H which is a subgroup. Conversely, if Ha is a subgroup of G
then e  Ha and thus the right cosets Ha and He have one element e in common
and hence Ha = He = H  a 

 and thus the right cosets 
 H by (i).

Corresponding results for left cosets can be tackled similarly.

Definition: Let G be a group and H, a subgroup of G. Then index of H in G is the number
of distinct right (left) cosets of H in G. It is denoted by iG(H) or [G:H]. (See Problem 15).
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A look at the proof of Lagrange's theorem suggests that if G is a finite group, then

iG(H) = ( )
( )

o G
o H

.

It is, of course, possible for an infinite group G to have a subgroup H  G with finite
index.

Consider

Example 21: Let < Z, + > be the group of integers under addition.
Let H = {3n | n  Z} then H is a subgroup of Z. We show H has only three right cosets

in Z namely H, H + 1, H + 2.
If a  Z be any element (  0, 1, 2) then we can write (by division algorithm).

a = 3n + r, 0  r < 3
which gives

H + a = H + (3n + r) = (H + 3n) + r = H + r
where 0  r < 3

Hence H has only 3 right cosets in Z and thus has index 3.
Notice, H – 1 = (H + 3) – 1 = H + (3 – 1) = H + 2 etc.

Example 22: Let G = < R – {0}, . >, i.e., let G be the group of non zero real numbers under
multiplication. Let H = {1, –1}. Then H is a subgroup of G where iG(H) is infinite. Notice
H has infinite number of right cosets in G, these being, {2, –2}, {3, –3}, {4, –4}, ... etc.

Definition: Let H be a subgroup of a group G, we define
C(H) = {x  G | xh = hx for all h  H} then C(H) is called centralizer of H in G.

Also the set
N(H) = {x  G | xH = Hx}

= {x  G | xHx–1 = H}
is called normalizer of H in G.

It is an easy exercise to see that both C(H) and N(H) are subgroups of G. See problems
ahead.

Again as x  C(H) xh = hx for all h  H
 xH = Hx
 x  N(H)

we notice C(H)  N(H).
However, C(H) need not be equal to N(H) as consider the Quaternion group

G = {±1, ±i, ±j, ±k} and let H = {±1, ±i}.
Then N(H) = G and C(H) = {±1, ±i}.
Showing that C(H)  N(H)

Remark: (i) One can define C(H) or N(H) in the same way even if H happens to be only
a non empty subset of G.

(ii) See page 65. Notice N(a) = C(a), when H = {a}

Problem 14: Show that C(H) = G  H  Z(G).
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Solution: Let C(H) = G. Let h  H be any element. Then x  G   x  C(H)
 xh = hx  any element h in H commutes with all elements of G  h  Z(G) 
H  Z(G).

Conversely, let H Z(G). Let x  G. Since H  Z(G) each element of H commutes with
every element of G.

 xh = hx for all h  H
 x  C (H)  G  C (H)  G = C(H).

Problem 15: Show that there exists a one-one onto map between the set of all left cosets
of H in G and the set of all right cosets of H in G where H is a subgroup of a group G.
Solution: Let  = set of all left cosets of H in G.

 = set of all right cosets of H in G.
Define a mapping  :   , s.t.,

(aH) = Ha–1 a  G
 is well defined as aH = bH

 a–1 b  H
 Ha–1 = Hb–1

 (aH) = (bH)
Taking the steps backwards, we find  is 1–1. Again, for any Ha , a–1H is the required

pre-image under 
Taking the steps backwards, we find 

 proving that 
Taking the steps backwards, we find 

 is onto.
If G is finite, then the above result reduces to saying that number of left cosets of H in

G is same as the number of right cosets of H in G.

Problem 16: Let H be a subgroup of a group G and N(H) = {a  G | aHa–1 = H}. Prove
that N(H) is a subgroup of G which contains H.

Solution: N(H)   subset of G as
eHe–1 = H  e  N(H)

Let now a, b  N(H) be any two elements, then
aHa–1 = H
bHb–1 = H

then bHb–1 = H b–1 (bHb–1)b = b–1Hb
 (b–1b)Hb–1b = b–1Hb
 H = b–1Hb
 aHa–1 = a(b–1 Hb)a–1

 aHa–1 = ab–1Hba–1

 H = (ab–1) H(ab–1)–1

 ab–1  N(H) i.e., N(H) is a subgroup of G.
Since h  H  hHh–1 = H (Ha = H  a  H etc.)
we find h  N(H) showing that H  N(H).

Problem 17: Suppose that H is a subgroup of a group G such that whenever
Ha  Hb then aH 

Suppose that H is a subgroup of a group G such that whenever
 bH. Prove that gHg–1 

Suppose that H is a subgroup of a group G such that whenever
 H for all g 

Suppose that H is a subgroup of a group G such that whenever
 G.
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Solution: It is given that if Ha  Hb then aH  bH
thus if aH = bH then Ha = Hb. ...(1)
Let now g  G, h  H be any elements, then

(g–1 h)H = g–1(hH) = g–1H (h  H)
By (1) H(g–1 h) = Hg–1

 (g–1 h) (g–1)–1  H (Ha = Hb  ab–1  H)
 g–1hg  H for all h  H
 g–1 Hg  H.

Problem 18: If G = S3 and H = {I, (13)}, write all the left cosets of H in G.

Solution: (12)H = {(12)I, (12)(13)} = {(12), (132)}
= (123)H (Show!)

(23)H = {(23)I, (23)(13)} = {(23), (132)} = (132)H
(13)H = H as (13)  H

IH = H
are all the left cosets of H in G.

Definition: Let H and K be two subgroups of a group  G. We define
HK = {hk | h  H, k  K} then HK will be a non empty subset of G (Sometimes, called
the complex of H and K). Will it form a subgroup? The answer is provided by

Theorem 16: HK is a subgroup of G iff HK = KH.

Proof: Let HK be a subgroup of G. We show HK = KH
Let x  HK be any element
Then x–1  HK (as HK is a subgroup)

 x–1 = hk for some h  H, k  K
 x = (hk)–1 = k–1 h–1  KH

thus HK KH
Again let y  KH be any element
Then y = kh for some k  K, h  H

 y–1 = h–1 k–1  HK
 y  HK (as HK is a subgroup)
 KH HK

Hence HK = KH.
Conversely, let HK = KH.
Let a, b  HK be any two elements, we show ab–1  HK

a, b  HK  a = h1k1 for some h1, h2  H
b = h2k2 k1, k2  K

Then ab–1 = (h1k1) (h2k2)–1 = (h1k1) 1 1
2 2( )1 1
2 2 )k h

= 1 1
1 1 2 2( )1 1
1 1 2 2( )1 1( )1 1
1 1 2 2( )1 1 2 2h k k h
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Now 1 1
1 2 2( )1 1
1 2 2( )1 1( )1 1
1 2 2( )1 2 2k k h   KH = HK

thus 1 1
1 2 2( )1 1
1 2 2( )1 1( )1 1
1 2 2( )1 2 2k k h  = hk for some h  H, k K

Then ab–1 = h1(hk) = (h1h)k  HK
Hence HK is a subgroup.
(See another proof later in Problem 21).

Remarks: (i) HK = KH does not mean that each element of H commutes with every element
of K. It only means that for each h  H, k  K, hk = k1h1 for some k1 

 commutes with every element
 K and h1 

 commutes with every element
 H.

(ii) If G has binary composition +, we define
H + K = {h + k | h  H, k  K}.

Theorem 17: If H and K are finite subgroups of a group G then

o(HK) = ( ) . ( )
( )( )

o H o K
o H K

.

Proof: Let D = H  K then D is a subgroup of K and as in the proof of Lagrange's theorem,
 a decomposition of K into disjoint right cosets of D in K and

K = Dk1  Dk2  ...  Dkt

and also t = 
( )
( )

o K
o D

Again, HK = 
1

( )
1

( )
1

( )
t

i
i

H Dk  and since D  H, HD = H

Thus HK = 
1

t
i

i
Hk

1

t
Hk

1
Hk  = Hk1  Hk2  ...  Hkt

Now no two of Hk1, Hk2, ..., Hkt can be equal as if Hki = Hkj for some i, j

then 1
i jk k 1   H  1

i jk k 1   H  K  1
i jk k 1   D  Dki = Dkj

which is not true.
Hence o(HK)= o(Hk1) + (Hk2) + ... + o(Hkt)

= o(H) + o(H) + ... + o(H)
= t . o(H)

= ( ) . ( )
( )( )

o H o K
o H K

which proves the result.

Aliter: We have HK = {hk | h H, k K}.
Let H  K = {x1, x2, ..., xn} and suppose o(H) = r, o(K) = s

Now hk = (hxi)
1( )1( )1( )1

ix k   HK  i = 1, 2, ..., n

Also hxi  H, 1
ix 1  k  K as xi  H & K

Thus hk = (hxi) 
11

ix k   HK  i = 1, 2, ..., n



2. Groups 75

or that hk can be written in at least n different ways. We show these are the only n ways
that hk can be expressed as an element of HK.
Suppose hk = h1k1

 h–1h1 = 1
1kk 1
1  H  K

 h–1h1 = xi

and 1
1kk 1
1  = xi for some i = 1, 2, ..., n

or that h1 = hxi

k1 = 11
ix k

and thus hk = h1k1 = (hxi)
1( )1( )1( )1

ix k
Hence each hk can be written in exactly n different ways.
Since h can be chosen in r ways, k can be chosen in s ways, we find hk can be chosen

in rs
n

 ways.

Thus o(HK) = rs
n

 = ( ) . ( )
( )( )

o H o K
o H K

.

Note o(H  K)  1 as H  K   as e  H  K.

Cor.: If H and K are subgroups of a finite group G such that o(H) > ( ),o G

o(K) > ( )o G  then o(H  K) > 1.

Proof: We have

o(G)  o(HK) = 
( ) . ( )( ) ( )

( ) ( )
o G o Go H o K

o H K o H K
o G o G

( ) ( )( ) ( )o H K o H K( ) ( )( ) ( )( ) ( )o H K o H K( ) ( )
 = ( )

( )
o G

o H K( )( )o H K( )
 o(H  K) > 1.

Problem 19: Suppose G is a finite group of order pq, where p, q are primes and
p > q. Show that G has at most one subgroup of order p.

Solution: Suppose H, K are two subgroups of order p.
Then as o(H  K) | o(H) = p, we find

o(H  K) = 1 or p
If o(H  K) = 1, then

o(HK) = ( ). ( )
( )

o H o K
o H K( )( )o H K( )

 = .
1

p p  = p2 > pq = o(G) [p > q  p2 > pq]

which is not possible. Hence o(H  K) = p = o(H)
and as H  K  H, we find H  K = H
Similarly, H  K = K and hence K = H.
Later, we will show that there exists at least one subgroup of order p. (See page 210).

Thus, for instance, a group of order 15 will have only one subgroup of order 5.



76 A Course in Abstract Algebra

Example 23: Let G = S3, and suppose H = {I, (12)}, K = {I, (13)}, then o(H) = o(K) =
2 and

2 2( ) 4.
1

o HK 2 22 2( ) 4.( ) 4.2 2( ) 4.2 2
1

( ) 4.
1

( ) 4.2 2( ) 4.2 2( ) 4.2 2

Since 4 6 = o(G), HK is not a subgroup of G.
Remark: We have defined the product HK of two subgroups H and K. The same definition
can be used for the product, even if H, K happen to be subsets of G. We will be using this
a little later when we come to product of two cosets.

Problem 20: Let H be a non empty subset of a group G. Define
H–1 = {h–1  G | h  H}. Show that

(i) If HH–1  H then H is a subgroup of G.
(ii) If HH  H and H–1  H then H is a subgroup of G.
(iii) If H is a subgroup of G then HH = H, H = H–1 and HH–1 = H.
(iv) If H, K are subgroups of G then (HK)–1 = K–1H –1.

Solution: (i) Let a, b  H a  H, b–1  H–1

 ab–1  HH–1  H  H is a subgroup of G.
(ii) Let a, b  H ab  HH  H

Again a  H  a–1  H–1  H  H is a subgroup of G.
(iii) Let x  HH  x = ab, a H, b  H

H being a subgroup,
a, b  H  ab  H  x  H  HH  H
Again h  H  h = he  HH  H  HH, hence HH = H.
Now, x  H  x–1  H  (x–1)–1  H–1  x  H–1  H  H–1

and a  H–1  a = b–1, b  H,
but b  H  b–1  H  a H

 H–1  H and hence H = H–1

it, therefore, follows that HH–1 = H.
(iv) Let x  (HK)–1  x = y–1 where y  HK

y  HK  y = hk, h  H, k  K
 y–1 = k–1h–1  K–1H–1

 x  K–1H–1 or that (HK)–1  K–1H–1

Again, x  K–1H–1  x = ab, a  K–1, b  H–1

 a = k–1, b = h–1 k  K, h  H
x = k–1h–1 = (hk)–1 = y–1

where y = hk  HK  y–1  (HK)–1  x  (HK)–1

 K–1H–1  (HK)–1. Hence HK = K–1H–1

We give a different proof of theorem 16 done earlier in
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Problem 21: Let H, K be subgroups of G. Show that HK is a subgroup of G if and only
if HK = KH.

Solution: Suppose HK is a subgroup of G.
Then HK = (HK)–1 = K–1H–1 = KH
using previous problem.
Conversely, let HK = KH

(HK)(HK)–1 = (HK)(K–1H–1)
= (HK) (KH) = H(KK)H
= H(KH) = H(HK)
= (HH)K = HK

By previous problem then, HK is a subgroup of G.

Exercises
1. Show that intersection of two subgroups of a group G is a subgroup of G.
2. Let G be the Quaternion group. Find centre of G. Find also the normalizer of i in

G.
3. Show that a group cannot be written as union of two (proper) subgroups, although

it is possible to express it as union of three subgroups.
4. If H is a subgroup of G, show that

g–1Hg = {g–1hg | h  H} is a subgroup of G.
Show further that g–1Hg is abelian if H is abelian.

5. Show that Un(m) as defined in example 20 on page 64, is a subgroup of Un.
6. Let G be a finite abelian group under addition and let n  Z be a fixed positive

integer. Show that nG = {nx | x 
 be a finite abelian group under addition and let 

 G} and G[n] = {x 
 be a finite abelian group under addition and let 

 G | nx = 0} are subgroups
of G, where 0 is identity of G. (See problem 48 on page 263).

7. If G is a group of order 91, show that it cannot have two subgroups of
order 13.

8. If H  K are two subgroups of a finite group G then show that
iG(H) = iG(K) iK(H).

9. Show that normalizer of an element a in a group G is a subgroups of G.
10. Show that H = {0, 2, 4} is a subgroup of Z6 = {0, 1, 2, 3, 4, 5} addition modulo

6.
11. Let G be the group of all 3 × 3 invertible matrices over reals. Show that

H = 
1
0 1 , ,
0 0 1

a b
c a b c

1 a b1 a b
0 1 , ,c a b c0 1 , ,c a b c0 1 , ,c a b c0 1 , ,c a b c0 1 , ,0 1 , ,c a b c0 1 , ,c a b c0 1 , ,0 1 , ,0 1 , ,c a b c0 1 , ,0 1 , ,0 1 , ,c a b c0 1 , ,0 1 , ,0 1 , ,c a b c0 1 , ,0 1 , ,0 1 , ,
0 0 10 0 10 0 10 0 1

R  is a subgroup of G.

12. If H and K are subgroups whose orders are relatively prime then show that
H  K = {e}.
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13. If H and K are two subgroups of finite indices in G then show that H  K is also
of finite index in G.

14. If N(H) be the normalizer of H in a group G then show that Z(G)  N(H), where
H G.

15. Show that for a group G, Z(G) = ( )
a G
N a

a G
( )N a( )N a( ) .

16. Show that the centralizer C(H) of a subgroup H of a group G is a subgroup of G.
17. Prove (without using the result from equivalence classes) that two right cosets are

either equal or have no element in common.
18. If o(G) = 6 and H  K are subgroups of G each of order 2 then show that HK cannot

be a subgroup of G. Show also that G cannot have two subgroups of order 3.
19. H = {I, (12)} and K = {I, (23)} are subgroups of S3 show that HK is not a subgroup

of S3. (See Problem 54 on Page 150 also).
20. Show by an example that we can have an infinite subset H in a group G where H

is closed under multiplication but does not form a subgroup of G.

Cyclic Groups

Definition: Order of an element : Let G be a group and a  G be any element. We say a
is of order (or period) n if n is the least +ve integer s.t., an = e. If binary composition of
G is denoted by +, this would read as na = 0, where 0 is identity of G.

If it is not possible to find such n, we say a has infinite order. Order of a is be denoted
by o(a) or |a|. It is obvious that o(a) = 1 iff a = e.
Cyclic Group: A group G is called a cyclic group if  an element a  G, such that every
element of G can be expressed as a power of a. In that case a is called generator of G. We
express this fact by writing G = < a > or G = (a).

Thus G is called cyclic if  an element a  G s.t., G = {an | n  Z}. Again,
if binary composition of G is denoted by +, the words ‘power of a’ would mean multiple
of a.

Note we are not saying that generator is unique. Indeed if a is generator so would be
a–1. We shall come a little later to the question of number of generators that a cyclic group
has. A simple example of a cyclic group is the group of integers under addition, 1 being its
generator.

Again the group G = {1, –1, i, –i} under multiplication is cyclic as we can express its
members as i, i2, i3, i4. Thus i (or – i) is a generator of this group.

Example 24: The group Zn = {0, 1, 2, ... , n – 1} addition modulo n(n  1) is a cyclic group.
1 and –1 = n – 1 will be its generators. But it can have more generators besides these. (See
Theorem 30 ahead).

Consider, Z8 = {0, 1, 2,...7} addition modulo 8
Then we can check that 1, 3, 5, 7 will be generators of Z8
Notice that
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31 = 3, 32 = 3  3 = 6, 33 = 3  3  3 = 1
34 = 3  3  3  3 = 4 and so on

i.e., < 3 > = {3, 6, 1, 4, 7, 2, 5, 0} or that 3
is a generator of Z8. Observe also that 1, 7 and 3, 5 are each others inverses.
See also page 89.
On the other hand, Un, the group under multiplication modulo n is not cyclic for every

n. For instance U5 is cyclic. (See Problem 40 on page 135) but U8 is not cyclic.

Theorem 18: Order of a cyclic group is equal to the order of its generator.

Proof: Let G = < a > i.e., G is a cyclic group generated by a.

Case (i): o(a) is finite, say n, then n is the least +ve integer s.t., an = e.
Consider the elements a0 = e, a, a2, ..., an–1

These are all elements of G and are n in number.
Suppose any two of the above elements are equal
say ai = aj with i > j
then ai . a–j = e  ai–j = e
But 0 < i – j  n – 1 < n, thus  a +ve integer i – j, s.t., ai–j = e and i – j < n, which

is a contradiction to the fact that o(a) = n.
Thus no two of the above n elements can be equal, i.e., G contains at least n elements.

We show it does not contain any other element. Let x 
 elements can be equal, 

 G be any element. Since G is cyclic,
generated by a, x will be some power of a.

Let x = am

By division algorithm, we can write
m =  nq + r where 0  r < n

Now am = anq+r = (an)q . ar = eq. ar = ar

 x = ar where 0  r < n
i.e., x is one of a0 = e, a, a2, ..., an–1

or G contains precisely n elements
 o(G) = n = o(a)

Case (ii): o(a) is infinite.
In this case no two powers of a  can be equal as if an = am (n > m) then

an–m = e, i.e., it is possible to find a +ve integer n – m s.t., an–m = e meaning thereby that
a has finite order.

Hence no two powers of a can be equal. In other words G would contain infinite number
of elements.

Problem 22: If a  G be of finite order n and also am = e then show that n | m.

Solution: Let o(a) = n, then by definition n is the least +ve integer s.t., an = e.
Suppose am = e for some m
By division algorithm, m = nq + r, where 0  r < n
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am = anq + r

 e = anq . ar = (an)q . ar = eq . ar = ar

where 0  r < n
Since n is such least +ve integer, we must have r = 0
i.e., m = nq or that n | m.

Problem 23: If G is a finite abelian group then show that o(ab) is a divisor of l.c.m. of
o(a), o(b).

Solution: Let o(a) = n, o(b) = m, o(ab) = k.
Let l = l.c.m. (m, n)
then m | l, n | l,  l = mr1, l = nr2
Now (ab)l = albl (G is abelian)

= anr2 bmr1 = e . e = e
 o(ab) | l
 k | l.

Problem 24: If in a group G, a5 = e, aba–1 = b2 for a, b  G then show that
o(b) = 31.

Solution: We have b2 = aba–1

 b4 = (aba–1) (aba–1)
= ab(a–1a)nrb2 abmr1 = ab2a–1

= a(aba–1) a–1

 b4 = a2ba–2

 b8 = (a2ba–2) (a2ba–2) = a2b2a–2

= a2(aba–1)a–2 = a3ba–3

 b16 = a4ba–4 (as above)
 b32 = a5ba–5 = b as a5 = e
 b31 = e  31 is a multiple of o(b)

Since 31 is a prime number, it is the least +ve integer such that b31 = e
 o(b) = 31.

We are, of course, taking b  e.

Problem 25: Let G be a finite group with more than one element. Show that G has an
element of prime order.
Solution: Let e  a G

Consider a, a2,..., at,...
Since G is finite, for some integers i and j, ai = aj , i > j.
So, ai j = e

 an = e, n = i  j > 0
Since a  e, n > 1.
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Let 1 2
1 2 ,r

rn p p p1 2n p p p1 2n p p p1 2 r
1 2n p p p1 2n p p p1 2

1 2n p p p1 2n p p p1 2 where pi's are distinct primes

So, 11 2
1 2

rrr
p

p p p ea
1 2p p p1 2p p p1 2 r 1 p1 e  

11 2
1 2 1 orrrp p p ro pa 1 oro po po p1 2o p1 2 1 oro p1 orro prp p po pp p p1 2p p p1 2o p1 2p p p1 2ao pao p1 2o p1 2o p1 2p p po pp p p1 2p p p1 2o p1 2p p p1 2 ro pro pr 1o po p1o p11o p1o p1

If 11 2
1 2

rrp p p ro pa
1 2o p1 2o p1 2p p po pp p p1 2p p p1 2o p1 2p p p1 2 ro pro pr 1o po p1o p11o p1o p1

ro p , then the result follows

Let 
11 2

1 2
rrp p pa e

1 2p p p1 2p p p1 2 r 11
a e

Then proceeding as above, we get an element of prime order as a  e.
Problem 26: Suppose that G is a finite group with the property that every non identity
element has prime order. If Z(G) is non trivial, prove that every non identity element of G
has the same order.
Solution: Let e  a  Z(G). Let o(a) = prime p.

Let b  G such that o(b) = prime q.
Since a  Z(G), ab = ba.
So, (ab)pq = apqbpq = e

o(ab) divides pq
  o(ab) = 1, p or q

If o(ab) = 1, then a = b 1

  o(a) = o(b 1) = o(b)
 p = q.

If o(ab) = p, then (ab)p e
 apbp = e
 bp = e
 q = o(b) | p  q = p.

Similarly, if o(ab) = q, then p = q.
Therefore, every non identity element of G has the same order.

Theorem 19: A subgroup of a cylic group is cyclic.

Proof: Let G = < a > and let H be a subgroup of G. If H = {e}, there is nothing to prove.
Let H  {e}. Members of H will be powers of a. Let m be the least +ve integer s.t.,
am  H. We claim H = < am >.

Let x  H be any element. Then x = ak for some k. By division algorithm,
k = mq + r where 0 

 be any element. Then 
 r < m

 r = k – mq
 a r = ak . a–mq = x . (am)–q  H

But m is the least +ve integer s.t., am  H, meaning thereby that r = 0.
Thus k = mq
or that x = ak = (am)q



82 A Course in Abstract Algebra

i.e., any member of H is a power of am.
or that H is cyclic, generated by am.
See exercise 19 on page 98 for converse.

Remark: Any subgroup of < Z, + > will therefore, be of the type nZ = set of multiples of
n, where n is an integer (

 Any subgroup of <
 0). We write nZ = < n >.

Also mZ  nZ if and only if n | m. So mZ = nZ if and only if m = ±n.

Example 25: Let H = < a > = {an | n  Z} = aZ
K = < b > = {bm | m  Z} = bZ

be two subgroups of < Z, + >, then Z being abelian, H + K = K + H
 H + K is a subgroup of Z.

[Note here HK = H + K].
We show H + K = < d > = dZ, where d = g.c.d.(a, b)
Now x  H + K
 x  < a > + < b >
 x = an + bm, n, m  Z
 x  < d > [as d | a, d | b  d | an + bm  d | x]
Thus H + K  < d >.
Again, y  < d > y = td

 y = t(ax + by) = atx + bty  H + K
Hence H + K = < d >
i.e., aZ + bZ = (a, b)Z.

Theorem 20: A cyclic group is abelian.

Proof: Let G = < a >. If x, y  G be any elements then x = an, y = am for some integers
m, n.

Now xy = an . am = an+m = am+n = am . an = y . x
Hence G is abelian.

Remark: In view of the above result, all non abelian groups are non-cyclic. < Q, + > the
group of rationals under addition serves as an example of an abelian group which is not

cyclic. For, suppose m
n

  Q is a generator of Q, then any element of Q should be a multiple

of m
n

. Now 1
3n

  Q, and if m
n

 is a generator, we should be able to write 1
3n

 = k m
n

, for

some k

 1
3

 = km

Which is not possible as k, m are integers, whereas 1
3

 is not. Hence no element can act

as generator of Q.
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Klein's four group (See page 154) would be an example of a finite abelian group which

is not cyclic. It is the group of matrices 
1 0
0 1
1 0
0 10 1

, 
1 0
0 1
1 0
0 10 10 10 1

, 
1 0
0 1
1 01 0
0 10 1

 and 
1 0
0 1
1 01 0
0 10 10 10 1

 under

matrix multiplication.

Another such group would be U8. see exercise 5.

Theorem 21: If G is a finite group, then order of any element of G divides order of G.
Proof: Let a  G be any element.

Let H = {an | n an integer}
then H is a cyclic subgroup of G, generated by a, as

x, y  H  x = an, y = am

xy–1 = an . a–m = an–m  H
By Lagrange's theorem o(H) | o(G). But o(H) = o(a)

o(a) | o(G).

Cor.: If G is a finite group then for any a  G
a o(G) = e

Proof: o(a) | o(G)  o(G) = o(a)k For some k
Now ao(G) = a o(a)k = (a o(a))k = ek = e
Thus any element of a finite group, has finite order (which is less than or equal to the

order of the group).

Example 26: The group < Z, + > of integers is an example of a group in which each non
identity element is of infinite order.

As another example consider G = {2r : r = 0, ±1, ...}
then we know G forms a group under multiplication (see examples of groups). No non

identity element in G has finite order as
(2r)n = 1 iff 2rn = 1

iff r = 0 or n = 0.

Remark: If G is a finite group of order n and  an element a  G, s.t., o(a) = n then G
is cyclic, generated by a. Clearly o(a) = n gives an = e, and lesser powers not equal to e
and thus G = {a, a2, ..., an = e}.

Problem 27: Show that a group of even order has an element of order 2 and that the number
of elements of order 2 is odd.

Solution: Let o(G) = even

Let H = {x  G | x2 = e}, K = {x  G | x2  e},

Then G = H K

Now, x  K  x 1  x also is in K.

 number of elements in K is even and thus number of elements in H will also be even.
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Since e H (e2 = e),  some x  H, s.t., x  e.

Now, x  e, x  H  o(x) = 2

 G has an element of order 2.

Every element of order 2 is in H, and as e H, o(H) = even, the number of elements of
order 2 is odd.

Problem 28: Let G be a finite group whose order is not divisible by 3. Suppose
(ab)3 = a3b3 for all a, b 

be a finite group whose order is not divisible by 3. Suppose
 G, then show that G is abelian.

Solution: Let a, b  G be any elements.
Then as (ab)3 = a3b3

we get ababab = a3b3

 baba = a2b2 (cancellation)
 (ba)2 = a2b2 ...(1)

Again as (ba)3 = b3a3

we get (ba)(ba)2 = b3a3

 (ba)a2b2 = b3a3 using (1)
 a3b2 = b2a3 ...(2)

Consider now (a–1b–2ab2)3 = (a–1)3 (b–2ab2)3 = a–3 (b–2ab2)3

= a–3 (b–2a3b2)
= a–3 (b–2b2a3) from (2)
= a–3a3 = e

 o(a–1b–2ab2) | 3
 o(a–1b–2ab2) = 1 or 3

If o(a–1b–2ab2) = 3 then 3 | o(G) which is not true.
Hence o(a–1b–2ab2) = 1

 a–1b–2ab2 = e
 ab2 = b2a ...(3)

Again from (1) (ba)2 = a2b2 = a(ab2) = a(b2a) using (3)
 (ba) (ba) = ab2a
 bab = ab2  ba = ab

or that G is abelian.
The result that we are going to prove now might raise doubts in the minds of the reader

as to the validity of the assertion we made earlier that converse of Lagrange's theorem does
not hold. But we promise to prove that little later. For now we prove

Theorem 22: Converse of Lagrange's theorem holds in finite cyclic groups.

Proof: Let G = < a > be a finite cyclic group of order n.
Then o(G) = o(a) = n
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Suppose m | n. We show  a subgroup of G having order m.
Since m | n,  k s.t., n = mk
Let H be the cyclic group generated by ak

then H is a subgroup of G and o(H) = o(ak)
We show o(ak) = m
Now (ak)m = akm = an = e, as o(a) = n
Suppose now, that (ak)t = e
Then akt = e

 o(a) | kt  n | kt
 km | kt  m | t

thus o(ak) = m
which proves the result.

Remark: One can go a step further here and show that such a subgroup (as taken above)
would also be unique. Suppose H

 One can go a step further here and show that such a subgroup (as taken above)
H  is another subgroup of G s.t., o(H

 One can go a step further here and show that such a subgroup (as taken above)
H ) = m. Since H

 One can go a step further here and show that such a subgroup (as taken above)
H  is a

subgroup of a cyclic group G = < a >, H
 is another subgroup of 

H  will be generated by some power of a.
Let HH  = < ap >
By division algorithm,

p = kq + r 0  r < k
 mp = mkq + mr 0  mr < mk
 amp = amkq + mr = (amk)q . amr

= amr (o(a) = n = mk)
Now o(HH ) = o(a p) = m

 (a p)m = e
thus amr = e where 0  mr < n
But this  mr = 0 (as o(a) = n)

 r = 0 as m  0
hence p = kq
Thus HH  = < ap > = < akq >  < ak > = H
But o(HH ) = o(H)

 H = HH .
We thus conclude:

Theorem 23: If  G is a finite cyclic group of order n then the number of distinct subgroups
of G is the number of distinct divisors of n, and there is a unique subgroup of G of any
given order.

So subgroups of G are of the type < ak > where k is a divisor of n and < an/m > is the
unique subgroup of order m. As a particular case, suppose G = < a > has order 30. Since
divisors of 30 are 1, 2, 3, 5, 6, 10, 15, 30, 

. As a particular case, suppose 
 eight subgroups of G, namely

< a > = {e, a, a2, ..., a29} = G
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< a2 > = {e, a2, a4, ..., a28}
< a3 > = {e, a3, a6, ..., a27}
< a5 >, < a6 >, < a10 >, < a15 > and < a30 > = {e} having order 30, 15, 10,

6, 5, 3, 2, 1.
Consider again, the cyclic group Z30 = {0, 1, 2, ..., 29} under addition modulo

30 . o(Z30) = 30 and as 30 has 8 divisors 1, 2, 3, 5, 6, 10, 15, 30, Z30 will have eight
subgroups namely

< 1 > = {0, 1, 2, ..., 29} = Z30
< 2 > = {0, 2, 4, ..., 28}
< 3 > = {0, 3, 6, ..., 27}
< 5 >, < 6 >, < 10 >, < 15 >, < 30 > = {0}

having order 30, 15, 10, 6, 5, 3, 2, 1.
In view of the above theorem these would be the only subgroups of Z30.

Problem 29: Let G be a cyclic group of order n and suppose d divides n. Show that
xd = e has exactly d solutions.
Solution: Let G = < a >, then o(G) = o(a) = n. Since d | n, there exists a unique subgroup
H of G with order d. Let H = < b >

Then o(H) = o(b) = d.
         H = {b, b2, ..., bdd 1, bd = e}
If bi  H be any element, then

(bi)d = (bd)i = e
Thus, every element of H is a solution of xd = e, which gives d distinct solutions in G.
Let now c  G be any solution of xd = e then cd = e
and, therefore, o(c) | d. If o(c) = m, then m | d = o(H) and thus there exists a subgroup

K of H s.t., o(K) = m. since K is unique of order m, and < c > is also of order m,
K = < c > or that < c > H as K 

 is unique of order 
 H and so c 

 is unique of order 
H and thus any solution of xd = e is in H.

Hence there exist exactly d solutions.
Theorem 24: A group G of prime order must be cyclic and every element of G other than
identity can be taken as its generator.
Proof: Let o(G) = p, a prime

Take any a  G, a  e
and let H = {an | n an integer} then H is a cyclic subgroup of G.

o(H) | o(G)  o(H) = 1 or p
But o(H)  1 as a  H, a  e,
Thus o(H) = p  H = G, i.e., G is a cyclic group generated by a. Since a was taken

as any element (other than e), any element of G can act as its generator.
(See also theorem 30 later).

Cor.: A group of prime order is abelian.

Theorem 25: A group G of prime order cannot have any non trivial subgroups.
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Proof: If H is any subgroup of G then as o(H) | o(G) = p, a prime
we find o(H) = 1 or p
i.e., H = {e} or H = G.

Theorem 26: A group of finite composite order has at least one non-trivial subgroup.

Proof: Let o(G) = n = rs where 1 < r, s < n
Since n > 1,  e  a  G. Consider a r.

Case (i): a r = e
then o(a)  r, let o(a) = k
then 1 < k  r < n (k > 1, as a  e)
Let H = {a, a2, a3, ..., ak = e}
then H is a non empty finite subset of G and it is closed under multiplication, thus H is

a subgroup of G. Since o(H) = k < n, we have proved the result.
Case (ii): a r  e, then since (a r)s = ars = an = ao(G) = e

o(a r)  s. Let o(a r) = t then 1 < t  s < n.
If we take K = {ar, a2r,..., atr = e} then K is a non empty finite subset of G, closed under

multiplication and is therefore a subgroup of G. Its order being less than n, it is the required
subgroup.

Theorem 27: If G is a group having no non-trivial subgroups then G must be finite having
prime order.
Proof: Suppose G has infinite order.

Then we can find a  G, s.t., a  e.
Let H = < a >, then H is a cyclic subgroup of G and H  {e}. But G has no non-trivial

subgroups.
Thus H = G

 G = < a >
Consider now the subgroup K = < a2 >
Now a  < a2 >, because if a  < a2 > then a = a2t for some integer t

 a2t–1 = e  o(a)  2t – 1
meaning thereby that o(a) is finite, which is not true. Thus a  < a2 >.

Again < a2 >  {e}, because then a2 = e would again mean that o(a) is finite ( 2).
Thus < a2 > is a non-trivial subgroup of G which is not possible. Hence o(G) cannot be

infinite.
So o(G) is finite and as it cannot be composite by previous theorem, it must be prime.
Summing up, what we have done above proves

Theorem 28: The only groups which have no non-trivial subgroups are the cyclic groups
of prime order and the group {e}.

All this time we have been talking about cyclic groups and their generators without being
very sure as to how many generators a cyclic group could have. To resolve this, we consider
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Theorem 29: An infinite cyclic group has precisely two generators.

Proof: Let G = < a > be an infinite cyclic group.
As mentioned earlier, if a is a generator of G then so would be a–1.
Let now b be any generator of G,
then as b G, a generates G, we get b = an for some integer n
again as a G, b generates G, we get a = bm for some integer m

 a = bm = (an)m = anm

 anm–1 = e  o(a) is finite and  nm – 1
Since o(G) = o(a) is infinite, the above can hold only if

nm – 1 = 0  nm = 1

 m = 1
n

 or n = ± 1 as m, n are integers.

i.e., b = a or a–1

In other words, a and a–1 are precisely the generators of G.
Question to be answered now is how many generators a finite cyclic group would have.

Before we come to the answer we first define what is popularly known as the Euler's 
Question to be answered now is how many generators a finite cyclic group would have.

function (or Euler's totient function).
For any integer n, we define (1) = 1 and for n > 1, (n) to be the number of +ve integers

less then n and relatively prime to n. As an example 
(
(6) = 2, 

) to be the number of +ve integers
(10) = 4 etc.

Note 1, 5 are less than 6 and relatively prime to 6 and 1, 3, 7, 9 (four in number) are
less than 10 and relatively prime to 10 etc. Obviously, 

Note 1, 5 are less than 6 and relatively prime to 6 and 1, 3, 7, 9 (four in number) are
(p) = p – 1, if p is a prime. The

following two results can be helpful at times.
(i) If p1, p2, ..., pn are distinct prime factors of n (>1), then

(n) = 
1

11n
p
1111 1

1pp
 

2

11
p
1111 1

2pp
 ... 11

kp
1111 1

kpp
(ii) If m, n are co-prime then

(mn) = (m) (n), (m, n  1)
We are now ready to prove

Theorem 30: Number of generators of a finite cyclic group of order n is (n).

Proof: Let G = < a > be a cyclic group of order n
then o(a) = o(G) = n
We claim am is generator of G iff (m, n) = 1, i.e., m, n are relatively prime.
[For instance, if n = 8, then (8) = 4 will be number of generators as we will show a,

a3, a5, a7 will generate G and no other element can generate G. So here m can have values
1, 3, 5, 7].

Let now am be a generator of G for some m
Since a G, a = (am)i for some i

 ami–1 = e  o(a) | mi – 1
 n | mi – 1
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 mi – 1 = nj for some integer j
i.e., mi – nj = 1

 (m, n) = 1.
Conversely, let (m, n) = 1
Then  integers x and y s.t.,

mx + ny = 1
 amx + ny = a
 amx . any = a
 amx (an)y = a
 amx = a as o(a) = n
 a = (am)x

Since every element of G is a power of a and a itself is a power of am, we find am

generates G, which proves our result.

Remark: We thus realize that if a is a generator of a finite cyclic group G of order n, then
other generators of G are of the type am where m and n are coprime.

See also, Example 24 on page 78.
In fact an integer k will be a generator of Zn if and only if k and n are coprime, and thus

generators of Zn would indeed be the elements of Un.

Theorem (Euler's) 31: Let a, n (n  1) be any integers such that g.c.d. (a, n) = 1. Then
a (n)  1 (mod n).

Proof: Let Un = {x | x is an integer, (x, n) = 1, 1  x < n}
Then Un is a group under multiplication modulo n.
By definition of Euler's -function,

o(Un) = (n).
If n = 1, then (n) = (1) = 1 and a (n) = a1  1 (mod 1) (as 1 divides a – 1)
Let n > 1
Now by Euclid's algorithm
a = nq + r, for some integers q, r where 0  r < n.
If r = 0. then a = nq  n | a  (a, n) = n > 1, a contradiction

1  r < n
Also (r, n) = d  d | r, d | n  d | a–nq, d | nq

 d | a, d | n
 d | (a, n) = 1
 d = 1

(r, n) = 1 and 1  r < n
 r  Un

Also a = nq + r  a  r (mod n)
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It follows from Lagrange's theorem that,
r  r  ...  r = identity of Un = 1 [ao(G) = e]

where  is composition multiplication modulo n in Un and (n) is order of group Un.
rr (n) –nq1 = 1, for some integer q1
 rr (n)  1 (mod n)
 a (n)  1 (mod n)

so a  r (mod n)  a (n)  rr (n) (mod n).

Theorem (Fermat's) 32: For any integer a and prime p,
a p  a (mod p).

Proof: If (a, p) = 1, then by Euler's theorem
a (p)  1 (mod p)
 a p–1  1 (mod p) as (p) = p – 1
 a p  a (mod p)

If (a, p) = p, then p | a  p | ap

p | ap – a
 ap  a (mod p).

(Note (a, p) = 1 or p as 1 and p are only divisors of p).

Problem 30: Prove that 3, 5, and 7 are the only three consecutive odd integers that are
prime.

Solution: Suppose p and p + 2 are consecutive primes, p > 3. We show that 12 divides
their sum.

p > 3  g.c.d. (p, 3) = 1

 p2  1 (mod 3) by Fermat's theorem

 3|p2  1

 3|(p  1)(p + 1)

If 3 | p  1, then p  1 = 3k  p = 3k + 1  p + 2 = 3k + 3 = multiple of 3.

But p + 2 is a prime > 3.

So, we get a contradiction

Therefore, 3|p + 1  p + 1 = multiple of 3

Since p is odd, p + 1 is also a multiple of 2

So, p + 1 is a multiple of 6.

Therefore, p + (p + 2) = 2p + 2 = 2(p + 1) = multiple of 12.

 12 | p + (p + 2)
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Suppose p, p + 2, p + 4 are three consecutive odd integers that are prime, p > 3.

By above 12 | 2p + 2, 12 | (p + 2) + (p + 4) = 2p + 6,

So, 12 | 2p + 6  (2p + 2) = 4, a contradiction

Hence, 3, 5 and 7 are only three consecutive odd primes.

Problem 31: Show that if G is a group of order 10 then it must have a subgroup of order 5.

Solution: By Lagrange's theorem such a subgroup can exist.
We first claim that all elements of G cannot be of order 2. Suppose it is so.
Let a, b  G be two different elements with order 2.
Let H = < a >, K = < b > be the cyclic subgroups generated by a and b
then o(H) = 2, o(K) = 2
Since all elements of G are of order 2, it  must be abelian (see exercises).

HK = KH  HK is a subgroup of G

and as o(HK) = ( ) . ( )
( )

o H o K
o H K( )( )o H K( )

 =  2 2
1

2 2  = 4

[Note H  K = {e} as a  b]
By Lagrange's theorem o(HK) would divide o(G)
i.e., 4 | 10 which is not true hence our assumption is wrong and thus all elements of G
cannot have order 2.
Again, since G is finite, o(a) | o(G) for all a G
  at least one element a  G, s.t., o(a) = 5 or 10.
If o(a) = 5, then H = < a > is a subgroup of order 5.
If o(a) = 10, then H = < a2 > is a subgroup of order 5.
In any case our result is proved.

Problem 32: Let G be a group such that intersection of all its subgroups which are different
from {e} is a subgroup different from {e}. Prove that every element of G has finite order.

Solution: Let a  G be any element.
If a = e, o(a) = 1
Let a e and suppose o(a) is not finite.
Consider the cyclic subgroups < a >, < a2 >, < a3 >, ...
Since each < ai >  {e} as o(a) is not finite
< a >  < a2 >  < a3 >  ...  {e} by given condition.
As intersection of cyclic subgroups is cyclic subgroup

ii
 < ai > = < am > for some integer m

Again, < am >  < ai > for all i
In particular, < am >  < a2m >
But <a2m >  < am >
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(multiples of 2m are multiples of m)
 < am > = < a2m >

Thus am  < am >  am  < a2m >
 am = (a2m)k

 am(2k – 1) = e
 o(a) is finite, a contradiction.

Hence the result follows.

Theorem 33: If G is a finite group of order n and for every divisor d of n  unique subgroup
of order d, then G is cyclic.

Proof: Let d | n.
Define A(d) = {x  G | o(x) = d}
Suppose A(d) . Then  x  G s.t., o(x) = d.
Let H = < x >. Then o(x) = o(H) = d. This gives (d) generators of H or (d) elements

of order d in H. If  y  G, y 
(
 H s.t., o(y) = d, then K = < y > is a subgroup of order d.

It is given that G has unique subgroup of order d. So, K = H  y 
> is a subgroup of order 

 H, a contradiction.
Thus, the number of elements in G of order d is (d).

So, o(A(d)) = (d) if A(d)  
and o(A(d)) = 0 if A(d) =  for all d | n
Clearly, G = 

|d nd n|d n|
 A(d)

Let d1, ..., ds be all divisors of n.
Suppose A(d1) = , ..., A(di) = 
and A(di + 1)  , ..., A(ds) 
(Note, if A(d) =  for all d | n, then o(G) = 0, a contradiction. So, A(d)  for some

d | n)
o(A(d1)) = ... = o(A(di)) = 0

and o(A(di+1)) = (di + 1) ..., o(A(ds)) = (ds)

Now G = 
|d nd n|d n|

A(d)  o(G) = 
|d nd n|d n|

o(A(d))

 n = (di + 1) + ... + (ds)

By problem 26, n =
|

( )
d n

d
d n|d n|

( )d( )d( )

 (d1) + ... + (di) + (di + 1) + ... + (ds) = (di + 1) + ... + (ds)
 (d1) + ... + (di) = 0, a contradiction

So, A(d)  for all d | n. In particular
A(n)   x  A(n)   x  G s.t., o(x) = n = o(G)  G is a cyclic group.

Problem 33: Show that in a cyclic group of order n,  (m) elements of order m for every

divisor m of n. Deduce that n = 
|

( )
d n

d
d n|d n|

( )d( )d( ).
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Solution: Let m divide n. Then  a unique subgroup H of G, s.t., o(H) = m.
Let H = < b >
Then m = o(H) = o(b)
The number of elements of order m in H equals the number of generators of H. But the

number of generators of H is (m). So, the number of elements of order m in H is (m).
If k 
number of generators of 

 G s.t., o(k) = m, then K = < k > has order m. Since G, has unique subgroup of order
m, K = H.

k  H. So, all elements of order m belong to H.
This gives total number of elements of order m in G to be (m).
Let a  G s.t., o(a) = d. Then d | o(G) = n.
From above  (d) elements of order d in G. In this way, count all elements of G to get

n = 
|

( )
d n

d
d n|d n|

( )d( )d( ).

Problem 34: Let G be a group.

Show that o(an) = ( )
( ( ), )

o a
o a n

 for all a  G

where n is an integer and (o(a), n) = g.c.d. (o(a), n).

Solution: Let o(a) = m.

Let d = (m, n)  m
d

, n
d

 are integers

(an)m/d = (am)n/d = en/d = e
Let (an)r = e  anr = e

 o(a) | nr
 m | nr

 m n r
d d

 |m r
d

as ,m n
d d
m nm n
d d

,
d d

,
d d

,  = 1

 r  
m
d

o(an) = m
d

 = ( )
( ( ), )

o a
o a n

.

Problem 35: Let a  G be such that o(a) = n. Let H = < ar >, K = < as >. Show that
H  K  iff g.c.d. (n, s) divides g.c.d (n, r). Hence deduce that H = K iff g.c.d(n, s) = g.c.d(n, r).

Solution: Suppose H  K then o(H) | o(K)
 o(<ar>) | o(<as>)


( )

( ( ), )
o a

o a r
divides ( )

( ( ), )
o a

o a s
 (see above problem)
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( , )

n
n r

 divides  
( , )

n
n s

 g.c.d.(n, s) divides g.c.d.(n, r)
Conversely, Let g.c.d.(n, s) divide g.c.d(n, r)

Let d = g.c.d.(n, s), k = g.c.d.(n, r)
then d | k
Let x < ar > then x = art

Now k | r  r = ku
and d | k  k = dv
and so r = duv
Since, d = g.c.d.(n, s),  integers p and q
s.t., d = np + sq
and thus r = (np + sq)uv
Hence, x = art = a(np + sq)uvt

 = anpuvt.asquvt = asquvt as o(a) = n.
< as > = K

and so H  K.
Finally, suppose now H = K
then o(H) = o(K)  o(ar) = o(as)

i.e., ( ) ( )
( ( ), ) ( ( ), )

o a o a
o a r o a s

( ) ( )( ) ( )o a o a( ) ( )
( ( ), ) ( ( ), )

i.e., g.c.d. (n, r) = g.c.d.(n, s)
Conversely, let g.c.d.(n, r) = g.c.d.(n, s)
then by first part < ar >  < as >
and < as >  < ar >
i.e., H = K.

Problem 36: Let G be a group. Suppose a, b  G, s.t.,
(i) ab = ba

(ii) (o(a), o(b)) = 1.
Show that o(ab) = o(a)o(b).

Solution: Let o(a) = m, o(b) = n
Then (ab)mn = amnbmn as ab = ba

= (am)n (bn)m

= e
Let (ab)r = e  a rb r = e

 ar = b–r

 (ar)n = (b–r)n = (bn)–r = e
 o(a) | rn
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 m | rn
 m | r as (m, n) = 1

Similarly, n | r
 l.c.m. of (m & n) | r
 mn | r  mn  r

o(ab) = mn.
Problem 37: If a group has finite number of subgroups, then show that it is a finite group.
Solution: Let G be a group which has n finite number of subgroups. Let e  a G. We
show o(a) = finite.

Since G has finite number of subgroups, < ai > = < aj > for some integers
i, j with i  j.

 ai = (a j)r  a i–jr = e
 i – jr = 0 or o(a) = finite
 j divides i or o(a) = finite

If o(a) is not finite, then j divides i and similarly we'll get that i divides j and so
i = j, a contradiction.

Hence o(a) = finite for all a  G
Consider < a >. If G = < a > then o(G) = finite.
If G  < a >, let H1 = < a >. Then o(H1) = finite.
Let a2  G s.t., a2 H1. Let H2 = < a2 >.
Then o(H2) = finite.
If G = H1  H2 then G is finite.
If G  H1 H2 then  a3 G, s.t., a3  H1  H2.
Let H3 = < a3 >, then H3 is finite. Suppose in this way, we get H1, H2,...,Hn–1 to be

finite number of subgroups of G.
If G = H1  H2  ...  Hn–1, then  an  G, an  Hi i = 1, 2, ..., n – 1. Thus

< an >  Hi 
1

i = 1, 2, ..., n – 1.
Then Hn = < an > is finite.
Thus each subgroup of G is finite and hence G is finite.

Problem 38: Show that the number of elements of prime order p in a finite group G is a
multiple of p – 1.

Solution: Let x  G s.t., o(x) = p. Let H = < x >. This gives (p) = p – 1 elements of order
p, namely generators of H. If these are the only elements of order p, then we are done,
otherwise 

, namely generators of 
 y 

, namely generators of 
 G, y 

, namely generators of 
 H, o(y) = p. Let K = < y >.

Then H  K = {e} as o(H K) divides o(H) and o(K)  o(H  K) = 1 or p.
If o(H  K) = p = o(H) = o(K) then H  K = H = K  y  H, a contradiction.
So, o(H  K) = 1  H  K = {e}. So, K = < y > gives another (p) = p – 1 elements

of order p not in H. In this way, since G is finite, we shall have multiple of p – 1 elements
of order p.
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It is easy to see that U2 and U4 are cyclic groups while U8 is not cyclic (See Exercise 5).
So, question arises for what n, U2n is cyclic. Before, we answer it, we prove

Lemma: If a is an odd integer, then for k  3.
22 1 (mod 2 )

k ka
2

1 (mod 2 ) .
Proof: We prove the result by induction on k.
Let k = 3. Then 2k

We prove the result by induction on 
k 2 = 2.

So, 
22 2 1(mod 8)

k
a a

22 222 222 2 1(mod 8)a a2 2

Therefore, the result is true for k = 3
Assume that the result holds for k = n > 3.

Then 22 1(mod 2 )
n na

2
1(mod 2 )


22 1 2

n na b
2

a b1 2na b1 2a b1 2a b  for some integer b


1 22 1 2 2( 2 )

n n na b b
1

a b b
2n nn n1 2 2( 2 )1 2 2( 2 )1 2 2( 2 )a b b1 2 2( 2 )a b b1 2 2( 2 )1 2 2( 2 )a b b1 2 2( 2 )1 2 2( 2 )a b b1 2 2( 2 )1 2 2( 2 )n n1 2 2( 2 )a b b1 2 2( 2 )n n1 2 2( 2 )1 2 2( 2 )n n1 2 2( 2 )a b b1 2 2( 2 )n n1 2 2( 2 )a b b , on squaring

= 1 + 2n+1 (b + b22n 1)
 1 (mod 2n+1).

So, the assertion is true for k = n + 1
By induction, the result is true for all k  3.

Theorem 34: 2nU is not cyclic for n  3

Proof: Let a 2nU ,. Then g.c.d. (a, 2n) = 1.
So, a is an odd integer

Now o( 2nU ) = (2n) = 2n  2n 1 = 2n 1

By above lemma 
22 1(mod 2 )

n na
2

1(mod 2 ) for n  3
(2 )
2 1 (mod 2 )

n
na

(2 )n(2 )n(2 )(2 )
2 1 (mod 2 )a

(2 )

for n  3

(2 )( ) (2 )
2

n
no a (2 )n(2 )n(2 ) (2 )n(2 )n(2 )(2 )( )

2
o a( )o a( ) (2 ) (2 ) for n  3

Therefore, there is no element in 2nU whose order is (2n).

Hence, U2n is not cyclic for all n  3.

Remark: If a  Un, then ao(Un) = 1  a (n)  1 (mod n).
If o(a) = (n), then a is called a primitive root of n.
In that case, Un is cyclic.
So, Un is cyclic if and only if n has a primitive root. By number theory, n has a primitive

root if n is one of the following type:
n = 2, 4, pr (p = odd prime), 2pr(p = odd prime)

Hence, Un is cyclic, if n is of the above form.
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In particular, Up is cyclic for all prime p.
Also, U2p is cyclic for all odd prime p.
Further, if Un is cyclic, then the number of generators of Un is ( (n)). Equivalently, if

n has a primitive root, then the number of primitive roots of n is 
(
(

(
(n)).

Exercises
1. Show that a group having five or less elements is abelian.
2. For elements a, b, x in a group G. Show that

(i) o(a) = o(a–1)
(ii) o(a) = o(x–1ax).
(iii) o(a k )  o(a)
(iv) o(ab) = o(ba)
(v) If a  G be the only element of order n then that a  Z(G), the centre of G.

3. If a finite group possesses an element of order 2, show that it possesses an odd
number of such elements.

4. Let G be a finite group. Let a  G be such that o(a) = o(G). Show that  G is cyclic,
generated by a. Hence show that a group of order n is cyclic iff it has an element
of order n.

5. Show that every element in U8 is its own inverse (so is of order 2) and hence U8
is not cyclic.

6. Let G be a group and a  G. Show that
H = < a > = {an | n an integer}
is a subgroup of G and also if K is any subgroup of G s.t.,  a  K, then
H 
is a subgroup of 

 K
7. let a  G be such that o(a) = mn, where m, n are coprime. Show that a = bc, where

o(a) = m, o(c) = n. (See Problem 48 on page 146).
8. Show that a subgroup (  {e}) of an infinite cyclic group is infinite.
9. Show that elements of finite order in any abelian group form a subgroup.

10. Show that for n > 2, the order of Un is even.
11. If G is a cyclic group of order p, a prime then show that any non identity element

of G is of order p.
12. Let G be a cyclic group of order 6 generated by a. Let H, K be the subgroups

generated by a2, a3 respectively. Prove that o(H) = 3, o(K) = 2, G = HK and
H  K = {e}.

13. Find order of each element in the group G = {±1, ±i} under multiplication.
14. Find all the subgroups of the quaternion group G and show that  no two non-trivial

subgroups H, K of G s.t., H 
Find all the subgroups of the quaternion group 

 K is identity only.
15. Let A(R) be the group of all permutations on R, where R = set of reals.

Let f : R 
) be the group of all permutations on 

 R s.t., f (x) = –x and g : R 
) be the group of all permutations on 

 R s.t., g(x) = 1 – x. Show that f and
g are both elements of order 2.
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16. Show that Q – {0} under multiplication is not cyclic.
17. Show that a finite cyclic group with three or more elements has even number of

generators.
18. If order of a group G is pq, where p, q are primes, then show that every proper

subgroup of G is cyclic.
19. Show that S3 is not cyclic, although all its subgroups (different from S3) are cyclic.

Same is true for U8.
20. Let Hn = < n > and Hm = < m >. Show that Hn  Hm = < k > where

k = l.c.m. (n, m)
21. Write down all the 12 subgroups of Z60. How many generators it has?
22. Let G be an abelian group and p be a prime. Let H be a subset of G where if

x  H then o(x) = pr for some r. Show H is a subgroup of G.

A group is defined to be a non-empty set together with a binary composition,
satisfying the conditions of associativity and presence of identity and inverse
elements. A group that also satisfies commutative property is called abelian.
A non-empty subset of a group is called a subgroup if it forms a group under the
same binary composition of the group.
A non-empty subset H of a group G is a subgroup iff ab 1 H for all a, b H.
Product HK of subgroups is a subgroup iff HK = KH. If o(G) (read order G) means
the number of elements in G, then o(HK) = o(H).o(K)/o(H  K); H, K being finite.
Lagrange’s theorem states that the order of a subgroup divides order of the
group where the group is finite. Converse may not hold.
If n is the least positive integer s.t., an = e, then n is called the order of a. If no
such n exists we say a has infinite order.
A group G is called a cyclic group, if every element of G can be expressed as a
power of an element of G and in that case that element is called a generator of G.
An infinite cyclic group has two generators, whereas the number of generators of
a group of order n is 
An infinite cyclic group has two generators, whereas the number of generators of

(n),where 
An infinite cyclic group has two generators, whereas the number of generators of

 is Euler’s function.
Order of a cyclic group is same as the order of its generator.
Subgroup of a cyclic group is cyclic.
Converse of Lagrange’s theorem holds in cyclic groups.
If G is a finite cyclic group of order n then number of distinct subgroups of G is
the number of distinct divisors of n and there is a unique subgroup of G of any
given order.
A group of prime order has no non-trivial subgroups, whereas a group of
composite order must have at least one.

A Quick Look at what's been done



Definition: A subgroup H of a group G is called a normal subgroup of G if Ha = aH for all
a G.

A normal subgroup is also called invariant or self conjugate subgroup.
Clearly G and {e} are normal subgroups of G and are referred to as the trivial normal

subgroups. A group G 
} are normal subgroups of 

 {e} is called a simple group if the only normal subgroups of G are
{e} and G. Any group of prime order is simple. See theorem 25 on page 86. This group has
no subgroups (let alone the normal ones) except {e} and G.

It is easy to see that if H is a normal subgroup of G and K is a subgroup of G s.t., H 
K

It is easy to see that if 
G then H is normal in K. Again, if G is abelian, all its subgroups will be normal. We use

the notation H   G to convey that H is normal in G.

Example 1: H = {1, –1} is a normal subgroup of the Quaternion group G. Indeed
Ha = {a, –a} = aH for any a

= {1, –1} is a normal subgroup of the Quaternion group 
G.

The following two theorems give us equivalent conditions under which a subgroup of a
group is normal. So one could also take any one of these as definition of a normal subgroup.

Theorem 1: A subgroup H of a group G is normal in G iff g–1Hg = H for all g G.

Proof : Let H be normal in G
then Hg = gH for all g G

 g–1Hg = g–1 (gH) = (g–1g) H = H.
Conversely, let g–1Hg = H for all g G

Normal Subgroups,
Homomorphisms,

Permutation Groups

3

Introduction
We take up a very special class of subgroups called the normal subgroups here that lead us
to another class of groups called factor or quotient groups. We later take up the notion of
isomorphism (a type of equality) in algebraic systems. In the end, we discuss the permutation
groups.
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Then g(g–1Hg) = gH
 (gg–1)Hg = gH
 Hg = gH.

Hence H is normal.

Theorem 2: A subgroup H of a group G is normal in G iff g–1hg  H for all
h H, g G.

Proof: Let H be normal in G, then
Ha = aH  for all a G

Let h H, g G be any elements, then
hg Hg = gH

 hg = gh1  for some h1 H
 g–1hg = h1 H

which proves the result.
Conversely, let a G be any element,
then a – 1ha H for all h H

 a(a–1ha) aH for all h H
 ha aH for all h H
 Ha aH

Taking b = a–1, we note, as b G
b–1 hb H h H

 aha–1 H  for all h H
 (aha–1)a Ha  for all h H
 ah Ha  for all h H
 aH  Ha.

Hence Ha = aH, showing H is normal.

Remark: Evidently, it makes no difference in the argument if the above condition is read as
ghg–1 H  for all h 

 Evidently, it makes no difference in the argument if the above condition is read as
H, g 

 Evidently, it makes no difference in the argument if the above condition is read as
G.

The next theorem also gives us an equivalent condition for a subgroup to be normal, but
the importance of this theorem is much more in as much as it helps us to form what would
be known as Quotient groups. The very statement of the theorem suggests the presence of
a binary composition. (We would also remind the reader here that we did talk about the product
of two subsets of a group in a remark earlier).

Theorem 3: A subgroup H of a group G is normal subgroup of G iff product of two right cosets
of H in G is again a right coset of H in G.

Proof: Let H be a normal subgroup of G.
Let Ha and Hb be any two right cosets of H in G.
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then (Ha)(Hb) = H(aH)b
= H(Ha)b
= HHab
= Hab ab G

Conversely, we are given that product of any two right cosets of H in G is again a right
coset.

To show H is normal, let g G be any element.
Then Hg and Hg–1 are two right cosets of H in G. Thus HgHg–1 is also a right coset of H

in G.
We claim HgHg–1 = He
Now egeg–1 HgHg–1

 e HgHg–1

Also e H
thus H and HgHg–1 are two right cosets having one element common. Recalling the properties

of equivalence classes we know that two right cosets are either equal or have no element in
common. Thus, (as e is common element)

H = HgHg–1

Now hgh1g
–1 HgHg–1 for all h, h1 H, g G

 hgh1g
–1 H for all h, h1 H, g G

 h–1(hgh1g
–1) h–1H

 gh1g
–1 H for all h1 H, g G

 H is normal in G.
Hence the result.
Let H be a subgroup of a group G. Define

g–1Hg = {g–1hg | h H}
then as seen earlier (see exercises, page 77) g–1Hg forms a subgroup of G.
Again, if we define a mapping  f : H  g–1Hg, by

f (h) = g–1hg
then f will be a 1–1 onto mapping.
In case G is finite, this would mean that both H and g–1Hg (for any g G) will have same

number of elements.
Using this result we have thus proved that if H be a subgroup of a finite group G s.t., there

is no other subgroup of G having the same number of elements as H has, then H is normal
in G. After all, H and g–1Hg (for any g 
is no other subgroup of G having the same number of elements as H has, then H is normal

G) have same number of elements would mean (by
given condition) that they are equal and H = g–1Hg means H is normal.

Problem 1: Prove that a non empty subset H of a group G is normal subgroup of G  for
all x, y H, g 

Prove that a non empty subset H of a group G is normal subgroup of G 
G, (gx)(gy)–1 

Prove that a non empty subset H of a group G is normal subgroup of G 
H.

Solution: Let H be normal subgroup of G.
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Let x, y H, g G be any elements,
then (gx)(gy)–1 = (gx)(y–1g–1) = g(xy–1)g–1 H
as xy–1 H, g G, H is normal in G.
Conversely, we show H is normal subgroup of G.
Let x, y H be any elements,
then xy–1 = exy–1 e = (ex) (ey)–1 H as e G
i.e., H is a subgroup of G.
Again, let h H, g G be any elements
then as (gh)(ge)–1 H
we get (gh)(eg–1) H

 ghg–1 H
 H is normal.

Problem 2: Show that the normaliser N(a) of a in a group G may not be a normal subgroup
of G.

Solution: Let G = S3 and a = (23), then N(a) = N((23)) = {  S3 |  (23) = (23) } = {I, (23)}

Since, N(a)(12) = {(12), (132)}

and (12)N(a) = {(12), (123)}

we find N(a)(12)  (12)N(a) or that N(a) is not normal.

Problem 3: If N is a normal subgroup of order 2, of a group G then show that
N  Z(G), the centre of G.

Solution: Let N = {a, e}.
Since e Z(G) (centre being a subgroup contains e) all that we want to show is that a
Z(G)
i.e., ag = ga for all g G
or g–1ag = a for all g G
Let g G be any element then as a N and N is normal, g–1ag N = {a, e}

 g–1ag = a or g–1ag = e
Since g–1ag = e  ag = ge  ag = eg  a = e, which is not true
we get g–1 ag = a  a  Z(G)
or N  Z(G).

Problem 4: Show that a subgroup of index 2 in a group G is a normal subgroup of G.

Solution: Let H be a subgroup of G, with index 2 then number of distinct right (left) cosets
of H in G is 2 and also then G is union of these two right (left) cosets.

Let g  G be arbitrary.

Case (i): g  H, then Hg = gH (=H)
Hence H is normal.
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Case (ii): g  H then gH  H, Hg  H.
Thus Hg and H = He are the two distinct right cosets of H in G and

G = Hg  H
Similarly, G = gH  H

 Hg  H = gH  H
 Hg = gH  (as Hg  H = gH  H = )
 H is normal in G.

Remark: Converse is not true. Indeed H = {1, –1} has index 4 in the Quaternion group and
is normal.

Problem 5: If H is a subgroup of a group G such that (aH)(Hb) for any a, b  G is either
a left or a right coset of H in G then H is normal.

Solution: Let a  G be any element.
Now e = aeea–1 = (ae)(ea–1)  aHHa–1.
Also e  H = He = eH
Thus (aH) (Ha–1) and H are two right(left) cosets of H in G and contain a common

element e.
 aHHa–1 = H
 aHa–1 = H  H is normal.

Problem 6: Show by an example that we can find three groups E  F  G, where E is normal
in F, F is normal in G but E is not normal in G.

Solution: Let G be the group {  e,  a,  b,  c}

where e = 
1 0
0 1
1 0
0 10 1 , a = 

1 0
0 1
1 0
0 10 10 10 1 , b = 

0 1
1 0
0 10 1
1 01 0 , c = 

0 1
1 0
0 1
1 01 0

If E = {e, a}, F = {  e,  a} then E is normal in F and F is normal in G as
iF(E) = 2 and iG(F) = 2. But E is not normal in G as cac–1 = –a  E, where c  G, a  E.

See problem 63 on page 155 for another example.

Problem 7: If a cyclic subgroup K of G is normal in G then every subgroup of K is normal
in G.

Solution: Suppose K is generated by a.
Let H be any subgroup of K. We show H is normal in G. Since H is a subgroup of a cyclic

group, H will be cyclic.
Let am be generator of H.
Let g  G and h H be any elements.
Then h = (am)n  for some integer n
therefore, g–1hg = g–1 (am)ng = g–1(an)mg = (g–1ang)m.
As K = <a>, an  K and as K is normal in G
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we get g–1ang  K = <a>.
Thus g–1ang = at  for some t

g–1hg = (at)m = (am)t  H
Hence H is normal in G.

Problem 8: Show that the only abelian simple groups are groups of prime order.

Solution: Let G be a group of prime order, then G is cyclic and therefore, abelian. Also then
it contains no non-trivial subgroups. Hence it is simple.

Again, if G be abelian and simple, then each subgroup of G is normal (as G is abelian) it
being simple, it contains no non-trivial normal subgroups. Hence G contains only trivial subgroups
i.e., G is finite of prime order. (See theorem 28 on page 87).

Problem 9: If H and K are two normal subgroups of a group G s.t., H  K = {e} then show
that hk = kh for all h 

If H and K are two normal subgroups of a group G s.t., H 
 H, k 

If H and K are two normal subgroups of a group G s.t., H 
 K.

Solution: Let h  H, k  K be any elements,
then h  H, k  K  G, H is normal in G
gives k–1hk  H  k–1hkh–1  H
Again h–1  H  G, k  K, K is normal in G
gives (h–1)–1 kh–1  K  hkh–1 K  k–1 hkh–1 K
i.e., k–1 hkh–1  H  K = (e)

 k–1 hkh–1 = e
 hk = kh.

Remark: If G is the Quaternion group then all its subgroups are normal (see exercise 5 on
page 114).

If H = { 1, i}, K = { 1, j}
then ij  ji. Note here H  K  {e}.

Problem10: If G is the union of proper normal subgroups s.t., any two of them have only e
in common, then G is abelian.

Solution: Let G = H1  H2  .......  Hk
Let x, y  G be any elements, then x  Hi, y  Hj for some i, j.

Case (i): If i  j then xy = yx using previous problem.
Case (ii): i = j, then x, y  Hi.

Now since Hi is a proper subgroup of G,  some g  G s.t., g  Hi (and g  Ht for some
t i)

Thus again by previous problem, g commutes with both x and y
i.e.,  xg = gx and yg = gy.
Now  g  Hi  gx  Hi

gx also commutes with x, y and xy  Hi

Also (xy)g = g(xy)
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= (gx)y = y(gx)
= y(xg) = (yx)g

 xy = yx (cancellation)
Hence G is abelian.

Problem 11: Show that a subgroup N of G is normal iff  xy N  yx N.

Solution: Let N be normal in G and let xy  N.
Since yx = y(xy)y–1

and xy N, y  G, N is normal in G we find
y(xy)y–1  N  yx  N.

Conversely, let n  N, g  G be any elements
then n  N  (ng) g–1  N

 g–1(ng)  N  (given condition)
 N is normal in G.

Problem 12: Show that a subgroup H of G is normal iff Ha  Hb  aH  bH.

Solution: Let H be normal in G and suppose Ha  Hb
then aH  bH
as  Ha = aH, Hb = bH  as H is normal in G.
Conversely, let Ha  Hb  aH  bH
then aH = bH  Ha = Hb
i.e., a–1b  H  ab–1  H
Let now g  G, h  H be any elements, then

h–1  H  h–1gg–1  H
 (h–1g) (g–1)  H  (h–1g)–1 g  H
 g–1hg  H
 H is normal in G.

Problem 13: Let H be a subgroup of G and let N = x G  xHx–1 then show that N is a normal
subgroup of G.

Solution: We know that intersection of subgroups is a subgroup and also subsets of the type
xHx–1 are subgroups.

Hence x G  xHx–1 is a subgroup of G.

Let g  G be any element, then
gNg–1 = g( xHx–1)g–1 =  (gxHx–1g–1) =  (yHy–1) = N

showing thereby that N is normal.
We have used above the result g(H  K) = gH  gK for subgroups H, K and

g  G. It is true as
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x  g(H  K)  x = ga, a  H  K
a  H  ga  gH  x  gH  x  gH  gK
a  K  ga  gK  x  gK

Also y  gH  gK  y  gH, y  gK
 y = gh, y = gk,  h  H, k  K
 gh = gk
 h = k  h, k  H  K

y = gh  g (H  K) proving the result.

Problem 14: Let H be a subset of a group G. Let N(H) = {x  G | Hx = xH} be the normalizer
of H in G.

We have already shown that N(H) is a subgroup of G. Show
(i) If H is a subgroup of G then N(H) is the largest subgroup of G in which H is normal.

(ii) If H is a subgroup of G then H is normal in G iff N(H) = G.
(iii) Show by an example, the converse of (ii) fails if H is only a subset of G.
(iv) If H is a subgroup of G and K is a subgroup of N(H) then H is normal subgroup of HK.

Solution: (i) We show H is normal in N(H).
Since Hh = hH for all h  H, we find

h  N(H) for all h  H.
Thus H  N(H).
Again by definition of N(H),  Hx = xH for all x  N(H)
 H is normal in N(H).
To show that N(H) is the largest subgroup of G in which H is normal, suppose K is any

subgroup of G such that H is normal in K.
then k–1 Hk = H for all k  K

 Hk = kH for all k  K
 k  N(H) for all k  K
 K  N(H).

(ii) Let H be a normal subgroup of G
then N(H)  G (by definition)
Let x  G be any element,
then xH = Hx as H normal in G.

 x  N(H)  G  N(H)
Hence G = N(H).
Conversely, let G = N(H), H is a subgroup of G (given)
Let h  H, g  G be any elements
Then g  N(H) as N(H) = G

 gH = Hg
 H is normal in G.
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(iii) Consider G = < a > = {e, a, a2, a3}
then G being cyclic is abelian group.
Take H = {a}
then H is a subset and not a subgroup of G (e  H)
Also N(H) = G as G is abelian.

(iv) Let K be a subgroup of N(H)
then k  K  k  N(H)  Hk = kH
i.e., Hk = kH for all k  K

 HK = KH
 HK is subgroup of N(H)

Note, h  H  Hh = hH (=H)
 H N(H) Also K  N(H)

Again H  HK  N(H)
Hence H is a subgroup of HK
 H is normal subgroup of HK
[a HK  a N(H)  Ha = aH].

Problem 15: Let H be normal in G such that o(H) and 
( )
( )

o G
o H  are co-prime. Show that H is

unique subgroup of G of given order.

Solution: Let o(H) = m, 
( )
( )

o G
o H  = n. Suppose K is a subgroup of G of order m.

Then o(HK) = 
m m

d , where d = o(H  K)

Since H is normal, HK  G
Thus o(HK) | o(G)

 | |m mm m n n
d d

| || |m m| |m m| |m m n nm m n n| |m m n n| || |m m n n| |
d d

| |
d d

| |

 | || |md dn m dn
d

 m | d as (m, n) = 1
But d | m as H  K  H
Thus d = m and hence

o(H  K) = o(H) = o(K)
 H = K.

Quotient Groups

Let G be a group and N a normal subgroup of G. Let us collect all the right cosets of N in G

and form a set to be denoted by 
G
N  or G/N. Since N is normal in G, product of any two right
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cosets of N will again be a right coset of N in G, i.e., we have a well defined binary composition

on G
N

 (Prove it). We now show formally that this set G
N

 forms a group under this product

as its binary composition.

For Na, Nb G
N

, NaNb = Nab  G
N

If Na, Nb, Nc 
G
N  be any members, then

Na(NbNc) = Na(Nbc) = Na(bc) = N(ab)c = NabNc = (NaNb) Nc.

Again Ne 
G
N  will act as identity of 

G
N  and for any Na  

G
N , Na–1 will be the inverse

of Na. Thus 
G
N  forms a group, called the Quotient group or the factor group of G by N.

It is easy to see that if G is abelian then so would be any of its quotient groups as
NaNb = Nab = Nba = NbNa.

Converse of this result may not hold. See example later.

Remarks: (i) In 
G
N , as N is normal, it is immaterial whether we use the word right cosets

or left cosets, as Na = aN for all a.

(ii) It would indeeed be interesting to see what { }
G
e  and 

G
G  are equal to.

Are these G and {e} respectively ? Well not really but ‘almost’ so. We will take it up when
we come to isomorphisms.

Theorem 4: If G is a finite group and N is a normal subgroup of G then

( )
( )
( )
( )

G o Go
N o N .

Proof: Since G is finite, using Lagrange’s theorem

( )
( )

o G
o N

= number of distinct right cosets of N in G

= Go
N

.

Theorem 5: Every quotient group of a cyclic group is cyclic.
Proof: Let G = < a > be a cyclic group.

Then G is abelian, so every subgroup of G is normal. Let H be any subgroup of G. We show
G
H

 is cyclic. In fact we claim G
H

 is generated by Ha.
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Let Hx  G
H

 be any element.

Then x  G = < a >, i.e., x will be some power of a
Let x = am

Then Hx = Ham = Ha a ...... a (m times)
= Ha Ha ...... Ha (m times)
= (Ha)m

i.e., any element Hx of G
H

 is a power of Ha  Ha generates G
H

or that G
H

 is cyclic.

Remarks:(i) The above result is proved for m > 0. In case m  0, the proof follows similarly.
Notice am = a–n = (a–1)n where n > 0 and remembering that Ha–1 = (Ha)–1 and so (Ha–1)n =
(Ha)–n = (Ha)m.

(ii) If G = < a > is cyclic and H  G, then o(G/H) is the least +ve integer m, s.t., am  H.
We know if H  G, then H = <am> where m is the least +ve integer s.t., am  H (see

page 81).
Also, G/H = < Ha >. So o(G/H) = o(Ha) = m
as (Ha)m = Ham = H as am  H and if (Ha)r = H, then Har = H  ar  H  m  r as

m is such least.
Hence, o(Ha) = m and so o(G/H) = m.
(iii) Converse of this result is not true. See under permutation groups, page 149.

Example 2: Let G be the set of 2 × 2 matrices over reals of the type 000
a b

d  where

ad  0. Then it is easy to see that G will form a group under matrix multiplication. 
1 0
0 1
1 0
0 10 1

will be identity, 

1

10

b
a ad

d

1 bb
a ada ada ada ad

10 100
d

0
 will be inverse of any element 000

a b
d . Also G is not abelian.

Let N be the subset containing members of the type 
1
0 1
1
0 10 1

b
. Then N is a subgroup of G.

(Prove!) Also it is normal as the product of the type

1
1 1

0 0 1 1 0 10

b ba b k akd bda ad Nd
d

d

1 bb
1 bakd bda ada ad 1 bakd bda b k1a b k1 a ad 1 akd bd1 akd bd

N
1 akd bd

Nd
1 akd bd11 akd bd

d
akd bda ada ada ad 1a ada ad Nd Nd

0 0 1 10 0 1 1d0 0 1 10 0 1 1d0 0 1 1d0 0 1 10 0 1 10 0 1 10 0 1 100 0 1 100 0 1 10 0 1 10 0 1 1 0 10 10 10 0 10
d

0 0 10 1
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So we get the quotient group 
G
N . We show 

G
N  in abelian.

Let Nx, Ny  
G
N  be any elements, then x, y  G.

Let x = 000
a b

d , y = 000
c e

f

G
N  will be abelian iff  NxNy = NyNx

  Nxy = Nyx
  xy (yx)–1  N
  xyx–1 y–1  N

All we need check now is that the product

11

0 0 1 1 10 0

eb
a b c e c cfa ad

d
d f

e1 b 1 eb
c cfc cfa ada ad c cfa b c e a ad c cfc cfc cfa ada ada ad c cfc cfc cfa ada ad

0 0 1 1 10 0 1 1 10 0 1 1 10 00 0 1 1 10 00 0 1 1 10 0 1 1 10 0 1 1 10 0 1 1 10 0 1 1 10 0 1 1 10 0 1 1 1d0 0 1 1 10 0 1 1 1d0 0 1 1 1d0 0 1 1 10 0 1 1 10 00 0 1 1 10 00 0 1 1 10 0 1 1 10 0 1 1 10 0 1 1 10 0 1 1 10 00 0 1 1 10 00 0 1 1 10 00 00 00 00 0
d f

0 0
d f

0 00 00 00 0
d fd fd fd f

0 0
d f

 is a matrix of the type 
1
0 1
1
0 10 1

t
.

Thus we can have an abelian quotient group, without the ‘parent’ group being abelian.

Example 3: Let < Z, + > be the group of integers and let N = {3n | n  Z} then N is a normal
subgroup of Z.

N
Z  will consist of members of the type N + a, a Z

We show 
N
Z  contains only three elements. Let a  Z be any element, where

a  0, 1, 2 then we can write, by division algorithm,
a = 3q + r where 0  r  2

 N + a = N + (3q + r) = (N + 3q) + r = N + r  as 3q  N.
but r can take values 0, 1, 2.
Hence N + a will be one of

N, N + 1, N + 2

or that 
N
Z  contains only these three members.

Remarks: (i) This example also tells us that in case of cosets, Ha = Hb may not necessarily
mean a = b. For instance, N + 4 = N + 1, but 4 

) This example also tells us that in case of cosets, 
 1 in above example.

[N + 4 = (N + 3) + 1 = N + 1].
(ii) This serves as an example of an infinite group which has a subgroup N having finite

index in G.
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(iii) This is also an example of a finite quotient group G/H, where the ‘parent’ group G
is not finite. It is, however, easy to see that quotient group of a finite group is finite.

(iv) If 1G
N

 = 2G
N

 then G1 = G2

Let g1  G1 be any element, then Ng1  1G
N

 = 2G
N

 Ng1 = Ng2 for some g2  G2

 g1g2
–1  N  G2  g1g2

–1 = g for some g G2

 g1 = gg2
–1  G2  G1  G2. Similarly G2  G1. Hence G1 = G2.

Problem 16: Find the order of the element < 6 > + 5 in the group 8 .
6

.
6

Z

Soluton: We have     Z8 = {0, 1, 2, ..., 7} mod 8
and < 6 > = {0, 6, 12} = H (say)

Then, 8 8
6 H
8 8

H6 HH
Z Z  = {H, H+1, H+2, H+3, H+4, H+5}

= {< 6 >, < 6 >+1, < 6 >+2, < 6 >+3, < 6 >+4, < 6 >+5}
Now, < 6 > + 5  < 6 >, the identity
Again 2(< 6 > + 5) = < 6 > +10 = < 6 > + 4  < 6 >
Similarly, 3(< 6 >+5), 4(< 6 >+5), 5(< 6 >+5) are not < 6 >
whereas 6(< 6 >+5) = < 6 >+30 =< 6 > = identity and hence order of < 6 >+5 will be 6.
Problem 17: Let N be a normal subgroup of a group G. Show that o(Na)|o(a) for any a  G.
Soluton: Let o(a) = n

then n is the least +ve integer s.t., an = e.
This gives Nan = Ne


( )
. ........

n times
Na a a NNa a a N


( )
. ........

n times
Na Na Na NNa Na Na N

 (Na)n = N, Na  G
N

 and N is identity of G
N

 o(Na) | n or o(Na) |o(a).

Problem 18: If G is a group such that 
( )
G

Z G
 is cyclic, where Z(G) is centre of G then show

that G is abelian.

Solution: Let us write Z(G) = N. Then 
G
N  is cyclic. Suppose it is generated by Ng.
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Let a, b  G be any two elements,

then Na, Nb 
G
N

 Na = (Ng)n, Nb = (Ng)m for some n, m
 Na = Ng . Ng ........ Ng = Ngn

Nb = Ngm

 ag–n  N, bg–m  N
 ag–n = x, bg–m = y  for some x, y  N
 a = xgn, b = ygm

 ab = (xgn) (ygm) = x(gny) gm

= x(ygn) gm  as y  N = Z(G)
= xygn gm

= xygn + m

Similarly, ba = (ygm) (xgn) = y (gmx) gn = y (xgm) gn

= (yx)gm + n

 ab = ba  as xy = yx as x, y  Z(G)
Showing that G is abelian.

Remarks: (i) We are talking about ( )
G

Z G  assuming, therefore, that Z(G) is a normal subgroup
of G, a result which is easily seen to be true. See exercises.

(ii) One can, moving on same lines as in the above solution prove that if G/H is cyclic,
where H is a subgroup of Z(G) then G is abelian.

(iii) If G is a non abelian group then G/Z(G) is not cyclic.

(iv) If G
H

 is cyclic for some normal subgroup H of G then G may not be abelian. Take

G = Quaternion group and H = {±1, ± i} then o(G/H) = 8
4

 = 2 a prime. So G/H is

cyclic, but G is not abelian.

Problem 19: Let G be a non-abelian group of order pq where p, q are primes then o(Z(G)) = 1.

Solution: Since G is non-abelian, by Problem 18, ( )
G

Z G  is not cyclic.

Now, o(Z(G)) | o(G) = pq

 o(Z(G)) = 1, p, q or pq

   o(Z(G)) =  pq  Z(G) = G

 G  is abelian which is not so.
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o(Z(G)) = p  o(G/Z(G)) = 
pq
p   q. a prime, meaning G(Z(G)) is cyclic which is also

not true.

Similarly, o(Z(G)) = q cannot hold and we are left with the only possibility that o(Z(G)) = 1.

Problem 20: Give an example of an infinite group in which every element is of finite order.

Solution: (a) Let < Q, + > and < Z, + > be the groups of rationals and integers under addition.
Then the quotient group

m m
n n
m mm mm mm mm mm m
n nn nn nn n

Q Z Q
Z

is an infinite group. See exercises. Consider any member m
n
mZ  of Q

Z
.

Since m mn n m
n n
m mm mn n mn n mm mn n mn n mn n mn n mm mn n m
n n

n n m
n n

n n mZ Z Z Z  = Zero of Q
Z

we find  m
n
mZ   has finite order  n. Hence we have our example.

(b) Consider again

0
are  integers, fixed  prime,n n

n p
mG m
p
mG mm

are  integers, fixed  primeare  integers, fixed  prime, n pare  integers, fixed  primen pare  integers, fixed  primeG mG m ,G m are  integers, fixed  primeare  integers, fixed  primeare  integers, fixed  primen pare  integers, fixed  primen pare  integers, fixed  primeG mG mG m are  integers, fixed  primeare  integers, fixed  primeare  integers, fixed  primen pare  integers, fixed  primen pare  integers, fixed  primeG mG m are  integers, fixed  primeG mG mG mmG mmG mm
np 0

are  integers, fixed  primen pare  integers, fixed  primen pare  integers, fixed  primen np 0
, are  integers, fixed  primenZ

Then G is a subgroup of Q
Z

.

Now n n
n n

m mp p
p p

Z Z  = Z + m = Z = zero of G

 order of Z + n
m
p  divides pn

 order of  Z + n
m
p  is  pr,  r  n

 order of every element in G is finite and is of the form pr.
Since G is inifinite, we find this would serve as an example of an infinite p-group. (See

chapter 5 ahead).
Again, we can show that every subgroup H( G) of G is of finite order. Hence this is also

an example of an infinite group in which every proper subgroup is of finite order.

Problem 21: Show that <Q, +> has no proper subgroup of finite index.

Solution: Suppose H is any proper subgroup of <Q, +> having finite index n.

Then, o(Q/H) = n.
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Since H is proper subgroup of Q,  a
b

Q  s.t., a H
b

H

Now, if x H
H

x H
H
Q  be any element

then n(x + H) = H  nx + H = H

nx H xnx H x Q

Take ,ax
nb
a
nb

 then an H
nb

n H  i.e., a H
b

H  which is not true.

Hence, such a subgroup does not exist. (See exercise 20 on Page 115 also.)

Exercises
1. Show that every subgroup of a cyclic group is normal.
2. Show that intersection of two normal subgroups is a normal subgroup.
3. If H, K are two subgroups of G such that one of them is normal then prove that

HK is a subgroup of G. Show further that if both H and K are normal then so is
HK.

4. If H and N are two subgroups of G such that N is normal in G then show that
H N is a normal subgroup of H. Show by an example that H N may not be
normal in G.

5. Every subgroup of an abelian group is normal. Prove that converse is not true.
(Consider Quaternion group).

6. Prove that centre of a group is a normal subgroup.
7. Show that C(H) is a normal subgroup of N(H), where H  G.
8. If A, B, C are normal subgroup of a group G where B  A then show that

A BC = B(A C).
9. If H be a normal subgroup of G and iG(H) = m then show that for any

x  G, xm 
 be a normal subgroup of 

 H.
10. Show that if every cyclic subgroup of G is normal then every subgroup of G is

normal.
11. Prove that if p is a prime number, then any group G of order 2p has a normal

subgroup of order p.

12. Let N be a normal subgroup of G then show that G
N

 is abelian iff xyx–1 y–1 N,
for all x, y  G.

13. Let N be a normal subgroup of a finite group G such that o(N) and Go
N

 are co-

prime. Show that N is unique subgroup of G of order o(N) and that if
x  G be an element such that xo(N) = e then x  N.
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14. Give example of a group in which there exist elements a, b such that o(a), o(b) are
finite but o(ab) is not finite.

15. Let H and K be two normal subgroups of a group G such that o(H) and o(K) are
relatively prime. Prove that hk = kh for all h 

 be two normal subgroups of a group 
 H, k  K.

16. Show that a subgroup H of a group G is normal in G iff the set G
H

 of all its right

cosets is closed under multiplication.
17. Let N be a normal subgroup of G such that o(G/N) = m and H is a subgroup of

G s.t., o(H) = n and (m, n) = 1 then show that H 
) = 

 N.
18. If H and K are two normal subgroups of G such that (G/H) and (G/K) are abelian

then show that G
H KH K

is abelian.

19. Show that 5
4

o 555
444

Z  in Q
Z

 is 4.

20. Show that Q
Z

 is an infinite group and is not cyclic. (See Problem 21)

Homomorphisms-Isomorphisms

In this section we introduce the reader to the idea of an isomorphism which could also be
termed as an ‘indirect’ equality in algebraic systems. Indeed, if two systems have the same
number of elements and behave exactly in the same manner, nothing much is lost in calling
them equal, although at times the idea of equality may look little uncomfortable, especially in
case of infinite sets.

Definition: Let < G, * > and < G', o > be two groups.
A mapping  f : G  G' is called a homomorphism if

f (a * b) = f (a) o f (b) a, b  G
As agreed earlier, and when there is no scope of confusion, we shall use the same symbol

‘.’ for both binary compositions.
With that as notation we find a map

f : G  G' is a homomorphism if
f (ab) = f (a) f (b)

If, in addition, f  happens to be one-one, onto, we say f is an isomorphism and in that case
write G  G'.

Also clearly then
f (a1a2 ...... an) = f (a1) f (a2) ...... f (an)

holds under an isomorphism (homomorphism)
An onto homomorphism is called epimorphism.
A one-one homomorphism is called monomorphism.
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A homomorphism from a group G to itself is called an endomorphism of G.
An isomorphism from a group G to itself is called automorphism of G.
If f : G  G' is onto homomorphism, then G' is called homomorphic image of G.

Example 4: Let < Z, + > and < E, + > be the groups of integers and even integers.
Define a map  f : Z  E, s.t.,

f (x) = 2x  for all x  Z
then f is well defined as x = y  2x = 2y  f (x) = f (y)
that f is 1–1 is clear by taking the steps backwards.
f is a homomorphism as

f (x + y) = 2(x + y) = 2x + 2y = f (x) + f (y)
Also f is onto as any even integer 2x would have x as its pre-image.
Hence f is an isomorphism.
In fact this example shows that a subset can be isomorphic to its superset.
See Cor. on page 131 also.

Example 5: Let f be a mapping from < Z, + > the group of integers to the group
G = {1, –1} under multiplication defined as

f : Z  G, s.t.,
f (x) = 1  if x is even

= –1  if x is odd
then f is clearly well defined. We check, if it is a homomorphism.
Let x, y  Z be any elements.

Case (i): x, y are both even, then x + y is even and as
f (x + y) = 1, f (x) = 1, f (y) = 1

we notice f (x + y) = 1 = 1.1 = f (x) . f (y)
Case (ii): x, y are both odd, then x + y is even and

f (x + y) = +1 = (–1)(–1) = f (x) f (y)
Case (iii): x is odd, y is even, then x + y is odd and

f (x + y) = –1 = (–1) (1) = f (x) f (y)
thus in all cases f (x + y) = f (x) f (y)
Showing thereby that f is a homomorphism. Is it an isomorphism?
Ontoness is obvious, but f is not 1–1 as f (x) = f (y) does not necessarily mean

x = y. Indeed f (2) = f (4) but 2  4.

Example 6: Let R+ be the group of positive real numbers under multiplication and R the group
of all real numbers under addition. Then the map

 : R+  R s.t.,
(x) = log x
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is an isomorphism.
 is clearly well defined.

(x) = (y)
 log x = log y
 elog x = elog y

 x = y
shows that  is one-one.
Since (xy) = log xy = log x + log y = (x) + (y)
we find  is a homomorphism.
Finally, if y  R be any member, then
Since ey  R+ and (ey) = y, we gather that  is onto and hence on isomorphism. (The map

f : R  R+, s.t., f (a) = ea can also be considered.)

Example 7: Let G be a group and N, a normal subgroup of G. Define a map

: Gf G
N  s.t.,

f (x) = Nx,  x  G
then f is clearly well defined. Again

f (xy) = Nxy = NxNy = f (x) f (y)
shows f is a homomorphism.
It is sometimes called the natural (or canonical) homomorphism. That f is onto, hardly

needs any comment.
The relation of isomorphism in groups is an equivalence relation (See exercises). Thus

whenever a group G is isomorphic to another group G', G' will be isomorphic to G. So we shall
simply say that G and G' are isomorphic and denote it by G 

 will be isomorphic to 
 G'.

In most of the theorems and definitions that follow we shall be using G, G' etc., for groups.

Theorem 6: If f : G  G' is a homomorphism then
(i) f (e) = e'

(ii) f (x–1) = ( f (x))–1

(iii) f (xn) = [ f (x)]n, n an integer.
where e, e' are identity elements of G and G' respectively.

Proof: (i) We have
e . e = e

 f (e . e) = f (e)
 f (e) . f (e) = f (e)
 f (e) . f (e) = f (e) . e'
 f (e) = e'  (cancellation)

(ii) Again xx–1 = e = x–1x
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 f (xx–1) = f (e) = f (x–1x)
 f (x) f (x–1) = e' = f (x–1) f (x)
 ( f (x))–1 = f (x–1).

(iii) Let n be a +ve integer.

f (xn) = 
( times)

( . ........ )
n

f x x x

= f (x) . f (x) ...... f (x)   (n times)
= ( f (x))n.

If n = 0, we have the result by (i). In case n is –ve integer, result follows by using (ii).

Problem 22: Show that < Q, + > cannot be isomorphic to < Q*, . >, where Q* = Q –{0} and
Q = rationals.

Solution: Suppose f is an isomorphism from Q to Q*. Then as 2 Q*, f is onto,
< Q, + >, s.t., f (

 is an isomorphism from 
) = 2.

 2
2 2

2
2 22 2

2
2 2

2f

or 2
2 2

2
2 22 2

22f f

 x2 = 2  where x = 
2

f
22

Q*

But that is a contradiction as there is no rational no. x s.t., x2 = 2. Hence the result follows.

Problem 23: Find all the homomorphisms from 
4
Z
Z

 to 
6
Z
Z

.

Solution:  Let :
4 6

f
4 6
Z Z
Z Z

 be a homomorphism.

Then f (4Z + n) = n f (4Z + 1)
So, f is completely known if f (4Z + 1) is known.
Now order of (4Z + 1) is 4 and so o( f (4Z + 1)) divides 4 (See problem 24 ahead).
Also o( f (4Z + 1)) divides 6 and thus o( f (4Z + 1)) = 1 or 2

If o( f (4Z + 1)) = 1, then f (4Z + 1) = 6Z = zero of 
6
Z
Z

Hence f (4Z + n) = zero
If o( f (4Z + 1)) = 2, then f (4Z + 1) = 6Z + 3

 f (4Z + n) = 6Z + 3n
Also f (4Z + n + 4Z + m) = f (4Z + n + m)

= 6Z + 3(n + m)
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= (6Z + 3n) + (6Z + 3m)
= f (4Z + n) + f (4Z + m)

Thus there are two choices for f and it can be defined as

:
4 6

f
4 6
Z Z
Z Z

s.t.,

f (4Z + n)  = 6Z + 3n
Notice 4Z + n = 4Z + m

 n – m  4Z
 3(n – m)  12Z  6Z
 3(n – m)  6Z
 6Z + 3n  6Z + 3m

i.e., f is well defined.

So there are two homomorphisms from 
4 64 6
Z Z
Z Z

. In fact, in general, there are d

homomorphisms from 
m n
Z Z
Z Z

where d = g.c.d.(m, n)

Definition: Let f : G  G'  be a homomorphism. The Kernel of f, (denoted by
Ker f ) is defined by

Ker f = {x  G | f (x) = e'}
where e  is identity of G'.

Theorem 7: If  f : G  G'  be a homomorphism, then Ker f is a normal subgroup of G.

Proof: Since f (e) = e', e  Ker f, thus Ker f  . Again,
x, y  Ker f  f (x) = e

f (y) = e
Now f (xy–1) = f (x) f (y–1) = f (x)( f (y))–1 = e' . e –1 = e'

 xy–1 Ker f
Hence it is a subgroup of G.
Again, for any g  G, x  Ker f

f (g–1xg) = f (g–1) f (x) f (g)
= ( f (g))–1f (x) f(g) = (f (g))–1 e' f(g)
= ( f (g))–1f (g) = e'

 g–1xg  Ker f
or that it is a normal subgroup of G.

Theorem 8: A homomorphism f : G  G' is one-one  iff  Ker f = {e}.

Proof: Let f : G  G'  be one-one.
Let x Ker f be any element
then f (x) = e' and as f (e) = e'
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f (x) = f (e)  x = e as f is 1-1
Hence Ker f = {e}.
Conversely, let Ker f contain only the identity element.
Let f (x) = f (y)
Then f (x) ( f (y))–1 = e'

 f (xy–1) = e'
 xy–1  Ker f = {e}
 xy–1 = e
 x = y  or that f is one-one.

Problem 24: Let f : G  G' be a homomorphism. Let a  G be such that o(a) = n and
o( f (a)) = m. Show that o( f (a)) | o(a) and f is 1-1 iff m = n.

Solution: Since o(a) = n
we find   an = e  f (an) = f (e)

 f (a . a ..... a) = f (e)
 ( f (a))n = e'
 o( f (a)) | n = o(a)

Again,  let f be 1–1.
Since o( f (a)) = m
we find ( f (a))m = e'

 f (a) . f (a) ..... f (a) = e'
 f (a . a ..... a) = e'
 f (am) = e' = f (e)
 am = e ( f is 1–1)

i.e., o(a) | m  or  n | m, but already m | n
Hence m = n.
Conversely, let o(a) = o( f (a)).
Then f (x) = f (y)

 f (x) ( f (y))–1 = e'
 f (xy–1) = e'
 o( f (xy–1)) = 1
 o (xy–1) = 1  xy–1 = e  x = y
 f is 1-1.

Remark: Under an isomorphism, order of any element is preserved.

Problem 25: Show that the group <R, +> of real numbers cannot be isomorphic to the group
R* of non zero real numbers under multiplication.

Solution: –1 R* and order of –1 is 2 as (–1)2 = 1. But R has no element of order 2. As
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if x R is of order 2 then 2x = x + x = 0. But this does not hold in <R, +> for any x except
x = 0.

By above remark, under an isomorphism order of an element is preserved. Thus there cannot
be any isomorphism between R and R*.

Problem 26: Show that every non zero homomorphism of <Q, +> to itself is an automorphism.

Solution: Let : Q Q  be any non zero homomorphism. We first show that

(1)m m
n n
m mm mm mm mm m
n nn n

θ θ  for any m
n

Q

Suppose, (1) = p/q

Then
1 1 1 1(1)p n n

q n n n n n
(1)p n(1)p n(1) 1 1 1 1p np n 1 1 1 1p n 1 1 1 11 1 1 1p n

q n n n n nq n n n n n
nnp n θ θ θ

Thus 1 1 (1)
n n
1 11 11 11 1
n nn n

θ θ

So 1 1 1 1 (1)m mm
n n n n n n

1 1 1 1m m1 1 1 1m m1 1 1 1m mm mm m1 1 1 1m m1 1 1 1m mm mm m1 1 1 1m m1 1 1 1
n n n n n nn n n n n n

mmθ θ θ

We now show  is 1–1 onto.

Let m
n

 Ker be any element. Then

0 (1) 0 0 or (1) 0m m m
n n n
m m mm m m0 (1) 0 0 or (1) 00 (1) 0 0 or (1) 0m m m0 (1) 0 0 or (1) 0m m m0 (1) 0 0 or (1) 0m m mm m mm m m0 (1) 0 0 or (1) 0m m m0 (1) 0 0 or (1) 0m m m0 (1) 0 0 or (1) 0
n n nn n n

0 (1) 0 0 or (1) 00 (1) 0 0 or (1) 00 (1) 0 0 or (1) 00 (1) 0 0 or (1) 0θ θ

If (1) = 0, then 1 0
n
111 0
nn

00 and (m) = m (1) = 0,  , , 0m n n , , 0 , , 0m n n , , 0

0 , , 0m m n n
n
m 0 , , 00 , , 0m n n0 , , 0m 0 , , 0m
nn

0 , , 00 , , 0θ

or that is the zero homomorphism which is not so.

Hence 0 Ker {0}m
n

0 Ker {0}θ

  is 1–1

Let again m
n

Q be any element then as

(1)m q mq m
n p np n
m q mq m(1)m q mq m(1)m q mq m(1)m q mq mm q mq mm q mq m
n p np nn p np n

θ θ

we gather that is onto and hence is an automorphism.

Problem 27: Let G be a group and f : G  G s.t., f (x) = x–1 be a homomorphism. Show that
G is abelian.
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Solution: Let x, y  G be any elements.
xy = (y–1x–1)–1 = f (y–1x–1)

= f (y–1) f (x–1)
= yx,  hence G is abelian.

Theorem 9: (Fundamental theorem of group homomorphism). If f : G  G' be an onto

homomorphism with K = Ker f, then G G
K

G .

In other words, every homomorphic image of a group G is isomorphic to a quotient group
of G.

Proof: Define a map : G G
K

: G G
K

, s.t.,

(Ka) = f (a),  a  G
We show  is an isomorphism.
That  is well defined follows by

Ka = Kb
 ab–1  K = Ker f
 f (ab–1) = e'
 f (a)( f (b))–1 = e'
 f (a) = f (b)
 (Ka) = (Kb)

By retracing the steps backwards, we will prove that  is 1–1.
Again as (KaKb) = (Kab) = f (ab) = f (a) f (b)

= (Ka) (Kb)
we find  is a homomorphism.
To check that  is onto, let g'  G' be any element. Since f : G  G' is onto,

 g  G, s.t.,
f (g) = g'

Now (Kg) = f (g) = g'
Showing thereby that Kg is the required pre-image of g' under .
Hence  is an isomorphism.

Remark: The above theorem is also called first theorem of isomorphism. It can also be stated
as:

If f : G  G'  is a homomorphism with K = Ker f, then ( ).
Ker

G f G
f

f G( ).f G( ).

Theorem 10: (Second theorem of Isomorphism). Let H and K be two subgroups of a group
G, where H is normal in G, then

HK K
H H K

.
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Proof: It is easy to see that H  K will be a normal subgroup of K and as
H  HK 

It is easy to see that 
G, H will be normal in HK.

Define a map  : HKf K
H

 s.t.,

f (k) = Hk
then as k1 = k2  Hk1 = Hk2  f (k1) = f (k2)
we find f is well defined.
Again f (k1k2) = Hk1k2 = Hk1Hk2 = f (k1) f (k2)
shows f is a homomorphism.
That f is onto is obvious and thus using Fundamental theorem, we find

Ker
HK K
H f

HK K
H fKerH fKer

Since k  Ker f f (k) = H
Hk = H
k  H
k  H  K (k K as Ker f  K)

We find Ker f = H  K
and our theorem is proved.

Lemma: If H and K are two normal subgroups of a group G such that H  K, then 
K
H  is

a normal subgroup of 
G
H , and conversely..

Proof: 
K
H  is a non empty subset of 

G
H , by definition.

For any Hk1, Hk2  
K
H

1 11
1 2 1 2 1 2( )( ) ( )( )1( )( ) ( )( )1( )( ) ( )( )1
1 2 1 2 1 2( )( ) ( )( )1 2 1 2 1 21 2 1 2 1 2( )( ) ( )( )1 2 1 2 1 2( )( ) ( )( )1 2 1 2 1 2

1 1
1 2 1 2 1 2( )( ) ( )( )1 1( )( ) ( )( )1 1
1 2 1 2 1 2( )( ) ( )( )1 2 1 2 1 2( )( ) ( )( )1 2 1 2 1 2( )( ) ( )( )1 2 1 2 1 2

KHk Hk Hk Hk Hk k
H

i.e., 
K
H  is a subgroup.

Again, for any KHk
H

 and GHg
H

, we notice,

(Hg)–1(Hk)(Hg) = Hg–1HkHg

= 11 KHg kg
H

as g  G, k  K, K is normal in G gives g–1 kg  K.
We leave the converse as an exercise for the reader.
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Theorem 11: (Third theorem of isomorphism). If H and K are two normal subgroups of G
such that H 

 (Third theorem of isomorphism). 
 K, then

/
/
/
/

G G H
K K H

.

Proof: The above lemma ensures that 
K
H  is a normal subgroup of 

G
H  and, therefore, we can

talk of 
/
/

G H
K H .

Define a map : G Gf
H K  s.t.,

f (Ha) = Ka, a  G
f is well defined as

Ha = Hb
 ab–1  H  K
 Ka = Kb
 f (Ha) = f (Hb)

f is a homomorphism as
f (HaHb) = f (Hab) = Kab = KaKb = f (Ha) f (Hb).

Ontoness of f is obvious.
Using Fundamental theorem of group homomorphism we can say

/
Ker

/
Ker

G G H
K f

We claim  Ker f = 
K
H

A member of Ker f will be some member of 
G
H .

Now Ha  Ker f  f (Ha) = K  (identity of G/K)
Ka = K
a  K

Ha  
K
H

Hence we find
/
/
/
/

G G H
K K H

which proves our result. It is also called Freshman’s theorem.

Remark: Since 
K
H  = Ker f, we notice that 

K
H  is a  normal subgroup of 

G
H  and hence we
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can talk of 
/
/

G H
K H . Thus we need not prove separately that 

K
H  is a normal subgroup of 

G
H .

Theorem 12: Let f : G  G' be an onto homomorphism with Ker f = K. For H For H  a subgroup
of G , define

H = {x  G | f (x)  H'}
Then

(i) H is a subgroup of G and K  H.
(ii) H' is normal subgroup of G' iff H is normal in G.

(iii) If H' is normal in G' then G G
H H
G GG G
H H
G G
H HH H

.

(iv) This association gives a one-one onto mapping from the family S' of all subgroups of
G' onto the family S of all subgroups of G, that contain K.

Proof: (i) H   as f (e) = e'  H' shows e  H
Again, x, y  H  f (x), f (y)  H'

 f (x)( f (y))–1  H'.
 f (xy–1)  H'  xy–1  H

Thus H is a subgroup.
Since  x  Ker f = K  f (x) = e'  H'
we find x  H  K  H.

(ii) Let H be normal in G.
Let g'  G', h'  H' be any elements. Since f is onto  g  G, h  G such that
f (g) = g', f (h) = h'. Since h' 

 be any elements. Since 
 H, h 

 be any elements. Since 
 H

Now
g'–1 h'g' = ( f (g))–1 f (h) f (g)

= f (g–1) f (h) f (g) = f (g–1hg)  H'
as g  G, h  H, H is normal in G means g–1hg  H
Thus H' is normal in G'.
Conversely, let H' be normal in G'.
For any elements h  H, g  G,

f (g–1 hg) = ( f (g))–1 f (h) f (g)  H
as f (h)  HH , f (g)  G , HH is normal in G
 g–1hg  H or that H is normal in G.

(iii) Define a mapping : GG
H

: GG
H

 s.t.,

(g) = H' f (g)
then  is well defined as g1 = g2

 f (g1) = f (g2)
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 H' f (g1) = H' f (g2)
 (g1) = (g2)

 will be a homomorphism as
(g1g2) = H' f (g1g2) = H' f (g1) f (g2) = H' f (g1) H' f (g2)

= (g1) (g2)

Again, for any H'g' G
H

 since g'  G' and f is onto  g  G, s.t., f (g) = g'

or that (g) = H' f (g) = H'g' showing that  is onto.
By fundamental theorem then

Ker
G G
H
G GG GG G

KerKer
Now x  Ker  (x) = H'

 H' f (x) = H'
 f (x)  H'  x  H

Hence  Ker  = H
(iv) Define a mapping  : S'  S, s.t.,

(H') = H
where, of course, H is {x  G | f (x)  H'} for any H' in S' By (i) we know that it is
subgroup of G, containing K and is thus a member of S.subgroup of 

 is, therefore, a well defined mapping.
Let now (H') = (T')  where H', T'  S'
then H = T where

H = {x  G | f (x)  H'}
T = {x  G | f (x)  T'}

Now for any h'  H'  G', since f : G  G' is onto, we can find h  G, s.t.,
f (h) = h' 
Now for any 

H'
But this shows h  H = T

 f (h)  T'
 h'  T'  H'  T'

Similarly T'  H'
i.e., H' = T' or that  is one-one.
We show now  is onto.
Let H  S be any member, then H is a subgroup of G and K  H.
Consider f (H) = { f (h) | h  H}
then f (H)   as e  H  f (e) = e'  f (H)
Again, for any f (h1), f (h2)  f (H),  h1, h2  H
and ( f (h1))( f (h2))–1 = f (h1h2

–1)  f (H)
i.e., f (H) is a subgroup of G'.
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We show f (H) = H' is the required pre-image of H under ,
i.e., we show (H') = H,
For that we need show H = {x  G | f (x)  H'}
Let x  H then f (x)  f (H) = H'

 x  {x  G | f (x)  H'}
or that H {x  G | f (x)  H'}
Again, if x  {x  G | f (x) H'}
then f (x)  H' = f (H)

 h  H, s.t., f (x) = f (h)
 f (xh–1) = e'
 xh–1  Ker f = K
 x  Kh  H  [K  H]

Thus {x  G | f (x)  H'}  H
Hence H = {x  G | f (x)  H'}
or that (H') = H and so  is onto.
which completes the proof.
In the following problems we state and prove a milder version of the above theorem and
its application.

Problem 28: Let f : G  G' be an onto homomorphism from group G to G'. Let H be a
subgroup of G and H', a subgroup of G'. Then

(i) f (H) is a subgroup of G'.
(ii) f –1 (H') is a subgroup of G containing K = Ker f, where by f –1 (H') we mean

{x
(

G | f (x)
 is a subgroup of G containing K

H'}
Notice that the set f –1(HH ) is defined here whether or not f has an inverse. The notation

 f –1 as used here is only symbolic.

Solution: (i) Since e = identity of G belongs to H
we have f (e)  f (H)

 f (H)  .
Let x, y  f (H)  x = f (h1), y = f (h2)  where h1, h2 H.

xy–1 = f (h1) ( f (h2))–1

= f (h1) ( f (h2
–1)

= f (h1h2
–1)  f (H)  as h1, h2  H  h1h2

–1  H
So, f (H) is a subgroup of G'.

(ii) Let, a, b  f –1(H')
 f (a), f (b)  H'
 f (a) . f (b)–1  H'
 f (ab–1)  H'
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 ab–1  f –1 (H')
Also  f (e) = e' = identity of G'  H'
 e  f –1 (H')
 f –1 (H')  
So, f –1 (H') is a subgroup of G

Also k K  f (k) = e'  H
 k  f –1 (H')
 K  f –1 (H')

This proves (ii).

Problem 29: (i) Let f: G  G' be a homomorphism and suppose g  G be such that
f(g) = g'. Then if f –1 (g') = {x 

 G' be a homomorphism and suppose g 
 G | f (g) = g'} be the set containing all the pre images of

g' under f, show that f –1 (g')  = Kg  where K = Ker f.

(ii) If f: U30  U30 be a homomorphism s.t., Ker f = {1, 11} and f (7) = 7 then find all the
elements of U30 that are mapped to 7. Conversely, find a homomorphism f: U30  U30.

s.t., Ker f = {1, 11} and f (7) = 7.
Solution: (i) Let x 

 = {1, 11} 
 f –1 (g') be any element

Then f(x) = g'g'  f(x) = f(g)

 f(x)(f(g))–1 = e'

 f(xg–1) = e'

 xg–1  Ker f = K

 x  Kg  f –1(g')  K

Again, Let k  K be any element,

then f(kg) = f(k) f(g) = e'g' = g'

 Kg  f –1(g')  k Kk K

 Kg  f –1(g')

and hence f –1(g') = Kg

(ii) By part (i), set of pre images of 7 is K7, where K = Ker f = {1, 11}

Thus set of pre images of 7 is

K7 = {1 7, 11 7} = {7, 17}

Conversely, let f: U30  U30 be a homomorphism s.t.,

Ker f = {1, 11} and f (7) = 7.

then f (1) = 1, f (11) = 1, f (7) = 7

Also as 7 11 = 17.



3. Normal Subgroups, Homomorphisms, Permutation Groups 129

f (7 11) = f (17)  f (17) = f (7) f (11) = 7 1 = 7

7 17 = 29  f (29) = f (7) f (17) = 7 7 = 19

Similarly, we get other values

f (13) = 13, f (19) = 19, f (23) = 13

Remark: As mentioned in previous problem f 1 is only symbolic and not essentially inverse.

Theorem 13: Let N be a normal subgroup of G. Then there exists a 1-1 onto mapping from
A, the set of all subgroups of G, containing N and B, the set of all subgroups of G/N.

Proof: Let f : G G/N, s.t.,
f (x) = Nx

be the natural homomorphism.

If H  G  then  f (H) = {f (h) | h  H} = {Nh | h  H} = 
H
N

Define : A  B, s.t.,

(H) = f (H) = H
N

Then H = K  
H K
N N   (H) = (K)   is well defined.

Again (H) = (K)  H K
N N

.

Now h  H  Nh  H K
N N

   k  K, s.t., Nh = Nk  hk–1  N  K

i.e., hk–1 = k1, for some k1  K and so h = k1k
–1  K and thus H  K

Similarly K  H and so H = K, showing that  is 1-1.

Let H B  be any member, then H is a subgroup of G/N.

Let  H = {x  G | f (x)  H } then H is a subgroup of G

[x, y  H  f (x), f (y)  H . f (xy–1) = f (x) [f (y)]–1  H   xy–1  H]

If n  N = Ker f  then f (n) = N = identity of G/N  and as identity is in H

f (n) H  n  H or that N  H
Thus H is a subgroup of G, containing N and clearly, by definition of H, we find

(H) = H
Hence  is onto.

Problem 30: Let N be a normal subgroup of G, then show that any subgroup of

G/N is of the type 
H
N , where H is a subgroup of G and N  H.
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Solution: Let H  be any subgroup of G/N.
Let  f : G  G/N, s.t., f (x) = Nx be the natural homomorphism.

Let  H = {x  G | f (x)  H }, then H  G and N  H
as in above theorem.

Now 
H
N  = {Nh | h  H} = {f (h) | h  H} = f (H) = H

which proves the result.

Problem 31: Find all the subgroups of 
(12)
Z , wheree

Z = group of all integers under addition
and (12) = subgroup of Z consisting of all multiples of 12.

Solution: By above problem, any subgroup of 
(12)
Z

 is of the form 
(12)
H

 where H

is a subgroup of Z under addition and contains (12). But any subgroup of Z
under addition is (n) = set of all multiples of n, n 

 under addition and contains (12). But any subgroup of 
 0.

H = (2), (3), (4), (6), (12). So subgroups of (12)
Z

 are

(2) (3) (4) (6) (12), , , ,
(12) (12) (12) (12) (12)

Note
(2)
(12)  = {(12), (12) + 2, (12) + 4, (12) + 6, (12) + 8, (12) + 10}

(3)
(12)  = {(12), (12) + 3, (12) + 6, (12) + 9}

(4)
(12)  = {(12), (12) + 4, (12) + 8}

(6)
(12)  = {(12), (12) + 6}

(12)
(12)  = {(12)}.

Problem 32: Show that any infinite cyclic group is isomorphic to < Z, + > the group of integers.

Solution: Let G = < a > be any infinite cyclic group.
Define f : G  Z, s.t.,

f (a i) = i,  i  Z
Since G = < a > is of infinite order, ai  G for all i  Z and ai = aj for no i j.
Thus ai = aj  i = j  f (ai) = f (aj) or that f is well defined.
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Again f (ai) = f (aj)  i = j  ai = aj  f is 1-1.
f (ai . aj) = f (ai+j) = i + j = f (ai) + f (aj)

shows that f is a homomorphism.
f  is obviously onto and hence the isomorphism is established.

Cor.: Every subgroup of an infinite cyclic group is an infinite cyclic group which is isomorphic
to the group itself.

Problem 33: Any finite cyclic group of order n is isomorphic to Zn the group of integers
addition modulo n.

Solution: Let G = < a > be a cyclic group s.t.,
o(G) = o(a) = n

then G = {e, a, a2, ......, an–1}, Zn = {0, 1, 2, ......., n – 1}
Define  f : G  Zn s.t.,  f (ai) = i
f is clearly well defined 1-1 onto mapping.
Again f (a i . aj) = f (a i j) = i  j = f (a i) f (a j)
Thus f is a homomorphism and hence an isomorphism.

Remark: Any two cyclic groups of same order (finite or infinite) are isomorphic.

Problem 34: Show that any finite cyclic group of order n is isomorphic to the quotient group

N
Z , wheree < Z, + > is group of integers and N = < n >.

Solution: Let G = < a > be of order n
Define  f : Z  G, s.t.,

 f (m) = am

then f is clearly well defined onto map.
Since f (m + k) = am+k = am ak = f (m) . f (k)

f is a homomorphism and therefore, by Fundamental theorem 
KerKer

G
f

Z

We show Ker f = N = < n >
Now m  Ker f  f (m) = e

 am = e
 o(a) | m
 n | m
 m < n >

Hence G
n
Z .

Remark: In view of the above results, we notice

n n
ZZ .
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Compare the solution of problem 31 on page 130 and the comments on page 85 just after
theorem 23.

Problem 35: If G is the additive group of reals and N is the subgroup of G consisting of

integers, prove that 
G
N  is isomorphic to the group H of all complex numbers of absolute value

1 under multiplication.
Solution: Define a map

f : G  H, s.t.,
f ( ) = e2 i

where | e2 i  | = | cos 2  + i sin 2  |

= 2 2cos (2 ) sin (2 )2 2cos (2 ) sin (2 )2 2cos (2 ) sin (2 )2 2  = 1

We show f is onto.
Let h  H be any element, then h = a + ib

where | a + ib | = 1 = 2 22 2a b
If a + ib = r(cos  + i sin )
then (a + ib) = 1  r = 1

a + ib = cos  + i sin  = ei

then
. 2

2
2

i if e e
. 2 i. 2

2 if e e2f e e2
i

f e ei. 2
f e ef e ef e ef e ef e ef e e

22
f e ef e e

2
f e e

2
f e ef e ef e ef e ef e ef e ef e ef e e

 2  is the required pre-image.

Again f is a homomorphism, as
f ( 1 + 2) = e2 ( 1+ 2)i = e2 1i . e2 2i

= f ( 1) f ( 2)
By fundamental theorem of group homomorphism

KerKer
GH

f
We claim Ker f = N
Now  Ker f  f ( ) = 1

 e2 i  = 1
 cos 2  + i sin 2  = 1 = 1 + i0

cos 2  = 1, sin 2  = 0
 2  = 2 n  0  where n is an integer
  = n
   N

thus Ker f = N



3. Normal Subgroups, Homomorphisms, Permutation Groups 133

and hence GH
N

.

Problem 36: Let G be the group of all non zero complex numbers under multiplication and

let G  be the group of all real 2 × 2 matrices of the form 
a b
b a

, where not both a and b

are zero, under matrix multiplication, show that G  G'.
Solution: Define a map

 : G  G', s.t.,

(a + ib) = 
a b
b a

 is clearly well-defined.
Also

[(a + ib) (c + id)] = [(ac – bd) + i(ad + bc)] = 
ac bd ad bc
ad bc ac bd

and

(a + ib) (c + id) =  
a b c d ac bd ad bc
b a d c ad bc ac bd

shows that  is a homomorphism.

Again for 
a b
b a

, the required pre-image is (a + ib).

Thus  is onto.
Also, (a + ib) = (c + id)


a b c d
b a d c

 a = c, b = d  a + ib = c + id
Hence  is an isomorphism.

Problem 37: Suppose G is a group of order p2, where p is a prime. Let  : G  H be an onto
homomorphism, where H is a group. Then show that either 

, where p is a prime. Let 
 is an isomorphism or  maps each

element x of G onto the identity e of H and H = {e} or else, for each y 
 is an isomorphism or 

 H, 
 is an isomorphism or 

 exactly p elements
x of G such that 
element x of G onto the identity e of H and H 

(x) = y.

Solution:  : G  H is an onto homomorphism
o(G) = p2.

Since Ker  is a subgroup of G, by Lagrange’s theorem o(Ker ) | o(G) = p2

 o(Ker ) = 1, p or p2

Case (i): o(Ker ) = 1  Ker  = {e}
  is 1-1.
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hence  is an isomorphism.
Case (ii): o(Ker ) = p2

 Ker  = G
 for all x  G, x  Ker  (x) = e  for all x  G
Since  is onto, each element of H has a pre-image, but all members of G are mapped to

e.
H = {e}.

Case (iii): o(Ker ) = p
Let y  H be any element then as is onto,  x  G, s.t., (x) = y
Let Ker  = {a1 = e, a2, a3, ......, ap}
We claim xa1, xa2, ......, xap are distinct.
Suppose xai = xaj,  then ai = aj
which is not true.
Thus xa1, xa2, ....., xap are distinct members of G.
Now (xai) = (x) (ai)  i = 1, 2, ...., p.

= ye = y  for all i  (ai  Ker )
thus y has p pre-images x = xa1, xa2, ......, xap
To show that y does not have more than p pre-images, let x' be any other pre-image of y

under
Then (x') = y = (x)

 ( (x))–1 (x') = e
 (x–1 x') = e
 x–1 x'  Ker 
 x–1 x' = ai  for some i
 x' = xai  for some i

i.e., it is one of the p pre-images, we have considered.
Hence y has exactly p pre-images.

Problem 38: Find all the homomorphisms from Z20  Z8. How many of these are onto?

Solution: Let f: Z20  Z8 be any homomorphism
where Z20 = {0, 1, 2, ..., 19} mod 20

Z8 = {0, 1, 2, ..., 7} mod 8
Suppose f (1) = a, then for any x  Z20

f(x) = f(1 + 1+...+1) = xf(1) = xa
i.e., all homomorphisms are determined if we know a
Since a  Z8 o(a) | o(Z8) = 8.
Again, (See Problem 24, page 120) o(f (1)) | o(1) = 20 or that a | 20
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Hence possible values of o(a) are 1, 2, 4
Now, if o(a) = 1, then a is identity of Z8

i.e., a = 0
if o(a) = 2, then 2a = 0  a = 4 as 4  4 = 0
if o(a) = 4, then 4a = 0  a = 2 as 2  2  2  2 = 0

or a = 6 as 6  6  6  6 = 0
Hence possible values of a will be 0, 4, 2, 6
meaning thereby that  4 homomorphisms from Z20  Z8

If f: Z20 Z8 is an onto homomorphism then by Fundamental theorem

20
8 Ker f

20
Ker 
ZZ

20
8

( )( )
(Ker )

20 5(Ker )
8 2

oo
o f

o f

8
( )( )8( )8

oo
o f(Ker )o f(Ker )

20 5(Ker )
8 2

o f(Ker )o f(Ker )

ZZ

which is not possible. Hence none of the homomorphisms is onto.

Problem 39: Prove that if   
G G
H K   and G is cyclic then H = K. Show by an example that

H may not equal K when G is not cyclic.

Solution: Let G = < a > and suppose H = < an > and K = < am >. Then n is the smallest +ve
integer s.t., an  H (see theorem 19, chapter 2). Thus H, Ha, ....., Han–1 are distinct right
cosets of H in G and no more. So iG(H) = n.

Similarly, iG(K) = m.

Now
G G
H K  iG(H) = iG(K)

 n = m  or  that H = K.
For the second part take G to be the quaternion group { 1, i, j, k} then G is not cyclic

(It is not abelian).
Let H = { 1, i}, K = { 1, j}

then H, K are normal subgroups of G and 
G
H  = {H, Hj}, 

G
K  = {K, Ki}

The mapping H  K, Hj  Ki will be an isomorphism, whereas H  K.

Problem 40: Show that the group Z4 under addition modulo 4 is isomorphic to the group U5
under multiplication mod 5. Give two isomorphisms between U5 and Z4.

Solution: The group Z4 = {0, 1, 2, 3} addition mod 4 is cyclic group of order 4 and has (4)
= 2 generators 1 and 3.

(11 = 1, 12 = 1  1 = 2, 13 = 1  1  1 = 3, 14 = 0.
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Also 31 = 3, 32 = 3  3 = 2, 33 = 1, 34 = 0).
Also the group U5 = {1, 2, 3, 4} multiplication mod 5 is cyclic group of order 4 having

generators 2 and 3.
(21 = 2, 22 = 2  2 = 4, 23 = 3, 24 = 1; 31 = 3, 32 = 3  3 = 4, 33 = 2, 34 = 1).
Since any two cyclic groups of same order are isomorphic  (Remark on page 131) we find

Z4 and U5 are isomorphic.
The following maps are the two isomorphisms:

 : U5  Z4 s.t.,
(1) = (24) = 0
(2) = 1
(3) = (23) = (2 2 2) = (2) (2) (2) = 3
(4) = (22) = (2 2) = (2) (2) = 1 1 = 2
 : U5 Z4 s.t.,
(1) = 0
(2) = 3
(3) = (2 2 2) = (2) (2) (2) = 3 3 3 = 1
(4) = (2 2) = (2) (2) = 3 3 = 2

Notice under an isomorphism a generator is mapped to a generator.

The Dihedral Group

Let G = {xi y j | i = 0, 1, j = 0, 1, ......, n – 1, x2 = e = yn, xy = y–1 x}
Then G is a group, called the dihedral group. (n  3).
In fact, we can also write G as

G = 
2 1 2 1

2 1

, , ....., , | ,

, , ......, ,

n n n

n

y y y y e x e y xy y x

xy xy xy x

2 1 2 12 1 2 12 1 2 1y y y y e x e y xy y x2 1 2 1y y y y e x e y xy y x2 1 2 1, , ....., , | ,2 1 2 1, , ....., , | ,2 1 2 12 1 2 1n n2 1 2 1, , ....., , | ,n n, , ....., , | ,2 1 2 1, , ....., , | ,2 1 2 1n n2 1 2 1, , ....., , | ,2 1 2 1y y y y e x e y xy y x, , ....., , | ,y y y y e x e y xy y x, , ....., , | ,2 1 2 1, , ....., , | ,2 1 2 1, , ....., , | ,2 1 2 12 1 2 1n n2 1 2 1, , ....., , | ,n n, , ....., , | ,2 1 2 1, , ....., , | ,2 1 2 1n n2 1 2 1, , ....., , | ,2 1 2 1, , ....., , | ,y y y y e x e y xy y x, , ....., , | ,y y y y e x e y xy y x, , ....., , | ,y y y y e x e y xy y x, , ....., , | ,2 1 2 1, , ....., , | ,2 1 2 1, , ....., , | ,2 1 2 12 1 2 1n2 1 2 1, , ....., , | ,n, , ....., , | ,2 1 2 1, , ....., , | ,2 1 2 1n2 1 2 1, , ....., , | ,2 1 2 1y y y y e x e y xy y x, , ....., , | ,y y y y e x e y xy y x, , ....., , | ,
2 12 1

y y y y e x e y xy y x, , ....., , | ,y y y y e x e y xy y x, , ....., , | ,y y y y e x e y xy y xy y y y e x e y xy y x, , ....., , | ,y y y y e x e y xy y x, , ....., , | ,y y y y e x e y xy y x, , ....., , | ,y y y y e x e y xy y x, , ....., , | ,y y y y e x e y xy y x, , ....., , | ,y y y y e x e y xy y x, , ....., , | ,
2 1n2 1n2 1xy xy xy x, , ......, ,xy xy xy x, , ......, ,nxy xy xy xn2 1xy xy xy x2 12 1n2 12 1xy xy xy x, , ......, ,xy xy xy x, , ......, ,

o(G) = 2n. We write G = D2n

What is the product (xy)(xy2) in terms of elements of G written as above?
Now xy = y–1x  xyx–1 = y–1

 xyx = y–1  as x2 = e  x = x–1

(xy) (xy2) = (xyx)y2

 = y–1y2 = y
Also, how to find yxy2?
Since xy = y–1x  yxy = x

 yxy2 = xy
In this way, we can compute the product of any two elements of G
We first find Z(G)
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Consider yi  (1 i  n)
Then yi (xyi) = (yixyi) y–i + j

 = xy–i + j

Note xy = y–1x  xyx–1 = y–1

 (xyx–1)i = y–i

 xyix–1 = y–i

 yixyi = x
(This is a very useful relation in D2n).
Also (xyi)yi = xyi+j

If yi  Z(G), then yi must commute with xy j for all j,  1  j  n.
xy–i+j = xyi+j  for all j, 1  j  n
 y2i = e
 o(y) divides 2i
 n divides 2i

Case 1: n = odd
Then n | 2i  and (n, 2) = 1

 n | i
 n  i. But i  n
i = n.

So, yi = yn = e.
Similarly, if xyi  Z(G), then (xyi) x = x(xyi)

  xyix–1 = x2yi

  y–i = x2yi

  y2i = e  as x2 = e
  o(y) | 2i  n | 2i  n | i  n = i
xyi = xyn = x

But x  Z(G) as xy = y–1 x (and x  Z(G) should imply xy = yx,
i.e., yx = y–1 x  y2 = e  o(y) = n | 2  n  2, a contradiction as n  3).
So, Z(G) does not contain any element of the type xyi. Also if yi  Z(G), then i = n

Z(G) = {e}.
Case 2:  n = even. Let n = 2m

Then as above  n | 2i
   2m | 2i
   m | i
   i = m or 2m = n

i.e.,  yi = ym  or y2m = yn = e
Clearly  ym  Z(G)  as (xyk) ym = xyk+m
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and  ym(xyk) = (ymxym) yk–m

= xyk–m = xyk+m

as  y2m = e  ym = y–m

only powers i of y s.t., yi  Z(G) are i = m and 2m.
Similarly, as in case 1, if xyi  Z(G),
then n | 2i  2m | 2i  m | i  i = m or 2m
But xy2m = xyn = xe = x  Z(G)
Also (xym) y = xym+1

and y(xym) = yxym

So, if xym  Z(G), then xym+1 = yxym

 xy = yx
 y–1x = yx
 y2 = e
 o(y) divides 2
 n divides 2
 n 2, a contradiction
Z(G) = {e, ym}, where n = 2m.

Thus, we have proved the following:
If n = odd, then Z(D2n) = {e} and if n = even = 2m, then Z(D2n) = {e, ym}.

Remarks (i) In the group G above, let us take x and y to be two permutations (members of
Sn) where o(x) = 2 and o(y) = n, (n  3) with the condition that xyx

 to be two permutations (members of
1 = y

 to be two permutations (members of
1

Suppose n is odd then if we take y = (1 2 3....n) and x = (1)(2n) (3 n  1) ....(n  3, 5) then
o(y) = n and o(x) = 2.
and xy x 1 = (x(1) x(2) x(3) ... x(n 3) x(n 2) x(n 1) x(n))

= (1 n n 1 ...5 4 3 2)
= (n n 1 ...5 4 3 2 1) = y 1

Let n be even. Take y = (1 2 3 ... n). Then o(y) = n.
Let x = (1, n 3)(2, n 4)...(n 3, 1)(n 2, n) (n 1) (n n 2)
Then xy x 1 = (x(1) x(2) x(3) ... x(n 2) x(n 1) x(n))

= (n 3 n 4 n 5... n n 1 n 2)
= (n n 1 n 2 ...  2 1) = y 1

(ii) Let H = < y >. Then xH as x H implies x = yi

So, xyi = x2 = e implies xyi+1 = y. Therefore, y2 = xyi+1 xyi+1 = y i 1yi+1 = e which implies
o(y) = n | 2, a contradiction as n 

y
 3. So, G = H

xy
xH. This gives o(G) = 2n.

(iii) We can also regard the Dihedral group G to be the subgroup of GL(2, C), the group
of non singular 2 

) We can also regard the Dihedral group 
 2 matrices over C, the field of complex numbers. Let n  3 and 

), the group
 be

an nth root of unity.
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Let 2 i
ne

i2
nee .

Then o( ) = n in C*, the group of non zero complex numbers under multiplication.

Let
0 1

(2, ),
1 0

X GL
0 1

X GL
0 1

X GLX GL
1 01 01 0

X GL C  1

0
(2, ),

0
Y GL

0
GL

0
GLGL1000 11 C

Then o(X) = 2, o(Y ) = n, and 
1 1

10 0, ,
0 0

XY y0 00 00 00 01 10 01 10 01 10 01 10 01 10 00 00 00 010 010 00 00 00 0y0 0y 10 00 00 010 010 010 010 01, ,, ,y, ,y, ,
0 0

, ,
0 0

, ,
0 0

y, ,y, ,
0 0

y
0 0

 
1

1 0 .
0

Y X XY1Y X1Y X1 0 1
XY0 XYXY0

000
So, XYXXYX 1 = YY 1

Let G = < X, Y | o(X) = 2, o(Y) = n, XYX 1 = Y 1 >
Let H = < Y >.
Then X  H as in (ii) above.
So, G = H XH and o(G) = 2n as o(H) = n.
This gives G = {Y, Y2,... Yn = I, XY, XY2, ..., XYn 1, XYn = X}

Problem 41: Show that N = {y, y2, ......, yn–1, yn = e} is a normal subgroup of D2n.

Solution: N is a subgroup of D2n generated by y.
Let g  D2n, y

i  N
If g = y j, then gyig–1 = y j y i y–j

= yi  N.
Let g = xy j,  1  j  n.
Then gyi g–1

= xy jyi (xy j)–1

= xy i + j y–j x–1

= xyi x–1

= (xyx–1)i

= y–i  N  (as xyx–1 = y–1)
N is a normal subgroup of G.

Problem 42 : Let G be a group of order 2p, where p is an odd prime. Show that either G is
cyclic or dihedral.

Solution: Since G is of even order, it has an element of order 2. Let b  G be such that o(b)
= 2. Let H = < b >. If every non identity element of G has order 2 then G is abelian.
Any element of G can have order either 2 or p as o(G) = 2p.
Suppose c  G, c  b and o(c) = 2.

Let K = < c > then HK  G and o(HK) = 
2 2 4

1
2 2 4 .

4 | o(G), but that cannot hold as p is odd. So all elements ( e) of G cannot have order 2
implying that G has an element of order p. Let o(a) = p, a 

 is odd. So all elements (
 G. If G is abelian then o(ab) =

2p = o(G) (see page 94) and thus G is cyclic.
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Suppose now G is non abelian.
Let M = < a > then M  G having index 2
i.e., M will be normal.

 b 1ab  M = < a >
 b 1ab = ai

 (b 1ab)i = ai2  b 1aib = ai2

 b 1(b 1ab)b = ai2  a = ai2  ai2 1 = e
i.e., i2 1 (mod p).
So p divides i  1 or p divides i + 1
If p divides i  1 then ai 1 = e  ai = a
So b 1ab = a  ab = ba

 G is abelian, a contradiction.
If p divides i  1 then ai+1 = e  ai = a 1

So b 1ab = a 1

Now G = MM Mb
G = {e, a, ..., ap 1, b, ab, ..., ap 1b|ap = e = b2, b 1ab = a 1}

or that G is dihedral.

Problem 43: Show that 
G
N  is isomorphic to the multiplicative group {1, –1}, wheree

G = D2n and N = {y, y2, ......., yn–1, yn = e}.
Solution: Define  : G  W = {1, –1}

(y j) = 1  for all j = 1, 2, ......, n
(xy j) = –1  for all j = 1, 2, ......, n

Clerarly  is onto mapping.
Also (y j xy k)

= (y jxy j y k–j)
= (xy k–j)
= –1

and (y j) (xyk) = 1 . (–1) = –1
(y j xyk) = (y j) (xyk)

Similarly, (xy k y j) = (xy k+j) = –1
and (xyk) (y j) = (–1) (1) = –1

(xy k y j) = (xyk) (y j)
So,  is a homomorphism.

Ker
G

 W
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Ker = {g  G | (g) = 1}
= {y j | 1  j  n}
= N

G W
N

Problem 44: Let G be the dihedral group of order 2n, n 2. Let m divide n. Let G' be the

dihedral group of order 2m. Then there exists a normal subgroup K of G such that 
G G
K

G

(i.e., 2
2

n
m

D D
K 2mD2D2 ).

Solution: Let n = mk
Let G = {e, a,...,an-1, b, ab,...,an 1b | an = e = b2, b-1ab = a-1}
Now o(a) = n implies o(am) = k
Let K = < am >. Then o(K) = o(am) = k.
We show that K is normal in G.
Let g G, x K. Now g G, implies g = aib and x  K implies x = amr

So, gg 1xg = b 1a iamraib

  = b 1amrb = a mr K as b 1ab = a 1.
This shows that K is normal in G.
Define : G  G' = {e, x, ..., xm 1, y, xy,...,xm 1 y | xm = e = y2, y 1 xy = x 1} s.t.,

(ai) = xi

(b) = y
(aib) = xiy

Then is a homomorphism and also  is onto
If ai  Ker , then xi = e implies i  0 (mod m).
So, ai = amu  K. If aib  Ker , then xiy = e implies xi = y.
So, (ai) = (b) implies aib  K. But ai  K.
Therefore, b  K which implies b = amv = e.
So, Ker  K. But K  Ker .
Therefore, Ker   = K.

Hence, .G G
K

G .
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Exercises
1. If f : G  G' is a homomorphism then show that

f (G) = {f (a) | a  G}
is a subgroup of G'. We also write f (G) = Imf (Image f ). Show further that if H is
normal in G then f (H) is normal in f (G), i.e., homomorphic image of a normal subgroup
is normal.

2. For a fixed element a in a group G, define
fa : G  G, s.t., fa (x) = a–1 xa, x  G

Show that fa is an isomorphism.
3. Let f, g be homomorphisms from G  G'. Show that

H = {x  G | f (x) = g(x)} is a subgroup of G.
4. Let G be a finite abelian group. Suppose o(G) and n are co-prime. Show that

 : G 
 be a finite abelian group. Suppose 

 G, s.t., 
 be a finite abelian group. Suppose 

(x) = xn  is an isomorphism (in other words, any g 
 are co-prime. Show that

 G can be
expressed as g = x n where x 

  is an isomorphism (in other words, any 
 G).

5. Show that the relation of isomorphism in groups is an equivalence relation.
6. Prove that the group G = {1, –1} under multiplication is isomorphic to

G' = {0, 1} under addition modulo 2.
7. Show that 2Z  3Z by considering the mapping 2x 3x. Generalise.
8. Let G be the group of real numbers under addition. Show that  : G  G, s.t.,

(x) = [x] is not a homomorphism, where [x] is the greatest integer not greater than
x.

9. Show that f : C  C, s.t. f (z) = z  is an automorphism where C = complex numbers.

10. Let G be the group of 2 × 2 matrices over reals of the type 
a b
c d

 s.t. ,

ad – bc  0, under matrix multiplication and G' be the group of non zero real numbers

under multiplication. Show that the map 
a b

ad bc
c d

 is an onto homomorphism.

11. Show that homomorphic image of
(a) an abelian group is abelian.
(b) a cyclic group is cyclic.
(c) a finite group is finite.

12. Show that converse does not hold in all the cases of the previous problem. (See example
9, page 149).

13. Let R be the set of real numbers. For a, b  R, (a  0) define Tab : R  R, s.t., Tab(x)
= ax + b.
Let G be set of all such maps and let N = {T1b G}. Show that G is a group and

N is a normal subgroup of G and that 
G
N  is isomorphic to the group of non zero real

numbers under multiplication.
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14. If  is a homomorphism of a group G onto G  with Kernel K and N  is a normal
subgroup of G

N = {x  G | (x)  N }

then prove that 
G G
N N

 and  
/
/
/
/

G G K
N N K .

15. Show that ,n
mm mm

Z Z where m is a divisor of n.

16. Let G be the group of non zero complex numbers under multiplication and let N be

the set of complex numbers of absolute value 1. Show that 
G
N  is isomorphic to the

group of all positive real numbers under multiplication. (The group N, the unit circle
in the complex plane, is called the circle group.)

17. Suppose the group G
H

 is isomorphic to a group G . Show that there exists an onto

homomorphism  from G to G' such that Ker  = H.

18. For any group G, show that 
{ }
G G
e

 and { }G e
G

{ }{ }e{ } .

19. Show that a simple group has no non-trivial homomorphic image.
20. Show that a subgroup N of G is normal in G if and only if  a group H and a

homomorphism 
Show that a subgroup 

 : G 
Show that a subgroup 

 H s.t., Ker  = N.
21. Let G  G* show that G is cyclic iff G* is cylic. Hence show that <Z, +> is not

isomorphic to <Q, +>
22. If G is a cyclic group of order n and p | n, prove that there exists a homomorphism

of G onto a cyclic group of order p. Find its Kernel.
23. Show that U10 is isomorphic to Z4 but not to U12.
24. Show that a cyclic group of order n is isomorphic to multiplicative group of nth roots

of unity. [Consider ar 
Show that a cyclic group of order 

 e2
Show that a cyclic group of order 

ir/n].
25. Let G and G  be two finite groups s.t., (o(G), o(GG )) = 1. Show that  a unique (trivial)

homomorphism from G to G
 be two finite groups s.t., (

.

Permutation Groups

In Chapter 1 we discussed permutations, and in Chapter 2 we gave an example of permutation
groups. We continue the discussion starting with

Theorem (Cayley’s) 14: Every group G is isomorphic to a permutation group.

Proof: Let G be the given group and A(G) be the group of all permutations of the set G.
For any a  G, define a map fa :  G  G, s.t.,

fa(x) = ax
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then as x = y  ax = ay  fa(x) = fa(y)
fa is well defined.
Again, fa(x) = fa(y)

 ax = ay
 x = y  (cancellation in group G)
 fa is 1 1.

Also, for any y  G, since fa(a
–1 y) = a(a–1 y) = y, we find a–1 y is pre-image of y or that

fa is onto and hence a permutation on G.
Thus fa  A(G).
Let K be the set of all such permutations. We show K is a subgroup of A(G).

K   as fe 
 be the set of all such permutations. We show 

 K.
Let fa, fb  K be any members

then since 1 1
1 1( ) ( ( )) ( ) ( )b b bb b

f o f x f f x f b x b b x
b bb b bb bb b bf o f x f f x f b x b b x( ) ( ( )) ( ) ( )f o f x f f x f b x b b x( ) ( ( )) ( ) ( )b b bf o f x f f x f b x b b xb b b1 1b b b1 1f o f x f f x f b x b b x1 1b b b1 1( ) ( ( )) ( ) ( )b b b( ) ( ( )) ( ) ( )f o f x f f x f b x b b x( ) ( ( )) ( ) ( )b b b( ) ( ( )) ( ) ( )1 1( ) ( ( )) ( ) ( )1 1b b b1 1( ) ( ( )) ( ) ( )1 1f o f x f f x f b x b b x1 1( ) ( ( )) ( ) ( )1 1b b b1 1( ) ( ( )) ( ) ( )1 1b b bb bb b bf o f x f f x f b x b b xb b bb bb b b1 1b b b1 1b b1 1b b b1 1f o f x f f x f b x b b x1 1b b b1 1b b1 1b b b1 1( ) ( ( )) ( ) ( )b b b( ) ( ( )) ( ) ( )
b b

( ) ( ( )) ( ) ( )b b b( ) ( ( )) ( ) ( )f o f x f f x f b x b b x( ) ( ( )) ( ) ( )b b b( ) ( ( )) ( ) ( )
b b

( ) ( ( )) ( ) ( )b b b( ) ( ( )) ( ) ( )1 1( ) ( ( )) ( ) ( )1 1b b b1 1( ) ( ( )) ( ) ( )1 1b b1 1( ) ( ( )) ( ) ( )1 1b b b1 1( ) ( ( )) ( ) ( )1 1f o f x f f x f b x b b x1 1( ) ( ( )) ( ) ( )1 1b b b1 1( ) ( ( )) ( ) ( )1 1b b1 1( ) ( ( )) ( ) ( )1 1b b b1 1( ) ( ( )) ( ) ( )1 1
1 1( ) ( ( )) ( ) ( )( ) ( ( )) ( ) ( )f o f x f f x f b x b b x( ) ( ( )) ( ) ( )1 1( ) ( ( )) ( ) ( )1 1f o f x f f x f b x b b x1 1( ) ( ( )) ( ) ( )1 1

b b bb b bb bb b bb bb b b( ) ( ( )) ( ) ( )f o f x f f x f b x b b x( ) ( ( )) ( ) ( )b b bf o f x f f x f b x b b xb b b( ) ( ( )) ( ) ( )b b b( ) ( ( )) ( ) ( )f o f x f f x f b x b b x( ) ( ( )) ( ) ( )b b b( ) ( ( )) ( ) ( )1 1( ) ( ( )) ( ) ( )1 1b b b1 1( ) ( ( )) ( ) ( )1 1f o f x f f x f b x b b x1 1( ) ( ( )) ( ) ( )1 1b b b1 1( ) ( ( )) ( ) ( )1 1b b bb bb b bf o f x f f x f b x b b xb b bb bb b b( ) ( ( )) ( ) ( )b b b( ) ( ( )) ( ) ( )
b b

( ) ( ( )) ( ) ( )b b b( ) ( ( )) ( ) ( )f o f x f f x f b x b b x( ) ( ( )) ( ) ( )b b b( ) ( ( )) ( ) ( )
b b

( ) ( ( )) ( ) ( )b b b( ) ( ( )) ( ) ( )1 1( ) ( ( )) ( ) ( )1 1b b b1 1( ) ( ( )) ( ) ( )1 1b b1 1( ) ( ( )) ( ) ( )1 1b b b1 1( ) ( ( )) ( ) ( )1 1f o f x f f x f b x b b x1 1( ) ( ( )) ( ) ( )1 1b b b1 1( ) ( ( )) ( ) ( )1 1b b1 1( ) ( ( )) ( ) ( )1 1b b b1 1( ) ( ( )) ( ) ( )1 1f o f x f f x f b x b b x( ) ( ( )) ( ) ( )f o f x f f x f b x b b x( ) ( ( )) ( ) ( )b b bf o f x f f x f b x b b xb b b( ) ( ( )) ( ) ( )b b b( ) ( ( )) ( ) ( )f o f x f f x f b x b b x( ) ( ( )) ( ) ( )b b b( ) ( ( )) ( ) ( )1 1( ) ( ( )) ( ) ( )f o f x f f x f b x b b x( ) ( ( )) ( ) ( )1 1( ) ( ( )) ( ) ( )1 1f o f x f f x f b x b b x1 1( ) ( ( )) ( ) ( )1 1

= ex = fe(x)  for all x

we find 1
1( )1
1( )bb

f f  (Note fe = I, identity of A(G)).

Also as (fa o fb) x = fa(bx) = a(bx) = (ab)x = fab(x)  for all x
we find fab = fa o fb

Now 1 1
1( )a b a b ab

f o f f o f f K
b ab

1f o f f o f f K1f o f f o f f K1
a b af o f f o f f Ka b aa b a b ab

f o f f o f f Ka b af o f f o f f Ka b a b ab
f o f f o f f K

b abb ab
f o f f o f f K1 1f o f f o f f K1 1b ab
f o f f o f f K

b ab1 1b ab1 1f o f f o f f K1 1b ab1 1f o f f o f f Ka b af o f f o f f Ka b a

Showing that K is a subgroup of A(G).
Define now a mapping  : G  K, s.t.,

(a) = fa
then  is well defined, 1-1 map as

a = b
ax = bx
fa(x) = fb(x)   x
fa = fb

(a) = (b)
 is obviously onto, and since

(ab) = fab = fa o fb = (a) (b)
 is a homomorphism and hence an isomorphism which proves our assertion. Note K being

a subgroup of a permutation group is a permutation group.

Remark: In particular, if G is a finite group of order n then G is isomorphic to a subgroup
of Sn.

Problem 45: Using Cayley’s theorem, find the permutation group K isomorphic to the group
G = {2, 4, 6, 8} under multiplication modulo 10. (Here 6 is the identity of G and G = <2>).

Solution: The set K as defined in the Cayley’s theorem above is given by
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K = {fa | a  G}, where fa is defined by fa(x) = ax. Thus here a = 2, 4, 8, 6 and
f2(2) = 4, f2(4) = 8, f2(8) = 6, f2(6) = 2
f4(2) = 8, f4(4) = 6, f4(8) = 2, f4(6) = 4
f8(2) = 6, f8(4) = 2, f8(8) = 4, f8(6) = 8
f6(2) = 2, f6(4) = 4, f6(8) = 8, f6(6) = 6

Thus  f6 = I and K = {f2, f4, f8, f6 = I}
If we identify f2 with the permutation (1234), we notice the others are (13)(24), (1432) and

thus K is {(1234), (13)(24), (1432), I} and this is the required premutation group isomorphic
to G.
In fact the isomorphism can be viewed as : G  K, s.t.,

(2) = (1234), (4) = (13)(24), (8) = (1432), (6) = I
Problem 46: Using Cayley’s theorem find the permutation group isomorphic with the dihedral
group of order 8.

Solution: The dihedral group of order 8 is given by
G = {a, a2, a3, a4 = e, ab, a2b, a3b, b | a4 = e = b2, b 1ab = a 1}

The set K as defined in the Cayley’s theorem above is given by K = {fx |x  G} where fx is
defined by fx(y) = xy and G  K by the theorem. We determine K, which will be the required
permutation group.
Now, fa(a) = a2, fa(a2) = a3, fa(a

3) = a4 = e, fa(ab) = a2b
fa(a2b) = a3b, fa(a3b) = b, fa(b) = ab, fa(e) = a

Thus fa can be identified with the permutation (1234)(5678)

Again, 2 2 2 2
3 2 3 3( ) ,   ( ) ,  ( ) ,   ( )  

a a a a
f a a f a e f a a f ab a b   

2 2 2 2
2 2 2 2( ) ,   ( ) ,  ( ) ,   ( )  

a a a a
f a b b f a b ab f b a b f e a   

and thus, 2a
f can be identified with (13)(24)(57)(68).

Continuing like this, we can say, fa3 = (1432)(5876)
Again, fab(a) = aba = b,  fab(a2) = aba2 = a3b etc., and we get

  fab = (18)(27)(36)(45)
and similarly,

2 = (15)(28)(37)(46)
a b

f

3 = (16)(25)(38)(47)
a b

f

  fb = (17)(26)(35)(48)
and finally, therefore,
K = {(1234)(5678), (13)(24)(57)(68), (1432)(5876), I, (18)(27)(36)(45), (15)(28)(37)(46),
(16)(25)(38)(47), (17)(26)(35)(48)}

which is the required permutation group that is isomorphic with the dihedral group of order 8.
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Theorem 15: Order of any permutation  f  in Sn is equal to the l.c.m. of the orders of the
disjoint cycles of f.
Proof: Let f = f1 f2 ..... fn
be the representation of f as product of disjoint cycles  f1, f2, ....., fn
Let o( fi) = ri  i = 1, 2, ......, n

then ir
if I  (identity of Sn)

Let r = l.c.m.(r1, r2, ......, rn)
Now f r =  ( f1 f2 ..... fn)

r = f1
r f2

r ...... fn
r  as fi are disjoint and so commutative.

Since ri | r  for all i, we have r = ri ki,   i = 1, 2, ....., n

Thus  f r = 1 1 2 2
1 2 ....... n nr kr k r k

nf f f If f f I . I ...... I = I
Suppose now f t = I

 ( f1 f2 ........ fn)t = I
 f1

t f2
t ...... fn

t = I
 f1

t = f2
t = ...... = fn

t = I
as  f1, f2, ......, fn are disjoint. (Note if some f t

i  I then L.H.S. cannot be I ).
 ri | t for all i
 r | t

Hence r = o( f ).

Example 8: Order of the permutation

1 2 3 4 5 6
2 4 6 5 1 3
1 2 3 4 5 6
2 4 6 5 1 32 4 6 5 1 3

 = (1245)(36)

is l.c.m.(4, 2) = 4  as o(1245) = 4 and o(36) = 2.

Problem 47: Show that an odd permutation is of even order.

Solution: Let  be an odd permutation and suppose  = 1 2 ... k (as product of disjoint
cycles). If l = l.c.m.(o(

 be an odd permutation and suppose 
1), o(

 be an odd permutation and suppose 
2)), ... 

 be an odd permutation and suppose 
(

 be an odd permutation and suppose 
k)) then l = o( ).

If each i is of odd length then each i is even permutation and thus  is even permutation,
which is not true.

Hence some cycle j is of even length and o( j) = even
 2|o( j) and as o(

j

j)|l, we find 2 | l or that l = o( ) is even.
One may notice here that an even permutation need not be of odd order.

Indeed (12)(34) is even permutation of order 2 whereas I is even permutation of
order 1.

Problem 48: Suppose f = (123456). Show that we can write f = gh, where o(g) = 2,
o(h) = 3.

Solution: We have o( f ) = 6 = 2  3

Since g.c.d. (2, 3) = 1, integers x, y, s.t., 2x + 3y = 1.
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In fact 2( 1) + 3(1) = 1

Now 1 2( 1) 3(1) 2 3 3 2.f f f f f f f gh1 2( 1) 3(1) 2 3 3 2f f f f f f f gh1 2( 1) 3(1) 2 3 3 2f f f f f f f gh1 2( 1) 3(1) 2 3 3 2.f f f f f f f gh.1 2( 1) 3(1) 2 3 3 2f f f f f f f gh1 2( 1) 3(1) 2 3 3 2f f f f f f f gh1 2( 1) 3(1) 2 3 3 2  (say),

where g = f 3 and o(g) = o(f 3) = 2

as f 3 = (14)(25)(36), ( f 3)2 = f 6 = I

Also h = f 2 and o(h) = o(f 2) = o(f 2) = 3

as f 2 = (123456)(123456) = (135)(246)

See Exercise 7 on page 97.

Theorem 16: The set An of all even permutations of Sn (n  2) is a normal subgroup of Sn

and o(An) = 
( )
2

no S
 and index of An in Sn is 2.

Proof: Since identity permutation is even, An is a non empty subset of Sn.
Again,  f, g  An  f, g are even permutations

 f, g–1 are even permutations
 fog–1 is even
 fog–1  An

or that An is a subgroup of Sn.
If f  An and g  Sn be any members then g–1 o fog will be even permutation, showing that
g–1 o fog  An or that An is a normal subgroup of Sn.
Let G = {1, –1} be the group under multiplication.
Define a map  : Sn G, s.t.,

( f ) = 1 if f is even permutation
= –1 if f is odd permutation

then  is an onto mapping as Sn (n  2) must contain even as well as odd permutations. (Identity
permutation and (12) will be in Sn). To show that 

 2) must contain even as well as odd permutations. (Identity
 is a homomorphism, let f, g 

 2) must contain even as well as odd permutations. (Identity
 Sn be any

members.

Case (i): Both f, g are even, then fog is even
( fog) = 1 = 1.1 = ( f ) (g)

Case (ii): Both f, g are odd, then fog is even
( fog) = 1 = (–1) (–1) = ( f ) (g)

Case (iii) : One of f, g is odd, other even.
Suppose f is odd and g is even, then fog is odd

( fog) = –1 = (–1) (1) = ( f ) (g)
hence  is an onto homomorphism and thus by Fundamental theorem of homomorphism

Ker
nS

G
Ker

S
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Since f  Ker ( f ) = 1
f  is even f   An

we have Ker  = An

or that
n

n

S
G

A

But o(G) = 2  22222n

n

S
o

A


( )

2
( )

2n

n

o S
o A


( )

( )
2

( )n
n

o S
o A

Also then index of An in Sn is 2.

Note: An is called the alternating group of degree n. Also it would be the largest subgroup of
Sn in view of the Lagrange’s theorem. See remark on page 70.

Problem 49: Show that if H be any subgroup of Sn (n  2) then either all permutations in H
are even or exactly half are even. (See Problem 13, Chapter 1 also).

Solution: Since H is a subgroup, it must contain the identity permutation which
is even. So H cannot contain only odd permutations. If all members of H are even, we are done.
Suppose it contains both odd as well as even permutations. Let
G = {1, –1} be the group under multiplication.

Define a map  : H  G, s.t.,
( f ) = 1  if f is even

= –1  if f is odd
then as in above theorem,  is an onto homomorphism. Also if K = set of all even permutations

of H then Ker  = K. By Fundamental theorem then

Ker
H GGG  or  

H G
K

 ( ) 2( ) 2Ho o G
K

 
( ) ( )
2

( )o H o K

which proves the result.

Problem 50: Let H be a subgroup of Sn such that H contains an odd permutation. Show that
there exists a subgroup M of H with index 2 in H.

Solution: Since An  Sn and H Sn, K = HAn will be a subgroup of Sn.
Also An  K  Sn implies that either K = Sn or K = An (An is largest, see note above). Also as
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H  HAn= K and H has an odd permutation, K has an odd permutation and so K  An. Hence
K = Sn.

Now
n

n n

HA H
A H A

H
A H An nA H An nA H An nA H A  (Second theorem of isomorphism)

and as HAn  K  Sn we have 2n n

n n n n

S SH Ho o
A H A H A A
S SS SS SH HS S 2n nS Sn nS Sn nS SH HS Sn nS Sn nH Hn nS Sn no on no on n
A H A H A A

2n nS Sn nS Sn nn nS Sn nS Sn nS SH HS Sn nS Sn nH Hn nS Sn n 2n no oo on no on n 2n nn no oo on no on n

n n n nA H A H A An n n nA H A H A An n n n
o o

A H A H A A
o oo o

n n n nn n n nA H A H A An n n nn n n nA H A H A An n n nA H A H A An n n n
2o o

A H A H A An n n nn n n nA H A H A An n n nA H A H A An n n nA H A H A An n n n
o o

A H A H A A
Take M = H An then index of M in H is 2.

Example 9: Consider S3 = {I, (12), (13), (23), (123), (132)}
Let A3 be the alternating group, then

A3 = {I, (123), (132)}

3 3

3 3

( ) 6 2
( ) 3

3 33 3( )3 3( )3 3 6 2
( ) 3

3 33 33 3

3 33 3

S o S
o

A o A

In fact
3

3

S
A = {A3, A3(12)}

Also as A3 = (A3(12))2

A3(12) = (A3(12))1

we find 
3

3

S
A  is a cyclic group generated by A3(12). Otherwise also a group of prime order

is cyclic.
Since S3 is not abelian, S3 cannot be cyclic.
We recall the following results that we proved earlier
1. Quotient group of a cyclic group is cyclic.
2. Quotient group of an abelian group is abelian.
3. Homomorphic image of an abelian group is abelian.
4. Homomorphic image of a cyclic group is cyclic.
That the converse of all these results is not true follows by considering the above example.

Notice, we have the natural onto homomorphism from S3 
That the converse of all these results is not true follows by considering the above example.

 S3 /A3 and
S3/A3 is abelian.

Problem 51: Show that for n  3, the subgroup generated by 3-cycles is An.

Solution: Let H be a subgroup generated by 3-cycles, then every element of H is a product
of finite number of 3-cycles and as each 3-cycle is even permutation, every element of H will
be even permutation or that H 
of finite number of 3-cycles and as each 3-cycle is even permutation, every element of 

 An. Again if f 
of finite number of 3-cycles and as each 3-cycle is even permutation, every element of 

 An then f is product of even number of
transpositions.

Since product of any two distinct transpositions can be written as a product of three cycles
[(ab)(cd) = (abc)(bcd), (ab)(bc) = (abc)] we find f can be expressed as a product of 3-cycles
 f 

)(
 H and hence H = An.

Problem 52: If H is a subgroup of Sn with index 2 then show that H = An. Thus An is the only
subgroup of index 2 in Sn.
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Solution: Since index of H in Sn is 2, H is normal in Sn and nSo
H
SnSnSn
HH

n = 2.

If nSH
H

nSnSn
H

be any element,

then (HH )2 = H  HH 2 = H  2 H   Sn
Suppose  is a cycle of length 3, then

3 = I  4 =  and as 2  H,
We getWe get 4  H, i.e.,   H.
Thus every cycle of length 3 is in H. But, An is generated by cycles of length 3 (see above
problem).
Thus , An  H or that H = An. See Note on page 148.
Problem 53: Show that the smallest subgroup of Sn, containing  (12) and
(1 2 3 ...... n) is Sn.
Solution: Let H be the smallest subgroup of Sn, containing (12) and (1 2 3 ...... n). We need
show Sn  H.

If f  Sn be any element, then f can be expressed as a product of transpositions and as any
transpositon (ab) = (1a)(1b)(1a), f can be expressed as a product of transpositions of the type
(1x). We show all transpositions (12), (13), (14), ......., (1n) are in H, which will imply that
f is in H, as f is nothing but product of some such members.

Now (1n) = (n n –1 ..... 321)(12)(123 ..... n)  H
 (n n–1) = (n n–1 ...... 321)(1n)(123 ...... n)  H

(n–1 n–2) = (n n–1 ...... 321)(n n–1)(123 ...... n)  H
and so on.
Showing that (43), (32) etc. are in H.
Now (12)  H

 (13) = (12)(23)(12)  H
 (14) = (13)(34)(13)  H

...................
(1n)  H

Hence H = Sn.

Problem 54: Give an example of two subgroups H, K which are not normal, but HK is a
subgroup.

Solution: Let H = {I, (12)}
K = {I, (123), (132)}

be two subgroups of S4 (that these are subgroups can be verified).
Here HK = {I, (12), (123), (132), (12)(123), (12)(132)}

= {I, (12), (123), (132), (23), (13)}
KH = {I, (123), (132), (12), (123)(12), (132)(12)}

= {I, (12), (123), (132), (23), (13)}
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Thus HK = KH  HK is a subgroup.
Now H(123) = {(123), (12)(123)} = {(123), (23)}

    (123)H = {(123), (13)}
or that H(123)  (123)H
i.e., Ha  aH for some a  S4

 H is not normal in S4.
Similarly one can check that K(14)  (14)K
or that K is not normal in S4.

Problem 55: Show that Z(Sn) = {I}, (n  3).

Solution: Let f  Z(Sn) be such that f  I
then  a s.t., f (a) = b where b  a
Let c  a, b be any element  (note n  3)
Let g be the mapping where g(a) = a

g(b) = c
g(c) = b

then g  Sn
Now     ( fg)a = f (g(a)) = f (a) = b

    (g f )a = g( f (a)) = g(b) = c
 fg  g f  i.e., f  Z(Sn)

Thus if f  I then it cannot belong to Z(Sn) or that Z(Sn) = {I}.

Cor.: Sn is non abelian  n  3. Note G is abelian iff G = Z(G).

Problem 56 : Let G be a group of order 2m, where m is add. Show that G has a subgroup of
order m.

Solution: Since G is of even order, it has an element a with order 2. Let n = 2m = o(G).

Let x  G. Define fx: G  G, s.t., fx(g) = xg, then fx is a permutation.

Let : G  A(G) = Sn be defined such that (x) = fx
Then is easily seen to be a homomorphism.

If  x  Ker  be any element, then

(x) = I i.e., fx = I

 fx(e) = I(e)  x = e or that Ker  = {e} and so is 1 1.

Hence G (G) = H, say. Then H  Sn

Now a  G, and (a)  = fa
and (fa)

2 = fa fa = fa2 = fe = I (o(a) = 2)

Thus o(fa) = 2 = o(a) = o( (a)) (See Problem 24 on page 120).
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Now fa(x) = ax  x for any x  G, as a  e.

Thus fa doesn’t fix any element of G.

Since o(fa) = 2, fa is product of disjoint transpositions and the number of transpositions in fa
is m which is odd.

Thus fa is an odd permutation in (G) = H.
So by problem 50 on Page 148, H has a subgroup M such that index of M in H is 2.

i.e., ( ) 2,
( )

o H
o M

2,  But o(H) = o(G) = 2m.

and thus o(M) = m.

Since M is a subgroup of H, it will be a subgroup of G and has order m.

Problem 57: Show that in Sn the number of distinct cycles of length r is 1 !. , ( )
( )!

n r n
r n r

. , ( ). , ( )r n. , ( ). , ( )
( )!

. , ( )
( )!

. , ( )
( )!r n r( )!

.

Solution:  Since the number of distinct arrangements of r objects chosen out of n objects in
!

( )!
n

r
nP

n r( )!
n

( )!( )!n r( )!( )!
 and the cycles

(a1a2 ...... ar), (a2a3 ...... ara1), (a3a4 ....... ara1a2), ......., (ara1 ....... ar–1)

are same, we find the number of distinct r-cycles will be 1 !
( )!

1 !
( )!( )!( )!

n
r n r

.

Problem 58:  Show by an example that converse of Lagrange’s theorem may not hold.

Solution: Consider the alternating group A4.

4
4

( ) 4( ) 12
2 2

4( )4( )4 4 12
2 2

o So A

We show although  6 | 12,  A4 has no subgroup of order 6. Suppose H is a subgroup of
A4 and o(H) = 6.

By previous problem the number of distinct 3-cycles in S4 is
1 4! 4 . 3 . 2 .1
3 (4 3)! 3 .1
1 4! 4 . 3 . 2 .1
3 (4 3)! 3 .13 (4 3)! 3 .13 (4 3)! 3 .1

 = 8.

Again, as each 3-cycle will be even permutation all these 3-cycles are in A4.
Obviously then, at least one 3-cycle, say , does not belong to H (o(H) = 6).
Now  H  2  H, because if 2  H
then 4 H

 H
as 3 = I  as o( ) = 3.
Let K = <  > = {I, , 2} then o(K) = 3 (= o( ))
and H  K = {I}  ( , 2  H)
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 o(HK) = ( ) . ( ) 6 . 3= = 18
( ) 1

o H o K
o H K( ) 1( ) 1o H K( ) 1

,  not possible as HK  A4 and o(A4) = 12.

Problem 59: Show that A4 is the only subgroup of order 12 in S4.

Solution: Let H be any subgroup of order 12 in S4. Let H  A4.
Then H contains an odd permutation.
Thus H has 6 odd and 6 even permutations.
 H  A4 is a subgroup of A4 of order 6
 A4 has subgroup of order 6
But that is not possible by above problem. Hence the result.

Problem 60 : Let G be a group and H ={g2 | g G}. Show that H may not be a subgroup
of G and in case it is a subgroup then it must be normal.

Solution: For the first part, suppose G = A4 then A4 contains all the twelve even permutations
of S4, which are I, (12)(34), (13)(24), (14)(23) and the 8 3-cycles (See Problem 58 above).
Since I 2 = I, ((ab)(cd))2 = I and square of any 3-cycle is a 3-cycle we notice H will contain
I and the 8 3-cycles or that o(H) = 9 and as 9 12, H cannot be a subgroup. Suppose now,,
H is a subgroup then if h 
 and the 8 3-cycles or that 

 H, g 
) = 9 and as 9

 G be any elements, then

gg 1  G  gg 2  H, also gh  G  (gh)2  H
 gg 2(gh)(gh)  H  gg 1hg  H or that H is normal in G.

Remark: One may notice here that if G happens to be abelian, then H will be a subgroup.

Problem 61: Show that (123) is not the cube of any member of Sn.

Solution: We first show that if ( 1 2......... 9) is any cycle
then ( 1 2......... 9)3 = ( 1 4 7) ( 2 5 8) ( 3 6 9)
Since ( 1 2......... 9)2 = ( 1 2......... 9) ( 1 2......... 9)

= ( 1 3 5 7 9 2 4 6 8)
( 1 2......... 9)3 = ( 1 2......... 9) ( 1 3 5 7 9 2 4 6 8)

= ( 1 4 7) ( 2 5 8) ( 3 6 9)
Suppose now (1 2 3) = 3 for some  Sn, then as  can be expressed as product of

disjoint cycles
Let  = 1 2 ........ k  where i are disjoint cycles
Then 3 = 1

3 2
3 ...... k

3 (as disjoint cycles commute)
Also 3 = (123)

 9 = (123)3 = I  o( ) = 9
thus each i will be of length 3 or 9 as order of a permutation is the l.c.m. of the orders

(lengths) of its disjoint cycles.
Again there is at least one i whose length is 9 otherwise if all have length 3 then l.c.m. will

be 3 implying o(
Again there is at least one 

) = 3 which is not true.
Without loss of generality take length of i to be 9.
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Now if length of any i is 3 then i
3 = I.

So 3 = (123) = 1
3 2

3 ...... k
3

         = 1
3 × other cubes of cycles of length 9

Let 1 = ( 1 2......... 9)
 1

3 = ( 1 4 7)( 2 5 8)( 3 6 9)
 (123) = ( 1 4 7)( 2 5 8)( 3 6 9) × other cycles which do not contain 1, 2........,

9
(as all are disjoint) which will be a contradiction as each i is different and so if  1 = 1,

2 = 2, 
(as all are disjoint) which will be a contradiction as each 

3 = 3 then 
(as all are disjoint) which will be a contradiction as each 

4 is such that it is fixed in L.H.S. but in R.H.S. 4 7. Hence the result.

Example 10: Consider K4 = {I, (12)(34), (13)(24), (14)(23)}
Let us denote these elements by e, x, y, z then the following table gives us the respective

products

e x y z
e e x y z
x x e z y
y y z e x
z z y x e

which also shows that closure holds in K4 and thus K4 forms a group. It is called Klein’s
four group which is a subgroup of S4. It is a finite abelian group, which is not cyclic (as it
contains no element of order 4 = o(K4)).

Remarks: (i) We could also take the elements e, x , y, z  to be the matrices
1 0
0 1
1 0
0 10 1

, 
1 0
0 1
1 0
0 10 10 10 1

, 
1 0
0 1
1 01 0
0 10 1

, 
1 0
0 1
1 01 0
0 10 10 10 1

 under matrix multiplication.

(ii) We may further notice that any non cyclic abelian group of order 4 is of the type G =
{e, a , b , ab}. Here each element (except e) will have order 2. [x 

) We may further notice that any non cyclic abelian group of order 4 is of the type 
 G 

o(x) | o(G)  o(x) = 1, 2 or 4. But o(x) = 4 gives x4 = e and then G will be cyclic].
Thus o(a) = o(b) = o(ab) = 2
i.e., a2 = b2 = (ab)2 = e
Clearly this group G is isomorphic to the Klein’s four group [e  I, a  (12) (34), b 

(13)(24), ab 
Clearly this group 

 (14)(23)]. Hence every non cyclic (abelian) group of order 4 is isomorphic
to the Klein’s four group.

Problem 62: Given that order of any element of A4 is 1, 2 or 3 show that o(Z(A4)) = 1.

Solution: We show Z(A4) has no element of order 2 or 3.
Suppose a  Z(A4) s.t., o(a) = 2.
Let b  A4 be any element of order 3, then as ab = ba (a is in centre).
(o(a), o(b)) = 1, we find o(ab) = o(a).o(b) = 2  3 = 6.
which is not possible by given condition. So, Z(A4) has no element of order 2.



3. Normal Subgroups, Homomorphisms, Permutation Groups 155

Similarly it has no element of order 3. So it can only contain I.
Problem 63: Show by an example that we can find three groups E  F  G such that E is
normal in F, F is  normal in G whereas E is not normal in G.

Solution: Let E = {I, (12)(34)}
F = K4 = {I, (12)(34), (13)(24), (14)(23)}
G = A4

then E is not normal in G as
E(123) = {I (123), (12)(34)(123)} = {(123), (243)}
(123)E = {(123) I, (123)(12)(34)} = {(123), (134)}

Showing that E(123)  (123)E (123)  A4 = G.
E would be normal in F as index of E in F is 2. Otherwise also as F is abelian, E will be

normal in F.
Also F is normal in G as
Let   A4 and (ab)(cd)  K4 be any element.
(a, b, c, d being any of 1, 2, 3, 4)
then (ab)(cd) –1 = ( (a) (b)) ( (c) (d))  K4 as all permutations with this cycle structure

are in K4.
 K4 is normal in A4.

Note that all elements in K4 are even permutations and so belong to A4.
See Problem 6 on page 103 for another example.

Orbits and Stabilizers
Definition: Let G be any group of permutations on a set S. For any a  S, Stabilizer of a is
defined to be the set

stab(a) = {f G | f (a) = a}
i.e., those maps in G, which fix a.
It is easy to see that stab(a) forms a subgroup of G.

stab(a) as I stab(a)
f, g  stab(a)  f(a) = a, g(a) = a

fgfg 1(a) = f(g = f(g 1(a)) f(a) = a  fgfg 1  stab(a)
Again for any a  G, orbit (a) is defined to be the set {x  S | x = f (a) for some f  G}
= {f(a) | f 
Again for any 

 G}.
So it is a subset of S containing images of a in S.
Example 11: Suppose G = {I, (12)(34), (1234)(56), (13)(24), (1432)(56), (56)(13), (14)(23),
(24)(56)}

then stab(1) = {I, (24)(56)}
stab(4) = {I, (56)(13)}
stab(5) = {I, (12)(34), (13)(24), (14)(23)}
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orb(1) = {1, 2, 3, 4}
orb(3) = {3, 4, 1, 2}

Theorem 17 (Orbit-stabilizer): Let G be a finite group of permutations of a set S.
Then for any a   S,

o(G) = o(orbit(a))  o(stab (a))
Proof: Since stab(a)  G

( )
(stab( ))

o G
o a

= Index of stab(a) in G.

= Number of left cosets of stab(a) in G
Let H = stab(a) and let G/H denote the set of all left cosets of H in G.
Define : orb(a) G/H s.t.,

 ( (a)) H
Then  ( (a)) (a))

 H HH  1 H
 1 (a) a (def. of stab.)
 (a) (a)

i.e.,  is well defined 1 1
Again for any H G/H, (a) is the required pre-image is onto
Thus o(orb(a)) = o(G/H) = No. of distinct left cosets of H in G.

= Index of H in G

= 
( )
( )

o G
o H

Giving the required result.
Note: G/H here is only a notation and not essentially a quotient group.
Theorem 18: (Generalised Cayley’s theorem): Let H be a subgroup of G and
 = {aH | a  G} then 

(Generalised Cayley’s theorem):
 a homomorphism 

(Generalised Cayley’s theorem):
 : G

(Generalised Cayley’s theorem):
A() s.t., Ker 
 Let H be a subgroup of G and

 is the largest normal
subgroup of G contained in H.

Proof: Define  : G A( ) s.t.,
(g) = fg

where fg :  
g
  s.t.

fg (aH) = gaH
To show that  is well defined, we need prove that fg  A()
Now fg(aH) = fg(bH)

 gaH = gbH
 aH = bH  fg is 1-1

Again for any aH  ,
fg(g

–1aH) = aH, showing that
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fg is onto and thus fg  A()
We have (gh) = fgh, (g) (h) = fg fh

and since fgh (aH) = ghaH
fg fh(aH) = fg ( fh(aH)) = fg(haH) = ghaH

we find fgh = fg fh
or that  is a homomorphism.
Since Kernel of a homomorphism is normal subgroup, we have Ker , a normal subgroup

of G.
Again, if g  Ker  then

(g) = I = Identity of A()
 fg = I
 fg(aH) = aH  aH 

In particular,
fg(eH) = eH  geH = eH  gH = H

 g  H
 Ker   H

Let now K be any normal subgroup of G, contained in H. Let k  K be any element. We
want to show that k 

 be any normal subgroup of 
 Ker 

 be any normal subgroup of 
 or that 

 be any normal subgroup of 
(k) = I.

or that fk = I
or that fk (aH) = aH  aH
Now fk (aH) = kaH = a(a–1ka) H = ahH = aH
[Note a–1ka  K H]
Hence K  Ker  which proves the theorem.

Remarks: (i) If we wish to work with right cosets,  can be defined by (g) = fg where
fg(Ha) = Hag–1.

(ii) If H = {e}, the above theorem is the Cayley’s theorem, as then Ker  = {e}   is 1–1.

Cor. (Index theorem): If H  G is a subgroup of a finite group G, s.t., o(G) does not divide
iG(H)! then G has a non trivial normal subgroup. (i.e., G is not simple).

Proof: By above theorem, we find Ker  is a normal subgroup of G.
Since Ker  H  G, Ker   G
If Ker  = {e}, then  is 1-1 and thus : G  A() is 1-1 homomorphism i.e., G is

isomorphic to a subgroup T of A().
 o(G) = o(T)

But o(T) | o(A())   o(G) | o(A()) = iG(H)! a contradiction and so
Ker  {e} and is the required non trival normal subgroup.

Problem 64: Let H be a subgroup of a finite group G such that o(H) and (iG(H) 1)! are
coprime then show that H is normal in G.

Solution: Let S = {aH | a  G} = Set of left cosets of H in G.
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Define : G  A(S) s.t.,
(g)  Tg

where Tg : S  S s.t., Tg(aH) = gaH
Then as seen in generalised Cayley’s theorem, is a homomorphism and Ker   H.

Also then
Ker

G T
Ker

TT  where T  A(S) 

 o(G/Ker ) = o(T) where o(T) | o(A(S)) = ( )Gi H

Let iG(H) = 
( )
( )

o G n
o H

n

then o(T) | n  and thus 
( ) |

(Ker
o G n

o
|

(Ker
n

Again Ker   H  o(Ker ) | o
 o(H) = m.o Ker ) for some m

  ( )o G
n

  = m.o Ker )

  
( )

(Ker )
o Gnm

o(Ker )(Ker )
o G

or that | | . 1 | 1nm n nm n n m n| | . 1 | 1| | . 1 | 1| | . 1 | 1| | . 1 | 1| | . 1 | 1| | . 1 | 1nm n nm n n m n| | . 1 | 1| | . 1 | 1nm n nm n n m n| | . 1 | 1| | . 1 | 1nm n nm n n m n| | . 1 | 1

Also  m | o(H) and as they are coprime, m = 1 or that H = Ker  i.e., H G..
Problem 65: Suppose that G is a finite group and p is the smallest prime divisor of o(G). Show
that a subgroup H of index p in G is normal in G.

Solution: Let S  = set of all left cosets of H in G.
Then o(S ) = p
Define  : G  A(S ) s.t.,

(g) = Tg
where Tg : S   S s.t.,

Tg(xH) = gxH
Then  is a homomorphism s.t. Ker   H.
Let Ker  = K then K  H and K is normal in G.
G
K

 is isomorphic to a subgroup of A(S ) = Sp (Using Fundamental theorem)

Go
K
GG
KK

 divides p!

If | Gm o
K
GG
KK

 then m | o(G) [as o(G) = o(K) [G : K]].
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Since p  is the smallest prime dividing o(G), m = 1 or p.

Go
K
GG
KK

 is divisible by 1 or p only..

 Go
K
GG
KK

 = 1 or p

But o(G/K) = [G : K]= [G : H] [H : K]
= p[H : K]

 p

Go
K
GG
KK

 = p [H : K] = 1

 H = K
 H = Ker is normal in G.

Remark: The result that a subgroup of index 2 is normal now follows from this problem also.

Exercises
1. In S3, show that we can find elements, a, b s.t., (ab)2  a2b2. Also show that there

exist four elements satisfying x2 = e and three elements satisfying y3 = e.
2. Find order of all elements in S3 and list all its subgroups.
3. Show that S4 has no element of order greater than 4.
4. Using Index theorem show that if a group G of order 35 has a subgroup H of order

7 then H is normal in G.
5. Let H = {I, (123), (132)}, K = {I, (12)} be two subgroups of S3. Write all the left

and right cosets of H and K in S3. Hence show that H is normal whereas K is not
normal in S3.

6. Verifty Cayley’s theorem for (i) a cyclic group of order 3.
(ii) G = {1, –1, i, – i}.

7. In S5, show that we can find elements a, b s.t., o(a) = o(b) = 3 and o(ab) = 5.
[Take a = (123), b = (145)]

8. Let  = (1234) be a 4 cycle. Show that k is also a 4-cycle iff k and 4 are
co-prime. Generalise!

9. Show that product of two transpositions is either (i) the identity or (ii) a
3-cycle or (iii) a product of two 3-cycles. (See problem 51).

10. Show that A8 contains an element of order 15. [Note (123), (45678) are even
permutations].

11. Show that 4

4

S
K

 = {K4, K4(12), K4(13), K4(23), K4(123), K4(132)}

[Hint: K4(14) = K4(23) as (14)(23)  K4, K4(124) = K4(132) as
(124)(123) = (14)(23)  K4 etc.]
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Generators of a Subgroup

Let S be a non empty subset of a group G. Let
H = {x1x2 ....... xn | n is finite but not fixed, xi or x i

–1  S}
then H is a subgroup of G and contains S. S    H  
Again, x, y  H  x = x1 x2 ..... xn xi or xi

–1  S
y = y1 y2 ..... ym yj or yj

–1  S
 xy–1 = x1x2 ...... xn . ym

–1 y–1
m–1 ...... y2

–1 . y1
–1  H

Showing that H is a subgroup of G.
S  H follows by definition of H.
This subgroup H is called the subgroup of G, generated by S and we write H = < S >.
Indeed if S = {a}, H = < a > the subgroup we've been talking about earlier.

Theorem 19: H = < S > is the smallest subgroup of G containing S.

Proof: Suppose K is a subgroup of G containing S
x  H  x = x1x2 ...... xn,  xi or x–1

i  S
if xi  S  then xi  K as S  K
if xi

–1  S  then xi
–1  K  xi  K (as K is a subgroup)

i.e, xi  K for all i
 x  K  H  K

or that H is the smallest subgroup containing S.

Remark: (i)  H = < S > will be the intersection of all subgroups of G containing S.

(ii) We use the notation < a, b > to denote the subgroup generated by a, b.

Problem 66: Show that < a, b > = < a, ab >

Solution: We have
a, ab  < a, ab >
 a 1 ab < a, ab >
 b < a, ab >

So, aa  b  < a, ab > and as < a, b > is the smallest subgroup generated by a, b,
we get, < a, b > < a, ab >
Again, a, b  < a, b >  a, ab  < a, b >
and so < a, ab >  < a, b >
giving us the desired result.
Example 12: Let G = S3, S = {(12), (13)}

(13)(12) = (231) = (123)  H
(12)(13) = (132)  H

(12)(123) = (23)  H
(12)(12) = I  H
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we find all members of S3 are in H = < S >
i.e., < S > = S3.
Note (12), (13)  S  H.

Problem 67: Show that S4 = < (123), (24) >

Solution: Let G = < (123), (24) >

Now (24) 1(123)(24) = (143) is in G.

Let H = < (123) >, K = < (143) >. Then o(HK) = 9 and HK  G  o(G)  9  o(G) = 12
or 24.

If o(G) = 12, then index of G in S4 is 2, but A4 is the only subgroup of index 2 in S4 and as
G contains an odd permutation, G  A4. Thus o(G) 

 is the only subgroup of index 2 in 
 12 

 is the only subgroup of index 2 in 
o(G) = 24 and hence G = S4.

Remark: In fact S4 = < (ab), (acd) > i.e., it is generated by a transposition and a 3-cycle
having one common letter with the transposition.

Problem 68: Show that S5 = < (1234), (2345) >

Solution: Let G = <(1234), (2345)>

Let H = <(1234)> = {(1234), (13)(24), (1432), I}

K = <(2345)> = {(2345), (24)(35), (2543), I}

Then o(HK) = 16 and HK  G.

So, o(G)  16.

But G is a subgroup of S5.

Therefore, o(G) = 20, 24, 30, 40, 60 or 120

If o(G) = 60, then G = A5 as only subgroup of S5 of index 2 is A5. But G contains odd
permutations. So, G cannot be A5. Therefore, o(G)  60.

If o(G) = 30, then index of G in S5 is 4.

So, there exists a homomorphism  : S5  A(S)

where S is the set of all left cosets of G in A5

such that Ker   {I} and Ker   G.

Therefore, o(Ker )  30. Also Ker   is a normal subgroup of S5. Since A5 is the only normal
subgroup of S5, this case is not possible.

So, o(G) cannot be 30. Similarly, o(G) cannot be 40.

Now G has an orbit of order 5. So, 5 divides o(G).

Therefore, o(G) cannot be 24.

Again, (13)(24)(24)(35) = (13)(35) = (351) is in G.
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So, 3 divides o(G). Therefore, o(G) can not be 20. Hence, o(G) = 120. Thus, G = S
5
.

Problem 69: Show that every finitely generated subgroup of < Q, + > is cyclic. Hence show

that < Q, + > is not finitely generated.

Solution: Let H be a subgroup of < Q, + > such that H is generated by

r

r

m m m

n n n

Let g.c.d. (m
1
n
2
...n

r
, m

2
n
1
n
3
...nr,...,m

r
n
1
....n

r�1
) = d

Then there exist integers a1,a2...,ar such that

a
1
m
1
n
2
...n

r
 + a

2
m
2
n
1
n
3
...n

r
 +...+a

r
m

r
n
1
...n

r�1
 = d

So,  
1 2 1 2r rn n n n n n

�

�

.

Since 
1 2 1 2r rn n n n n n

�

�

We show that 
1 2

.
r

d
H

n n n�

Let x � H.

Then x = 
1 2

r

rn n n

1 2 rn n n

� � �

�

1 2 rn n n

�

�

1 2 r

d

n n n
�

�

So, 
1 2

.
....... r

d
H

n n n

Therefore, H is cyclic

If we take H = Q then < Q, + > is cyclic which is not true (See remark on
page 82).

Hence < Q, + > is not finitely generated.

Problem 70: Let H = 
2 5
, .

3 7
 Show that H = 

1
.

21

Solution: By above problem g.c.d. (14,15) =1 implies H = 
1

.
21

Problem 71: Let n > 1 be an integer. Prove by induction that Sn is generated by the set

{(12), (13)...,(1n)}.

Solution: Let n = 2. Then S2 = {I, (12)}. So, S2 is generated by {(12)}. Therefore, the result
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is ture for n = 2. Let n > 2. Suppose the result is true for premutation groups on n 1 letters.
Consider G = Sn. Let H = {

 > 2. Suppose the result is true for premutation groups on 
 

 > 2. Suppose the result is true for premutation groups on 
 Sn|

 > 2. Suppose the result is true for premutation groups on 
 (n) = n}. Then H is a subgroup of G. Also, H is a group

of permutations on n 1 letters, 1, 2,..., n
) =

1. By induction hypothesis, H is generated by
{(12), (13), ..., (1 n 1)}

Let K = <(123...n)>
Now (123...n) = (1n)(1n 1) ...(12)
Also, H  K = {I}.
So, G = HK as o(H) = n 1! and o(K) = n.
If f G, then f = hk, h H, k K.
Since h is product of transpositions (12),(13),...,(1n 1), k is product of transpositions

(12),(13),...,(1n), f is product of transpositions (12)(13)...(1n).
Therefore, Sn is generated by {(12), (13),...,(1n)}

Problem 72: Show that the dihedral group of order 8 is generated by {(1234), (14)(23)}.
Solution: Let G be the dihedral group of order 8.
Then G = {a, a2, a3, a4 = e, ab, a2b, a3b, b | b 1ab = a 1, a4 = e = b2}
Let a = (1234), b = (14)(23).
Then a4 = e = b2

Also b 1ab = bab 1 = b(1234)b 1 = (b(1)b(2)b(3)b(4)) = (4321) = a 1.
ab = (1234)(14)(23) = (1)(24)(3)
a2b = (13)(24)(14)(23) = (12)(34)
a3b = (1432)(14)(23) = (13)

So, G = {(1234), (13)(24), (1432), I, (24), (12)(34), (13), (14)(23)}
= <(1234), (14)(23)>

Commutators

Let a, b  G, G a group. Then a–1 b–1 ab is called a commutator of a and b, or simply a
commutator in G. Let S denote the set of all commutators in G and let G' denote the subgroup
of G generated by S then G' is called commutator subgroup of G or derived group of G.

Theorem 20: Let G' be the commutator subgroup of a group G then
(i) G' is normal in G.

(ii) G
G

 is abelian and

(iii) G' is the smallest subgroup of G such that G
G

 is abelian.

(iv) If H  G, s.t. G'  H, then HG.
Proof:  Let  g  G,  x  G'

x  G'  x = c1 ...... cn  ci or ci
–1  S = Set of commutators
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ci  S  ci is a commutator
 ci = ai

–1 bi
–1 aibi  for some ai, bi  G

ci
–1  S  ci

–1 is a commutator
 ci

–1 = i
–1 i

–1 i i  for some i, i  G
 ci = i

–1 i
–1 i i

 ci is a commutator
 for each i, ci is a commutator.

Now, g–1xg = g–1(c1 ..... cn)g
= (g–1c1g) (g–1c2g) ..... (g–1cng)

but g–1cig = g–1(ai
–1 bi

–1 ai bi)g
= (g–1aig)–1(g–1 big)–1(g–1aig) (g–1 big)
= i

–1 i
–1 i i   where i = g–1 aig

i = g–1 big
g–1cig  S  for all i
g–1xg  G'

So, G' is a normal subgroup of G.
Consider G'x G'y. Then

G'x G'y = G'y G'x
G'xy = G'yx
(xy)(yx)–1  G'
xyx–1y–1  G'

which is true as G' contains all commutators of G.
G
G

 is abelian.

Suppose 
G
K  is abelian. We show that G   K.

Since 
G
K  is abelian,

Kx Ky = Ky Kx for all x, y  G
Kxy = Kyx for all x, y  G
xyx–1 y–1  K for all x, y  G

 K contains S, the set of all commutators of G.
But G  is the smallest subgroup of G containing S.

G'  K.

Finally, for part (iv) , if g  G, h  H be any elements, then h 1gg 1hg  G'  h 1gg 1hg  H
 g
Finally, for part (

g 1hg hH = H  HG.

Cor.:  G is abelian   G' = {e}.
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Proof: Let G be abelian.  Let K = {e}

Then
{ }{ }

G G
K e

 is abelian.

G   K = {e}, but {e} = K  G
G  = {e}.

Alternatively, if G is abelian
then a–1 b–1 ab = e  a, b

S = {e}  G' = {e} as G' is the smallest group containing S.

Conversely, let G' = {e}. Now G
G

 is abelian  
{ }
G
e

 is abelian.

But 
{ }
G G
e

  G is abelian.

Or, otherwise, if a, b  G be any elements then as a–1b–1ab  G' = {e}
 a–1b–1ab = e  ab = ba.

Problem 73:  For G = S3,  prove that G' = A3.

Solution: o(G') divides o(G) = 6
 o(G') = 1, 2, 3 or 6

o(G') = 1  G' = {I}  G is abelian, a contradiction.

o(G') = 6 = o(G)  G' = G. But 
3

G
A

 is abelian being of order 2

G'  A3  G  A3 a contradiction.

If o(G') = 2, then 
3

G
A

 is abelian

 G'  A3  o(G') = 2 divides o(A3) = 3, a contradiction.
o(G') = 3

But A3 is only subgroup of order 3 in S3.
G' = A3.

Problem 74:  If N is a normal subgroup of G and N  G' = {e}, show that N  Z(G).

Solution:  Let n  N, x  G
Then x–1 n–1 xn  G'
But x–1 n–1 xn = (x–1 n–1 x) n  N as N is a normal subgroup of G.

x–1 n–1 xn  G'  N = {e}
 x–1 n–1 xn = e
 xn = nx for all x  G
 n  Z(G) for all n  N
 N  Z(G).
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Exercises
1. Let G = { 1, i, j, k}, the group of quaternions. Let S = {i, j}. Show that S

generates G.
2. Let G = Sn, S = set of all transpositions in G. Show that S generates G.

(i.e., Sn (n  2) is generated by (n – 1) transpositions (12), (23), ..., (n–1 n)
3. Show that the set {1} generates the group Z of integers under addition.
4. Show that < a, b > = < a–1, b–1 >
5. Prove that the alternating group An(n  3) may be generated by (n  – 2),

3-cycles of the form (123), (124), ......, (12n).
6. If H, K are subgroups of G, show that H  K  H'  K'.
7. Let G be a simple non abelian group. Show that G = G'.
8. Show that S4 = < (12), (134)>.

A subgroup H of a group G is called a normal subgroup of G if Ha = aH ,
 a G . Equivalently, H is normal iff g–1 h g H for all g G and h H.

A group having no non-trivial normal subgroup is called a simple group.
The set of all right (left) cosets of H in G forms a group under the binary composition
defined by HaHb = Hab and is called the quotient or factor group of G by H.
Quotient groups of cyclic (abelian) groups are cyclic (abelian). Converse, however,
does not hold.
Kernel of a homomorphism contains those elements that are mapped to the identity.
It forms a normal subgroup.
If there exists a one-one onto homomorphism between two groups the groups are
said to be isomorphic. There are three isomorphism theorems, the first one is also
called the Fundamental theorem of group homomorphism which states that
homomorphic image of a group G is isomorphic to a quotient group of G.
Any infinite cyclic group is isomorphic to <Z ,+> and a finite cyclic group of order n
is isomorphic to Zn .

Cayley’s theorem says that every group is isomorphic to a permutation group.
Converse of Lagrange’s theorem does not hold, in general, as o(A4) is divisible by 6
but it has no subgroup of order 6.
The commutator subgroup of a group is a normal subgroup.

A Quick Look at what's been done
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Example 1: Let G be a group, then the identity map I : G  G, s.t., I (x) = x is trivially an
automorphism of G. In fact, it is sometimes called the trivial automorphism of G.

Example 2: Let Z = group of integer under addition
then f : Z  Z, s.t.,

f (n) = – n
is an automorphism as f (n) = f (m)  – n = – m  n = m  f is 1–1.
Again, since for any n  Z, f (–n) = n we find f is onto.
Now f (n + m) = – (n + m) = – n – m = f (n) + f (m)
shows f is a homomorphism and hence an automorphism.

Example 3: If G be an abelian group and f : G  G be such that f (x) = x–1 then as f (xy)
= (xy)–1 = y–1 x–1 = x–1 y–1 = f (x) f (y),

f is a homomorphism.
Again f (x) = f (y) x–1 = y–1

 x = y  f is 1–1.
f is clearly onto and hence an automorphism.

Example 4: If G be a non-abelian group, then the above defined map f : G  G s.t.,
f (x) = x–1 is not an automorphism.

Since G is non-abelian,  x, y  G s.t., xy  yx

Automorphisms and
Conjugate Elements

Introduction
We start by recalling that by an automorphism we mean an isomorphism of a group G to
itself. Also under permutation groups we noticed that the set of all permutations (1–1 onto
maps) forms a group. We show now that set of all automorphisms also forms a group, the
two being closely related. We intend studying a few results pertaining to these groups. To
begin with we take up few examples of automorphisms.

4
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Now if f (xy) = f (x) f (y)
then (xy)–1 = x–1 y–1

 (xy)–1 = (yx)–1

 xy = yx, a contradiction.
Hence  f  is not an automorphism.
We notice then  f : G  G, s.t., f (x) = x–1 is an automorphism iff G is abelian.

Example 5: Let G be a finite abelian group of order n (n = odd > 1). We show G has a non-
trivial automorphism.

Define f : G  G, s.t.,
f (x) = x–1

then  f  is an automorphism (as seen above).
Now if f = I
Then f (x) = x for all x  G

 x–1 = x for all x  G
 x2 = e for all x  G
 o(x) | 2 for all x  G
 o(x) = 1 or 2 for all x  G

If x  e then o(x) = 2 and as o(x) | o(G)
2 | o(G)  o(G) is even, which is not true

Hence f  I
and the result is proved.
Let G be a group and let Aut G denote the set of all automorphisms of G. One can in the

routine way show (and we urge the reader to try) that Aut G forms a group under the composition
of mappings. We, however, prove this result through the following theorem which gives us
little more information about Aut G.

Theorem 1: Let G be a group. Let Aut G denote the set of all automorphisms of G and A(G)
be the group of all permutations of G. Then Aut G is a subgroup of A(G).

Proof: Since I  Aut G, Aut G 
Let T  Aut G. Then T is 1–1 onto from G to G.

T is a permutation of G.
T  A(G). So, Aut G  A(G).

Let T1, T2  Aut G.
Then (T1 T2)(xy) = T1(T2(xy))

= T1(T2(x)T2(y))  as T2 is a homomorphism
= T1(T2(x))T1(T2(y))  as T1 is a homomorphism
= (T1T1)(x).(T1T2)(y)  for all x, y  G

T1 T2 is a homomorphism from G into G.
Again, (T1T2) (x) = (T1 T2) (y)
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 T1 (T2 (x)) = (T1 (T2 (y))
 T2 (x) = T2 (y)  as T1 is 1–1
 x = y  as T2 is 1–1

T1T2 is 1–1
Let x  G. Since T1 : G  G is onto  y  G s.t. T1(y) = x.
Again as T2 : G  G is onto,  z  G s.t. y = T2 (z)

 T1(T2 (z)) = x
 (T1 T2)(z) = x

T1T2 is also onto.
So, T1T2  Aut G.
Let T  Aut G.  Then T is 1–1 onto  T is invertible and

T–1 : G  G  s.t. T–1 (x) = y T(y) = x
as TT–1 = I = T–1 T

T–1 is 1–1 as T–1 (x1) = T–1 (x2)
 TT–1 (x1) = TT–1 (x2)
 I(x1) = I (x2)
 x1 = x2

Let x  G then y = T(x)  G
T–1(y) = T–1 (T (x)) = (T–1T) x = x

T–1 is onto.
Let T–1 (xy) = z  then T(z) = xy
Let T–1 (x) = x1, T–1 (y) = y1
Then x = T(x1),   y = T(y1)

 T(z) = xy = T(x1) T(y1) = T(x1 y1)
as T is a homomorphism.

z = x1 y1 as T is 1 – 1
So T–1 (xy) = z = x1 y1 = T–1(x) T–1 (y)  for all x, y  G

 T–1 is a homomorphism.
Thus T–1  Aut G
Hence, Aut G is a subgroup of A(G).
(Thus Aut G forms a group).

Inner Automorphisms

Let g  G. Define Tg : G  G s.t.
Tg (x) = gxg–1 for all x  G

Then Tg is 1–1 as
Tg(x) = Tg(y)
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 gxg–1 = gyg–1

 x = y.
Let x  G.  Then g–1 xg  G.
and Tg (g–1 xg) = g (g–1 xg) g–1 = x

Tg is onto
Also Tg (xy) = g (xy) g–1

= (gxg–1) (gyg–1)
= Tg (x) Tg (y)  for all x, y,  G

Hence Tg is automorphism of G and it is called an inner automorphism of G.

Theorem 2: The set I(G) of all inner automorphisms of G is a subgroup of Aut G.

Proof:  Te  I(G)  where e = identity of G.
I(G) 

Let
1 2
, ( )g gT T I G, ( ), ( ), ( )T T I G, ( )

Then
1 2g gT T (x) = 

1gT (g2xg2
–1) = g1 g2 x g2

–1 g1
–1

= (g1 g2) x (g1 g2)
–1

=
1 2g gT  (x) for all x  G

1 2g gT T  = 1 2g gT   I(G)

Let Tg  I(G)
Then Tg Tg–1 = Te = I  (as Te (x) = exe–1 = x for all x  G)
and Tg–1 Tg = I

Tg–1 = (Tg)
–1  (Tg)–1  I(G)

I(G) is a subgroup of Aut G.
In fact, I(G) is normal in Aut G. See exercises.

A question arises, when is 
1gT  = 

2gT ?

Suppose 1gT  = 2gT

then 1gT (x) = 2gT (x)  for all x G

g1 x g1
–1 = g2 x g2

–1   for all x  G
g2

–1 g1 x = x g2
–1 g1  for all x  G

g2
–1 g1  Z(G)

g1Z(G) = g2Z(G)

1gT  = 
2gT g1Z(G) = g2Z(G)

In view of this, we have the following

Theorem 3: ( )
( )
G I G

Z G
( )I G( )I G( ) , where I(G) is set of all inner automorphisms of G.
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Proof:  Define  : ( )
( )
Gθ I G

Z G
: ( ): ( )θ I G: ( ) , s.t.,

(g Z(G)) = Tg
 is well defined as

g1Z(G) = g2Z(G)  g2
–1 g1  Z(G)

 1gT = 2gT  (from above)

 (g1 Z(G)) = (g2 Z(G))
 is 1–1 as (g1 Z(G)) = (g2 Z(G))

 1gT = 2gT

 g2
–1 g1  Z(G)

 g1Z(G) = g2Z(G)
 is onto as Tg  I(G)  g  G

and gZ(G)  ( )
G

Z G  s.t., (gZ(G)) = Tg

Also (g1Z(G) g2(Z(G)) = (g1 g2 Z(G))

= 1 2g gT T

=  1 2g gT T

= g1Z(G)) (g2Z(G))
 is a homomorphism and hence an isomorphism.

If G is a finite group, then o(Z(G)) = finite.

( )
Go

Z G
GG
( )Z G( )Z G( )( )Z G( )Z G( )

 = ( )
( ( ))
o G

o Z G
. But 

( )
Go

Z G
GG
( )Z G( )Z G( )( )Z G( )Z G( )

 = o(I(G))

o(I(G)) = ( )
( ( ))
o G

o Z G
.

Note: Theorem 3 can also be proved as follows
Define  : G  I(G), s.t., (g) = Tg for all g  G.
Then  is onto homomorphism. Show that Ker  = Z(G),

then ( ).
Ker

G I G( ).I G( ).I G( ).I G

Problem 1: Let T be an automorphism of G. Show that o(Ta) = o(a) for a G. Deduce that
o(bab–1) = o(a)  for all a, b 

Let T be an automorphism of G. Show that o
 G.

Solution: We refer the reader to problem 24, page 120.
Suppose now o(a) = n
Then (Ta)n = Tan = T(e) = e
If (Ta)m = e then T(am) = T(e)
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 am = e  m  n
o(Ta) = n = o(a)

If o(a) = infinite, then o(Ta) is also infinite for
(Ta) = n <   (Ta)n = e

 T(an) = T(e)  an = e  o(a) = finite, a contradiction.
o(Ta) = infinite.

Now bab–1 = Tb (a)
o(Tb (a)) = o(a)
 o(bab–1) = o(a).

Problem 2: Let G be an infinite cyclic group. Determine Aut G.

Solution: Let G = < a >.
Let T  Aut G
We show that G = < Ta >
Let x  G
Since T is onto,  y  G s.t., x = T(y)

y  G  y = ar for some integer r
x = Ty = Tar = (Ta)r

Ta is a generator of G.
But G has only 2 generators, namely a, a–1.

Ta = a or Ta = a–1.
T has only two choices and thus

o(Aut G)  2
Define T : G  G s.t.,

T(x) = x–1

then T  Aut G
Also T  I as T = I  T(x) = x for all x

 x–1 = x for all x   a–1 = a  a2 = e
 o(a) is finite, a contradiction

T  I. Thus G has at least two automorphisms.
o(Aut G)  2

 o(Aut G) = 2.
In fact, Aut G = {I, T | T (x) = x–1 for all x  G}
Since o(Aut G) = 2, Aut G is a cyclic group of order 2, and as any cyclic group of order

n is isomorphic to Zn (group under addition module n), Aut G 
 is a cyclic group of order 2, and as any cyclic group of order

 Z2.
(Note : Here Aut G has very small order, while G is of very large order).

Problem 3: Let G be a finite cyclic group of order n. Determine Aut G.

Solution: Let G = < a >, o(G) = o(a) = n.
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Let T  Aut G
Then as in problem 2,

G = < Ta >,
But G has only (n) generators, therefore T has only (n) choices

o(Aut G)  (n)
Define Tm : G  G s.t.,

Tm (x) = xm, (m, n) = 1, 1  m < n
Then Tm  Aut G (Verify)
If Tr = Ts, then Tr (a) = Ts (a)

 ar = as.  Let r > s
 ar–s = e
 o(a) | r – s
 n | r – s
 n  r – s < n,  a contradiction

Tr  Ts for all r, s (r  s), 1  r, s  m
where (r, n) = (s, n) = 1
This gives at least (n) automorphisms of G.

 o(Aut G)  (n)
 o(Aut G) = (n)

Infact, Aut G = 
1

{ | ( ) , ( , ) 1}m
m m

m n
T T x x m n

m n
{ | ( ) , ( , ) 1}m{ | ( ) , ( , ) 1}m{ | ( ) , ( , ) 1}{ | ( ) , ( , ) 1}T T x x m n{ | ( ) , ( , ) 1}{ | ( ) , ( , ) 1}m{ | ( ) , ( , ) 1}T T x x m n{ | ( ) , ( , ) 1}m{ | ( ) , ( , ) 1}

We thus find o(Aut G) = (n)
We show that Aut G  Un the group of integers multiplication modulo n.
Define  : Aut G  Un s.t.

(Tm) = m, 1  m < n, (m, n) = 1
Then (Tr) = (Ts)

 r = s  xr = xs  Tr(x) = Ts(x)  x
 Tr = Ts   is 1–1

Given m  Un, 1  m < n, (m, n) = 1,
 Tm  Aut G s.t. (Tm) = m

 is onto.
To show that  is a homomorphism, we prove (Tr Ts) = (Tr) (Tr)
Now for 1  r, s < n, (r, n) = 1 = (s, n),
Tr Ts (x) = Tr (xs) = (x s)r = x r s = Tr s (x)

 Tr Ts = Tr s
 (Tr Ts) = (Tr s)

= r  s = (Tr)  (Ts).
 is a homomorphism and so an isomorphism.
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Hence Aut G  Un
This completely determines Aut G.

(Note: By problems 2 and 3, cyclic groups of order 3 and 4 and infinite cyclic groups have
automorphism Group of order 2 which are isomorphic. But groups themselves are non-
isomorphic. Also, Aut G is abelian, whenever G is cyclic).

Problem 4: If f : G  G s.t.,
f (x) = xn

is an automorphism, where n is some fixed integer, show that
an–1  Z(G)  for all a  G.

Solution: Let a  G be any element. Consider
f (a–n x an) = (a–n x an)n

= a–n xn an

= f (a–1) f (x) f(a)
= f (a–1 xa)

a–n x an = a–1 xa as f is one-one
xan–1 = an–1 x  for all x

Thus an–1  Z(G)  a  G.

Problem 5: Show that Aut Q  Q*, where < Q, + > is group of rationals and < Q*, . > is group
of non zero rationals.
Solution: Define a mapping

: Aut Q  Q*, s.t.,
( ) = (1),   Aut Q

Then (1)  0 as if (1)  0
then  (1)  (0) 1 = 0 as  is 1–1
So we get a contradiction. Thus, (1) Q*
Now ( o ) = o (1) = ( (1))

= m
n
mmmm
nn

 say

= (1)m
n

(1)  (See Problem 26 on Page 121)

= (1) (1) = (1) (1) = ( ). ( )
i.e., is a homomorphism.
Let now   Ker  be any element, then

( ) = 1 identity of Q*
 (1) = 1  (x) = x  x  Q
  = I identity
 Ker   ={I}  is 1–1

To show ontoness of ,
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Let x  Q* be any element,
Define :  Q  Q s.t.,

a ax
b b
a axa axa ax
b b
a axa axa axa ax
b bb bb bb b

then it is easy to see that  is an automorphism and thus   Aut Q
Since ( ) = (1) = 1.x = x
we find is onto and hence an automorphism.
Problem 6: Let f : G  G be a homomorphism (i.e. f is endomorphism of G) Suppose f
commutes with every inner automorphism of G. Show that

(i) K = {x  G | f 2 (x) = f (x)} is a normal subgroup of G.
(ii) G/K is abelian.

Solution: (i) f 2 (e) = f (f (e)) = f (e)  e  K (where e is identity of G)
K  

Let x, y K then f (x) = f 2 (x)
f (y) = f 2 (y)

So f 2 (xy–1) = f (f (xy–1))
= f (f (x) f (y–1)) = f (f (x) f (y)–1)

= f 2 (x) f (f (y))–1

= f 2 (x) f 2 (y))–1

= f (x) f (y–1)
= f (xy–1)

 xy–1  K.
Thus K is a subgroup of G.
Let g  G, x  K. Consider

f 2 (gxg–1) = f (f (gxg–1))
= f (f Tg (x))
= f (Tg f (x))  as f Tg = Tg f
= f (g) f 2 (x) f (g–1)
= f (g) f (x) f (g–1)  as x  K  f (x) = f 2 (x)
= f (gxg–1)

gxg–1  K  for all x  K, g  G
K is a normal subgroup of G.

(ii) Now G
K

 is abelian

KxKy = KyKx  for all x, y  G
Kxy = Kyx  for all x, y  G
xyx–1y–1 K  for all x, y  G

Now, f 2 (xyx–1 y–1) = f (f (xyx–1 y–1))
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= f (f (Tx yy–1)) = f ( f Tx y)) f (y–1))
= f (Tx f (y)) f (y)–1 = f (x) f (y) x–1) f (y)–1)
= f (x Tf(y) x–1) = f (x) f Tf(y) x–1

= f (x) T f(y) f (x–1) = f (x) f (y) f (x–1) f (y)–1

= f (x) f (y) f (x–1) f (y–1)
= f (xyx–1 y–1)

xyx–1 y–1 K


G
K  is abelian.

Problem 7: For any integer a > 1, n > 0 show that
n | (an –1)

Solution: Let G = < b > s.t. o(G) = o(b) = an–1
Define T : G  G s.t.,

T (x) = x a

Since (a , an–1) = 1,  T  Aut G
by exercise 1 (iii)

Also T2 (x) = T (T (x))

= T (x a) = (x a)a = 
2ax

In general, Tr (x) = 
rax

Tn (x) = 
nax = x  for all x  G

(as x o(G) = e  1nax 1  = e  
nax  = x)

T n = 1
If T m = 1, then T m(b) = b


mab = b  1mab 1  = e

 o(b) | (am–1)
 an–1 | (am–1)  an–1  (am–1)
 an  am  n  m

o(T) = n
Also o(Aut G) = (an–1),  by problem 3

T  Aut G  o(T) | o(Aut G)
 n | (an–1).

Characteristic Subgroups

A subgroup H of G is called a characteristic subgroup of G if
T(H)  H for all T  Aut G.
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Example 6: Let G be a cyclic group of order 4
G = {e, a, a2, a3}

Then Aut G = {I, T}, where T (x) = x3 for all x  G by problem 3.
Let H = {e, a2}  G

I (H) = {I (e), I (a2)} = H
T (H) = {T (e), T (a2)} = {e, a6 = a2} = H

H is a characteristic subgroup of G. (See exercise 19)

Problem 8: Show that a characteristic subgroup of a group G is a normal subgroup of G. Is
the converse true?

Solution: Let H be a characteristic subgroup of G. Let g  G, h  H.
Now T(H)  H,  T  Aut G
In particular, Tg(H)  H, Tg being inner automorphism
Thus ghg–1 = Tg(h)  Tg(H)  H

H is a normal subgroup of G.
Converse, however is not true.
Let G be an abelian group of order 4.
Then G = {e, a, b, ab | a2 = e = b2 = (ab)2, ab = ba}
Let H = {e, a}  G.
Then H is normal subgroup of G as index of H in G is 2.
Let T : G  G s.t T (a) = b, T (b) = a, T (ab) = ab, T (e) = e
Then T  Aut G
But T (a) = b  H  H is not characteristic subgroup of G.

Problem 9: Let K be a subgroup of H and H, a subgroup of a group G. Suppose K is characteristic

subgroup of G and 
H
K

is a characteristic subgroup of 
G
K

 . Show that H is a characteristic

subgroup of G.

Solution: Let    Aut G. To show that (h)  H for all h  H.

Define :
G
K

G
K

by

(Kg) = KK (g)
Then is well defined as

Kg1 = Kg2 implies 1
1 2 .g g K1g g K1g g K1
1 2g g K1 2 .g g Kg g K

So, 1
1 2( )g g K1 2( )g g K1 2g g K1 2( )g g K( )1 2( )1 2g g K1 2( )1 2

1( )1( )1g g K( )g g K( )1( )1g g K1( )1
1 2( )1 2g g K1 2( )1 2g g Kg g K  as K is characteristic subgroup of G.

Therefore, (g1) (g2)
1  K

or KK (g1) = KK (g2)
Consider (Kg1Kg2) = (Kg1g2)

= KK (g1g2)
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= KK (g1) (g2)
= KK (g1)KK (g2)
= (Kg1) (Kg2)

So,  is a homomorphism.
Let Kg  Ker . Then (Kg) = K.
So, KK (g) = K or (g) K.
Therefore, 1 (g) KK as K is characteristic subgroup of G. which means that
g k or Kg = K.
So, Ker  = {Identity K}.
This shows that  is one-one.

Let Kx 
G
K

. Then there exists g G such that (g) = x.

So, (Kg) = KK (g) = Kx. This shows that  is onto.

Therefore,  Aut 
G
K

.

Now h H implies Kh .H
K

Since
H
K

is characteristic subgroup of G,  (Kh) .H
K

So, KK (h) = Kh1, h1 H.
Therefore, 1

1( )h h K H( )h h K H( )h h K H( ) 1h h K H1h h K H1
1h h K H1h h K Hh h K H implies (h)  H

Hence H is a characteristic subgroup of G.
Problem 10: Show that if o(Aut G) > 1, then o(G) > 2.

Solution: Suppose o(G)  2.
If o(G) = 1 then G has only one automorphism, namely identity map I, contradicting

o(Aut G) > 1.
If o(G) = 2, then G = {e, a | a2 = e, a  e}.
Since o(Aut G) > 1,  T  Aut G s.t. T  I.

 x  G s.t., T (x)  x. But T (e) = e.
T (a) must be a, contradicting that  x s.t. T (x)  x.

o(G)  2
Hence o(G) > 2.

Problem 11: If G is any group in which g2  e for some g  G, then show that G has a non-
trivial automorphism.

Solution: If G is abelian, then T : G  G s.t., T (x) = x–1 for all x  G is an automorphism
of G by Example 3. If T = I, then T (g) = I(g)  g–1 = g  g2 = e, a contradiction.

If G is non-abelian, then some inner automorphism of G is non-trivial as
Tx = I for all x G  Tx (y) = y for all x, y  G

 xyx–1 = y for all x, y  G
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 xy = yx for all x, y  G
 G is abelian, a contradiction.

In any case, G has non-trivial automorphism (see example 5 also).
The reader may go through the following problem only after acquainting himself (herself)

with vector spaces.

Problem 12: Show that a finite group having more than two elements has a non-trivial
automorphism.

Solution: If  g  G s.t., g2  e, then result follows by problem 11.
Let g2 = e for all g  G.
Then G is abelian. G can be regarded as a vector space V over Z2, the field {0, 1} mod 2,

by defining g1 + g2 = g1 g2 for all g1, g2 
 can be regarded as a vector space 

 G and g = e if 
, the field {0, 1} mod 2,

 = 0 and
g = g if  = 1. Then any invertible linear map V  V is an automorphism of G and conversely.

(Note: e is zero of V and –g is negative of g in V). If V is finite dimensional, then
T : V V s.t. T ( 1e1 + ... + 

g is negative of 
nen) = 
 is negative of 

1e1 + 
 is negative of 

2e2 + 3e3 + ... nen is 1–1 onto linear map.
(T  I).

Here {e1..., en} is a basis of V.
If G is finite, then dim V is finite = n > 1 and o(V) = 2n = o(G). If o(G) = 4 and

g2 = e for g  G then

1 0 1 1 0 1 0 1 1 1 1 0
, , , , ,

0 1 0 1 1 0 1 1 1 0 1 1
1 0 1 1 0 1 0 1 1 1 1 0

, , , , ,
0 1 0 1 1 0 1 1 1 0 1 1

, , , , ,
0 1 0 1 1 0 1 1 1 0 1 1

, , , , ,
0 1 0 1 1 0 1 1 1 0 1 1

, , , , ,

are all invertible linear maps from V into V. So o(Aut G) = 6 and Aut G is non-abelian.

Problem 13: Show that Aut S3  S3.

Solution: Let H = {(12), (13), (23)}, i.e, H be the subset of S3 containing all members of
order 2 in G = S3.

Let T  Aut G be any member, then T : G  G is an is isomorphism. Since
H  G, T(h)  G 

 be any member, then 
 h 
 be any member, then 

 H. By problem 1, o(T (a)) = o(a) 
 is an is isomorphism. Since

 a 
 is an is isomorphism. Since

 G, thus if h 
 is an is isomorphism. Since

 H be any
member then o(h) = 2 and so o(T (h)) = o(h) = 2 i.e., T (h)  H is  h H.

So T : H  H is a mapping (i.e., T can be restricted to H, and we denote this restriction
of T to H by T

 is a mapping (
). Also since T : G  G is 1–1, T  : H  H will be

1–1. Again as H is finite T
). Also since 

 : H 
). Also since 

 H is 1–1 it will also be onto and hence T  is a permutation
on H i.e., T
1–1. Again as 

 A (H).
Define : Aut G  A(H), s.t.,

(T) = T
Then  is well defined as

T1 = T2   T1 1 = T22    (T1) = (T2)
Also   is 1–1, as let (T1) = (T2)

 T11  = T22
 T11 (h) = T22 (h)  h  H
 T1(h) = T2 (h)  h  H
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i.e., T1 and T2 agree on elements of H. We show they agree on all elements of G.
Now T1 [(123)] = T1 [(13)(12)] = T1(13) T1(12) = T2(13) T2 (12) = T2(13)(12)

= T2 [(123)]
Similarly T1 [(132)] = T2 [(132)] and of course, T1 (I) = T2 (I)
Thus T1 & T2 agree on all elements of G and so (T1) = (T2)   T1 = T2
  is 1–1.

Since  will be onto from Aut G  (Aut G)
o(Aut G) = o( (Aut G))

But (Aut G)  A(H)
 o(( (Aut G))  o(A(H)) = 3  = 6
i.e., o(Aut G)  6
Also since G  I(G) when G = S3 (See exercise 7)

o(I(G)) = o(G) = 6
But I (G)  Aut G and so 6  o(Aut G)
Hence o(Aut G) = 6

  Aut G = I(G)
Hence Aut S3  S3.

Problem 14: Show that Aut S4  S4.

Solution: Let  Aut S4, then  takes (12) into a transposition as Klein’s 4-group is a
characteristic subgroup of S4. To each transposition (ab) there correspond four cycles of
length 3 which have one common letter with (ab) namely (acd), (adc), (bcd), (bdc) and S4 is
generated by (ab) and any of these four cycles. This is true for each transposition. So, we have
counted 24 generators of S4.

So if S4 = <(12), (134)> then
(S4) = < (12), (134)> = S4

o(Aut S4)  24
But, S4  I(S4) and I(S4)  Aut S4

 o(Aut S4) 24
Thus o(Aut S4) = 24 =  o(I(S4))

 Aut S4 = I(S4) or that Aut S4  S4.
(See problem 13 on page 221 also)

Exercises
1. Show that the following maps are automorphisms

(i) G = cyclic group of order 6, f : G  G. s.t. f (x) = x5.
(ii) G = group of positive real numbers under multiplication

f : G  G, s.t., f (x) = x2.
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(iii) G = finite abelian group of order n. f : G  G, s.t.,
f (x) = xm, 1  m < n, (m, n) = 1.

2. Let H be a subgroup of G. Show that T(H) is subgroup of G for all T  Aut G.
3. If H is normal in G, show that T(H) is also normal in G for all T  Aut G.
4. Show that I(G) is a normal subgroup of Aut G.
5. Show that I(G) = { I } if and only if G is abelian.

6. If 
( )
G

Z G
 is cyclic then (show that) G is abelian (See page 111). Deduce that G is

abelian if Aut G is cyclic.
7. Show that G  I (G) if G = S3.
8. Show that the commutator subgroup of a group G is a characteristic subgroup of G.
9. If G1  G2, show that I (G1)  I(G2) and Aut G1  Aut G2.

10. If G is (non-cyclic) abelian group of order 4, then show that Aut G S3.
(By solved problem 11 and this exercise it follows that two non-isomorphic groups
may have isomorphic automorphism groups).

11. If G is a finite group and T  Aut G s.t., T(x) = x if and only if x = e (such an
automorphism is called a fixed point free automorphism). Show that g  G can be
written as x–1 T (x) for some x 
automorphism is called a fixed point free automorphism). Show that 

 G.
12. Further in exercise 11, if T 2 = I, show that G is abelian and o(G) = odd.
13. Let o(G) = 2n. Let H be a subgroup of G consisting of only those elements of G whose

order is not 2. Suppose o(H) = n. Show that n is odd and H is abelian.
14. If H is a characteristic subgroup of G, show that T(H) = H for all T  Aut G.
15. (i) If H is a characteristic subgroup of K and K is normal in G, show that H is normal

in G.
(ii) Show if H is characteristic subgroup of K and K is characteristic subgroup of

G then H is characteristic subgroup of G, i.e., the characteristic property is
transitive.

16. If K is a characteristic subgroup of G and T  Aut G, show that

: G GT
K K

: G G
K K  s.t., T (Kg) = K(Tg) for all g  G

is an automorphism. Further, show that the map T  T  is a homomorphism of Aut
G into Aut (G/K).

17. Let G be an abelian group. Let H = {x  G | xn = e, n = fixed integer}. Show that H
is a characteristic subgroup of G.

18. If H is a unique subgroup of order m in G, show that H is characteristic subgroup of
G.

19. Show that every subgroup of a finite cyclic group is characteristic subgroup.
20. Prove that automorphism group of a finite group is finite.
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21. Let G be the group of all n × n non-singular matrices over a field F. Let
y  denote the transpose of matrix y. Define

 : G  G s.t.
(x) = (x–1)

Show that   Aut G and  is an outer automorphism of G unless either
F = Z2 and n  2 or F = Z3 and n = 1. (An automorphism of G is called an outer
automorphism of G if it is not an inner automorphism).

Conjugate Elements

Definition: Let G be a group, a, b  G. Define a relation ~ on G as follows:
a ~ b   c  G s.t. a = c–1 bc

It is not difficult to see that ~ is an equivalence relation on G. If a ~ b we say a is conjugate
to b (or a, b are conjugates and relation ~ is called conjugate relation on G).

Let cl(a) denote the equivalence class of a in G then cl(a) is called conjugate class or
conjugacy class of a in G. Since ~ is an equivalence relation on G, it divides G into disjoint
equivalence classes.

G = 
a Ga Ga Ga G

cl(a), where

cl(a) = {x  G | x ~ a}
= {x  G | x = y–1 ay, y  G}
= {y–1 ay | y  G}
= set of all conjugates of a in G.

Remarks: (i) cl(a) = {a}  a  Z(G)
Suppose cl(a) = {a}. Then y–1ay = a  for all y  G

ya = ay  for all y  G
a  Z(G)

Conversely, let a  Z(G). Let x  cl(a) be any element, then x = y–1ay for some
y 

Conversely,
 G

 x = ay–1 y  (as a  Z(G)
 x = a  cl(a) = {a}.

(ii) G is abelian cl(a) = {a} for all a  G
G is abelian G = Z(G)

 a  Z(G)  for all a  G
 cl(a) = {a}  for all a  G.

We shall denote by k(G) or k, the number of conjugate classes in G. It follows by remark
(ii) that o(G) = k 

We shall denote by 
 G is abelian.

Normalizer or Centralizer of an element a  G was defined to be the set
N(a) = {x  G | xa = ax for all x  G}. Also N(a)  G. It can be shown that
N(a) = G  a  Z(G)
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N(a) = G g  N(a)  for all g  G
ga = ag  for all g  G
a  Z(G).

So, by remark (i) it follows that
N(a) = G  cl(a) = {a}.

Problem 15: Suppose a  G has only two conjugates in G then show that N(a) is a normal
subgroup of G.

Solution: Let a, g–1ag be two conjugates of a in G. We show
G = N(a)  N(a)g

Let x  G. Consider x–1ax. Then x–1ax = a or g–1ag.
If x–1ax = a, then xa = ax  x  N(a)
If x–1ax = g–1 ag, then xg–1a = axg–1

 xg–1  N(a)
 x  N(a)g
G = N(a)  N(a)g

and thus index of N(a) in G is 2, showing thereby that N(a) is a normal subgroup of G.

Problem 16: Let G be a finite group and x, y be conjugate elements of G. Show that the
number of distinct elements g 

Let G be a finite group and x, y be conjugate elements of G. Show that the
 G s.t. g–1xg = y is o(N(x)).

Solution: Let g = g1, g2 ..., gn be distinct elements of G s.t., gi
–1xgi = y

Let S = {g = g1, g2..., gn}
We show that S = N(x)g
Suppose s  S then s = gi for some i, 1  i  n
If s = g1 = g, then s = g = eg  N(x) g
If s  g1, then s = gi, i  1
and g–1 xg = gi

–1 xgi

 gig
–1 x = xgig

–1

 gig
–1  N(x)

 gi  N(x)
 s  N(x)g

or that S  N(x)g
Again z  N(x)g z = hg, h  N(x)

 z–1 xz = g–1 h–1 xhg
 z–1 xz = g–1 xg as xh = hx
 z–1 xg = y
 z = gi for some i
 z  S
 N(x)g  S
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Hence S = N(x)g
and thus o(S) = o(N(x)g) = o(N(x))

(Note: As ggi
–1 x = xgg i

–1 for all i = 1,..., n
ggi

–1  N(x) for all i
 N(x)g = N(x)gi for all i)

Problem 17: Suppose X is a conjugate class of non trivial elements of G. Let
T  Aut G. Show that T(X) = {T(x) | x 

Suppose X is a conjugate class of non trivial elements of G. Let
 X} is a conjugate class of elements of G.

Solution: Let X = cl(a), a  e
We show that T(X) = cl(Ta)
Let y  T(X)  y = Tx, x  X = cl(a)

= T(g–1 ag), g  G
= T(g)–1 T(a) T(g)  cl(T(a))

T(X)  cl(Ta)
Again z  cl(Ta)  z = h–1 T(a) h, h  G

= (Th1)
–1 Ta Th

(as T is onto  h = Th1, h1  G)
= Th1

–1 Ta Th
= T(h–1 ah)

 T(cl(a)) = T(X)
T(X) = cl(Ta)

Hence T(X) is a conjugate class of G.
The following theorem helps us to determine the order of conjugate class of an element.

Theorem 4: Let G be a finite group, a  G.

Then o(cl(a)) = ( )
( ( ))
o G

o N a
where cl(a) is the conjugate class of a.

Proof: Since N(a)  G, G can be written as union of disjoint right cosets of N(a) in G.

Let G = 
1

t

i 1

t

i 1
N(a)xi [t  n = o(G)]

Then o(G) = t . o(N(a)) ...(1)
[Arguments being similar as in the proof of Lagrange's theorem, page 66].
Let S = {x1

–1 ax1,..., xt
–1 axt}

Suppose xi
–1 axi = xj

–1 axj   for i  j
Then xixj

–1a = axixj
–1

  xi xj
–1  N(a)

  N(a)xi = N(a)xj,   a contradiction
all elements in S are distinct i.e., o(S) = t
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We show that S = cl(a)
Let s  S then s = xi

–1axi, for some i, 1  i  t
 s is conjugate of a
 s  cl(a)  S  cl(a)

Again x  cl(a)   x = g–1 ag,  g  G
g  G  g  N(a) xi for some i, 1  i  t

 g = yxi,  y  N(a)
Thus x = xi

–1 y–1ayxi
= xi

–1 axi  as ya = ay
 x  S
cl(a)  S  S = cl(a)

and so o(cl(a)) = o(S) = t

and hence from (1) we get o(cl(a)) = ( )
( ( ))
o G

o N a
.

Remark: Since    G = 
a Ga Ga Ga G

(cl(a))

o(G) = 
a Ga Ga G

o(cl(a))

=
( )a Z G( )a Z G( )a Z G( )( )( )a Z G( )( )a Z G( )a Z G( )

o(cl(a) + 
( )a Z G( )a Z G( )a Z G( )( )( )a Z G( )( )a Z G( )a Z G( )

o(cl(a))

= o(Z(G)) + 
( )a Z G( )a Z G( )a Z G( )( )( )a Z G( )( )a Z G( )a Z G( )

o(cl(a))

(By remark (i) earlier o(cl(a)) = 1  a  Z(G)).

o(G) = o(Z(G)) + 
( )a Z G( )a Z G( )a Z G( )( )( )a Z G( )( )a Z G( )a Z G( )

o(cl(a))

i.e., o(G) = o(Z(G)) + 
( )a Z G( )a Z G( )a Z G( )( )( )a Z G( )( )a Z G( )a Z G( )

( )
( ( ))
o G

o N a
This equation is called class equation of G.

Problem 18: Let G be a finite group and x  G then show that

o(N(x))  Go
G
GG
GG

.

Solution: We show that cl(x)  G x
Let y  cl(x)  y = g–1 xg, g  G

= (g–1 xg)(x–1 x)
= (g–1 xg–1 x–1)x

 G x
cl(x)  G (x)
o(cl(x))  o(G x)
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( )
( ( ))
o G

o N x
  o(G x) = o(G )

( )
( )

o G
o G( )( )o G( )

  o(N(x)).

Problem 19: If index of Z(G) in G is n then show that any conjugate class has at most n
elements.

Solution: We have

( )
( ( ))
o Gn

o Z G( ( ))
o G

o Z G( ( ))o Z G( ( ))
 and ( )( ( ))

( ( ))
o Go cl a

o N a( ( ))
o G

o N a( ( ))o N a( ( ))

Since Z(G)  N(a) always
o(Z(G))|o(N(a))  o(N(a)) = k.o(Z(G))

i.e., o(Cl(a)) = ( ) . ( ( ))
( ( )) . ( ( ))
o G n o Z G n

o N a k o Z G k
( ) . ( ( ))o G n o Z G n( ) . ( ( ))o G n o Z G n( ) . ( ( ))

o N a k o Z G k( ( )) . ( ( ))o N a k o Z G k( ( )) . ( ( ))

Thus, maximum value of o(cl(a)) is when k = 1, proving the result.
Problem 20: Let G be group of order pn, p = prime, n = + ve integer. Show that
o(Z(G)) > 1.

Solution: If G = Z(G), o(Z(G)) = o(G) > 1.
If G  Z(G), then  some a  G, s.t., a  Z(G).
Then N(a) < G [as a  Z(G)  at  ta for some t  G, i.e., t  N(a), t  G].

o(N(a)) = pm, m < n

i.e., ( )
( ( ))
o G

o N a
 = pn–m, n – m > 0

i.e. o(cl(a)) = pn–m = multiple of p

( )a Z G( )a Z G( )a Z G( )( )( )a Z G( )( )a Z G( )a Z G( )
 o(cl(a)) = multiple of p = kp, (say)

By class equation of G

pn = o(G) = o(Z(G)) +
( )a Z G( )a Z G( )a Z G( )( )( )a Z G( )( )a Z G( )a Z G( )

 o(cl(a))

 o(Z(G)) = pn – kp = p(pn–1 – k)
 p | o(Z(G))  o(Z(G) > 1.

Remark: It follows from above problem that if G is a finite non-abelian simple group then
o(G) is divisible by at least two distinct primes. Since G is simple, it has no non-trivial normal
subgroup. Now Z(G) is a normal subgroup of G. Z(G) = G  G is abelian, which is not so.
Thus Z(G) = {e}, which means o(G) cannot be of the type pn, i.e., it is not divisible by only
one prime.

Problem 21: A group of order p2 (p = prime) is abelian.

Solution: Suppose o(G) = p2 and G is non-abelian.
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Then Z(G)  G. So  a  G, s.t., a  Z(G) and as in previous problem, N(a) G.

Again, Z(G)  N(a) always but as a  Z(G), Z(G)  N(a)

Now o(Z(G) | o(G) = p2  o(Z(G)) = 1, p or p2

But o(Z(G)) > 1 by problem 16
and o(Z(G)) = p2  Z(G) = G which is not true
Hence o(Z(G)) = p
Again, o(N(a)) | o(G) = p2 gives o(N(a)) = 1, p or p2

Since N(a)  G, o(N(a))  p2

Also Z(G)  N(a)  o(N(a)) > 1

o(N(a)) = p
But that means Z(G) = N(a), a contradiction
Hence G is abelian.

Note: If o(Z(G)) = p, then 
2

,
( )
G po p

Z G p
G p ,G po po pG po pG p

Z G p
o p

Z G p
o pG po po pG po po pG po pG po po pG po po pG po pG p

Z G p( )Z G p( )
o po p

( )
o p

( )Z G p( )Z G p( )
o p

Z G p
o p

( )
o p

( )Z G p( )
o p

( )
o po p

Z G p
o p

Z G p
o p  a prime 

( )
G

Z GZ G
 is cyclic  G is abelian.

A question arises whether group of order p3(p = prime) is abelian? The answer is no as the
Quaternion group is non-abelian and has order 23. Infact, there exist non-abelian groups of
order p3 for all primes p.

For example

Let G =
1

, are arbitrary
0 1

elements of a field
0 0 1

a b
a b c

c
F

1 a b
, are arbitrary, are arbitrarya b c, are arbitrary, are arbitrary, are arbitrarya b c, are arbitrary

1
, are arbitrary

a b
a b c, are arbitrarya b c, are arbitrarya b c, are arbitrarya b c, are arbitrarya b c, are arbitrarya b c, are arbitrarya b c, are arbitrarya b c, are arbitrary
elements of a field F

, are arbitrary, are arbitrarya b c, are arbitrary, are arbitrary
0 1

a b c, are arbitrarya b c, are arbitrary
c0 1

elements of a field
c0 1 c0 1 c

elements of a field Felements of a field Felements of a fieldelements of a field
0 0 10 0 1

elements of a field
0 0 10 0 10 0 10 0 1

Then G is a non-abelian group of order p3 if F is a field of order p. It is called the Heisenberg
group over F. In general, order of the Heisenberg group over F is (o(F))3. (See page 251 also).

Problem 22: Let G be a non abelian group of order p3. Determine o(Z(G)) and
k = number of conjugate classes of G.

Solution: Since G is non-abelian,  a  G, s.t., Z(G)  N(a)  G as in previous problems.
Now o(Z(G)) | o(G) = p3  o(Z(G)) = 1, p, p2 or p3

Similarly, o(N(a)) = 1, p, p2 or p3

o(Z(G))  1. By problem 16
o(Z(G)) p3 as Z(G)  G

so o(Z(G)) = p or p2

Similarly, o(N(a)) = p or p2 and as Z(G)  N(a)

We find o(Z(G)) = p and o(N(a)) = p2

Let now k be the total number of conjugate classes. Since

G =
a Ga Ga Ga G

cl(a)



188 A Course in Abstract Algebra

o(G) =
a Ga Ga G

o(cl(a)) = 
( )a Z G( )a Z G( )a Z G( )( )( )a Z G( )( )a Z G( )a Z G( )

o(cl(a)) + 
( )a Z G( )a Z G( )a Z G( )( )( )a Z G( )( )a Z G( )a Z G( )

o(cl(a))

i.e., p3 = o(Z(G)) + 
( )a Z G( )a Z G( )a Z G( )( )( )a Z G( )( )a Z G( )a Z G( )

o(cl(a))

As number of conjugate classes when a  Z(G) is o(Z(G)) = p
[a  Z(G)  cl(a) = {a}, i.e., o(cl(a)) = 1]

So remaining classes are k – p, each will have order given by

o(cl(a)) = ( )
( ( ))
o G

o N a
 = 

3

2
p
p

 = p

Hence  p3 = p + (k – p)p  k = p2 + p – 1.

Problem 23: Find all the conjugate classes of the quaternion group.

Solution: We have the quaternion group
G = { 1, i, j, k}

Let us determine the conjugate class of i.
Now, in general, we know that

< a >  N(a) in any group
[x  < a >  x = am and as a.am = am.a, we find am  N(a)]

Thus < i >  N(i) or {i, i2, i3, i4 = 1}  N(i)
and, therefore, < i >  N(i)  G gives

4|o(N(i))|8
Again, since j N(i) as ji  ij
and j  G,

N(i)  G

Hence o(N(i)) = 4 or that < i > = N(i)

Since o(cl(a)) = ( )
( ( ))
o G

o N a
(Page 184)

o(cl(i)) = 8 2
4

2

 cl(i) = {i, i} as i  cl(i) always and as i = kikkik 1, i  cl(i)
[kikkik 1 = ki( k) = (k(ik)) = ( kki) = k2i = i]

Similarly other conjugate classes will be { j}, { k}, {1} { 1}
Notice as 1, 1  Z(G) o(cl(1)) = 1, o(cl( 1)) = 1
as  o(cl(a)) = 1 a  Z(G)
We can verify the class equation here

o(G) = o(Z(G)) + 
( )

( ( ))
a Z G
o cl a

( )
( ( ))

a Z G( )a Z G( )
( ( ))o cl a( ( ))o cl a( ( ))( ( ))

8 = 2 + (2 + 2 + 2)
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Problem 24: Suppose G is a finite group and k(G) = number of conjugate classes of G is 3.
Then show that either G is a cyclic group of order 3 or is non-abelian group S3 of order 6 (upto
isomorphism).

Solution: If all three classes of G are of length one, then o(G) = 3  G is cyclic group of
order 3. Suppose G has one class of length > 1. Then G is non-abelian. Let C1, C2, C3, be three
classes.

Suppose o(C3) > 1.
If o(C1) = o(C2) = 1
then o(C3) = n – 2
where n = o(G). But o(C3) = n – 2 | o(G) = n
Also n – 2 | n – 2

n – 2 | n – (n – 2) = 2
 n – 2 = 1 or 2
 n = 3 or 4

In either case, G is abelian.
(as n = 3  o(G) = 3 = prime  g is cyclic

 G is abelian
n = 4  o(G) = p2 = 22  G is abelian)

We are thus left with only one option, that only one class in G is of length 1.
Let o(C1) = 1, o(C2) > 1, o(C3) > 1. o(Z(G) = 1.

By class equation,
n = o(G) = o(C1) + o(C2) + o(C3)
  = 1 + o(C2) + o(C3)

But o(C3) | o(G) = n, o(C3) | o(C3)
 o(C3) | n – o(C3) = 1 + o(C2)
 o(C3)  1 + o(C2)

Similarly, o(C2)  1 + o(C3)
If o(C3) < 1 + o(C2) and o(C2) < 1 + o(C3)
then o(C3)  o(C2), o(C2)  o(C3)

o(C2) = o(C3)
o(C3) | 1 +o(C3)  o(C3) | 1  o(C3) = 1

a contradiction.
Thus either o(C3) = 1 + o(C2)
or o(C2) = 1 + o(C3)
If o(C3) = 1 + o(C2)
then o(G) = 1 + o(C2) + 1 + o(C2)

 o(G) – 2 o(C2) = 2
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But o(C2) | o(G) , o(C2) | o(C2)  o(C2) | 2 o(C2)
o(C2) | o(G) – 2 o(C2) = 2
o(C2) = 2 and o(C3) = 3

or that o(G ) = 6
Similarly, if o(C2) = 1 + o(C3), then o(G) = 6.

G is non-abelian group of order 6 and so, isomorphic to S3.

Problem 25: Let G be a group and e  a G s.t., o(a) = finite. Suppose. G has only two
conjugate classes. Then show that G is a finite group of order 2.

Solution: Let e b  G. Since G has only 2 conjugate classes, namely {e} and cl(a).
b  cl(a)  b = g–1 ag for some g 

 has only 2 conjugate classes, namely {
 G.

o(b) = o(a)  for all b  e in G
Suppose o(a) = mn,  m > 1,  n > 1
Then o(am) = m
Since order of all non identity elements in G is same, o(am) = mn

n = mn  m = 1; a contradiction
o(a) = p = prime.
o(b) = p  for all e  b G

Suppose p  2
then a2  e  a2  cl(a)

a2 = g–1 ag  for some g  G
(a2)2 = (g–1 ag)2

= g–1 a2 g
= g–1 (g–1 ag) g
= g–2 ag2

22a = g–2 ag2

In this way, we get 2p
a  = g–p agp

Since o(g) = o(a) = p
2p

a  = eae = a

 2 1p
a2 1  = e  o(a) = p | 2p – 1

By Fermat's Theorem, p | 2p – 2
p | (2p – 1) – (2p – 2) = 1, a contradiction
p = 2

 o(a) = 2. So o(b) = 2 for all e  b  G
 G is abelian.
So, every conjugate class in G is of length one. Since G has only 2 classes, order of

G is 2.
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(Note:  infinite groups in which no non-trivial element has finite order and group has only
2 conjugate classes. Therefore, it is necessary to assume that 

 infinite groups in which no non-trivial element has finite order and group has only
 e 

 infinite groups in which no non-trivial element has finite order and group has only
 a  

 infinite groups in which no non-trivial element has finite order and group has only
 G s.t.

o(a) = finite, in the above problem).

Problem 26: Prove that a group of order 15 is abelian. Hence, show that it is cyclic.

Solution: Suppose G is a group of order 15. Suppose it is non-abelian. Then Z(G) G
o(Z(G)) = 1, 3 or 5 as o(Z(G)) | o(G) = 15

If o(Z(G)) = 3 or 5, then Go
Z
GG
ZZ

 = 5 or 3 = prime


( )
G

Z G
 is cyclic  G is abelian, a contradiction. (See Page 111)

o(Z(G)) = 1
Thus there is only one conjugate class of length one. All other classes are of length 3 or 5

as order of class divides o(G) = 15. If all other classes are of length 3, then by class equation,
o(G) = 15 = 1 + 3k, which is not true.

Therefore, there exists one class C of length 5 and this is the only class of length 5 (by class
equation).

Let x  C. Then C = cl(x) and

5 = o(C) = o(cl(x)) = ( )
( ( ))
o G

o N G
  o(N(x)) = 3

Since x  e and x  N(x), o(x) | o(N(x)) = 3  o(x) = 3.
Conversely, let o(x) = 3. Since o(x) | o(N(x)), o(N(x)) = 3k where k = 1 or 5 as o(N(x)) | o(G)

= 15.
If k = 5, then o(N(x)) = 15 = o(G)  N(x) = G.
 x  Z(G)  x = e as Z(G) = {e}, a contradiction

k = 1 o(N(x)) = 3

 o(cl(x)) = ( )
( ( ))
o G

o N G
 = 15

3
 = 5

 cl(x) = C
as C is the only class of length 5. Since x  cl(x) we find x  C.
So, the number of elements of order 3 is 5, a contradiction as number of elements of order

p (p = prime) is multiple of p – 1 (in this case, number of elements of order 3 will be a multiple
of 2)

G must be abelian.
Let e  x  G. Since o(x) | o(G) = 15, o(x) = 3 or 5. If all non-identity elements in G are

of order 3, let o(x) = 3, o(y) = 3, H = < x >, K = < y > then o(H) = 3 = o(K). Since G is abelian,
H is normal in G, K is normal in G  HK  G  o(HK) | o(G) = 15.

But o(HK) = ( ) ( )
( )

o H o K
o H K( )( )o H K( )

 = 3 3
1

3 3  = 9 and 9 15

we get a contradiction
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 a  G s.t. o(a) = 5. By the same argument as above  b  G, s.t. o(b) = 3. Since
ab = ba, o(a) and o(b) are relatively prime.

o(ab) = o(a) o(b)
= 3 × 5 = 15
= o(G)

G is cyclic group of order 15.
(Note : We shall prove the above result again with the help of Sylow's Theorems in the next

chapter).

Problem 27: Let G be a non-trivial finite group. Let p be least prime dividing o(G). Let k(G)

> ( )o G
p

. Then show that Z(G)  {e}.

Solution: Let Z(G) = {e}. Let o(G) = 1α αα
1 ... n

np p p  where p, p1, p2,..., pn are distinct primes

s.t., p  < p1 < ... < pn, a > 0, i  0. k(G) > 
( )o G
p

 = 1α αα 1
1 ... n

np p pαα 1p p pα 1p p pα 1  and

Z(G) = {e}   only one class of length one and at least 1α αα 1
1 ... n

np p p
p

αα 1p p pα 1p p pα 1  classes of length

 p (as order of class divides o(G)). This gives one identity element and at least 1α αα 1
1( ... )n

np p p pαα 1( ... )α( ... )αα 1( ... )α 1( ... )p p p p( ... )α 1( ... )α 1p p p pα 1( ... )α 1

= 1α αα
1 ... n

np p p  = o(G) elements of G which exceed o(G), a contradiction. Hence Z(G)  {e}.

Problem 28: Let N be normal in G, a finite group. Show that k(G/N)  k(G) – j + i,
where j = number of conjugate classes in G of elements in N.

Solution: G = 
a Na Na Na N

cl(a)
a Na Na N

cl(a) = N
a Na Na N

cl(a)

(See Exercise 10).
Let r = number of classes cl(a), a  N

k(G) = j + r
Now cl(Nx) = {(Ng)–1 Nx (Ng) | g  G}

= {Ng–1 xg | g  G}
= {Ny | y = g–1 xg,  g  G}
= {Ny | y = g–1 xg,  g  G}
= {Ny | y  cl(x)}
= Ncl (x)

If x  N, then g–1 xg  N for all g G
 cl(x)  N
 Ncl(x) = N
 cl(Nx) = N

If x  cl(a), a  N, then cl(x) = cl(a)
 Ncl(x) = Ncl(a)
 cl(Nx) = Ncl(a)
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But there are r such classes cl(a), a  N. Therefore, there are at most r + 1 classes in G
N

.

(For, two classes cl(a), cl(b), a, b N may give rise to same class in G
N

).

Gk
N
GG
NN

  r + 1 = k(G) – j + 1.

Definition: Let H  G. Let g  G. Then g–1 Hg is called conjugate of H in G. The set
{g–1 Hg | g  G} = cl(H) is called conjugate class of H in G. As before, we can determine the
order of this conjugate class.

Theorem 5: Let H  G, G = finite group.

Then o(cl(H)) = ( )
( ( ))
o G

o N H
.

Proof: Since N(H)  G

G = 
1

t

i 1

t

i 1
 N(H)xi

where N(H) xi  N(H) xj = for some i  j
Let   S = {x1

–1 Hx1,..., xt
–1 Hxt}

We show that  S = cl(H)
Let g–1 Hg  cl(H), g  G

g  G g  N(H)xi for some i
 g = yxi, y  N(H)
 g–1 Hg = xi

–1 y–1 Hyxi

= xi
–1 Hxi as y  N(H)  y–1 Hy = H

 g–1 Hg  S
cl(H)  S

Clearly, S  cl(H)
S = cl(H).

Also xi
–1 Hxi = xj

–1 Hxj
 xi xj

–1 H = Hxi xj
–1

 xi xj
–1  N(H)

 N(H)xi = N(H)xj
 i = j

o(S) = t

 o(cl(H)) = t = ( )
( ( ))
o G

o N H
.
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Problem 29: Let H  G be a subgroup of a finite group G. Show that G cannot be expressed
as union of conjugates of H.

Solution: The number of conjugates of H in G is given by ( )
( ( ))
o G

o N H

So 1 ( )( ) ( ( ) 1) 1
( ( ))
o Go x Hx o H

o N H
( )( ) ( ( ) 1) 1( ) ( ( ) 1) 1( )( ) ( ( ) 1) 1( )

( ( ))
( ) ( ( ) 1) 1

( ( ))
( ) ( ( ) 1) 1o G( )o G( )( ) ( ( ) 1) 1o G( ) ( ( ) 1) 1( )( ) ( ( ) 1) 1( )o G( )( ) ( ( ) 1) 1( )( ) ( ( ) 1) 1o x Hx( ) ( ( ) 1) 1( ) ( ( ) 1) 1o H( ) ( ( ) 1) 1

o N H
( ) ( ( ) 1) 1

o N H
( ) ( ( ) 1) 1

( ( ))o N H( ( ))
( ) ( ( ) 1) 1

( ( ))
( ) ( ( ) 1) 1

o N H
( ) ( ( ) 1) 1

( ( ))
( ) ( ( ) 1) 11( ) ( ( ) 1) 11( ) ( ( ) 1) 11( ) ( ( ) 1) 1o x Hx( ) ( ( ) 1) 11( ) ( ( ) 1) 11o x Hx1( ) ( ( ) 1) 11

( ) ( ( ) 1) 1
( )

o G o H
o H

( ) ( ( ) 1) 1
( )

o G( )o G( ) ( ( ) 1) 1o H( ( ) 1) 1
o H( )o H( )

 as H  N(H)

( )( ) 1
( )

o Go G
o H

( )( ) 1( ) 1( )( ) 1( )
( )

( ) 1
( )

( ) 1o G( )o G( )( ) 1o G( ) 1( )( ) 1( )o G( )( ) 1( )o G( ) 1o G( ) 1
o H

( ) 1
o H

( ) 1
( )o H( )

( ) 1
( )

( ) 1
o H

( ) 1
( )

( ) 1

( )( ) 2 1 2
( )

o Go G as
o H

( )( ) 2 1 2
( )

o G( )o G( )o G as( ) 2 1o G as( ) 2 1
o H( )o H( )

( ) 1 ( )o G o G( ) 1 ( )o G o G( ) 1 ( )o G o G( ) 1 ( )

Thus, G cannot be written as union of conjugates of H.

Theorem (Cauchy's) 6: Let G be a finite group and suppose p is a prime s.t., p | o(G), thenTheorem (Cauchy's) 6:
 x 

Theorem (Cauchy's) 6:
 G s.t., o(x) = p.

Proof: We first prove the result when G is abelian. We prove it by induction on
n = o(G). Result is vacuously true when n = 1. Assume it to be true for all groups having order
less than o(G). If G has no non-trivial subgroups, then G is cyclic group of prime order. Since
p | o(G), o(G) = p, G = < x > s.t. o(x) = o(G) = p. So result follows.

Let now H be a non-trivial subgroup of G i.e. H  {e}, G. Since G is abelian, H is normal
in G. If p | o(H), then, by induction hypothesis as o(H) < o(G), H is abelian,

 x  H s.t. o(x) = p, x 
), then, by induction hypothesis as 

 H  x 
), then, by induction hypothesis as 

 G. So, result is again true.
Let p o(H).

Since o(G) = o(G/H). o(H) and p | o(G), we find | Gp o
H
GG
HH

. o(H)

But p o(H), hence p | o(G/H). Also Go
H
GG
HH

 < o(G) as H  {e} and G is abelian means

G
H

 is abelian.

So, by induction hypothesis G
H

 has an element Hy of order p.

(Hy)p = H
 Hy p = H
 y p  H
 (y p)t = e where t = o(H)
 (y t)p = e



4. Automorphisms and Conjugate Elements 195

 o(y t) | p
 o(y t) = 1 or p

If y t = e (i.e. o(y t) = 1) then Hy t = He = H
 (Hy) t = H
 o(Hy) | t
 p | t = o(H), a contradiction

o(y t) = p,  y t  G
So result is true in this case.
By induction, result is true for all abelian groups.
Let now G be any group. We again use induction on o(G). The result is vacuously true for

o(G) = 1. Assume result is true for all groups with order less then o(G).
If T < G and p | o(T) then by induction hypothesis 

) = 1. Assume result is true for all groups with order less then 
 x 

) = 1. Assume result is true for all groups with order less then 
 T s.t. o(x) = p. so, result is true in

this case. Assume p o(T) for all T < G. Consider class equation of G

o(G) = o(Z(G)) + 
( )

( )
( ( ))a Z G

o G
o N a( )a Z G( )a Z G( )( ) ( ( ))( )a Z G( )

o G
o N a( ( ))o N a( ( ))( )a Z G( )a Z G( )

Now a  Z(G)  N(a) < G
 p o(N(a))

 ( )|
( ( ))
o Gp

o N a
(as o(G) = ( )

( ( ))
o G

o N a
. o(N(a))


( )

( )|
( ( ))a Z G

o Gp
o N a( )a Z G( )a Z G( )( ) ( ( ))( )a Z G( )

o G
o N a( ( ))o N a( ( ))( )a Z G( )a Z G( )

Since p | o(G), we have p | o(G) –
( )

( )
( ( ))a Z G

o G
o N a( )a Z G( )a Z G( )( ) ( ( ))( )a Z G( )

o G
o N a( ( ))o N a( ( ))( )a Z G( )a Z G( )

 = o(Z(G)).

But p o(T)  T < G
and Z(G) = G  G is abelian.
But result is true for abelian groups. Hence, by induction, result is true for all groups.

Problem 30: Show that an abelian group of order pq (p, q distinct primes) is cyclic.

Solution: By Cauchy's theorem,  a , b   G s.t. , o(a) = p, o(b) = q . Also as
(p, q) = 1, ab = ba

o(ab) = o(a). o(b) = pq
i.e., G has an element ab of order equal to o(G)
Hence G is cyclic.

Remark: In view of above problem, abelian groups of order 6, 10, 15 etc., are all cyclic.
Problem 31: Let G be a group of order 2n, where n is an odd integer (>1). Show that G is
not simple.

Solution: Let a  G  be any element. Define
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fa: G  G, s.t.,
fa(x) = ax

then fa is 1–1 onto map, i.e., a permutation.

Let G = set of all such permutations then G forms a group and G G  (See proof of Cayley's
theorem).

Since 2|o(G), By Cauchy's theorem,  an element g G, s.t, o(g) = 2, and fg  .G When
we write the permutation fg as product of disjoint cycles, then these cycles are either 1-cycle
or 2-cycle as o(g) = 2, i.e, g2 = e
Notice

2 2( ) ( ( )) ( ) ( )g g gf x f fg x f gx g x x I x2 2
g g gf x f fg x f gx g x x I x( ) ( ( )) ( ) ( )f x f fg x f gx g x x I x( ) ( ( )) ( ) ( )2 2( ) ( ( )) ( ) ( )2 2f x f fg x f gx g x x I x2 2( ) ( ( )) ( ) ( )2 2
g g gf x f fg x f gx g x x I xg g g( ) ( ( )) ( ) ( )g g g( ) ( ( )) ( ) ( )f x f fg x f gx g x x I x( ) ( ( )) ( ) ( )g g g( ) ( ( )) ( ) ( )

2
gf If I

Also for any 3-cycle (abc), (abc)2  I.
Again fg in the cycle form cannot have any 1-cycle also, as suppose (x) is a 1-cycle then
x 
Again 

 x.
i.e., fg(x) = x  gx = x  g = e
not true as o(g) = 2.
Hence fg as permutation can be expressed as product of 2-cycles only. Since o(G) = 2n there
can be n two cycles.

So fg can be expressed as product of n (odd) number of transpositions or that fg is an odd
permutation.

Thus set of even permutations in G has 2
n

 elements (See problem 49 page 148). fg  G ,
fg is odd, so G contains both odd and even permutations.

If H contains only even permutations then,

( ) ( )( ) 2
2 ( )

o G o Go H
o H

( ) ( ) 2
2 ( )

o G o G( ) ( )o G o G( ) ( )
2 ( )o H2 ( )


 H is of index 2 in G and is, therefore, normal.

Since G G and G has a normal subgroup, G will have a normal subgroup or that G is not
simple.

Remark: A group of order 30 is not simple as o( G ) = 30 = 2.15. We can clearly have so many
examples of groups which are not simple by using the above result.

Similar Permutations

Two permutations  and   Sn are called similar if they have same cycle structure when
decomposed as product of disjoint cycles.

For example,  = (12)(345)  S5
and  = (123)(45) S5
are similar as  has 1 cycle of length 2 and 1 cycle of length 3 same as .



4. Automorphisms and Conjugate Elements 197

However  = (12) (34),  = (1234) are not similar in S4 as  has 2 cycles of length 2 and
 has no cycle of length 2.

Note: We talk of similar permutations only when they have been represented as product of
disjoint cycles.

Theorem 7: Two permutations ,   Sn are similar if and only if they are conjugate in Sn.

Proof: Suppose ,  Sn are similar
Let = (a1 ... an1

) ... (b1 ... bnk
)

= (a1  ... a n1
) ... (b1  ... b

k

nk
)

where n1 + n2 + ... + nk = n

Define = 1

1

1 1

1 1

... ... ...

... ... ...
k

k

n n

n n

a a b b

a a b b
n na a b b1 1a a b b1 1... ... ...a a b b... ... ...1 1... ... ...1 1a a b b1 1... ... ...1 1n na a b bn n... ... ...n n... ... ...a a b b... ... ...n n... ... ...1 1... ... ...1 1n n1 1... ... ...1 1a a b b1 1... ... ...1 1n n1 1... ... ...1 11 k11 11 1... ... ...1 1 kn n1n n11 1n n1 111 11n n11 11

... ... ...n n... ... ...1 1... ... ...1 1n n1 1... ... ...1 1a a b b1 1a a b b1 11 1... ... ...1 1a a b b1 1... ... ...1 1n na a b bn n... ... ...n n... ... ...a a b b... ... ...n n... ... ...1 1... ... ...1 1n n1 1... ... ...1 1a a b b1 1... ... ...1 1n n1 1... ... ...1 1

a a b ba a b b
11 1 k1 1a a b b1 1a a b b1 1a a b b
11 1 kn n1n n11 1n n1 111 11n n11 111 11 1... ... ...1 1 kn n1 1n n1 111 11n n11 11

... ... ...n n... ... ...1 1... ... ...1 1n n1 1... ... ...1 1a a b b1 1a a b b1 1... ... ...a a b b... ... ...1 1... ... ...1 1a a b b1 1... ... ...1 1n na a b bn n... ... ...n n... ... ...a a b b... ... ...n n... ... ...1 1... ... ...1 1n n1 1... ... ...1 1a a b b1 1... ... ...1 1n n1 1... ... ...1 1a a b b

Then   Sn
and   –1 = ( a1 ... an1

) ... ( b1 ... bnk
)

= (a1  ... an1
) ... (b1  ... bnk

)
=

,  are conjugate in Sn
Conversely, suppose ,  are conjugate in Sn.
Then   Sn  s.t. –1 = 
Let = (a1 ... an1

) ... (b1 ... bnk
)

Then = –1 = ( a  ... an1
) ... ( b1 ... bnk

)
So ,  are similar.

Partition of an Integer

Let n be a positive integer. A sequence of positive integers n1, n2, ..., nk,
where n1  n2  ...  nk, such that n = n1 + n2 + ... + nk is called a partition of n and n1, n2,
..., nk are called parts of the partition.

For example, let n = 3. Then 3 = 1 + 1 + 1, 3 = 1 + 2, 3 = 3 are all partitions of n = 3.
This gives 3 partitions of n. Also n = 4 has 5 partitions namely, 4 = 1 + 1 + 1 + 1, 4 = 1 +
1 + 2, 4 = 1 + 3, 4 = 2 + 2, 4 = 4.

The number of partitions of n is denoted by p(n). So p(3) = 3, p(4) = 5 etc.

Theorem 8: The number of conjugate classes in Sn is p(n).

Proof: Let A = Set of all conjugate classes in Sn.
B = Set of all partitions of n.

Consider cl( ),   Sn.
Let  = (a1 ... an1

) ... (b1 ... bnk
) as product of disjoint cycles. Here

n1 + ... + nk = n.
We arrange cycles in such a way that n1  ...  nk. This gives a partition
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{n1, n2, ..., nk} of n.
Define f : A  B, s.t.,

f (cl( )) = {n1, n2,..., nk}
f  is well defined as  cl( ) = cl( )

 ,   cl( )
 ,  are conjugate in Sn
 ,  are similar in Sn

 = (a1 ... an1
) ... (b1 ... 

knb )

= (a1  ... a n1
) ... (b1  ... 

knb
kn )

 f (cl( )) = {n1,..., nk} = f (cl( ))
Suppose cl( )  cl( )
Then  and  are not conjugate and so not similar
 ,  have different cycle structure
 the corresponding partitions are different.
i.e., {n1, n2,..., nk}  {n 1, n 2,..., n r} where, of course,

n = n1 + n2 + ... + nk = n 1 + n 2 + ... + n r
 f (cl( )  f (cl( )
 f is 1–1

f  is onto for, let {n1,..., nk}  B be a partition of n. Then n = n1 + ... + nk.

Define = (a1 ... an1
) ... (b1 ... 

knb )  Sn

Then cl( )  A
and f (cl( )) = {n1,..., nk}

f is both 1–1 and onto.
So, o(A) = o(B) = p(n)
 number of conjugate classes in Sn is p(n).

Problem 32: Find all the conjugate classes in S4 and verify the class equation.

Solution: We know that the number of conjugate classes in Sn is p(n), the number of partitions
of n. Thus number of conjugate classes in S4 will be p(4) = 5.

Also we know that two permutations are conjugate iff they are similar.
Thus the base elements of the different conjugate classes will be

I, (12), (123), (1234), (12)(34)

Since number of distinct 2-cycles in S4 is 
1 4 6
2 4 2

6
2 4 2  (See problem 57 on page 152).

We find o(cl(12)) = 6 and its members are the 2-cycles (12), (13), (14), (23), (34), (24)
Similarly, number of distinct 3-cycles and 4-cycles are 8 and 6 respectively.

So o(cl(123)) = 8, o(cl(1234)) = 6
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Since permutations of the type
(ab)(cd) are (12)(34), (13)(24), (14)(23)
o(cl(12)(34)) = 3

Now Z(S4) = {I}  o(Z(S4)) = 1
  o(cl(I)) = 1

So the class equation

o(G) = o(Z(G)) + 
( )

( )
( ( ))

a Z G

o G
o N a

( )
( ( ))

( )a Z G( )a Z G( )
( ( ))
o G

o N a( ( ))o N a( ( ))

= o(Z(G)) + 
( )

( ( ))
a Z G
o cl a

( )
( ( ))

( )a Z G( )a Z G( )
( ( ))o cl a( ( ))o cl a( ( ))( ( ))

is verified as
24 = 1 + 6 + 8 + 6 + 3.

Problem 33: Let (12)  Sn. Determine all elements in Sn which commute with (12).

Solution: Let   Sn s.t. (1) = 1, (2) = 2.
Then (12) –1 = ( 1 2) = (12)

 (12) = (12) 
The number of such   Sn is clearly (n – 2)! (as (1) = 1, (2) = 2,  will take remaining

n – 2 letters among themselves and so 
 is clearly (

 will be a permutation on n – 2 letters).
Also,  = (12)  Sn
and (12) –1 = ( 1 2) = (21) = (12)

 (12) = (12)
The number of s Sn is equal to the number of   Sn (= (n – 2)!)
This gives 2(n – 2)! distinct permutations in Sn commuting with (12).

Now o(cl(12)) = 
( )

( (12))
no S

o N
 = !

( (12))
n

o N
But cl(12) is the set of those permutations in Sn which are conjugate (or similar) to (12).

o(cl(12)) = number of cycles of length 2 in Sn.
Since (12) = (21) and the first place can be chosen in n ways, second in n – 1 ways, we

have n(n – 1) cycles of length 2 but each such cycle is counted twice, we get ( 1)
2

n n( 1)  distinct

cycles of length 2.

o(cl(12)) = ( 1)
2

n n( 1)

 (N(12)) = 2 !
( 1)

n
n n( 1)

 = 2 (n – 2)!

    N(12) = { , (12) | (1) = 1, (2) = 2,  Sn}
           = set of all permutations is Sn commuting with (12).
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Problem 34: Find all permutations in Sn(n  4) which commute with  = (12) (34).

Solution: = (12)(34) can be written in 8 ways in Sn as follows
(12)(34), (21)(34), (21)(43), (12)(43)
(34)(12), (34)(21), (43)(21), (43)(12)

The  1st place in  can be chosen in n ways, 2nd in n – 1, 3rd in n – 2 and 4th in n – 3
ways. This gives n(n – 1) (n – 2) (n – 3) ways in which  can be chosen. As  can be written

in 8 ways, the number of permutations in Sn similar to  is equal to 
( 1) ( 2) ( 3)

8
n n n n( 1) ( 2) ( 3)( 1) ( 2) ( 3)n n n n( 1) ( 2) ( 3)

= o(cl( ))

o(N( )) = ( )
( (σ))
o G

o cl
 = 

8 !
( 1) ( 2) ( 3)

n
n n n n( 1) ( 2) ( 3)( 1) ( 2) ( 3)n n n n( 1) ( 2) ( 3)

Let   Sn s.t.  fixes 1, 2, 3, 4.
Then –1 = ( 1 2) ( 3 4) = (12) (34) = 

 = 
The number of   Sn is (n – 4)!. Clearly (12), (34), (12)(34)
(13)(24), (14)(23), (1324), (1423)

Commute with  and the number of each such permutations
= number of   Sn  (= (n – 4)!).
So, we get 8 (n – 4)! permutations in Sn which commute with . Since

o(N(
So, we get 8 (

)) = 8 (n – 4)!, these are the only permutations in Sn which commute with .

Problem 35: Find two permutations in A5 which are similar but  not conjugate in A5.

Solution: Let = (12345)  A5
= (13245)  A5

Since ,  are cycles of length 5, these are similar permutations.
If ,  are conjugate in A5,  then A5 s.t. –1 = 

( 1 2 3 4 5) = (13245)
Since (13245) can be written in 5 ways, there are 5 cases.

Case 1: 1 = 1, 2 = 3, 3 = 2, 4 = 4, 5 = 5
 = (23)  A5

Case 2: 1 = 3, 2 = 2, 3 = 4, 4 = 5, 5 = 1
 = (1345) = (15)(14)(13)  A5

Case 3: 1 = 2, 2 = 4, 3 = 5, 4 = 1, 5 = 3
 = (124)(35) = (14)(12)(35)  A5

Case 4: 1 = 4, 2 = 5, 3 = 1, 4 = 3, 5 = 2
 = (143)(25) = (13)(14)(25) A5

Case 5: 1 = 5, 2 = 1, 3 = 3, 4 = 2, 5 = 4
 = (1542) = (12)(14)(15)  A5
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So in each case we get a contradiction.
Hence ,  are not conjugate in A5.

Remark: Two conjugate permutations would always be similar.

Problem 36: Find all permutations in A5 which commute with
(i)  = (12345) (ii)  = (123) (iii)  = (12)(34)

Solution: (i) By Exercise 13, , 2, 3, 4, 5 = I are permutations in S5 commuting with .
Since   A5, all powers of 

) By Exercise 13, 
 belong to A5.

o(N( )) = 5 in A5.

o(cl( )) = 5( )
( (σ))
o A

o N
 = 60

5
 = 12 in A5

(12345) and (13245) break up into two conjugate classes each of length 12 in A5.
(ii) Let   S5 s.t.  fixes 1, 2, 3. Then either  = (45) or  = I. By Exercise 14,
, 2 ,  are all permutations in S5 commuting with . Thus , 2, I are the only permutations

in A5 commuting with .
o(N( )) = 3  in A5
o(cl( )) = 20  in A5
cl( ) has all cycles of length 3 in S5.

(iii) By problem 34, there are 8 permutations in S5 commuting with . These are
I, (12), (34), (12)(34), (13)(24), (14)(23), (1324), (1423). Among these

I, (12)(34), (13)(24), (14)(23) 
, (12), (34), (12)(34), (13)(24), (14)(23), (1324), (1423). Among these

 A5.
these are all permutations in A5 commuting with .

o(N( )) = 4  in A5
So, o(cl( )) = 15  in A5 which is same as o(cl( )) in S5.

Conjugate class of  remains same in A5 and S5.

Problem 37: Determine all the conjugate classes of A5.

Solution: By problem 36, A5 has 5 conjugate classes. cl(I) = {I},
cl((123)) = {all 20 cycles of length 3},

cl ((12) (34)) = {all 15 permutations similar to (12)(34)},
cl ((12345)) = {12 cycles of length 5},
cl ((13245)) = {12 cycles of length 5}.

This gives 60 elements in A5 and so all classes in A5.

Problem 38: Show that A5 is simple.

Solution: Let N be normal in A5, N  {I}, N  A5. By Exercise 10, N = union of some
conjugate classes in A5. Since I 

5
 N, o(N) can't divide o(A5)  = 60. Thus A5 is simple.

Problem 39: Show that A5 is the only non trivial proper normal subgroup of S5.
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Solution: Let H be any non trivial, proper normal subgroup of S5. Then
H  {I}, H  S5, H   S5

Now H  A5  A5, we show it is normal.
Let x  H  A5, g  A5, then

gg 1xg  A5

and x  H, g  A5 S5  gg 1xg  H as H   S5

gg 1xg  H  A5  H  A5   A5

But, A5 is simple, thus either H  A5 = {e} or H  A5 = A5

Suppose H  A5 = {I}, then o(H  A5) = 1

and thus o(HA5) =  5( ) ( )
1

o H o A5( ) ( )5( ) ( )5( ) ( )o H o A( ) ( )5( ) ( )5o H o A5( ) ( )5

Since H   S5, A5   S5,
we have HA5  S5

 o(HA5)|o(S5)
 o(H).o(A5)|o(S5)
 o(H).o(A5)|2.o(A5)
 o(H)|2   = 1 or 2

But H  {I} i.e., o(H)  1 and so o(H) = 2
Again, H  Z(S5) [See problem 3 on page 102]
and as Z(S5) = {I}. We get a contradiction.
Hence H  A5  {I} and so H  A5 = A5

 A5  H  o(A5)|o(H)
Also o(H)|o(S5)
ie., 60|o(H)|120 and o(H)  120 as H  S5

o(H) = 60 = o(A5), A5  H
or that H = A5.
Aliter: Let H be a non trivial proper normal subgroup of S5. If H has an odd premutation then
the number of even permutations in H is equal to the number of odd permutations in H. Let
K be the set of all even permutations in H. Then

K  A5

Let g A5, k K, then g 1kg is an even permutation. Since H is normal in S5.
gg 1 kg H. So gg 1kg is an even permutation in H.

 gg 1kg  K  K is normal in A5.
But A5 is simple, so either K = A5 or K = {I}
If K = {I} then H has only one odd permutations  o(H) = 2 which means that
H  Z(S5) = {I} a contradiction
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So K = A5, i.e., A5  H
But, H  A5 (See note on page 148)
Hence H = A5

Exercises
1. Let G be non-abelian group. Show that for all x  G, Z(G) < N(x).

2. Let X be a conjugate class of elements in G and let X  = {x–1 | x  X}. Show that
X  is a conjugate class of elements in G.

3. Find all the conjugate classes of S3 and verify the class equation.
4. Find which of the following permutations in S6 are conjugate

(i) x = (12)(456), y = (345)
(ii) x = (14)(23), y = (53)(16)
and if x, y are conjugate, find z s.t., zxz–1 = y

5. Suppose that G is finite. Prove that if o(G) is odd, then {e} is the only conjugate class
X such that X = X . If o(G) is even, show that  at least one conjugate class X  {e}
such that X = X .

6. Prove that if G is a finite group with k(G) even, then o(G) is a even.
7. Let G be a finite group. Show that k(G) = 2 if and only if G is cyclic group of order

2.
8. Let G be a finite non-abelian group. Show that k(G) > o(Z(G)) + 1.
9. Let N be normal in G. Show that either cl(a)  N =  or cl(a)  N for all

a G.

10. Let N  G. Show that N is normal in G if and only if N = 
a Na Na N

cl(a).

11. Let o(G) = pn, p being a prime and n > 0. Let N be normal in G, (N  {e}). Show
that N 

) =
 Z(G) 

p
 {e}.

12. If G is finite non-abelian group such that 
( )
G

Z G
 is abelian, then show that

k(G)  ( ( )) 1
( )
Go o Z G

Z G
G ( ( )) 1( ( )) 1o o Z G( ( )) 1o o Z Go o Z GGo o Z GGo o Z GGo o Z G( ( )) 1o o Z G( ( )) 1( ( )) 1o o Z G( ( )) 1o o Z G( ( )) 1
( )Z G( )Z G( )Z G( )Z G( )( )

o o Z G( ( )) 1o o Z G( ( )) 1o o Z G( ( )) 1 . (Hint : Use Problem 28)

13. Show that permutations in Sn commuting with  = (1 2 ..., n) are
, 2 ,..., n – 1, n = I.

14. Show that permutations in Sn commuting with  = (1 2 ..., r), 1 < r  n,
are 
Show that permutations in 

, 
Show that permutations in 

, 
Show that permutations in 

2
Show that permutations in 

, ..., 
Show that permutations in 

r – 1
Show that permutations in 

 where 
n commuting with 

 fixes 1, 2,..., r.
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An isomorphism from a group G to itself is called an automorphism of  G. The set of
all automorphisms of G is denoted by Aut G, which itself forms a group.
Automorphism under which x is mapped to axa–1 for any a in G is called an inner
automorphism. If I(G) denotes the set of all inner automorphisms of G then I(G) is
a normal subgroup of Aut G, where Aut G is a subgroup of A(G) the group of
permutations on G.
If Z(G) denotes the centre of G then G/Z(G)  I(G).
If G is a finite cyclic group of order n then Aut G is isomorphic to Un, the group
under multiplication modulo n.
Aut S3 is isomorphic to S3.
A subgroup H of a group G is called a characteristic subgroup of G if T(H)   H
for all T  Aut G.
Two elements a,b of a group G are called conjugate if  some c  G s.t., a = c–1bc.
This relation is an equivalence relation, giving us equivalence classes. Here, cl(a)
= {a}iff  a 
This relation is an equivalence relation, giving us equivalence classes. Here, 

 Z(G).
If G is a finite group, a  G, then o(cl(a)) = o(G)/o(N(a)), where N(a) denotes the
normalizer of a.
The class equation of a group G is given by

o(G) = o(Z(G))  + o(G)/o(N(a)), where a    Z(G)
Cauchy’s theorem for groups states that if G is a finite group and p is a prime
dividing o(G), then 

 for groups states that if 
 some x 

 for groups states that if 
 G s.t., o(x) = p.

Two permutations are similar iff they are conjugate, where by similar permutations
we mean two permutations, which have the same cycle structure when expressed
as product of disjoint cycles.
A5  is simple.

A Quick Look at what's been done



Definition: A p-group is a group in which every element has order pr where
p = prime. Here p is same for all elements and r may vary.
The group K4 = {I, (12)(34), (13)(24), (14)(23)} and the Quaternion group are examples

of finite p-groups. Here p = 2. For example of an infinite p-group, see problem 20 on page 113.
S3 is not a p-group.
Since we shall mainly be studying finite groups, the following result will be useful.

Theorem 1: Let G be a finite group. Then G is a p-group if and only if o(G) = pn.

Proof: Suppose G is a p-group. Let q be a prime dividing o(G). By Cauchy's theorem  x 
G s.t. o(x) = q. But o(x) = pr as G is a p-group.

q = pr  q = p. So, p is the only prime dividing o(G). Thus o(G) = pn.
Conversely, let o(G) = pn (p = prime).
Let x  G. Then o(x) | o(G) = pn  o(x) = pr.

 every element of G has order which is some power of p. So, G is a p-group.

Remarks:
(i) Any finite p-group has non-trivial centre. (See problem 20, page 186)

(ii) A p-group may or may not be abelian. See examples above.

Problem 1: Let G be a finite group with the property that if H, K are two subgroups of G then
either H K or K 

Let G be a finite group with the property that if H
H. Show that G is a cyclic p-group.

Solution: If G has no proper subgroups then G is a cyclic group of prime order and thus the
result holds.
Suppose now G has a proper subgroup H( G).

Sylow Theorems and
Direct Products

5

Introduction
In this chapter we plan to discuss p-groups, Sylow’s three theorems and their applications.
The ideas developed are so useful that plenty can be known about the nature of a group by
knowing only its order.  Direct products of groups with applications and the Fundamental
theorem of finite abelian groups are taken up at the end.
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We first show that G will be cyclic.

Since ,H G,H G,H G  x G, s.t., x H.

Let K = < x >, then K H as x K, x H
Thus, by given condition, H  K
If K = G then G is cyclic (as K is cyclic)
Suppose K  G then  y  G s.t., y K
Let L = < y > then L K and by given condition K  L
If L = G, G will be cyclic, if L  G proceed as above and as G is finite, after a finite number
of steps, we find G will be cyclic.

To show that G is a p-group, suppose p  q are two primes which divide o(G). Since G
is cyclic,  subgroups H and K of G with o(H) = p, o(K) = q (coverse of Lagrange's theorem
holds in cyclic groups)
Now H K as o(H)  o(K)

K H as o(K)  o(H)
a contradiction to the given condition.
Hence there can be only be one prime dividing o(G) or that G is a p-group.
The converse of the above problem also holds as can be seen by
Problem 2: Let G be a finite cyclic p-group. Show that if H and K be any two subgroups of
G then either H 

be a finite cyclic p
K or K 
be a finite cyclic p

H.
Solution: Let G = < a >, then o(G) = o(a) = pn for some prime p.
Let H be a subgroup of G, then H is cyclic.
Let H = < am >.
Let d = g.c.d. (m, pn)
Then d = mx + pny for some integers x and y

Now ( )
n nd mx p y mx p y m xa a a a a H
n n

( )
n nd mx p y mx p y m x( )d mx p y mx p y m x( )
n nd mx p y mx p y m xn n

a a a a a H( )a a a a a H( )d mx p y mx p y m xa a a a a Hd mx p y mx p y m x( )d mx p y mx p y m x( )a a a a a H( )d mx p y mx p y m x( )
n nd mx p y mx p y m xn nd mx p y mx p y m xn n

a a a a a Hd mx p y mx p y m xa a a a a Hd mx p y mx p y m x [as o(a) = pn]

Thus < ad > H
Again as d | m, m = dq

So qm d da a a
qm d dm d dm d dm d dqm d dq

a a aa a aa a a
or that H = < am > < ad >
and hence H = < ad > where d | pn

and so H = ipa

Let K be another subgroup of G, then K = kpa . Suppose i  k and let i = k + t

where t  0 is an integer
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Now
t

i k t k p
p p pa a a K

i k t ki k t ki k t k p
p p pp p pi k t kp p pi k t ki k t kp p pi k t k

a a a Ka a a Ka a a Kp p pa a a Kp p pp p pa a a Kp p pi k t kp p pi k t kp p pi k t kp p pa a a Kp p p

which implies H  = ipa  K

If k  i, then K H
which proves the result.
Problem 3: In a finite p-group G, every proper subgroup is a proper subgroup of its normaliser
in G. (In other words, if o(G) = pn, H  G, H  G, then  g  G, g  H, s.t. gHg–1 = H).

Solution: We prove the result by induction on n. Let n = 1. Then o(G) = p. Since
H  G, o(H) = 1.

H = {e} or gHg–1 = g{e}g–1 = {e} = H for all e  g  G.
g  e  g  H.

Thus result is true for n = 1. Assume it to be true for all groups having order less than pn.
Let o(G) = pn. Suppose H = N(H).

Since Z(G)  N(H) = H, H  G

( )
H

Z G
 is a proper subgroup of 

( )
G

Z G

Now
( )
Go

Z G
GG
( )Z G( )Z G( )( )Z G( )Z G( )

 = pm,  m < n

(as o(Z(G)) > 1 by problem 20, page 186)

For convenience, we write Z(G) = N, then by induction hypothesis,  Ng  G
N

,

Ng  H
N

, s.t.,

Ng H
N

 (Ng)–1 = H
N

 Ng Nh Ng–1  H
N

 h  H

 Nghg–1  H
N

 h  H

 Nghg–1 = Nh1 for some h1  H
 ghg–1h1

–1  N = Z(G)  H
 ghg–1  H  h  H
 gHg–1  H
 gHg–1 = H as o(gHg–1) = o(H)

Thus g  N(H) and as Ng  H
N

, g  H, or that N(H)  H, a contradiction. Hence

H  N(H).
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Thus result is true for n also.
By induction, result is true for all n  1.

Problem 4: Let o(G) = pn (p = prime). If H  G s.t. o(H) = pn–1, show that H is normal in G.

Solution: Now H  N(H)  G
Since o(H) = pn–1 | o(N(H)) | o(G) = pn

o(N(H)) = pn–1 or pn

If o(N(H)) = pn = o(G),
then N(H) = G
and so H is normal in G.
If o(N(H)) = pn–1,
then N(H) = H
Since Z(G)  N(H) = H

( )
Ho

Z G
HH
( )Z G( )Z G( )( )Z G( )Z G( )

 = pn–1–m, where o(Z(G)) = pm, m > 0

and
( )
Go

Z G
GG
( )Z G( )Z G( )( )Z G( )Z G( )

 = pn–m,

We now prove the result by induction on n. When n = 1, H = {e} and so H is normal in G.

Assume result to be true for all p-groups with order less then o(G). Here 
( )
G

Z G
 is a p-group

s.t. 
( )
Go

Z G
GG
( )Z G( )Z G( )( )Z G( )Z G( )

 = pn – m, n – m < n (as m > 0) and o
( )
H

Z G
HH
( )Z G( )Z G( )( )Z G( )Z G( )

 = pn – m –1. By induction hypothesis,

( )
H

Z G
 is normal is 

( )
G

Z G
  H is normal in G. So N(H) = G  H = G, a contradiction. Thus

o(N(H))  pn–1. So result is true for n also. By induction, result is true for all n > 0.

Remark: This problem follows by problem 3 also as
o(H) | o(N(H)) | o(G) gives
o(N(H)) = pn–1 or pn

o(N(H)) = pn  N(H) = G  H is normal in G.
o(N(H)) = pn–1 is not possible as H < G, thus H < N(H) by problem 1.

Problem 5: Let G be a finite p-group of order pm. Show that G has normal subgroups
G0, G1,... Gm s.t.

{e} = G0 < G1 < ... < Gm–1 < Gm = G
and o(Gi) = pi for all i = 0, 1,..., m.

Solution: We prove the result by induction on m. The result is clearly true for m = 0, 1.
Assume it to be true for all p-groups with order less than o(G).
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Let o(G) = pm, m > 1.
Let e  z  Z(G).
Let o(z) = pn, n > 0.

Let G1 = 
1npz
1npz
1

  Z(G)
Then o(G1) = p and G1 is normal in G.

Let G  = 
1

G
G

.

then ( )o G  = pm–1.

By induction hypothesis G  has normal subgroups iG  (i = 0, 1..., m – 1) s.t.,

{e} = 0 1 1... mG G G0 1 10 1 10 1 1m0 1 1G G G0 1 1G G G0 1 10 1 1...0 1 1G G G0 1 1...0 1 10 1 1m0 1 1G G G0 1 1m0 1 1  = G

where ( )io G  = p i for all i

But i iG G Gi iG G Gi iG G Gi i  = 1

1

iG
G

1  where G1 < Gi+1.

Since iG  = 1

1

iG
G

1  is normal in G  = 
1

G
G

, Gi+1 is normal in G for all i.

G1 < G2 < ... < Gm = G
and o(Gi+1) = pi+1

Since G0 = {e}, the subgroups G0, G1,..., Gm are the required subgroups. So result is true
for m. By induction result is true for all m  0.
Problem 6: If G is a finite non abelian p-group then show that p2 | o(Aut G)

Solution: Since G is a p-group. o(Z(G)) > 1 (See problem 20 page 186)
Suppose o(G) = pn and let o(Z(G)) = pm

Since G is non abelian, o(Z(G)) < o(G), thus m < n and also m  1.

Thus , 1
( )

n mGo p n m
Z G

G , 1n mo p n m, 1o p n m, 1n mo p n mn m , 1n mo p n m, 1o p n m, 1n mo p n mn mo p n mo p n mGo p n mo p n mo p n m
( )Z G( )Z G( )Z G( )Z G( )

o p n m
Z G

o p n m
( )

o p n m
( )Z G( )

o p n m
( )( )

o p n mo p n m
( )

o p n m
( )

o p n m

If n  m = 1 then 
( ) ( )
G Go p

Z G Z G
G G
( ) ( )
G G
( ) ( )

o p
( ) ( )

o p
( ) ( )Z G Z G( ) ( )( ) ( )

o p
( ) ( )Z G Z G( ) ( )

o p
( ) ( )
G Go po pG Go po pG Go p
( ) ( )Z G Z G( ) ( )Z G Z G( ) ( )

o p
( ) ( )

o p
( ) ( )

o p
Z G Z G( ) ( )Z G Z G( ) ( )

o p
Z G Z G

o p
( ) ( )

o p
( ) ( )Z G Z G( ) ( )

o p
( ) ( )( ) ( )

o p
( ) ( )

o p
( ) ( )Z G Z G( ) ( )( ) ( )

o p
( ) ( )Z G Z G( ) ( )

o p
( ) ( )

is cyclic.

 G is abelian (See problem 18, page 111)
which is not true. Hence n  m  2

Again ( ) ( ( ))
( ) ( )
G GI G o o I G

Z G Z G
G G ( ( ))( ) ( ( ))G G( )G G( )I G o o I G( )I G o o I G( ) ( ( ))I G o o I G( ( ))G GI G o o I GG G( )G G( )I G o o I G( )G G( )G GI G o o I GG GI G o o I GG GI G o o I GI G o o I GI G o o I GI G o o I GG GI G o o I GG G

( )Z G( )Z G( )( )Z G( )Z G( )( )
I G o o I GI G o o I G

Z G( )Z G( )
 p2 divides o(I(G))

and as I(G)  Aut G we find p2 | o(Aut G).
We now prove the converse of Lagrange's Theorem for finite abelian groups.
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Theorem 2: Let G be an abelian group of order n. Then for every divisor m of n, G has a
subgroup of order m.

Proof: We prove the result by induction on n. When n = 1, G = {e} and so result is clearly
true for n = 1. Assume it to be true for all groups with order less than o(G). Let o(G) = n,
m | n, m > 1. Let p be a prime dividing m. So, p | n = o(G). By Cauchy's Theorem 

(
 x 

) = 
 G

s.t. o(x) = p. Let K = < x >.
Then o(K) = o(x) = p. Since G is abelian, K is normal in G.

Now Go
K
GG
KK

 = n n
p

n . Also G
K

 is abelian. Let m = pm1.

Now m = pm1 | o(G) = Go
K
GG
KK

 o(K)

 m1 | Go
K
GG
KK

By induction hypothesis  subgroup H
K

 of G
K

 s.t. Ho
K
HH
KK

 = m1. H  G.

o(H) = o(K)m1 = pm1 = m
So, result is true in this case also. Hence by induction, theorem is proved.

Cor. : Converse of Lagrange's theorem holds in finite cyclic groups. (A result, we proved
earlier also)

Remark: In case of finite cyclic groups we notice its not only that converse of Lagrange's
theorem holds but for each divisor of o(G) there exists a unique subgroup (See page 85). This
is, however, not essentially true in finite abelian groups. For instance, in K4 = {e, a, b, c} there
are three subgroups of order 2.

Sylow p-subgroups

Let p be a prime s.t. pn divides order of a group G and pn+1 does not divide it. Then a subgroup
H of G s.t. o(H) = pn is called a Sylow p-subgroup of G or p-Sylow subgroup of G.

We now discuss three theorems due to Sylow called Sylow's theorems. First theorem shows
the existence of a Sylow p-subgroup of G for every prime p dividing o(G) while second
theorem shows that any two Sylow p-subgroups of G are conjugate. The third theorem gives
the number of Sylow p-subgroups of G.

Our next theorem is a partial converse to Lagrange's theorem.

Theorem 3 (Sylow's First Theorem): Let p be a prime and m, a +ve integer s.t. pm divides
o(G). Then 
Theorem 3 (Sylow's First Theorem):

 a subgroup H of G s.t. o(H) = pm.

Proof: We prove the theorem by induction on o(G). Result is vacuously true when o(G) = 1.
Assume it to be true for all groups with order less than o(G). Let pm | o(G). If K is a subgroup
of G s.t. K 
Assume it to be true for all groups with order less than 

  G and pm | o(K), then by induction 
Assume it to be true for all groups with order less than 

 H  K s.t., o(H) = pm. H 
 is a subgroup
 K  H 
 is a subgroup

 G.
So result holds in this case. Assume pm does not divide order of any proper subgroup of G.
Consider class equation of G.
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o(G) = o(Z(G)) +
( )

( )
( ( ))a Z G

o G
o N a( )a Z G( )a Z G( )( ) ( ( ))( )a Z G( )

o G
o N a( ( ))o N a( ( ))( )a Z G( )a Z G( )

a Z(G)  N(a)  G  pm  o(N(a))

But pm | o(G)  pm | ( )
( ( ))
o G

o N a
. o(N(a))


( )|

( ( ))
o Gp

o N a
 for all a  Z(G)) as pm  o(N(a))


( )

( )|
( ( ))a Z G

o Gp
o N a( )a Z G( )a Z G( )( ) ( ( ))( )a Z G( )

o G
o N a( ( ))o N a( ( ))( )a Z G( )a Z G( )


( )

( )| ( )
( ( ))a Z G

o Gp o G
o N a( )a Z G( )a Z G( )( ) ( ( ))( )a Z G( )

o G
o N a( ( ))o N a( ( ))( )a Z G( )a Z G( )

 = o(Z(G))

  x Z(G) s.t. o(x) = p
Let K = < x >  Z(G)  K is normal in G.
Now o(G/K) < o(G) and pm | o(G) = o(G/K). o(K), pm  o(K) and thus

pm–1 | pm | o(G/K). (Notice in case m = 1, the result follows by Cauchy's theorem).

By induction hypothesis  a subgroup H
K

 of G
K

 s.t. Ho
K
HH
KK

 = pm–1.

o(H) = pm, H
K

  G
K

  H  G

Thus result is true in this case also.
Hence by induction the theorem follows.

Remark: Suppose G is a group of order 23.32.5 then Sylow's First theorem says that G has
at least one subgroup each of order 2, 22, 23, 3, 32, 5. But the theorem does not say anything
about the group G having a subgroup of order 6, 10, 15 or any other divisor of o(G) that has
two or more distinct prime factors.

In view of theorems 2 and 3 above we observe that converse of Lagrange's theorem holds
for all finite abelian groups and all finite groups of prime-power order.

Cor.: If p is a prime s.t. pn | o(G) and pn+1  o(G), then a  Sylow
p-subgroup of G.

Proof: Take m = n and use the above theorem.
Thus if o(G) = 23.32.5, any subgroup of order 8 will be a Sylow 2-subgroup and any

subgroup of order 9 will be a sylow 3-subgroup of G and so on.

Remark: Sometimes the statement of this corollary is taken as Sylow's first theorem. In fact,
another (more general) version of the theorem would be

If G a finite group of order n = pkq (k  1), where p is a prime and q, a +ve integer, (p,
q relatively prime) then for each i, 1 

q 
 i  k, G has a subgroup of order p i.
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Double Cosets

Definition: Let H, K  G. Let a, b  G. Define a relation ‘~’ on G as follows:
a ~ b  h  H, k  K s.t. a = hbk

It can be easily shown that ‘~’ is an equivalence relation on G. So, it divides G into disjoint
union of equivalence classes. Equivalence class of a 

It can be easily shown that ‘~’ is an equivalence relation on 
 G is given by

cl(a) = {x  G | a ~ x}
= {hak | h  H, k  K}
= HaK, called double coset of H and K in G.

G =
a

cl(a) = 
a

Hak

Define f : HaK  HaKa–1 s.t.,
f (hak) = haka–1 for all h  H, k  K

Clearly, f is well defined as hak = h akak
 haka–1 = h akak a–1

f  is 1–1 as f (hak) = f (h akak )
 haka–1 = h akak a–1

 hak = h akak
Let haka–1  HaKa–1  hak  Hak and

f (hak) = haka–1

f is both 1–1 and onto.
Thus, o(Hak) = o(HaKa–1), (if H, K are finite)

=
1

1
( ) ( )
( )

o H o aKa
o H aKa

1( ) ( )1( ) ( )1

1( )1( )1( )( )( )o H aKa( )
 = 1

( ) ( )
( )
o H o K

o H aKa 1( )1( )1( )( )o H aKa( )
If G is a finite group, then

o(G) = ( )
a

o HaK( )o HaK( )o HaK( )  = 1
( ) ( )

( )a

o H o K
o H aKa 1( )1( )1( )( )o H aKa( )

( ) ( )
( )
o H o K( ) ( )o H o K( ) ( )

o H aKa( )o H aKa( )
We are now ready to prove Sylow's second theorem.

Theorem 4 (Sylow's Second theorem): Any two Sylow p-subgroups of a finite group G are
conjugate in G.

Proof: Let P, Q be Sylow p-subgroups of G. Let o(P) = pn = o(Q) where pn+1  o(G). Suppose
P and Q are not conjugate in G.

i.e., P  gQg–1 for any g  G
By the discussion done above

o(PxQ) = 1
( ) ( )

( )
o P o Q

o P xQx 1( )1( )1( )( )o P xQx( )
Since, P  xQx–1  P

o(P  xQx–1) = pm, m  n
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If m = n, then P  xQx–1 = P
 P  xQx–1

 P = xQx–1 as o(xQx–1) = o(Q) = o(P)
which is a contradiction.

m < n and thus o(PxQ) = p2n–m,  m < n for all x  G
 o(PxQ) = pn+1 (pn–m+1) = multiple of pn+1

Thus o(G) = ( )
x

o PxQ( )o PxQ( )o PxQ( )  = multiple of pn+1

pn+1 | R.H.S.  pn+1 | o(G), a contradiction
P = gQg–1 for some g  G.

Before we prove Sylow's third theorem, we prove

Lemma: Let P be a Sylow p-subgroup of G. Then the number of Sylow p-subgroups of G is

equal to ( )
( ( ))
o G

o N P
.

Proof: We know that

o(cl(P)) = ( )
( ( ))
o G

o N P
 (See theorem 5 page 167)

Since cl(P) = {Q | Q  G, Q = gPg–1, g  G}
= set of all Sylow p-subgroups of G,

the number of Sylow p-subgroups of G is ( )
( ( ))
o G

o N P
.

Theorem 5 (Sylow's Third Theorem): The number of Sylow p-subgroups of G is of the form
1 + kp where (1 + kp) | o(G), k being a non-negative integer.

Proof: Let P be a Sylow p-subgroup of G.
Let o(P) = pn. Now G = 

x
PxP

= 
( ) ( )x N P x N P

PxP PxP
( ) ( )x N P x N P( ) ( )x N P x N P( ) ( )

PxP PxP

x  N(P)  Px = xP PPx = PxP
 Px = PxP

( )x N P
PxP

( )x N P( )x N P( )( )( )x N P( )
PxP

x N P( )x N P( )x N P( )
 = 

( )x N P
Px

( )x N P( )x N P( )( )( )x N P( )
Px

( )x N P( )x N P( )
 = N(P)

as P  N(P) and union of disjoint right cosets equals the set
x  N(P)  Px  xP  xPx–1  P

 o(P  xPx–1) = pm, m < n
(as in Sylow's second theorem)

 o(PxP) = P2n–m, m < n
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o(G) = 
( )

( ( )) ( )
x N P

o N P o PxP
( )x N P( )x N P( )

( ( )) ( )( ( )) ( )o N P o PxP( ( )) ( )
( )

( ( )) ( )
( )x N P( )

( ( )) ( )o N P o PxP( ( )) ( )
( )x N P( )x N P( )

( ( )) ( )( ( )) ( )o N P o PxP( ( )) ( )

            = 2

( )
( ( )) n m

x N P
o N P p n m

( )x N P( )x N P( )
o N P p2

( )

n m

( )x N P( )
o N P p

( )x N P( )x N P( )
o N P p

( )
( ( ))
o G

o N P
 = 

2
1

( ( ))

n mp
o N P

n m2

( ( ))

n mp
o N P( ( ))o N P( ( ))

=
1

1
( ( ))

np t
o N P

1p t1p t1

( ( ))
p t

o N P( ( ))o N P( ( ))
, t = integer

Since L.H.S. = integer, pn+1 
( ( ))

t
o N P

 = r = integer

pn+1t = r.o(N(P))
Again as P  N(P)

o(P) | o(N(P))
 pn | o(N(P))
 o(N(P)) = pnu

Pn+1t = r o(N(P))
 pt = r .u
 p | ru

If p | u then pn+1 | o(N(P)) | o(G)  pn+1 | o(G), a contradiction.

p | r  r
p

 = integer  t
u

 = integer k = r
p

.

( )
( ( ))
o G

o N P
= 

1
1

( ( ))

np t
o N P

1p t1p t1

( ( ))
p t

o N P( ( ))o N P( ( ))
 = 1 tp

u
tp  = 1 + kp

By above lemma, ( )
( ( ))
o G

o N P
 = number of Sylow p-subgroups of G.

 The number of Sylow p-subgroups is of the form 1 + kp = ( )
( ( ))
o G

o N P
 (1 + kp) | o(G).
This proves the theorem.

Note: If o(G) = pnq, (p, q) = 1 then the number of Sylow p-subgroups is
1 + kp, where (1 + kp) | pnq

 (1 + kp) | q as (1 + kp, pn) = 1

Cor.: If P is the only Sylow p-subgroups of G, then P is normal in G and conversely.

Proof: By Sylow's third theorem
( )

( ( ))
o G

o N P
 = 1  o(G) = o(N(P))

Since N(P)  G
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N(P) = G
 P is normal in G.

Conversely, if Sylow p-subgroup P is normal in G, then
N(P) = G  o(N(P)) = o(G)


( )

( ( ))
o G

o N P
 = 1

 The number of Sylow p-subgroups of G is 1
 P is the only Sylow p-subgroup of G.

Lemma: Let P be a Sylow p-subgroup of G. Let x  N(P) s.t. o(x) = pi. Then x P.

Proof: Let o(P) = pn, pn + 1  o(G)

Now (Px)pi = 
ipPx  = Pe = P

[P is normal in N(P) and x  N(P)]
 o(Px) | pi

 o(Px) = p j, j  o

Let j > 0. K  = < Px >  
( )N P
P  s.t. ( )o K  = p j

Since ( )( ) N PK
P
( )N P( )N P( )
P

, K  = K
P

 where K  N(P)

p j = ( )o K  = ( )
( )

o K
o P

 = ( )
n

o K
p

 o(K) = pn+j,  j > 0
But o(K) | o(N(P)) | o(G)

 pn+j | o(G),  j > 0, a contradiction
j = 0 o(Px) = p j = 1

 Px = P  x P.

Theorem 6: Every p-subgroup of a finite group G is contained in some Sylow
p-subgroup of G.

Proof: Let H  G s.t. o(H) = pm i.e. H is a p-subgroup of G.
Let S  = set of all Sylow p-subgroups of G.
Then o(S ) = 1 + kp
Define a relation ~ on S  as follows:
For P1, P2  S , let P1 ~ P2   x  H s.t. P1 = xP2x

–1. It can be shown that ~ is an
equivalence relation on S . For P S  equivalence class of P in S  is given by cl(P) = {xPx–

1 | x  H}.
If NH(P) = {x  H | xP = Px} then NH(P)  H.

Thus o(cl(P)) = 
( )

( ( ))H

o H
o N P  ps, s  0. (See theorem 5 page 193)
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Suppose H is not contained in any Sylow p-subgroup of G. Then H  P.
 some x  H s.t. x  P

If  xPx–1 = P, then x  N(P) and o(x) = pi [as x H, o(x) | o(H)]
 x P by above lemma, which is not true
Hence xPx–1  P, x  H

 P, xPx–1 are distinct members of cl(P)  o(cl(P)) > 1
o(cl(P)) = ps, s > 0  o(cl(P)) = multiple of p

This is true for all P  S
Since S  =  cl(P)

o(S ) = ( ( ))o cl P( ( ))o cl P( ( ))o cl P( ( ))  = a multiple of p
 1 + kp = a multiple of p, a contradiction.
Hence H is contained in some Sylow p-subgroup of G.

Cor.: Let G be a finite group, and P be a p-subgroup of G then P is Sylow p-subgroup of G
if and only if no p-subgroup of G properly contains P.
Proof: Suppose P is a Sylow p-subgroup of G. Let H be a p-subgroup of G. If P  H then
o(H) > o(P) = pn  o(H) = pn+m, m > 0.

But H  G  o(H) | o(G)
 pn+m | o(G), a contradiction as pn+1  o(G)

no p-subgroup of G contains P properly.
Conversely, since P is a p-subgroup of G,  a Sylow p-subgroup Q of G s.t.,

P 
Conversely,

 Q. But no p-subgroup contains P properly.
Q = P

 P is a Sylow p-subgroup of G.
Remark: In a finite group G, no Sylow p-subgroup can be properly contained in a
p-subgroup.

Problem 7: Let o(G) = 30. Show that
(i) Either Sylow 3-subgroup or Sylow 5-subgroup is normal in G.

(ii) G has a normal subgroup of order 15.
(iii) Both Sylow 3-subgroup and Sylow 5-subgroup are normal in G.

Solution: o(G) = 30 = 2 × 3 × 5
The number of Sylow 3-subgroups is 1 + 3k and (1 + 3k) | 10  k = 0 or 3
If k = 0, then Sylow 3-subgroup is normal.
Let k  0, then k = 3. This gives 10 Sylow 3-subgroups Hi each of order 3 and so we have

20 elements of order 3. [Notice (for i 
 = 3. This gives 10 Sylow 3-subgroups 

 j) o(Hi  Hj) | o(Hi) = 3 
o(Hi  Hj) = 1 only and so these 20 elements are different. Each Hi has one element e of order
1 and other two of order 3. a  Hi  o(a) | o(Hi) = 3  o(a) = 1, 3].

The number of Sylow 5-subgroups is 1 + 5kk  and (1 + 5kk ) | 6  kk  = 0 or 1.
If kk  = 0. Then Sylow 5-subgroup is normal.
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Let kk  0. Then kk  = 1. This gives 6 Sylow 5 subgroups each of order 5 and we get 24
elements of order 5. But we have already counted 20 elements of order 3. Thus we have more
than 44 elements in G, a contradiction. So,. either k = 0 or k
elements of order 5. But we have already counted 20 elements of order 3. Thus we have more

k  = 0.
i.e., either Sylow 3-subgroup or Sylow 5-subgroup is normal in G.
Which proves (i).
Let H be a Sylow 3-subgroup of order 3 and K, a Sylow 5-subgroup of order 5.
By (i), either H is normal in G or K is normal in G.
In any case, HK  G, o(HK) = 15 as o(H  K) divides o(H) = 3 and o(K) = 5 

o(H 
In any case, 

K) = 1. Since index of HK in G is 2, HK is normal in G. This proves (ii).
Suppose, H is normal in G, K is not normal in G. By (i) G has 6 Sylow 5-subgroups and

so 24 elements of order 5. But o(HK) = 15  HK is cyclic (See problem 10 ahead)  HK
has (15) = 8 elements of order 15. Thus G has 24 + 8 = 32 elements, a contradiction.

K is  normal in G.
If H is not normal in G, they by (i), G has 10 Sylow 3-subgroups and so 20 elements of

order 3. From above HK has 8 elements of order 15 and K has 4 elements of order 5. This
gives 20 + 8 + 4 = 32 elements in G, a contradiction.

H is normal in G. So both H and K are normal in G.
This proves (iii).

Problem 8: Find all the Sylow p-subgroups of S4 and show none of them is normal.

Solution: We have  o(S4) = 24 = 23 × 3
Thus S4 has Sylow 2-subgroups and Sylow 3-subgroups.
Number of Sylow 2-subgroups is (1 + 2k)
where (1 + 2k) | 3 i.e., k = 0, or 1
i.e., either there is a unique (thus normal) Sylow 2-subgroup or 3 Sylow 2-subgroups.
Consider

H = {e, a, a2, a3, b, ab, a2b, a3b | a4 = e = b2, b 1ab = a 1}
where a = (1234) and b = (13)
then H is a Sylow 2-subgroup of S4
Again as gaggag 1 = (g(1)g(2)g(3)g(4)) = (3124) H
where g = (132)
as b, ab, a2b, a3b, a2 are all of order 2 and a3 = a 1 = (4321)

H is not normal.
We can write

H = {I, (1234), (13)(24), (1432), (14)(23), (24), (12)(34), (13)}
The other two Sylow 2-subgroups would be (the conjugates)

(12)H(12) 1 = {I, (2134), (23)(14), (2431), (24)(13), (14), (12)(34), (23)}
(23)H(23) 1 = {I, (1324), (12)(34), (1423), (14)(23), (34), (13)(24), (12)}

So S4 has 3 Sylow 2-subgroups which are not normal.
Again number of Sylow 3-subgroups is (1 + 3k) | 8 i.e., k = 0 or 1
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i.e.,  either a unique (thus normal) Sylow 3-subgroup.
or 4 Sylow 3-subgroups.
It is easily seen that

{I, (123), (132)}, {I, (124), (142)}, {I, (134), (143)}
and {I, (234), (243)} are the four Sylow 3-subgroups (and so they are not normal)
Problem 9: Let G be group of order 231. Show that 11-Sylow subgroup of G is contained in
the centre of G.

Solution: o(G) = 231 = 3 × 7 × 11.
The number of Sylow 11-subgroups of G is 1 + 11k and (1 + 11k) | 21. Clearly then

k = 0.
So, Sylow 11-subgroup H of G is normal in G.
The number of Sylow 7-subgroups of G is 1 + 7kk  and (1 + 7kk ) | 33. So, kk  = 0.
Thus, Sylow 7-subgroup K of G is normal in G.

o(H) = 11, o(K) = 7

Now Go
K
GG
KK

 = 33 = 3 × 11 and 3  (11 – 1), thus G
K

 is cyclic and so 
G
K  is abelian. (See

problem 10)
But G  is smallest subgroup of G such that G/G  is abelian (G  denotes the commutator

subgroup of G).
G   K  o(GG ) = 1 or 7. If o(G ) = 1, then

G  = {e}  x–1 y–1 xy = e  xy = yx for all x, y  G  G is abelian  G = Z(G)
 H 

 = {
 Z(G).

Let o(G ) = 7  G  = K
Clearly H  K = {e} as o(H K) divides o(H) = 11 and o(K) = 7.
Let x  H, y  G Then x–1y–1 xy  G  = K. Also
x–1y–1 xy = x–1 (y–1 xy)  H as H is normal in G.

x–1y–1 xy  H  K = {e}
 xy = yx  for all y  G, x  H
 H  Z(G).

Problem 10: Let o(G) = pq, where p, q are distinct primes, p < q, p  q – 1. Show that G
is cyclic.

Solution: The number of Sylow p-subgroups is 1 + kp and (1 + kp) | q  
1 + kp = 1 or q, 1 + kp = 1  Sylow p-subgroup is unique  Sylow p-subgroup H is normal
in G.

1 + kp = q  kp = q – 1  p | q – 1, a contradiction.
Thus 1 + kp  q and so Sylow p-subgroup is normal.
The number of Sylow q-subgroups is 1 + kk q and (1 + kk q) | p  1 + kk q = 1 or p
If 1 + k q = p, then k q = p – 1   q | p – 1   q  p –1 < p, a contradiction.

1 + kk q = 1  Sylow q-subgroup K is normal in G.
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o(H) = p, o(K) = q, H  K = {e}, H is normal is G, K is normal in G.
[x  H K  o(x) | o(H), o(x) | o(K)  o(x) = 1]
Thus hk = kh  for all h  H, k  K
Let H = < a >, K = < b > (Groups of prime order are cyclic)

o(a) = o(H) = p, o(b) = o(K) = q
Now ab = ba, (o(a), o(b)) = (p, q) = 1

o(ab) = a(a) o(b) = pq = o(G)
 G is cyclic.

Problem 11: (Wilson's Theorem): Using Sylow's theorems show that (p  1)!  1(mod p)
for any prime p.
Solution: Consider Sp, then order of Sp is  p(p  1)(p  2) ... 2.1
The number of Sylow p-subgroups of order p in Sp are of the form 1 + kp, where k is a non
-ve integer. Since each Sylow p-subgroup is of order p, we get (p  1) elements of order p.
Again, any two groups of order p have only identity in common and thus the number of
elements of order p in Sp is (1 + kp)(p 

 have only identity in common and thus the number of
 1). Also any element of order p in Sp is a cycle of

length p and the number of cycles of length p in Sp is (p 
 1). Also any element of order 

 1)!
So (1 + kp)(p  1) = (p  1)!
i.e., (p  1)!  1(mod p).
Problem 12: Let p be a prime dividing o(G) and (ab)p = apb p for all a, b  G. Show that

(i) Sylow p-subgroup P is normal in G.
(ii)  a normal subgroup N of G s.t.

P  N = {e} and G = PN
(iii) G has non-trivial centre.

Solution: Let pn | o(G), pn+1  o(G)

Let H = {x  G |
npx  = e}

H   as 
npe  = e  e  H

Let x, y  H  1( )
npxy 1( )1( )1 p  = 1( )

n np px y( )
n n1n n1p p1p p1( )p p( )1( )1p p1( )1n np pn n1n n1p p1n n1  = e .e = e

 xy–1 H
H  G

Let q be a prime dividing o(H).
Then x H s.t. o(x) = q
But x H  o(x) | pn  q | pn  q = p

H is a p-group. o(H) = pm, m  n.
Let P be a Sylow p-subgroup of G.

Then o(P) = pn. Let x  P  
npx  = e

 x  H  P  H  o(P) | o(H)  pn | pm  n  m  m = n
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So, o(H) = pn = o(P)
 H = P.

Thus H is the only Sylow p-subgroup of G and so is normal in G.
This proves (i)
Define  : G  G s.t.

(x) = 
npx

Then  is a homomorphism.


Ker

G
θ

  ImG  is normal in G  [ (G) = ImG]

Since x  Ker (x) = e
npx = e

x  H = P
P = Ker 

Let N = ImG which is normal in G.

(as (x) N, g  G  g–1 (x)g = g–1
npx g

= 1( )
npg xg1( )1( )1( )g xg( ) = (g–1 xg)  N)

Let x  P  N  x  P, x  N


npx = e,  x = (y) = 

npy


2npy = e  o(y) = pr, r  n

as pn+1  o(G)

we get
rpy = e, r  n


npy = ( )

r n rp py
r n r

 = e  x = e
 P  N = {e}

Also ( )
( )

G o GN
P o P

( )
( )

G o G( )G o G( )NG o GNG o G
P o P( )P o P( )

 = o(N)

 o(G) = o(P). o(N)
But o(PN) = o(P) o(N)

 o(G) = o(PN)
 PN = G

This proves (ii).
Let z  Z(P), z  e. Let g  G.
Since G = PN, g = xy, x  P, y  N
Also P is normal in G, N is normal in G, P  N = {e}

 x y  = y x   for all x   P, y   N
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Now zg = z(xy) = (zx)y
= (xz)y as z  Z(P)
= x(zy) = x(yz) as z  P, y  N
= (xy)z = gz for all g  G

z  Z(G)
Z(G)  {e}

which proves (iii).

Problem 13: Show that Aut S4  S4.

Solution: We know Z(S4) = { I } and thus S4  I(S4) (See theorem 3 page 170)
Now the number of Sylow 3-subgroups in S4 is 1 + 3k, where (1 + 3k) | 24

[o(S4) = 24 = 23 × 31]
i.e., k = 0, 1 are possible values.
k = 0 means only one subgroup, but we have more than one Sylow 3-subgroup.

In fact S4 has the following 4 Sylow 3-subgroups
P1 = {I, (123), (132)}, P2 = (I, (124), (142)}
P3 = {I, (234), (243)}, P4 = {I, (134), (143)}

[Notice if H be a Sylow 3-subgroup of S4 then o(H) = 31. Also a  H  o(a)|o(H) = 3
 o(a) = 1, 3].

Let A = {P1, P2, P3, P4}
Let T  Aut G, G = S4,  then T : G  G is an automorphism

T(Pi)  G  i
Also o(T (Pi )) = o(Pi)  (See problem 1 page 171)
 o(T (Pi)) = 3 and T (Pi)  G
 T(Pi) is a Sylow 3-subgroup of G,  i
 T(Pi)  A  i
 T is a map form A  A and is 1–1 as it is 1–1 from G  G
Also then T will be onto (A being finite)
Define  : Aut G  A(A), s.t.,

(T) = TT  where T  is restriction of T on A
then by above discussion,  is well defined.
If (T1) = (T2)
then T 1 = TT 2
 T 1(Pi) = T 2(Pi) i = 1, 2, 3, 4
 (TT 2)

–1 TT 1 (Pi) = Pi
  (Pi) = Pi  i where  = (T 2)

–1 T 1
  is identity map on A and, therefore, on G.
(If  I, than  must not fix some transposition as every element in G is product of

transpositions. Suppose 
 must not fix some transposition as every element in 

(12) 
 must not fix some transposition as every element in 

 (12). Also o(
 must not fix some transposition as every element in 

(12)) = o(12) = 2 and Klein's four group is a
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characteristic subgroup of S4. (12) must be a transposition So, either (12) is a transposition
disjoint from (12) or not. Suppose 

(12) must be a transposition So, either 
(12) = (34) or 

(12) must be a transposition So, either 
(12) = (23). If 

(12) must be a transposition So, either 
(12) = (34), then 

(12) is a transposition
P1

(12) is a transposition
disjoint from (12) or not. Suppose 

 P1 and if 
disjoint from (12) or not. Suppose 

(12) = (23), than 
disjoint from (12) or not. Suppose 

(P2) 
(12) = (34) or 

 P2. So, 
(12) = (34) or 

 = I).
Thus (TT2)

–1 TT1 = I  T1 = T2   is 1–1
o(Aut G)  o(A(A)) = 4! = 24
But o(I(G)) = o(G) = 24
 o(Aut G)  24 = o(I(G))
 o(Aut G) = o(I(G)) [as o(I(G))  o(Aut G) by def.]
 I (G) = Aut G  Aut G  G
or that Aut S4  S4.

(See Page 180 also)

Problem 14: If G is a finite non-abelian simple group and H G  show that
[G : H] 5.

Solution: Let [G : H] = index of H in G = n.
Let  = set of all left cosets of H in G.
Then o() = n.
Define  : G  A() = Sn s.t.,

(g) = Tg
where Tg :  

g
  s.t.,

Tg(xH) = gxH
It can be shown that Tg is 1–1 and so onto.

 Tg  A() and  is a homomorphism.
Let g  Ker   (g) = Tg = I

 gxh = xH for all x 
g

 G
 gH = H   g  H
Ker   H

Since Ker  is normal in G and G has no non-trivial normal subgroup Ker  = {e}
or G. But Ker  = G  H = G which is not true. 

 has no non-trivial normal subgroup Ker 
 Ker 

 has no non-trivial normal subgroup Ker 
 = {e}.

Thus, G is isomorphic to a subgroup of Sn.
Let n = 4, then G is a subgroup of S4.
Since G is simple G  S4 and o(G) must be divisible by at least two primes (for if o(G) is

divisible by one prime only, then G has non-trivial centre as normal subgroup).
o(G) = 22 × 3 or o(G) = 2 × 3

If o(G) = 22 × 3, then Sylow 3-subgroup or Sylow 2-subgroup is normal. So,
o(G)  22 × 3. If o(G) = 2 × 3 and G is non-abelian then G 

 × 3, then Sylow 3-subgroup or Sylow 2-subgroup is normal. So,
 S3

 G has normal subgroup A3.
In either case, we get a contradiction. Hence n  4.
If n = 3, then G is a subgroup of S3. Since G is simple, G  S3.  G < S3 
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o(G) = 1, 2 or 3 which is not possible as G is non-abelian.
Clearly, n  1, 2.

n > 4
[G : H]  5.

Problem 15: Show that if G is a group of order 60 and has more than one Sylow 5-subgroup
then G is simple.

Solution: o(G) = 60 = 22  3  5. The number of Sylow 5-subgroups is 1 + 5k, s.t.,
(1 + 5k) | 12 

) = 60 = 2
k = 0, 1

If k = 0, then  a unique normal Sylow 5-subgroup. Since G has more than one Sylow
5-subgroup, k = 1, and thus 

 a unique normal Sylow 5-subgroup. Since 
 6 Sylow 5-subgroups each of order 5 and hence these are

6 
5-subgroup, 

 4 = 24 elements of order 5.
Suppose G has a non trivial normal subgroup H i.e., G is not simple.
Then possible values of o(H) case 2, 3, 4, 5, 6, 10, 12, 15, 20, 30
Case (i):  o(H) = 5, 10, 15, 20 or 30
i.e., 5 | o(H) then since 51+1  o(H), we find H has a Sylow 5-subgroup P.

Then P  H  G.
If Q is any conjugate of P then Q = gPggPg 1 for some g G.

P  H  gPggPg 1  gHggHg 1  Q  gHggHg 1= H as HG
 all the six conjugates (6 Sylow 5-subgroups of H are conujgates) are contained in H.
 all the 24 elements of order 5 are in H and also e H. So o(H)  25 or that o(H) = 30

is the only possibility. But a group of order 30 has a unique normal Sylow 5-subgroup (see
Problem 7 on page 216). So we get a conctradiction and thus this case does not hold.

Case (ii): o(H) = 2, 3, 4

Let GG
H
G
H

, then 
( ) 60( ) 30,20,15
( ) 2,3,4

o Go G
o H

( ) 60 30,20,15
( ) 2,3,4

o G( ) 60o G( ) 60
o H( ) 2,3,4o H( ) 2,3,4

But again, we know that groups of order 30, 20, 15 have a unique normal Sylow 5-subgroup.
So in each case G has a unique normal subgroup K of order 5.

Let f : G GG G  be the natural onto homomorphism. Since ,K G its pre image K
will be normal in G.

Now ( ) 5o K( ) 5 and ( )o K |o(K)  5 | o(K) (See page 120)
Not possible because of case (i)
Thus, case (ii) is also ruled out
Finally, suppose o(H) = 6 or 12
Then we know (See page 236) that H contains a unique normal Sylow subgroup, say N.
Thus N is characteristic subgroup of H

 NG (See exercises 18, 15 on page 181)
Since N is a Sylow subgroup of H and o(H) = 2  3 or o(H) = 22  3
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Sylow subgroups are of order 21 or 31 or 22

i.e., 2, 3 or 4.  So o(N) = 2, 3, 4 which is not possible as seen earlier.
Hence the result follows.

Problem 16 : A5 is simple

Solution: o(A5) = 60, Let  = (12345),  = (13245)
then H = < > = < , 2, 3, 4, 5 = I >

= {(12345), (13524), (14253), (15432), I }
and K = < > = {(13245), (12534), (14352), (15423), I }
are two Sylow 5-subgroups of A5 and thus by previous problem A5 is simple.
Problem 17: Show that there is no simple group of order 144.

Proof: Let G be a group of order 144 = 24 × 32, and suppose G is simple.
The number of Sylow 3-subgroups of G is 1 + 3k and (1 + 3k) | 16  k = 0, 1, 5. If k

= 0, then Sylow 3-subgroup is unique and normal, which is not possible.

If k = 1, then  4 Sylow 3-subgroups of G and if P is any one of these then as

( )
( ( ))
o G

o N P
 = 4 = number of Sylow 3-subgroups, we find N(P) is a subgroup of G with index

4 which is not possible in view of problem 14 above.
If k = 5, then  16 Sylow 3-subgroups each of order 9 in G. Let H1, H2, be any Sylow 3-

subgroups. Since H1  H2  H1, o(H1  H2) | 9  o(H1  H2) = 1, 3 or 9. If o(H1  H2)
= 9, then o(H1  H2) = o(H1) = o(H2),   H1 = H1 H2 = H2, a contradiction. If
o(H1  H2) = 3, then H1  H2 is normal in H1 and H2. Since  N(H1  H2) is the largest
subgroup of G in which H1  H2 is normal.

H1  N(H1  H2),  H2  N(H1  H2)
 H1H2 N(H1  H2)  G

Again as o(H1H2) = 1 2

1 2

( ) ( )
( )

o H o H
o H H1 2( )1 2( )1 2( )o H H( )1 2( )1 2o H H1 2( )1 2

 = 27,

o(N(H1  H2))  27 and divides o(G) = 144
o(N(H1  H2)) = 36, 48, 72 or 144

But then [G : N(H1  H2)] = 4, 3, 2 or 1 which is not possible by problem 9.
o(H1  H2) = 1

i.e., any two Sylow 3-subgroups of G intersect trivially. This gives 128 elements of order
3i (i = 1 or 2). Since Sylow 2-subgroup is of order 16 and not normal, there are at least 16
elements of order 2i (i = 1, 2, 3 or 4) and one identity element. So, we get 145 elements in
G, a contradiction.

Showing that G is a simple group.

Problem 18: Let G be a finite group. Let H be normal in G. If p be a prime dividing o(G)
s.t. ([G : H]), p) = 1, show  that H contains every Sylow p-subgroup of G.

Solution: Let [G : H] = m
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(m, p) = 1  p  m  pi  m, i > 0
Let pn | o(G), pn+1  o(G)

Then o(G) =
( )
( )

o G
o H . o(H)

= [G : H] o(H)
= m . o(H)

Since pn | o(G), pn | m  pn | o(H)
By Sylow's first theorem  K  H s.t. o(K) = pn.
K is Sylow p-subgroup of G.

Let P be any Sylow p-subgroup of G
Then P = gKg–1, g  G

K = g–1 Pg. But K  H
g–1 Pg  H
 P  gHg–1 = H as H is normal in G.

Hence H contains all Sylow p-subgroups of G.

Problem 19: Let G be a finite group and H  G. Suppose p is a prime dividing o(G). Let P
be a Sylow p-subgroup of H contained in some Sylow p-subgroup S of G. Show that
P = S 
be a Sylow p-subgroup of H contained in some Sylow p-subgroup S of G. Show that

 H.

Solution: Since P  S, P  H
P  S  H

Also S  H S  S  H is a p-subgroup.
Since S  H  H, S  H is a p-subgroup of H.

P  S  H  H
As P is Sylow p-subgroup of H, there is no p-subgroup of H properly containing P.

P = S  H.

Problem 20: If in above problem, Q is another Sylow p-subgroup of H s.t. Q  T where T
= Sylow p-subgroup of G, then show that S 

If in above problem, Q is another Sylow p-subgroup of H s.t. Q 
 T if P 

If in above problem, Q is another Sylow p-subgroup of H s.t. Q 
 Q.

Solution: By above problem
P = S  H, Q = T  H

If S = T, then P = Q and the result follows.

Problem 21: If G is a finite group and p is a prime dividing o(H) where H  G, then show
that the number of Sylow p-subgroups of H is less than or equal to the number of Sylow p-
subgroups of G.

Solution: If P1, ...Pr are Sylow p-subgroups of H, then  Sylow p-subgroups
S1, ..., Sr of G s.t. P1 

r
 S1, ..., Pr 
 are Sylow 

 Sr. By above problem since P1, ..., Pr are distinct, so
are S1, ..., Sr.

 The number of Sylow p-subgroups of G  r = the number of Sylow p-subgroups of H.
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Problem 22: Let p be a prime dividing o(G). Show that
(i) If K is normal in G and P is a Sylow p-subgroup of G, then P  K is a Sylow

p-subgroup of G.

(ii) PK
K

 is a Sylow p-subgroup of G
K

(iii) Every Sylow p-subgroup of G
K

 is of the form PK
K

 where P is a Sylow p-subgroup of

G.

Solution: (i) Suppose P  K is not a Sylow p-subgroup of K. Then  Sylow
p-subgroup Q of K s.t., P K

 is not a Sylow 
Q

 is not a Sylow 
R where R = Sylow p-subgroup of G.

Since P and R are Sylow p-subgroups of G,
P = xRx–1 for some x  G
xQx–1 x(K  R)x–1

(xKx–1)  (xRx–1)
= K  P as K is normal in G

Q
But o(xQx–1) = o(Q)  xQx–1 = Q, a contradiction.

P  K is a Sylow p-subgroup of K.
(ii) Let pm | o(K), pm+1  o(K)

Then o(P  K) = pm by (i)

But PKo
K

PKPK
KK

 = ( ) ( )
( ) ( )
o P o K

o P K o K( ) ( )( ) ( )o P K o K( ) ( )
 = ( )

( )
o P

o P K( )( )o P K( )
 = 

n

m
p
p

 = pn–m

Now pn | o(G), pm | o(K)  pn–m | Go
K
GG
KK

Also pn–m+1  o(G/K)
PK
K

 is a Sylow p-subgroup of G
K

.

(iii) Let H
K

 be a Sylow p-subgroup of G
K

Let pn | o(G), pn+1  o(G)

pm | o(K), pm+1  o(K)
Let o(K) = pmv,   (p, v) = 1

o(G) = pnu,   (p, u) = 1

pn–m | o(G/K), pn–m+1  Go
K
GG
KK

 order of Sylow p-subgroup of G
K

 is pn–m
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 Ho
K
HH
KK

 = pn–m

 o(H) = o(K) pn–m = pnv,  (p, v) = 1
Let P be a Sylow p-subgroup of H then P is also a Sylow p-subgroup of G.
Clearly, PK  H as P  H, K  H

and o(PK) = ( ) ( )
( )

o P o K
o P K( )( )o P K( )

 = 
n m

m
p p v

p
(as by (i) P  K is Sylow p-subgroup of K)

o(PK) = pnv,  (p, v) = 1
= o(H)

H = PK

 H
K

 = PK
K

 where P = Sylow p-subgroup of G

This proves (iii).

Problem 23: Let G be a group of order pqr, p < q < r being primes. Prove that some Sylow
subgroup of G is normal. Hence, show that G is not simple.

Solution: Suppose that no Sylow subgroup of G is normal.
Then the number of Sylow p-subgroups of G is 1 + kp and (1 + kp) | qr

 1 + kp = q, r or qr ( 
Then the number of Sylow 

q)
The number of Sylow q-subgroup of G is (1 + k q) | pr   1 + k q = p, r or pr.

If 1 + k
The number of Sylow 

k q = p, then q | p – 1  
-subgroup of 

q < p, a contradiction.
The number of Sylow q-subgroups of G is r or pr (  r)

Also the number of Sylow r-subgroups of G is (1 + kk r) | pq  1 + kk r = p, q or pq. If
1 + k

Also the number of Sylow 
k r = p or q then r | (p – 1) or r | (q – 1)  r < p or r < q, a contradiction.

The number of Sylow r-subgroups of G is pq.
Sylow p-subgroups give at least q (p – 1) elements of order p and Sylow q-subgroups give

at least r (q – 1) elements of order q and Sylow r-subgroups give pq (r – 1) elements of order
r.

o(G) = pqr  q (p – 1) + r (q – 1) + pq (r – 1) + 1
0  rq – q – r + 1 = (q – 1) (r – 1)
(q – 1) (r – 1)  0, a contradiction.

Thus, some Sylow subgroup of G is normal.
Hence G is not a simple group.

Problem 24: Let G be a group of order pqr, p < q < r being primes. Prove that
(i) Sylow r-subgroup is normal in G.

(ii) G has a normal subgroup of order qr.
(iii) If q  r – 1 then Sylow q-subgroup is normal in G.
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Solution: (i) Suppose that Sylow r-subgroup is not normal in G. Then the number of Sylow
r-subgroups is pq  (See previous problem). Denote these by H1,... , Hpq.
o(Hi) = r for all i. By previous problem, either Sylow p-subgroup or Sylow q-subgroup is
normal in G. Let Sylow q-subgroup H be normal in G. Then HH1,..., HHpq are subgroups of
order qr.

Suppose HHi = HHj. Then Hi, Hj  HHi = HHj
 HiHj  HHi o(HiHj)  o(HHi)

 r2  qr
 r  q, a contradiction

HH1,..., HHpq are distinct subgroups.
Let Ki = HHi
Then K1  K2 K1.

 o(K1  K2) = 1, q, r or qr.
If o(K1  K2) = 1, then o(K1 K2) = q2r2 > pqr, a contradiction.
If o(K1  K2) = q, then o(K1 K2) = qr2 > pqr, a contradiction.
If o(K1  K2) = r, then o(K1 K2) = q2r > pqr, a contradiction.
If o(K1  K2) = qr = o(K1), then K1 = K1  K2.
Also K2 = K1  K2  K1 = K2, a contradiction.
Thus Sylow q-subgroup is not normal. If Sylow p-subgroup is normal, then 
p – 1 elements of order p.
Sylow r-subgroups give pq (r – 1) elements of order r.
The number of Sylow q-subgroups is 1 + kq and (1 + kq) | pr  1 + kq = p, r or pr.
If 1 + kq = p, then q | (p – 1)  q < p, a contradiction.

1 + kq = r or pr > p.
This gives more than p (q – 1) elements of order q.
Thus o(G) = pqr > pq (r – 1) + (p – 1) + p (q – 1) + 1
or that 0 > 0, a contradiction.
Hence Sylow p-subgroup is normal in G, and we get a contradiction.

Sylow r-subgroup is normal in G.
(ii) Let H be a Sylow r-subgroup.

H is normal in G by (i).
Let K be a Sylow q-subgroup, o(K) = q
Since H is normal in G, HK  G and o(HK) = qr.

Also p is smallest prime dividing o(G) and ( )
( )
o G

o HK
 = p,

HK is normal in G.
(iii) If q  (r – 1), then HK is cyclic group of order qr. The number of elements of order

qr is (qr) = (q) (r) = (q –1) (r – 1). Suppose Sylow q-subgroup is not normal.
Then, the number of Sylow q-subgroups is 1 + kq and



5. Sylow Theorems and Direct Products 229

(1 + kq) | pr  1 + kq = p, r or pr
 1 + kq = r or pr as p < q
 1 + kq = pr as q  (r – 1)

This gives pr (q – 1) elements of orders q. Sylow p-subgroup gives p – 1 elements
of order p.
Also Sylow r-subgroup gives r – 1 elements of order r.
Thus o(G)  (r – 1) + (p – 1) + pr (q – 1) + (q – 1) (r – 1) + 1

pqr  (r – 1) + (p – 1) + pqr – pr + qr – q – r + 2
pr + q  qr + p
p (r – 1)  q (r –1)

 p  q, a contradiction.
Hence, Sylow q-subgroup is normal in G.

Problem 25: Let G be a non-abelian group of order 12 in which Sylow 3-subgroup is normal.
Show that G has an element of order 6.

Solution: Since Sylow 3-subgroup is normal, it will be unique. Let it be H then
o(H) = 3, which being a prime shows H is cyclic. Let H = <a>. Then o(a) = o(a–1) = 3. If
cl(a) is the conjugate class of a in G then

o(cl(a)) = ( )
( ( ))
o G

o N a
 = 1 or 2

Notice, cl(a) = {g–1 ag | g  G} and o(g–1ag) = o(a) = 3 and as a, a–1 are the only elements
of order 3, either cl(a) = {a} or cl(a) = {a, a–1}.

Thus o(N(a)) = 6 or 12
  b  N(a), s.t., o(b) = 2
 ab = ba and o(ab) = 6
i.e., G has an element of order 6.

Problem 26: If Aut G and o( ) = p, then  must fix at least one Sylow
p-subgroup of G.

Solution: Let P be a Sylow p-subgroup of G. If (P)  P then
 P, (P), 2 (P),..., p–1 (P) are p distinct Sylow p-subgroups of G.
Note if i (P) = j(P), then i–j (P) = P
Since ( ) = P, < > = < i–j >

  = ( i–j) t

 (P) = ( i–j) t (P) = P, a contradiction.
In this way, we'll get kp sylow p-subgroups of G. By Sylow's third theorem, there are

1 + k
In this way, we'll get 

k p Sylow p-subgroups of G. Thus at least one Sylow p-subgroup of G must be fixed by 
. By Sylow's third theorem, there are

.

Problem 27: If H is normal in G and P is a Sylow p-subgroup of H then G = NG(P) H.

Solution: Let x  G. Then x–1 Px is a Sylow p-subgroup of H as H is normal in G and P  H.
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Thus, x–1 Px = y–1 py for some y H
 yx–1 Pxy–1 = P
 yx–1  N(P)
 x = (xy–1) y  NG(P)H.
 G = NG (P)H.

Problem 28: If in a finite group G, there are at most d elements of order d for every d | o(G)
then G is cyclic.

Solution: Let o(G) = p1
1 p2

2 ... αn
np

Consider Sylow p1-group Sp1

Then o(Sp1) = p1p 1

Suppose Sp1 is not cyclic. Then the number of elements in Sp1 of order p1 is less than or
equal to p1

of order p1
2 is  p1

2

of order p1
3 is  p1

3

and so on ...

of order 1α 1
1pα 1 is  p1

1–1

Thus p1
1  1 + p1 + p1

2 + p1
3 + ... + p1

1–1 = 
1

1

1

1
1

p
p

1 1
1

, a contradiction.

so Sp1 is cyclic. Similarly each Spi is cyclic.
Since there are 1 + kp1, Sylow p1-groups, the number of elements of order p1

1 is
(1 + kp1) (p1

1)  p1
1

 (1 + kp1) (p1
1 – p1

1–1)  p1
1

 p1
1 + kp1

1+1 – p1
1–1 – kp1

1  p1
1

 p1
1–1 (kp1

2 – 1 – kp1)  0
 p1

1–1 (kp1 (p1 – 1) – 1)  0  k = 0.
or that Sylow p1-group is normal.
Similarly, each Sylow pi-group is normal and cyclic.
Hence G is cyclic.

Sylow Groups in Spk

We now give a method of constructing Sylow p-groups inductively in the symmetric groups
Spk.

Suppose p = prime s.t. pr | n! and p r+1  n!. Then r = 
1

j
j

n
p1 ppj 1

nn
jjpp j , where [x] represents

greatest integer not greater than x. (This result can be found in any book on Number theory).
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In particular, if n = pk, then r = pk–1 + p k–2 + ... + 1 we denote r by n(k) to mean the highest
power of p dividing p k!.

When k = 1, then clearly p | o(Sp) = p! and p2 p!
(as p2 | p!  p | (p – 1) ... 2.1

 p | (p – r),  1  r p – 1
 p  p – r, a contradiction)

order of Sylow p-subgroup in Sp is p and group generated by (1 2...p) is a Sylow p-
subgroup. So, We have constructed Sylow p-subgroup when k = 1. Assume that we have
constructed it for k – 1. Consider Spk.

Divide the set of pk letters 1, 2,...pk into p sets each consisting of pk–1 letters as follows
{1, 2,... pk–1}, {pk–1 + 1,..., 2pk–1},...
...{(p – 1)} pk–1 + 1,..., pk–1 p = pk}

Let
 = (1pk–1 + 1...(p – 1) pk–1 + 1) (2pk–1 + 2 ...(p – 1) pk–1 + 2)...(pk–1 2pk–1 ... pk)
 = product of pk–1 disjoint cycles each of length p.

Note, first cycle in  consists of first letter from each set, second cycle has second letter
from each set and so on.

Clearly p = I as disjoint cycles commute.
Let A = {   Spk | (i) = i for all i > pk–1}

I  A i.e., A  
Let ,   A    (i) = i for all i > pk–1

   A  Spk

But  A   is permutation on pk–1 letters, and so A  Spk–1.
By induction hypothesis Spk–1 has Sylow p-subgroup. Thus A has Sylow p-subgroup P1.

o(P1) = p n (k–1) = 1 + ... + Pk–2.
Let P2 =  P1 

–1, P3 = 2 P1 
–2,... Pp = p–1 P1 

–(p–1).
Each Pi  Spk s.t. Pi  P1 (where x  P1 is mapped into ix –i).

o(Pi) = o(P1) = pn(k–1). Also  takes letters of first set into second set, letters from second
set into third set and so on. So,   A  TT –1 consists of letters from second set as T 
A means (i) = i for all i > pk–1. Similarly 2 –2 will consist of letters from third set on.
Therefore, P1, P2,..., Pp–1 will have disjoint permutations and so commute with each other.
Hence T = P1 P2...Pp

p
 Spk.

Also o(T) = o(P1) o(P2) ...o(Pp)
= o(P1) o(P1) ...o(P1) (p times)
= p p(n(k–1)) = p1+n(k–1)

Let P = { jt | t  T, 0  j  p – 1}
= < > T

Since TT –1 = (P1...PP) –1
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= (  P1
–1) (  P2

–1) ... ( Pp
–1)

= P2 P3...PpP1 = P1P2...Pp = T
                          T = TT

                           < > T = T < >
P  Spk

Also < >  T = {I} as s takes first set into second set while T takes first set into first
set,

o(P) = o(< >) o(T)
= pppn (k – 1)
= pp(n (k–1)) + 1

= Pp(1 + p + ... + pk–2) + 1

= P1 + p + ... + pk–1 = pn(k)

So, P is required Sylow p-subgroup of G.

Problem 29: Find a Sylow 3-subgroup of S9.

Solution: We urge the reader to first go through the discussion on the previous two pages.
Let P1 = {I, (123), (132)} be a Sylow 3-subgroup of S3.

Divide the set{1, 2, 3, 4, 5, 6, 7, 8, 9} into 3 sets as follows
{1, 2, 3}, {4, 5, 6}, {7, 8, 9}

Let  = (147)(258)(369)
Then 3 = I
Let P2 =  P1

–1 = {I, (456), (465)}
P3 = 2 P2 –2 = {I, (789), (798)}

Let T = P1 P2 P3, o(T) = 33

Let P = < > T
Then o(P) = 34

Also n(2) = 1 + 3 = 4
 P is a Sylow 3-subgroup of S9.

Problem 30: Let G be the group of n × n invertible matrices over the integers modulo p. p
a prime. Find a p-Sylow subgroup of G.

Solution: Let A be an n × n matrix in G. Since A is invertible, rows of A are linearly independent
over the field F of integers modulo p. Since first row of A is linearly independent, it is non zero.
It can be chosen in (pn – 1) ways. Second row should not be 

 is linearly independent, it is non zero.
 (

 is linearly independent, it is non zero.
 F) times the first row.

So, second row can be chosen in (pn – p) ways. Third row should not be 
) times the first row.

 times first row
+ 
So, second row can be chosen in (

 times second row (
So, second row can be chosen in (

, 
So, second row can be chosen in (

 
So, second row can be chosen in (

 F). So, third row can be chosen in (pn – p2) ways as ,  can
be chosen in p2 ways. In this way, last nth row can be chosen in pn – pn–1 ways.

o(G) = (pn – 1) (pn – p) ... (pn – pn–1)
= p1 + 2 + ... + (n – 1) ((pn – 1) (pn–1 – 1) ... (p – 1))
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=
( 1)

2
n n

p
( 1)

 ((pn – 1) ... (p – 1))

Since (p, (pi – 1)) = 1, order of Sylow p-subgroup of G is 
( 1)

2
n n

p
( 1)

Let P = 

1 ... ... ... ... ...
1 ... ... ... ...

{| enteries above diagonal from }
1 ... ... ...

1 ...

F

O

1 ... ... ... ... ...1 ... ... ... ... ...
1 ... ... ... ...1 ... ... ... ...1 ... ... ... ...1 ... ... ... ...

{| enteries above diagonal from }{| enteries above diagonal from }F{| enteries above diagonal from }{| enteries above diagonal from }{| enteries above diagonal from }F{| enteries above diagonal from }
1 ... ... ... ...

{| enteries above diagonal from }{| enteries above diagonal from }
1 ... ... ...

{| enteries above diagonal from }{| enteries above diagonal from }{| enteries above diagonal from }
1 ... ... ...

{| enteries above diagonal from }
1 ... ... ...1 ... ... ...

1 ...O 1 ...O
P   as I  P
Also

A, B  P  A = 

1 ... ... ... ... ...
1 ... ... ... ...

1 ... ... ...
1 ...

1
O

1 ... ... ... ... ...
1 ... ... ... ...

1 ... ... ... ... ...
1 ... ... ... ...1 ... ... ... ...

1 ... ... ...1 ... ... ...
1 ...O 1 ...O

1

, B = 

1 ... ... ... ... ...
1 ... ... ... ...

1 ... ... ...
1 ...

1
O

1 ... ... ... ... ...
1 ... ... ... ...

1 ... ... ... ... ...
1 ... ... ... ...1 ... ... ... ...

1 ... ... ...1 ... ... ...
1 ...O 1 ...O

1

 AB = 

1 ... ... ... ... ...
1 ... ... ... ...

1 ... ... ...
1 ...O

1 ... ... ... ... ...
1 ... ... ... ...1 ... ... ... ...1 ... ... ... ...

1 ... ... ...1 ... ... ...
1 ...O 1 ...O

  P

P  G
Let A  P. The first row in A can be chosen in pn–1 ways, second row in pn–2 ways and

in this way (n – 1)th row in p ways and last row is fixed.
So, o(P) = pn–1 pn–2 ... p1

= p1 + ... + (n –1) = 
( 1)

2
n n

p
( 1)

P is Sylow p-subgroup of G.
In the following problems we discuss non-abelian groups of order 6 and 8.

Problem 31: Find all non-abelian groups of order 8.

Solution: Let G be a non-abelian group of order 8. As o(a) | o(G) for all a  G,
o(a) = 1, 2, 4 or 8. If for some a 

 be a non-abelian group of order 8. As 
 G, o(a) = 8. G is cyclic. So there is no element in G of

order 8. If each non-identity element is of order 2, then G is abelian. So, 
 is cyclic. So there is no element in 

 a 
 is cyclic. So there is no element in 

 G s.t. o(a)
= 4. Let H = < a >. Then o(H) = o(a) = 4.

H is normal in G as index of H in G is 2.
Let G = H Hb, b H
Then b2 H as b2 H  H, Hb, Hb2 are distinct right cosets of H in G, a contradiction.

If b2 = a, then o(b2) = ( )
(2, ( ))

o b
o b

 = ( )
2

o b
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 o(a) = 
( )
2

o b
  o(b) = 2. o(a) = 8, a contradiction.

Similarly, if b2 = a3, then b2 = a–1  o(b2) = o(a–1) = 4  o(b) = 8.
So, b2 = e or a2.
Since H is normal in G, b–1 ab  H.
But o(b–1ab) = o(a) = 4

 b–1ab = a or a3

If b–1ab = a, then ab = ba. Since G = H Hb, G = {e, a, a2, a3, ab, a2b, a3b, b} and ab
= ba would imply G is abelian.

b–1ab = a3

Thus, we have two non-abelian groups G of order 8, namely
(i) G, generated by a, b s.t. a4 = e, b2 = e, b–1ab = a3 = a–1.

(ii) G, generated by a, b s.t. a4 = e, –b2 = a2, b–1ab = a3 = a–1.
In fact (i) is the Dihedral group of order 8 and (ii) is the Quaternion group of order 8.

Remark: Although the Dihedral group and the Quaternion groups have same order 8, they
are not isomorphic. In the Quaternion group a2 is the only element of order 2 whereas in the
Dihedral group, there are 5 elements a2, b, ab, a2b, a3b of order 2. Recall if f : G 

 is the only element of order 2 whereas in the
 G

 is the only element of order 2 whereas in the
 is an

isomorphism then o(f (a)) = o(a) 
Dihedral group, there are 5 elements 

 a  G.

Problem 32: Find all non-abelian groups of order 6.

Solution: Let G be a non-abelian group of order 6. By Cauchy’s theorem,  a, b G s.t. o(a)
= 3, o(b) = 2. Let H = < a > then o(H) = o(a) = 3. Since index of H in G is 2, H is normal
in G. If b 

) = 2. Let 
 H, then o(b) | o(H)  2 | 3, a contradiction. Thus b H.

H and Hb are distinct right cosets of H in G.
Hence G = H  Hb = {e, a, a2, b, ab, a2b}
Also H is normal in G  b–1ab  H  b–1ab = a or a2.
If b–1ab = a, then as (o(a), o(b)) = 1, we get o(ab) = o(a)o(b) = 6
i.e., G is cyclic and so abelian, which is not so.

b–1ab = a2 = a–1 (b–1ab = e  ab = b  a = e, not true)
So, there is only one non-abelian group G of order 6, namely
G = {e, a, a2, b ab, a2b | a3 = e = b2, b–1ab = a–1}
Indeed G is isomorphic to S3 by the map  : G  S3 s.t. (e) = I, (a) = (123),

(a2) = (132), 
 is isomorphic to 

(b) = (13), 
 is isomorphic to 

(ab) = (23).

Remark: Any non-abelian group of order 6 is isomorphic to S3. Also since any abelian group
of order 6 is cyclic (see page 195) we find there are only two abstract groups of order 6.

Problem 33: Prove that 4
3

4

S
S

K 3S3S3 .

Solution: We know that K4 is normal subgroup of S4 (See page 155)
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Also 4

4

S
o

K
4S4S444

4K4K
 = 4

4

( )
( )

o S
o K

 = 24
4

 = 6

Again 4

4

S
K

 is non-abelian as

K4(12) K4(13) = K4(12)(13) = K4(132)

K4(13) K4(12) = K4(13)(12) = K4(123)

Thus by above remark, 4
3

4

S
S

K 3S3S3

Problem 34: Show that there are only 4 non isomorphic groups of order 30.

Solution: Let G be a group of order 30. Then G has a normal subgroup H of order 15 which
is cyclic (See problem 7 page 216)
Let H = < a >, then o(a) = 15
Let g G be such that o(g) = 2, then g H as 2 15
Since H is normal in G, gg 1ag H = < a >
Thus     g    g 1ag = ar for some r

 (gg 1ag)r = ar2

 gg 1arg = ar2

 gg 1(gg 1ag)g = ar2

 a = ar2

 
2 1 2( ) | ( 1)ra e o a r1 2a e o a r1 2( ) | ( 1)1 2( ) | ( 1)1 2a e o a r( ) | ( 1)a e o a r( ) | ( 1)1 2a e o a r

 r2  1 (mod 15)
 r  1,4, 11 or 14

giving  gg 1ag = a, a4, a11 = a 4, a14 = a 1

So, the four groups of order 30 are
G1 = {a15 = e = g2, gg 1ag = a}
G2 = {a15 = e = g2, gg 1ag = a4}
G3 = {a15 = e = g2, gg 1ag = a 4}
G4 = {a15 = e = g2, gg 1ag = a 1}

G4 corresponds to the dihedral group of order 30 and G1 is an abelian group which is cyclic.

Exercises

1. If N is normal in G and N, G
N

 are both p-groups, show that G is a p-group.

2. If G is a finite non-trivial p-group, then show that G has a normal subgroup of index
p.

3. If a group of order pn contains exactly one subgroup each of order
p, p2, ..., pn–1 then show that G is cyclic.
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4. Let P be a Sylow p-subgroup of G, prove that N(N(P)) = (N(P)).
5. Let P be a Sylow p-subgroup of G and suppose a, b are in the centre of P. Suppose

further that a  = xbx–1 for some x  G. Prove that  y  N(P)
s.t. a = yby–1

(Hint: P  N(a), P  N(b) as a, b Z(P)
xPx–1  xN(b)x–1  N(xbx–1) = N(a)).

6. If o(G) = p2q where p, q are primes, show that either Sylow p-subgroup or Sylow
q-subgroup is normal in G.

7. If G is a group of order 385, show that both Sylow 7-subgroup and Sylow 11-subgroup
are normal in G and Sylow 7-subgroup is in the centre of G.
(Hint: Let H, K, L be the subgroups of order 5, 7, 11, then K, LG and HK  G where
o(HK) = 35 and so HK is cyclic.
G = HKL = KLH
If x K, g G then
xg = xklh k K, l L, h H

= kxlh as K is abelian
= klxh as K  L = {e}, K, L normal
= klhx as HK is abelian
= gx

or that x Z(G))

8. Let G be group. Prove that 
( )
Go

Z G
GG
( )Z G( )Z G( )( )Z G( )Z G( )

 cannot be 77.

9. Let G be a group of order 255. Show that
(i) Sylow 17-subgroup is normal in G.

(ii)  a normal subgroup K of order 85.
(iii) K  Z(G).
(iv) G is cyclic.

10. If G is a non-abelian group of order 231, show that Z(G) is Sylow
11 subgroup of G.

11. Let o(G) = 108. Show that either Slow 3-subgroup is normal or there exits a normal
subgroup of order 9.

12. If H is a normal subgroup of order pk of a finite group G, show that H is contained
in every Sylow p-subgroup of G.

13. If o(G) = pnq with p > q primes, show that G contains a unique normal subgroup of
index q.

14. Show that groups of order 12, 28, 56 and 200 must contain a normal Sylow subgroup.
15. Show that groups of order 36, 42, 99, 112 and 120 are not simple.
16. Let o(G) = pq where p and q are distinct primes. Prove that G has a proper normal

subgroup. Prove further that if neither prime is congruent to 1 modulo the other, then
G is abelian.

17. Find a Sylow 2-subgroup of S4.
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18. If p is prime number, give explicit generators for a Sylow p-subgroup of Sp2.
19. Find a Sylow 2-subgroup and a Sylow 3-subgroup of S6.
20. Show that 21 is the smallest possible odd interger that can be the order of a non-abelian

group.
21. Let Gn denote the group of all nth roots of unity w.r.t. multiplication and let p be a fixed

prime. Let G = 
1

mp
m

G
1
  then show that G is a p-group.

22. Show that there are at most three groups of order 21.

Direct Products

The reader is well acquainted with the idea of product of two sets as a set of ordered pairs.
We explore the possibility of getting a new group through the product of two groups. Let G1,
G2 be any two groups.

Let G = G1 × G2 = {(g1, g2) | g1  G1, g2  G2}.
What better way could there be than to define multiplication on G by

(g1, g2) (gg 1, gg 2) = (g1 gg 1, g2 gg 2). That G forms a group under this as its composition should
not be a difficult task for the reader. Indeed (e1, e2) will be identity of G where e1, e2 are
identities of G1 and G2 respectively. Also (g1, g2)

–1 = (g1
–1, g2

–1).
We call G = G1 × G2 direct product or external direct product (EDP) of G1, G2.
Again if G1, G2 are abelian then so would be G1 × G2.
In a similar way, we can define external direct product G1 × G2 × ... × Gn of arbitrary groups

G1, G2..., Gn as
G1 × ... × Gn = {(g1,..., gn) | gi  Gi}

where compostion is component wise multiplication.
If compositions of the groups are denoted by + we also sometimes use the notation
G1 G2  ... Gn to denote the external direct product.
Let G = G1 × ... × Gn = direct product of G1,..., Gn.
Define H1 = {g1, e2,..., en} | g1  G1, ei = identity of Gi}

H2 = {(e1, g2, e3..., en) | g2  G2}.
...................

Hn = {(e1, e2, e3..., gn) | gn  Gn}
We show that H1 is normal in G.
H1   as (e1, e2,..., en)  H1
Let (g1, e2,..., en) (gg 1, e2,..., en)  H1
Then (g1, e2,..., en) (gg 1, e2,..., en)–1

= (g1, e2,..., en) (g1
–1, e2,...en)

= (g1g1
–1, e2,...en)  H1
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Thus H1  G
Let g = (g1........gn)  G

x = (x1, e2,..., en) H1
Then gxg–1 = (g1,..., gn) (x1, e2..., en) (g1

–1,..., gn
–1)

= (g1 x1 g1
–1, e2,...en)  H1

H1 is normal in G.
Similarly, each Hi is normal in G for all i = 1,..., n.
Let g = (g1,..., gn)  G
Then g = (g1, e2,..., en) (e1, g2, e3...en)...(e1, e2 ,..., en–1 , gn)  H1 H2...Hn
Suppose g = h1 h2...hn = h 1 h 2,...,hn, hi, h i  Hi
Then (g1, e2,..., en) ... (e1,... en–1, gn) = (gg 1,..., en)...(e1,...en–1, gg n)

 (g1,..., gn) = (gg 1...gg n)
 gi = gg i for all i = 1,..., n
 hi = h i for all i = 1,..., n

So, g  G can be written uniquely as product of elements from H1,..., Hn.
We summarise this through the following definition.
Let H1 ,..., Hn be normal subgroups of G. G is said to be an internal direct product (IDP)

of H1,..., Hn if G = H1H2... Hn and each g  G can be written uniquely as product of elements
from H1,..., Hn.

Example 1: (a) Consider the groups Z2 = {0, 1}, Z3 = {0, 1, 2} under addition modulo. Here
Z2 × Z3 = {(0, 0), (0, 1), (0, 2), (1, 0) (1, 1), (1, 2)} will form a group under element wise
multiplication (addition). In fact it is a cyclic group generated by (1, 1).

Indeed, 2 (1, 1) = (1, 1) + (1, 1) = (1 21, 1 31) = (0, 2),
           3(1, 1) = (1, 1) + (1, 1) + (1, 1) = (1, 0) etc.
We further note that since two cyclic groups of same order are isomorphic, (See remark

on page 131) we must have Z2 × Z3 
We further note that since two cyclic groups of same order are isomorphic, (See remark

 Z6.
On the other hand one can show that Z2 × Z2 is not isomorphic to Z4. In fact

Z2 × Z2 is not cyclic (whereas Z4 is). If Z2 × Z2 is cyclic then it has a generator whose order
should be same as o(Z2 × Z2) = 4. But no element of Z2 × Z2 has order 4. Notice,
2(1, 1) = (0, 0) i.e., order of (1, 1) is less then or equal to 2 etc. Hence no element can be
generator of Z2 × Z2. One can show that Zn × Zm 
2(1, 1) = (0, 0) i.e., order of (1, 1) is less then or equal to 2 etc. Hence no element can be

 Znm iff n and m are relatively prime. (See
problem 36 on page 241).

(b) Let us now consider Z × Z. We know Z is cyclic, generated by 1. Would
Z × Z be cyclic? Suppose it is and let (a, b) be a generator of Z × Z.

Since (1, 1)  Z × Z,  an integer m s.t., (1, 1) = m (a, b)
 ma = 1, mb = 1, m, a, b integers

giving the possibilities a = ± 1, b = ± 1. Now (1, 2)  Z × Z but for no integer t, we can
have (1, 2) = t(a, b) (a = ± 1, b = ± 1)

Hence Z × Z is not cyclic.
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Theorem 7: Let H1, H2 be normal in G. Then G is an IDP of H1 and H2 if and only if
(i) G = H1H2

(ii) H1  H2 = {e}.

Proof: Suppose G is an IDP of H1 and H2. Let g  G.
Then g = h1h2,  h1 H1, h2  H2.
Then G  H1H2. But H1H2  G
 G = H1H2
Let g  H1  H2  g  H1, g  H2

g = ge = eg is written in 2 ways as product of elements from H1 and H2.
g = e  H1  H2 = {e}.

Conversely, let G = H1H2 and H1  H2 = {e}
Let g  G  g  H1H2  g = h1h2,  h1  H1, h2  H2

Let g = h1h2 = h 1h 2,   h1, h 1  H1, h2, h 2  H2

 h1
–1 h 1 = h2h2

–1  H1  H2 = {e}
 h1 = h 1, h2 = h 2

G is an IDP of H1 and H2.

Example 2: Let G = < a > be of order 6. Let H = {e, a2, a4}, K = {e, a3} then H and K are
normal (G is abelian) subgroups of G. H  K = {e}.

HK = {e, ea3, a2e, a2a3, a4e, a4a3}
= {e, a2, a3, a4, a5, a} = G

Hence G is IDP of H and K

Theorem 8: Let H1, H2,..., Hn be normal in G. Then G is an IDP of H1, H2,..., Hn if  and
only if

(i) G = H1H2... Hn
(ii) Hi  H1H2... Hi–1 Hi+1...Hn = {e}

for all i = 1,... n
Proof: Suppose G is an IDP of H1,..., Hn. Then (i) follows from the definition of IDP

Let g  Hi  H1... Hi–1 Hi+1 ... Hn
Then g = hi,  hi  Hi and g = h1h2...hi–1 hi+1... hn, hj  Hj

 g = ee ... hi ... e
g = h1h2 ... hi–1 e hi+1 ... hn

Since this representation of g should be unique we get e = h1, e = h2,..., hi = e,...
or that g = e, which proves the result.
Conversely, let g  G then g  H1... Hn  g = h1... hn, hi  Hi
We show this representation is unique.
Let g = h 1 ......... h n, hi  Hi

h1 ......... hn = h 1 ......... h n
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By (ii) Hi  Hj = {e} for all i  j because if x  Hi  Hj
Then x  Hi,  x  Hj. (j  i)

x  Hj  x  H1 ... Hj ... Hi–1 Hi+1 ... Hn
as x = e ... x ... e. e ... e

 x  Hi  H1 ... Hi–1 Hi+1 ... Hn = {e}
Also Hi is normal in G, Hj is normal in G for all i, j, thus hihj = hjhi for all i  j

h1 .......... hn = h 1 .......... h n

 hn = (h1
–1 h 1) (h2

–1 h 2) ......... (hn–1
–1 h n–1) hn

hn hn
–1 = (h1

–1 h 1) ......... (hn–1
–1 h n–1)  H1 ........ Hn–1  Hn = {e}

hn = h n

Similarly hn–1  = h n–1,......, h1 = h 1

Hence G is an IDP of H1,......, Hn.

Remark: If G is an IDP of H1, H2,......, Hn then Hi  Hj = {e}, i  j.
We now show that IDP of subgroups of G is isomorphic to their external direct product

(EDP).

Theorem 9: Let G be a group and suppose G is IDP of H1,..., Hn. Let T be EDP of
H1,..., Hn. Then G and T are isomorphic.

Proof: Define  : T  G, s.t.,
(h1,........, hn) = h1..........hn, hi  Hi

 is well defined as (h1,..., hn) = (h 1,..., h n)
 hi = h 1 for all i
 h1........... hn = h 1........... h n
 (h1,........., hn) = (h 1,........., h n)

 is homomorphism as
(h1,........., hn) (h 1,........., h n)

= (h1h 1,........., hnh n)
= (h1h 1) ......... (hnh n)
= (h1,..., hn) (h 1,..., h n)

as hihj = hjhi

h ih j = h jh i for all i  j
= (h1,..., hn) (h 1,..., h n)

 is 1 – 1 as (h1,..., hn) = (h 1,..., h n)
 h1........hn = h 1 ........ h n
 hi = hi for all i by definition of IDP
 (h1,... hn) = (h 1,..., h n)

 is onto as g  G  g= h1... hn, hi  Hi
(h1,..., hn),  (h1,..., hn)  T
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 is an isomorphism.
Hence G  T.

Problem 35: Show that a group of order 4 is either cyclic or is an IDP of two cyclic groups
of order 2 each.

Solution: Let G be a non-cyclic group of order 4. then G  K4, the Klein's four group. See
page 154. Also then K4 

 be a non-cyclic group of order 4. then 
 Z2 × Z2 see page 238. Hence G  Z2 × Z2 where Z2 is cyclic group

of order 2. In view of above theorem then G is IDP of two cyclic groups of order 2 each.

Aliter: Let G be a group of order 4. If x  G, then o(x) | o(G)  o(x) = 1, 2 or 4.
If o(x) = 4, then x4 = e and G = {x, x2, x3, x4 = e} i.e., G will be a cyclic group generated

by x
Let now o(x)  4, then o(x) = 2 if x  e
Let a, b  G be such that o(a) = 2 = o(b)
Let A = < a > = {e, a}, B = < b > = {e, b}
Then A, B are normal subgroups of G (Notice G is abelian as it has less than 6 elements)

Also A  B = {e} and as o(AB) = 2 2
1

2 2  = 4 = o(G)

G = AB
i.e., G is an IDP of A, B, two cyclic groups of order 2 each.
See also problem 36.

Problem 36: Let A, B be finite cyclic groups of order m and n respectively. Prove that
A × B is cyclic if and only if m and n are relatively prime.

Solution: Let A = < a >, B = < b >
o(A) = o(a) = m, o(B) = o(b) = n

Suppose A × B is cyclic.
Let A × B = < (x, y) >, x  A, y  B

o(A × B) = mn = o(x, y)
Let g.c.d. of m and n be d.

m
d

 and n
d

 are relatively prime integers.

Consider ( , )
mn
dx y = ,,,

mn mn
d dx y

= ( ) , ( )( ) , ( )( ) , ( )( ) , ( )
n m

m nd dx y

= 1 2,1 21 2,1 21 21 2,1 2

n m
d de e , e1 = identity of A

e2 = identity of B
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= (e1, e2)
= identity of A × B

( , ) mno x y
d

 mnmn
d

 . mn mnd
d d

 d | 1  d = 1.
m and n are relatively prime.

Conversely, let m and n be relatively prime. We show A × B is cyclic, generated by (a, b).
For that we prove o(a, b) = mn = o(A × B).

Consider (a, b)mn = (amn, bmn)
= ((am)n, (bn)m)
= (e1, e2) = identity of A × B

Let (a, b)r = (e1, e2)
 (ar, br) = (e1, e2)
 ar = e1, b

r = e2
 o(a) = m | r, o(b) = n | r
 mn | r as m, n are relatively prime.
 mn  r

o(a, b) = mn = o(A × B)
Hence A × B = < (a, b) > = cyclic group generated by (a, b).

Remark: One could generalise the above result and say If G1, G2,..., Gn be finite cyclic
groups of order m1, m2,... , mn then G1 × G2 × ... × Gn is cyclic if and only if
mi, mj are relatively prime (i  j).

Theorem 10: Let s and t be relatively prime integers then Ust  Us Ut

Proof: Define f : Ust  Us  Ut s.t.,

f (x) = (x mod s, x mod t)

We show f is an isomorphism.

Let x and y belong to Ust

Let xoy = z. Then xy = stq + z, 1  z < st

so, f(xoy) = f(z) = (z1, z2)

where z = sq1 + z1, z = tq2 + z2, 1  z1, z2 < st

Let f (x) = (x1, x2), f (y) = (y1, y2)
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where x = sq3 + x1, y = sq4 + y1, 1  x1, y1 < s

x = tq5 + x2, y = tq6 + y2, 1  x2, y2 < t

Now f (x).f (y) = (x1, x2)(y1, y2)
= (x1 y1, x2 y2)

and x1 = x  sq3
y1 = y  sq4

So x1 y1 = xy + s  (integer)
But xy = stq + z  (integer)
Therefore, x1 y1 = s  (integer) + z
Again z = sq1 + z1

So x1 y1 = s  (integer) + z1 1 z1 < st
Similarly, x2 y2 = t  (integer) + z2 1 z2 < st
Therefore, x1 y1  z1 (mod s) and  x2 y2  z2 (mod t)
This gives, f (x) . f ( y)  (x1 y1, x2 y2) = (z1, z2) = f(xoy).
and so, f is a homomorphism.
Let f (x) = f (y)
Then (x1, x2) = (y1, y2)
implies x1 y1 (mod s) and x2  y2 (mod t)
Since, 1 x1, y1 < s, 1 x2, y2 < t

x1 = y1, x2 = y2

or (x1, x2) = (y1, y2)
So, f is one-one

Since s and t are relatively prime integers, there exist integers s and t such that

s s   1 (mod t) and t t   1(mod s)
Let (a, b)  Us  Ut

Let z = at t   bs s

Then z  a = a(t t  1) + bs s
 0 (mod s)

and z  b = b(s s   1) + at t
 0 (mod t)

Let z = stu + r, o  r < st
If r = 0 then z  stu
So, stu  a  0 (mod s)
implies s divides a
Since a  Us, (a, s) = 1, contradicting s divides a.
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Therefore, r  0. So, 1 r < st

Let (r, st) = d > 1

Let p be a prime dividing d

Then p | st.

Let p divide s.

Also, p divides r

So, p divides stu + r = z which implies p divides a as z  a (mod s), which is not true as
(a, s) = 1.

Therefore, d = 1 so, r Ust

Now r  z (mod s) implies r  a (mod s)

and r  z (mod t) implies r  b (mod t)

By definition of f, f(r) = (r mod s, r mod t) = (a, b)

Thus f is onto and so f is an isomorphism

Cor: (st) = (s) (t), whenever s and t are relatively prime integers.

Proof: Now o(Ust) = (st) and o(Us  Ut) = (s) (t)

By above theorem  (st) = (s) (t).

Problem 37: Show that every group of order p2, p a prime, is either cyclic or is isomorphic
to direct product of two cyclic groups, each of order p.

Solution: Let o(G) = p2. Then G is abelian (Problem 21, page 186) Suppose G is non-cyclic.
Since p | o(G)  a  G s.t. o(a) = p. Let A = < a >, o(A) = o(a) = p.

Now A G   b G s.t. b  A.
Also o(b) | o(G) = p2  o(b) = 1, p or p2

If o(b) = p2, then G is cyclic.
If o(b) = 1, then b = e  A, a contradiction.

o(b) = p. Let B = < b >, o(B) = o(b) = p
A  B  A  o(A  B) | o(A) = p

 o(A  B) = 1 or p
If o(A  B) = p, then A = A  B  A  B  A = B as o(A) = o(B), a contradiction as

b B, b A
o(A  B) = 1
A  B = {e}

Since G is abelian, A is normal in G, B is normal in G.

Also o(AB) = ( ) ( )
( )( )

o A o B
o A B

 = p2 = o(G)



5. Sylow Theorems and Direct Products 245

� G = AB

By theorem 7, G is an IDP of A and B and by theorem 9, G is isomorphic to EDP of A and B.

We also conclude from here that either G � Zp2 or G � Z
p
 × Z

p. 
See problem 33 on page 131.

Problem 38: Let G be a finite abelian group. Prove that G is isomorphic to the direct product

of its Sylow subgroups.

Solution: Let o(G) = p1
�1 ... pr

�r

where p1,..., pr are distinct primes.

Since G is abelian, each Sylow subgroup H
i
 of G is normal. o(H

i
) = p

i
�i.

Let g � Hi � H1 ... Hi–1 Hi+1 ... Hr

� g � H
i
, g � H

1
 ... H

i–1
H
i+1
 ... H

r

Let t = p1
�1 ... pi–1

��–1 pi+1
�i+1 ... pr

�r

g � H1 ... Hi–1 Hi+1 .. Hr

� g = h
1
 ... h

i–1
h
i+1
... h

r
,  h

j
� H

j

� gt = h1
t ... hi–1

t   hi+1
t  ... htr = e  as hj

t = e for all j � i

� o(g) | t

But g � Hi � o(g) | o(Hi) = pi
�i

� o(g) = pi
	i, 
 	i � 0

� p
i
	i | t

� p
i
	i | p

1
�1 ... p

i–1
�i–1 p

i+1
�i+1 ... p

r
�r

� 	i = 0

� o(g) = 1 � g = e.

� H
i
� H

1
 ... H

i–1
H
i+1
 ... H

r
 = {e} for all i = 1, ..., r

Now o(H
1
......H

r
) = 1 2

1 2

( ) ( ... )

( ... )�

r

r

o H o H H

o H H H
 = o(H

1
) o(H

2
......H

r
)

Again, o(H
2
H

3
...H

r
) = 

2 3

2 3

( ). ( ... )

( ... )

r

r

o H o H H

o H H H�

Now x � H
2
� H

3
 ... H

r

� x � H
2
 and x � H

3
 ........ H

r
� H

1
H

3
......H

r

� x � H
2
� H

1
H

3
 ... H

r
 = {e}

So  x = e

� o(H2.........Hr) = o(H2) o(H3......Hr)

In this way, we get

o(H
1
........H

r
) = o(H

1
) o(H

2
)........o(H

r
) = o(G)

� G = H
1 
....... H

r

By theorem 8, G is an IDP of H
1
,...... H

r
 and so isomorphic to EDP of H

1
,..., H

r
 by

theorem 9.



246 A Course in Abstract Algebra

Remark: If G is a finite group and all its Sylow subgroups are normal then G is direct product
of its Sylow subgroups.

Problem 39: Show that if G is a group of order 45, it is IDP of its Sylow subgroups.

Solution: o(G) = 45 = 32 × 5.
Number of Sylow 5-subgroups is (1 + 5k) s.t., (1 + 5k) | 9 which gives k = 0
i.e.,  a unique normal Sylow 5-subgroup H of G where o(H) = 5.
Similarly,  a unique normal Sylow 3-subgroup K of order 9.
Since o(H  K) | 9, 5, we find o(H  K) = 1  H  K = {e}

Also o(HK) = 5 9
1

5 9  = 45 = o(G)  G = HK

Hence G is IDP of its sylow subgroups H & K.

Problem 40: Show that there cannot exist any onto homomorphism from Z16  Z2  Z4  Z4

Solution: Suppose f: Z16  Z2  Z4  Z4 is an onto homomorphism, then by fundamental
theorem of group homomorphism

16 2
4 4 Ker f

16 216 2
4 4 Ker

Z ZZ Z

 16 2 16 2
4 4

( )( )
Ker (Ker )

oo o
f o f

16 2 16 2( )16 2 16 2( )16 2 16 2oo
Ker (Ker )f o fKer (Ker )
16 2 16 2( )16 2 16 2( )16 2 16 2o16 2 16 2o16 2 16 2

4 4( )4 4( )4 4o o( )o o( )4 4( )4 4o o4 4( )4 4
16 2 16 216 2 16 2o16 2 16 2o16 2 16 216 2 16 216 2 16 2
Ker (Ker )f o fKer (Ker )f o fKer (Ker )Ker (Ker )Ker (Ker )f o fKer (Ker )Ker (Ker )f o fKer (Ker )Ker (Ker )

Z Z Z ZZ Z


3216

(Ker )o fo f(Ker )o f(Ker ) or that o(Ker f) = 2

Now one element of Ker f is (0,0) and the other has to have order 2 [a G  o(a)|o(G)]
and elements of order 2 in Z16  Z2 are (8, 0), (8, 1) and (0, 1).
Thus possible values of Ker f are

{(0, 0), (8, 0)}, {(0, 0), (8, 1)}, {(0, 0), (0, 1)}.
Let K = Ker f = {(0, 0), (8, 0)} then

16 2
4 4K

16 2
4 4

Z Z Z Z

Now K + (1, 0) 16 2
K

16 2Z Z  and

(K + (1,0)) + (K + (1, 0)) + ... + (K + (1, 0)) = (K + (8, 0)) 8 times
                              = K as (8, 0) 

+ (8, 0)) 8 times
 K

Thus o(K + (1, 0)) = 8 in the quotient group 16 2
K

16 2Z Z . But there is no element of order 8 in

Z4  Z4. Thus the above isomorphism cannot hold.

Again, suppose now K = Ker f ={(0, 0), (8, 1)}
or = {(0, 0), (0, 1)}
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then since 16 2(1,1)K
K

16 216 2(1,1) Z Z  and o(K + (1, 1)) = 16

and there is no element of order 16 in Z4  Z4, the result fails.
Problem 41: Let N be normal in G. If G = H × K where H, K are subgroups of G,  then prove
that either N is abelian or N intersects H or K non-trivially.

Solution: Suppose N  H = {e}, N  K = {e}.
Since G = H × K, H is normal in G, K is normal in G. So nh = hn for all n  N,

h  H and nk = kn for all n  N, k  K.
Let n1, n2  N.

n2  N  n2  G  n2 = h2k2,  h2  H, k2  K
n1n2 = n1h2k2

= h2n1k2
= h2k2n1
= n2n1

So, N is abelian.

Problem 42: Let  m and n be relatively prime integers. Let u, v be any integers. Show that
 an integer t s.t. t 

Let  m and n be relatively prime integers. Let u, v be any integers. Show that
 u (mod m) and t 

Let  m and n be relatively prime integers. Let u, v be any integers. Show that
 v (mod n).

(This is a special case of the Chinese Remainder Theorem. See page 41).

Solution: Let Zm, Zn denote the groups under addition modulo m, n respectively. Zm and Zn
are cyclic groups generated by 1. By problem 35, Zm × Zn is cyclic group generated by
(1, 1).

Let u = mq1 + r, 0  r < m
v = nq2 + s, 0  s < n
r  Zm, s  Zn
(r, s)  Zm × Zn

 integer t s.t., (r, s) = t (1, 1)

(r, s) = 
times times

(1 ... 1, 1 ... 1)
t t

(1 ... 1, 1 ... 1)

where the composition in first coordinate is under addition modulo m and in second, under
addition modulo n.

(r, s) = (t – mq3, t – nq4)
r = t – mq3, s = t – nq4
u = mq1 + t – mq3
v = nq2 + t – nq4
t  u (mod m)
t  v (mod n)

Problem 43: (a) Show that S3 cannot be written as internal direct product of two non-trivial
subgroups.
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(b) Show that the Quaternion group cannot be written as IDP of its non trivial subgroups.

Solution: Suppose S3 is an internal direct product of its subgroups H and K where
H  {I}, K 

Suppose 
 {I}

Then S3 = HK, H  K = {I}
H is normal in S3, K is normal in S3

 o(S3) = 6 = o(H) o(K)
 Either o(H) = 2 or o(K) = 2
as o(H) and o(K) > 1
In S3, subgroups of order 2 are {I, (12)}, {I, (13)}, {I, (23)} and none of these is normal

subgroup of S3.
S3 can't be written as IDP of two non-trivial subgroups.

Again we know (See exercise 14, page 97) that all the non-trivial subgroups of the quaternion
group contain 1 and –1 and thus the condition Hi 

Again we know (See exercise 14, page 97) that all the non-trivial subgroups of the quaternion
 Hj = (e) 

Again we know (See exercise 14, page 97) that all the non-trivial subgroups of the quaternion
 i 

Again we know (See exercise 14, page 97) that all the non-trivial subgroups of the quaternion
 j does not hold. Hence by

remark on page 240, result follows.

Problem 44: If H, K are normal subgroups of G, show that G
H KH K

 is isomorphic to a subgroup

of G G
H K
G G
H K

.

Solution: Define  : G  G G
H K
G G
H K

 s.t.,

(x) = (Hx, Kx) for all x  G
 is well defined as x = y  Hx = Hy, Kx = Ky  (Hx, Kx) = (Hy, Ky).
 is a homomorphism as

(xy) = (Hxy, Kxy)
= (HxHy, KxKy)
= (Hx, Kx) (Hy, Ky)
= (x) (y) for all x, y  G

Ker = {x  G | (x) = identity of G G
H K
G G
H K

}

= {x  G | (Hx, Kx) = (H, K)}
= {x  G | Hx = H, Kx = K}
= {x  G | x  H, x  K}
= {x  G | x  H  K}
= H  K.

Ker
G  = G

H KH K
 is isomorphic to (G)

(Note  is onto map from G to (G))
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Also, (G) is a subgroup of G G
H K
G G
H K

.

G
H KH K

 is isomorphic to a subgroup of G G
H K
G G
H K

.

Theorem 11: Let G and H be finite groups of orders m and n respectively. Suppose that
g.c.d.(m, n) = 1. Then

Aut G × Aut H   Aut (G × H)
Proof: Define : Aut G × Aut H  Aut (G × H), s.t.,

( , ) =  × 
where (  × ): G × H  G × H is a mapping s.t.,

(  × )(x, y) = ( (x), (y))
We show that  ×   Aut (G × H)
Consider (  × )[(x, y).(x , y )]

= (  × )(xx , yy )
= (  (xx ), (yy ))
= (  (x)  (x ), (y) (y ))
= (  (x) (y)) (  (x ), (y ))
= [(  × )(x, y)][(  × )(x , y )]

So,   × is a homomorphism
Let     (  × )(x, y) = (  × )(x , y )
Then     (  (x) (y)) (  (x ), (y ))

  (x) =  (x ), (y) = (y )
 x = x , y = y  as , as are one-one
 (x, y) = (x , y )

So,   × is one-one
Since G × H is finite,  × is also onto.
Therefore,  ×   Aut (G × H)
Let ,   Aut G,  , Aut H
Then (  × )( × )(x, y) = (  × )( (x), (y))

= ( (x),  (y))
Also (  × )(x, y) = ( (x), (y)) for all x  G, y  H
So (  × )(  × ) =  × 
Now (( , )( , )) = ( , )

=  
= (  × )(  × )
= ( , ) ( , )

So,  is a homomorphism
Let  ( , ) = ( , )
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Then  ×  =  ×
 (  × )(x, y) = (  × )(x, y)
 ( (x), (y))  = ( (x), (y))
 (x) = (x) (y) = (y) for all x  G, y  H
  = ,  = 
 ( , ) = ( , )
  is 1–1

Since g.c.d. (m, n) = 1, there exist integers u and v
Sucth that mu + nv = 1
Let   Aut (G  H)
Let e be the identity of G and f be the identity of H
Let x  G
and suppose (x , f ) = (x , f)
Now x = x  = xmu + nv = xmu.xnv = xnv as xm = xo(G) = e
So, (x, f) = (xnv, f ) = (x nv, f nv) = [ (x, f )]nv

 (x , f ) = [ (x, f )]nv

 (x , f ) nv = [ (x, f )]
 ((x ) nv, (f ) nv) = (x, f )
 (x , f ) = (x, f ), where x  = (x ) nv

Define: : G  G s.t.,
(x) = x , where (x, f) = (x , f)

We show that   Aut G
Now (x1x2, f) = [(x1, f ) (x2, f )] = (x1, f ) (x2, f )

 (x1 x2)  = x1  x2
Therefore, (x1x2) = (x1x2)  xl x2  = (x1) (x2)

  is a homomorphism
Let (x1) = (x2)
Then xl = x2

Now (x1, f ) = (xl , f ) = (x2 , f ) = (x2, f )
 (x1, f ) = (x2, f )  x1 = x2

So,  is one-one
Since G is finite,  is also onto.
Therefore,  Aut G. Similarly
Define : H  H s.t.,

(y) = y , where (e, y) = (e, y )
Then   Aut H
So ( , ) =  = 
as (x, y) = [(x, f ) (e, y)] = (x, f ) (e, y)

= (x , f )(e, y ) = (x , y )
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and (  )(x, y) = (  (x), (y)) = (x , y )
Hence  is an isomorphism
Remark: The above result may not be true if g.c.d (m, n)  1.
Consider G = Z2 = H
Then Aut Z2 = {I} and Aut (Z2  Z2)  S3

as  Z2  Z2  K4 and Aut K4  S3)
So, Aut Z2  Aut Z2 = {I} {I}

 o(Aut Z2  Aut Z2) = 1
while o(Aut (Z2  Z2 )) = o(S3) = 6
Therefore, Aut Z2   Aut Z2 is not isomorphic to Aut (Z2  Z2 )
Note: In two isomorphic groups the number of elements with a specific order will be same
in both. The converse, however, may not hold as is evident by

Example 3: Let G be the set of matrices of the type 
1
0 1
0 0 1

a b
c

1 a b
0 10 1 c0 1 c
0 0 1

 where a, b, c F3. Here

F3 = {0, 1, 2} mod 3 (See under chapter VII on Rings)
Then one can check that G forms a non-abelian group. In fact, it would be a subgroup of

the groups of all 3 × 3 non-singular matrices over F3.
Since each of a, b, c have three choices, o(G) = 33.
Order of each non-identity element of G will be 3 as

21
0 1
0 0 1

a b
c

21 a b
0 10 1 c0 1 c
0 0 1

 = 
1 2 2
0 1 2
0 0 1

a b ac
c

1 2 2a b ac1 2 2a b ac1 2 2a b ac
0 1 20 1 2c0 1 2c
0 0 1

  I as one of a, b, c is non-zero

and 

31
0 1
0 0 1

a b
c

31 a b
0 10 1 c0 1 c
0 0 1

 = 
1 0 0
0 1 0
0 0 1

1 0 0
0 1 00 1 00 1 0
0 0 1

.

If we consider the group Z3 × Z3 × Z3, then it is an abelian group of order 27 in which each
non-identity element is of order 3. Thus both the groups have 26 elements of order 3 (plus one
identity). But  G and Z3 × Z3 × Z3 cannot be isomorphic as one is abelian and the other a non-
abelian group.

Exercises
1. If H, K are subgroups of a group G s.t. G = H × K, show that

{ }
H K

H e
H K

{ }H e{ }H e{ }
  K,  G

H
  K,  G

K
 H. [Hint. use Fundamental Theorem]

2. Let G1, G2, G3 be groups. Show that
(i) G1 × G2  G2 × G1 (ii) G1 × (G2 × G3)  (G1 × G2) × G3  G1 × G2 × G3.
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3. If G is an IDP of H and K, where H, K are abelian then show that G is abelian. Hence
show that a group of order 99 is abelian.

4. Let G be a group. Let H = {(g, g) | g  G}, Show that H  G × G and H is normal
in G × G if and only if G is abelian. H is called diagonal of G × G.

5. Show that
 (i) Z(G1 × G2×...×Gn) = Z(G1) × Z(G2) ×...×Z(Gn)
(ii) N(g1, g2, ..., gn) = N(g1) × N(g2)×...×N(gn), gi   Gi

6. Show that the multiplicative group of non-zero real numbers is an internal direct product
of two non-trivial subgroups.

7. Show that the group G of non-zero complex numbers under multiplication is IDP of
the group of +ve reals under multiplication and the circle group N of complex numbers
with absolute value 1. (See exercise 16 on page 143 also).

8. Prove that the group Q of all rational numbers under addition can't be written as direct
sum of two non-trivial subgroups.

9. If N1 is normal in G1 and N2 is normal in G2 than show that N1 × N2 is normal in

G1 × G2 and 1 2 1 2

1 2 1 2

G G G G
N N N N

1 2 1 2G G G G1 2 1 2G G G G1 2 1 21 2 1 2G G G G1 2 1 2G G G G1 2 1 2
N N N N1 2 1 2N N N N1 2 1 2N N N N1 2 1 2

.

10. Let G be EDP of two finite groups A and B. Show that the order of element
(a, b) 

 be EDP of two finite groups 
 G = A × B is l.c.m.(o(a), o(b)). Generalise the result.

11. If G1, G2, ..., Gn are groups such that their orders are pairwise coprime, then show
that
Aut G1 × Aut G2 × ... ×Aut Gn  Aut (G1 × G2 × ... ×Gn)
(Hint: Use induction on n)

Finite Abelian Groups

Having studied direct products, one would like to know whether groups can be written as
direct product of some ‘simple looking’ groups, Luckily, such a class of groups exists, namely
finite abelian groups. The main purpose of this section is to prove that all important theorem
called fundamental theorem on finite abelian groups which states that a finite abelian group is
a direct product of cyclic groups of prime power order and the representation is unique except
for the order in which the factors are arranged. This paves the way for us to spell out the
method that gives the number of non-isomorphic finite abelian groups of a given order.

We first show that a finite abelian group can be written as a direct product of
p-groups. (See problem 38 for different proof).

Theorem 12: A finite abelian group is a direct product of its Sylow p-subgroups.

Proof: Let G be a finite abelian group of order n. Let n = p1
1 ... pr

r pi
's being distinct primes.

Let S1,...Sr be distinct Sylow pi-subgroups respectively. o(Si) = pi

i
i for all i = 1,..., r

We show that G = S1 × ... × Sr
Since G is abelian, each Si is a normal subgroup of G.
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Let m = p2
2 ... pr

r

and T = {x  G | xm = e} Then (p1
1, m) = 1

and T is a subgroup of G as G is abelian.
Now x  S1  T  o(x) | o(S1) = p1

1

and o(x) | m
So, o(x) | (p1

1, m) = 1
 o(x) = 1
 x = e
S1  T = {e}

As (p1
1, m) = 1,  integers u, v such that

up1
1 + vm = 1

Let x  G. Then x = x1

= xup1 1 + vm

= xvm . xup1 1

 S1. T (as (xvm)p1 1 = (xp1 1m)v = xvn = (x n)v = e
 o(xvm) | p1

1

 o(xvm) = p1
1

 < xvm > is a p1 group
 < xvm >  S1
 xvm  S1

Also (xup1 1)m = xun = e
 xup1

Also (
1  T)

G = S1T. Also as seen earlier S1  T = {e}
Since G is abelian, S1 and T are normal subgroups of G, and thus G is IDP of S1 and T

G = S1 × T (because of the isomorphism)
Also, o(G) = o(S1T)

= o(S1) o(T)
 n = p1

1 o(T)
 o(T) = p2

2 ... pr
r = m

As above, we can show that
T = S2 × U, where U is a subgroup of T such that o(U) = p3

3 ... pr
r. In this way, we shall

have
G = S1 × S2 ... Sr

which proves the theorem.

Remark: Since a Sylow p-subgroup is a group of prime power order, we have established
that A finite abelian group is a direct product of groups of prime power order.
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Having broken G into product of groups of prime power order, we concentrate now on
results pertaining to abelian groups of prime power order rather than on G itself.

Theorem 13: Let G be an abelian group of prime power order pn and let a  G have maximal
order amongst all elements in G. Then G is IDP of A and K, where A is the cyclic subgroup
generated by a and K 
order amongst all elements in G. Then G is IDP of A and K, where A is the cyclic subgroup

 G. Hence G can be expressed as G = A × K.

Proof: Let o(G) = pn, p a prime.
We use induction on n. If n = 1 then o(G) = p, a prime and thus G is a cyclic group of order
p and if G = < a > then a is an element of maximal order p in G and also then
G = < a >  {e} and so the result holds for n = 1.

Let the result be true for abelian groups of order pk, where k < n.
Let a  G be an element of maximal order and suppose o(a) = pm.

In case G = < a >, then G = < a >  {e} and there is nothing to prove.
So assume, G  < a >. Thus  elements in G which are not in < a > = A. Out of these

elements let b be an element of minimal order.

Now o(bp) = ( ) ( ) ( ).
g.c.d.( ( ), )

o b o b o b
o b p p
( ) ( ) ( ).( ) ( )o b o b( ) ( ) o b( ).o b( ).
o b p p

(See Page 93)

Note as o(b)|o(G) = pn, o(b) is of the type pi for some i
So o(bp ) < o(b)  bp  A as b is of minimal order s.t., b  A.
Now bp  A = <a>  bp = ai for some i
If x  G be any element then as

o(x)|o(G) = pn, o(x) = pt for some t
and so xpt

 = e
Again as o(a) = pm is maximal order of an element in G, pt  pm i.e., pt | pm

and so xpm
 = e  x  G

 bpm
 = e

Thus
1 1m mm p pp p ie b b a
1 11 11 11 1m mm mm m1 1m m1 11 1m m1 11 1m m1 11 1m m1 1p pp pp pm mp pm mm mp pm mm mp pm mm p pp pp p ip p ip p ip p imp p im p pp p ip pp pp p ip p

e b b ae b b ae b b ae b b ap p ie b b ap p ip p ie b b ap p ip p ie b b ap p ip p ie b b ap p ip pp p ip p
e b b a

p pp p ip pp pp p ip p
e b b a

p pp p ip pp pp p

 o(ai) pm 1

 ai cannot be a generator of A = < a > as o(A) = o(a) = pm and o(ai) < pm

 (pm, i)  1 (See theorem 30, page 88)

So pm and i have common factors

 p | i or that i = pj

 bp = ai = apj

Let c = a jb then if c  A, then a jb  A

 a jb = a1 for some a1  A.

 b = aja1  A, which is not true. Hence c  A
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Again cp = a jpb p = a ib p = b pbp = e, c  e

 o(c) = p

i.e.,  an element c  G s.t., c  A and o(c) = p.

So o(b) should also be p as b has minimal order

Let B = < b >, then o(B) = o(b) = p

Also, A  B  B  o(A  B)|o(B) = p

 o(A  B) =  1 or p.

If o(A  B) = p, then o(A  B) = o(B)

 A B = B  B A

which is not possible as b A

Hence,  o(A  B) = 1 or that  A B = {e}

Let  Ḡ  = G/B.

Since a  G, Ba  G/B = Ḡ

Let Ba  = ā  Ḡ

Now ( ) ( ) ( )( ) ( ) Identity of o a o a o aa Ba Ba Ba Ba Ba Be B G( ) ( ) ( )( ) ( ) Identity of ( ) ( )o a o a( ) ( )( ) ( )( ) ( )( ) ( )o a o a( ) ( )( ) ( )( ) ( ) o a( )o a( )a Ba Ba Ba Ba Ba Be B( ) ( )a Ba Ba Ba Ba Ba Be B( ) ( ) ( )a Ba Ba Ba Ba Ba Be B( )( ) ( )a Ba Ba Ba Ba Ba Be B( ) ( )( ) ( )( ) ( )( ) ( )a Ba Ba Ba Ba Ba Be B( ) ( )( ) ( )( ) ( )( ) ( )o a o a( ) ( )a Ba Ba Ba Ba Ba Be B( ) ( )o a o a( ) ( )( ) ( )( ) ( )( ) ( )o a o a( ) ( )( ) ( )( ) ( )a Ba Ba Ba Ba Ba Be B( ) ( )( ) ( )( ) ( )o a o a( ) ( )( ) ( )( ) ( ) o aa Ba Ba Ba Ba Ba Be Bo a( )o a( )a Ba Ba Ba Ba Ba Be B( )o a( )

( ) | ( )o a o a (1)

Again, ( ) ( ) ( )( ) ( ) Identity of o a o a o BaBa Ba Ba B G( ) ( ) ( )( ) ( ) Identity of ( ) ( ) ( )( ) ( ) Identity of ( ) ( ) ( )( ) ( ) ( )o a o a o Ba( ) ( ) ( )( ) ( ) ( )o a o a o Ba( ) ( ) ( )( ) ( ) ( )( ) ( ) Identity of ( ) ( ) ( )o a o a o Ba( ) ( ) ( )( ) ( ) Identity of ( ) ( ) ( )Ba Ba Ba B( ) ( ) ( )Ba Ba Ba B( ) ( ) ( )( ) ( ) Identity of Ba Ba Ba B( ) ( ) Identity of ( ) ( ) ( )( ) ( ) Identity of ( ) ( ) ( )Ba Ba Ba B( ) ( ) ( )( ) ( ) Identity of ( ) ( ) ( )( ) ( ) ( )o a o a o Ba( ) ( ) ( )Ba Ba Ba B( ) ( ) ( )o a o a o Ba( ) ( ) ( )( ) ( ) ( )( ) ( ) Identity of ( ) ( ) ( )o a o a o Ba( ) ( ) ( )( ) ( ) Identity of ( ) ( ) ( )Ba Ba Ba B( ) ( ) ( )( ) ( ) Identity of ( ) ( ) ( )o a o a o Ba( ) ( ) ( )( ) ( ) Identity of ( ) ( ) ( )

 ( )o a Bo a B

Also, ( ) ( ) { }o a o aa A a A B e( ) ( )( ) ( ) { }( ) ( )o a o a( ) ( )a A a A B e( ) ( )a A a A B e( ) ( ) { }a A a A B e{ }( ) ( )o a o a( ) ( )a A a A B e( ) ( )o a o a( ) ( )

 ( ) ( ) | ( ) ( ) ( )o aa e o a o a o a o a( ) | ( ) ( ) ( )( ) | ( ) ( ) ( )( ) | ( ) ( ) ( )( ) | ( ) ( ) ( )a e o a o a o a o a( ) | ( ) ( ) ( )a e o a o a o a o a( ) | ( ) ( ) ( )  from (1)

Now ā  will be an element of maximal order in Ḡ as if c̄   Ḡ is an element with more order
than o(ā ) then

as ( ) | ( )o c o c as in (1), we get

( ) ( ) ( ) ( ) ( ) ( )o c o c o c o c o a o a( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )o c o c o c o c o a o a( ) ( ) ( ) ( ) ( ) ( )

contradicting the fact that a is of maximal order.

Now ( ) ( )o G o G( ) ( )( ) ( )( ) ( )o G o G( ) ( ) and so using induction we can say Ḡ is an IDP of < ā > and T for some
subgroup T of Ḡ and

, { }G a T a T e, { }{ }G a T a T eG a T a T eG a T a T e,G a T a T e, { }G a T a T e{ }{ }G a T a T e{ }

T is a subgroup of / KG G B T
B

/ KG G B T/G G B T/
B

 for some K  G

We show G is IDP of A and K
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Let  x  A K then x  A and  x  K

 x = ai for some i

and x  K  ai  K  Bai  T

 (Ba)i  T
( )ia T( )ia T( )a T( )( )a T( )ia Ti

 ( ) { }ia a T e{ }{ }a a T ea a T e{ }a a T e{ }{ }a a T e{ }

 ( )i i ia e Ba Be a Bi i ia e Ba Be a Bi i ia e Ba Be a Bi i ii i ia e Ba Be a Bi i i

ai A B = {e}  ai = e
x = ai = e  A K = {e}

Now let  x G then x Bx G a Tx Bx G a Tx Bx G a T

 ,j K
Bx a y y T K
Bx a y y Tx a y y Tx a y y Tx a y y Tx a y y T,x a y y T,jx a y y Tx a y y Tx a y y Tjx a y y Tj

 ( )j jBx Ba By Ba y y Byj j ( )Bx Ba By Ba y y ByBx Ba By Ba y y ByBx Ba By Ba y y By( )Bx Ba By Ba y y By( )( )Bx Ba By Ba y y By( )jBx Ba By Ba y y Byj jBx Ba By Ba y y Byj

 1 jxy a B K1 jxy a B K1xy a B K1 jxy a B Kjxy a B Kxy a B K

 1 jxy a k1 jxy a k1xy a k1 jxy a kjxy a kxy a k for some k K

  x = kajy = ajz for some z K

or that x < a >. K   G AK

i.e., G = AK, A K = {e}

So G is an IDP of A and K and can be expressed as A  K.

We are now ready to prove the fundamental theorem on finite abelian groups.

Theorem 14: (The Fundamental Theorem on Finite Abelian Groups). A finite abelian group
is direct product of cyclic groups of prime power order.

Proof: Let G be a finite abelian group. We prove the result by induction on o(G).
If o(G) = 1, then result is trivially true. Assume that the result is true for all abelian groups of
order < o(G).

Let o(G) = p1
1 ... pr

r, pis are distinct primes.
By theorem 12, G = S1 × ... × Sr , where Si is the Sylow pi-subgroup of order pi

i

(i = 1, 2,..., r). i.e., a subgroup of prime power order.
By theorem 13, Si = Ai × Ki, where each Ai is a cyclic group.

 G = (A1 × K1) × ... × (Ar × Kr)
= (A1 × ... × Ar) × (K1 × ... × Kr)

Now o(K1 × ... × Kr) < o(G) and K1 × K2 ... × Kr is an abelian group. By induction hypothesis
K1 × ... × Kr = T1 × ... × Ts , where each Ti is a cyclic subgroup of G of prime power order.
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G = A1 × ... × Ar × T1 × ... × Ts
= direct product of cyclic subgroups of prime power orders.

result is true in this case as well.
By induction result is true for all finite abelian groups G.

Note: By theorem 13, Si is IDP of Ai and Ki
i.e.,  Si = Ai Ki,  Ai Ki = {e}

( ) ( )( ) ( ) ( )
( )

i i
i i i

i i

o A o Ko S o A o K
o A K
( ) ( ) ( ) ( )
( )

i i( ) ( )i i( ) ( )o A o K( ) ( )o A o K( ) ( )( ) ( )i i( ) ( )o A o K( ) ( )i i( ) ( ) o A o K( ) ( )o A o K( ) ( )
o A K( )o A K( )( )i i( )i i( )( )o A K( )( )i i( )o A K( )i i( )( )( )o A K( )

But o(Si) = i
ip i = prime power and thus o(Ai) and o(Ki) being its divisors are also prime powers.

Summing up, we notice that any finite abelian group is product of S1, S2, ....,Sn where each
Si is a group of prime power order and each Si is then a product of cyclic groups of prime
power order. To tackle the uniqueness issue, we notice that each Si is unique as if x 

 is then a product of cyclic groups of prime
Si then

( ) | ( ) ( )i i
i i io x o S p o x p

power order. To tackle the uniqueness issue, we notice that each power order. To tackle the uniqueness issue, we notice that each 
i( ) | ( ) ( )i i i( ) | ( ) ( )i i i( ) | ( ) ( )o x o S p o x p( ) | ( ) ( )o x o S p o x p( ) | ( ) ( )i i io x o S p o x pi i i( ) | ( ) ( )i i i( ) | ( ) ( )o x o S p o x p( ) | ( ) ( )i i i( ) | ( ) ( )( ) | ( ) ( )i( ) | ( ) ( )i( ) | ( ) ( )( ) | ( ) ( )o x o S p o x p( ) | ( ) ( )( ) | ( ) ( )i( ) | ( ) ( )o x o S p o x p( ) | ( ) ( )i( ) | ( ) ( ) i  and thus x  Sj for any j  i.

We wind up the whole process by proving
Theorem 15: Let G be a finite abelian group of order pn, p a prime. Suppose
G = A1 × ...× Ak where each Ai is a cyclic group of order pni with n1 

, p a prime. Suppose
 n2 

, p a prime. Suppose
 ... 

, p a prime. Suppose
 nk > 0. Then

the integers n1,..., nk are uniquely determined, (called invariants of G).
In other words, if G is a finite abelian group of prime power order pn and

G = A1 × A2× ... × Ak
G = B1 × B2× ... × Bl

where Ai and Bj are non trivial cyclic subgroups with
o(A1)  o(A2) ...  o(Ak) > 0
o(B1)  o(B2) ...  o(Bl) > 0

then k = l and o(Ai) = o(Bi) i.
Proof: Suppose G = A1 × ... × Ak

and          G = B1 × ... × Bl
where Ai and Bjs are cyclic groups s.t. o(Ai) = pni, o(Bj) = phj,
n1  n2  ...  nk > 0, h1  h2  ...  hl > 0
Our aim is to show that k = l and ni = hi for all i. Let g  G. Then g = a1a2...ak,

ai  Ai
Since n1  ni  for all i = 1,..., k

pni | pn1  for all i = 1,..., k
pn1 = pni pui  for all i = 1,..., k

So, gpn1 = ap
1

n1 a p
2
n1 ... 1np

ka

= 1 2 2
1 2

n un n u k kp p p p p
ka a a

= e as (ai)
pni = ai

o(Ai) = e for all i
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o(g) | pn1 for all g  G
 o(g)  pn1 for all g  G

Also A1 is a cyclic group of order pn1   an element of order pn1.
So pn1 is the maximal order of elements in G. Similarly, by taking
G = B1 × ... × Bl, we get ph1 to be the maximal order of elements in G.

pn1 = ph1  n1 = h1
Suppose we have proved that n1 = h1, n2 = h2,..., nt–1 = ht–1. Suppose nt  ht.

Let nt > ht = m. Define C = {x pm | x 
1
 G}. Since G is abelian, C is subgroup of G.

Let A1 = < a1 >,..., Ak = < ak >, o(ai) = o(Ai) = p ni

B1 = < b1 >,..., Bk = < bk >, o(bj) = o(Bj) = p hj

We claim that
C = < b1

pm > × ... × < bt–1
pm >

Let xpm  C, x  G
Now x  G  x = x1 ... xt–1 xt...xl,  xj  Bj

xj  Bj  xj = bj
rj

xpm = xpm
1 ... x pm

l

= b1
r1pm ... bt–1

rt–1pm bt
rt pm ...bl

r1 pm,
Now for all j  t, o(Bj) = phj | pht = pm

 pm = phj  pvj

            = e for all j  t
 bj

pm = bj
phj pvj = e for all j  t

xpm = b1
r1pm ... bt–1

rt–1pm

xpm = b1
r1pm ... bt–1

rt–1pm

 < b1
pm >...< bt–1

pm >
C  < b1

pm > ... < bt–1
pm >

But bj
pm  C  < bj

pm >  C
C = < b1

pm > ... < bt–1
pm >

Also x  < b1
pm >  < b2

pm > ... < bt–1
pm >

 x  B1, x  B2...Bt–1
 x  B1, x  B2 ... Bt–1 Bt ... Bl
 x = e.

Similarly for other intersections.
C = < b1

pm > × ...... × < bt–1
pm >

Thus o(C) = o(b1
pm) ...... o(bt–1

pm)

= 11

1 1

( )( )
...

( , ( )) ( , ( ))
t

m m
t

o bo b
p o b p o b

1( )1( )1

1 1( , ( )) ( , ( ))1 1( , ( )) ( , ( ))1 1
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=
11

......
thh

m m
p p
p p

1

Now G = A1 × ...... × Ak = < a1 > × ...... × < ak > and C  G
 C = < a1

pm > × ...... × < ak
pm >

 o(C) = 1

1

( )( )
......

( , ( )) ( , ( ))
k

m m
k

o ao a
p o a p o a

=
1

1
......

( , ) ( , )

k

k

nn

n nm m
p p

p p p p
Since n1 = h1,..., nt–1 = ht–1

o(C) = 
11

...... . ......
( , ) ( , )

t t k

t k

h n nh

m m n nm m
p p p p
p p p p p p

t t k1t t k1h n nt t kh n nt t k1t t k1h n n1t t k1p p p pt t kp p p pt t k1t t k1p p p p1t t k1

So,
1 11 1

...... ...... . ......
( , ) ( , )

t t t k

t k

h h n nh h

m m m m n nm m
p p p p p p
p p p p p p p p

t t t k1 1t t t k1 11 1t t t k1 11 11 11 1t t t k1 11 11 1h h n nt t t kh h n nt t t k1 1t t t k1 1h h n n1 1t t t k1 11 11 11 1t t t k1 11 11 1h h n n1 11 11 1t t t k1 11 11 1h h n nh hh h n nt t t kh h n nt t t kh ht t t kh h n nt t t k1 1t t t k1 1h h n n1 1t t t k1 1h h1 1t t t k1 1h h n n1 1t t t k1 11 1t t t k1 1h h n n1 1t t t k1 1h h1 1t t t k1 1h h n n1 1t t t k1 11 11 11 1t t t k1 11 11 1h h n n1 11 11 1t t t k1 11 11 1h h1 11 11 1t t t k1 11 11 1h h n n1 11 11 1t t t k1 11 11 1p p p p p p1 1p p p p p p1 1t t t kp p p p p pt t t k1 1t t t k1 1p p p p p p1 1t t t k1 11 1t t t k1 1p p p p p p1 1t t t k1 11 11 11 1t t t k1 11 11 1p p p p p p1 11 11 1t t t k1 11 11 1

m m m m n n
p p p p p pp p p p p p1 1p p p p p p1 11 1t t t k1 1p p p p p p1 1t t t k1 11 11 11 1t t t k1 11 11 1p p p p p p1 11 11 1t t t k1 11 11 1

 1 = ..........
( , ) ( , )

t k

t k

n n

n nm m
p p

p p p p

,
( , )

t

t

n

nm
p

p p
 as 1

( , )

j

j

n

nm
p

p p
1

> 1 as nt > m  (pm, pnt) = pm


( , )

t

t

n

nm
p

p p
 = 

tn

m
p
p

 = tn mpn m  > 1

a contradiction.
ni = hi for all i

So, o(G) = o(A1)......o(Ak) = o(B1)......o(Bl)
 pn1........pnk = ph1 ........ pht

If k > l, pn1 .......... pnt pnt+1 .......... pnk = ph1 .......... pht.
 pnl+1 .......... pnk = 1 as ni = hi for all i

which is not true.
 k is not greater then l. Similarly l is not greater than k.

k = l.

Remark: In theorem 15, n1,..., nk are uniquely determined but not the corresponding cyclic
groups. For example, G = Klein’s 4 group can be written in 2 ways as direct product of cyclic
groups.

G = A × B = A × C, where A = {I, (12)(34)}
B = {I, (13)(24)}, C = {I, (14)(23)}
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Problem 45: Let G be the finite abelian group of order mpn where p  m. Then show that G
is IDP of H and K where H = {x G | xpn

 = e} and K = {x G | xm = e} and also that
o(H) = pn.
Solution: It can be easily checked that H and K are subgroups of G.
We show G = HK,  HK = {e}
Now as p  m, g.c.d. (pn, m) = 1 and thus there exist integers s, t such that

1 = sm + tpn

If x G be any element then
x = xsm+tpn = xsm.xtpn

Now ( )( )
n n spsm p m s o Gx x e e a e( )( )( )( )( )nsm p m ssm p m ssm p m snsm p m sn o G( )o G( )( )o G( )( )( )( )o G( )( )( )x x e e a ex x e e a ex x e e a e( )x x e e a e( )( )( )( )x x e e a e( )( )( )sm p m sx x e e a esm p m ssm p m sx x e e a esm p m ssm p m sx x e e a esm p m s ( )o G( )x x e e a e( )o G( )( )( )( )o G( )( )( )x x e e a e( )( )( )o G( )( )( )

 xsm  H

Again n n nm t
tp p m t tpx x e e x K

n nn n ntp p m t tptp p m t tptp p m t tpn ntp p m t tpn nn ntp p m t tpn n
x x e e x Kx x e e x Kx x e e x Ktp p m t tpx x e e x Ktp p m t tptp p m t tpx x e e x Ktp p m t tptp p m t tpx x e e x Ktp p m t tp

So x  HK  G HK  G = HK
Let now x  H K  x  H and x  K

 
npx ex e  and xm = e

  o(x) | pn and o(x) | m
  o(x) = 1 as (pn, m) = 1
  x = e or that H K = {e}

Since G is abelian, H, K are normal subgroups and hence G is IDP of H and K.

Again,
( ) ( )( ) ( ) ( ) ( )
( )

n o H o Kp m o G o HK o H o K
o H K
( ) ( )( ) ( )o H o K( ) ( )( ) ( )( ) ( ) ( ) ( )
( )

o H o K( ) ( )o H o K( ) ( )p m o G o HK( ) ( )p m o G o HK( ) ( ) o H o K( ) ( )o H o K( ) ( )
o H K( )o H K( )
( ) ( )( ) ( )o H o K( ) ( )
( )( )o H K( )( )( )o H K( )

If, p|o(K), then by Cauchy's theorem  k  K s.t., o(k) = p. Also k  K  km = e (by definition
of K) and so p | m, which is not true. Thus p  o(K) or that o(K) is not a multiple of p and
hence o(H) = pn.

A beautiful application of theorem 15 is

Theorem 16: Two abelian groups of order pn are isomorphic if and only if they have the same
invariants.

Proof: Suppose G, G  are finite abelian groups of order pn. Let G and G  be isomorphic and
 be an isomorphism from G onto G

 are finite abelian groups of order 
G .

Let G = A1 × ... × Ak, Ai = < ai >, o(Ai) = pni

Since  is an isomorphism, (Ai) is normal subgroups of G  for all i = 1,..., k.
(A1)...... (Ak) is a subgroup of G

Also gg   G   g  G s.t. (g) = g
g  G  g = x1 ...... xk,  xi  Ai
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 gg  = (g) = (x1) ...... (xk )
(A1) ...... (Ak)

 G   (A1) ...... (Ak)
 G  = (A1) ...... (Ak)

Also, (A1)  (A2) ... (Ak) = {e }, e  = identity of G
as x  (A1), x  (A2) ...... (Ak)
 x = (x1) = (x2)...... (xk),  xi  Ai

 (x1) = (x2......xk)
 x1 = x2 ...... xk
 x1

–1 x2 ...... xk = e
 xi = e for all i
 x = e.

Similarly for other intersections.
G  = (A1) × ... × (Ak). Since Ai = < ai >, (Ai) = < (ai) >.

So o( (Ai)) = o( (ai)) = o(ai) for all i
= pni for all i

Thus, G and G  have same invariants.
Conversely, suppose G and GG  have same invariants.
Let G = A1 × ... × Ak, Ai = < ai >
Then G  = B1 × ... × Bk, Bi = < bi >, o(Ai) = o(Bi)
as G and G  have same invariants.
But any two cyclic groups of same order are isomorphic. Ai and Bi are isomorphic for all

i. So A1 × ... × Ak = G and B1 × ... × Bk = G
But any two cyclic groups of same order are isomorphic. 

 are isomorphic.
We are now in a position to specify the number of non-isomorphic finite abelian groups of

order pn through

Theorem 17: The number of non-isomorphic abelian groups (or number of distinct isomorphism
classes of abelian groups) of order pn, p a prime, equals the number of partitions of n.

Proof: Let G be an abelian group of order pn.
By theorem 15, G = A1 × ... × Ak, Ai = < ai >, o(Ai) = pni

o(G) = o(A1) ... o(Ak)
 pn = pn1... pnk = pn1 + ...... + nk

 n = n1 + ...... + nk,  n1  n2  ......  nk > 0
is a partition of n.
Conversely, consider any partition of n.
Let n = n1 + ... + nk,  n1  n2  ...  nk > 0
be a partition of n.
Let Ai be a cyclic group of order pni for all i.
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Let G = A
1
 × ... × A

k
. Then G is an abelian group of order pn1 +...+ nk = p

n.

Let A = set of all non-isomorphic abelian groups of order pn.

B = set of all partitions of n.

Define � : A�B as follows:

Let G �A. Let G = A
1
 × ... × A

k
, A

i
 = < a

i
>, o(A

i
) = pni.

Let �(G) = n1 + ... + nk = n

Clearly, � is well defined.

Also �(G) = �(G�)

�  n1 + ... + nk = m1 + ... + ml = n

� k = l, n
i
 = m

i
 for all i

� G and G� have same invariants

� G and G� are isomorphic

� G = G�

� � is 1–1

Let n = n
1
 + ... + n

k
, n

1
� n

2
� ... � n

k
 > 0 be a partition of n. Then as seen above

G = A1 × ... × Ak, Ai = < ai >, o(Ai) = p
ni is an abelian group of order pn and

�(G) = n1 + ... + nk

� � is onto.

� o(A ) = o(B), which proves the result.

It is not difficult to prove that two finite abelian groups are isomorphic if and only if their

Sylow subgroups are isomorphic. Now from theorem 17, we get

Theorem 18: Let n = p
1
�1 ... p

r
�r where p

i
s are distinct primes. Then the number of non-

isomorphic abelian groups of order n is p(�1) p(�2)......p(�r) where p(�i) denotes the number

of partitions of �
i
.

Problem 46: Find all the non-isomorphic abelian groups of order

(i) 8   (ii) 6   (iii) 20   (iv) 360.

Solution:

(i) Since 8 = 23, the number of non-isomorphic abelian groups of order 8 is given by p(3),

where p(3) denotes the number of partitions of 3.

Since p(3) = 3  and 3 = 3

3 = 2 + 1

3 = 1 + 1 + 1

The number of non isomorphic abelian groups of order 8 is 3. The groups are

Z Z Z Z Z Z

i.e., Z
8
, Z

4
 × Z

2
, Z

2
 × Z

2
 × Z

2

(ii) As 6 = 21 × 31, the number of non-isomorphic abelian groups is p(1) p(1)

= 1. 1 = 1. The groups being the cyclic groups Z
2
 × Z

3
	 Z

6
.
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(iii) As 20 = 22 × 51, the number of non-isomorphic abelian groups of order 20 is given by

p(2) p(1) = 2. 1 = 2

The groups being Z
4
 × Z

5
, Z

2
 × Z

2
 × Z

5
.

(iv) o(G) = 360 = 23 × 32 × 51

The number of non isomorphic abelian groups of order 360 is

p(3)p(2)p(1) = 3 × 2 × 1 = 6 and as

3 = 3, 3 = 2 + 1, 3 = 1 + 1 +1

2 = 2, 2 = 1 + 1, we have these six groups to be

Z Z Z = Z Z Z

Z Z Z Z = Z Z Z Z

Z Z Z Z Z = Z Z Z Z Z

3
2
Z Z Z Z = Z Z Z Z

2
2
Z Z Z Z Z = Z Z Z Z Z

Z Z Z Z Z Z

Problem 47: Suppose G is an abelian group of order 120 and suppose G has exactly three

elements of order 2. Find the isomorphism class of G.

Solution: o(G) = 120 = 23 
 3 
 5. So the number of non isomorphic abelian groups of order

120 will be p(3)p(1)p(1) = 3 and these are

Z
8

 Z

3

 Z

5
	 Z

120

Z
4

 Z

2

 Z

3

 Z

5

Z
2

 Z

2

 Z

2

 Z

3

 Z

5
.

Z
8

 Z

3

 Z

5 
has only one element (4, 0, 0) of order 2 so it cannot be G

Again, Z
2

 Z

2

 Z

2

 Z

3

 Z

5
 has (1,1,1,0,0), (1,0,1,0,0), (0,1,1,0,0) and (1,1,0,0,0) as

elements of order 2

so it cannot be G

whereas  Z4 
 Z2 
 Z3 
 Z5 has exactly three elements

(2, 1, 0, 0), (0, 1, 0, 0), (2, 0, 0, 0)

which have order 2 and hence G is Z
4

 Z

2

 Z

3

 Z

5

Problem 48: Let G be a finite abelian group under addition. Let n be a +ve integer. Define

nG = {nx | x ��G} and G[n] = {x ��G | nx = 0} then show that nG and G[n] are subgroups

of G and .
[ ]

G

G n

Solution: We use 0 to denote identity of G.

Since nx, ny ��nG ��nx � ny = n(x � y) ��nG, 0 = n.0 ��nG, nG  is a subgroup. Similarly

one can see that G[n] is a subgroup.

(See Exercise 6 on page 77)

Define a mapping � :G � nG, s.t.,

� (x) = nx
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then is a well defined onto homomorphism
(x + y) = n(x + y) = nx + ny = (x) + (y) etc.,

Thus by Fundamental theorem of group homomorphism 
GnG

Ker
G

Ker
Now x KerKer   (x) = 0  nx = 0  n  G[n]

confirms that .
[ ]
G nG

G n
nG

Remark: If binary composition of G is multiplication, the above subgroup G[n] will be
{x G | xn = e} and we can denote it by Gn. Again the subgroups nG will be {xn | x 

] will be
G}and

we can denot it by Gn. We have thus shown that .nG G
Gn

nG  It can be a good exercise for the

reader to write the above proof independently under the multiplicative composition.

Problem 49: If p is a prime not dividing o(G), show that pG  G, where G is a finite additive
abelian group.

Solution: By previous problem .
[ ] {0}
G GpG G

G p
G G .
[ ] {0}

G
G p[ ] {0}G p[ ] {0}

Problem 50: Let G ={1, 7, 17, 23, 49, 55, 65, 71} be the group under multiplication modulo 69.
Express G as EDP and IDP of cyclic groups.

Solution: o(G) = 8 = 23, thus as seen in problem 46 above the number of non isomorphic
abelian groups is p(3) = 3 and these are

Z8,
 Z2

  Z4 Z2,
 Z2

  Z2
Again, we notice that the elements 7, 23, 55 have order 4 and the elements 17, 49, 65, 71 have
order 2 in G.

Since Z8 has an element of order 8 and G has no element of order 8, therefore, G is not Z8

Again Z2
  Z2

 Z2 has no element of order 4 and so we are left with the only choice that G
is Z4

 
Again 

 Z2

To write G as IDP of cyclic groups, we pick up an element of maximum order 4 (see theorem
13), say, 7 then < 7 > = {7, 49, 55, 1} = H is one of the factors.

Again, taking an element of order 2, say 65, we get < 65 > = {65, 1} = K. Here

( ) ( ) 4 2( ) 8 ( )
( ) 1

o H o Ko HK o G
o H K
( ) ( ) 4 2( ) ( ) 4 2o H o K( ) ( ) 4 2( ) ( ) 4 2 8 ( )
( ) 1

o H o K( ) ( ) 4 2o H o K( ) ( ) 4 2 8 ( )o G8 ( )
o H K( ) 1o H K( ) 1
( ) ( ) 4 2( ) ( ) 4 2o H o K( ) ( ) 4 2
( ) 1( ) 1o H K( ) 1( ) 1( ) 1o H K( ) 1

thus G = HK, H K = {1} and hence this is an expression of G as IDP of H & K.

This expression is not unique as we can have other representations e.g., G = < 7 >.< 17 > or
< 23 >.< 65 >
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Exercises
1. Find all non isomorphic abelian groups of order

(i) 15 (ii) 35 (iii) p3, p a prime.
2. If G is a finite abelian group and o(G) = p1 p2,...pn where pis are distinct primes, show

that G is cyclic.
[Hint: G is direct product of Sylow pi-subgroups]

3. Show that any abelian group of order 45 has an element of order 15.
4. If G is a finite abelian group under addition and o(G) = mn s.t., (m, n) = 1, show that

G = G[m]
 is a finite abelian group under addition and 

G[n] EDP and o(G[m]) = m, o(G[n]) = n. (See problem 48).
5. Let p be a prime. Define G(p) = {x G | pnx = 0 for some n  0} where G is a finite

abelian group. Let H be a finite abelian group where f: G  H is a homomorphism.
Show that f(G(p))
abelian group. Let  be a finite abelian group where 

H(p)  for all primes p.

A group is called a p-group if order of each element of the group is some power of p,
where p is some prime. K4 and quaternion groups are p-groups, whereas S3 is not.
If G is a finite group, then G is a p-group iff o(G) = pn for some n.
If p is a prime s.t., pn divides o(G) and pn+1 does not divide o(G) then any
subgroup H of order pn is called a Sylow p-subgroup.
The three theorems by Sylow ensure that every finite group has a Sylow p-
subgroup. If there are more than one Sylow p-subgroups then they are conjugate
and finally the number of Sylow p-subgroups is of the type 1 + kp, where 1 + kp
divides o(G) and k  =  0, 1, 2,……
Survey of non-abelian groups of order 8 and 6 suggests that any non-abelian
group of order 6 is isomorphic to S3 and there are two non-abelian groups of
order 8, namely the dihedral group and the quaternion group.
There are two types of direct products, namely external direct product (EDP) and
internal direct product (IDP), which are isomorphic.
A finite abelian group is a direct product of its Sylow p-subgroups.
Fundamental theorem of finite abelian groups states that a finite abelian group
is a direct product of cyclic groups of prime power order and this factorization
is unique.
Two abelian groups of order pn are isomorphic iff they have the same invariants.
The number of non-isomorphic abelian groups of order pn, where p is a prime,
equals the number of partitions of n.

A Quick Look at what's been done
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Group Actions

Definition: Let G be a group and A be a non empty set, then G is said to act on A if  a function
* from G × A 

be a group and
 A satisfying

(i) g1 * (g2 * a) = (g1g2) * a
(ii) e * a = a  g1, g2  G and a  A

This mapping * is called a group action of G (or a G action) on A and A is called a G-set
and we express it by saying that G acts on A. This is also referred to as action on the left. We
can define action of G on A on the right by considering mapping from
A × G  A satisfying

a * (g1g2) = (a * g1) * g2 and a * e = a  a A, g1, g2  G
Again, sometimes and when there is no scope of confusion we replace g * a by g.a or ga.

Also, of course, g1g2 in (i) above refers to g1.g2 in G. One may remark here that * is not a
binary composition.

Example 1: Let G be a group and A be any non empty set. Define * from G × A A s.t.,
g * a = a a  A, g  G

then since g1 * (g2 * a) = g1 * (a) = a = (g1 g2) * a
and e * a = a a  A, g1, g2  G
We find * is a group action.
Hence G acts on A and A is a G-set.
This action is called the trivial G action.

Group Actions, Solvable and
Nilpotent Groups

Introduction
For this culminating chapter on groups we have selected a few more results that give an
insight into the structure of groups. We start with group actions including its applications in
proving a few results some of which we had proved earlier also.  We then move on to
solvable groups and nilpotent groups.

6



6. Group Actions, Solvable and Nilpotent Groups 267

Example 2: Let G be any group and take A = G. Define * by
g * a = ga g  G,  a  A = G

Then * is a group action as
g1 * (g2 * a) = g1 * (g2a) = g1(g2a) = (g1g2)a = (g1g2) * a
e * a = ea = a g1, g2  G, a  A

This action of G on itself is called action by (left) translation or (left) multiplication
If we define * by g * a = ag–1 then again * is a group action as

g1 * (g2 * a) = g1 * (a 1
2g 1
2 ) = (a 1

2g 1
2 ) 1

1g 1
1  = a(g1g2)

–1 = (g1g2) * a

e * a = ae–1 = a.
This is referred to as action of G by (right) translation or (right) multiplication. This action

is also sometimes called the regular action of G on itself.

Example 3: Let G be any group and let A = G.
Define * : G  A  A s.t.,

g * a = gag–1 g  G, a  A
Then * is a group action (prove!) and is called action by conjugation.

Example 4: Let H be a normal subgroup of G and let A = G/H = the set of all left cosets of
H in G. Define

* : G  A  A, s.t.,
g * (aH) = gaggag 1H, g  G, aH  A = G/H

Then since g1*(g2*aH) = g1*(g2a 1
2g 1
2 )H  = g1(g2a

1
2g 1
2 ) 1

1g 1
1 H = (g1g2)a(g1g2)

1H

= (g1g2) * aH
and e * aH = eae 1H = aH   aH aH  A

We notice that * is a group action and thus G/H is a G set.
Example 5: Let G be a group and A be the set of all subgroups of G.
Define * : G  A   A s.t.,

g * H = gHg= gHg 1 g  G, H  A
then as above one can check that * is a group action.

Theorem 1: Let G be any group and A be any non empty set. Then any homomorphism from
G  Sym (A) the symmetric group of A defines an action of G on A. Conversely, every action
of G on A induces a homomorphism from G 

 the symmetric group of A defines an action of G on A. Conversely, every action
 Sym(A).

Proof: Let  : G Sym(A), be any homomorphism.
For any g  G, Let (g)  g
where g is 1-1, onto map from A  A, i.e., a permutation on A.
Since  is a homomorphism, (g1g2) = (g1) (g2)
i.e., g1g2

= g1 g2
Define * : G × A  A s.t.,
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g * a = g(a), g  G, a  A

Since g1 * (g2 * a) = g1 * 2 1 2 1 2
( ( )) ( ( )) ( )g g g g ga a a

1 2
( ( )) ( ( )) ( )

1 2
( ( )) ( ( )) ( )

1 2g g g g g2g g g g g2 1 2g g g g g1 2 1 2g g g g g1 2
( ( )) ( ( )) ( )g g g g g( ( )) ( ( )) ( )

2
( ( )) ( ( )) ( )

2g g g g g2
( ( )) ( ( )) ( )

2 1 2
( ( )) ( ( )) ( )

1 2g g g g g1 2
( ( )) ( ( )) ( )

1 2 1 2
( ( )) ( ( )) ( )

1 2g g g g g1 2
( ( )) ( ( )) ( )

1 2
( ( )) ( ( )) ( )a a a( ( )) ( ( )) ( )( ( )) ( ( )) ( )g g g g g( ( )) ( ( )) ( )a a a( ( )) ( ( )) ( )g g g g g( ( )) ( ( )) ( )   = g1g2 * a

and e * a = e(a) = a  where e = I = identity of Sym(A). We find * is a group action.
(Notice as is a homomorphism, identity is mapped to identity, i.e., e = e = I)
Conversely, Suppose G acts on A under the group action * .
Define a map : G  Sym(A), s.t.,

(g) = g
where  g : A  A, s.t., 

g

g(a) = g * a,
To show that  is well defined, we first show that g : A  A is 1-1 onto
Now g(x) = g(y)   g * x = g * y

  g–1 * (g * x) = g–1 * (g * y)
  (g–1g) * x = (g–1g) * y
  e * x = e * y   x = y

or that g is 1-1.
Again, if y  A be any element then g–1 * y  A for g G
(Note, *: G  A  A,  y  A, g  G  gg 1  G  gg 1

* y  A)
Now  g(g

–1 * y) = g * (g–1 * y) = (gg–1) * y = e * y = y
Hence, 

g

g is onto and this g  Sym A

Now (g1 g2) = 
1 2g g1 2g g1 2g g1 2

 and
1 2

( )g g a
1 2g g1 2g g1 2

 = (g1g2 ) * a

and (g1) (g2) = 
1 2g g1 2g g1 2g g1 2

where 
1 2 1 2 1 2( ) ( ( )) ( )g g g g ga a g a

1 2 1
( ) ( ( )) ( )g g g g1 2g g g g1 2 1 2g g g g1 2
( ) ( ( )) ( )g g g g( ) ( ( )) ( )g1g1
a a g a

1 2
a a g a

1 2 1
a a g a

1
( ) ( ( )) ( )a a g a( ) ( ( )) ( )

1 2
( ) ( ( )) ( )

1 2
a a g a

1 2
( ) ( ( )) ( )

1 2 1
( ) ( ( )) ( )

1
a a g a

1
( ) ( ( )) ( )

1g g g ga a g ag g g g1 2g g g g1 2
a a g a

1 2g g g g1 2
( ) ( ( )) ( )g g g g( ) ( ( )) ( )a a g a( ) ( ( )) ( )g g g g( ) ( ( )) ( )

1 2
( ) ( ( )) ( )

1 2g g g g1 2
( ) ( ( )) ( )

1 2
a a g a

1 2
( ) ( ( )) ( )

1 2g g g g1 2
( ) ( ( )) ( )

1 2 ga a g ag1g1
a a g a

1g1
( ) ( ( )) ( )g( ) ( ( )) ( )a a g a( ) ( ( )) ( )g( ) ( ( )) ( )

1
( ) ( ( )) ( )

1g1
( ) ( ( )) ( )

1
a a g a

1
( ) ( ( )) ( )

1g1
( ) ( ( )) ( )

1
  

= g1*(g2 * a)
= (g1 g2)* a

or that
1 2g g1 2g g1 2g g1 2

 = 
1 2g g1 2g g1 2g g1 2

ie., (g1 g2) = (g1) (g2)

Hence  is a homomorphism, which proves our theorem.

Remark: We thus realise that for any group action of a group G on a set A, there corresponds
a homomorphism 

 We thus realise that for any group action of a group 
 from G 

 We thus realise that for any group action of a group 
 Sym (A). This homomorphism is sometimes called the associated

(or corresponding) permutation representation of the given action.

Consider, for instance, the trivial group action

*: G  A  A s.t., g * a  a
If : G   Sym(A) be the corresponding permutation representation, then here (g) = g where

g: A  A s.t., g(a) = g * a  a and thus

g(a) = a   a  A

or that g = I = e and so (g) = g = I   g

i.e., is the trivial homomorphism.
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Cor. 1: We can prove Cayley’s theorem that any group G is isomorphic to a permutation group
by using above theorem. We know that any group G acts on itself (see example 2) under *
defined by g * a = ga, a, g 
by using above theorem. We know that any group 

 G.
By the above theorem, the corresponding permutation representation to this action is given

by the homomorphism.
 : G  Sym(A), s.t.,
(g) = g

where  g : A  A s.t., (A = G)
 g(a) = g * a = ga

Let (g1) = (g2)
 g1

 = g2

 g1
(x) = g2

(x) x A = G
 

g

g1
(e) = 

g

g2
(e)

 g1e = g2e
 g1 = g2

or that  is a 1-1 homomorphism and so G is isomorphic to a subgroup of the symmetric
group Sym(A)  = Sym(G).
Cor. 2: Let G act on G by conjugation, then  a homomorphism

: G  Sym(G) s.t.,
( ) = g

where g: G 
g
 G s.t., g(a) = g * a = gag–1

Now here Ker = {g  G | (g) = I} = {g  G | g = I}
= {g  G | g(x) = e(x)  x}
= {g  G | gxggxg 1 =  exe 1} {g  G|gx = xg  x  G} = Z(G)

Thus by Fundamental theorem, ( )
Ker

GG( )
Ker

G( )G( )  i.e.,  ( )
( )
G I G

Z G
( )I G( )I G( )

as (G) = { g | g(a) = gag–1} = I(G) = group of all inner automorphisms of G.
(see page 169 also).

Kernel of an action
Definition: Let *: G  A  A be a group action then Kernel of  * is defined to be the set

Ker(*) ={g  G | g * a = a  a  A}
i.e., those elements of G that fix all elements of A.
It is easy to see that Ker(*) is a subgroup of G.
Ker(*) as e  Ker(*) as e * a = a  a  A
If x, y  Ker(*), then  x * a = a, y * a = a  a  A
Since xy * a = x * (y * a) = x * a = a  a  A
we find xy  Ker(*).
Again as e * a = a, (x 1x) * a = a
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 x 1 * (x * a) = a
 x 1 * a = a
 x 1  Ker(*)

Thus Ker(*) is a subgroup of G. We can go a step further and show that if be the
corresponding permutation representation of * then Ker(*) = Ker

. We can go a step further and show that if 
) = Ker

We have : G  Sym(A), a homomorphism.

such that (g) = g

where g : A  A s.t.,  g(a) = g * a

Now, Ker = {g G | (g) = I} = {g  G | g = e}
= {g  G | g(a) = e(a)  a}
= {g  G | g * a = e * a}
= {g  G | g * a = a  a A} = Ker(*)

proving our assertion.

Definition: An action * of G on A is said to be faithful if distinct elements of G induce distinct
permutations of A. In other words, * is said to be faithful if whenever g * a = a then g = e.

Let * be a group action.
Since Ker(*) = {g G | g * a = a}
We find, if * is faithful then Ker(*) contains only e as only e * a = a
So Ker(*) = {e}which in turn implies that Ker  = {e} where is the corresponding permutation
representation. This gives us that 

}which in turn implies that Ker 
is 1-1.

So, if  * is faithful action then is 1-1. Conversely, If is 1-1 then Ker  = {e} Ker(*) = {e}
i.e., e is the only element in G that gives g * a = a or that * is faithful
Example 6: The trivial action is not faithful (if o(G) > 1) as in this g * a = a holds for all g and
therefore, Ker(*)  = G.
Example 7: If  * is the group action by left translation then g * a = ga and

Ker(*) 
Example 7: 

= {g 
is the group action by left translation then 
 G | g * a = a} = {g 

is the group action by left translation then 
 G |ga = a}

= {g  G | ga = ea  a}
= {g  G | g = e} = {e}

i.e., * is faithful action.
Orbits and Stabilizers
Definition: Let G be a group acting on a set A under *. Let a  A be any fixed element
Then the set

Ga = {g  G | g * a = a}
is called the stabilizer of a in G.
Ga is a subgroup of G. Indeed

Ga   as e  Ga as e * a = a
Again, if x, y Ga then x * a = a, y * a = a
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and as xy 1
* a = x * (y

1
* a) =  x * (y 1

* (y * a))
= x * (y 1 y * a) = x * a = a

we find xy 1  Ga.
Example 8: If G acts on A trivially, then for any a  A

Ga = {g  G | g * a = a} = G as under trivial action g * a = a g  G
Example 9: Suppose G acts on itself by conjugation

i.e., g * a = gaggag 1 g  G,  a G
For any a  G,

Ga = {g  G | g * a = a} = {g  G | gag gag 1 = a}
    = {g  G | ga = ag} = N(a) the normaliser of a in G.

Definition: Let G be a group acting on a set A under *. For any a  A, let
Ga = {x  A | x = g * a for some g G}
    = {g * a | g G}

then Ga is called an orbit of a under G or orbit of G containing a
Since e * a = a, a Ga and thus orbit is a non empty subset of A.
We may remark here that we are writing Ga in place of G * a.
As a particular case, if G sets on itself (A = G) by translation then orbit of any a A = G is
given by

Ga = {g * a | g G} = {ga | g G} = G
Problem 1: Let G act on a set A under *. For any a, b A, define a ~ b iff  g G, s.t.,
a = g * b, then show that ~ is an equivalence relation and for any a A, the equivalence class
of a is the orbit of a in G.
Solution : Reflexivity follows as e * a = a a

and thus a ~ a a
For symmetry, assume that

a ~ b   g G, s.t., a = g * b
Now gg 1 * a = gg 1 * (g * b) = (gg 1g) * b = e * b = b
shows that b ~ a
Transtivity is easily seen to be true.
Hence ~ is an equivalence relation.
Let a A be any element then equivalence class of a is given by

cl(a) = {x A | x ~ a} = {x A | x = g * a for same g G}
= {g * a | g G}

which is nothing but the orbit of a under G.
We thus realize that orbits are equivalence classes.
So a group G acting on a set A leads to a partition of A into disjoint equivalence classes under
the action of G and those classes are nothing but the orbits of elements of A. Hence A can be
expressed as the union of distinct orbits of elements of A.
Example 10: Let H be a subgroup of a finite group G and suppose H acts on G under *

* : H  G  G s.t.,
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h * g = hg, h H, g G
Let a G by any element, then orbit of a is

H*a = Ha) = {x  G | x = h * a  for same h  H}
= {x  G | x = ha  for same h  H}
= {ha | h  H} = Ha

the right coset of H in G.
The mapping f : H  H * a  s.t.,

f(h) =  h * a = ha
is clearly 1-1, onto and thus o(H) = o(H * a)
i.e., order of each orbit is equal to order of H. Since orbits of elements of G partition G into

equivalence classes, we get
G = O1  O2 ... Ot.

where Oi are distinct orbits in G.
Thus o(G) = o(O1) + o(O2) + ... +o(Ot)

= o(H) + o(H) + ... +o(H) (t times)
 o(H)|o(G)

and so we have proved Lagrange's theorem.
We may notice in passing that the stabilizer of a is given by

Ha = {h  H | h * a = a} = {h  H|ha = a}
={h  H | h = e} = {e}.

Theorem 2 (Orbit-Stabilizer): Let G be a group that acts on a set A. Let a  A, then there
exists a one-one onto map from Ga to the set of all left cosets of Ga in G.
Proof: We know Ga is a subgroup of G. Let G/Ga denote the set of all left cosets of Ga in G.
Define a map : Ga  G/Ga s.t.,

(g * a) = gGa g  G
Then g1 * a = g2 * a

 1
1g 1
1 (g1 * a) = 1

1g 1
1 (g2 * a)

 ( 1
1g 1
1 g1) * a = 1

1g 1
1 * (g2 * a)

 a = 1
1g 1
1 g2 * a

 1
1g 1
1 g2  Ga  g1Ga = g2Ga (Definition of Ga)

 (g1 * a) =  (g2 * a)
Thus  is well defined 1-1 map. is clearly onto.
Cor: If G is a finite group acting on A, we find from above that

o(Ga) = o(G/Ga) = Index of Ga in G.

i.e., ( )( )
( )a

o Go Ga
o G

( )
( )

o G( )o G( )
o G( )o G( )
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i.e., o(G) = o(Ga).o(Ga)
Example 11: Let G be a group acting on itself (A = G) by conjugation. Let a  G be any
element, then orbit of a under G is

Ga = {g * a | g  G} = {gaggag 1 | g  G} = cl(a), the conjugate class of a (See, for
definition, page 182).
Hence under the group action by conjugation, we notice each orbit is a conjugate class.
Example 12: Let G be a finite group acting on itself (A = G) by conjugation, i.e.,

* : G × G  G, s.t.,
 g * a = gag gag 1

Let a  G be any element, then the stabilizer of a in G is
Ga = {g  G | g * a = a} ={g  G |gaggag 1 = a}

= {g  G | ga = ag} = N(a) the normalizer or centralizer of a in G.
Also, orbit of a under G is given by

Ga = {g * a | g  G}={gaggag 1 |g  G} = cl(a), the conjugate class of a
(See Page 182).
Since o(Ga) = Index of Ga in G, by previous theorem are find

o(cl(a)) = Index of Ga in G = Index of N(a) in G
or that

( )( ( ))
( ( ))
o Go cl a

o N a( ( ))
o G

o N a( ( ))o N a( ( ))
i.e., number of conjugates of a is the index of N(a) in G.
a result we proved earlier, (see page 184).
Since the orbits (or the conjugate classes) partition G,
We can write

( )
a G

G cl a
a G

( )G cl a( )G cl a( )
a Ga G

( ) ( )
( ) ( ( )) ( ( )) ( ( ))

a G a Z G a Z G
o G o cl a o cl a o cl a

( ) ( )a G a Z G( )a Z G( ) a Z G( )a Z G( )( )
( ) ( ( )) ( ( )) ( ( ))

( )
( ) ( ( )) ( ( )) ( ( ))

( )a G
( ) ( ( )) ( ( )) ( ( ))

a G
( ) ( ( )) ( ( )) ( ( ))

( )a Z G( )( )
( ) ( ( )) ( ( )) ( ( ))

( )a Z G( )
( ) ( ( )) ( ( )) ( ( ))

( )
o G o cl a o cl a o cl a( ) ( ( )) ( ( )) ( ( ))o G o cl a o cl a o cl a( ) ( ( )) ( ( )) ( ( ))

( )
( ) ( ( )) ( ( )) ( ( ))

( )
( ) ( ( )) ( ( )) ( ( ))

( ) ( )
( ) ( ( )) ( ( )) ( ( ))

( )a G
( ) ( ( )) ( ( )) ( ( ))

a G
( ) ( ( )) ( ( )) ( ( ))

a Z G( )a Z G( )
( ) ( ( )) ( ( )) ( ( ))

a Z G
( ) ( ( )) ( ( )) ( ( ))

( )
( ) ( ( )) ( ( )) ( ( ))

( )a Z G( )
( ) ( ( )) ( ( )) ( ( ))

( ) a Z G( )a Z G( )
( ) ( ( )) ( ( )) ( ( ))

a Z G
( ) ( ( )) ( ( )) ( ( ))

( )
( ) ( ( )) ( ( )) ( ( ))

( )a Z G( )
( ) ( ( )) ( ( )) ( ( ))

( )
( ) ( ( )) ( ( )) ( ( ))o G o cl a o cl a o cl a( ) ( ( )) ( ( )) ( ( ))

( )
( ( )) ( ( ))}

a Z G
o Z G o cl a

( )a Z G( )a Z G( )( )
( ( )) ( ( ))}

( )
( ( )) ( ( ))}

( )a Z G
( ( )) ( ( ))}

a Z G
( ( )) ( ( ))}

( )a Z G( )( )
( ( )) ( ( ))}

( )a Z G( )
( ( )) ( ( ))}

( )
o Z G o cl a( ( )) ( ( ))}o Z G o cl a( ( )) ( ( ))}( ( )) ( ( ))}

( )
( ( )) ( ( ))}

( )a Z G( )a Z G( )
( ( )) ( ( ))}

a Z G
( ( )) ( ( ))}

( )
( ( )) ( ( ))}

( )a Z G( )
( ( )) ( ( ))}

( )
( ( )) ( ( ))}o Z G o cl a( ( )) ( ( ))}

Recall, a  Z(G)  cl(a) = {a}
i.e., o(cl(a)) = 1 (See Page 182)

Thus, o(G) = o(Z(G)) + 
( )

( )
( ( ))a Z G

o G
o N a( )a Z G( )a Z G( )( )( )a Z G( ) o N a( )a Z G( )a Z G( )

and the class equation of G is established.

Notice here ( )
( ( ))
o G

o N a
= Index of N(a) in G, a Z(G)

Problem 2: Show (using group actions) that the number of conjugates of a subset S of a group
G is the index of the normalizer of S in G.
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Solution: Let P (G) be the power set of G, i.e., P (G) contains all subsets of G.
Define * : G × P (G)  P (G), s.t.,

g * S = gSg gSg 1 g  G, S  P (G)
then clearly * is the group action by conjugation.
For any S  P (G), the orbit of S in G is

GS = {g * S | g  G} ={gSggSg 1|g  G} = cl(S), the conjugate class of S and thus
o(cl(S)) gives the number of conjugates of S.

So our aim is to show that o(cl(S)) = ( )
( ( ))
o G

o N S
Now stabilizer of S in G is

GS = {g  G | g * S = S} = {g  G | gSg gSg 1 = S} = N(S)
which we know is a subgroup of G.
Let G/GS denote the set of all left cosets of GS in G.
Define : cl(S)  G/GS s.t.,

(g * S) = gGS g  G
Then g1 * S = g2 * S

 1
1g 1
1 * (g1 * S) = 1

1g 1
1 * (g2 * S)

 1
1g 1
1 g1 * S = 1

1g 1
1 g2 * S

 S = 1
1g 1
1 g2 * S

 1
1g 1
1 g2  GS (Definition of GS)

 g1GS  g2GS
 (g1 * S) = cl(g2 * S)

or that is well defined, 1-1 mapping. is also easily seen to be onto.
Hence o(cl(S)) = o(G/GS) = No. of distinct left cosets of GS in G.

= Index of GS in G.
= Index of N(S) in G.

giving us the required result.
Remark: We know that all the Sylow p-subgroups are conjuage and thus if P is any Sylow
p-subgroup then by above remark, the number of conjugates of P is index of N(P) in G, or

that the number of Sylow p-subgroups is ( ) .
( ( ))
o G

o N P
Problem 3: Show that there is no simple group G of order 216.
Solution: We have o(G) =216 = 23.33

Number of Sylow 3-subgroups is (1 + 3k) s.t., (1 + 3k) | 23

 k = 0 or 1
If k = 0,  a unique normal subgroup of order 27
So G is not simple.
If k = 1,  4 Sylow 3-subgroups each of order 27.
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If P is any one of these, then the number of Sylow 3-subgroups is ( )
( ( ))
o G

o N P
= Index of N(P)

in G.

where N(P) is normalizer of P.
So  4 = Index of H in G, where H = N(P)

By Index theorem, if H is a proper subgroup of G  s.t., o(G) ( )Gi H then H contains a non
trivial normal subgroup of G. In particular then G is not simple.

Here o(G) ( )Gi H  as 216 4
Hence the result follows.
Definition: An action of a group G on a set A is called transitive if there exists only one orbit.
In other words, for a, b 

 An action of a group 
 A, a = g * b for some g  G.

Example 13: Let H  G and A = set of all left cosets of H in G. Then the action of G by left
multiplication on A is transitive.
As if * is the action, then g * aH = gaH
If aH, bH  A be any two members, then by taking g = ba 1  G, we find

g * aH = gaH = (ba 1)aH = bH
 action is transitive.

Problem 4: Let A = {1, 2, 3} and G = S3. Define * : G × A  A s.t.,  * a = (a). Show
that * is a group action and find all the stabilizers and orbits. Is the action transitive?
Solution: Since

1 * ( 2 * a) = 1 * ( 2(a)) = 1( 2(a))
  = 1 2 * a and I * a = I(a) = a

* is a group action
For any a  A, Stabilizer of a is given by

Ga = {g  G | g * a = a}
Thus

G1 = {   G |  * 1 = 1} = {   G |  (1) = 1} = {I, (23)}
Similarly then G2 = {I, (13)} and G3 = {I, (12)}
Since o(G) = o(Ga).o(Ga) we find

o(G) = o(G1).o(G1)

 o(G1) = 
6
2

 = 3 and as G1 A and o(A) = 3

o(G1) = 3
or that G1 = A

Similarly G2 = A, G3 = A
or that there is only one orbit. Hence the action is transitive.
Remark: The above problem can be generalized to G = Sn, A = {1, 2, 3,..., n}
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Theorem 3: Every permutation in Sn can be expressed as a unique product of disjoint cyles.
Proof: Let A = {1, 2, ... ,n} and let   Sn be any permutation.

Let G = < > = < , 2, 3, ...>
Define * : G × A  A s.t.,

   i 
* (a) = i(a) a  A

then  *  is easily seen to be a group action, which partitions A into a unique set of equivalence
classes, the orbits.
Let a  A be any element and let O denote the orbit of a, then

O = Ga = { i * a | i  G} = { i(a) | i  G}
Also, stabilizer of a is given by

Ga = { i  G | i * a = a} = { i  G | i(a) = a}
By theorem 2 on page 272 we know  a one one onto map

 : O  G/Ga s.t.,
( i(a)) = iGa

where G/Ga is set of all left cosets of Ga in G.

and o(O) = o(G/Ga) = Index of Ga in ( )
( )a

o GG
o G

( )
( )

o G( )o G( )
o G( )o G( )

Since G is cyclic (and so abelian) Ga is normal subgroup of G and thus the quotient group
G/Ga exists and o(G/Ga) = m = least +ve integer s.t., m  Ga (See Page 109)

Thus ( )
( )a

o G m
o G

m and so o(O) = m.

Now distinct left cosets of Ga in G are
Ga,

2Ga,..., 
mGa = Ga  as m  Ga

i.e., these  are
eGa, Ga, 2Ga..., 

m 1Ga
In view of the 1-1 onto mapping , we thus find the distinct members of O will be a, (a),In view of the 1-1 onto mapping 

2(a)...,
In view of the 1-1 onto mapping 

m
In view of the 1-1 onto mapping 

1 (a).
Elements of O written in this manner show that  cycles these elements, i.e., on the orbit O
of length m,  is acting as an m-cycle. We thus find a cyclic decomposition for 

 cycles these elements, i.e., on the orbit 
 in Sn. The

uniqueness part follows as the orbits of G are determined uniquely. (The order in which the
orbits are arranged can, of course, vary).
Example 14: Let A = {1, 2,...,10} and let  S10 be the permutation

1 2 3 4 5 6 7 8 9 10
3 5 4 6 9 1 2 10 7 8
1 2 3 4 5 6 7 8 9 10
3 5 4 6 9 1 2 10 7 83 5 4 6 9 1 2 10 7 8

Let G = < >, then proceeding as in the theorem above, we get a group action * giving a unique
set of orbits. Let us take any element of A, say 1, and suppose O is the orbit of 1. The stabilizer
of 1 is

G1 = { i  G | i(1) = 1}
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Now (1) = 3
2(1) = (3) = 4
3(1) = (4) = 6
4(1) = (6) = 1

So , 2, 3 G1 and 4   G1. Thus m = 4, the least -ve integer s.t., 4   G1
Thus o(O) = 4 and the members of O are 1, (1), 2(1), 3(1),

i.e., 1, 3, 4, 6
The corresponding cycle for  is, therefore, (1346) proceeding similarly with the remaining
elements of A, we get the other cycles, and we find 

 is, therefore, (1346) proceeding similarly with the remaining
 = (1346)(2597)(810).

Problem 5: Suppose a group G acts on two sets S and T. Show that * defined by
g * (s, t) = (gs, gt) is a G action on S × T and prove further that stabilizer of (s, t) is the
intersection of the stabilizers of s and t.
Solution: We are given that G acts on S and T. Define * (G × (S × T)  S × T) by

g * (s, t) =(gs, gt)
g  G, (s, t)  S × T (g G, s  S  gs  S as S is a G set etc.)
Then * is a group action as

g1 * (g2 * (s, t)) = g1 * (g2s, g2t) = (g1(g2s), g1(g2t))
[(g1g2) * (s, t) = ((g1g2)s, (g1g2)t) = (g1(g2s), g1(g2t))]

(g1(g2s) = (g1g2)s  as S is a G set)
Also e * (s, t) = (es, et) = (s, t)
Now stabilizers of s and t are given by

Gs = {g  G | gs = s}, Gt = {g  G | gt = t}
Stabilizer of (s, t) is given by

(S × T)(s, t) = {g  G | g * (s, t) = (s, t)}
= {g  G | (gs, gt) = (s, t)}
= {g  G | gs = s, gt = t} = Gs  Gt

We have used the same symbol ‘ ’ to describe the group actions of G on S and T.

Definition: Suppose G acts on two sets S and T. We say that the two actions of G are
equivalent if 

Suppose
 a  1-1 onto map  : S  T s.t.,  (g * x) = go

. We say that the two actions of
(x), g 

. We say that the two actions of
 G, x 

. We say that the two actions of
S.

where * and o are the actions of G on S and G on T respectively.

Example 15: Let G act on S = G under (left) translation
i.e., g * x = gx (G × G  G)
and also G act on T = G under (right) translation
i.e., gox = xg–1

Then the map  : S  T s.t.,
(x) = x–1

is the required equivalence.
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Here (x) = (y)  x–1 = y–1  x = y or that  is 1-1
 is clearly onto.

Also (g * x) = (gx) = (gx)–1 = x–1g–1

and go (x) = (x)g–1 = x–1 g–1

Hence (g * x) = go (x) and so  is equivalence map.

Definition: Let G be a group acting on a set S. The set
FS = {x  S | a * x = x  a  G}

is called the fixed subset of S.
In example 10 FS is the set {g  G | hg = g  h  H}.

Lemma: Let G be a finite group acting on a finite set S.
Let x1, x2, ..., xn  S be such that Gxi  {xi} for any i = 1, 2, ..., n. Then

o(S) = o(FS) + 
1
[ : ]

n

i
i

G Gx
1
[ : ]

n

i
[ : ]G Gx[ : ]

1

where [G : Gxi] denotes the index of Gxi in G.

Proof: We have Gxi  {xi} for any i = 1, 2, ..., n
thus o(Gxi) > 1  i = 1, 2, ..., n
Again if x  FS then a * x = x  a  G

 Gx = {x}
i.e., orbits with one element.
Now S can be expressed as union of all its orbits (see exercises)

Thus S = 
x S
Gx

x Sx S
Gx

x S
Gx

 o(S) = ( )
x S

o Gx
x S

( )
x S

o Gx( )o Gx( )
x S

 = ( ) ( )
S Sx F x F

o Gx o Gx
S Sx F x FS Sx F x FS S

( ) ( )
x F x F

( ) ( )o Gx o Gx( ) ( )
x F x F

o Gx o Gx( ) ( )o Gx o Gx( ) ( )( ) ( )( ) ( )( ) ( )o Gx o Gx( ) ( )

= 
1

( ) ( )
n

S i
i

o F o Gx
1

( ) ( )S i( ) ( )S i( ) ( )( ) ( )o F o Gx( ) ( )( ) ( )S i( ) ( )o F o Gx( ) ( )S i( ) ( )( ) ( )
n

S i( ) ( )S i( ) ( )
i

( ) ( )o F o Gx( ) ( )( ) ( )S i( ) ( )o F o Gx( ) ( )S i( ) ( )
1

( ) ( )S i( ) ( )S i( ) ( )( ) ( )o F o Gx( ) ( )( ) ( )S i( ) ( )o F o Gx( ) ( )S i( ) ( )

as x  FS  a * x = x  a  G  Gx = {x}  o(Gx) = 1

Hence o(S) = 
1

( ) ( )
n

s i
i

o F o Gx
1

( ) ( )s i( ) ( )s i( ) ( )( ) ( )o F o Gx( ) ( )( ) ( )s i( ) ( )o F o Gx( ) ( )s i( ) ( )( ) ( )
n

s i( ) ( )s i( ) ( )
i

( ) ( )o F o Gx( ) ( )( ) ( )s i( ) ( )o F o Gx( ) ( )s i( ) ( )
1

( ) ( )s i( ) ( )s i( ) ( )( ) ( )o F o Gx( ) ( )( ) ( )s i( ) ( )o F o Gx( ) ( )s i( ) ( )

       =
1

( ) [ : ]
n

S i
i

o F G Gx
1

( ) [ : ]S i( ) [ : ]S i( ) [ : ]( ) [ : ]o F G Gx( ) [ : ]( ) [ : ]S i( ) [ : ]o F G Gx( ) [ : ]S i( ) [ : ]( ) [ : ]
n

S i( ) [ : ]S i( ) [ : ]
i

( ) [ : ]o F G Gx( ) [ : ]( ) [ : ]S i( ) [ : ]o F G Gx( ) [ : ]S i( ) [ : ]
1

( ) [ : ]S i( ) [ : ]S i( ) [ : ]( ) [ : ]o F G Gx( ) [ : ]( ) [ : ]S i( ) [ : ]o F G Gx( ) [ : ]S i( ) [ : ] (See cor. to theorem 2)

Theorem 4: If G is a finite p-group acting on a finite set S then p divides o(S) – o(FS).

Proof: Since G is a finite p-group, o(G) = pn (n  1).
Thus as in above lemma
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o(Gxi) = [G : Gxi] = ( )
( )i

o G
o Gx

 = 
n

m
p
p

 = pn–m

where n  m as o(Gxi) > 1
So p divides [G : Gxi]  i

 p divides 
1

[ : ]
n

iG Gx
1

[ : ]
n

[ : ]G Gx[ : ]

 p divides o(S) – o(FS).
We now give another proof of Cauchy’s theorem that we proved earlier in

chapter 4.

Theorem 5 (Cauchy’s): Let G be a finite group and let p be a prime dividing o(G). Then
there exists an element x in G s.t., o(x) = p.

Proof: Let S = {(a1, a2, ..., ap) | ai  G, a1a2 ... ap = e}
Then as a1a2 ... ap = e,  ap = (a1a2 ... ap–1)–1

i.e., ap is determined by the first p – 1 elements and so o(S) = (o(G))p–1

Consider now the symmetric group Sp. Let   Sp be the element  = (1 2 3 ... p)
Let H be the group generated by  i.e.,

H = < > = { , 2, 3,..., p = I}
Define * from H × S  S, s.t.,

i
* (a1, a2, ..., ap) = (a i(1), a i(2), ..., a i(p))

i = 1, 2, ..., p
Thus, for instance,

* (a1, a2, ..., ap) = (a (1), a (2), ..., a (p))
= (a2, a3, ..., a1)

2 
* (a1, a2, ..., ap) = (a 2(1), a 2(2), ..., a 2(p))

= (a3, a4,...a2) etc....
Since (a1, a2, ..., ap)  S  a1 (a2 ... ap) = e

 (a2 ... ap) a1 = e
 (a2, a3,..., a1)  S

* is well defined.
Then * is a group action and H acts on S.
Again as o(H) = p, H is a p-group and hence by previous theorem p  divides

o(S) – o(FS). But p divides o(S) and thus p | o(FS)  o(FS) > 1.
Let us find what members FS has.
Let (a1, a2, ..., an)  FS be any element. Then by definition of FS.

i 
* (a1, a2, ..., ap) = (a1, a2, ..., ap)  i

i.e., * (a1, a2, ..., ap) = (a1, a2, ..., ap)
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i.e., (a2, a3, ..., a1) = (a1, a2, ..., ap)
 a2 = a1, a3 = a2, a4 = a3, ..., a1 = ap
i.e., a1 = a2 = ... = ap = x (say)
i.e., any member of Fs is of the type (x, x, ..., x)

s.t.,
(  times)
. . ...
p

x x x x  = e

i.e., xp = e
So FS  {(x, x, ..., x) | x p = e}
Again any element of the type (x, x, ..., x)
clearly lies in Fs as i 

* (x, x, ..., x) = (x, x, ..., x).  i  H
Hence FS = {(x, x, ..., x) | x p = e}
Thus  an element e  x  G s.t., x p = e or that
o(x) = p. Notice (e, e, ..., e)  Fs and o(FS ) > 1 (so x  e).

Problem 6: Let G be a finite p-group. If H  G is a subgroup of G then show that
H  N(H).

Solution: Let S = {xH | x  G} be the set of all left cosets of H in G.
Define * by

h * (xH) = hxH  x  G, h  H
Then H acts on S and

o(S) = [G : H] = 
( )
( )

o G
o H  = pr, r  1  as H  G

So p | o(S). Since p | [o(S) – o(FS)] also we find
p | o(FS). Thus o(FS)  1
Now FS = {xH | hxH = xH  h  H}

= {xH | x–1 hxH = H  h  H}
= {xH | x–1 hx  H  h  H}
= {xH | x–1 H x  H}
= {xH | x–1 H x = H}
= {xH | x  N (H)}

and as o(FS)  1, N (H)  H
(See Problem 3 on page 207 also).

Problem 7: Let G be a group of order 12. Show that either Sylow 3-subgroup is normal or
G  A4.

Solution: No. of Sylow 3-subgroups is (1 + 3k) s.t., (1 + 3k) | 4  k = 0 or 1.

If k = 0,  a unique normal Sylow 3-subgroup, so we are done.

Now suppose k  0, then k = 1. Then  4 Sylow 3-subgroups each of roder 3. If H1 and
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H2 are any two of these four, then o(H1  H2)|o(H1) = 3  o(H1  H2)) = 1 or 3. But
o(H1 

 are any two of these four, then 
 H2) = 3 gives H1 = H2. Thus o(H1  H2) = 1.

Thus each Hi has 2 elements of order 3 or that in all  4  2 = 8 elements of order
3 in G.

We know (see page 273) that the number of conjugates of any subset S of G is Index of

N(S) in G, i.e., 
( ) .

( ( ))
o G

o N S

If H is any of the four Sylow 3-subgroups, then since all Sylow 3-subgroups are conjuage,
we get

( ) 124 ( ( )) 3
( ( )) 4
o G o N H

o N H
124 ( ( )) 34 ( ( )) 3124 ( ( )) 312
4

4 ( ( )) 3
4

4 ( ( )) 34 ( ( )) 3o N H4 ( ( )) 3

Again H N(H) always and o(H) = o(N(H)) = 3 gives N(H) = H

Let A = set of all the four Sylow 3-subgroups Hi, i =1, 2, 3, 4

Define  * : G A   A  s.t.,

g * H = gHggHg 1  H A

and let  : G   SymA  be the corresponding permutation representation, then
(g) = g

where g : A  A  AA  s.t.,

g(H) = g * H = gHggHg 1

Let K = Ker  . If g  K be any element, then

(g) = I  g = I   g(H) = I(H)  gHggHg 1 = H  g  N(H)

and thus K  N(H)

  o(K)|o(N(H)) = 3  o(K) = 1 or 3.

But o(K) = 3  K = N(H) = H which is not possible as H by assumption is not normal
whereas K = Ker  is normal.

Thus o(K) = 1  Ker = {e}   is 1-1.

Hence  : G  SymA   is a 1-1 homomorphism
and, therefore, G  T, where T  SymA = S4.
Now G contains 8 elements of order 3 as shown above.
Thus T contains 8 element of order 3 and as S4 has 8 3-cycles (elements of order 3) which

are all in A4, we find T and A4 have at least 8 elements in common or that o(T 
 has 8 3-cycles (elements of order 3) which

A4) 
 has 8 3-cycles (elements of order 3) which

 8,
So 8  o(T A4)|o(A4) = 12

 o(T A4) = 12   T = A4 4

( ) ( ) 12
( ) 12

o T o G
o A

( ) ( ) 12o T o G( ) ( ) 12o T o G( ) ( ) 12( ) ( ) 12( ) ( ) 12o T o G( ) ( ) 12( ) ( ) 12( ) ( ) 12

4( ) 124( ) 124o A( ) 12o A( ) 124( ) 124o A4( ) 124( ) 124( ) 124o A( ) 12o A( ) 124( ) 124o A4( ) 124( ) 12( ) 12
Hence G  A4.
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Exercises
1. Let G be a group and S = G. Show that * defined by a * x = axa–1, a, x  G, is a group

action.

2. Let (F, +, ) be a field. Let G = (F, ) the group. Let V be any vector space over F
(Refer chapter on Vector spaces). Define * by 

 be any vector space over 
 * v = 

 be any vector space over 
.v, 

 be any vector space over 
 

 be any vector space over 
 F,

v 
(Refer chapter on Vector spaces). Define 

 V, where . is scalar multiplication in V Show that * is a group action.

3. Let S be a non empty set and G be a group of permutations of S, i.e., G A(S). Show
that * defined by 

 be a non empty set and 
* x = 

 be a non empty set and 
(x) 

 be a group of permutations of 
 x 

 be a group of permutations of 
 S, 

 be a group of permutations of 
 

 be a group of permutations of 
 G is a group action of G on S.

4. (i) Let H be a subgroup of G and S  = set of all left cosets of H in G. Define * by
g * aH = gaH, g 

 be a subgroup of 
 G, aH  S . Show that * is a G action.

(ii) Let  : G A(S ) be the homomorphism corresponding to *. Show that

Ker  is the largest normal subgroup of G contained in H and Ker = 
1.

x G
xHx 1

x Gx G
xHx

x G
xHx

Hence prove the generalized Cayley's theorem. (See page 156, theorem 18).

The set S  is sometimes denoted by G/H and is called the (left) coset space of G
relative to H. (Notice H here is not essentially normal). Again if we wish to work
with right cosets, we can define * by g * Ha = Hag–1.

(iii) If H   G of index n then show that G/H is isomorphic to a subgroup of Sn. (Use
Fundamental theorem and the fact that H = Ker 

 is isomorphic to a subgroup of 
).

5. Show that orbit of H in example 5 is the set of all subgroups conjugate to H and
stabilizer of H in G is the normaliser of H.

6. Let G act on G by conjugation, i.e., g * a  gag 1, a,  g  G then show that
Ker(*) = Z(G).

7. Let G be a group acting on S and H a group acting on T where

S  T = . Let U = S  T. Define * by

(g, h) * x = gx if x  S

= hx if x  T g  G, h  H, x  U

Show that * defines an action of G × H on U.

8. Let G be a finite group acting on a finite set S. For any g  G, define
S g = {s 

 be a finite group acting on a finite set 
 S | g * s = s}. Prove (Burnside's formula)

o(G) × No. of orbits = ( )g

g G
o S

g G
( )g( )g( )

g G
o S( )o S( )

g G

9. Let G be a group acting on a set S. If x  S and Gx is the orbit of x and
y  Gx, then show that Gx = Gy.
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Normal Series

Definition: A normal subgroup H of a group G is called a maximal normal subgroup of G
if H  G and there exists no normal subgroup K of G s.t., H K  G.

Thus H  G is a maximal normal subgroup of G if whenever K   G s.t.,
H  K G then either K = H or K = G.

In fact, a subgroup H  G is called maximal subgroup of G if whenever
H 

In fact, a subgroup 
 K 

In fact, a subgroup 
 G then either K = G or K = H.

Similarly, a normal subgroup M of G is called a minimal normal subgroup if only normal
subgroups of G which are contained in M are {e} and M. Thus if N is a normal subgroup of
G s.t., {e} 
subgroups of 

 N  M then either N = {e} or N = M.

Example 16: A3 is a maximal normal subgroup of S3. o(A3) = 3 whereas o(S3) = 6. Clearly

there cannot be any subgroups of order 4 or 5 in S3. We also notice that 
3

3

S
o

A
3S3S333S3S3

3A3A3A  = 2, a prime

and thus 
3

3

S
A  is a simple group. See theorem 6 ahead.

Example 17: If G is a simple group then it has no non trivial normal subgroups and so {e}
will be a (and only) maximal normal subgroup in G.

Theorem 6: H is a maximal normal subgroup of G iff G/H is simple.

Proof: Let H be maximal normal in G. Any subgroup of G/H is of the form K/H where
K  G and H  K and also K/H is normal in G/H  K   G.

Thus any subgroup K/H will be non trivial normal subgroup of G/H if H  K  G, which
is not true as H is maximal normal. So G/H has no non trivial normal subgroup and is, therefore,
simple.
Conversely: let G/H be simple. Suppose H is not maximal normal, then  a normal subgroup
K of G s.t.,

H  K  G and thus K/H will be normal subgroup of G/H where K/H  G/H, a contradiction
as G/H is simple.

Problem 8: Any finite group G (with at least two elements) has a maximal normal subgroup.

Solution: If G is simple then it has no proper normal subgroup except {e} and thus {e} is
a maximal normal subgroup of G.

Suppose G is not simple. Then it has at last one normal subgroup N  G, N  {e}. If N is
maximal normal, we are done. If not, then  at least one normal subgroup M where N  M

 G. If M is maximal normal, we are done. If not, we continue like this. Since G is finite, it
can have finite number of subgroups and hence the above process must end after a finite
number of steps. Hence G will have a maximal normal subgroup.

Problem 9: Give an example of a maximal normal sub group which is not a maximal subgroup.

Solution: Consider G = Z2  A5
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Then H = Z2  {I} is normal in G and G/H  A5 and so G/H will be simple and hence
maximal normal subgroup of G.

Since  H {(0, I), (1, I), (0, (123), (0, (132))} G
H is not a maximal subgroup of G.

Problem 10: Let H, K be two distinct maximal normal subgroups of G then G = HK and H
 K is a maximal normal subgroup of H as well as K.

Solution: Since H, K are normal, HK is normal in G.
Since H  HK  G and HK is maximal normal.
we must have  HK = H or HK = G
Similarly  HK = K or HK = G
Hence  HK = G (as HK  G  HK = H, HK = K  H = K).
Again by isomorphism theorem

HK K
H H K

HK K
H H KH H KH H K

Thus K G
H K H

K G
H K HH K H

Since H is maximal normal, G
H

 is simple

i.e., K
H KH K

 is simple

 H  K is maximal normal in K
Similarly, it is maximal normal in H.

Problem 11: Show that < Q, + > has no maximal normal subgroup.

Solution: Suppose H is a maximal normal subgroup of < Q, + >, then 
H
Q  is simple and so

H
Q  has no non trivial normal subgroup i.e., it will have no non trivial subgroup

(Q being abelian, all subgroups are normal). Thus 
H
Q  is a cyclic group of prime order p.

Let H + x  
H
Q  be any element

Then p(H + x) = H
i.e., H + px = H or that px  H  x  Q

Let now y  Q be any element, then y
p

  Q

If y
p

 = x  then y = px  y  H or that
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Q  H  Q  H = Q, a contradiction.
Hence the result follows.

Definition: Let G be a group. A sequence of subgroups
{e} = G0  G1  G2  ........  Gn = G ...(1)

is called a normal series of G if Gi is a normal subgroup of Gi+1,
 i = 0, 1 2,...,n – 1.

The factor (quotient) groups 1i

i

G
G

1  (  i) are called the factors of the normal series.

Here each Gi is normal in Gi+1, although it may not be normal in G. Also it is possible that
Gi = Gi+1 for some i. The number of distinct members of (1) excluding G is called the length
of the normal series.

The above is expressed in short by saying that N = (G0, G1, ........., Gn) is a normal series
of G. If N and M are two normal series of G s.t., N  M then M is called a refinement of N
(a proper refinement if N  M).

Remark: Some authors prefer to call the above a subnormal series. It is then called a normal
series if Gi is normal in G 

Some authors prefer to call the above a subnormal series. It is then called a normal
 i.

If G is any group then
{e} = G0  G1 = G

is an obvious example of a normal series.

Example 18: {I}  A3  S3 is a normal series of S3.
{I}  E  K4  A4  S4 is a normal series of S4, where

E = {I, (12)(34)}, K4 = {I, (12)(34), (13)(24), (14)(23)}

We’ve seen earlier that E   K4, but E is not normal in A4 (and so in S4).

Definition: Let G a group. A sequence of subgroups
{e} = G0  G1  G2  .......  Gn = G

of G is called a composition series of G if
(i) each Gi is normal subgroup of Gi+1 (i = 0, 1, ....... n – 1),

(ii) Gi  Gi+1 for any i and

(iii) 1i

i

G
G

1  is a simple group  i.

The factor (quotient) groups 
1i

i

G
G

1
 are called factors of the series.

In view of theorem 6 on page 283 the condition (iii) can be replaced by “Gi is a maximal
normal subgroup of Gi+1”  i.

We notice that a composition series is a normal series (converse being not true) and that
a composition series has no ‘gaps’.
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A group can have more then one composition series.

Example 19: {0}  < 8 >  < 4 >  Z
is a normal series of the group (Z, +), but it is not a composition series as < 4 > is not maximal
normal in Z. Notice < 4 > 
is a normal series of the group (

 < 2 > 
, +), but it is not a composition series as < 4 > is not maximal

 Z.

Example 20. Consider the quaternion group G. Then
{1}  {1, –1}  {1, –1, i, – i}  G
{1}  {1, –1}  {1, –1, j, – j}  G
{1}  {1, –1}  {1, –1, k, – k}  G

are all composition series of G. If we write the first series as G0  G1  G2  G then

2

Go
G
GG

2G2G2G
 = 8

4
 = 2, 2

1

Go
G

2G2G222G2G2

1G1G1G
 = 4

2
 = 2, 1

0

Go
G

1G1G111G1G1

0G0G0G
 = 2

i.e., all the factor groups are of prime order and thus have no trivial normal subgroups and
hence are simple.

The existence of a composition series is ensured by

Theorem 7: Every finite group G (with more then one element) has a composition series.

Proof: We use induction on o(G).
If o(G) = 2 then {e} = G0  G1 = G is (only) composition series of G. Notice

1

0

G
G

 = 
{ }
G
e

  G and as o(G) = 2, a prime it is simple group and, therefore, 1

0

G
G

 is simple.

Suppose now that the result holds for groups with order less than o(G). We show result
holds for G. If G is a simple group then {e} 

Suppose now that the result holds for groups with order less than 
 G is the composition series for G. Suppose G

is not simple.
Since G is finite, it has a maximal normal subgroup N  G and as o(N) < o(G), result holds

for N which then has a composition series, say,
{e} N1 N2  ... N

Then the series
{e}  N1  N2  ...  N  G will be a composition series for G.
Hence the result holds.

Remark: If o(G) = 1, we sometimes say that the result holds trivially as then (G) is a composition
series of G (without factors).

Definition: Two composition series.
C1 :  {e} = N0  N1  .........  Nt = G ...(1)
C2 :  {e} = H0  H1  .........  Hm = G ...(2)

of a group G are said to be equivalent if  a 1-1 onto mapping between the factors of (1) and
factors of (2) such that the corresponding factor groups are isomorphic. In other words (1)
and (2) will be equivalent if t = m and each factor group of (1) is isomorphic to some factor
group of (2).
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Also in this case, we write C1 ~ C2. It is easy to see that ~ is an equivalence relation.
We’ve seen that a finite group can have more than one composition series. The next theorem

shows the equivalence of any two such composition series.

Theorem 8 (Jordan-Hölder): Let G be a finite group. Let
C1 : {e} = N0  N1  ...  Nt–1  Nt = G ...(1)
C2 : {e} = H0  H1  ...  Hm–1  Hm = G ...(2)

be two composition series of G. Then m = t and there exists a permutation i  i  of 0, 1, 2,

..., t–1 s.t., 1 1i i

i i

N H
N H

1 1i i1 1i i1 1N H1 1N H1 1i iN Hi i1 1i i1 1N H1 1i i1 1

N H
1 1i i1 1i i1 11 1i i1 1N H1 1i i1 1 , 0  i  t–1

i.e., C1 and C2 are equivalent.

Proof: Let o(G) = n. We use induction on n.
If n = 2, we have seen (theorem 7) G has only one composition series. Hence result holds

in this case.
Let now the result hold for groups with order less than o(G).

Case (i) Nt–1 = Hm–1. Consider the series
{e} = N0  N1  ...  Nt–1 ...(3)
{e} = H0  H1  ...  Hm–1 = Nt–1 ...(4)

Then these are composition series for finite group Nt–1 and as o(Nt–1) < o(G), the result
holds for (3) and (4) i.e., (3) and (4) are equivalent.

Thus t – 1 = m – 1  t = m
and also factors of (3) and (4) are isomorphic under some permutation.

Now
1

t

t

N
N 1

 = 
1t

G
N 1

 = 
1m

G
H 1

 = 
1

m

m

H
H 1

Thus (1) and (2) will be equivalent (as t = m and factors of (1) and (2) are isomorphic).
Hence result holds in this case.

Case (ii) Nt–1  Hm–1.  Let K = Nt–1  Hm–1
Then K is a finite group and has a composition series. Let
{e} = K0  K1  ...  Ks = K be a composition series of K.
Since Nt–1,  Hm–1 are normal in G, K = Nt–1  Hm–1 will be normal subgroup  of G
Again, as Nt–1,  Hm–1 are maximal normal subgroups of G

Nt–1. Hm–1 = G
and Nt–1  Hm–1 = K is maximal normal subgroup of Nt–1 and Hm–1. (See Problem 4)
So K  Nt–1,  K  Hm–1
Consider now the series,

{e} = K0  K1  .......  Ks = K  Nt–1  Nt = G ...(5)
{e} = K0  K1  .......  Ks = K  Hm–1  Hm = G ...(6)
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We show these are composition series of G. For this we need show that 1tN
K

1  and 1mH
K

1

are simple.
By isomorphism theorem

1

1 1

t

t m

N
N H

1

1 1t m1 1t m1 1N H1 1N H1 1t mN Ht m1 1t m1 1N H1 1t m1 1N H1 1t m1 1t m1 1N H1 1N H1 11 1t m1 1N H1 1t m1 1
 1 1

1

t m

m

N H
H
1 1t m1 1t m1 1N H1 1N H1 1t mN Ht m1 1t m1 1N H1 1t m1 1

1
 = 

1m

G
H 1

So 1

1 1 1

t

t m m

N G
N H H

1

1 1 1t m m1 1 1t m m1 1 1N H H1 1 1N H H1 1 1t m mN H Ht m m1 1 1t m m1 1 1N H H1 1 1t m m1 1 1

G
N H HN H HN H Ht m m1 1 1t m m1 1 1N H H1 1 1N H H1 1 11 1 1t m m1 1 1N H H1 1 1t m m1 1 1

 and similarly 1

1 1 1

m

t m t

H G
N H N

1

1 1 1t m t1 1 1t m t1 1 1N H N1 1 1N H N1 1 1t m tN H Nt m t1 1 1t m t1 1 1N H N1 1 1t m t1 1 1

G
N H NN H NN H Nt m t1 1 1t m t1 1 1N H N1 1 1N H N1 1 11 1 1t m t1 1 1N H N1 1 1t m t1 1 1

...(7)

Now
1m

G
H 1

 = 
1

m

m

H
H 1

 is simple as (2) is a composition series of G


1

1 1

t

t m

N
N H

1

1 1t m1 1t m1 1N H1 1N H1 1t mN Ht m1 1t m1 1N H1 1t m1 1N H1 1t m1 1t m1 1N H1 1N H1 11 1t m1 1N H1 1t m1 1
 is simple

i.e., 1tN
K

1  is simple.

Similarly,  1mH
K

1  is simple.

Now (5) and (6) would be equivalent as

1

1

t m

m

N H
K H
t m1t m1N H1N H1t mN Ht m1t m1N H1t m1

1

t mN Ht mN Ht m
K H
t mN Ht mN Ht m

and
1

1

t m

t

N H
N K

1

1N K1N K1

t mN Ht mN Ht m
N K  from (7)

Also lengths of (5) and (6) are equal both being s + 2

Nt – 1 Hm– 1

H2

H1N1

N2

K

Ks– 1

N = {e} = H  = K0 0 0

N  = G = Ht m

Now (1) and (5) are two composition series of Nt = G and applying case (i) to these (second last
terms are equal = Nt–1) we find they are equivalent. Hence they have same length, i.e., t = s + 2

Similarly, (2) and (6) give m = s + 2
 t = m

Now (1) ~ (5), (5) ~ (6)  (1) ~ (6)
Also (2) ~ (6) thus (1) ~ (2) as ~ is an equivalence relation.
Hence the theorem is proved.

Problem 12: Find all the composition series of G = < a >, a cyclic group of order 6 and show
they are equivalent.
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Solution: G = {e, a, a2 a3, a4, a5}. Since o(G) = 6 has four divisors 1, 2, 3, 6,
G will have four subgroups, namely {e}, G and < a2 > = {e, a2, a4}, < a3 > = {e, a3}

Composition series of G will be
{e}  < a3 >  G
{e}  < a2 >  G

Notice 3
Go
a
GG
a3a

 = 6
2

 = 3, 
3

{ }
ao
e

3aa
{ }{ }{ }{ }e{ }{ }{ }e{ }

 = o(< a3 >) = 2 which are primes and so the

factors are simple groups.

Again, 3
G
a3a

 Z3,         
3

{ }
a
e

3a  < a3 >  Z2

2
G
a2a

  Z2,         
2

{ }
a
e

2a   < a2 >  Z3


2

3 { }
G a

ea

2G a
{ }

G aG a
3a

,   
3

2{ }
a G
e a

3a G3a G3a Ga G
2a

Hence the two composition series are equivalent.

Problem 13: Find all the composition series of Z30 and show they are equivalent.

Solution: Z30 = {0, 1, 2, ..., 29} addition modulo 30. Besides {0} and Z30, the other subgroups
of Z30 are

< 2 > = {0, 2, 4, 6, ... 28}
< 3 > = {0, 3, 6, ..., 27} (See page 86)

and < 5 >, < 6 >, < 10 >, < 15 >
Composition series will be
{0}  < 15 >  < 5 >  G {0}  < 15 >  < 3 >  G
{0}  < 10 >  < 5 >  G {0}  < 10 >  < 2 >  G
{0}  < 6 >  < 3 >  G {0}  < 6 >  < 2 >  G

Here each 1i

i

G
G

1 , factor group is simple.

For instance, 5
15

o 55
1515

 = ( 5 )
( 15 )
( 5 )
( 15 )

o
o

 = 6
2

 = 3, a prime and so 5
15
5

15
 is simple.

Equivalence of any two composition series can be shown as in the previous problem.

Problem 14: Show that the group < Z, + > has no composition series.

Solution: Suppose < Z, + > has a composition series
{0} = H0  H1  H2  ........  Hn = Z

Z, being abelian, all subgroups are normal and each subgroups is of the type < m >,
m  Z.
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Let H1 = < m > then since 1

0

H
H

 = 1
{0}
H   H1

and as 1

0

H
H

 is simple (Def. of composition series) we find H1 = < m > is simple. But this is

not possible as if K = < 2m > then K  H1 and K  {0}. So we get a contradiction and hence
Z has no composition series.

(See also Theorem 9 ahead)

Problem 15: Without referring to the Jordan-Holder theorem show that if a finite group G has
two composition series

{e} = N0  N1  N2  .......  Nr = G

{e} = M0  M1  M2 = G

then r = 2 and the list of composition factors is same.
Solution: The two composition series are

{e} = N0  N1  N2  .......  Nr = G

{e} = M0  M1  M2 = G

and thus 
1

G
M

and 1
{ }
M
e

 i..e, 
1

G
M

 and M1 are simple.

Also 
1

G
M

 simple  M1 is maximal normal in G. (See theorem 6, page 283)

Case (i) Suppose M1 = Nrr 1, the second series then becomes {e}  Nrr 1  G.

  1
{ }

rN
e

1  is simple  Nrr 1 is simple

  Nrr 1 has no normal subgroups contained in it and so the first composition series becomes

{e}  Nrr 1  G, [{e} = N0  N1  N2  G] or that r = 2 and hence the result holds.

Case (ii) M1  Nrr 1

Then M1  G, Nrr 1  G   M1 Nrr 1  G

So M1  M1Nrr 1  G

Since G | M1 is simple, M1 is maximal normal in G and thus,

either M1 Nrr 1 = M1  or M1 Nrr 1  G

Suppose M1 Nrr 1 = M1

then Nrr 1  M1Nrr 1  G   Nrr 1  M1  G
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 M1 = Nrr 1 as Nrr 1 is maximal normal in G as 
1r

G
N 1

is simple.

so M1 Nrr 1 = G

and hence by second theorem of isomorphism.

1 1 1

1 1 1

r r

r

M N N
M M N
1 1 11 1 1r r1 1 1M N N1 1 1M N N1 1 11 1 1r r1 1 1M N N1 1 1r r1 1 1

1 1 1M M N
1 1 1r r1 1 1M N N1 1 1M N N1 1 11 1 1r r1 1 1M N N1 1 1r r1 1 1

1 1 11 1 1r1 1 1M M N1 1 1M M N1 1 11 1 1r1 1 1M M N1 1 1r1 1 1

or 1

1 1 1

r

r

G N
M M N

1

1 1 1

G N
M M N1 1 11 1 1r1 1 1M M N1 1 1M M N1 1 11 1 1r1 1 1M M N1 1 1r1 1 1

(1)

But G/M1 is simple, so 1

1 1

r

r

N
M N

1

1 11 11 1r1 1M N1 1M N1 11 1r1 1M N1 1r1 1
is simple.

 M1 Nrr 1 is maximal normal in Nrr 1

[{e} M1 Nrr 1 Nrr 1]

Now if M1 Nrr 1 = {e} then there is no non-trivial normal subgroup between {e} and Nrr 1

 Nrr 1 is simple
So, 1st composition series becomes

{e}  Nrr 1  G i.e., r = 2
hence result holds in this case also.
Suppose now M1 Nrr 1  {e}
Since M1 Nrr 1  M1 and M1 is simple, we must have M1 Nrr 1  M1 and thus
(1) reduces to

1

1 1

rG N
M M

1rG NrG Nr
M M

 1

1

rN
M

1 is simple  M1 is maximal normal in Nrr 1

So M1  Nrr 1  G  M1 Nrr 1 which is not true in this case (ii)
Hence r = 2 and the two composition series become

{e} = N0  N1  N2 = G
{e} = M0  M1  M2 = G

i.e., {e}  N1  G
{e}  M1  G

are the two composition series


1

G
N

and 1 ;
{ }
N
e

 
1

G
M

 and 1
{ }
M
e

 are simple


1

G
N

and N1; 
1

G
M

 and M1 are simple
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We also get N1  N1M1  G

M1  N1M1  G

G/M1 simple  M1 is maximal normal in G and similarly N1 is maximal normal in G
 either N1M1 = N1 or N1M1 = G

N1M1 = M1 or N1M1 = G
If N1M1  G then N1M1  N1 and N1M1  M1  N1  M1
So composition factors are same
If N1M1  G, then as  N1 M1   M1  & M1 is simple

    N1 M1   N1  & N1 is simple
We find N1 M1  {e}  or N1 M1 = M1
and N1 M1  {e}  or N1 M1 = N1
So if N1 M1 {e}  then N1 M1 = M1

      N1 M1 = N1
      M1 = N1

or that the composition factors are same. Suppose now N1 M1 = {e}. Then by second
theorem of isomorphsim.

1 1 1 1

1 1 1 1 1 1

N M M G M
N N M N N M
1 1 1N M M G M1 1 1N M M G M1 1 1
N N M N N M1 1 1 1 1 1N N M N N M1 1 1 1 1 1N N M N N M1 1 1 1 1 1N N M N N M



1
1

1 { }
G M M
N e

1
1{ }

G M1G M1 M1M1N e{ }N e{ }

Similarly, 1 1 1 1

1 1 1 1 1 1

N M N G N
M N M M N M
1 1 1N M N G N1 1 1N M N G N1 1 1
M N M M N M1 1 1 1 1 1M N M M N M1 1 1 1 1 1M N M M N M1 1 1 1 1 1M N M M N M



1
1

1 { }
G N N
M e

1
1{ }

G N1G N1 N1N1M e{ }M e{ }
So list of composition factors is

1
1 1 1

1 1
, or , or { , }
{ }

G N G N M N
N e N
G N G1G N G1, or , or { , }, or , or { , }, or , or { , }1 1 1, or , or { , }1 1 1, or , or { , }N M N, or , or { , }1 1 1, or , or { , }1 1 1N M N1 1 1, or , or { , }1 1 1, or , or { , }, or , or { , }, or , or { , }1, or , or { , }1G N G1G N G1, or , or { , }G N G, or , or { , }1, or , or { , }1G N G1, or , or { , }1, or , or { , }N M N, or , or { , }

1 11 1{ }1 11 1N e N1 1N e N1 1N e N1 11 1{ }1 1N e N1 1{ }1 1
, or , or { , }, or , or { , }
{ }

, or , or { , }
N e N1 1N e N1 1

, or , or { , }
N e N

, or , or { , }
N e N1 1N e N1 1

, or , or { , }
N e N

, or , or { , }
{ }N e N{ }1 1{ }1 1N e N1 1{ }1 1

, or , or { , }
{ }

, or , or { , }
N e N

, or , or { , }
{ }

, or , or { , }1 1 1, or , or { , }1 1 1, or , or { , }1 1 1
1 11 1N e N1 11 1

, or , or { , }
N e N1 1N e N1 1

, or , or { , }
N e N

, or , or { , }

and 1
1 1 1

1 1
, or , or { , }
{ }

G M G M N M
M e M
G M G1G M G1, or , or { , }, or , or { , }, or , or { , }1 1 1, or , or { , }1 1 1, or , or { , }M N M, or , or { , }1 1 1, or , or { , }1 1 1M N M1 1 1, or , or { , }1 1 1, or , or { , }, or , or { , }, or , or { , }1, or , or { , }1G M G1G M G1, or , or { , }G M G, or , or { , }1, or , or { , }1G M G1, or , or { , }1, or , or { , }M N M, or , or { , }

1 11 1{ }1 1M e M1 1M e M1 11 1{ }1 1M e M1 1{ }1 1
, or , or { , }, or , or { , }
{ }

, or , or { , }
M e M1 1M e M1 1

, or , or { , }
M e M

, or , or { , }
{ }M e M{ }1 1{ }1 1M e M1 1{ }1 1

, or , or { , }
{ }

, or , or { , }
M e M

, or , or { , }
{ }

, or , or { , }1 1 1, or , or { , }1 1 1, or , or { , }1 1 1
1 11 1M e M1 11 1

, or , or { , }
M e M1 1M e M1 1

, or , or { , }
M e M

, or , or { , }

Problem 16: Let {e} = G0  G1  .......  GK = G be a composition series for a group G

and suppose 
1

i

i

G
G 1

 is of finite order ni, then show that G is of finite order

n1n2... nk.

Solution: Since ni = 
1

i

i

G
o

G
iGiGiiiGiGi

iGiGi 1G
 = 

1

( )
( )

i

i

o G
o G 1( )1( )1

i = 1, 2, ..., k
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   we get n1n2... nk = 1 2

0 1 1

( )( ) ( ). .......
( ) ( ) ( )

k

k

o Go G o G
o G o G o G0 1 1( ) ( ) ( )0 1 1( ) ( ) ( )0 1 1

=
0

( )
( )

ko G
o G

 = o(Gk) = o(G).

Theorem 9: An abelian group G has a composition series iff G is finite.

Proof: If G is finite, we’ve already shown (theorem 7) that G has a composition series.
Conversely, let G be an abelian group and suppose it has a composition series

{e} = G0  G1 G2  ........  Gk = G

then since 
1

i

i

G
G 1

 is an abelian simple group  i = 1, 2, ..., k

it will be a group of prime order, say, pi (See Problem 8 on page 104)

Thus
1

i

i

G
o

G
iGiGiii

iGiGi 1iGiGi 1
 = pi

and by above problem then o(G) = p1p2 ... pk
Hence G is a finite group.

Cor.: An infinite abelian group has no composition series.

Exercises
1. Show that An is maximal normal in Sn.

2. Write all the maximal normal and maximal sbgroups of S3.

3. Find all the composition series of a cyclic group G = < a > of order 12 and show they
are equivalent.

4. Find all the composition series of the groups Z12, Z60 and show the equivalence. Write
down all the composition series of S3 × Z2

5. Write down a composition series for Klein's four group.

6. Show that {I}  K4  A4  S4 is not a composition series.

7. Show that a finite p-group is cyclic iff it has only one composition series.

8. Let H be a normal subgroup of a finite group G. Show that G has a composition series
in which H is one of the terms.

9. Let G be a finite p-group of order pn. Show that it has a normal series

{e} = G0 G1  ...  Gn = G

where o(Gi) = pi i = 0, 1, 2, ..., n (See Problem 5 on page 208)

10. Show that fundamental theorem of arithmetic follows from Jordan-Hölder theorem.



294 A Course in Abstract Algebra

Solvable Groups

Definition: A group G is said to be solvable (or soluble) if  a chain of subgroups
{e} = H0  H1  H2  ........  Hn = G ...(1)

s.t., each Hi is a normal subgroup of Hi+1 and 1i

i

H
H

1  is abelian

 i = 0, 1, 2, ..., n – 1.
Also then, the series (1) is referred to as solvable series of G.
Thus G is solvable if it has a normal series (H0, H1, ..., Hn) s.t., its factor groups are abelian.

Example 21: Any abelian group G is solvable. Since {e} = G0  G1 = G is a normal series

for G where 
{ }
G
e

  G is abelian.

Example 22: Every cyclic group is solvable.

Example 23: S3 and S4 are solvable. Since {I}  A3  S3 is a normal series for S3 where its

factor groups 3

3

S
A

 and 
3

{ }
A
I  are abelian as these are of prime order..

So S3 is an example of a non abelian group that is solvable.
{I }  K4  A4 S4 will serve as the required normal series for S4. Notice that

4
{ }
K
I

 K4  4
{ }
Ko
I
4K4K

{ }{ }I{ }{ }{ }I{ }
 = o(K4) = 4 and we know a group of order 4 is abelian.

Remark: Any non abelian simple group is not solvable. If G is simple, it has no proper normal

subgroup except {e}. So {e}  G is the only normal series of G and as 
{ }
G
e

  G, 
{ }
G
e

 is not

abelian as G is non abelian. Hence G is not solvable.

We’ve defined commutator subgroup G  of a group G (see page 163).
Now let G  be commutator subgroup of a group G.
And let (GG )  = G  = G(2) be commutator subgroup of G  and G(3) be commutator subgroup

of G(2) and so on then G(n) is called the nth commutator subgroup of G. We use this to provide
us with an equivalent definition of a solvable group.
Theorem 10: A group G is solvable iff G(n) = {e} for some +ve integer n.

Proof: Let G be solvable. Then there exists a normal series
{e} = G0  G1  G2  .......  Gn = G

s.t., 1i

i

G
G

1  is abelian  i = 0, 1, 2, ......., n – 1

Since 
1

n

n

G
G 1

 = 
1n

G
G 1

 is abelian, we get G   Gn–1(See theorem 20 on page 163)
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 (G )   Gn–1
i.e., G(2)  G n–1

Again as  1

2

n

n

G
G

1

2
  is abelian, we get Gn–1  Gn–2  G(2)  Gn–2

Continuing like this, we’ll get G(n)  G0 = {e}
which gives G(n) = {e}.
Conversely, let G(n) = {e}. Consider the series

{e} = G(n)  G(n–1)  G(n–2)  ...  G(2) G(1)  G(0) = G
which will be a normal series for G, where

( )

( 1)

i

i
G

G( 1)  = 
( )

( )( )

i

i
G
G

 is abelian i (Theorem 20 on page 163)

and, of course, G(i)   G(i–1)  i
 G is solvable

That solvability is hereditary follows by

Theorem 11: A subgroup of a solvable group is solvable.

Proof: Let H be any subgroup of a solvable group G.
Since G is solvable, G(n) = {e} for some +ve integer n.
Now H G  HH G  (HH )  (G ) i.e., H(2) G(2)

Continuing like this, we get H(n)  G(n) = {e}
 H(n) = {e}
 H is solvable.

Remark: See problem 17 ahead for another approach to this result.

Theorem 12: Homomorphic image of a solvable group is solvable.

Proof: Let f : G  H be an onto homomorphism, where G is solvable. Then  a +ve
integer n s.t., G(n) = {e}
Let a, b  G be any elements, then f (a), f (b) H

 f (a) f (b) (f (a))–1 (f (b))–1  HH
Also a, b  G  aba–1b–1  G  and as

f (aba–1 b–1) = f (a) f (b) (( f (a))–1 (f (b))–1  HH , we find
f (G )  HH  as aba–1b–1  G

Since f is onto, we find f (G ) = HH
Again f : G  H onto means f (G) = H
and, therefore, ( f (G))  = HH

i.e. ( f (G))  = f (G )
So HH  = f (G )



296 A Course in Abstract Algebra

 (HH )  = ( f (G ))  = [ f (G ) ] = f (G ) =  f (G(2))
or that H(2) = f (G(2))
Continuing like this we get

H(n) = f (G(n)) = f ({e}) = {e1} where e1 is identity of H
i.e., H is solvable.

Theorem 13: Quotient group of a solvable group is solvable.

Proof: Follows from above as a quotient group is a homomorphic image of the group under
the natural homomorphism.

Problem 17: Let H be a subgroup of a solvable group G. If
{e} = N0  N1  ...  Nn–1  Nn = G be a solvable series of G then show that
{e} = N0  H  N1  H  ...  Nn–1  H  Nn  H = H is a solvable series of H. Hence

show that H is solvable.

Solution: Let us put Hi = Ni  H, i = 0, 1, 2, ..., n.
Then we show that

{e} = H0  H1  H2  .......  Hn–1  Hn = H ...(1)
is a solvable series for H.

Since Ni   Ni+1 we find Ni H   Ni+1  H

i.e., Hi   Hi+1 i = 0, 1, 2, ..., n – 1

We show now 
1

i

i

H
H 1

 is abelian  i = 0, 1, 2, ..., n – 1

Define a map  : Hi+1  1i

i

N
N

1 , s.t.,

(x) = xNi (i = 0, 1, 2, ..., n – 1)
x  Hi+1 = Ni+1  H  x Ni+1, x  H

Thus  xNi  
1i

i

N
N

1
 and  is well defined

Now (xy) = xyNi = xNi yNi = (x) (y)  shows  is a homomorphism
Again, x  Ker  (x) = Ni

 xNi = Ni
 x  Ni  x  Ni  H

Hence Ker  = Ni  H = Hi
By Fundamental theorem,

(Hi+1) 1
Ker

iH 1
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i.e.   1i

i

H
H

1   (Hi+1)

where (Hi+1) is a subgroup of 1i

i

N
N

1 , which is abelian and so (Hi+1) is abelian and hence

because of the above isomorphism 1i

i

H
H

1  is abelian.

Thus series (1) is a solvable series of H.

Problem 18: Let G be a solvable group and suppose H  {e} is a subgroup of G then show
that Hthat H   H.

Solution: Suppose HH  = H, then
H(2) = (HH )  = HH  = H  {e}

If H(n) = H, then H(n+1) = HH  = H  {e}
Thus by induction H(r)  {e}  r  1
But G solvable  H is solvable  H(r) = {e} for some r  1, a contradiction. Hence HH H.

Problem 19: Show that a simple group is solvable if and only if it is abelian.

Solution: Let G be a simple group. Since G    G we find either G  = {e} or
G  = G. If G is solvable then GG   G (See problem 18) so G  = {e}. Thus G is abelian.

Conversely, if G is abelian then G  = {e} and so G is solvable.

Problem 20: Show that Sn (n  5) is not solvable.

Solution: If Sn is solvable then An is solvable. But An (n  5) is simple. Thus by above problem
An is abelian which is not true. [Notice (123)(234) 

 (
 (234)(123)].

Hence Sn is not solvable for n  5.
Problem 21: Show that a finite group G is solvable iff  a chian of subgroups.

{e} = H0 
  H1 

  ...   Hn = G

s.t., 1i

i

H
H

1 is cyclic (of prime order) i = 0, 1, 2,...,n 1.

Solution: Let G be finite, solvable. Since G is finite, it has a composition series
{e} = H0 

  H1
  ...   Hn = G

where 1i

i

H
H

1 is simple,  i = 0, 1, 2,...,n 1

Since G is solvable, each subgroup Hi is solvable and hence each quotient group 1i

i

H
H

1 is

solvable (Theorems 11, 13).
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So each 1i

i

H
H

1  is solvable and simple

 each 1i

i

H
H

1 is abelian  (Problem 19)

Thus all subgroups of 1i

i

H
H

1 are normal and as it is simple, it has no non trivial normal subgroups

and hence 1i

i

H
H

1 has no proper subgroups

 1i

i

H
H

1 is cyclic (of prime order) (See page 87). Conversely, 1i

i

H
H

1 cyclic

means it is abelian and result follows by definition.

Theorem 14: Let N be a normal subgroup of G s.t., N and G
N

 are solvable then G is solvable.

Proof: Let {e} = N0  N1  ...  Nk = N ...(1)

and {N} = 0 11 2 ....... n nG G GG G
N N N N N

G G0 11 20 11 20 1....... n n0 1n n0 1G G0 1G G0 1n nG Gn n0 1n n0 1G G0 1n n0 1G G0 1G G0 10 11 20 1G G0 11 20 1
N N N N N

n n0 1n n0 1G G0 1G G0 1n nG Gn n0 1n n0 1G G0 1n n0 1  = 
G
N ...(2)

be solvable series of N and 
G
N . By definition of solvable series then 1i iG G

N N
1  and 1/

/
i

i

G N
G N

1G N1G N1/G N/

is abelian i = 0, 1, 2, ..., n – 1
which gives Gi   Gi+1  i (See Lemma page 123)
Again by Third theorem of Isomorphism (Page 124) we have

1 1/
/

i i

i i

G G N
G G N

1 1i i1 1i i1 1G G N1 1G G N1 1/G G N/i iG G Ni i1 1i i1 1G G N1 1i i1 1
G G N

1 1i i1 1i i1 1G G N1 1G G N1 11 1i i1 1G G N1 1i i1 1

Since 1/
/

i

i

G N
G N

11G N1G N/G N/
 is abelian, we find 1i

i

G
G

1  is abelian  i. Consider now the series

{e} = N0  N1  ...  Nk = N = G0  G1  ...  Gn = G
then it  satisfies all conditions in the definition of a solvable series and hence it is required
solvable series of G showing thereby that G is solvable.

When we consider the series (2), it is clear that G0, G1, ..., are all subgroups of G containing
H.

Remark: We thus conclude that a group G with a normal subgroup N is solvable if both N
and G/N are solvable. The converse, of course, being true.

Problem 22: Show that a finite p-group is solvable, where p is prime.
Solution: Let G be the given finite p-group, then o(G) = pn for some n  0.
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If n = 1, then G is a group of prime order and thus it is abelian. (See page 86)
and so G is solvable.
Suppose now n > 1. We use induction on n. Suppose that the result holds for all groups

with order pm where m < n, then by Problem 20, page 186, o(Z(G)) > 1.
Let o(Z(G)) = pt, t  1 (Notice o(Z(G)) | o(G) = pn )

Thus
( )
Go

Z G
GG
( )Z G( )Z G( )( )Z G( )Z G( )

 = 
n

t
p
p

 = pn–t = ps where s < n

Since result holds for groups with order pm where m < n we find 
( )
G

Z G
 is solvable.

Also Z(G) is solvable as it is abelian.
Hence by above theorem G is solvable.

Problem 23: Show that a solvable group contains at least one normal abelian subgroup H.

Solution: Let G be a solvable group. If G is abelian then H = G is the required subgroup.
Let now G be non abelian. Since G is solvable G(n) = {e} for some +ve integer n.
Now G   {e} as if G  = {e} then G is abelian. (See page 164) which is not true. Hence

G(n) = {e}, n  1
Let H = G(n–1) then H is a subgroup of G.
and as HH  = G(n) = {e}, we find H is abelian and also as G(n–1) is normal subgroup of G, we

find H is the required subgroup.

Problem 24: Let G be a finite solvable group, then a minimal non trivial normal subgroup
of G is abelian.

Solution: Let M be a minimal non-trivial normal subgroup of G. Since G is solvable, so would
be M. Thus M has a solvable series

{e} = H0 
  H1

  ...   Hk = M

where Hi 
  Hi+1 and 1i

i

H
H

1  is abelian.

Also then all composition factors of M will be of prime order (See problem). Thus  a normal
subgroup N of M s.t.,

M
N

 is of prime order (for instance, N = HKK 1)

Let o(M/N) = p, then 
( )
( )

o M p
o N

p

Also this M/N will be abelian (See cor. on page 86).
Thus for any x, y  M

NxNy = NyNx
 Nxy = Nyx  xyx 1y 1  N
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Again as N  M,  g g 1Ng   g g 1Mg for any g  G

 gg 1Ng  g as M  is normal

Also o(gg 1Ng) = o(N) = 
( )o M
p

 1 ,Mo p
g Ng

M ,o po po po po po po po po po po po po p
g Ng

o po p
g Ng

o p
g Ng

o po p1o p1g Ng1g Ng1o p
g Ng

o p1o p1g Ng1o p1o p  a prime

and so 1
M

g Ng1g Ng1g Ng1 is abelian g

Proceeding as above, we can say (considering 1
M

g Ng1g Ng1g Ng1  in place of M/N)

xyx 1y 1  g g 1Ng x, y  M, g  G

 xyx 1y 1  
1

g G
g Ng1g Ng1g Ng1

g Gg G
g Ngg Ng

g G
g Ng

If K = 
1

g G
g Ng1g Ng1g Ng1

g Gg G
g Ngg Ng

g G
g Ng then K   G (See Problem 13, Page 105)

Also K N M
(k  K  k  g g 1Ng  k  g g 1Ng g  k  e 1Ne  k  N)

Since M is minimal normal either K = M or K = {e}
But K = M  N = M, not possible as o(M) = p = o(N)
Hence K = {e}
i.e., xyx 1y 1  K = {e} x, y  M

xy = yx  M is abelian.
Problem 25: Show that a group of order pq is solvable, where p, q are primes.

Solution: Let o(G) = pq. If  p = q then o(G) = p2 and thus G is an abelian group.
(See page 186). Hence G is solvable. Let now p > q. Then number of Sylow
p-subgroups of G is 1 + kp where (1 + kp) | q, i.e., 1 + kp = 1 or q.

If 1 + kp = q then kp = q – 1  p | (q – 1) which is not true, as p > q.
Hence 1 + kp = 1 and there exists a unique normal Sylow p-subgroup, say H, of order p.
Since p is prime, H will be cyclic and so abelian and hence solvable.

Again Go
H
GG
HH

 = q  G
H

 is abelian  G
H

 is solvable  G is solvable.

Problem 26: Show that the following two statements are equivalent:
(a) Every group of order pmqn, where p, q are primes, is solvable.
(b) Simple groups of order p q  are cyclic groups of order p or q.

Solution: (a)  (b)
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Let G be a simple group of order p q . Since G  is normal in G, we find either
G  = {e} or G

 be a simple group of order 
 = G.

Since G is solvable, by (a) GG  = {e} and so G is abelian. (See page 164).
Let H be a Sylow p-subgroup of G. Then H will be normal as G is abelian and

o(H) = p
 be a Sylow 

Again, G simple means either H = G or H = {e}
If H = G, there  = 1,  = 0 and so G is cyclic of order p
If H = {e} then if K is sylow q-subgroup of G, it will be normal and as before, either,

K = G or K = {e}
If K = G, then  = 1,  = 0 and so G is cyclic of order q.
If K = {e}, we get the case where  = 0,  = 0 forcing G = {e} which is not true as G

is simple. Hence the result follows.
We now show that (b)  (a).
Let G be a group of order pmqn.
Consider a composition series of G (which exists as G is finite) then every composition

factor of this series will be a simple group of order p
 is finite) then every composition

q
 is finite) then every composition

 for some 
 is finite) then every composition

, 
 is finite) then every composition

.
By (b), each factor would, therefore, be cyclic and so abelian. Hence G is solvable.

Remark: There is a famous theorem of Burnside in which it is proved that every group of
order pmqn where p, q are primes, is solvable.
Problem 27: Show that a finite solvable group G has a chain of subgroups.

{e} = N0 
  N1

  ...   Nt = G

s.t., Ni is a normal subgroup of G and 1i

i

N
N

1  is abelian, i = 0, 1, 2,...,t  1

Solution: We use induction on order G. If o(G) = 2, the result holds trivially as

{e} = G0 
  G1 = G  and 1

{ }o

G G G
G e{ }
G G G
G e{ }G e{ }

 is abelian.

Let the result hold for solvable groups having order less than o(G).
If G has no non trivial normal subgroups then G is simple and solvable.
So G is abelian (See problem 19 on page 297) and thus the result holds.
Suppose now G has a non trivial normal subgroup. Let M be a minimal such subgroup. Then
as in problem 24 above, M is abelian. Consider the group G/M then as o(G/M) < o(G), by
induction the result holds for G/M.
i.e.,  a series (for G/M)

{I} = 0 1 nM MM G
M M M M

M G
M M M M

 

s.t., 1iM
M

1  is normal in G/M and
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1i iM M
M M

i ii i1i i1M MM M1M M1i iM Mi ii iM Mi i1i i1M M1i i1  is abelian and 1iM G1M G1M G1   i = 0, 1,....,n 1

0 1{ } ne M M M G0 10 1{ } ne M M M G0 1e M M M G0 1{ }e M M M G{ } ne M M M Gn   and each iM G

By third theorem of isomorphism as 1 1/
/

i i

i i

M M M
M M M

i i1 1i i1 11 1/1 1i i1 1/1 11 1M M M1 1M M M1 1/M M M/1 1/1 1M M M1 1/1 1i iM M Mi i1 1i i1 1M M M1 1i i1 11 1/1 1i i1 1/1 1M M M1 1/1 1i i1 1/1 1
M M M

1 1i i1 1i i1 1M M M1 1M M M1 11 1i i1 1M M M1 1i i1 1

we find 
1i

i

M
M

1
is abelian i.

Hence the result holds by induction.

Problem 28: Show that G = 
1
0 1 , ,
0 0 1

F
a b

c a b c
1 a b1 a b
0 1 , ,c a b c0 1 , ,c a b c0 1 , ,c a b c0 1 , ,c a b c0 1 , ,0 1 , ,c a b cc a b c0 1 , ,c a b c0 1 , ,0 1 , ,c a b c0 1 , , FF0 1 , ,0 1 , ,0 1 , ,c a b c0 1 , ,0 1 , ,c a b c0 1 , ,0 1 , ,0 1 , ,c a b c0 1 , ,0 1 , ,c a b c0 1 , ,0 1 , ,0 1 , ,c a b c0 1 , ,0 1 , ,c a b c0 1 , ,0 1 , ,0 1 , ,0 1 , ,
0 0 10 0 10 0 10 0 1

 is a solvable group for any field F.

Solution: Let A = 
1
0 1
0 0 1

a b
c

1 a b
0 10 1 c0 1 c
0 0 1

 be any member of G

then A–1 = 
1
0 1
0 0 1

1
0 10 10 1
0 0 1

a ac b
c   G

and G forms a group under matrix multiplication.

Also GG  = 
1 0
0 1 0
0 0 1

1 01 0
0 1 00 1 00 1 00 1 0
0 0 10 0 10 0 10 0 1

b
b F

as A, B  G  A–1B –1AB is a matrix of the form 
1 0
0 1 0
0 0 1

1 0
0 1 00 1 00 1 0
0 0 1

b

 G   R.H.S.

Also
1 0
0 1 0
0 0 1

1 0
0 1 00 1 00 1 0
0 0 1

b
 = 

1 0 1 1 0 1 0
0 1 0 0 1 1 0 1 0 0 1 1
0 0 1 0 0 1 0 0 1 0 0 1

b b b b bé ù é ù é ù é ù- - -
ê ú ê ú ê ú ê ú
ê ú ê ú ê ú ê ú-ê ú ê ú ê ú ê ú
ê ú ê ú ê ú ê ú
ë û ë û ë û ë û

So R.H.S.  G

Similarly, G(2) = 
1 0 0
0 1 0
0 0 1

1 0 01 0 0
0 1 00 1 00 1 00 1 0
0 0 10 0 10 0 1

Hence G is solvable.
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Problem 29: Show that the group G of all n × n invertible matrices (n  3) over reals is not
solvable.

Solution: Let Eij be the n × n matrix whose (i, j)th entry is 1 and other entries are zero.
Then Eij Ejk = Eik

and Eij Ers = 0 if j  r
Now (I + Eij) (I – Eij) = I – Eij + Eij = 0 if i  j
So, I – Eij = (I + Eij)

–1 for i  j
Thus I + Eij  G.
Let K be the subgroup of G generated by {I + Eij | i  j}
Since n  3, there exist three distinct integers i, j, k
Now (I – Eik) (I + Ekj) (I + Eik)

–1 (I + Ekj)
–1

= (I + Eik) (I + Ekj) (I – Eik) (I – Ekj)
= (I + Eik) (I + Ekj) (I – Ekj – Eik + Eij)
= (I + Eik) (I – Ekj – Eik + Eij + Ekj)
= (I + Eik) (I – Eik + Eij)
= I + Eij

So I + Eij  KK  and thus K  KK   K = KK   K is not solvable  G is not solvable.

Nilpotent Groups

Definition I: A group G is called nilpotent if it has a normal series
{e} = G0  G1  G2  ......  Gn = G

such that
1 1

Zi

i i

G G
G Gi i1 1i i1 1G G1 1G G1 1i iG Gi i1 1i i1 1G G1 1i i1 1

G
G G

Z G

1 1i i1 1i i1 1G G1 1G G1 11 1i i1 1G G1 1i i1 1G GG GG G
 i = 1, 2, ..., n

Definition II: We first define what we mean by nth centre of a group. Let G be a group and
Z(G) be its centre. We call Z(G) the first centre of G and put Z(G) = Z1(G). Consider now

the group 
Z( )

G
G

, then centre Z
Z( )

G
G

GG
Z( )Z( )GZ( )Z( )Z( )GZ( )

 of 
Z( )

G
G

 is a normal subgroup of 
Z( )

G
G

So
1 1

Z
Z ( ) Z ( )

G G
G G

G G

1 1Z ( ) Z ( )1 1Z ( ) Z ( )1 11 1Z ( ) Z ( )1 1G G1 1Z ( ) Z ( )1 1Z ( ) Z ( )1 1Z ( ) Z ( )1 1Z ( ) Z ( )G GZ ( ) Z ( )Z ( ) Z ( )G GZ ( ) Z ( )1 1Z ( ) Z ( )1 1G G1 1Z ( ) Z ( )1 1


Since any normal subgroup of G
K

 is of the form H
K

 for a unique normal subgroup H of

G, we find any normal subgroup of 
1Z ( )
G

G
 is of the type 

1Z ( )
H

G
 where H  G

We write H = Z2(G)  (Called second centre of G)
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Then Z2(G)   G s.t., 
1

Z
Z ( )

G
G

GG

1Z ( )1Z ( )1Z ( )GZ ( )Z ( )Z ( )GZ ( )
 = 2

1

Z ( )
Z ( )

G
G

Continuing like this we get Zn(G)   G,  (called nth centre)

s.t.,
1

Z ( )
Z ( )

n

n

G
G1Z ( )1Z ( )1Z ( )GZ ( )

 = 
1

Z
Z ( )n

G
G

GG
Z ( )nZ ( )nZ ( )Z ( )GZ ( )1Z ( )1Z ( )1Z ( )GZ ( )Z ( )Z ( )GZ ( )Z ( )Z ( )GZ ( )

n > 1

Let us write Z0(G) = {e}, and thus

1

Z ( )
Z ( )

n

n

G
G1Z ( )1Z ( )1Z ( )GZ ( )

 = 
1

Z
Z ( )n

G
G

GG
Z ( )nZ ( )nZ ( )Z ( )GZ ( )1Z ( )1Z ( )1Z ( )GZ ( )Z ( )Z ( )GZ ( )Z ( )Z ( )GZ ( )

 n = 1, 2, ...

Also then Z0(G)  Z1(G)  Z2(G)  ... are normal subgroups of G. This is called the upper
central series or ascending central series of G.

We say a group G is nilpotent if Zm(G) = G for some m. Also in that case the smallest m
s.t., Zm(G) = G is called the class of nilpotency of G.

We first show the equivalence of the two definitions.

Definition I  Definition II
Let G be nilpotent according to definition I. Then G has a normal series

{e} = G0 G1  G2  ...  Gn = G

s.t.,
1 1

Zi

i i

G G
G Gi i1 1i i1 1G G1 1G G1 1i iG Gi i1 1i i1 1G G1 1i i1 1

G
G G

Z G

1 1i i1 1i i1 1G G1 1G G1 11 1i i1 1G G1 1i i1 1G GG GG G
 i = 1, 2, ..., n

Let i = 1, then

1

0 0
ZG G

G G
GZ

G G
G

0 0G G0 0G G0 0G GG G
If x  G1 be any element, then

G0 x  1

0

G
G

 G0 x 
000

GZ
G

 G0 x . G0 y = G0yG0x  G0 y  
0

G
G

 G0 xy = G0 yx
 xy x–1 y–1  G0 = {e}
 xy = yx  y  G
 x  Z(G) = Z1(G)

Hence G1  Z1(G)
Let i = 2, then

2

1 1

G GZ
G G

GZ
G G1 11 1G G1 11 1G G1 1G G1 1G G

If x  G2 be any element then proceeding as above we get xy x–1y–1  G1
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and as G1  Z1(G)
xy x–1y–1  Z1(G)  y  G

 Z1(G) xy = Z1(G)yx Z1(G)x Z1(G)y = Z1(G)y Z1(G)x

 Z1(G)x  
1( )
GZ

Z G
G

1( )1Z G1Z G( )Z G( )( )1Z G1Z G( )Z G( )
 = 2

1

( )
( )

Z G
Z G

 x  Z2(G)
Hence G2  Z2(G)
Continuing like this, we get

Gi  Zi(G)  i = 1, 2, ... n
Hence G = Gn  Zn(G)
or that G is nilpotent according to definition II.

Definition II  Definition I
Suppose G is nilpotent of class n then Zn(G) = G. Consider the series

{e} = Z0(G)  Z1(G)  Z2(G)  .......  Zn(G) = G

which is a normal series and 
1

( )
( )

i

i

Z G
Z G1( )Z G1Z G1( )Z G( )

 = 
1( )i

GZ
Z G

G
( )iZ G( )Z G( )iZ Gi 1( )Z G1Z G1( )Z G( )( )Z G( )Z G( )iZ GiZ G1Z G1( )Z G( )

i.e., G is nilpotent according to definition I.

Example 24: An abelian group is nilpotent. Since G abelian
 G = Z(G) i.e., Z1(G) = G.

Also then all cyclic  groups will be nilpotent.
However, a nilpotent group need not be abelian and thus cyclic. Consider G, the quaternion

group. Then
G0 = {1}  G1 = {1, – 1}  G2 = {1, – 1, i, – i}  G

and
2

Go
G

æ ö÷ç ÷ç ÷ç ÷è ø
 = 2, 

1

Go
G

æ ö÷ç ÷ç ÷ç ÷è ø
 = 4  

1

G
G

, 
2

G
G

 are abelian


111

GZ
G

 = 
1

G
G

, 
222

GZ
G

 = 
2

G
G

. Also 
000

GZ
G

 = {G0(1), G0(–1)} is abelian

Thus
000

GZ
G

 = 
0

G
G

 and so G is nilpotent but not abelian.

Example 25: A finite p-group is nilpotent. See exercises.

Theorem 15: Every nilpotent group is solvable. Converse is not true.

Proof: Let G be a nilpotent group, then G has a normal series
{e} = G0 G1  G2  ...  Gn = G
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where
1 1

Zi

i i

G G
G Gi i1 1i i1 1G G1 1G G1 1i iG Gi i1 1i i1 1G G1 1i i1 1

G
G G

Z G

1 1i i1 1i i1 1G G1 1G G1 11 1i i1 1G G1 1i i1 1G GG GG G
.  i = 1, 2, ... n

Which implies that 
1

i

i

G
G 1

 is abelian  i

Hence G is solvable.
S3 is solvable but not nilpotent. Notice that Z(S3) = {I} and so Zm(G) = G holds for no m.
(In fact Sn is not nilpotent, for n  3).

Theorem 16: Any subgroup of a nilpotent group is nilpotent.

Proof: Let H be a subgroup of a nilpotent group G. Since G is nilpotent, there exists a normal
series

{e} = G0  G1  G2  ......  Gn = G

s.t.,
1 1

i

i i

G GZ
G Gi i1 1i i1 1G G1 1G G1 1i iG Gi i1 1i i1 1G G1 1i i1 1

GZ
G GG G1 1i i1 1i i1 11 1i i1 1G G1 1i i1 1G G1 11 1i i1 1G G1 1G G1 11 1i i1 1G G1 1i i1 1G GG G

, i = 1, 2, ..., n

Consider the series
{e} = G0  H  G1  H  G2  H  ...  Gn  H = G  H = H

It is easy to see that Gi–1  H  Gi  H  i. We show

1 1

i

i i

G H G HZ
G H G Hi i1 1i i1 1G H G H1 1G H G H1 1i iG H G Hi i1 1i i1 1G H G H1 1i i1 1

G HG H G HZ
G H G Hi i1 1i i1 1G H G H1 1G H G H1 11 1i i1 1G H G H1 1i i1 1

Z
G H G HG H G HG H G H1 1i i1 1i i1 1G H G H1 1G H G H1 11 1i i1 1G H G H1 1i i1 1G H G HG H G H1 1G H G H1 11 1i i1 1G H G H1 1i i1 1G H G HG H G H

,  i = 1, 2, ..., n which would establish that H

is nilpotent.

Let (Gi–1  H)x  
1

i

i

G H
G H1G H1G H1

G H
G HG H

 be any element

then x  Gi  H  x Gi and x  H.

Now (Gi–1  H)x  
1i

G HZ
G H
G HG HG HG H

iG HiG Hi 1G H1G H1G HG HG HG HG HG H

if (Gi–1  H)x commutes with all elements of 
1i

G H
G H1G H1G H1

G H
G HG H

i.e., (Gi–1  H)x (Gi–1  H)y = (Gi–1  H)y (Gi–1  H)x  y  G H
i.e., (Gi–1  H)xy = (Gi–1  H)yx
i.e., xy x–1y–1 Gi–1 H y G H
i.e., xy x–1y–1  Gi–1 and xy x–1y–1  H  y  G  H
Now x  H, y  H  xy x–1y–1  H

Again, since 
1 1

i

i i

G GZ
G Gi i1 1i i1 1G G1 1G G1 1i iG Gi i1 1i i1 1G G1 1i i1 1

GZ
G GG G1 1i i1 1i i1 11 1i i1 1G G1 1i i1 1G G1 11 1i i1 1G G1 1G G1 11 1i i1 1G G1 1i i1 1G GG G

 and x  Gi, we find that
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Gi–1 x  
1

i

i

G
G 1

  Gi–1 x  
1i

GZ
G
G

iGiGi 1iGiGi 1

Gi–1 x Gi–1 y = Gi–1 y Gi–1 x  y  G
Gi–1xy = Gi–1yx
xy x–1y–1  Gi–1  y  G

and hence over assertion is proved.

Theorem 17: Homomorphic image of a nilpotent group is nilpotent.

Proof: Let  : G  H be an onto homomorphism and suppose G is nilpotent. Then there exists
a normal series

{e} = G0  G1  G2  .......  Gn = G

s.t.,
1 1

i

i i

G GZ
G Gi i1 1i i1 1G G1 1G G1 1i iG Gi i1 1i i1 1G G1 1i i1 1

GZ
G GG G1 1i i1 1i i1 11 1i i1 1G G1 1i i1 1G G1 11 1i i1 1G G1 1G G1 11 1i i1 1G G1 1i i1 1G GG G

 i = 1, 2, ..., n

We claim
(e) = (G0)  (G1)  (G2)  ...  (Gn) = (G) = H is the required normal series for

H where 
1 1

( ) ( )
( ) ( )

i

i i

G GZ
G G

( )Z ( )( )

1 1( ) ( )1 1( ) ( )1 1( ) ( )( ) ( )
( )i( )i( )( )G( )( )i( )G( )i( ) ( )( )G( )( )( )( )G( )

( ) ( )i i( ) ( )i i( ) ( )( ) ( )G G( ) ( )( ) ( )i i( ) ( )G G( ) ( )i i( ) ( )i i1 1i i1 1( ) ( )i i( ) ( )1 1( ) ( )1 1i i1 1( ) ( )1 1( ) ( )G G( ) ( )1 1( ) ( )1 1G G1 1( ) ( )1 1( ) ( )i i( ) ( )G G( ) ( )i i( ) ( )1 1( ) ( )1 1i i1 1( ) ( )1 1G G1 1( ) ( )1 1i i1 1( ) ( )1 1( ) ( )
Z

( ) ( )G G( ) ( )1 1( ) ( )1 1( ) ( )1 1i i1 1i i1 11 1( ) ( )1 1i i1 1( ) ( )1 1( ) ( )G G( ) ( )1 1( ) ( )1 1G G1 1( ) ( )1 11 1( ) ( )1 1i i1 1( ) ( )1 1G G1 1( ) ( )1 1i i1 1( ) ( )1 1( ) ( )( ) ( )G G( ) ( )( ) ( )( ) ( )G G( ) ( )( ) ( )( ) ( )G G( ) ( )

It is easy to see that (Gi–1)   (Gi)  i and we leave it for the reader to try and prove
it.

Let (Gi) = Hi i = 1, 2, ..., n

we show
1 1

i

i i

H HZ
H Hi i1 1i i1 1H H1 1H H1 1i iH Hi i1 1i i1 1H H1 1i i1 1

HZ
H HH H1 1i i1 1i i1 11 1i i1 1H H1 1i i1 1H H1 11 1i i1 1H H1 1H H1 11 1i i1 1H H1 1i i1 1H HH H

Let  Hi–1 x  
1

i

i

H
H 1

 be any element,

we have to show that  Hi–1 x  
1i

HZ
H
H

iH 1iH 1

i.e., (Hi–1 x) (Hi–1 y) = (Hi–1 y) (Hi–1 x)  Hi–1 y  
1i

H
H 1

i.e., Hi–1 xy = Hi–1 yx
i.e., xy x–1y–1  Hi–1  y H
Now x  Hi  x  (Gi)   a  Gi s.t., (a) = x

y  H   y = (G)    b  G, s.t., (b) = y
Thus xy x–1y–1 = (a) (b) ( (a))–1 ( (b))–1 = (ab a–1b–1)  (Gi–1)

Since a  Gi, Gi–1 a  
1 1

i

i i

G GZ
G Gi i1 1i i1 1G G1 1G G1 1i iG Gi i1 1i i1 1G G1 1i i1 1

GZ
G GG G1 1i i1 1i i1 11 1i i1 1G G1 1i i1 1G G1 11 1i i1 1G G1 1G G1 11 1i i1 1G G1 1i i1 1G GG G
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and so Gi–1 a . Gi–1 b = Gi–1 b Gi–1 a
i.e., Gi–1 ab = Gi–1 ba
i.e., ab a–1b–1  Gi–1

i.e., (ab a–1b–1)  (Gi–1) = H.
Hence the resuit follows.

Theorem 18: Any quotient group of a nilpotent group is nilpotent.

Proof: Follows from above theorem as any quotient group of a group is its homomorphic
image.

Converse is, however, not true as 3

3

S
A

 is abelian and so nilpotent, but S3 is not nilpotent.

Problem 30: If H and K are nilpotent groups then show that H × K is also nilpotent.

Solution: Let H and K be nilpotent. Then  normal series

{e1} = H0  H1  H2  .......  Hn = H s.t., 
1 1

i

i i

H HZ
H Hi i1 1i i1 1H H1 1H H1 1i iH Hi i1 1i i1 1H H1 1i i1 1

HZ
H HH H1 1i i1 1i i1 11 1i i1 1H H1 1i i1 1H H1 11 1i i1 1H H1 1H H1 11 1i i1 1H H1 1i i1 1H HH H

  i = 1, 2, ..., n

{e2} = K0  K1  K2  ....... Kn = K s.t.,  
1 1

i

i i

K KZ
K Ki i1 1i i1 1K K1 1K K1 1i iK Ki i1 1i i1 1K K1 1i i1 1

KZ
K KK K1 1i i1 1i i1 11 1i i1 1K K1 1i i1 1K K1 11 1i i1 1K K1 1K K1 11 1i i1 1K K1 1i i1 1K KK K

We can repeat terms in the series with lesser terms.
Consider the series
{e1} × {e2} = H0 × K0  H1 × K1 H2 × K2  .......  Hn × Kn = H × K
Then one can check that this is a normal series in which

1 1 1 1

i i

i i i i

H K H KZ
H K H Ki i i i1 1 1 1i i i i1 1 1 1H K H K1 1 1 1H K H K1 1 1 1i i i iH K H Ki i i i1 1 1 1i i i i1 1 1 1H K H K1 1 1 1i i i i1 1 1 1

H Ki iH Ki iH Ki i H KZ
H K H Ki i i i1 1 1 1i i i i1 1 1 1H K H K1 1 1 1H K H K1 1 1 11 1 1 1i i i i1 1 1 1H K H K1 1 1 1i i i i1 1 1 1

Z
H K H KH K H K1 1 1 11 1 1 11 1 1 1i i i i1 1 1 1i i i i1 1 1 11 1 1 1i i i i1 1 1 1H K H K1 1 1 1i i i i1 1 1 1H K H K1 1 1 11 1 1 1i i i i1 1 1 1H K H K1 1 1 1H K H K1 1 1 11 1 1 1i i i i1 1 1 1H K H K1 1 1 1i i i i1 1 1 1H K H KH K H K

Let (Hi–1 × Ki–1) (h, k)  
1 1

i i

i i

H K
H K1 1i i1 1i i1 1H K1 1H K1 1i iH Ki i1 1i i1 1H K1 1i i1 1

i iH Ki iH Ki i
H K1 1i i1 1i i1 1H K1 1H K1 11 1i i1 1H K1 1i i1 1

 be any element

then (Hi–1 × Ki–1) (h, k) will belong to 
1 1i i

H KZ
H K

H KH K

i iH Ki iH Ki i1 1i i1 1i i1 1i iH Ki i1 1i i1 1H K1 1i i1 11 1H Ki iH Ki iH K1 1H K1 1i iH Ki i1 1i i1 1H K1 1i i1 11 1i i1 1i i1 11 1i i1 1H K1 1i i1 1H K1 11 1i i1 1H K1 1H K1 11 1i i1 1H K1 1i i1 1

if (Hi–1 × Ki–1) (h, k) . (Hi–1 × Ki–1) (x, y) = (Hi–1 × Ki–1) (x . y) .(Hi–1 × Ki–1) (h, k)
i.e., if (h, k) (x, y) (h, k)–1 (x, y–1)  Hi–1 × Ki–1
i.e., if (hx h–1x–1, hy k–1y–1)  Hi–1 × Ki–1

i.e., if h x h–1x–1  Hi–1

ky k–1y–1  Ki–1
which is true.

We leave the first part (that Hi × Ki   Hi+1 × Ki+1) for the reader to try as an exercise.

Problem 31: If H is a proper subgroup of a nilpotent group G then show that H is a proper
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subgroup of N(H).

Solution: Since G is nilpotent, it has upper central series

{e} = Z0(G)  Z1(G)  Z2(G)  .......  Zn(G) = G

Now H  G, let i be the largest integer s.t., Zi(G)  H
Then we get

Zi(G)  H  Zi+1 (G)  ...

Again since 1( )
( )

i

i

Z G
Z G

1( )1Z G1Z G( )Z G( )
 = 

( )i

GZ
Z G

G
( )iZ G( )Z G( )iZ Gi ( )Z G( )Z G( )iZ Gi

1( )
( )

i

i

Z G
Z G

1( )Z G1Z G1( )Z G( )
 is abelian.

Let g  Zi+1(G) and h H be any elements, then

h  H  Zi+1(G) and so Zi(G)g, Zi(G)h  1( )
( )

i

i

Z G
Z G

1( )1Z G1Z G( )Z G( )
 and thus

Zi(G)g Zi(G)h = Zi(G)h Zi(G)g
 Zi(G)gh = Zi(G)hg
 gh g–1h–1  Zi(G)  H
 gh g–1  H  g  Zi+1(G), h  H
 gH g–1  H  g  Zi+1(G)

i.e., gH g–1 = H  g  Zi+1(G)
 any g  Zi+1(G) is such that g  N(H)
or that  Zi+1(G)  N(H)
But H  Zi+1(G) and hence H is a proper subgroup of N(H).

Exercises
1. Show that A4 is solvable.
2. Show that H × K is solvable iff H and K are solvable.

3. Let H and K be normal subgroups of G. Show that G
H KH K

 is solvable ifff

G
H

 and G
K

 are solvable.

4. Let H and K be solvable subgroups of G where K is normal. Show that HK is solvable
subgroup of G.

5. Let G be a group. Show that the following are equivalent.
(i) G is solvable
(ii) G  is solvable
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(iii) G
Z

 is solvable where Z denotes centre of G.

6. Show that a simple group is solvable iff it is cyclic.

7. Show that G = 3

1
0 1 , ,
0 0 1

a b
c a b c Z

ì üæ öï ï÷ï ïç ÷ï ïç ÷ï ïç ÷ Îí ýç ÷ç ÷ï ïç ÷ï ï÷çï ïè øï ïî þ

 is a solvable group. (Hint: o(G) = 33)

8. If p, q are primes, show that groups of order p2q, p2q2 are solvable.

9. Give example of a group all of whose proper subgroups are solvable but group itself is
not. (Consider A5).

10. If all proper subgroups of a non solvable group G are solvable, show that G = G .
(A group G such that G = G
If all proper subgroups of a non solvable group 

 is called a perfect group).

11. Show that every group of odd order is solvable iff every finite non abelian simple group
has even order.

12. Show that direct product of infinitely many solvable groups need not be solvable.

13. Show that a finite p-group is nilpotent.

14. Show that the result proved in theorem 14 for solvable groups does not hold for nilpotent
groups. [Hint:Consider S3/A3]

15. Give an example of a solvable group G in which H  G, H  G and N(H)  H.

16. Suppose that in a non abelian simple group, {e} is the only conjugate class whose order
is prime power. Show that a group of order pmqn (p, q primes) is a solvable group.

17. Let G be a nilpotent group. Show that every maximal subgroup of G is normal subgroup.
Hence deduce that S3 is not nilpotent. (Use problem 31)

18. Show that every sylow subgroup of a nilpotent group G is normal in G. (See exercise 17)

19. Show that a nilpotent group is isomorphic to the direct product of its Sylow subgroups.

20. If G is direct product of its Sylow subgroups, show that G is nilpotent.
(Use exercise 13 and problem 30).
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If G is a group and Ais a non-empty set, then G is said to act on A if there
exists a function * from G × A  A, s.t.,
(i) g1 * (g2 * a) =  (g1g2) * a
(ii)  e * a  =  a  for all g1,  g2 in G and a in A
Let G be any group and A be any set. Then any group homomorphism from G
to Sym(A) the symmetric group of A defines an action of G on A. Conversely,
every action of G on A induces a homomorphism from G to Sym(A).
The above homomorphism is called the associated (or the corresponding)
permutation representation of the given action.
If  *  be a group action of G on A, then kernel of * is defined to be the set  Ker
(*) =  { g  G |g * a = a  for all a A}.  This is seen to be equal to the kernel
of the associated permutation representation.
An action  *  is said to be faithful if, whenever g* a = a then g = e.
Let G be a group acting on a set A. For each a in A, the set
Ga = {x A|x = g * a for some g G}

= {g*  a | g 
g 
G}  is called an orbit of a under G.

Again, let a A be a fixed element, then the set Ga = {g G | g * a = a} is
called the stabilizer of a in G and it forms a subgroup of G.
The Orbit-Stabilizer theorem says that if G is a group acting on A and a A,
then there exists a one-one onto map from Ga to the set of all cosets of Ga in
G.
Every permutation in Sn can be expressed as a unique product of disjoint
cycles, is proved using group actions.
Every finite group with more than one element has a composition series.
Jordan-Hölder theorem states that in a finite group any two composition
series are equivalent.
A group G is said to be solvable if there exists a chain of subgroups
{e} = H0 H1 H2 …… Hn= G,  s.t., each Hi is a normal subgroup of
Hi+1 and Hi+1/Hi is abelian, i = 1, 2, 3,…,n–1.
Abelian and cyclic groups are solvable and so are S3 ,S4.
A group G is solvable iff G(n) = {e} for some +ve integer n.
Every nilpotent group is solvable, converse is not true.
Subgroups, homomorphic images, quotient groups of solvable (nilpotent) groups
are solvable (nilpotent).

A Quick Look at what's been done
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Definition: A non empty set R, together with two binary compositions + and . is said to form
a Ring if the following axioms are satisfied:

(i) a + (b + c) = (a + b) + c for all a, b, c  R
(ii) a + b = b + a for a, b  R

(iii)  some element 0 (called zero) in R, s.t., a + 0 = 0 + a = a for all a  R
(iv) for each a  R,  an element (– a)  R, s.t., a + (– a) = (–a) + a = 0
(v) a . (b . c) = (a . b) . c for all a, b, c  R

(vi) a . (b + c) = a . b + a . c
(b + c) . a = b . a + c . a for all a, b, c  R

Remarks: (a) Since we say that + and . are binary compositions on R, it is understood that
the closure properties w.r.t. these hold in R. In other words, for all a, b   R,
a + b and a . b are unique in R.

(b) One can use any other symbol instead of + and ., but for obvious reasons, we use these
two symbols (the properties look so natural with these). In fact, in future, the statement that
R is a ring would mean that R has two binary compositions + and . defined on it and satisfies
the above axioms.

(c) Axiom (v) is named associativity w.r.t. . and axiom (vi) is referred to as distributivity
(left and right) w.r.t. . and +.

(d) Axioms (i) to (iv) could be restated by simply saying that < R, + > forms  an abelian
group.

Rings

7

Introduction
A group we noticed is a system with a non empty set and a binary composition. One can
of course talk about non empty sets with two binary compositions also, the set of integers
under usual addition and multiplication being an example. Though this set forms a group
under addition and not under multiplication, it does have certain specific properties satisfied
with respect to multiplication as well. We single out some of these and generalise the concept
in the form of a ring. We start with the formal definition and generalize the concept in the
form of a ring. We will then go on to study subrings and ideals (remember the normal
subgroups) and various properties related to these. We start with the formal definition.
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(e) Since 0 in axiom (iii) is identity w.r.t. +, it is clear that this element is unique (see
groups).

Definitions: A ring R is called a commutative ring if ab = ba for all a, b  R. Again if   an
element e 

 A ring 
 R s.t.,

ae = ea = a for all a  R
we say, R is a ring with unity. Unity is generally denoted by 1. (It is also called unit element

or multiplicative identity).
It would be easy to see that if unity exists in a ring then it must be unique.

Remark: We recall that in a group by a2 we meant a . a where ‘.’ was the binary composition
of the group. We continue with the same notation in rings as well. In fact, we also introduce similar
notation for addition, and shall write na to mean a + a + ....+ a (n times), n being an integer.

Example 1: Sets of real numbers, rational numbers, integers form rings w.r.t. usual addition
and  multiplication. These are all commutative rings with unity.

Example 2: Set E of all even integers forms a commutative ring, without unity (under usual
addition and multiplication).

Example 3: (a) Let M be the set of all 2 × 2 matrices over integers under matrix addition and

matrix multiplication. It is easy to see that M forms a ring with unity 
1 0

,
0 1
1 0

,
0 1

,
0 1

 but is not

commutative.

(b) Let M be set of all matrices of the type 
0 0
a ba b
0 00 0

 over integers under matrix addition and

multiplication. Then M forms a non commutative ring without unity.

Example 4: The set Z7 = {0, 1, 2, 3, 4, 5, 6} forms a ring under addition and multiplication
modulo 7. (In fact, we could take n in place of 7).

Example 5: The set R = {0, 4, 6} under addition and multiplication modulo 6 forms a commutative
ring with unity. The composition tables are

0 2 4
0 0 2 4
2 2 4 0
4 4 0 2

0 2 4 0 2 4
0 0 0 0
2 0 4 2
4 0 2 4



Since 0 4 = 0, 2 4 = 2, 4 4 = 4, we notice 4 is unity of R.

Example 6: Let F be the set of all continuous functions f : R  R, where R = set of real
numbers. Then F forms a ring under addition and multiplication defined by:

for any f, g F
( f + g)x = f (x) for all x R
( f g)x = f (x)g(x) for all x R
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zero of this ring is the mapping O : R  R, s.t.,
O(x) = 0 for all x R

Also additive inverse of any f  F is the function (– f ) : R  R s.t. ,
(– f )x = – f (x)

 In fact, F would have unity also, namely the function  i : R  R defined by
i(x) = 1 for all x

 would have unity also, namely the function  
R.

Remark: Although the same notation fg has been used for product here it should not be mixed
up with fog defined earlier.

Example 7: Let Z be the set of integers, then Z[i] = {a + ib | a, b  Z} forms  a ring under
usual addition and multiplication of complex numbers. a + ib where a, b  Z is called a Gaussian
integer and Z[i] is called the ring of Guassian integers.

We can similarly get Zn[i] the ring of Gaussian integers modulo n. For instance,
Z3[i] = {a + ib | a, b Z3 = {0, 1, 2} mod 3}

= {0, 1, 2, i, 1 + i, 2 + i, 2i, 1 + 2i, 2 + 2i}

Example 8: Let X be a non empty set. Then P (X) the power set of X (i.e., set of all subsets
of X) forms a ring under + and · defined by

A + B = (A  B) – ( A  B)
A . B =  A B

In fact, this is a commutative  ring with unity and also satisfies the property
A2 = A for all A 

In fact, this is a commutative  ring with unity and also satisfies the property
 P (X).

Example 9: Let M = set of all 2 × 2 matrices over members from the ring of integers modulo
2. It would be a finite non commutative ring. M would have 24 = 16 members as each element

a, b, c, d in matrix 
a b
c d
a b
c dc d

can be chosen in 2 ways. Compositions in M are given by

a b x y
c d z u
a b x ya b x ya b x ya b x ya b x y
c d z uc d z uc d z u

 = 
a x b y
c z d u
a x b ya x b ya x b ya x b y
c z d uc z d uc z d uc z d u

where  denotes addition modulo 2 and

a b x y
c d z u
a b x ya b x y
c d z uc d z u

 = 
a x b z a y b u
c x d z c y d u

 being multiplication modulo 2.

That M is non commutative follows as 
1 1 0 0
1 1 1 1
1 1 0 0
1 1 1 11 1 1 1

 = 
1 1
1 1
1 1
1 11 1

But 
0 0 1 1
1 1 1 1
0 0 1 1
1 1 1 11 1 1 1

=
0 0
0 0
0 0
0 00 0
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Example 10: Let R = {0, a, b, c}. Define + and . on R by

+ 0 a b c . 0 a b c
0 0 a b c 0 0 0 0 0
a a 0 c b a 0 a b c
b b c 0 a b 0 a b c
c c b a 0 c 0 0 0 0

Then one can check that R forms a non commutative ring without unity. In fact (see later
on page 328) it is an example of the smallest non commutative ring.

Theorem 1: In a ring R, the following results hold
(i) a . 0 = 0 . a = 0  for all a  R

(ii) a(–b) = (–a)b = –ab  for all a, b  R
(iii) (–a) (–b) = ab.  a, b ∈ R
(iv) a(b – c) = ab – ac.  a, b, c  R

Proof: (i) a . 0  = a . (0 + 0)
 a . 0  = a . 0 + a . 0
 a . 0 + 0 = a . 0 + a . 0
 0 = a . 0
using cancellation w.r.t + in the group < R, + >.
(ii) a . 0 = 0
 a (– b + b) = 0
 a (– b) + ab = 0
 a (– b) = – (ab)
similarly (– a) b = – ab.
(iii) (– a) (– b) = – [a (– b)] = –[– ab] = ab
(iv) a (b – c) = a (b + (– c))

= ab + a (– c)
= ab – ac.

Remarks: (i) If R is a ring with unity and 1 = 0, then since for any a  R,
a = a.1 = a.0 = 0, we find R = {0} which is called the trivial ring. We generally exclude this
case and thus whenever, we say R is a ring with unity, it will be understood that 1 

 ring. We generally exclude this
 0 in R.

(ii) If n, m are integers and a, b elements of a ring, then it is easy to see that
n(a + b) = na + nb
(n + m)a = na + ma

(nm)a = n(ma)
am an = am + n

(am)n = amn (see under groups).
Problem 1: Let <R, +, .> be a ring where the group <R, +> is cyclic. Show that R is a
commutative ring:
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Solution: Let < R, + > be generated by a. Let x, y ∈ R be any two elements, then x = ma,
y = na for some integers m, n.
Now xy = (ma)(na)

= (a + a +...+ a)(a + a +.... + a)
m times n times

= (mn)a2 = (nm)a2 = (na)(ma) = yx
We are so much used to the property that whenever ab = 0 then either a = 0 or

b = 0 that it may need more than a bit of convincing that the result may not always be true.
Indeed in the ring of integers (or reals or rationals) this property holds.  But if we consider
the ring of 2 × 2 matrices over integers, we notice, we can have two non zero elements

A, B s.t, AB = 0, but A  0 B  0. In fact, take A = 
0 1
0 0
0 1
0 00 0

 and B = 
2 0
0 0
2 0
0 00 0

 then A  0,

B  0. But AB = 
0 0
0 0
0 0
0 00 0

. We formalise this notion through

Definition: Let R be a ring. An element 0   a  R is called a zero-divisor, if  an element
0 b  R s.t., ab = 0 or ba = 0.

Definition: A commutative ring R is called an Integral domain if ab = 0 in R  either
a = 0 or b = 0. In other words, a commutative ring R is called an integral domain if R has no
zero divisors.

An obvious example of an integral domain is < Z, +, . > the ring of integers whereas the
ring of matrices, talked about above is an example of a ring which is not an integral domain.
Again, Z × Z will not be an integral domain (See pages 337, 372).

Remark: Some authors do not insist upon the condition of commutativity as a part of the
definition of an integral domain. One can have (see examples 11, 12 ahead), non commutative
rings without zero divisors.

The following theorem gives us a necessary and sufficient condition for a commutative ring
to be an integral domain.
Theorem 2: A commutative ring R is an integral domain iff for all a, b, c  R (a  0)

ab = ac   b = c.

Proof: Let R be an integral domain
Let ab = ac  (a  0)
Then ab – ac = 0
 a(b – c) = 0
 a = 0 or  b – c = 0
Since a  0, we get b = c.
Conversely, let the given condition hold.
Let a, b  R be any elements with a  0.
Suppose ab = 0
then ab = a.0
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 b = 0 using given condition
Hence ab = 0  b = 0 whenever a  0 or that R is an integral domain.

Remark: A ring R is said to satisfy left cancellation law if for all a, b, c  R, a 0
ab = ac  b = c.

Similarly we can talk of right cancellation law. It might, of course, be noted that cancellation
is of only non zero elements.

Definition: An element a in a ring R with unity, is called invertible (or a unit) w.r.t. multiplication
if  some b  R such that ab = 1 = ba.

Notice, unit and unit element (unity) are different concepts and should not be confused with
each other.

Definition: A ring R with unity is called a Division ring or a skew field if non zero elements
of R form a group w.r.t. multiplication.

In other words, a ring  R with unity is a Division ring if non zero elements of R have
multiplicative  inverse.

Definition: A commutative division ring is called a field.
Real numbers form a field, whereas integers do not, under usual addition and multiplication.

Since a division ring (field) forms groups w.r.t. two binary compositions, it must contain two
identity elements 0 and 1 (w.r.t. addition and multiplication) and thus a division ring (field) has
at least two elements (see remark on page 315).

Example 11: A division ring which is not a field. Let M be the set of all 2 × 2 matrices of

the type
a b
b a

 where a, b are complex numbers and ,a b  are their conjugates, i.e., if

a = x + iy then a  = x – iy. Then M is a ring with unity 
1 0
0 1
1 0
0 10 1

 under matrix addition and

matrix multiplication.

Any non zero element of M will be 
( )
x iy u iv
u iv x iy

x iy u ivx iy u ivx iy u ivx iy u iv
( )u iv x iy( )u iv x iy( )( )u iv x iy( )u iv x iy( )

where x, y, u, v are not all zero.

One can check that the matrix 

x iy u iv
k k

u iv x iy
k k

x iy u ivx iy u ivx iy u iv
k k

x iy u ivx iy u ivx iy u iv
k k

x iy u iv
k kk k

u iv x iyu iv x iyu iv x iyu iv x iyu iv x iyu iv x iy
k k

where k = x2 + y2 + u2 + v2, will be  multiplicative inverse of the above non zero matrix,
showing that M is a division  ring. But M will not be a field as it is not commutative as

0 1 0
1 0 0

i
i

0 1 00 1 0i0 1 0
1 0 0 i1 0 0 i

= 
0

0
i

i
0 i

00ii

But
0 0 1

0 1 0
i

i
0 0 1i

0 1 00 1 00 1 00 1 0i0 1 0i0 1 00 1 00 1 0i0 1 0
= 

0 0
.

0 0
0 00 0

.
0 0

.
0 00 00 00 0
i i

i i
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Example 12: Consider
D = {a + bi + cj + dk | a, b, c, d  R} with i2 = j2 = k2 = –1, then D forms a ring.
Two elements a + bi + cj + dk  and a  + b i + c j + dd k  are equal iff  a = a , b = b ,

c = c , d = dd .
Addition and multiplication on D are defined by
(a + bi + cj + dk) + (a  + b i + c j + dd k) = (a + a ) + (b + b ) + (c + c ) + (d + dd )k
and

(a + bi + cj + dk) (a  + b i + c j + dd k) = (aa   bb   cc   dddd ) + (ab   ba   cdcd   dc )i
+ (ac   bdbd   ca   db )j + (adad   bc   ab   da )k

The symbol + in the elements of D is just a notation and is not to be a confused with addition
in real numbers. We identity an element o + 1i + oj + ok by i and so on.

Thus since i = 0 + 1i + 0j + 0k
j = 0 + 0i + 1j + 0k

We have ij = k, ji = k, etc., In fact that shows that D is non commutative. D has unity
1 = 0 + 0i + 0j + 0k

If a + bi + cj + dk be any non zero element of D (i.e., at least one of a, b, c, d is non zero)

then (a + bi + cj + dk) 2 2 2 2
( )a bi cj dk

a b c d
( )a bi cj dk( )a bi cj dk( )
2 2 2 2a b c d2 2 2 2a b c d2 2 2 2 = 1.

Hence D is a division ring but not a field.

The elements of D can also be written as quadruples (a, b, c, d).

This ring D is called the ring of quaternions.

Theorem 3: A field  is an integral domain.

Proof: Let < R, +, . > be a field, then R is a commutative ring.
Let ab = 0 in R. We want to show either a = 0 or b = 0. Suppose a  0, then

a–1 exists  (definition of field)
thus ab = 0

 a–1 (ab) = a–10
 b = 0.

which shows that R is an integral domain.
Remark: Similarly we can show that a division ring is an integral domain and thus has no zero
divisiors.

A ‘partial converse’ of the above result also holds.

Theorem 4: A non zero finite integral domain is a field.

Proof: Let R be a non zero finite integral domain.
Let R  be the subset of R containing non zero elements of R.
Since associativity holds in R, it will hold in R . Thus R  is a finite semi group.
Again cancellation laws hold in R (for non zero elements) and therefore, these  hold in R .
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Hence R  is a finite semi group w.r.t. multiplication in which cancellation laws hold.
 < R , . > forms a group. Note closure holds in R  as R is an integral domain.

In other words < R, +, . > is a field (it being commutative as it is an integral domain).

Aliter: Let R = {a1, a2, ...., an} be a finite non zero integral domain. Let 0  a  R be any
element then  aa1, aa2, ....., aan  are all in R and if aai = aaj for some i 

} be a finite non zero integral domain. Let 0 
 j, then by cancellation

we get ai = aj which is not true. Hence  aa1, aa2, ...., aan  are distinct members of R.
Since a  R,  a = aai for some i
Let x  R be any element, then x = aaj for some j
Thus ax = (aai)x = a(aix)
i.e., x = aix
Hence using commutativity we find

x = aix = xai
or that ai is unity of R. Let ai = 1
Thus for 1 R, since 1 = aak for some k
We find ak is multiplicative inverse of a. Hence any non zero element of R has multiplicative

inverse or that R is a field.

Example 13: An infinite integral domain which is not a field is the ring of integers.

Definition: A ring R is called a Boolean ring if x2 = x for all x  R.

Example 14: The ring {0, 1} under addition and multiplication mod 2 forms a Boolean ring.

Problem 2: Show that a Boolean ring is  commutative.

Solution: Let  a, b  R be any elements
Then a + b R (closure)
By given condition

(a + b)2 = a + b
 a2 + b2 + ab + ba = a + b
 a + b + ab + ba = a + b
 ab + ba = 0
 ab  = – ba ...(1)
 a(ab) = a(–ba)
 a2b = – aba
 ab = – aba ...(2)

Again (1) gives
(ab)a = (–ba)a

 aba = – ba2 = –ba ...(3)
(2) and (3) give

ab = ba (= – aba)
or that R is commutative.
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Problem 3: Show that order of a finite Boolean ring is of the type 2n, n = 0, 1, 2,....
Solution: : Let < R, +, .> be a finite Boolean ring. Then a2 = a   a R,
Thus (a + a)2 = a + a

 a2 + a2 + 2aa = a + a
 2a2 = 0 or that 2a = 0  a R

Thus each non zero element in the group < R, + > has order 2.
By Cauchy's theorem in groups, we know if p is any prime dividing o(R) then  x  R, s.t.,
o(x) = p. But order of each non zero element is 2 and thus 2 is the only prime dividing o(R).
Hence o(R) = 2n.
Problem 4: (a) Show that a non zero element a in Zn is a unit iff a and n are relatively prime.

(b) If a is not a unit then it is a zero divisor.

Solution: (a) Zn = {0, 1, 2, ......, n – 1} mod n
Let a  Zn be a unit, then  b  Zn s.t.,

a  b = 1
i.e., when ab is divided by n, remainder is 1, in other words,

ab = nq + 1
or ab – nq = 1
 a and n are relatively prime.

Conversely, let (a, n) = 1, then  integers u, v s.t.,
au + nv = 1

 au = n(–v) + 1
Suppose, u = nq + r, 0  r < n, r  Zn,
Then au = anq + ar  = n (– v) + 1

 ar  = n (– v – aq) + 1, r  Zn
i.e., a  r = 1, r  Zn
i.e., a is a unit.
(b) Let a be not a unit and suppose g.c.d(a, n) = d > 1
Since d | a, a = dk for some k. Also d | n  n = dt

 a.t = dk n
d

 = kn = 0 mod n

i.e., a is a zero divisor.

Remark: In Zn, the set of units is un. Thus for instance, in Z8  1, 3, 5, 7 are units.
Problem 5: Show that  Zp = {0, 1, 2, ....., p –1} modulo p is a field iff p is a prime.

Solution: Let Zp be a field. Suppose p is not a prime, then  a, b, such that p = ab,
1 < a, b < p

 a  b = 0 where a, b are non zero  Zp has zero divisors.
i.e.  Zp is not an integral domain, a contradiction as Zp being a field is an integral domain.
Hence p is prime.
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Conversely, let p be a prime. We need show that Zp is an integral domain (it being finite will
then be a field).

Let a  b = 0 a, b  Zp
Then ab is a multiple of p

 p | ab
 p | a or p | b  (p being prime)
 a = 0 or b = 0 (Notice a, b  Zp  a , b < p)
 Zp is an integral domain and hence a field.

Remark : (i) We can also use problem 4 to prove this result.

(ii) Since Zp is a field, all its non zero elements are units by definition of a field.

Problem 6:  If in a ring R, with unity, (xy)2 = x2y2 for all x, y  R then show that R is
commutative.

Solution: Let x, y  R be any elements
then y + 1  R  as 1  R
By given condition

(x(y + 1))2 = x2 (y +1)2

 (xy + x)2 = x2 (y + 1)2

 (xy)2 + x2  + xyx + xxy = x2(y2 + 1 + 2y)
 x2y2 + x2 + xyx + xxy  = x2y2 + x2 + 2x2y
 xyx = x2y ...(1)

Since (1) holds for all x, y in R, it holds for x + 1, y also. Thus replacing x by
x + 1, we get

(x + 1) y(x +1) = (x +1)2y
 (xy + y) (x +1) = (x2 +1 +2x)y
 xyx + xy + yx + y = x2y + y + 2xy
 yx = xy  using (1)

Hence R is commutative.

Problem 7: Show that the ring R of real valued continuous functions on [0, 1] has zero divisors.

Solution: Consider the functions f and g defined on [0, 1] by

f (x) = 
1 ,
2

x,x 10
2

x 1
2

x

= 0, 1 1
2

x 1x

and g(x) = 0, 10
2

x 1
2

x
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= 1 ,
2

x 1 ,
2

1 1
2

x 1x

then f and g are continuous functions and f  0, g  0

whereas g f (x) = g(x) f (x)    = 0 . 1
2
11
22

x  if 0  x  1
2

= 1
. 0

2
11

. 0
1
2

. 0
2

. 0
2

x  = 0 if 1 1
2

x 1x

i.e., g f (x) = 0 for all x
i.e., g f = 0 but f  0, g  0.

Exercises
1. Show that a ring R is commutative iff

(a + b)2 = a2 + b2 + 2ab for all a, b R.
2. If in a ring R, x2 = x for all x then show that 2x = 0 and x + y = 0  x = y.
3. If R is a ring with unity and (ab)2 = (ba)2 for all a, b  R and 2x = 0

 x = 0 then show that R is commutative.
4. Let R be the set of real numbers. Show that R×R forms a field under addition and

multiplication defined by
(a, b) + (c, d) = (a + c, b + d)
(a, b) . (c, d) = (ac – bd, ad + bc).

5. Let R be a commutative ring with unity. Show that
(i) a is a unit iff a–1 is a unit.

(ii) a, b are units iff ab is a unit.
6. Show that set of all units in a commutative ring with unity forms an abelian group

under multiplication.
7. Give an example of a non commutative ring R in which (xy)2 = x2y2

for all x, y 
Give an example of a non commutative ring 

R.
8. If < R, +, . > be a system  satisfying  all conditions in the definition of a ring with

unity except a + b = b + a, then show that this condition is also satisfied.
9. Show that if 1 – ab is invertible in a ring with 1 then so is 1 – ba.

10. Show that a finite  commutative ring R without zero divisors has unity.
(See theorem 4 page 318).

Subrings

Definition: A non empty subset S of a ring R is said to be a subring of R if S forms a ring
under the binary compositions of R.

The ring < Z, +, . > of integers is a subring of the ring < R, +, . > of real numbers.
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If R is a ring then {0} and R are always subrings of R, called trivial subrings of R.
It is obvious that a subring of an integral domain will be an integral domain.
In practice it would be difficult and lengthy to check all axioms in the definition of a ring

to find out whether a subset is a subring or not. The following theorem would make the job
rather easy.

Theorem 5: A non empty subset S  of a ring  R is a subring of R iff a , b   S
 ab, a – b 

A non empty subset
 S.

Proof: Let S be a subring of R
then a, b S  ab  S (closure)

a, b  S  a – b  S
as < S, + > is a subgroup of < R, + >.
Conversely, since a, b  S   a – b  S, we find < S, + > forms a subgroup of

< R, + >. Again for any a, b  S, since S  R
a, b  R

 a + b = b + a
and so we find S is abelian.
By a similar argument, we find that multiplicative associativity and distributivity hold in S.
In other words, S satisfies all the axioms in the definition of a ring.
Hence S is a subring of R.

Definition: A non empty subset S of a field F is called a subfield, if S forms a field under the
operations in F. Similarly, we can define a subdivision ring of a division ring.

One can prove that S will be a subfield of F iff a, b S, b  0  a – b, ab–1 S.
We may also notice here that a subfield always contains at least two elements, namely 0

and 1 of the field. (Recall a subgroup contains identity of the group and a subfield is a subgroup
of the field under both the compositions).

Sum of Two Subrings

Definition: Let S and T be two subrings of a ring R. We define
S + T = {s + t | s  S, t  T}

then clearly S + T is a non void subset of R. Indeed 0 = 0 + 0  S + T.
But our enthusiasm of defining the sum ends here when we find that sum of two subrings

may not be a subring.
Take for instance the ring M of 2 × 2 matrices over integers.

Let S = set of all matrices of the type 
0
0

a
b

0a
0b 0b

a, b integers, and

T = set of all matrices of the type 
0
0 0

x0 x
0 00 0

, x an integer..

Then S and T are subrings of M, (an easy exercise for the reader).
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S + T would have members of the type 
0 0
0 0 0

a x
b

0 0a x0 0a x0 0a x0 0a x0 0
0 0 0b 0 0 0b 0 0 0

i.e., matrices of the type 
0

a c
b
a c

0b 0b

That S + T does not form a subring follows from the fact that closure w.r.t. multiplication
does not hold, as

1 1 2 2
1 0 2 0
1 1 2 2
1 0 2 01 0 2 0

 = 
4 2

.
2 2

S T
4 2

.S TS TS T
2 22 2

S T

Definition: Let S be a subset of a ring R, then the smallest subring of R containing S is called
the subring generated by S.

Since intersection of subrings is a subring (see exercises) it is clear that the subring
generated by a subset S of R will be the intersection of all subrings of R, containing S. We
denote it by < S >. Clearly then < S > = {0} if S = 

 will be the intersection of all subrings of 
. One can show that

< S > = { nix1x2...xn | ni  Z, xi  S} finite.

In particular if x  R be an element then the subring generated by x is the smallest subring
of  R containing x. It will be the intersection of all subrings of R, containing x. This is denoted

by < k >. One can show that < x > = 

finite

0
|i

i i
i

m x m
finitefinite

i i|i i|m x m|m x m|i im x mi i|i i|m x m|i i||m x m|m x m||i i|i i|
i 0

finite
i

i im x mi im x mi i
im x mi

i i
i 0

Z

Problem 8: Show that | , , 0
2n
mT m n nmT m n nm | , , 0T m n nT m n n| , , 0T m n n| , , 0| , , 0mT m n nT m n n| , , 0T m n n| , , 0mT m n nm
22n | , , 0
2nT m n n| , , 0T m n n| , , 0Z  is the smallest subring of Q containing 1/2.

Solution: T is easily seen to be a subring. Take m = 1, n = 1, then 1
2

TT .

Let S be any subring of Q s.t., 1
2

SS

Then 1
2

n
S1 n
S1 S

22
SS  +ve integers n

So
1
2

SS

Again
1 1 1 1
2 2 2

S S1 1 1
2 2 2

S SS SS S1 1 1S S1 1 1 1S S1

i.e., m  S  m    Z

Now
1
2n SS , m  S  m, n Z, n > 0 and

so
2n
m SS  i.e., S  T..
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Definition: Let R be a ring, the set
Z(R) = {x  R | xr = rx for all r  R}

is called centre of the ring.
It is an easy exercise to show that Z(R) is a subring of R.

Problem 9: Find centre of the quaternion ring D.

Solution:  Let a + bi + cj + dk Z(D) be any element. Then it commutes with all elements
of D. Thus

(a + bi + cj + dk)(0 + 1i + 0j + 0k) = (0 + 1i + 0j + 0k)(a + bi + cj + dk)

 0 + 0i + 0j + ck = 0 + 0i + dj + 0k

or 0 + 0i + ij + 0k = 0 + 0i + 0j  dk
or 0 + 0i + ij + dk = 0 + 0i + 0j + 0k
Therefore, a + bi + cj + dk = a + bi + 0j + 0k
Now (a + bi + 0j + 0k)(0 + 0i + ij + 0k) = (0 + 1i + 1j + 0k)(a + bi + 0j + 0k)

 0 + 0i + aj + bk = 0 + 0i + aj  bk
which gives b = b i.e., b = 0
Thus a + bi + cj + dk = a + 0i + 0j + 0k
which shows that Z(D) {a + 0i + 0j + 0k | a is real number}
Also a + 0i + 0j + 0k commutes with every element of D as a is a real number.
Hence Z(D) {a + 0i + 0j + 0k | a is real number}
or that Z(D) {(a, 0, 0, 0) | a  R}
Later we show Z(D) is isomorphic to the field R (See under ring isomorphisms)
Problem 10: If R is a division ring then show that the centre Z(R) of R is a field.

Solution: Z(R) is a ring (as it is a subring).
Z(R) is commutative by its definition.
Z(R) has unity as 1 . x = x . 1 = x for all x  R.
Thus we need show that every non zero element of Z(R) has multiplicative inverse (in Z(R)).
Let x Z(R) be any non zero element.
Then x R and since R is a division ring, x–1 R.
Let y R be any non zero element, then y–1  R. Now

x–1y = (y–1 x)–1

      = (xy–1)–1 = yx–1

 x–1 commutes with all non zero elements of R.
Again as x–1 . 0 = 0 . x–1 = 0
we find x–1 r = r. x–1 for all r R

 x–1 Z(R)
Showing that Z(R) is a field.
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Example 15: The ring R of 2 � 2 matrices over integers is a non commutative ring, whereas

its centre Z(R) will be a non zero commutative subring.

Problem 11: If in a ring R, the equation ax = b for all a, b (a � 0) has a solution then show

that R is a division ring.

Solution: We first show that R has no zero divisors.

Suppose ab = 0, a � 0, b � 0

as a � 0, ax = a has a solution, say x = e1.

then ae
1
 = a.

Again bx = e1 has a solution, let x = e2 be a solution of this, then be2 = e1,

Now ab = 0� (ab)e
2
 = 0. e

2
 = 0

� a(be
2
) = 0

� ae1 = 0

� a = 0, but a � 0

Hence R is without zero divisors.

Now for any a � 0

ax = a has a solution,

Let x = e be a solution then ae = a

� aex = ax  for all x

� a(ex – x) = 0  for all x

But a � 0 ��ex – x = 0 for all x

or that e is left identity.

Again, (xe – x)e = xee – xe = x(ee) – xe

= xe – xe (as e is left identity)

= 0

But e � 0, thus xe – x = 0 or xe = x for all x

i.e., e is right identity.

Now equation ax = e has a solution for all a � 0 � � b s.t., ab = e.

Hence a has right inverse. Since right identity also exists, < R, . > forms a group or that

R is a division ring.

Problem 12: Show that a field F with 8 elements has no non trivial subfield, i.e., the only

subfields of F are {0, 1} and F.

Solution: We have o(F) = 8. Let F* = F � {0} then o(F*) = 7 and < F*, . > forms a group.

Since F* is a group of prime order, it will be cyclic. Thus for each divisor of o(F*), there exists

a unique subgroup of that order (See theorem 23 on page 85). As 7 is prime, � only two subgroups

H and K of < F*, . > with orders 1 and 7. Then H� {o}, K� {o} will be subfields of F and will

have orders 2 and 8, i.e., the subfields {0,1} and F. Note as a subfield has to be a subgroup, there

will be only two subfields.
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Problem 13: Let R be the ring of 3 × 3 matrices over reals. Show that

S = | real
x x x
x x x x
x x x

x x xx x x
| real| real| real| realx x x x| realx x x x| real| realx x x x| realx x x x| real| realx x x x| realx x x x| real| real| real

x x xx x x
 is a subring of R and has unity different from unity of R.

Solution: It is easy to check that S is a subring of R. Indeed

x x x y y y
x x x y y y
x x x y y y

x x x y y yx x x y y y
x x x y y yx x x y y y
x x x y y y

 = 
3 3 3
3 3 3
3 3 3

xy xy xy
xy xy xy
xy xy xy

3 3 3xy xy xy3 3 3xy xy xy3 3 3
3 3 3

xy xy xy
3 3 3xy xy xy3 3 3xy xy xy3 3 33 3 3xy xy xy3 3 3xy xy xy3 3 3
3 3 3xy xy xy3 3 3xy xy xy3 3 3

which belongs to S.

Again since 

1 1 1
3 3 3
1 1 1
3 3 3
1 1 1
3 3 3

1 1 1
3 3 33 3 33 3 33 3 33 3 33 3 3
1 1 11 1 11 1 11 1 11 1 1
3 3 33 3 33 3 3
1 1 1
3 3 33 3 3
1 1 1
3 3 33 3 3
1 1 11 1 11 1 11 1 11 1 1
3 3 3

x x x
x x x
x x x

 = 
x x x
x x x
x x x

x x x
x x xx x x
x x x

 we find

S has unity 

1 1 1
3 3 3
1 1 1
3 3 3
1 1 1
3 3 3

1 1 1
3 3 33 3 33 3 3
1 1 11 1 1
3 3 3
1 1 1
3 3 3
1 1 11 1 1
3 3 3

 which is different form unity 
1 0 0
0 1 0
0 0 1

1 0 0
0 1 00 1 00 1 0
0 0 1

 of R.

Remark: In continuation to the above problem we make the following observations:
(a) < Z, +, . > has unity 1, but its subring < E, +, . > of even integers has no unity.
(b) < Z, +, . > has same unity 1 as that of its parent ring < Q, +, . >.
(c) Finally, we notice we can have a ring without unity which has a  subring with unity.

Take for instance, the ring R = | ,
0 0

| ,| ,| ,| ,| ,
0 00 0

| ,
0 00 00 00 0
a b

a b Z .

Now if 
0 0
a ba b
0 00 0

 is unity of this ring, then

1 1
0 0 0 0
a b 1 1a b
0 0 0 00 0 0 0

=
0 0
a aa a
0 00 0

 should be 
1 1
0 0
1 1
0 00 0

i.e., a = 1

Also 
1 1
0 0 0 0

a b1 1 a b
0 0 0 00 0 0 0

=
0 0
a ba b
0 00 0

 should be 
1 1
0 0
1 1
0 00 0

 i.e., a = 1 = b
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Therefore, if R has unity then it must be 
1 1
0 0
1 1
0 00 0

But  
1 0 1 1
0 0 0 0
1 0 1 1
0 0 0 00 0 0 0

= 
1 1 1 0
0 0 0 0
1 1 1 01 1 1 0
0 0 0 00 0 0 00 0 0 0

Hence R has no unity.

It is easy to check that S = 
0

|
0 0
a

a
0a 0a

| a| a| a|| a| a
0 00 0

|
0 0

Z  is a subring of R and has unity 
1 0
0 0
1 0
0 00 0

.

Problem 14: Show that (i) Any ring of prime order is commutative. (ii)A ring  of  order
p2, (p a prime) may not be commutative. (iii)Smallest non commutative ring is of order 4.
(iv)A ring with unity of order p2, (p a prime) is commutative.
Solution: (i) Let R be a ring of prime order p. Then < R, + > is a cyclic group. Let
< R, + > = < a >, then o(a) = o(R) = p. Let x, y 

p
 R be any elements, then x = na, y = ma

for some integers n, m.
Now xy = (na) (ma) = nma2 = mna2 = (ma) (na) = yx. Hence R is commutative.

(ii) Let R be the set of 2 × 2 matrices 
0 0 0 1 1 0 1 1

, , ,
0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 1

, , ,
0 0 0 0 0 0 0 0

, , ,
0 0 0 0 0 0 0 0

, , ,
0 0 0 0 0 0 0 0

, , ,  over Z2 with second

row having zero entries. Then R is a ring under matrix addition and matrix multiplication.

Since 
0 1 1 0
0 0 0 0
0 1 1 0
0 0 0 00 0 0 0

= 
0 0
0 0
0 0
0 00 0

 and 
1 0 0 1
0 0 0 0
1 0 0 1
0 0 0 00 0 0 0

= 
0 1
0 0
0 1
0 00 0

, we find R is non commutative

and also it has 4 = 22 elements.
(iii) Ring of order 1 being the zero ring is commutative. Rings of order 2 and 3 will be

commutative by part (i). Thus, in view of part (ii), we find the smallest non commutative ring
has order 4.

(iv) Let R be a ring with unity and be of order p2. If < R, + > is a cyclic group then R is
commutative (part (i)). If <R, + > is not cyclic then every non-zero element of < R, + > is
of prime order p. [order of an element divides order of the group and if order of an element
equals order of the group then the group is cyclic].

Let e denote unity of R, then o(e) = p (under addition)
Let S = < e > be the subring of R, of order p.
Then S = {e, 2e, ....., (p –1)e, pe = 0}, o(S) = p
Since o(R) = p2,  a  R, s.t., a S and o(a) = p under addition.
Let T = {a, 2a, ..., (p – 1)a, pa = 0} be the subring of R of order p. Every non zero element

in T is of order p under addition.
If na belonging to T, (n  0) also belongs to S then the subring < na > = T under addition

is contained in S.
But o(T) = o(S) and thus < na > = T = S.
i.e., a  S, a contradiction.
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Hence S T = {0}.

Also o(S + T) = ( ) . ( )
( )( )

o S o T
o S T

 = p2 = o(R),

Thus R = S + T
Let x, y  R, then

x = ne + ma, y = re + sa, where n, m, r, s are integers
Now xy = (nr)e + (ns)a + (mr)a + msa2

= yx
Showing that R is commutative.

Characteristic of a Ring

Definition: Let R  be a ring. If there exists a positive integer n such that na = 0 for all a 
R, then R is said to have finite characteristic and also the smallest such positive integer is called
the characteristic of R.

Thus it is the smallest positive integer n such that 1 + 1 + .......+ 1 = 0 in R.
n times

If no such positive integer exists then R is said to have characteristic zero (or infinity).
Characteristic of R is denoted by char R or ch R.

Example 16: (a) Rings of integers, even integers, rationals, reals, complex numbers are all of
ch zero.

(b) Consider R = {0, 1} mod 2
then ch R = 2 as

2 . 1 = 1  1 = 0
2 . 0 = 0  0 = 0

thus 2 is the least +ve integer s.t., 2a = 0 for all a  R.
Note 1 . 1 = 1  0

(c) If R  is a (non zero) finite ring, then ch R  0. Let o(R) = m > 1.  Since ,R  is a
group, ma = 0  a  R (see cor.on page 83). Hence ch R  0

Notice ch R = 1 if R = {0}.
(d) ch Zn = n
By (c) ch Zn  0. Let ch Zn = m
Then ma = 0  a  Zn
i.e., m . 1 = 0
i.e., 1 1 ......  1 = 0

(m times)
or that m = nq  n | m  m  n

But na = 0  a  Zn as o(Zn) = n (cor. on page 83)
and thus ch Zn  n
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i.e., m  n giving m = n.
(e) Ring M in example 9 on page 314 will have characteristic 2. See exercise 17 on page

338 also.

Theorem 6: Let R be a ring with unity. If 1 is of additive order n then ch R = n. If 1 is of
additive order infinity then ch R is 0.

Proof: Let additive order of 1 be n. (By this, we mean, order of 1 in the group
(R, +) is n). Then n . 1 = 0 and n is such least +ve integer.

Now for any x  R
nx = x + x + ......+ x = 1 . x + 1 . x +....+ 1 . x

= (1 + 1 + ..... + 1)x = 0.x = 0
Showing that ch R = n.
If 1 has infinite order under addition then  no. n s.t., n . 1 = 0 and thus
ch R = 0.

Remark: The above result can also be stated as
If R is a ring with unity then R has ch n > 0 iff n is the smallest positive integer s.t.,

n . 1 = 0.

Theorem 7: If D is an integral domain, then characteristic of D is either zero or a prime
number.

Proof: If ch D is zero, we have nothing to prove. Suppose D has finite characteristic then 
a +ve integer m, s.t., ma = 0 for all a 

 is zero, we have nothing to prove. Suppose 
 D.

Let k be such least +ve integer then ch D = k. We show k is a prime.
Suppose k is not a prime, then we can write

k = rs,  1 < r, s < k
Now ka = 0 for all a  D

 (rs) a2 = 0  a  D
 a2 + a2 + ....... + a2 = 0  (rs times)


times times

( ..... )( ..... ) 0
times times

( ..... )( ..... ) 0
r s

a a a a a a

 (ra) (sa) = 0 a  D
 ra = 0 or sa = 0 a  D  (See next problem)

In either case it will be a contradiction as r, s < k, and k is the least +ve integer s.t.,
ka = 0.

Hence k is a prime.

Problem 15: If D is an integral domain and if na = 0 for some 0  a  D  and some integer
n  0 then show that the characteristic of D is finite.

Solution: Since na = 0
(na)x = 0 for all x D
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 (a + a + .... + a)x = 0
 ax + ax + ..... + ax = 0  (n times)
 a(x + x + .... + x) = 0  for all x  D
 x + x + ....+ x = 0  for all x  D as a  0
 nx = 0  for all x  D, n  0
 ch D is finite.

Remark: In the above situation if ch D = k, then k | n. Since ch D = k,  kx = 0
x D
By division algorithm,

n = kq + r,  0  r < k
 na = kqa + ra
 0 = 0 + ra,  0  r < k
 r = 0 as a  0. Hence n = kq  k | n.

We can thus say that if R is a finite ring of order n then ch R divides n, as o<R, +> = n
means na = 0. (ao(G) = e).

Problem 16: Let R be a finite (non zero) integral domain, then o(R) = pn, where p is a prime.

Solution: ch R is finite and will be prime, follows by example 16(c) and theorem 7 above.
Let ch R = p, a prime.
Let q be a prime dividing o(R). Since < R, + > is a group, by Cauchy’s theorem,  a  R,

s.t. o(a) = q.
Also ch R = p  pa = 0

 o(a) | p
 q | p
 q = p  as p, q are primes.

Thus p is the only prime divinding o(R)
 o(R) = pn.

Cor.: (i) Order of a finite field is pn for some prime p.
See also therorem 60 on page 752.
(ii) There cannot be an integral domain with order that is divisible by two or more distinct

primes (i.e., we cannot have an integral domain with order n where n can be expressed as
product of more than one prime). So we cannot have integral domains with 6 or 10 or 12 etc.
elements.

Problem 17: Show that the additive and multiplicative groups of a field are not isomorphic.

Solution: Let < F, + . > be a field and let F* = F  {0} then < F, + > and < F*, . > are groups.
We show they are not isomorphic.
Case (i) Let F be finite of say, order n.
Then o(F*) = n  1, thus they cannot be isomorphic.
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Case (ii) Suppose F is infinite and ch F  2.

Suppose : F*  F is a group isomorphism.
Let   ( 1) = a
If a = 0, then ( 1) = 0 = (1)

 1 = 1 as is 1-1

which is not true as ch F  2
So a  0
Since   (1) = 0

  (( 1)( 1)) = 0
 ( 1) +   ( 1) = 0  2a = 0

or (1 + 1)a = 0, but 1 +1  0, as ch F  2
Thus a = 0, a contradiction
Hence there is no isomorphism from F*  F.
Case (iii) F is infinite and ch F = 2
Let  F*,   1. Let : F*  F be a group isomorphism.
Suppose ( ) = a, then a  0 as a = 0  ( ) = 0 = (1) or that   1
which is not true
Now ( . ) = ( ) + (d) = 2a = 0 as ch F = 2
So ( 2) = 0   2  Ker  = {1} as  is 1-1

 2 = 1.
Now (   1)2 = 2 + 1  2  = 2 + 1 as 2 = 0, 1 + 1 = 0, as ch F = 2

= 1 + 1 = 0
or that   1 = 0    1, not true
Hence there is no isomorphism between F and F*.
Remark: A finite integral domain has finite ch. Whereas an infinite integral domain may have
finite or zero ch. Similarly we can have infinite fields with finite characteristic. See example
8, page 425 under polynomial rings.

Problem 18: Let R be an integral domain of prime characteristic p, show that
(a + b)p = ap + bp ∀ a, b  R

Show by an example that we can have a ring of characteristic 4 where
(a + b)4  a4 + b4.

Solution: Since ch R = p, px = 0 ∀ x  R ...(1)
Now (a + b)p = ap + pC1

 a p–1b + pC2
 a p–2b2 +....+ pCp b

p

(as R is commutative)
We can prove that p | pCr

 r,  1  r  p – 1
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(See example 3 an page 357)
Thus each pCr

 (1  r  p – 1) is a multiple of p.
Since a p–1b, a p–2b2, ...are all in R, we find

 pC1a
p–1b, pC2a

p–2b2, ... are all are zero, using (1)
Hence (a + b)p = ap + bp.
Consider now the ring Z4 = {0,1, 2, 3} mod 4 then ch Z4 = 4.
Here (1  3)4 = 0 whereas

 14  34 = 1  1 = 2.

Remark: See Problem 1 on page 699 also.

Problem 19: Let R be a ring with unity e. Suppose non unit elements of R form a subgroup
of R under addition. Show that either ch R is zero or a power of a prime.

Solution: If ch R is zero, we have nothing to prove. Let ch R = n  0.
Suppose p and q are two distinct primes dividing n.  Let n = mpq
Since ch R = n, pe  0, qe  0, me   0 as p, q, m < n
Now 0 = ne = (me) (pe) (qe)
If pe is a unit in R, then 0 = (mq)e
which is not true as mq < n
Thus pe is non unit. Similarly, qe is non unit.
Let S be the subgroup of non unit elements of R under addition, then pe, qe  S
Since p, q are coprime ,  integers r and s such that

1 = pr + qs
 e = r(pe) + s(qe) S

as pe, qe  S  r(pe) + s(qe)  S
Thus e  S  e is non unit, which is not true. Hence n is a power of a single prime.

Remarks: (i) If F is a field then 0 is the only non unit element of F and also {0} is a subgroup
of F under addition. Hence by above result ch F is  zero or pn for some prime  p.

(ii) Consider the ring Z4 = {0, 1, 2, 3} mod 4
Here 0, 2 are non units and {0, 2} forms a subgroup under addition and we’ve seen earlier

ch Z4 = 4 = 22 (power of a single prime).
See exercises ahead.

Problem 20: Let F be a field of characteristic p show that the set
S = {oe = 0, e, 2e, 3e,...(p 

Let F be a field of characteristic p show that the set
 1)e} forms a subfield of F, where e denotes the unity of F.

Solution: S  as 0  S
Let ne, me  S be any two members and let n + m = pq + r, 0  r < p

Then ne + me = (n + m)e = (pq + r)e = re  S  as pe = 0
Also me = (p  m)e  S
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Again, (ne)(me) = (nm)e = se  S
where nm = pq + s, 0  s < p
Again, let ne  S be any non zero element.
Then (n, p) = 1  pu + nv = 1 for some integers u, v
Suppose v = pq + t, 0  t < p
Then e = (pu)e + (nv)e = (nv)e = (ne)(ve), ve  S

 (ne) 1 = ve S
Hence S is a subfield of F.
Definitions: An element e in a ring R is called idempotent if e2 = e.

An element a  R is called nilpotent if an = 0 for some integer n.
If R is a ring with unity, then 0 and 1 are idempotent elements. Also 0 is nilpotent element

of R.

Problem 21: A non zero idempotent cannot be nilpotent.

Solution: Let x be non zero idempotent, then x2 = x.
If x is also nilpotent then  integer n  1 s.t.,

xn = 0
But x2 = x  x3 = x2 = x

 x4 = x2 = x
 xn = x  x = 0 a contradiction.

Problem 22: In an integral domain R (with unity) the only idempotents are the zero and unity.

Solution: Let x  R be any idempotent
Then x2 = x  x  – x = 0

 x(x – 1) = 0
 x = 0 or x = 1 as R is an integral domain.

Remark: A field which is a Boolean ring has only two elements.
Problem 23: If R is a ring with no non zero nilpotent elements then show that for any idempotent
e, ex = xe for all x 

If R is a ring with no non zero nilpotent elements then show that for any idempotent
 R and thus e 

If R is a ring with no non zero nilpotent elements then show that for any idempotent
 Z(R).

Solution: e idempotent  e2 = e
Let x  R be any element, then

(exe – ex)2 = exeexe – exeex – exexe + exex
= 0 (using e2 = e)

 exe – ex is nilpotent.
By given condition, exe – ex = 0  exe = ex
Similarly, we get exe = xe
Hence ex = xe.

Problem 24: Find all the idempotent and nilpotent elements of the ring Z4.
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Solution:  Z4 = {0, 1, 2, 3} mod 4.
Since 0  0 = 0,  1  1 = 1,  2  2 = 0,  3 3 = 1 we find 0 and 1 are the idempotents.
Again since 22 = 2 2 = 0, 2 is nilpotent.
0, of course, is nilpotent, 3 is not nilpotent as 33 = 3 3 3 = 3,
34 = 3 
0, of course, is nilpotent, 3 is not nilpotent as 3

3 
0, of course, is nilpotent, 3 is not nilpotent as 3

3 
0, of course, is nilpotent, 3 is not nilpotent as 3

3 = 1,  35 = 3, it is clear that no power of 3 will give zero.

Remark: If ak = a for some k  2, a  0 then a cannot be nilpotent as

2

3

....................

kk k k

kk k k

a a a a

a a a a

kk k kk k kk k kkk k kk
a a a aa a a aa a a a

kk k kk k kk k kkk k kk
a a a aa a a aa a a a

nka a n Na a n N ...(1)

If a is nilpotent, then  some m  N, s.t., am = 0
ar = 0,  r  m ...(2)

Choose n  N s.t., kn  m, then akn = 0 by (2)
hence a = 0, which is not true.

Problem 25: Let n = pr, p a prime. Show that nn
Z

has no idempotents other than < n > and

< n > + 1.

Solution: Let < n > + m be an idempotent of nn
Z

. Then

(< n > + m)2 = < n > + m
 < n > + m2 = < n > + m
 m2  m  < n >
 n | m2 m = m(m  1)
 pr | m(m  1)

Since g.c.d. (m, m  1) = 1,
pr | m or pr | m  1.

If n = pr | m, then < n > + < m > = < n >
If n = pr | m  1, then m  1 = nk

< n > + m = < n > + nk + 1 = < n > + 1

So, zero and unity are the only idempotents of nn
Z

 when n = pr

Therefore Z4 has only 2 idempotents (See problem 24 on page 334). Similarly, Z9, Z8, Z7, Z5, Z3,
Z2 have only 2 idempotents.

Problem 26: Let g.c.d. (m, n) = 1, m > 1, n > 1. Show that mnmn
Z

(or Zmn) has at least 4

idempotents.
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Solution: Since g.c.d. (m, n) = 1, there exist integers r and s such that mr + ns = 1

Suppose n | r.  Then nt = r  mnt + ns = 1
 n | 1  n = 1, a contradiction. So, n does not divide r.

Similarly m does not divide s.
Now      mr + ns = 1

 m2r + mns = m
 m2r = m(1  ns)
 <mn> + m = < mn > + m2r
 (< mn > + mr)2 = < mn > + mr

If < mn > + mr = < mn >
then mr  < mn >  mn | mr  n | r, a contradiction.

Therefore, < mn > + mr is a non zero idempotent of mnmn
Z

If < mn > + mr =  < mn > + 1
then mn | mr  1  mr + mnt = 1  m | 1, a contradiction

So, < mn > + mr is not a unity idempotent of mnmn
Z

Similarly, < mn > + ns is non zero, non unity idempotent of mnmn
Z

If < mn > + mr = < mn > + ns,
then mr  ns = mnu  m | ns  m | s, a contradiciton.
Therefore, < mn > + mr < mn > + ns

So, we have 4 idempotents of .
mn

.
mn
Z

Problem 27: Suppose Zn has only 2 idempotents namely zero and unity. Show that n = pr for
some prime p.

Solution: Let 1 2
1 2 , 1,r

rn p p p r1 2 , 1,rn p p p r1 2n p p p r1 2 , 1,n p p p r, 1,rn p p p rr
1 2n p p p r1 2n p p p r1 2 , 1,rn p p p r, 1,n p p p r, 1,rn p p p rr where pi's are distinct primes.

Then 1 2
1 2 ,r

rn p p p ts1 21 2 ,rn p p p tsn p p p tsn p p p ts1 2n p p p ts1 21 2n p p p ts1 2 rn p p p tsr
1 21 2n p p p tsn p p p ts1 2n p p p ts1 21 2n p p p ts1 2n p p p tsn p p p tsrn p p p tsr  where g.c.d. (t, s) = 1.

By above problem, nn
Z

 has at least four idempotents, a contradiction.

Therefore, r = 1

So, 1
1 .n p 1
1n p 1
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Product of Rings

Let R1 and R2 be two rings.
Let R = {(a, b) | a  R1, b  R2}, then it is easy to verify that R forms a ring under addition

and multiplication defined by
(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2)
(a1, b1) . (a2, b2) = (a1a2, b1b2)

i.e., under the usual compositions of component wise addition and multiplication. This ring
is called the direct product of R1 and R2. One can similarly extend the definition to product of
more than two rings. R1 and R2 are called the component rings of the direct product.

Problem 28: If R and S are two rings, then
ch (R × S) = 0 if ch R = 0 or ch S = 0

= k where k = l.c.m. (ch R, ch S), otherwise.

Solution: Let ch R = 0 and suppose ch (R×S) = t  0
Then t(a, b) = (0, 0) a R, b S

 (ta, tb) = (0, 0)

 ta = 0 a  R, a contradiction as ch R = 0
Thus ch (R × S) = 0
Similarly, if ch S = 0, then ch (R × S) = 0
Let now ch R = m, ch S = n and k = l.c.m.(m, n)

Then k(a, b) = (ka, kb) = (0, 0) a  R, b S
as m, n divide k
Suppose p(a, b) = (0, 0) then (pa, pb) = (0, 0)

 pa = 0 = pb  m | p, n | p
 k | p  k  p  ch (R × S) = k.

Problem 29: Find characteristic of

 (i) Z2  2Z
(ii) Z2  Z4

Solution: ch (Z2  2Z) = 0 as ch 2Z = 0 and ch (Z2  Z4) = l.c.m (ch Z2, ch Z4)
           = l.c.m (2, 4) = 4.

Exercises
1. Show that intersection of two subrings (subfields) is a subring (subfield).
2. Give an example to show that union of two subrings may not be a subring. Prove that

union of two subrings is a subring iff one of them is contained in the other.
3. Prove that centre of a ring is a subring.
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4. Let R be a ring, a R. Define N(a) = {r  R | ar = ra}.

Show that (i) N(a), (called the normaliser of a in R) is a subring of R contain
ing a. Prove further that centre of R is intersection of subrings N(a), a R.

(ii) If R is a division ring then so is N(a), a  R.

5. If S be a subring of a division ring R, show that ab = 0 in S  either a = 0 or
b = 0.

6. Let S be a subring of a ring R with unity 1. If 1  e  S  be such that
ea = ae = a for all a 

 be a subring of a ring 
 S then show that e is a zero divisor in R.

7. Show that any subring of < Z, +, · > the ring of integers is of the type nZ,
n 
Show that any subring of <

 Z.

8. Let F be a finite field of order n. Show that for any non zero element a in
F, an 1 = 1. (Use ao(G) = e in groups).

9. Let S be a subring of a commutative ring R. For a, b  R, we say a is congruent to
b modulo S[a  

 be a subring of a commutative ring 
 b  (mod S)] iff a  – b   S, (a –  b)r 

 is congruent to
 S for all

r R. Show that this is an equivalence relation in R.

10. Let R be a commutative ring. If a, b  R are nilpotent then show that so are a ± b
and ar for any r 

 be a commutative ring. If 
 R. Give an example of a non commutative ring in which a, b are

nilpotent but a + b is not. (See exercise 25 on page 352).

11. Let e be idempotent in a ring R. Show that the set eRe = {eae | a R} is a subring
of R with unity e.

12. Show that a field of characteristic zero is infinite.

13. Show that ch of a (non zero) Boolean ring is 2. (See exercise 2 on page 322).

14. Show that if an element of a ring with unity has more than one right inverse then it
has infinitely many.

16. Show that S = {0, 2, 4, 6, 8} is a subring of Z10 with unity different from unity of
Z10.

16. Show that an integral domain R of order pn, p a prime, has characteristic p.

17. Let R be a ring with ch n. If M is the ring of  2 × 2 matrices over R then show that
ch M = n.

18. Let R be a commutative ring with unity. Show that

(i) if a R is a unit then a is not nilpotent.

(ii) If x R is nilpotent then 1 + x is a unit.

    [Hint: If xn = 0, consider (1 + x) (1 – x – x2 .... –xn–1)]

(iii) The sum of a nilpotent element and a unit is a unit.
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19. In a ring without unity, show that every idempotent is a zero divisor but not nilpotent.

20.  If a finite field of ch p has q elements then show that q = pn for some n.

22. If F is any subfield of R then show that Q  F, i.e., the field Q has no proper subfield.

22. Show that characteristic of a simple ring (See Def. ahead) is 0 or a prime.

23. Let R be an integral domain. Show that  R does not possess any non zero nilpotent
element.

24. Let S be a subring of a ring R. Show that

(i) If ch S and ch R are finite, then ch S  ch R

(ii) If S and R have same unity, then ch S = ch R.

25. Show that non unit elements in Zn form an additive subgroup of Zn if and only if n
is a power of a prime.

Ideals

The notion of an ideal in a ring is parallel to the concept of normal subgroup in groups. The
normal subgroups led us to the formation of quotient groups, ideals do the job when we define
quotient rings. Many analogous results follow. We start with

Definition: A non empty subset I of a ring R is called a right ideal of R if
(i) a, b I  a – b I
(ii) a I, r r  ar I.

I is called a left ideal of R if
(i) a, b I  a – b I
(ii) a I, r R  ra I.

I is called a two sided or both sided ideal of R, if it is both left and a right ideal. In fact,
if we say I is an ideal of R, it would mean, I is two sided ideal of R.

Example 17: In a ring R, {0} and R are always both sided ideals.
Any ideal except these two is called a proper ideal (In fact, the name non trivial ideal will

be more appropriate).

Example 18: Let < Z, +, · > be the ring of integers. Then
E = set  of even integers is an ideal of Z

a, b E  a = 2n, b = 2m
Thus a – b = 2 (n – m)  E
Again, if 2n E, r Z then as
(2n)r or r(2n) are both in  E, E is an ideal.

Example 19: Let R = ring of 2 × 2 matrices over integers.

Let A = | , integers
0 0

| , integers| , integers| , integers| , integers| , integers| , integers| , integers| , integers| , integers| , integers| , integers
0 00 0

| , integers
0 0
a b

a b
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then A is a right ideal of R as

0 0 0 00 0 0 00 0 0 00 0 0 0
a b c d

  =  
0 00 00 0

a c b d
A

=
0 0 0 0
a b x y ax bz ay ba

A
z u

a b x y ax bz ay baa b x y ax bz ay ba
A==

a b x y ax bz ay baa b x y ax bz ay ba
AA

0 0 0 0z u0 0 0 0z u

But A is not a left ideal of R as

0 2 0 0
,

0 0 1 0
I R

0 2 0 0
I R

0 2 0 0
I R,I R,I R

0 0 1 00 0 1 0
,

0 0 1 0
,

0 0 1 0
,

But
0 0 0 2
1 0 0 0
0 0 0 2
1 0 0 01 0 0 0

 =  
0 0
0 2

A
0 0

AAA
0 20 2

.

Example 20: In the same ring as above, one can check that B = 0
| , integers

0
0

| , integers| , integers| , integers
0

| , integers| , integers| , integers| , integers| , integers| , integers
00

| , integers
0

a
a b

b
 forms

a left (but not a right) ideal of R.
We shall encounter many more examples of ideals in the due course. Looking at the conditions

in the definition of an ideal and a subring, one feels, the two are rather closely related. In fact
it is easy to see that an ideal is always a subring.

Let I be an ideal of a ring R.  To show that I is a subring we need show that for
a, b  I,  ab 

 be an ideal of a ring 
I.

Now a, b  I  a I , b I R
 ab  I (def. of ideal)

Hence I is a subring.

Example 21: A subring may not be an ideal.
We know that < Z, +, . > is a subring of < Q, +, . > where Z = integers,

Q = rationals.

3 Z, 1
5

  Q. But 13 .
5

Z

Thus Z is not an ideal.
We have been talking about intersection and union of subgroups, subrings etc. Similar results

hold in case of ideals. Reader is referred to the exercises. It would, of course, be interesting
to ask a question at this point:

What can we say about intersection of a left and a right ideal? Will it be an ideal? The  answer
is in the negative.

If we consider the ideals in example 19, 20, we find A  B would have members of the

type 0
| , an integer

0 0
a

a
0a

| , an integer| , an integer| , an integer
0a

| , an integer| , an integera| , an integer| , an integer| , an integera| , an integer| , an integer| , an integera| , an integer| , an integer| , an integer| , an integer| , an integera| , an integer
0 00 0

| , an integer
0 0

| , an integera| , an integer
0 00 00 0

.

Since 
1 0 1 1
0 0 1 1
1 0 1 1
0 0 1 10 0 1 1

= 
1 1
0 0
1 1
0 00 0

 A  B
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We notice A  B is not a right ideal.

Problem 30: Let S be a non empty subset of a ring R. Show that r(s) = {x R | Sx = 0} and
l(s) = {x  R | xS = 0} are respectively right and left ideals of R.

Solution: r(s)   as 0 r(s)
Again, x, y  r(s)  sx  = 0, sy = 0
Now S(x – y) = Sx – Sy = 0 – 0 = 0

 x – y r(s)
Again, if r R be any element then

S(xr) = (Sx)r = 0 . r = 0
 xr r(s)

Hence r(s) is a right ideal. Similarly, l(s) will form a left ideal.
r(s) and l(s) are called right and left annihilators of S, respectively.
r(s) and l(s) would both be ideals of R if S in an ideal. (Verify!)

Problem 31: Let R be a ring such that every subring of R is an ideal of R. Further, ab = 0
in R  a = 0 or b = 0. Show that R is commutative.

Solution: Let 0 a  R be any element.
Then N(a) = {x R | xa = ax} is a subring of R and, therefore, an ideal of R.

Let r R be any element. Since a 
} is a subring of 

N(a), r 
} is a subring of 

 R we find ra N (a) (Def. of ideal)
Also then, a(ra) = (ra)a
and so (ar – ra)a = 0
 ar – ra = 0 as a  0
Thus ar = ra r R, 0  a R
and as 0.r = r.0 = 0 we find

ar = ra a, r  R
Hence R is commutative.

Sum of Two Ideals

Let A and B be two ideals of a ring R. We define A + B to be the set
{a + b | a A, b 

 be two ideals of a ring 
 B}, called sum of the ideals A and B.

Theorem 8: If A and B are two ideals of R then A + B is an ideal of R, containing both A
and B.

Proof: A + B   as 0 = 0 + 0 A + B
Again, x, y A + B

 x = a1 + b1
y = a2 + b2  for some a1, a2 A; b1, b2 B

Since x – y = (a1 + b1) – (a2 + b2)
= (a1 – a2) + (b1 – b2)
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we find x – y A + B
Let x = a + b A + B, r R be any elements then

xr = ( a + b)r = ar + br  A + B  as A, B are ideals
rs = r(a + b) = ra + rb A + B

Thus  A + B is an ideal of R.
Again for any a  A, since a = a  + 0  A + B and for any b  B, since

b = 0 + b 
Again for any 

A + B
we find A  A + B

B  A + B.

Remarks: (i) We can show that A is an ideal of A + B.
a1, a2  A  a1 – a2 A as A  is an ideal of R. Again, if a A  and s  A + B be any

elements then s = a1 + b1 for some a1 A, b1 B
also as = a(a1 + b1)

= aa1 + ab1 A
as a, a1 A  aa1  A

a A, b1 B  R  ab1 A
 aa1 + ab1  A

Similarly,  sa Showing that A is an ideal of A + B.
(ii) If A is a left ideal and B, a right ideal of R then A + B may not be an ideal of R.
Considering the same ideals as in examples 19, 20, we find

A + B will have members of the type 
0

a b
c
a b

0c 0c

and as 
1 1 2 2
1 0 2 2
1 1 2 2
1 0 2 21 0 2 2

 = 
4 4
2 2
4 4
2 22 2

A B

A + B is not an ideal of R.

Definition: Let S be any subset of a ring R. An ideal A of R is said to be generated by S if
(i) S  A

(ii) for any ideal I of R, S  I  A  I.
We denote it by writing A = < S > or A = (S).
In fact < S > will be intersection of all ideals of R that contain S, and is the smallest ideal

containing S. If S is finite, we say A = < S > is finitely generated.
If S  =  then as {0} is an ideal of R containing S = , < S >  {0} and so

< S > = {0}.
If S = {a} then we denote  < S > by < a > or (a) and this case is of special interest to us

as it is used rather extensively. By definition, a 
 > or (

 < a > and as it is an ideal, elements of the
type ra, as, r1 as1, na are in < a >, where r, r1, s, s1  R and n is an integer. Such an ideal
is called a principal ideal generated by a. (See Page 401 also). One can verify that
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(i) If R is a commutative ring, then
< S > = { nixi + rjyj | ni Z, rj R, xi, yj S}

(ii) If R is commutative with unity then
< S > = { rj yj | rj  R, yj  S}

(iii) If S = {a}, then
< a > = < S > = {na + ra + as + xay | n Z, r, s, x, y R}

(iv) Further if R has unity
< a > = {  xay | x, y R}

Summation being finite everywhere.

Theorem 9: If A and B be two ideals of a ring R, then
A + B = < A  B >.

Proof: We have already proved that A + B is an ideal of R, containing A and B, thus A + B
is an ideal containing A 

We have already proved that 
 B.

Let I be any ideal of R, s.t., A B  I
Let x A + B be any element
Then x = a + b for some a A, b  B
Since a A  A  B  I

b B  A  B  I
we find a + b I as I is an ideal
 x I or that A + B  I
which proves the theorem.
Thus A + B is the smallest ideal of R, containing A and B. One can, of course, talk about

sum of more than two ideals in the same manner.

Problem 32: If a R be an element and I = aR = {ar | r R} where R is a commutative  ring,
then I is an ideal of R.

Solution: I  as 0 = a . 0 I
x, y I  x = ar1, y = ar2 for some r1, r2 R

 x – y = a(r1 – r2) I
again if x = ar1  I and r R be any elements
then x r = (ar1) r = a (r1 r) I shows that I is a right ideal. R being commutative, it will

be both sided  ideal.

Remark: If the ring is not commutative, one can show that aR is a right ideal and
Ra = {ra | r 

If the ring is not commutative, one can show that 
R} is a left ideal of R. (See exercises)

aR is always contained in < a >. If R is a commutative ring with unity then
aR = Ra = (a).

Let us understand the difference between aR and < a > through the following example.

Example 22: Let < E, +, . > be the ring of even integers. It is commutative ring without unity,
Let a = 4 
Example 22:

E.
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Then    < 4 >  = {4n + (2m) 4 | n, m Z}
   = {4n + 8m | n, m Z}

whereas  4E = {4(2k) | k Z} = {8k | k Z}
We notice then, < 4 >  4E as 4 < 4 > but 4 4E.

Problem 33: If A is an ideal of a ring R with unity such that 1 A then show that  A = R.

Solution: Since A  R always, all we need show is that R  A.
Let r R be any element.
Since 1 A and A is an ideal

       r = 1 . r A
  R  A or that A = R.

Problem 34: Determine all the ideals of the ring of integers < Z, +, . >.

Solution: Let I be any ideal of < Z, +, . > then as a, b  I  a  b I, we notice < I, + >
is a subgroup of < Z, + >

Since < Z, + > is a cyclic group generated by 1, I will be a cyclic group generated by a
multiple of 1, say n (see theorem 19 on page 81).

Thus any ideal of < Z, +, . > is of the type < n >, i.e., multiple of some integer. Conversely
it is easy to see that < n > for any integer n is an ideal.

A similar result follows for subrings. See also exercise 1 on page 394.

Problem 35: Let L be a left ideal of a ring R and let
(L) = {x R | xa = 0 for all a L}

then show that (L) is an ideal of R.

Solution: (L)  as 0.a = 0 for all a L
 0 (L)

x, y (L)  xa = 0, ya = 0 for all a L
 (x – y)a = xa – ya = 0 – 0 = 0 for all a L
  x – y (L)

Again, if x  (L), r R be any elements, then
xa = 0 for all a L

Now (rx)a = r(xa) = r.0 = 0 for all a L
 rx  (L)
 (L) is a left ideal of R.

Also (xr)a = x(ra) r R, a L
= 0 for all a L  ra L
 xr (L)
 (L) is a right ideal of R.
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Problem 36: Show by means of an example that we  can find A B  R where A is an ideal
of B, B is an ideal of R, but A is not an ideal of R.

Solution: Let R be the set containing matrices of the type 
0 0

a b c
d e f

g

a b c
d e fd e fd e f
0 0 g

 over integers, then R

forms a ring under matrix addition and multiplication.

Take A = 
0 0
0 0 0 | an integer
0 0 0

0 00 0
0 0 0 | an integer0 0 0 | an integer0 0 0 | an integer0 0 0 | an integer0 0 0 | an integer0 0 0 | an integer0 0 0 | an integer0 0 0 | an integer
0 0 00 0 00 0 00 0 0

x
x

B = 
0 0
0 0 | , integers
0 0 0

u
v u v

0 0 u0 0 u
0 0 | , integers0 0 | , integersv u v0 0 | , integers0 0 | , integers0 0 | , integersv u v0 0 | , integers0 0 | , integers0 0 | , integers0 0 | , integersv u v0 0 | , integers0 0 | , integers0 0 | , integersv u v0 0 | , integers0 0 | , integers0 0 | , integersv u v0 0 | , integers0 0 | , integers0 0 | , integers
0 0 00 0 00 0 0

It would be easy to verify that A is an ideal of B, B is an ideal of R. To see that A is not
an ideal of R, we notice,

1 1 1 0 0 1
1 1 1 0 0 0
0 0 1 0 0 0

1 1 1 0 0 1
1 1 1 0 0 01 1 1 0 0 01 1 1 0 0 0
0 0 1 0 0 0

 = 
0 0 1
0 0 1
0 0 0

0 0 1
0 0 10 0 10 0 1
0 0 0

A .

Problem 37: Let R be an integral domain with unity such that R has finite number of ideals.
Show that R is a field.
Solution: We show that non zero elements of R have multiplication inverse.

Let a R be any non zero element. For any +ve integer n define
anR = {anr | r R}
then it is easy to see that anR is an ideal of R.
Since R has finite number of ideals
for some integers m, n, n > m, we have

amR = anR
Now am = am.1  amR = anR

 am = anr for  some r  R
 am(an-m r  1) = 0
 am = 0 or an m r  1 as R is an integral domain.

But a  0, so, am  0
 an m r  1 or that (an m 1 r)a =1

Thus an m 1 r is multiplicative inverse of a and hence R is a field.
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Product of Two Ideals

Let A, B be two ideals of a ring R. We define the product AB of A and B by
AB = {  aibi | ai  A, bi B}
where summation is finite.

Theorem 10: The product AB of any two ideals A and B of a ring R is an ideal of R.

Proof: AB   as 0 = 0 . 0 AB
Let x, y AB be any two members
then x = a1b1 + a2b2 + ..... + anbn

y = a 1b 1 + ...... + a mb m

for some ai, a j  A, bi, b j B
x – y = (a1b1 + .... + anbn) – (a 1b 1 + ....... + a mb m)

which clearly belongs to AB, as the R.H.S. can be written as
x1y1 + x2 y2 + ....... + xk yk (k = n + m)

where xi A, yi B.
Again, for any x = a1b1 + .... + anbn AB and r R,

rx = r(a1b1 + ..... + anbn)
= (ra1)b1 + (ra2)b2 + ..... + (ran)bn AB

because rai A as ai  A, r R, and A is an ideal.
Similarly xr AB
showing thereby that AB is an ideal of R.

Remarks: (i) Let S = {ab | a A. b B}
then < S > = AB.
Clearly S  AB and as AB is an ideal, < S >  AB.
Again, x AB  x = aibi, ai  A, bi  B

ai A, bi B  aibi S, i = 1, 2, .....,

 aibi < S > i
 x < S >
 AB < S >

and hence < S > = AB.
(ii) If R is a commutative ring with unity and A, B are finitely generated ideals of R then

so are A + B and AB. In fact if A = < a1, a2, . ..... , an > and
B = < b1, b2, ......, bs > then

A + B = < a1, a2, ...., ar, b1, b2, ..., bs >
AB = < a1b1, ...., a1bs, ....., arb1, ....., arbs >

This, however, may not be true for A  B. See exercises ahead.
The following problem gives us little more information about product of ideals.
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Problem 38: If A is a left and B is a right ideal of a ring R then show that AB is a two sided
ideal of R whereas BA need not be even a one-sided ideal of R.

Solution: That AB will be a two sided ideal of R follows by the theorem above. We show by
an example that BA need not be even a one-sided ideal.

Take A = 0
| , ,

0
0

| , ,| , ,| , ,
0

| , ,| , ,| , ,| , ,| , ,| , ,
00

| , ,
0

a
a b

b
Z

B = | , ,
0 0

| , ,| , ,| , ,| , ,| , ,| , ,| , ,| , ,| , ,
0 00 0

| , ,
0 00 00 00 0
c d

c d Z

in the ring R of 2 × 2 matrices over integers then as seen earlier A is left and B is a right ideal
of R.

BA would have member of the type 
0

0 0 0
c d a

b
0c d a

0 0 0b0 0 0b0 0 00 0 0b0 0 0b0 0 0

i.e., of the type 
0

,
0 0

0
,

0 0
,

0 0
x

x Z

Now if we take 
1 0
0 0
1 0
0 00 0

in BA and 
1 1
1 1
1 1
1 11 1

 in R

then
1 0 1 1
0 0 1 1
1 0 1 1
0 0 1 10 0 1 1

=
1 1
0 0
1 1
0 00 0

BA

1 1 1 0
1 1 0 0
1 1 1 0
1 1 0 01 1 0 0

=
1 0
1 0
1 0
1 01 0

BA

Hence BA is neither a left nor a right ideal of R.

Problem 39: If A , B, C are ideals of a ring R, s.t., B  A then show that
A  (B + C) = (A B) + (A C) = B + (A C).

Solution: Let x A (B + C) be any element
Then x A and x B + C

 x = b + c for some b B, c C
Now b B  A, also b + c = x A

 (b + c) – b A
 c + b – b A
 c A
 x A  C

i.e., x = b + c, b B, c A C
thus x B + (A  C)
Hence A  (B + C) B + (A C).
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Again let x B + (A  C)
Then x = b + k for some b B, k A  C
Since b B, k C

x = b + k B + C
and b B  A, k A  b + k A

 x A
 x A  (B + C)

or that B + (A C)  A  (B + C)
which finally gives  A (B + C) = B + (A C)
Also as B  A, A B = B
thus A  (B + C) = (A B) + (A C) = B + (A C).

Remark: The above is sometimes called modular equality. See exercises also.

Definition: A ring R  {0} is called a simple ring if R has no ideals except R and {0}.

Theorem 11: A division ring is a simple ring.

Proof: Let R be a division ring. Let A be any ideal of R s.t., A  {0} then  at least one a 
A s.t., a  0. R being a division ring, a–1 

 be any ideal of 
R and aa–1 = 1.

Since a A, a–1 R, aa–1 A (def. of ideal)
 1 A
 A = R (see problem 33)

i.e., only ideals that R can have are R and {0} or that R is a simple ring.

Problem 40: Let R be a ring with unity, such that R has no right ideals except {0} and R.
Show that R is a division ring.

Solution: All  that we need prove is that non zero elements of R form a group under multiplication.
Let 0  a R be any non zero element.
Let aR = {ar | r R}
Then aR is a right ideal. See problem 32.
By given condition, then

aR = R
or aR = {0}
But aR  {0} as a  0 and a = a.1 aR
Hence aR = R.
Now 1 R  1 aR   b R, s.t. 1 = ab  b is right inverse of a (w.r.t. multiplication).

Thus <R – {0}, ·> is a system in which associativity holds, right identity (unity) and right
inverse exist (for every element).

i.e., < R – {0}, . > forms a group or that R is a division ring.
See Problem 43 on page 350 also.
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Problem 41: Let R be a ring having more than one element such that aR = R, for all 0  a
R. Show that R is a division ring.

Solution: We first show that xy = 0  x = 0 or y = 0 in R.
So let xy = 0 and suppose x  0, y  0
Then xR = yR = R
Also (xy)R = x(yR) = xR = R

 R = {0} as xy = 0
contradicting that R has more than one element.
Hence our assertion is proved.
Again, as R  {0},  0  a  R and by given condition then aR = R

  e R s.t., ae = a (e  0 as a  0)
 ae2 = ae
 a(e2 – e) = 0
 e2 = e as a  0.

We claim e is right unity of R.
If e is not right unity of R, then y R s.t., ye  y
But (ye – y)e = ye2 – ye = ye – ye = 0
 either ye = y or e = 0, a contradiction
 e is right unity of R.
Let 0  a R be any element then aR = R
Now e R, aR = R.

 e  aR   b R, s.t., e = ab
or that b is right inverse of a.
 every non zero element of R has right inverse.
Hence R is a division ring.

Problem 42: Let R be a ring such that R and {0} are the only right ideals of R. Show that
either R is a division ring or has prime number of elements such that
ab = 0 for all a, b 
either R is a division ring or has prime number of elements such that

R.

Solution: Let I = {a R | aR = {0}}
then I is a right ideal of R (Verify).
By given condition then either I = {0} or I = R.
If I = {0} then aR = {0} only when a = 0.
In other words, aR = R, for all 0  a R. (Notice aR is a right ideal).
Thus by previous problem, R is a division ring. (Note in this case R has more than one

element, as if R = {0} then R = I, which is the next case).
Now suppose I = R, then aR = {0} for all a R

 ar = 0 for all a, r R
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If S be any subgroup of < R, + > then S will be a right ideal of R (a S  R,
r R  ar = 0 

 be any subgroup of < 
S).  By given condition R has only two right ideals R and {0}. Thus

< R, + > can have only two subgroups namely R and {0}.
 < R, + > is a cyclic group of prime order (see Groups on page 87)
Thus R has prime number of elements (and as seen above ab = 0 for all a, b R).

Problem 43: Show by an example that it is possible to have a ring R with unity where {0}
and R are the only ideals of R, but R is not a division ring.

Solution: Let R be the ring of 2 × 2 matrices over R. Then it is not a division ring as 
1 0
0 0
1 0
0 00 0

 R is not invertible. We show R has no ideals except {0} and R.
Let A {0} be any ideal of R.

Since A  {0},  0  A A. Suppose A = 
a b
c d
a b
c dc d

. Since A  0, some entry in A is non

zero. Let a  0. Let Eij denote the matrix in R whose (i, j)th entry is 1 and 0 elsewhere. Then
EijEjk = Eik  and  EijErk = 0  if j  r

Now A = aE11 + bE12 + cE21 + dE22

AE11 = aE11 + cE21

Thus a–1 E11AE11 = E11  E11  < A >
 < E11>  < A >

Now 
1 0
0 1
1 0
0 10 1  = E11 + E22 = E11 + E21E11E12  < E11>

So unity of R belongs to < E11>  < E11> = R
 R  < A >
 < A > = R

and so R = < A >  A as A  A
or that A = R
Hence R is the required ring.
We thus realise that a simple ring with  unity may not be a division ring, the converse, of

course, being true.

Exercises
1. Show that intersection of two ideals in an ideal.
2. Give an example to show that union of two ideals may not be an ideal.
3. Prove that union of two ideals is an ideal iff one of them is contained in the other.
4. If an ideal is contained in union of two ideals then show that it is wholly contained

in one of them.
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5. Show that a ring cannot be expressed as a union of two proper ideals, but it is possible
to express it as a union of three proper ideals.

6. Let R be the ring of 2 × 2 matrices over integers. If a = 
1 1
0 0
1 1
0 00 0

R, then show that

aR is not a left ideal of R.
7. If A is an ideal of a ring R, let

[R : A] = {x  R | rx A for all r  R}
Show that [ R : A] is an ideal of R, containing A.

8. Let R be a non commutative ring with unity. Show that Z(R), the centre of R is not
an ideal of R. [Hint: Z(R) is properly contained in R].

9. If A, B, C are three ideals of a ring R then show that
A(BC) = (AB)C.

10. If A, B be two ideals of a ring R then show that AB  A  B. Give an example to
show that 

 be two ideals of a ring 
 ideals A, B s.t., AB  A  B.

11. If A, B, C are ideals of a ring R, then show that
(i) A(B + C) = AB + AC.

(ii) (A + C) (B + C)  AB + C.
(iii) (A  B) (A + B)  AB.

12. If A, B are two ideals of a ring R s.t., A  B = {0} then the sum A + B is called direct
sum of A and B and is denoted by A B. Show that each element of A  B is uniquely
expressible as a + b for a 

 and is denoted by 
 A, b  B.

13. If F is a field, prove that its only ideals are {0} and F.
14. If R be a commutative ring with unity whose only ideals are {0} and R, then show

that R is a field. (See problem 40).
15. Show that if an ideal A of a ring R with unity contains a unit of R then A = R.
16. Let A, B be two subrings of a ring R such that for all a A, b B,

ab, ba A then show that
(i) A + B is a subring of R.

(ii) A is an ideal of A + B.
(iii) A B is an ideal of B.

17.  Show that M = | , , , rationals| , , , rationals| , , , rationals| , , , rationals| , , , rationals| , , , rationals| , , , rationals| , , , rationals| , , , rationals| , , , rationals| , , , rationals| , , , rationals
a b

a b c d
c d

 forms a simple ring under matrix

operations.
18. Let R be a ring with unity and A be any proper ideal of R. Show that no element of

A can have a multiplicative inverse.
19. Show by an example that it is possible to find ideals A, B, C, such that

A  (B + C)  (A  B) + (A  C).
20. Let S = {a + ib | a, b Z, b even}. Show that S forms a subring of Z[i] but not an

ideal of Z[i].
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21. Let R be the ring of 2 × 2 matrices over integers. Show that the set S of matrices of

the type 
0

0
a

b
0a

0 b0 b  over integers is a subring of R but is neither a left nor

a right ideal of R.
22. Let R be a commutativering and let A, B be ideals of R. Show that

A = {x R | xn  A for some +ve integer n} is an ideal of R such that

(i) A  A (ii) A  = A

(iii) If R has unity and A = R then A = R.

(iv) AB  = A BA B  = A   B

(v) A BA B  = A BA BA BA BA B .

A  is called nil radical of A.
23. Let I = (2), J = (12) be ideals of the ring Z of integers. Determine

(i) I + J (ii) I  J
(iii) I : J where I : J = {m  Z | mJ  I} (iv) I J
[Hint: If I = (m), J = (n) then I + J = (d), I  J = (l), IJ = (mn)

(I : J) = (m/d) where d = g.c.d (a, b), l = l.c.m. (a, b).
(See under PIDs in chapter 9 also)

24. Let A, B be ideals of a ring R. Define
(A : B) = {x R | xB A}. Show that (A : B) is an ideal of R. (It is called quotient
ideal). Show further that

(i) (A : B)B  A (A : B)
(ii) (A : B)C = (A : BC)

(iii) (( ) : ) ( : )i ii
A B A B

i
(( ) : ) ( : )i i(( ) : ) ( : )i i(( ) : ) ( : )(( ) : ) ( : )A B A B(( ) : ) ( : )(( ) : ) ( : )i i(( ) : ) ( : )A B A B(( ) : ) ( : )i i(( ) : ) ( : )

(iv) ( : ) ( : )( : ) ( : )i ii i
A B A B

Ai, Bi being ideals of R and Bi = {x1 + x2 + ...... + xn | xi  Bi, n = finite}.

25. Let R be the ring of 2 × 2 matrices over integers. Show that 
0 1
0 0
0 1
0 00 0

 and 
0 0
1 0
0 0
1 01 0

 are

nilpotent in R but  their sum is not nilpotent. Show further that the set of all nilpolent
elements of R is not an ideal.

26. Let R be the set of all 2 × 2 matrices 
a b
c d
a b
c dc d

 over Q s.t., a = d and c = 0. Let I be

the set of all such matrices for which a = d = 0. Show that I is an ideal of R.
27. Let R be an integral domain with unity. Let A, B be finitely generated ideals of R such

that A + B is a principal ideal. Then show that  A 
 be finitely generated ideals of 

 B is finitely generated.
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A ring is a non-empty set R together with two binary compositions + and .
(dot) where < R, + > forms an abelian group, and the associative property
also holds for multiplication alongwith and the product being distributive over
addition. If multiplication is also commutative we say the ring is
commutative. In addition, if there exists an element e, s.t., ae = ea =a,for all
a in R, we say the ring has unity e.
A commutative ring is called an integral domain if, whenever ab = 0 then either a
is 0 or b is 0. < Z, +, . >, Z5 are integral domains, but Z6 is not an integral domain.
A commutative ring with unity in which non-zero elements have multiplicative
inverse is called a field.
A field is an integral domain but converse is not true.
Zp is a field iff p is a prime.
A non-empty subset of a ring is called a subring if it forms a ring under operations
of the parent ring.
If there exists a +ve integer n such that na = 0 for all a in R then R is said to have
finite characteristic and the smallest such +ve integer is called the characteristic
of R. If no such n exists we say R has zero characteristic.
Order of a finite field (finite integral domain) is of the type pn,where p is a prime.
A ring R is called a Boolean ring if a2 = a for all a in R. A Boolean ring is always
commutative.
A non-empty subset I of a ring R is called an ideal if  a – b I and ar, ra R for all
a,b 

A non-empty subset 
I and  r 

A non-empty subset 
 R

Ideals are subrings but converse does not hold.
A ring R is called simple if it has no ideals except R and {0}.
Intersection, sum and product of ideals are ideals, whereas union may not be.
Product of two ideals A and B is defined to be {
Intersection, sum and product of ideals are ideals, whereas union may not be.

aibi |ai 

Intersection, sum and product of ideals are ideals, whereas union may not be.
A, bi 

Intersection, sum and product of ideals are ideals, whereas union may not be.
B}, where

summation is finite.

A Quick Look at what's been done
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Quotient Rings

Let R be a ring and let I be an ideal of R. Since a, b  I  a – b I, we find I is a subgroup
of < R, + >. Again as < R, + > is abelian, I will be a normal subgroup of R and thus we can

talk of R
I

, the quotient group

R
I

 = {r + I | r R} = set of all cosets of I in R (clearly left or right cosets are equal).

We know R/I forms a group under ‘addition’ defined by
(r + I) + (s + I ) = (r + s) + I

We now define a binary composition (product) on R/I by
(r + I) · (s + I ) = rs + I

We show this product is well defined
Let     r + I = rr  + I and s + I = s  + I

 r  rr  I and s  s  I
 r  rr  a and s  s  b for some a, b I
 r  rr  a, s  s  b
 rs  (a + ra + r ) b  s
 rs + I = (ab + as  + r r b  rr s  + I = rr s + I

(using x + I = I iff x I)
Hence the multiplication is well defined.

Homomorphisms and
Embedding of Rings

8

Introduction
In this chapter we plan to discuss homomorphisms and embedding (imbedding) of rings.
Moving on similar lines as in groups we have kernel of a homomorphism(which would
be an ideal).We have the Fundamental Theorem of ring homomorphism, the isomorphism
theorems. In groups, normal subgroups provided us with quotient groups, here ideals do
the job. Towards the end we also take up the concepts of maximal and prime ideals.
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Since (a + I)[(b + I)(c + I)] = (a + I)(bc + I)
= a(bc) + I
= (ab)c + I
= (ab + I)(c + I)
= [(a + I)(b + I)](c + I)

Associativity holds w.r.t. this product.
Again, as (a + I)[(b + I) + (c + I)] = (a + I)(b + c + I)

= a (b + c) + I
= (ab + ac) + I
= (ab + I) + (ac + I)
= (a + I)(b + I) + (a + I)(c + I)

We find left distributivity holds. Similarly one can check that right distributivity also holds
in  R/I and hence R/I forms a ring, called the quotient ring or factor ring or residue class ring
of R by I.

We look at it from another angle. Let R be a ring and I an ideal of R. Define, for
a, b 

We look at it from another angle. Let 
 R, a 

We look at it from another angle. Let 
 b (mod I) if a – b 

We look at it from another angle. Let 
I. It is easy to check that this relation is an equivalence

relation on R. Thus it partitions R into equivalence classes. Let for any a 
. It is easy to check that this relation is an equivalence

R, cl(a) be the
corresponding equivalence class of a.

Then cl(a) = {r + R | r  a (mod I)}
= {r  R | r – a  I)}
= {r  R | r – a = x for some x I}
= {r  R | r = a + x for some x I}
= {a + x | x I}
= a + I

Thus, the quotient  ring R
I

 is nothing but the ring of all equivalence classes as defined above.

In fact, the binary compositions defined earlier would translate to
cl(a) + cl(b) = cl(a + b) a, b R
cl(a) . cl(b) = cl(ab)

It would be an interesting exercise for the reader to verify that R/I thus defined forms a ring.
In fact, if R has unity 1 then cl(1) will be unity of R/I.

R/I is therefore also called quotient ring of R modulo I.

Remarks: (i) It may be noticed that R/I is defined only when I is an ideal of R. If I happens
to be only a subring of R then R/I may not form a ring as there the multiplication rule may
not be valid. Suppose I is only a subring of R (and is not an ideal) then let r 

 may not form a ring as there the multiplication rule may
R, a 

 may not form a ring as there the multiplication rule may
I s.t.,

ar 
not be valid. Suppose 

I.

Then (a + I)(r + I) = ar + I
gives (0 + I) (r + I) = ar + I
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i.e., 0.r + I = ar + I or that ar I which is not true.

(ii) If I = R then R/I is isomorphic to the zero ring {0} and if I = {0} then
R
I

 R. See definition of isomorphism in next section.

Example 1: Let H4 = {4n | n  Z}, where < Z, +, . > is the ring of integers. Then H4 is an

ideal of Z and thus 
4H

Z  is a quotient ring and is given by

4H
Z  = {H4, H4 + 1, H4 + 2, H4 + 3}

This example also shows us that quotient ring of an integral domain may not be an integral
domain.

Notice (H4 + 2) (H4 + 2) = H4 + 4 = H4 = zero of 
4H

Z  but H4 + 2  H4.

On the other hand if we cosider
R = {0, 2, 4, 6, 8, 10} mod 12
S = {0, 6} mod 12

then R is not an integral domain whereas R/S is an integral domain.
We have R/S = {S, S + 2, S + 4}
Since (S + 2) (S + 2) = S + 2,  (S + 2) (S + 4) = S + 8 = S + 2
and (S + 4)(S + 4) = (S + 16) = S + 4, we find

R
S

 has no zero divisors.

Homomorphisms

Let < R, +, . > , < R , *, o > be two rings. A mapping  : R  R  is called a homomorphism
if

(a + b) = (a) *  (b)
(ab) = (a) o  (b) a, b  R

Since we prefer to use the symbols + and . for the binary compositions in a ring, we will
use these symbols, even while dealing with more than one ring. In that case, the above definition
simplifies to saying that a mapping 
use these symbols, even while dealing with more than one ring. In that case, the above definition

 : R 
use these symbols, even while dealing with more than one ring. In that case, the above definition

 R
use these symbols, even while dealing with more than one ring. In that case, the above definition

 is called a homomorphism if
(a + b) = (a) + (b)

(ab) = (a) . (b)
One can similarly talk about isomorphism  in rings as a one-one onto homomorphism.

Example 2: Consider the map f : C  C, s.t.,
f (a + ib) = a – ib

then f is a homomorphism, where C = complex numbers,



8. Homomorphisms and Embedding of Rings 357

as f [(a + ib) + (c + id)] = f (( a + c) + i(b + d))
= (a + c) – i(b + d)
= (a – ib) + (c – id)
= f (a + ib) + f (c + id)

and f [(a + ib) (c + id)] = f ((ac – bd) + i (ad + bc))
= (ac – bd) – i (ad + bc)
= (a – ib) c – id (a – ib)
= (a –ib) (c – id)
= f (a + ib) f (c + id)

Example 3: Let R be a commutative ring and suppose px = 0 for all x R, where p is a prime
number. Then the mapping f : R 

 be a commutative ring and suppose 
 R defined by f (x) = xp, x R is a homomorphism.

In fact the result follows rather easily, if we can show that p | pCr’ 1  r  p –1.

Now n = pCr
= !

( )! !
p

p r r( )! !p r r( )! !p r r( )! !

= ( 1) ...... ( 1)( )!
( )!1.2....

p p p r p r
p r r

( 1) ...... ( 1)( )!p p p r p r( 1) ...... ( 1)( )!p p p r p r( 1) ...... ( 1)( )!
( )!1.2....p r r( )!1.2....p r r( )!1.2....

 nr! = p(p –1) .....(p – r + 1)
Since p divides R.H.S., it will divide nr!
 p | n or p | r! (whenever a prime divides product ab, it must divide at least one of a or

b). But p  r! as 1, 2, ..., r – 1 are all less than p, so p cannot divide any one of them. Thus
p  r!

i.e., p | n
Now for any x, y  R

f (x + y) = (x + y)p = xp + pC1
 xp–1 y + pC2

 xp –2 y2 + .... + yp

(R being commutative)
Now pC1

 xp –1 y = pxp –1 y = 0  as  xp–1 y  R
pC2

 xp–2 y2 =  (kp) xp–2 y2  =  0 as p | pC2
  pC2

 =  kp for some k
Similarly each pCr

 would be some multiple of p giving that other terms are also zero.
Hence f (x + y) = xp + yp = f (x) + f (y)
Also f (xy) = (xy)p = xpyp  (R commutative)

= f (x) f (y)
Thus f is a homomorphism.

Theorem 1: If  : R  R  be a homomorphism, then
(i) (0) = 0

(ii) (–a) = – (a)
where 0, 0  are zeros of the rings R and R  respectively.
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Proof: (i) Since 0 + 0 = 0
we have (0 + 0) = (0)
 (0) + (0) = (0) + 0
 (0) = 0
(ii) Again, as a + (–a) = 0

(a + (–a)) =  (0)
 (a) + (–a) = (0) = 0
 – (a) = (–a)

Cor.: It is clear that
(a – b) = (a + (– b))

= (a) –) – (b)

Remark: The terminology of epimorphism, monomorphism etc. is extended to rings also in
the same way as in groups.

Definition: Let f : R  R  be a homomorphism, we define Kernel of f by
Ker f = {x  R | f (x) = 0 }

where 0  is zero of R .
The following two theorems are easy to prove so we’ll state the results without proof.
If : R  R  is a homomorphism then

Theorem 2: Ker f is an ideal of R.

Theorem 3: Ker f = (0) i f f f is one-one.

Problem 1: If R is a ring with unity and f : R  R  is a homomorphism where R  is an integral
domain such that Ker f 

If R is a ring with unity and f 
 R then show that f (1) is unity of R

is a homomorphism where R
.

Solution: Let a  R  be any element. We show
f (1) a  = a f (1) = a

Now f (1) a – f (1) a = 0
 f (1.1) a – f (1) a =  0
 f (1) f (1) a – f (1) a = 0
 f (1) [f (1) a – a  ] = 0

 either f (1) = 0  or f (1) a – a  = 0  as R  is an integral domain.
f (1) = 0   1  Ker f  Ker f = R which is not true.

Hence f (1)a – a = 0
 f (1) a = a
Similarly, we can show a = a f (1).

Problem 2: Let f : R  R  be an onto homomorphism, where R is a ring with unity. Show that
f (1) is unity of R .

Solution: Let a   R  be any element.
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Since f is onto,  a  R, s.t., f (a) = a
Now a . f (1) = f (a) . f (1) = f (a . 1) = f (a) = a
Similarly f (1) . a = a .
Showing, thereby that f (1) is unity of R .

Problem 3: Show by an example that we can have a homomorphism f : R  R , such that f
(1) is not unity of R

Show by an example that we can have a homomorphism
, where 1 is unity of R.

Solution: Consider the map f : Z  Z, s.t.,
f (x) = 0  for all x  Z

where Z = ring of integers
then f is a homomorphism (verify)
Again f (1) = 0, but 0 is not unity of Z.
Thus although Z (on R.H.S.) has unity it does not equal f (1).

Remarks: (i) If we take the map f : Z  E, where E = ring of even integers, defined by f
(x) = 0 for all x, we find, E does not have unity, whereas 1 is unity of Z.

(ii) We recall (see page 116) that the map f : Z  E, s.t., f (x) = 2x is a group isomorphism.
Thus Z and E are isomorphic as groups whereas Z and E are not isomorphic as rings. Indeed,
Z has unity but E does not possess unity. In fact, f will not be a ring homomorphism.

Problem 4: Find all the ring homomorphisms from Z20  Z30.

Solution: Let f : Z20  Z30 be any ring homomorphism.

Let f(1) = a, then f(x) = xa and as done in Problem 24 under groups on page 120 we find
o(a)|o(Z30) = 30  and o(a) | 20 = o(Z20)

Thus possible values of o(a) are 1, 2, 5, 10 and so possible values of a will be
0, 3, 6, 9, 12, 15, 18, 21, 24, 27

which give us the ten group homomorphisms.
Since f is a ring homomorphism  and in Z20, 1.1 = 1, we find f(1.1) = f(1)

or f(1)(1) = f(1)
or a2 = a in Z30

This is satisfied by 0, 6, 15, 21 values of a .
Hence there exist four ring homomorphisms from  Z20  Z30.

Problem 5: Show that 2Z is not isomorphic to 3Z as rings. What can be said about isomorphism
between mZ and nZ, where m, n are positive integers?

Solution: Suppose 2Z  3Z and let f : 2Z  3Z be the isomorphism.

As 2  2Z, f(2) = 3n for some n Z
Now f (4) = f (2 + 2) = f (2) + f (2) = 6n

f (4) = f (2.2) = f (2).f (2) = (3n)2

Thus 6n = 3n2 or that 2 = 3n
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But this is not possible for any n Z
Hence f is not an isomorphism.
Suppose now f: mZ  nZ is any ring isomorphism
Then f (m + m + . . . +m) = f (m) + f (m)+ . . . +f (m)

     
 m times

= mf (m)
 f (mm) = mf (m)
 f (m) f (m) = mf (m)  f (m) = m (1)

Again as f is onto and n  nZ,  mr  mZ
s.t., f (mr) = n or rf (m) = n

 f (m) | n
Again as     m  mZ, f (m)  nZ

 f(m) = nk for same k
n | f (m)

and hence     f (m) = n
or that m = n from (1)
So if mZ  nZ, then m = n. The converse, of course, is obviously true.
Hence we conclude: mZ  nZ as rings if and only if m = n.
(Note: see page 142 under groups)

Problem 6: Let Z be the ring of integers. Show that the only homomorphisms from Z  Z are
the identity and zero mappings.

Solution:  Let f : Z  Z be a homomorphism
Since ( f (1))2 = f (1) f (1) = f (1.1) = f (1)

f (1)[ f (1) – 1] = 0
 f (1) = 0 or f (1) = 1

If f (1) = 0 then f (x) = 0  integers x
as f (x) = f (1· x) = f (1) f (x) = 0 · f (x) = 0  x
Thus in  this case f is the zero homomorphism.
If f (1) = 1, then for any x Z

f (x) = f (1 + 1 +.....+ 1) = x f (1) = x (x > 0)
f (x) = f (–y) = – f ( y) = –[ f (1 + 1 +...+ 1)]= –y f (1) = x f (1) = x

(x < 0, y = –x)
f (0) = 0

So in this case f is identity map, which proves the result.

Problem 7: Let R and S be two commutative rings with unity and let f: R  S be an onto
homomorphism. If ch R 

Let R and S be two commutative rings with unity and let f: R
 0, show that ch S divides ch R.

Solution: Suppose ch R = n, then n is least +ve integer such that na = 0  a R
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So n.1 = 0 and n is least
 1 + 1+ ... + 1 = 0 and so additive order of 1 is n.

Again as f is onto f(1) is unity of S and so ch S is additive order of f(1)
As  o(f(1)) | o(1), we find ch S | ch R.
Problem 8: Show that the ring D of quaternions is isomorphic to the ring

| ,
a b

M a b
b a
a ba b

a ba ba b
a b

| ,a b| ,a b| ,a b| ,a b| ,| ,| ,a b| ,a b| ,| ,a b| ,a b| ,a b| ,a b| ,a b| ,
b ab ab a

| ,a b| ,a b| ,
b ab ab ab ab ab ab ab ab ab a

C .

Solution: Let a + bi + cj + dk  D.

Then a + bi + cj + dk = (a + bi) + (c + di)j
Define : D M, s.t.,

(a + bi + cj + dk) = 
( )
a bi c di
c di a bi

a bi c dia bi c di
( )c di a bi( )c di a bi( )( )c di a bi( )c di a bi( )

Then is a ring homomorphism.
We leave the proof of the fact that  preserves addition to the reader.
Consider ((a + bi + cj + dk)(a  + b i + c j + d k))

= [((a + bi) + (c + di)j)((a  + b i) + (c  + d i)j ]
= [(a + bi) (a  + b i) + (a + bi)(c  + dd i)j +  (c + di)(a   b i)j +

  (c + di)( c  + dd i)i]

=
( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )
a bi a b i c di c d i a bi c di c di a b i
c di a b i a bi c d i a bi a b i c di c d i

( )( ) ( )( ) ( )( ) ( )( )a bi a b i c di c d i a bi c di c di a b i( )( ) ( )( ) ( )( ) ( )( )a bi a b i c di c d i a bi c di c di a b i( )( ) ( )( ) ( )( ) ( )( )( )( ) ( )( ) ( )( ) ( )( )a bi a b i c di c d i a bi c di c di a b i( )( ) ( )( ) ( )( ) ( )( )a bi a b i c di c d i a bi c di c di a b i( )( ) ( )( ) ( )( ) ( )( )( )( ) ( )( ) ( )( ) ( )( )( )( ) ( )( ) ( )( ) ( )( )a bi a b i c di c d i a bi c di c di a b i( )( ) ( )( ) ( )( ) ( )( )a bi a b i c di c d i a bi c di c di a b i( )( ) ( )( ) ( )( ) ( )( )( )( ) ( )( ) ( )( ) ( )( )( )( ) ( )( ) ( )( ) ( )( )( )( ) ( )( ) ( )( ) ( )( )( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )( )( ) ( )( ) ( )( ) ( )( )( )( ) ( )( ) ( )( ) ( )( )( )( ) ( )( ) ( )( ) ( )( )c di a b i a bi c d i a bi a b i c di c d i( )( ) ( )( ) ( )( ) ( )( )( )( ) ( )( ) ( )( ) ( )( )c di a b i a bi c d i a bi a b i c di c d i( )( ) ( )( ) ( )( ) ( )( )c di a b i a bi c d i a bi a b i c di c d i( )( ) ( )( ) ( )( ) ( )( )( )( ) ( )( ) ( )( ) ( )( )( )( ) ( )( ) ( )( ) ( )( )( )( ) ( )( ) ( )( ) ( )( )( )( ) ( )( ) ( )( ) ( )( )c di a b i a bi c d i a bi a b i c di c d i( )( ) ( )( ) ( )( ) ( )( )( )( ) ( )( ) ( )( ) ( )( )c di a b i a bi c d i a bi a b i c di c d i( )( ) ( )( ) ( )( ) ( )( )c di a b i a bi c d i a bi a b i c di c d i( )( ) ( )( ) ( )( ) ( )( )

=
a bi c di a b i c d i
c di a bi c d i a b i

a bi c di a b i c d ia bi c di a b i c d ia bi c di a b i c d i
c di a bi c d i a b ic di a bi c d i a b ic di a bi c d i a b ic di a bi c d i a b i

It is not difficult to check that is one-one and onto. So, is an isomorphism.
Hence D  M.
Theorem 4: (Fundamental Theorem of Ring Homomorphism)

If f : R  R  be an onto homomorphism, then R  is isomorphic to a quotient ring of R. In

fact, R   
Ker

R
f

.

Proof: Let f :  R  R  be onto homomorphism

Define  : 
Ker

R
f

  R , s.t.,

(x + I) = f (x)  for all x  R where I = Ker f
then  is well defined as

 x + I = y + I
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  x – y  I = Ker f
   f (x – y) = 0
   f (x) – f (y) = 0
  f (x) = f (y)
 (x + I) = (y + I)

Retracing the steps backwards we prove  is 1–1.
Again, as

[(x + I) + (y + I)] = ((x + y) + I) = f (x + y) = f (x) + f (y)
= (x + I) + (y +I)

(x + I)(y + I)] = (xy + I) = f (xy) = f (x) f (y)
= (x + I) (y + I)

is a homomorphism.
Now if r   R  be any element then as f : R  R  is onto,  r R, s.t.,

f (r) = rr  for this r, as 
 be any element then as 

(r + I) = f (r) = r
 be any element then as 

r
We find r + I is required pre-image of rr  under showing thereby that  is onto and hence

an isomorphism.

Thus 
Ker

R
f

  R . By summetry R  
Ker

R
f

.

Theorem 5: (First Theorem of Isomorphism)
Let B  A be two ideals of a ring R. Then

/
/

R R B
A A B

/
/

R R B/R R B/
A A B/A A B/

.

Proof: Define a mapping   f : R R
B A
R R
B A

 s.t.,

 f (r + B) = r + A
then f is an onto homomorphism (Prove!)

By fundamental theorem,  /
Ker

R R B
A f

/R R B/R R B/
A fKerA fKer

Again, since r + B  Ker f  f(r + B) = A
r + A = A
r  A

r + B A
B

we find  Ker f = A/B

Hence  /
/

R R B
A A B

/R R B/R R B/
/A A B/A A B/

.
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Theorem 6: (Second Theorem of Isomorphism)
Let A, B be two ideals of a ring R, then

A B B
A A B

A B BA B B
A A B

A B B
A A BA A B

.

Proof: Define a mapping  f : B A B
A

A B  s.t.,

 f (b) = b + A  for all b  B
Then  f  is a well defined homomorphism.

Again if x + A A B
A

A B  be any element then

x  A + B  x = a + b,  a A,  b B
So,  x + A = (a + b) + A = (b + a) + A = b + (a + A ) = b + A
thus x + A = b + A = f (b)
i.e., b is the pre-image of x + A under f or that f is onto.

By fundamental theorem then 
Ker

A B B
A f

A B BA B B
A fKerA fKer

A B B

Now   x  Ker f  f (x) = A
x + A = A x  A
x  A  B (x  Ker f  B)

Hence Ker f = A  B

and thus A B B
A A B

A B BA B B
A A B

A B B
A A BA A B

.

Remark: Clearly then A B A
B A B

A B AA B A
B A B

A B A
B A BB A B

.

Problem 9: Show that 5
2 10

5
2 102 102 10
Z Z

Z
.

Solution: Take  A = < 2 >, B = < 5 > = 5Z, the ideals of Z.
Then A + B = < d >, where d = g.c.d. (2, 5) = 1

A  B = < l > where l = l.c.m. (2, 5) = 10
(See exercise 23 on page 352)
So A + B = < 1 > = Z

A  B = < 10 > = 10Z
Hence using the above result that

A B B
A A B

A B BA B B
A A B

A B B
A A BA A B

 we get 5
2 10

5
2 102 102 10
Z Z

Z
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Theorem 7: If N be an ideal of a ring R then there exists a one-one onto mapping between
the set of all ideals of R, containing N and the set of ideals of R/N.

Proof: Let f : R  R/N be the natural homomorphism defined by f (r) = r + N. Now, if A
be any ideal of R then as f : R 

 be the natural homomorphism defined by 
 R/N is onto homomorphism, f (A) is an ideal of R/N.

Again,  f (A) = {f (a) | a  A}
 = {a + N | a  A}

 = A
N

.

Let now   be the set of all ideals of R, which contain N and  be the set of all ideals

of R
N

.

Define  :    s.t.,

(A) = f (A) = A
N

is clearly well-defind.
Again (A) = (B)

  f (A) = f (B)

 A
N

B
N

If a A be any element then a + N A
N

 a + N B
N

  a + N = b + N  for some b  B
  a – b  N  B
  a – b = b   for some b   B
  a = b + b  B

i.e., A  B.
Similarly, B A and thus A = B
showing that  is one-one.

To show that is onto, let X   be any member then X is an ideal of R
N

.

Define A = {x  R | f (x)  X}.
We show A is the required pre-image of X under .
It is easy to check that A is an ideal of R.
Again, n  N = Ker f

 f (n) = N = zero of R
N

0 + N  X  [as ideal contains zero]
f (n) X  n A
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or that N  A.
Thus A is a member of .
Definition of A then confirms that it is the required pre-image. Hence  is onto.

Cor.: If N is an ideal of a ring R then any ideal of R/N is of the type A/N where A is an ideal
of R, containing N. (See also problem 30, page 129, under groups).

Problem 10:  Show that Zn ( )n
Z .

Solution: We have Zn = {0, 1, 2, ...., n –1}

( )n
Z  = {(n), 1+(n), 2+(n),......., ( 1)n( 1) +(n)}

Define  :
( )n
Z   Zn, s.t.,

(r + (n)) = r, 0  r  n –1
Let r + (n) = s + (n) and suppose r s.
Then r – s  (n)  n | (r – s)  n  r – s
where r, s  n. We thus get a contradiction.
Hence r = s and so  is well defined.
It is clearly seen to be 1-1.
Again, as

((r + (n)) + (s + (n))) = ( ( ))r s n( ( ))( ( ))r s n( ( ))  = ((nq + t) + (n)) for some q, t, 0  t < n
= (t + (n)) = t = r  s = (r +(n)) (s + (n))

((r + (n)) (s + (n))) = (rs + (n)) = ((nq  + k + (n)) for some q , k, 0 k < n
= (k + (n)) = k = r  s = (r + (n)) (s + (n))

We find is a homomorphism and hence an isomorphism.

Remark: The above result  can also be proved by using Fundamental theorem. See remark
on page 131 also.

Problem 11: Show that 
( )n
Z  has no non zero nilpotent element iff n is square free.

Solution: Suppose 
( )n
Z  has no non zero nilpotent elements.

Let n = p 1
1  p 2

2 .....p rr , where pi are distinct primes.
Suppose n is not square free. Then some i  2. Let 1  2.
Let m = p1 . p 2

2 .... p r
r  then m < n

Also m + (n)  (n)
Now (m + (n)) 1 = m 1 + (n) = (n)
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implies m + (n) is a non zero nilpotent element in 
( )n
Z , a contradiction.

Hence n is square free.
Conversely, let n be square free.

Suppose m + (n) is a nilpotent element in 
( )n
Z .

Then (m + (n)) = (n) for some 
So m   (n)  m  = nk for some k
Let n = p1p2 ..... pr where pi are distinct primes
(Note n is square free)
Since pi | n  i,

n = p1 p2 ...... pr divides m  m + (n) = (n) = zero of ( )n
Z

.

i.e., 
( )n
Z  has no non zero nilpotent elements.

Problem 12: Find all the nilpotent elements in Z30.

Solution: We know Z30  
(30)

Z  and as 30  = 2 × 3 × 5 is square free, 
(30)

Z  or Z30 has no

non zero nilpotent elements.

Remark : See problem 24 on page 334 also.

We now show that there exists a polynomial over D, the ring of quaternions which has infinite
number of roots.

Problem 13: Show that x2 + 1 = 0 has infinite number of solutions over D, the ring of quaternions.

Solution: Let u = a + bi + cj + dk be a solution of x2 + 1 = 0 Then u2 = 1.

Let : D  M be the isomorphism as defined in problem 8 on page 361.
Then (u)2 = (1) = I, where I denotes the 2  2 identity matrix.

Let (u) = A =
( )
a bi c di
c di a bi

a bi c dia bi c di
( )c di a bi( )c di a bi( )( )c di a bi( )c di a bi( )

.

Then A2 = I and Trace A = 2a

Now A2 = 
( )
a bi c di
c di a bi

a bi c dia bi c di
( )c di a bi( )c di a bi( )( )c di a bi( )c di a bi( ) ( )

a bi c di
c di a bi

a bi c dia bi c di
( )c di a bi( )c di a bi( )( )c di a bi( )c di a bi( )

= 
2 2 2 2

2 2 2 2

2

2

a b a bi c d

c d a b abi

2 2 2 2a b a bi c d2 2 2 2a b a bi c d2 2 2 22 2 2 2a b a bi c d2 2 2 2a b a bi c d2 2 2 22a b a bi c d22 2 2 222 2 2 2a b a bi c d2 2 2 222 2 2 2a b a bi c da b a bi c d2a b a bi c d2
2 2 2 2c d a b abic d a b abic d a b abi2 2 2 2c d a b abi2 2 2 2 2c d a b abi22 2 2 2c d a b abi2 2 2 2c d a b abi2 2 2 2 2c d a b abi2

= I
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implies Trace A2 = 2(a2  b2  c2  d 2) = Trace ( I ) = 2
implies b2 
implies Trace 

 c2 
 = 2(
 d2 = a2 + 1

Now det A = a2  b2  c2  d 2

So det A2 = (det A)2 = (a2  b2  c2  d2)2 = +1
Therefore, a2  b2 

 = (det 
 c2 

 = (det 
 d 2 = 1. But b2  c2 d2 = a2 + 1

So, a2  a2  1 = 1  2a2 = 0  a = 0
This gives b2  c2  d2 = 1 and u = 0 + bi + cj + dk
Also (0 + bi + cj + dk)2 = (b2  c2  d2) + 0i + 0j + 0k = 1
Therefore, the solutions of x2 + 1 = 0 are given by u = 0 + bi + cj + dk, where b2  c2  d2 = 1
There are infinite real numbers b, c, d such that b2  c2  d2 = 1. For example, let p be a prime,

then take 1
,

p
b

p
1p  

1 ,c
p

1
 d = 0.

So, b2  c2  d2 = 1 1 1.p
p p

1 11 1 1.1 1  But the number of primes are infinite.

Hence, x2 + 1 = 0 has infinite number of solutions over D.

Exercises
1. Show that the relation of isomorphism in rings is an equivalence relation.
2. Let f : R  R  be a homomorphism and let A be an ideal of R. Show that

f (A) = {x  R |
 be a homomorphism and let

 a 
 be a homomorphism and let

 A, x = f (a)} is an ideal of f (R).
3. Show that the map f : Z2 Z2, s.t.,  f (n) = n2 – 15n is a homomorphism.
4.  Show that Z70 has  no non zero nilpotent elements.
5. Prove that any homomorphism of a field is either a monomorphism or takes each

element to zero.
6. Show that homomorphic image of a commutative ring is commutative. Prove also that

the converse may not hold.
7. Show that homomorphic image of a ring with unity is a ring with unity but the converse

is not true.
8. Find all the six ring homomorphisms from Z12  Z30.
9. Let I be an ideal of a ring R. Show that

(a) if R is commutative then so is R/I
(b) if R has unity 1 then 1 + I is unity of R/I
(c) converse of (a) and (b) does not hold.

[Hint: Take R = ring of matrices of the type 
0 0
a ba b
0 00 0

 and I of type 
0
0 0

x0 x
0 00 0

 over

integers.]
10. Show that there exists an onto homomorphism from a ring R to R/I, a quotient ring

of R (called the natural homomorphism) (Define f (r) = r + I).



368 A Course in Abstract Algebra

11. If I is an ideal of R, show  that R/I has no zero divisors iff the following is true:
(i) whenever a product of two elements of R belongs to I, at least one of these belongs

to I.
(ii) r + I  R/I is unity of R/I iff rx – x  I and xr – x  I for all x R.

12. Show that the set N of all nilpotent elements in a commutative ring R forms   an ideal
of R and that R/N has no non zero nilpotent elements. N is called the nilradicalN is called the nilradical of R.

13. Show that the centre of the quaternion ring D is isomorphic to the field R of real
numbers. [Hint: Define 
Show that the centre of the quaternion ring 

: R
Show that the centre of the quaternion ring 

Z(D) s.t., (a) = (a, 0, 0, 0).]

14. Show that CC  = {(a, b, 0, 0)| a, b  R} is a subring of D, the ring of quaternions.
Show further that 

 = {(
: C 

, 0, 0)| 
 C

, 0, 0)| 
C , s.t., ((a + ib)) = (a, b, 0, 0) is an isomorphism. We

thus notice that the ring of quaternions contains both the fields of real and complex
numbers.

15. Without using isomorphism theorem show that 5
2 10

5
2 102 102 10
Z Z

Z
.

[Hint: Define : 5 ,
2 10

5
2 102 102 10
Z Z

Z
  s.t.,

(0 + (2)) = 0 + (10)
(1 + (2)) = 5 + (10)]

16. Let G = {2n | n  Z}, H = {8n | n  Z}. Show that G/H and Z4 (ring of integers
modulo 4) are isomorphic as groups but not as rings.

17. Show that {0, 2, 4, 6, 8} addition, multiplication mod 10 is isomorphic to Z5.
18. Let f : R  R  be a homomorphism. If x  R is nilpotent show that f (x) is nilpotent

in R
f
.

Embedding of Rings

A non empty subset S of a ring R is defined to be a subring of R if S forms a ring under the
binary compositions of R (restricted to S). Thus a subring inherits its compositions from the
parent ring. We now come to the ‘reverse’ process. Given a ring S, can we find a super ring
R so that S is a subring of R ? The answer may not be a complete yes in the sense that a subring
is defined only when we have a ring and the operations in the subring are got through these
operations. But it is, of course, possible to have a ring R, so that our starting ring S is isomorphic
to a subring of  R. Then we can identify our ring  S  as a subring of this R. This is what is
called embedding of rings.

The usefulness of embedding would be illustrated later through examples. To start with, we
give

Definition: Let R and R  be two rings. A one-one homomorphism  from R to R  is called an
embedding (imbedding) mapping and in that case R

 be two rings. A one-one homomorphism 
 is called extension ring or overring of R.

Embedding of a ring into a ring with unity.
Let R be any ring and let Z be the ring of integers.
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Consider R × Z = {(r, n) | r  R, n Z}
We show R × Z forms a ring with unity, under addition and multiplication defined by

(r, n) + (s, m) = (r + s, n + m) r, s R, n, m Z
(r, n) . (s, m) = (rs + ns + mr, nm)

Addition is well-defined as
Let (r, n) = (rr , n ) and (s, m) = (s , m )
Then r = rr , n = n  and s = s , m = m

 r + s = rr  + s , n + m = n  + m
 (r + s, n + m) = (rr  + s , n  + m )

Similarly one can show that multiplication is well defined.
Associativity : (r, n) + [(s, m) + (t, k)] = (r, n) + (s + t, m + k)

= (r + (s + t), n + (m + k))
= ((r + s) + t, (n + m) + k)
= (r + s, n + m) + (t, k)
= [(r, n) + (s + m)] + (t, k)

Commutativity follows as above.
Again it is clear that (0, 0) will be the zero element and (– r, – n) will be additive inverse

of (r, n), where, of course, – r is inverse of r in R and – n is – ve of n in Z.
It would be a routine exercise for the reader to check that associativity w.r.t. multiplication

and distributive properties also hold.
Again, as (r, n) (0, 1) = (r. 0 + n. 0 + 1r, n.1)

= (r, n)
(0, 1) will be unity and hence R × Z forms a ring with unity.
We show R can be imbedded into R × Z
Define a mapping  : R  R × Z, s.t.,

(r) = (r, 0)
then is clearly well defined mapping
Also (r) = (s)

 (r, 0) = (s, 0)  r = s
shows  is one-one.
Again (r + s) = (r + s, 0) = (r, 0) + (s, 0) = (r) (s)

(rs) = (rs, 0) = (r, 0) (s, 0) = (r) (s)
Thus  is a homomorphism and therefore, an embedding mapping.
Hence we get

Theorem 8: Any ring can be embedded into a ring with unity.
Embedding of a ring into a ring of endomorphisms
We recall that a homomorphism from A  to A is called an endomorphism.
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Let < V, + > be  any additive abelian group. We denote by Hom (V, V) the set of all
homomorphisms from V to V (i.e. it is set of all endomorphisms of V).

We show now Hom (V, V) forms a ring with unity under the operations defined by
( f + g)x = f (x) + g(x) x V

( fg)x = f (g(x))  x V
where f, g Hom (V,V).
Closure : Let f, g Hom (V,V)
Then ( f + g)(x + y) = f (x + y) + g(x + y)

= ( f (x) + f (y)) + (g(x) + g(y))
= ( f (x) + g(x)) + ( f (y) + g(y))
= ( f + g)x + ( f + g)y

 f + g is an endomorphism of V
i.e., f + g  Hom (V,V)
Again ( fg)(x + y) = f (g(x + y))

= f (g(x) + g(y))
= f (g (x)) + f (g (y))
= ( f g)x + ( f g)y

 fg  Hom (V,V)
Associativity : [ f + (g + h)]x = f (x) + [(g + h)x]

= f (x) +(g(x) + h(x))
= ( f (x) +(g(x)) + h(x)
= ( f +g)x + h(x)
= [( f +g) + h]x  for all x

  f + (g + h) = ( f + g)+h
Commutativity follows as above.
Let O : V  V be defined by

O(x) = 0 for all x  V
then O is easily seen to be a homomorphism.
Also since ( f + O)x = f (x) + O(x) = f (x) + 0 = f (x)

= 0 + f (x) = O(x) + f (x) = (O + f )x for all x
we have

f + O = f = O + f
or that O is zero of Hom (V, V).
Again for any f  Hom (V, V), define a map

(–f ) : V  V, s.t.,
(–f ) x = – f (x)

then (–f ) is a homomorphism and f + (–f ) = O = (–f ) + f
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Showing thereby that (–f ) is inverse of f. Associativity and distributivity can be proved
easily, establishing that Hom (V, V) is a ring. The map i : V 

. Associativity and distributivity can be proved
V s.t., i(x) = x for all x 

. Associativity and distributivity can be proved
V will

act as unity of this ring.
Hence Hom (V, V) forms a ring with unity for any additive abelian group V.

Theorem 9: Any ring R with unity can be embedded into a ring of endomorphisms of some
additive abelian group.

Proof: Let < R, +, . > be the given ring with unity then < R, + > is an additive abelian group.
We denote it by R+. By what is done in the preceding pages, it follows that Hom (R+, R+) is
a ring with unity (it being the ring of endomorphisms of the additive abelian group R+).

Define a mapping  f : R  Hom (R+, R+) s.t.,
 f (r) = gr r  R  where gr(x) = rx x  R+

To show that f is well defined, we first show that gr : R+  R+ s.t., gr(x) = rx is a
homomorphism.

Since  gr(x + y) = r(x + y) = rx + ry = gr(x) + gr(y),
we find gr is a homomorphism.
Thus gr  Hom (R+, R+).
Again r1 = r2

 r1x = r2x for all x  R+

 gr1
(x) = gr2

(x) for all x
 gr1

 = gr2
 f (r1) = f (r2)

or that f is a well defined mapping.
Again, f (r1) = f (r2)

 gr1
 = gr2

 gr1
(x) = gr2

(x) for all x  R+

 r1x = r2x for all x  R+

 In particular, r1.1 = r2.1 as 1  R+

  r1 = r2
or that f is one-one.
Again f (r1 + r2) = gr1 + r2
and f (r1) + f (r2) = gr1

 + gr2
where gr1+r2

(x) = (r1 + r2)x = r1x + r2x = gr1
(x) + gr2

(x)
= (gr1

 + gr2
)x  for all x

means gr1 + r2
 = gr1

 + gr2
or that f (r1 + r2) = f (r1) + f (r2).
Now f (r1r2) = gr1r2 and f (r1) f (r2) = gr1

gr2
where gr1 r2

(x) =  (r1r2)x = r1(r2x) = gr1
(r2x) = gr1

(gr2
(x))

= (gr1
gr2

)x  for all x
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 gr1r2
= gr1

gr2
or that f (r1r2) = f (r1) f (r2).
Showing thereby that f is a homomorphism and hence an imbedding mapping.
Which proves the result.
Summing up all that we have done in the last few pages on imbedding and using the idea

of composition of mappings, we have established

Theorem 10: Any ring R can be embedded into a ring of endomorphisms of some additive
abelian group.

Problem 14: If < Z, +, . > be the ring of integers then show that Hom (Z+, Z+) is isomorphic
to Z, where by Z+ we mean the additive abelian group < Z, + >.

Solution: Define a mapping f : Z  Hom (Z+, Z+), s.t.,
f (r) = gr  for all r  Z

where gr(x) = rx  for all x  Z+

then f will be a one-one homomorphism (as seen in the theorem earlier). We need show
ontoness. So let 

 will be a one-one homomorphism (as seen in the theorem earlier). We need show
 

 will be a one-one homomorphism (as seen in the theorem earlier). We need show
 Hom (Z+, Z+) be any element, then 

 will be a one-one homomorphism (as seen in the theorem earlier). We need show will be a one-one homomorphism (as seen in the theorem earlier). We need show will be a one-one homomorphism (as seen in the theorem earlier). We need show
is a homomorphism from

Z+  Z+. Since 1 Z+,
 Hom ( Hom ( Hom ( Hom (

(1) Z+, let 
) be any element, then 

(1) = t.
We claim = gt = f (t), i.e., t is the required pre-image of  under f. For this, we show

(x) = gt(x) for all x  Z

Case (i): x is a +ve integer.

(x) = 
( times)

(1 1 ..... 1)
x

(1 1 ..... 1)(1 1 ..... 1)(1 1 ..... 1) = (1) + (1) +......+ (1) (x times)

= t + t +......+ t (x times)
= xt = tx = gt(x)

Case (ii): x is a –ve integer
Let x = –y,  then

(x) = (–y) = – (y) = –ty = t(–y) = tx = gt(x)
Case (iii): x is zero

then (x) = (0) = 0 ( is a homomorphism)
= t . 0 = gt(0) = gt(x)

Hence, in any case (x) = gt (x) x
 = gt

and thus the result follows.

Problem 15: Show by an example that extension ring of an integral domain need not essentially
be an integral domain.

Solution: Let E = ring of even integers,
then E can be embedded into E × Z, by defining

f : E  E × Z, s.t.,
f (r) = (r, 0)
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Here E is an integral domain, whereas E × Z is not an integral domain as
(2, –2). (–2, 0) = (0, 0).

Theorem 11: An integral domain can be embedded into a field.

Proof: Let D be an integral domain.
Let S = {(a, b) | a, b  D, b  0}
Define a relation ~ on S by

(a, b) ~ (c, d)  ad = bc
It is easy to see that ~ is an equivalence relation. Thus it partitions S into equivalence classes.

Let equivalence class of (a, b) be denoted by [a, b]. Let F be the set of all these equivalence
classes. We show F forms a field under addition and multiplication defined by

[a, b] + [c, d] = [ad + bc, bd]
[a, b] . [c, d] = [ac, bd]

Addition is well-defined
Let [a, b] = [a , b ] and [c, d] = [c , dd ]
Then (a, b) ~ (a , b ) and (c, d) ~ (c , dd )

 ab  = ba  and cdcd  = dc
 (ab ) dddd  = (ba ) dddd  and (cdcd ) bb  = (dc ) bb ...(1)

We want to show that
[ad + bc, bd] = [a dd  + b c , b dd ]

which will hold if
(ad + bc, bd) ~ (a dd  + b c , b dd )

or if (ad + bc) b dd = bd (a dd  + b c )
or if ab  dddd + bb cdcd  = ba dddd  + bb dc
which is true if we add equations (1) above.
Hence addition is well defined.
To verify that multiplication is well defined
Let [a, b] = [a , b ], [c, d] = [c , dd ]
then as before ab  = ba  and cdcd  = dc

 ab cd  = ba dc
Now [a, b].[c, d] = [a , b ] [c , d d ] ...(2)
if [ac, bd] = [a c , b  d d ]
or if (ac, bd) ~ (a c , b dd )
of if acb dd  =bda c
which is true by (2).
That addition is commutative and associative will be a routine affair to prove.
Existence of zero element
Let [a, b]  F be any element. Then
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[a, b] + [0, b] = [ab + b0, b2] = [ab, b2] = [a, b]
as [ab, b2] = [a, b]

(ab, b2) ~ (a, b) abb = b2a
ab2 = ab2

thus [0, b] will be zero of F. One might notice here that [0, x] = [0, y] for any non zero,
x, y 

thus [0, 
 D, as (0, x) ~ (0, y) 

] will be zero of 
 0 . y = 0. x.

Existence of additive inverse
For any [a, b] in F, [–a, b] will be its additive inverse, as [a, b] + [–a , b]

= [ab–ba, b2] = [0, b2] = [0, b]. Thus < F, + > forms an abelian group.
We leave it to the reader to verify that mutiplication is commutative, associative and is

distributive over addition.
Again, since for any 0  x in D and for any [a, b] in F.

[a, b]. [x, x] = [ax, bx] = [a, b]
we notice [x, x] will act as unity in F. Let now [a, b] be any non zero element of F then

a 
we notice [
 0 (b, of course is non zero). So we can talk of [b, a] in F and as

[a, b] [b, a] = [ab, ba] = [ab, ab] = [x, x]
we find every non zero element of F has multiplicative inverse.
Hence F is a field.
We show D can be imbedded into F. Define a mapping

 : D  F, s.t.,
(a) = [ax, x] where 0  x  D

is well-defined
Let a = b
Then ax = bx

 axx = xbx
 (ax, x) ~ (bx, x)
 [ax, x] = [bx, x]
 (a) = (b)

is 1-1
Let (a) = (b)
Then  [ax, x] = [bx, x]

  (ax, x) ~ (bx, x)
  axx = xbx
  x2(a – b) = 0
 a – b = 0 as x2  0
  a = b.

 is a homomorphism
(a + b) = [(a + b)x, x] = [ax + bx, x]
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(a) + (b) = [ax, x] + [bx, x] = [axx + xbx, x2]
= [ax2 + bx2, x2] = [ax + bx, x]

(a + b) = (a) + (b)
Also (ab) = [abx, x]

(a) (b) = [ax, x] [bx, x] = [abx2, x2] = [abx, x]
or that (ab) (a) (b)
Hence is 1-1 homomorphism, and is the required imbedding mapping.

Remark: The above field F is called the field of quotients or the quotient field of D. The reader
is, however, cautioned not to confuse it with R/I.

We also sometimes use the notation a
b

 to denote [a, b]. The logic behind this notation is

clear if we consider imbedding of Z into Q.
In fact, at times this notation looks more natural and convenient. For instance,

[a, b] + [c, d] = [ad + bc, bd].

would read as a c
b d
a c
b d

 = ad bc
bd

ad bc

or [a, b] = [c, d] would mean a
b

= c
d

 or  ad = bc

Summing up, we can, therefore, say that any integral domain D can be enlarged to a field
F so that each element of F can be expressed as a quotient of two elements of D.

Problem 16: Prove that if K is any field which contains D then K contains a subfield isomorphic
to F, where F is the field of quotients of the integral domain D. (In this sense F is the smallest
field containing D).

Solution: Define a map  : F  K, s.t.,
([a, b]) = ab–1

Since a, b  D  K, b  0,  b–1 exists in K.  is well defined, 1-1 map as
[a1, b1] = [a2, b2]
(a1, b1) ~ (a2, b2)
a1b2 = b1a2 a1b1

–1 = a2b2
–1

[a1, b1]) = [a2, b2])
Again as ([a1, b1] + [a2, b2]) = ([a1b2 + b1a2, b1b2])

= (a1b2 + b1a2) (b1b2)
–1

= a1 b2b2
–1

 b1
–1 + b1a2b2

– 1 b1
–1

= a1b1
–1

 + a2b2
–1

= [(a1, b1)] + ([a2, b2])
and [(a1, b1] [a2, b2]) = ([a1a2,  b1b2])

= (a1a2)(b1b2)
–1 = a1a2b2

–1
 b1

–1

=  (a1b1
–1)(a2b2

–1
 ) = ([a1,b1]) ([a2,b2])
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we find is a homomorphism. Thus F will be isomorphic to (F) which will be a subfield
of K. Hence quotient field is the smallest field containing D.

Problem 17: If D1 and D2 be two isomorphic integral domains then show that their respective
fields of quotients F1 and F2 are also isomorphic.

Solution: Let f : D1  D2 be the given isomorphism. The fields of quotients F1 and F2 are
given by

F1 = {[a, b] | a, b  D1, b  0}
F2 = {[x, y] | x, y  D2,  y  0}

Define a map  : F1  F2 s.t.,
([a, b]) = [ f (a), f (b)]

[a, b]  F1  a, b  D1,  b  0
 f (a), f (b)  D2 and f (b)  0
 [ f (a), f (b)] F2

 is then well-defined and one-one as
([a, b]) = ([a , b ])
[ f (a), f (b)] = [ f (a ), f (b )]
f (a), f (b)) ~ ( f (a ), f (b ))

 f (a) f(b ) = f (b) f (a )
 f (ab ) = f (ba )
 ab  = ba
 (a, b) ~ (a , b ) [a, b] = [a , b ].

 is onto, as for any [x, y]  F2, x, y  D2   a, b  D1 s.t., f (a) = x, f (b) = y
Also then ([a, b]) = [ f (a), f (b)] = [x, y]

 is a homomorphism
([a, b] + [a , b ]) = ([ab  + ba , bb ])

= [ f (ab  + ba ), f (bb )]
([a, b]) + ([a , b ]) = [ f (a), f (b)] + [ f (a ), f (b )]

= [ f (a) f (b ) + f (b) f (a ), f (b) f (b )]
= [ f (ab  + ba ), f (bb )]

Again [a, b] [a , b ]) = ([aa , bb ]) = [ f (aa ), f (bb )]
= [ f (a) f (a ), f (b) f (b )]
= [ f (a), f (b)] [ f (a ), f (b )]
= [a, b]) ([a , b ])

which shows that  is an isomorphism.

Remark: The converse is not true, for example the field of quotients of even integers and that
of integers are same (the rationals) whereas even integers and integers are not isomorphic as
integral domains.
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Any two fields of quotients of an integral domain are isomorphic (showing thereby the
‘uniqueness’ of the field of quotients).

Problems 18: Let D be an integral domain, a, b  D be such that an = bn, am = bm for two
relatively prime positive integers m, n. Prove that a = b.

Solution: If a = 0 then an = 0  bn = 0  b = 0.
Similarly b = 0  a = 0.
Let now a, b be non zero. Let F be the field of quotients of D and let  : D  F be the

embedding map. Suppose (a) = a1 and 
 be the field of quotients of

(b) = b1.
Since m, n are relatively prime,  integers x, y s.t.,

mx + ny = 1
Then (a) = a1 = a1

mx + ny = (a1
m)x (a1

n)y

Now a1
m = ( (a))m = (a) . (a)..... (a)

= (a.a.......a) = (am)
= (bm) = ( (b))m = bm

1
Similarly, an

1 = bn
1

Thus,  (a) = (am
1)

x (an
1)

y = (bm
1)

x (bn
1)

y

= bmx
1 

 + ny = b1 = (b)
which gives a = b as is 1-1.

Remark: The above solution exhibits the ‘utility’ of the field of quotients. What we did with
a1 and b1 could not be done with a, b, as a, b are members of an integral domain and existence
of multiplicative inverse could not be assured in D, whereas a1, b1 being members of a field,
we could talk of the inverse elements. Note x, y being integers could also be negative. This is
why the solution of the problem could not be taken as

a = amx + ny = (am)x. (an)y = (bm)x (bn)y = bmx + ny = b.

Problem 19: Show that the result of the previous problem may fail to hold in case D is not
an integral domain.

Solution: Consider the ring D = {0, 1, 2, ....., 7} mod 8
Take a = 2, b = 4, m = 3, n = 4, (m, n) = 1
then an = 24 = 2  2 2 2= 0 = 44 = bn

am = 23 = 0 = 43 = bm

But a  b
We notice D is not an integral domain as 4  2 = 0 whereas 4, 2 are non zero.
Let’s take yet another look at the previous problem 18 and this time we do not insist on the

ring to be essentially commutative. Consider

Problem 20: Let R be a ring without zero divisors, a, b  R be such that an = bn,
 am = bm for two relatively prime positive integers m, n. Prove that a = b.

Solution: As before a = 0 or b = 0 gives result.
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So let a  0, b  0. Also m, n can be taken as greater than 1, otherwise the result is true
anyway.

Since m, n are relatively prime,  integers x, y s.t., mx + ny = 1
Now both x, y cannot be positive nor can both be negative together. So one of them must

be negative. Let y < 0 and suppose y = –t,  t > 0. Then
mx = 1 – ny = 1 + tn

 amx = a1+tn = a . atn = a(an)t

 bmx = a(bn)t = abnt

 bmx+1 = abnt+1 = abmx

 (a – b)bmx  = 0
 a – b = 0  as  bmx  0  as  b  0

i.e., a = b.

Problem 21: Find the field of quotients of the integral domain
Z[i] = {a + ib | a, b  Z}

Solution: Let F be the field of quotients of Z[i]

then F = 1
1 2 2

2
| , [ ], 0

d
d d i d

d
1d1d11

1 2 2| , [ ], 01 2 2| , [ ], 01 2 2| , [ ], 0d d i d| , [ ], 01 2 2| , [ ], 01 2 2d d i d1 2 2| , [ ], 01 2 2
1 | , [ ], 0

d1d1 d d i d| , [ ], 0d d i d| , [ ], 01 2 2| , [ ], 01 2 2| , [ ], 01 2 2| , [ ], 0d d i d| , [ ], 01 2 2| , [ ], 01 2 2d d i d1 2 2| , [ ], 01 2 2| , [ ], 0d d i d| , [ ], 0d d i d| , [ ], 0
2d2d2d

Z

= | , , , , 0a ib a b c d c id
c id

Z
ì üï ï+ï ïÎ + ¹í ýï ï+ï ïî þ

= 2 2
( )( ) | , , ,a ib c ib a b c d

c d
( )( )( )( )a ib c ib( )( )( )( )( )( )a ib c ib( )( )

2 2 | , , ,a b c d| , , ,a b c d| , , ,( )( ) | , , ,a b c d| , , ,a b c d| , , ,( )( ) | , , ,( )( )a ib c ib( )( ) a b c d| , , ,a b c d| , , ,( )( )( )( )( )( )a ib c ib( )( )
2 2c d

| , , ,a b c d| , , ,a b c d| , , ,2 2c d2 2c d2 2c d2 22 2c d2 2c dc d
Z

= 2 2 2 2
( ) | , , ,ac bd bc adi a b c d

c d c d
( )ac bd bc ad( )ac bd bc ad( )ac bd bc ad( )( )( )ac bd bc ad( )ac bd bc ad( )

2 2 2 2
ac bd bc adac bd bc adi a b c di a b c d| , , ,i a b c d| , , ,i a b c d( )i a b c d( ) | , , ,i a b c d| , , ,( )i a b c d( )i a b c d( ) | , , ,i a b c d| , , ,i a b c d( )i a b c d( )( )ac bd bc ad( )ac bd bc ad( )i a b c d( )i a b c d( )ac bd bc adi a b c dac bd bc ad( )ac bd bc ad( )i a b c d( )ac bd bc ad( )

2 2 2 22 2 2 2i a b c d2 2 2 2i a b c d2 2 2 2 | , , ,i a b c d| , , ,i a b c d| , , ,2 2 2 2c d c d2 2 2 22 2 2 2c d c d2 2 2 22 2 2 2i a b c d2 2 2 2i a b c d2 2 2 22 2 2 2c d c d2 2 2 2c d c d2 2 2 2c d c d2 2 2 2c d c d2 2 2 2c d c d2 2 2 22 2 2 2c d c d2 2 2 2 Z

 F1 = {x + iy | x, y  Q}
Now if x + iy  F1 be any element then as x, y  Q,

x + iy = 1 2

1 2

p p
i

q q
1 2p p1 2p p1 2i1 2i1 21 2p p1 2i1 2p p1 2  where p1, p2, q1, q2  Z and q1  0, q2  0

= 1 2 2 1 1

1 2 2.
p q ip q e
q q i o e
1 2 2 1 1p q ip q e1 2 2 1 1p q ip q e1 2 2 1 11 2 2 1 1p q ip q e1 2 2 1 1p q ip q e1 2 2 1 1
q q i o eq q i o e.q q i o e.

, where e1, e2 Z[i] and e2  0

 x + iy  F
or that F = F1
Showing that F1 = {x + iy | x, y Q} is the field of quotients of Z[i]
In fact, the mapping  : Z[i]  F1, s.t.,

(a + ib) = a + ib
will be the required imbedding mapping.
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Exercises
1. Give an example of an embedding mapping in which unity is not mapped to unity.
2. Show that field of reals can be embedded into the field of complex numbers.

3. Find the field of quotients of the integral domain Z[ 2 ] = {a + b 2 |a, b Z}.
4. Show that field of quotients of a finite integral domain is the integral domain itself.

More on Ideals

Definition: Two ideals A and B are called comaximal if A + B = R.

Theorem 12: If R is a commutative ring with unity and A, B are comaximal ideals of R, then
AB = A  B.

Proof: One can prove that, in general,
AB A  B (See exercises on page 351)
Let now x  A  B be any element.
Then x  A and x B
Since 1 R = A + B

 a A, b B s.t., 1 = a + b
 x . 1 = x . (a + b)
 x = xa + xb
 x = ax + xb

Now a  A,  x B;  x A,  b B  ax + xb AB
i.e., x AB
or that A B AB
and thus AB = A B.

Theorem 13: Let R be a commutative ring with unity and let I1 and I2 be two ideals of R.
Then

(i)  : R  
1 2

R R
I I
R R
I I

, s.t., (x) = (x + I1, x + I2) is a homomorphism s.t. ,

Ker = I1 I2.
(ii) I1 and I2 are comaximal ideals of R iff  is onto

Proof: (i) We leave it for the reader to verify that  is a homomorphism.
Since x  Ker  (x) = (I1, I2)

(x + I1, x + I2) = (I1, I2)
 x + I1 = I1, x + I2 = I2
 x  I1, x I2
 x  I1  I2

we find Ker = I1  I2.
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(ii) Suppose  is onto. Then given (1 + I1, 0 + I2)  
1 2

R R
I I
R R
I I

,  x  R, s.t.,

(x) = (1 + I1, I2)
 (x + I1, x + I2) = (1 + I1, I2)
 x + I1 = 1 + I1, x + I2 = I2
 1 – x  I1, x  I2,
 (1 – x) + x  I1+ I2  1  I1+ I2  I1+ I2 = R

or that I1 and I2 are comaximal.
Conversely, let I1 + I2 = R  (i.e., I1, I2 be comaximal)
Since 1  R, 1 I1+ I2  we get  1 = x + y,  x I1,  y I2
Now (1 + I1, I2) = (x + y + I1, I2)

= (y + I1, I2)
= (y + I1, y + I2) = (y)

Similarly, (I1, x + I2) = (x)

Now for any (a1 + I1, a2 + I2)  
1 2

R R
I I
R R
I I

, since

(a1 + I1, a2 + I2) = (1 + I1, I2) (a1 + I1, a1 + I1) + (I1, 1 + I2) (a2 + I1, a2 + I2)
= (y) (a1) + (x) (a2)
= (ya1 + xa2)

we find is onto.

Remarks: (i) If is onto, by Fundamental theorem,

1 2Ker
R R R

I I
R R R

I II II I

i.e.,
1 2 1 2

R R R
I I I I

R R R
I I I I1 2 1 2I I I I1 2 1 2I I I I1 2 1 2

.

(ii) Let R = Z the integers and suppose m, n are co-prime integers.
Then  integers x, y s.t.,

1 = mx  + ny  (m) + (n)
 (m) + (n) = R
 (m), (n) are comaximal ideals

  : Z 
( ) ( )m n( ) ( )
Z Z  is onto


( ) ( ) ( ) ( )m n m n( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )m n m n( ) ( ) ( ) ( )

Z Z Z


( ) ( ) ( )mn m n( ) ( ) ( )

Z Z Z
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 Zmn  Zm × Zn  if m, n are co-prime.
(iii) Let m, n be co-prime integers, then

 : Z 
( ) ( )m n( ) ( )
Z Z  is onto

Consider (a + (m), b + (n)) 
( ) ( )m n( ) ( )
Z Z , then  an integer x s.t.,

(x) = (a + (m), b + (n))
Thus (x + (m), x + (n)) = (a + (m), b +(n))

 x + (m) = a + (m), x + (n) = b + (n)
 x – a  (m),  x – b  (n)
 x – a = multiple of m,  x – b = multiple of n
 x  a (mod m),  x  b (mod n)

Proving what is popularly known as the Chinese Remainder theorem.
We now come to an important class of ideals which are not contained in any (other) proper

ideal.

Maximal Ideals

Definition: Let R be a ring. An ideal M  R of R is called a maximal ideal of R if whenever
A is an ideal of R s.t., M 

 be a ring. An ideal 
 A 

 be a ring. An ideal 
 R then either A = M or A = R.

Example 4: A field F has only two ideals F and {0}. It is easy to see then that {0} is the only
maximal ideal of F.

Example 5: Let < E, +, . > be the ring of even integers.
Let H4 = {4n | n an integer}
then H4 is an ideal of E and as 2  H4, H4  E.
Let A be any ideal of E, s.t., H4  A  E
Suppose H4  A. We show A = E.
Since H4  A,  some x  A s.t., x  H4
By division algorithm, we can write

x = 4q + r  where 0 < r < 4
Note r = 0 would mean x = 4q  H4. But x  H4 so r  0. Again, r = 1, 3 would imply

x is odd which is not true. Hence the only value that r can have is 2.
Thus x = 4q + 2  2 = x – 4q  A

as x A, 4q H4  A  x – 4q  A
2 A  members of the type 2 + 2, 2 + 2 + 2, ....., 0 – 2 are all in A
 E  A. But A  E
Hence A = E and H4 is, therefore, a maximal ideal of E.
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Example 6: {0} in the ring Z of integers is not a maximal ideal as {0}  H4  Z

where H4 = {4n | n  Z}

Example 7: Let Rc = ring of all real valued continuous functions on [0, 1], under the operations
( f + g)x = f (x) + g(x)

( fg)x = f (x)g(x)
Let  M = { f  Rc | f (½) = 0}
then M is a maximal ideal of Rc.
Let g be a function from [0, 1] to the real nos., defined by

g(x) = 0 for all x  [0, 1]
then g is a real valued function and g (½) = 0, hence g  M. Thus M .
Again,  if f, g  M be any two members, then

f (½) = g (½) = 0
( f – g)(½) = f (½) – g (½) = 0 – 0 = 0  f – g  M

Also for  f  M,  h Rc

(hf )1/2 = h (½) f (½) = h(½). 0 = 0 = ( f h)1/2

 h f, f h M
or that M is an ideal.
Define now,  a function from [0, 1] to the reals by

(x) = 1 for all  x  [0, 1]
then is a continuous function.  Thus  Rc.
But  M as (½) = 1  0
So M  Rc.
Let I be any ideal of Rc s.t. M  I Rc

then    I s.t.,   M
i.e., (½)  0
Let (½) c  0
Define  from [0, 1] to reals such that

(x) = c for all x  [0, 1]
then  Rc

Let = ––
then (½) = (½) – (½) = c – c = 0

   M
   I as M I

i.e., = –  I [ ,  belong to I]
If  be the function from [0, 1] to reals s.t.,

(x) = 1
c

  (c  0)
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then  Rc

Now ( )(x) = (x) (x) = 1
c

. c = 1 = (x) for all x

  =
Since  I,  I
we find   I
But  is unity of the ring Rc,
thus I is an ideal containing unity

 I = Rc

Hence M is maximal.

Aliter: That  M is maximal ideal can also be proved by using the Fundamental theorem of
homomorphism.

Define a function  : Rc  R, s.t.,
( f ) = f (½) for all f  Rc

where R = set of real numbers
then is a homomorphism as

( f + g) = ( f + g) (½) = f (½) + g (½) = ( f ) + (g)
( fg) = ( fg)(½) = f (½) g(½) = ( f ) (g)

To check ontoness, we notice, if r  R be any  element we can define another map
 : [0, 1]  R, s.t.,

(x) = r for all x  [0, 1]
then being constant function will be continuous.
Thus   Rc

Also ( ) = (½) = r, showing that is pre-image of r under 
i.e.,  is onto.
Thus by Fundamental theorem of homomorphism

Ker

cR R

Now ff  Ker  ( f ) = 0

 f ( 1
2 ) = 0

 f  M
  Ker  = M

Hence 
cR

M
R, but R being a field, 

cR
M

 will be a field.

i.e. M is maximal ideal of Rc (see  theorem 14 below).
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Problem 22: Let Rc be the ring of real valued continuous functions on [0, 1]. Let
M = {f  Rc | f( 1

2 ) = 0}. Let g  Rc be such that g(x) = x  1
2   x  [0, 1]. Then g is

continuous and is in M. Show that M = < g >.
Solution: Let f M be any member
Define: h: [0, 1]  R s.t.,

h(x) = 1
2

( )f x
x 1

2
 when x  1

2

     = f(x) when x  1
2

where R is the field of reals.

Then for x  1
2

(gh)x = g(x)h(x) = g(x)
( )
( )

f x
g x  = f(x)

and for x = 1
2

(gh)x = g(x)h(x) = 0 = f(x)
and hence f = gh (Note h  Rc as f and g are continuous)
Thus M < g > M  M = < g >

Problem 23: Let R be a commutative ring with unity and let I be an ideal of R such that for
any r R, if  r  I then r is a unit. Show that I is the unique maximal ideal of R.

Solution: We first show that I is maximal ideal. Let A be any ideal of R s.t., I A RI A RI A R .

Then  a A, s.t., a  I and thus a is a unit  a 1  R.
Now a A, a 1 R so aa 1 = 1 A

  A = R or that I is maximal
Let now M be any maximal ideal of R then M  R
Suppose  some m M s.t., m  I then m 1 exists in R (by given condition) and so mm 1 =
1 M  M = R. which is not true. So there does not exist any m M s.t., m  I or in other
words if m M then m I.

  M I R
But I is maximal and therefore, I = M proving our assertion.

Problem 24: Let R = Z[i] = {a + ib|a, b Z}. Let M = < 2 + i > then show that M is a maximal
ideal of R.
Solution: Let M < a + bi > R
Then 2 + i = (a + bi)(c + di)

2 i = (a  bi)(c  di)
So 5 = (a2 + b2)(c2 + d2)
If a2 + b2 = 1, then a = ±1, b = 0 or a = 0, b = ±1
Thus, a + bi = ±1 or ±i. In each case, a + bi is a unit, so < a + bi > = R
If c2 + d2 = 1, then c = ±1, d = 0 or c = 0, d = ±1
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Thus 2 + i = ±(a + bi) or (±i)(a + bi)
 (a + bi) = (±1) 1(2 + i) or (±i) 1(2 + i)

In each case a + bi < 2 + i >
So (a + bi) < 2 + i > = M < a + bi >

 M = < a + bi >
Hence M is a maximal ideal of R.
Remark: Any ideal of Z[i] is of the type < a + bi >. See under Principal Ideal Domains in
Chapter 9.
Theorem 14: Let R be a commutative ring with unity. An ideal M of R is maximal ideal of

R iff R
M

 is a field.

Proof: Let M be maximal ideal of R. Since R is commutative ring with unity, R
M

 is also a

commutative ring with unity. Thus all that we need prove is that non zero elements of R
M

 have

multiplicative inverse.

Let x + M 
R
M  be any non zero element

then         x + M  M  x  M
Let          xR = {xr | r  R}
It is easy to verify that xR is an ideal of R. Since sum of two ideals is an ideal,

M + xR will be an ideal of R.
Again as   x = 0 + x . 1  M + xR and x  M we find

M  M + xR  R
M maximal    M + xR = R
Thus 1  R  1  M + xR

 1 = m + xr for some m  M, r  R
 1+ M =  (m + xr) + M

 =  (m + M) + (xr + M) = xr + M
 =  (x + M)(r + M)

 (r + M) is multiplicative inverse of x + M

Hence R
M

 is a field.

Conversely, let R
M

 be a field.

Let I be any ideal of R s.t., M  I  R
then  some a  I, s.t., a  M
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Now a  M  a + M  M  a + M is a non zero element of R
M

, which being a field,

means a + M has multiplicative inverse. Let b + M be its inverse. Then
(a + M)(b + M) = 1 + M

  ab + M = 1 + M
  ab – 1  M
  ab – 1 = m for some m  M
  1 = ab – m  I (using def. of ideal)

 I = R (ideal containing unity, equals the ring)
Hence M is maximal ideal of R.

Remarks: (i) R
M

 being a field contains at least two elements and thus unity and zero elements

of R
M

are different i.e., 0 + M  1 + M i.e., 1  M or that M  R.

(ii) In the converse part of the above theorem we do not require R to have unity or it to

be commutative, i.e., if R is a ring and M is an ideal of R s.t., R
M

 is a field then M is maximal.

Suppose I is an ideal of R s.t., M  I  R. Then  a  I, s.t., a  M

Now a  M  a + M M  a + M is non zero element of R
M

 and therefore has multiplicative

inverse, say, b + M. If c + M be unity of R
M

. (Note R
M

 can have unity even if R doesn’t have

unity. See exercises on page 394).
Now (a + M)(b + M) = c + M.
 ab + M = c + M
 c – ab  M  I
But a  I  ab I and so (c – ab) + ab I
 c I
Let r  R be any element
Then         (r + M)(c + M) = r + M
 rc + M = r + M
 r – rc  M  I
Since c  I, rc  I and thus (r – rc) + rc  I  r  I  R  I.
Hence I = R and thus M is maximal ideal of R.

(iii)  Again, the condition of commutativity is essential in the theorem is established by the
fact that we can have M, a maximal ideal in R where R/M is not a field and R is a non commutative
ring with unity. See next problem.

Cor.: A commutative ring R with unity is a field iff it has no proper (non trivial) ideals.
If R is a field then it has no proper ideals (see exercise 13 on page 351).
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Conversely, if R has no proper ideals then {0} must be a maximal ideal. Thus 
{0}
R  is a field

and as 
{0}
R   R, R is a field.

Problem 25: Let R be the ring of n  n matrices over reals. Show that R has only two ideals
namely {0} and R. Hence show that {0} is maximal ideal of R.
Solution: Let J be a non zero ideal of R. Let A be a non zero matrix in J. Since A  0, it has
some non zero entry. Suppose A = (aij) and suppose ars  0 in A.
If Eij denotes the unit matrix in R whose (i, j)th entry is 1 and 0 elsewhere
then Eij Ekr = 0 if j  k

= Eir if j  k
Now A = a11E11 + a12E12 +....+ann Enn

Consider Eir A Esi = Eir(a11E11 + a12E12 +....+ann Enn)Esi

= Eir(ars Ers)Esi

= ars Eir Esi

= ars Eii   I as A  I i

So ( 1
rsa 1 Eii)(ars Eii)  J

 Eii  I, i = 1, 2, 3,...n
Thus identity matrix I in R can be written as I = E11 + E12 +....+Enn  J.
So unity of R belongs to J or that J = R. Hence {0} and R are the only ideals of R and so {0}
is maximal ideal of R.

Note: Since ,
{0}
RR

{0}
R

 and  R is not a field, we find {0}
R

 is not a field even though {0} is

maximal. See remark above.
Definition:
Prime Ideal: An ideal P of a ring R is called a prime ideal if ab  P  a P or b P.

Example 8: {0} in the ring Z of integers is a prime ideal as ab  {0}   ab = 0
 a = 0 or b = 0

 a  {0} or b  {0}
It is an example of a prime ideal which is not maximal.

Example 9: H4 = {4n | n Z} we’ve seen is a maximal ideal in the ring E of even integers.
H4, however, is not a prime ideal as 2 . 2 = 4  H4 but 2  H4.
In fact, H4 is neither a maximal nor a prime ideal in Z. (See exercise 1 also)

Example 10: In example 7, ideal M is a prime ideal of Rc as let f, g  Rc then if fg M, we
get fg(1/2) = 0

 f (1/2) g(1/2) = 0
 f (1/2) = 0 or g(1/2) = 0  f  M or g  M.
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Example 11: Hp = {pn | n Z} will be a prime ideal in Z for any prime p.
It will also be a maximal ideal in Z (see exercise 1 on page 394).

Remark: In view of the above examples and exercise 1 on page 394, we observe that in the
ring Z of integers

(i) every ideal in Z is generated by some n  Z.
(ii) An ideal in Z is maximal iff it is generated by a prime.

(iii) One can show that in Z a prime ideal is either generated by a prime or is the zero ideal.
Consequently, a non zero ideal in Z is prime iff it is maximal.
Let P = < n > and suppose n is prime.
Let ab  p = < n >, then ab = kn  n | ab

 n | a or  n | b
 a  P or  b  P

or that P is prime ideal.
Conversely, let P = < n > be a prime ideal
Suppose n is not a prime and

n = ab,  1 < a, b < n
Let A = < a >, B = < b >, then P  A and P  B
Now ab  P and P is prime

 a  P or b  P
 A  P or B  P
 either A  P or B P

i.e, either b = 1 or a = 1 or that n is a prime.
(iv) {0} is thus a prime ideal in Z but not maximal whereas every maximal ideal is prime.

Theorem 15: Let R be a commutative ring. An ideal P of R is prime iff R
P

 is an integral

domain.

Proof: Let P be a prime ideal of R
Let (a + P)(b + P) = 0 + P
Then ab + P = P

 ab  P
 a  P or b  P
 a + P = P or b + P = P

thus R
P

 is integral domain.

Conversely, let R
P

 be an integral domain.

Let  ab  P then ab + P = P
 (a + P)(b + P) = P
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 a + P = P or b + P = P (R/P is an integral domain)
 a  P  or b  P

Hence the result.

Theorem 16: Let R be a commutative ring. An ideal P of R is a prime ideal if and only if
for two ideals A, B of R, AB 

Let R be a commutative ring. An ideal P of R is a prime ideal if and only if
 P implies either A 

Let R be a commutative ring. An ideal P of R is a prime ideal if and only if
 P or B 

Let R be a commutative ring. An ideal P of R is a prime ideal if and only if
 P.

Proof: Let P be a prime ideal of R and let AB  P for two ideal A, B of R.
Suppose A  P then  some element a  A s.t., a  P.
Since AB  P, we get in particular

aB  P
 ab  P for all b  B

Since P is prime, we get either a  P or b P but a  P, hence b  P for all
b B.

 B  P
Conversely, we show P is prime. Let ab  P.
Let A and B be the ideals generated by a and b then A = (a), B = (b). If x  AB is any element

then it is of the type
x = a1b1 + a2b2 + ....... + anbn ai  A, bi  B

= ( 1a) ( 1b) + ( 2a) ( 2b) + ..... + ( na) ( nb)
for i, i  R  as ai  A = (a),  bi  B = (b)
Thus x = ( 1 1) (ab) + ( 2 2) (ab) + ........ + ( n n) (ab)

(R is commutative)
x = ( 1 1 + 2 2 + ..... + n n)ab

Since ab  P, P is an ideal, all multiples of ab are in P. Thus x  P
i.e.,  AB  P

 A  P or B  P
 (a) P or (b) P
 a P or b P  P is prime.

Problem 26: Let R be a commutative ring with unity such that a2 = a  a R. If I be any
prime ideal of  R, Find all the elements of R/I.

Solution: Since I is a prime ideal of R, R/I is an integral domain, and 1 + I is unity of R/I.
Let r + I R/I be any member
then (r + I)2 = r2 + I = r + I (given condition)

 (r + I)[(r + I)  (1 + I)] = 0 + I

But R/I is an integral domain and therefore, either r + I = 0 + I or (r + I) = 1 + I

or that R/I contains only two elements 0 + I and 1 + I.

(See Problem 22 on page 334).
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Problem 27: Let R be a non zero commutative ring with unity. If every ideal of  R is prime
show that R is a field and conversely.

Solution: To show that R is a field, we need show that every non zero element of R has
multiplicative inverse. We first show that R is an integral domain.

Let a, b  R st., ab = 0
Then ab  {0} which is an ideal of R and is, therefore, prime ideal

  a {0} or b {0}
i.e., a = 0 or b = 0
thus R is an integral domain.
Let now a  R be any non zero element and let

a2R = {a2r | r  R}
then a2R is an ideal of R (Verify!) and is therefore prime ideal.
Now a . a = a2 = a2 . 1  a2R

 a  a2R
 a = a2b for some b  R
 a (1 – ab) = 0
 1 – ab = 0 as a  0

 b is multiplicative inverse of a.
Hence R is a field.
Converse follows easily as a field R has no ideals except {0} and R.

Problem 28: Let R be a commutative ring with unity. Show that every maximal ideal of R is
prime.

Solution: We know that an ideal M of R is maximal iff R
M

 is a field.

Thus if M  is maximal, then R
M

 is a field and hence an integral domain.

 M is a prime ideal (theorem 15).

Problem 29: Let R be a commutative ring with unity and let M be a maximal ideal of R such
that M2 = {0}. Show that if N is any maximal of R then N = M.

Solution: Let m  M be any element
then m . m  M2 = (0)

 m2 = 0  N (N is an ideal)
By previous problem, N will be prime

 m  N
 M  N

Thus  M  N  R
Since M is maximal, N = M or N = R



8. Homomorphisms and Embedding of Rings 391

But N is maximal in R, thus N  R
Hence N = M.

Problem 30: Show that in a Boolean ring R, every prime ideal P  R is maximal.

Solution: Let P be prime and I be any ideal s.t.,
P  I  R

then  some x  I, s.t., x  P and as x R, x2 = x.
Let now, y  R be any element, then

x2y = xy
 x(xy – y) = 0  P (P is an ideal)
 xy – y  P as x  P and P is prime
 xy – y = p for some p  P

Then y = xy – p  I
as x  I, y  R, xy  I and also p  P  I,
Thus y I

 R I  I = R  P is maximal.

Problem 31: Show by an example that we can have a finite commutative ring in which every
maximal ideal need not be prime.

Solution: Consider the ring R = {0, 2, 4, 6} under addition and multiplication modulo 8.
Let M = {0, 4} then M is easily seen to be an ideal of R.
Again as 2  6 = 4  M but 2, 6 M, we find M is not a prime ideal. We show M is maximal.
Let M  N  R, where N is an ideal of R.
Since < M, + > will be a subgroup of <N, + >, by Lagrange’s theorem o(M) | o(N). Similarly,

o(N) | o(R) = 4
i.e., 2 | o(N), o(N) | 4
i.e., o(N) = 2 or 4
if o(N) = 2, then M = N  as  M  N
if o(N) = 4, then N = R  as  N  R
Hence M is maximal ideal of R.

Remark: In case the finite  commutative ring contains unity, then every prime ideal is maximal.
See exercises.

Problem 32: Let R  Z[i]. Show that

M = {3a + 3bi | a b  Z} is a maximal ideal of R whereas N = {5a + 5bi | a, b  Z}is not.

Solution: It is easy to show that M is an ideal of R. Suppose I is an ideal of R such that

M I RM I RM I R

Then  r + si  I. s.t., r + si  M
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So either 3  r or 3  s
Suppose 3  r, then (3, r) = 1 and therefore,

r2  1(mod 3). Let s = 3q + u, 0  u < 3
So  s  u(mod 3)

s2  u2 (mod 3), where u = 0, 1 or 2
  0 or 1 (mod 3)

So r2 + s2  1 or 2 (mod 3)
Let t = (r + si)(r  si) = r2 + s2

then 3  t, so (3, t) = 1  3a + tb = 1 for some a, b  Z. Since t I, 3a  M
we find 3a  I.

 1  I   I = R  M is maximal.
Let now I = < 2 + i >,  then

5 = (2 + i)(2  i)  I
i.e., N  I  R
If I = N, then 2 + i  N which is not true
If I = R, then I = (2 + i)(a + bi)

I = (2  i)(a bi)
 I = 5a2 + 5b2,  a, b  Z

which is not possible.
Hence N will not be a maximal ideal of R.

Problem 33: Let A  R be an ideal of R, then for any x  R, x A, if A + (x) = R, show
that A is maximal ideal of R and conversely.

Solution: Let I be an ideal of R, such that
A  I  R

then  some x  I, s.t., x  A
Let (x) be the ideal generated by x.
then A + (x) is an ideal of R.
Also by given condition A + (x) = R
Again A  I, x  I  (x)  I
thus A + (x) I

 R  I  I = R
i.e., A is maximal.
Conversely, let A be maximal, A  R. Let x  R, x A.
Then I = A + (x) being sum of two ideals is an ideal of R and A  A + (x) R.
Since A is maximal, A  A + (x) as x  A. Hence A + (x) = R.
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Problem 34: Show that I = < 2 + 2i > is not a prime ideal of Z[i]. Find all elements of [ ]i
I

Z

What is characteristic of [ ]i
I

Z ?

Solution: Since 2 + 2i  I, we find 2(1 + i)  I
Now if 2  I, then 2 = (a + bi)(2 + 2i)

 1 = (a + bi)(1 + i)
and also 1 = (a  bi)(1  i)

 1 = (a + bi)(1 + i)(a  bi)(1  i) = 2(a2 + b2)
which is not possible.
So 2  I
Again if 1 + i  I, then 1 + i = (a + bi)(2 + 2i)

 1 = 2(a + bi) giving 1 = 2a
which is again not possible.
Hence I is not a prime ideal.

Let now (a + bi) + I be any element of [ ]i
I

Z .

Since 4 + I = (2 + 2i)(1  i) + I = I
as (2 + 2i)  I  (1  i)(2 + 2i)  I
we find 4  I
Now a = 4q1 + r1 0  r1 < 4

b = 4q2 + r2 0  r2 < 4
 a + bi = (4q1 + r1) + (4q2 + r2)i = 4(q1 + q2i) + (r1 + r2i)
 (a + bi) + I = (r1 + r2i) + I [as 4  I  4(q1 + q2i)  I] 0  r1, r2 < 4

We can thus list down all the members of [ ]i
I

Z . These being

0 + I 1 + I 2 + I 3 + I
0 + i + I 1 + i + I 2 + i + I 3 + i + I
0 + 2i + I 1 + 2i + I 2 + 2i + I 3 + 2i + I
0 + 3i + I 1 + 3i + I 2 + 3i + I 3 + 3i + I

Are some of these members equal? To answer this we notice,
Since (2 + 2i) I = < 2 + 2i >, we have

 (2 + 2i) + I = I = 0 + I
and so in the quotient ring, 2 + 2i can be taken as 0 or that 2 + 2i = 0, i.e., 2i = 2
using this we find

0 + 2i + I = 2i + I = 2 + I = 2 + 4 + I = 2 + I
1 + 2i + I = 1  2 + I = 1 + I = 1 + 4 + I = 3 + I etc.,
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and we are left with only eight members (the first two rows)

It is easy to see that 4a = 0 a  [ ]i
I

Z

[4(3 + i + I) = 12 + 4i + I = 4i + I = 0 + I]

Hence ch [ ]i
I

Z  

Definition: An ideal I of a commutative ring R is called semi prime ideal if
a2  I  a  I, for all a 

 of a commutative ring 
 R

Clearly then every prime ideal is semi prime.

Example 12: Consider the ideal I = {6n | n  Z} in the ring of integers. Suppose
a2
Example 12:

I
Then a2 is a multiple of 6
i.e., 6 | a2

Since  2 | 6, we find 2 | a2  2 | a (as 2 is prime)
Similarly 3 | a

 6 | a as g.c.d.(2, 3) = 1
 a  I

Hence I is semi prime, but I is not prime as 2 . 3 = 6  I but 2, 3  I.

Exercises
1. In the ring of integers, show that every ideal is generated by some integer. Show

further that an ideal is maximal iff it is generated by a prime.
2. Show that intersection of two prime ideals may not be a prime ideal.
3. Show that intersection of two prime ideals is a prime ideal iff one of them is contained

in the other. What can be said about sum of two prime ideals?
4. Show that intersection of two prime ideals is a semi prime ideal and so is the intersection

of two semi prime ideals.
5. Let R be a commutative ring. Let I be an ideal of R and let P be a prime ideal of I.

Show that P is an ideal of R.
6. Let N be the set of all nilpotent elements of a commutative ring R. Show that N  P

for each prime ideal P of R.
7. Show that a commutative ring R is an integral domain iff {0} is a prime ideal.
8. Let R be a finite commutative ring with unity. Show that every prime ideal of R is a

maximal ideal.
9. Show that M = {0, 3, 6, 9} mod 12 is a maximal ideal of Z12.

10. Let R be a Boolean ring with unity and M be any proper ideal of R. Then show that

R/M is a Boolean ring with unity and R/M 
(2)
Z if and only if M is maximal.
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11. Let {Pi} i  X be a chain of prime ideals. Show that ii
P

i iPiPi  and ii
Pii
PiPi  are prime ideals.

(By a chain, we mean either Pi  Pj or Pj  Pi for all i, j  X).
12. Let P  R be an ideal of R. Show P is prime ideal of R iff R – P is closed under

multiplication.
13. Show that an ideal A is maximal iff the pair A, B for all ideals B A is maximal.  (See

problem 33 also).
14. Show that an ideal P in a commutative ring R with unity is prime iff for ideals A, B

in R, P  A, P B  AB  P.

15. Show that M = {0, 6} is a maximal ideal of the ring R = {0, 2, 4, 6, 8, 10} mod 12
and hence R/M is a field. (Notice R has no unity, whereas 4 + M is unity of R/M).

16. Find all the ideals of Z12, Z36. Which of these are maximal?

If I is an ideal of a ring R then the quotient ring or factor ring of R is defined
to be the set of all left(or right) cosets of I in R and is denoted by the symbol
R/I. Similar results as proved in quotient  groups hold in quotient rings also.
A mapping f: R 

. Similar results as proved in quotient  groups hold in quotient rings also.
 R

. Similar results as proved in quotient  groups hold in quotient rings also.
   is called a homomorphism if  f(a + b) = f(a) + f(b) and

f(ab) = f(a)f(b).
Fundamental theorem of ring homomorphism states that if f:R  R  is an
onto homomorphism then R
Fundamental theorem of ring homomorphism

 is isomorphic to R/Ker f.
If there exists a one-one homomorphism from a ring R to a ring R  we say, R is
embedded (imbedded) into R
If there exists a one-one homomorphism from a ring 

.
Any ring can be embedded into a ring with unity.
Any integral domain can be embedded into a field.
Any ring can be embedded into a ring of endomorphisms of some additive
abelian group.
An ideal M (
abelian group.

R) of a ring R is called a maximal ideal of R if whenever A is an
ideal of R,s.t., M 

) of a ring 
A 

) of a ring 
R then either A = M or  A = R.

If R is a commutative ring with unity then an ideal M of R is maximal iff R/M is
a field.
An ideal P of a ring R is called a prime ideal if  ab P   a P or b P.
If R is a commutative ring then an ideal P of R is a prime ideal iff R/P is an
integral domain.

A Quick Look at what's been done
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Definition: Let R be a commutative ring. a, b  R, a  0, then we say a  | b
(a divides b) if  c 

 be a commutative ring. 
 R s.t., b = ac. Also then a is called a factor of b.

If a, b R then an element d R is called greatest common divisor (or highest common
factor) of a and b if

(i) d | a, d | b
(ii) whenever c | a, c | b then c | d

and in that case we write d = g.c.d. (a, b). In fact sometimes only (a, b) is used to denote
g.c.d. of a and b.

Remark: One can prove that
(i) If a | b, b | c then a | c

(ii) If a | b, a | c then a | b ± c
(iii) If a | b then a | bx for all x  R
(iv) If R has unity then 1 | x for all x  R and if a is a unit then a | x for all x R.

Example 1: Consider the ring R = {0, 1, 2, ...., 7} modulo 8
then since 2  3 = 6,  2 | 6

2  2 = 4,  2 | 4
Again, if c | 4, c | 6 then c | 6 – 4  c | 2
Thus g.c.d.(4, 6) = 2
Also as 6 = 6  1, 4 = 6  6
we find 6 | 6 and 6 | 4

Euclidean and
Factorization Domains

9

Introduction
In this chapter we talk about divisibility in rings in a generalized form, introduce the reader
to Euclidean Domains, Principal Ideal Domains (PIDs) and Unique Factorization
Domains,(UFDs), prime and irreducible elements, polynomial rings, irreducibility criteria
over rationals, Noetherian rings.
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Now if c | 6, c | 4
then as c | 6, we get g.c.d.(4, 6) = 6. Thus it is possible to have more than one g.c.d. for the
same pair of elements.

Example 2: In the ring E of even integers we notice 4 and 6 do not have a g.c.d.
2 (the only possibility) is not a g.c.d. of 4, 6 as 2  6 in E. Indeed 6 = 2 . 3 but then

3  E. Of course, 2 is the unique g.c.d. of 4 and 6 in Z, the ring of integers.

Definition: Let R be a commutative ring. A non zero element l  R is called least common
multiple (l.c.m.) of two (non zero) elements a, b 

 be a commutative ring. A non zero element 
 R if

(i) a | l, b | l
(ii) if a | x, b | x then l | x

We denote l by l.c.m. (a, b) = [a, b]
Just as proved above one can show that a pair of elements in a ring may not have an l.c.m.

and a pair could have more than one l.c.m. See exercises.

Definition: Let R be a commutative ring with unity. Then a, b  R are called associates if b
= ua for some unit u in R.

We recall here that by a unit we mean an element which has multiplicative inverse. The above
definition will not be ‘complete’ unless we show that the relation ‘is an associate of ’ is an
equivalence relation. If we denote the relation by ~
then a ~ a as a = 1. a and 1 is a unit

a ~ b  b = ua where u is a unit
 u–1 b = a
 b ~ a

Indeed u–1 will be a unit if u is a unit.
Finally a ~ b, b ~ c  b = ua

c = vb for units u, v
Since c = vb = v(ua) = (vu)a
Showing c ~ a
as uu–1 = 1, vv–1 = 1  (vu) (vu)–1 = (vu) (u–1v–1) = 1
we notice vu is a unit.

Example 3:  3i – 4 is an associate of 4i + 3 in complex nos.

Problem 1:  Let R be an integral domain with unity and a, b  R be non zero elements such
that a | b and b | a, then a and b are associates and conversely.

Solution: a | b  b = xa
b | a  a = yb for some x, y  R
b = xa = x( yb)

 b(1 – xy) = 0
 1 – xy = 0 as b  0
 y is a unit in R and a  = yb, and thus a, b are associates.
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Conversely, if a, b are associates then  a unit u, s.t., a = bu (and so au–1 = b).
 b | a and a | b.

Theorem 1: Let R be an integral domain with unity. If d1 = g.c.d.(a, b) in R then d2 is also
a g.c.d.(a, b) iff d1 and d2 are associates.

Proof: One may remark here that we prove this result only after assuming the existence of
g.c.d.

Let d1 and d2 be both g.c.d.(a, b).
Then d1 | a,  d1 | b
and d2 | a,  d2 | b
by definition, we get d1 | d2 and d2 | d1

 d1 and d2 are associates. (using problem 1)
Conversely, let d1 = g.c.d.(a, b) and d2 be an associate of d1.
Then ud2 = d1 for some unit u

 d2 | d1 and  as d1 | a, d1 | b
we find d2 | a and d2 | b
Let x | a, x | b then x | d1 as d1 is g.c.d. (a, b)
Also as d2 = d1u

–1

d1 | d2
and thus x | d2

 d2 = g.c.d.(a, b).

Remark: In example 1 on page 396, 2 and 6 are g.c.d. of 4 and 6. We observe there that 2
and 6 are associates, as 6 = 2 

 In example 1 on page 396, 2 and 6 are g.c.d. of 4 and 6. We observe there that 2
 3 and 3 is a unit in Z8 (3 

 In example 1 on page 396, 2 and 6 are g.c.d. of 4 and 6. We observe there that 2
 3 =1).

Theorem 2: Let R be an integral domain with unity. If l1 = l.c.m.(a, b) in R then l2 is  also
an l.c.m.(a, b) iff l1 and l2 are associates.

Proof: Follows similarly as the above theorem.

Problem 2: Let R be an integral domain with unity. If g.c.d.(a, b) = d for a, b  R then
cd and g.c.d.(ca, cb) are associates.

Solution: Let g.c.d.(ca, cb) = d
Since d | a, a = dk

 ac = dkc = cdk
 cd | ca

Similarly cd | cb  cd | dd   dd  = cdt
Again dd  | ca  ca = dd s

 ca = d d s  cdts
 a = (dt)s  dt | a

Similarly dt | b
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 dt | d  d = dtp  d(1 – tp) = 0
 1 = tp  t is a unit
 g.c.d.(ca, cb) = d  = cdt

i.e., cd and dd  are associates.

Euclidean Domains

Definition: An integral domain R is called a Euclidean domain (or a Euclidean ring) if for all
a  R, a  0 there is defined a non –ve integer d(a) s.t.,

(i) for all a, b  R, a  0, b  0, d(a)  d(ab)
(ii) for all a, b  R, a  0, b  0,  t and r in R s.t.,

a = tb + r
where either r = 0 or d(r) < d(b).

Example 4: Consider the integral domain < Z, +, . > of integers. For any 0  a  Z, define
d(a) = | a | , then d(a) is non –ve integer.

Again, let a, b  Z be any elements s.t., a  0, b  0
then d(a) = | a |

d(ab) = | ab | = | a | | b |
thus d(a)  d(ab) as | a |  | a | | b |

Again let a, b  Z (a, b  0)
Suppose b > 0, then it is possible to write

a = tb + r  where 0  r < b
t, r  Z

If r  0 then r < b  | r | < | b |
 d(r) < d(b)

If b < 0 then (– b) > 0,   t, r  Z s.t.,
a = (– b)t + r where 0  r < – b
a = (– t) b + r

and if r  0,  r < – b  | r | < | b |
 d(r) < d(b)

Hence < Z, +, . > is a Euclidean domain.

Remarks: (i) When we say, in the definition, that  a non –ve integer d(a) for any
0  a, we mean, 

) When we say, in the definition, that 
 a function d from R – {0} to Z+ 

) When we say, in the definition, that 
 {0} where Z+ is set of +ve integers.

This function d is called Euclidean valuation on R. Also the last condition in the definition is
called Euclidean algorithm.

(ii) We can show that the t and r mentioned in the last (Euclidean algorithm) condition in
the definition of Euclidean domain are uniquely determined iff

d(a + b)  Max. {d(a), d(b)}.
Let d(a + b)  Max. {d(a), d(b)} and
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Suppose a = tb + r = t1b + r1
Let r1 – r  0, then b(t – t1) = r1 – r  0, and so t – t1  0
Now d(b)  d(b(t – t1))

= d(r1 – r)
 Max. {d(r1), d(–r)} (given condition)

= Max. {d(r1), d(–r)}
 d(b) which is not possible.

Thus r1 – r = 0  b(t – t1) = 0
or t – t1 = 0  as b  0
 t = t1  and  r = r1
Conversely, let t, r be uniquely determined and suppose

d(a + b) > Max. {d(a), d(b)} for some a, b (non zero) in R.
Now b = 0(a + b) + b = 1 . (a + b) – a
Also d(– a) = d(a) < d(a + b)

and  d(b) < d(a + b)
Thus for b, 1  R,  t = 0, r = b or t1 = 1, r1 = –a s.t., b = t.1 + r, b = t1·1 + r1

where r  r1 (as a + b  0) t  t1,  a contradiction to the uniqueness.
Hence d(a + b)  Max. (d(a), d(b)). Note that a Euclidean domain contains unity (see cor.

ahead).

Theorem 3: Let R be a Euclidean domain and let A be an ideal of R, then 
ao A s.t., A = {aox | x 

Let R be a Euclidean domain and let A be an ideal of R, then 
 R}.

Proof: If A = {0}, we can take ao = 0.
Suppose A  {0}, then  at least one 0  a  A.
Let ao  A be such that d(ao) is minimal. [Existence is ensured by the well ordering principle

which states that every non empty subset of non –ve integers has least element.]
We claim A is generated by this ao.
Let a  A, a  0 then by definition,  t, r  R, s.t.,

a = aot + r  where either r = 0 or d(r) < d(ao)
Suppose r  0
Then ao  A, t  R  tao  A

a  A, tao  A a – tao  A
 r A

But d(ao) is the smallest d-value in A and d(r) < d(ao), which leads to a contradiction. Hence
r = 0

 a = tao
Thus any a  A can be put in the form tao

 A  {aox | x  R}
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But {aox | x  R}  A  as ao  A  xao  A for all x  R
Hence A = {aox | x  R}

which proves the theorem.

Definition: Such an ideal A which contains multiples of an element ao, including ao of R is
called a Principal Ideal of R, generated by ao. We denote this by A = (ao). (See page 342 also)

In other words, the smallest ideal of R which contains ao is called Principal Ideal generated
by ao.

In view of this definition the previous theorem will read as

Theorem 4:  Every ideal in a Euclidean domain is a principal ideal.

Cor.: A Euclidean domain possesses unity.

Proof: Let R be a Euclidean domain then R is its own ideal and, therefore, R is generated by
some element ro of R.

Thus each element of R is a multiple of ro.
In particular ro is a multiple of ro
i.e., ro = rok  for some k  R
Now if a  R is any element then as R = (ro)

a = xro  for some x
hence ak = (xro) k = x(rok) = xro = a
i.e., k is unity of R.

Definition: An integral domain R with unity is called a Principal Ideal Domain (PID) if every
ideal of R is a principal ideal.

In fact, if R happens to be a commutative ring with unity with above condition, we call it
a principal ideal ring.

In view of the previous theorem and cor., we get

Theorem 5: A Euclidean domain is a PID.
In particular thus, the ring < Z, +, . > of integers is a PID. This result follows independently

if we recall (see exercise 1, page 394) that every ideal in < Z, + , . > is a principal ideal.

Remarks: (i) A field F is always a PID as it has only two ideals F and {0}. F is generated
by 1 and {0} by 0.

(ii) One can show that there exist PIDs which are not Euclidean domains. In particular,
[ 19][ 19]Z  = { 19 | , }a b a b{ 19 | , }{ 19 | , }{ 19 | , }a b a b{ 19 | , }{ 19 | , }a b a b{ 19 | , }{ 19 | , }a b a b{ 19 | , }{ 19 | , }a b a b{ 19 | , }Z  where a, b are both odd or both even, is a PID but not

a Euclidean domain.
(iii) See page 431 for an example of an ideal which is not principal.

Problem 3: Show that in a PID every non-zero prime ideal is maximal.

Solution: Let P = (p), p  0, be a non zero prime ideal in a PID R.
Suppose P  Q = (q)  R
Then p  P  Q = (q)



402 A Course in Abstract Algebra

 p = qr
 qr  P
 q  P or r  P

If q  P then all multiples of q are in P  Q  P
thus Q = P

If r  P then  r = pt  r = qrt
 r(1 – qt) = 0
 1 = qt  (r  0)

But q  Q, t  R  qt  Q  1  Q  Q = R
Note r = 0 would mean p = q . 0  p = 0  P = (0).

Remark: In view of problem 28 page 390 we find  a non zero ideal in a PID is prime iff it
is maximal.

Problem 4: Find all the prime ideals of  
( )

n
n

Z
, (n > 1) and hence of  Zn.

Solution: We know any ideal of R/N is of the type 
A
N

, where A is an ideal of R, containing
N. (See Cor. Page 365)

Let  (n) = N and n = p
1

1 p
2

2....p
r

r, where pi are distinct primes.

Let A
N

 be any prime ideal of 
N
Z , then A is an ideal of Z. We show it is a prime ideal of

Z. Since A is an ideal of Z, it is of the type A = (a). Suppose A is not a prime ideal of Z. Then
 x, y Z, s.t., xy A but x and y are not in A.

Now xy  A  Nxy  A/N   NxNy  A/N
 Nx or Ny  A/N as A/N is prime ideal
 x or y is in A, a contradiction.

Hence A = (a) is a prime ideal and thus a is a prime (see exercise 1 page 323). Also
(n)  (a). Since n  (n)  (a) we find a | n.
But primes dividing n are p1, p2, ....., pr
Thus a = pi for same i, 1  i  r

Hence if A/(n) is any prime  ideal of 
( )n
Z  then it is of the type 

( )
( )

ip
n

 for some i,

1  i  r.

Conversely, any ideal of the type ( )
( )

ip
n

, 1 i  r will be a prime ideal of 
( )n
Z

as /( )
( ) / ( ) ( )i i

n
p n p( ) / ( ) ( )
Z Z .

Since (pi) is a prime ideal of Z, 
( )ip
Z  is an integral domain.
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Thus /( )
( ) / ( )i

n
p n
Z  is an integral domain and hence 

( )
( )

ip
n

 are prime ideals of 
( )n
Z ,

1  i  r.
where pi are all the primes dividing n.

We thus conclude that if  n = 1 2
1 2p p1 2p p1 2p p1 2 .... r

rp r  then 1 2( ) ( )
,

( ) ( )
p p
n n

,..., 
( )
( )

rp
n

 are precisely the

prime ideals of 
( )n
Z

.

We’ve seen earlier (see page 365) that

 : 
( )n
Z

  Zn s.t.,

(m + (n)) = m, 0  m < n
is an isomorphism.

Now if P is a prime ideal of 
( )n
Z , then (P) is a prime ideal of Zn.

Since 
( )
( )

ip
n

 are all the prime ideals of 
( )n
Z , their images under  are the prime ideals of Zn

i.e., (p1), (p2) ,....., (pr) are all the prime ideals of Zn.

Remarks: (i) In particular, prime ideal of Zp where p is prime is (p) = (0) as p = 0 in Zp. Recall,
a field has no non-trivial ideals and Zp is an ideal when p is prime.

(ii) Since a non zero ideal in Z is maximal iff it is prime, the above result can similarly be
proved for maximal ideals.

Problem 5: Show that Z[i] = {a + ib | a, b Z}, the ring of Gaussian integers is a Euclidean
domain.

Solution: We know that Z[i] is an integral domain.
For any 0  x  Z[i],  where x = a + ib, define

d(x) = d(a + ib) = a2 + b2

Then as x  0, either a  0 or b  0
thus d(a + ib) = a2 + b2 > 0

Let now x, y Z[i], s.t., x  0, y  0 and let x = a + ib,  y = c + id.
Then d(xy) = d((a + ib) (c + id)) = d((ac – bd) + i(ad + bd))

= (ac – bd)2 + (ad + bc)2

= (a2 + b2) (c2 + d2)
= d(x) d(y) ...(1)

Since y  0, d(y)  1 [y  0 means c or d is non zero]
Thus d(xy)  d(x)
We now prove the last condition in the definition of a Euclidean domain.
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Let x, y  Z[i] be two members where x is an ordinary +ve integer n (x = n + i0)
and y = a + ib

By Euclid’s division algorithm,
a = un + r1 0  r1 < n
b = vn + r2 0  r2 < n

Now either 1 2
nr
2
n  or 1 2

nr
2
n

if 1 2
nr
2
n  then 1 2

nr1 2
nr1r1

 1 2
nn r n1 2
nn r n1n r n1  = 

2
n

Thus a = un + r1 = un + n – n + r1
= n(u + 1) – (n – r1)
= nq + k1  where  k1 = – (n – r1)

| k1 | = 1 2
nn r1 2
nn r1n r1

Thus whether 1 2
nr
2
n

  or  12
n r1r1r1

we can express

a = nq + k1   where 1| |
2
nk
2
n

Similarly, b = nq  + k2  where 2| |
2
nk
2
n

i.e., a + ib = n(q + iq ) + (k1 + ik2)
or y = tn + r [t = q + iq ,  r = k1 + ik2]

where either r = 0 (k1 & k2 could be zero)

or d(r) = d(k1 + ik2) = 
2 2

2 2 2
1 2 4 4

n nk k n22 2
1 2 4 4

n nk k nk k nk k n2 2k k n2 2
1 2k k n1 2

n nk k nn n
 = d(n)

Thus, under this particular case, the result is proved.

Let now x, y  Z[i] be any two non zero members then xx  is a +ve integer, say, n.
We apply the above result proved, to yx  and n and find that

For yx  and n,  t, r Z[i], s.t.,

yx  = tn + r

where either r = 0 or d(r) < d(n)

If r = 0 then yx  = tn = txx   y = tx + 0

If d(r) < d(n) then d( yx  – tn) < ( )d xx
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 d( yx  – txx ) < d(x) ( )d x [using (1)]

 ( )d x  d(y – tx) < d(x) ( )d x

 d(y – tx) < d(x)  [ ( )d x  > 0]
Put y – tx = ro  then d(ro) < d(x)
So y = tx + ro  where d(ro) < d(x)

combining, we get
y = tx + ro, where either ro = 0 or d(ro) < d(x).
Hence the result is proved.

Problem 6: Show that [ 2]Z  = { 2 | , }a b a b{ 2 | , }{ 2 | , }{ 2 | , }{ 2 | , }{ 2 | , }a b a b{ 2 | , }{ 2 | , }a b a b{ 2 | , }{ 2 | , }a b a b{ 2 | , }{ 2 | , }a b a b{ 2 | , }Z  is a Euclidean domain.

Solution: It is easy to see that [ 2]Z  is an integral domain. Define a mapping.

: [ 2] {0}d : [ 2] {0}Z Z  by

( 2 )d a b( 2 )( 2 )( 2 )( 2 )d a bd a b( 2 )d a b( 2 )( 2 )d a b( 2 )( 2 )d a b( 2 )( 2 )d a b( 2 )  = | a2 – 2b2|

then | a2 – 2b2 |  1 as a2 – 2b2 = 0  2  = a
b

 which is not possible.

Again, d[(a + 2 b) (c + 2 d)] = [( 2 ) 2 ( )]d ad bd ad bc[( 2 ) 2 ( )][( 2 ) 2 ( )][( 2 ) 2 ( )][( 2 ) 2 ( )]d ad bd ad bcd ad bd ad bc[( 2 ) 2 ( )]d ad bd ad bc[( 2 ) 2 ( )][( 2 ) 2 ( )]d ad bd ad bc[( 2 ) 2 ( )][( 2 ) 2 ( )]d ad bd ad bc[( 2 ) 2 ( )][( 2 ) 2 ( )]d ad bd ad bc[( 2 ) 2 ( )]

= | (ac + 2bd)2 – 2 (ad + bc)2 |
= | (a2 – 2b2) (c2 – 2d2) |
= | a2 – 2b2| | c2 – 2d2 | ...(1)

| a2 – 2b2| = ( 2 )( 2 )( 2 )( 2 )( 2 )( 2 )d a b

i.e., ( 2 ) [( 2 ) ( 2 )]d a b d a b c d( 2 ) [( 2 ) ( 2 )]( 2 ) [( 2 ) ( 2 )]( 2 ) [( 2 ) ( 2 )]( 2 ) [( 2 ) ( 2 )]( 2 ) [( 2 ) ( 2 )]( 2 ) [( 2 ) ( 2 )]( 2 ) [( 2 ) ( 2 )]( 2 ) [( 2 ) ( 2 )]( 2 ) [( 2 ) ( 2 )]( 2 ) [( 2 ) ( 2 )]d a b d a b c dd a b d a b c dd a b d a b c dd a b d a b c d( 2 ) [( 2 ) ( 2 )]d a b d a b c d( 2 ) [( 2 ) ( 2 )]( 2 ) [( 2 ) ( 2 )]d a b d a b c d( 2 ) [( 2 ) ( 2 )]( 2 ) [( 2 ) ( 2 )]d a b d a b c d( 2 ) [( 2 ) ( 2 )]( 2 ) [( 2 ) ( 2 )]d a b d a b c d( 2 ) [( 2 ) ( 2 )]( 2 ) [( 2 ) ( 2 )]d a b d a b c d( 2 ) [( 2 ) ( 2 )]( 2 ) [( 2 ) ( 2 )]d a b d a b c d( 2 ) [( 2 ) ( 2 )]( 2 ) [( 2 ) ( 2 )]d a b d a b c d( 2 ) [( 2 ) ( 2 )]( 2 ) [( 2 ) ( 2 )]d a b d a b c d( 2 ) [( 2 ) ( 2 )]( 2 ) [( 2 ) ( 2 )]d a b d a b c d( 2 ) [( 2 ) ( 2 )]( 2 ) [( 2 ) ( 2 )]d a b d a b c d( 2 ) [( 2 ) ( 2 )]

Let now 2a ba ba ba ba ba ba b2a b2  and 2c dc dc dc dc dc dc d2c d2  be two members of [ 2]Z  and suppose 2 0,c d2 0,c dc dc dc d2 0,c d2 0,
then

2
2

a b
c d
a ba ba ba b2a b2
c dc dc dc d2c d2

= 2 2
( 2 ) ( 2 )

2
a b c d

c d
( 2 ) ( 2 )( 2 ) ( 2 )( 2 ) ( 2 )( 2 ) ( 2 )( 2 ) ( 2 )( 2 ) ( 2 )( 2 ) ( 2 )a b c da b c da b c d( 2 ) ( 2 )a b c d( 2 ) ( 2 )( 2 ) ( 2 )a b c d( 2 ) ( 2 )( 2 ) ( 2 )a b c d( 2 ) ( 2 )( 2 ) ( 2 )a b c d( 2 ) ( 2 )( 2 ) ( 2 )a b c d( 2 ) ( 2 )( 2 ) ( 2 )a b c d( 2 ) ( 2 )( 2 ) ( 2 )a b c d( 2 ) ( 2 )

2 2c d2 2c d2 22c d22 222 2c d2 222 2  = 2 2 2 2
2( )

2 2
ac bd bc ad

c d c d
2( )ac bd bc adac bd bc ad2( )ac bd bc ad2( )2( )ac bd bc adac bd bc adac bd bc adac bd bc ad2( )ac bd bc ad2( )

2 2 2 2c d c d2 2 2 2c d c d2 2 2 22 2c d c d2 22 2 2 22 22 2 2 2c d c d2 2 2 22 22 2 2 22 2 2 22 2 2 2c d c d2 2 2 22 2 2 22 22 2 2 2c d c d2 2 2 22 22 2 2 2

= 2m n2m nm nm nm n2m n2 (say)
then m and n are rationals.

Now m = [m] +  where [m] is the greatest integer not greater than m and  is fractional
part of m.

If 10 ,
2
10 ,0 ,10 ,1
2

0 ,
2

0 ,  take p = [m]

 and if 1,
1
2

1, take p = [m] + 1

Thus  an integer p, s.t, 
1| |
2

m p 1| |
2

| |m p| |



406 A Course in Abstract Algebra

Similarly we can find an integer q, s.t., | n – q |  
1
2

Put m – p = , n – p = , then 1 1| | , | |
2 2
1 1| | , | || | , | |1 1| | , | |1 1
2 2

| | , | |
2 2

| | , | |

Also then = 2
2

a b
c d
a ba ba ba b2a b2
c dc dc dc dc d2c d2

 = ( ) 2 ( )p q( ) 2 ( )( ) 2 ( )p q( ) 2 ( )p q( ) 2 ( )( ) 2 ( )p q( ) 2 ( )( ) 2 ( )p q( ) 2 ( )( ) 2 ( )p q( ) 2 ( )( ) 2 ( )p q( ) 2 ( )

 2
2

a b
c d
a ba ba ba b2a b2
c dc dc dc dc d2c d2

 = ( 2 ) ( 2 )p q( 2 ) ( 2 )( 2 ) ( 2 )( 2 ) ( 2 )( 2 ) ( 2 )( 2 ) ( 2 )( 2 ) ( 2 )p q( 2 ) ( 2 )p q( 2 ) ( 2 )( 2 ) ( 2 )p q( 2 ) ( 2 )( 2 ) ( 2 )p q( 2 ) ( 2 )( 2 ) ( 2 )p q( 2 ) ( 2 )( 2 ) ( 2 )p q( 2 ) ( 2 )

 2a ba ba ba ba ba b2a b2  = ( 2 ) ( 2 ) ( 2 ) [( ) 2( )]c d p q c d m p n q( 2 ) ( 2 ) ( 2 ) [( ) 2( )]c d p q c d m p n qc d p q c d m p n qc d p q c d m p n qc d p q c d m p n qc d p q c d m p n qc d p q c d m p n q( 2 ) ( 2 ) ( 2 ) [( ) 2( )]c d p q c d m p n q( 2 ) ( 2 ) ( 2 ) [( ) 2( )]( 2 ) ( 2 ) ( 2 ) [( ) 2( )]c d p q c d m p n q( 2 ) ( 2 ) ( 2 ) [( ) 2( )]( 2 ) ( 2 ) ( 2 ) [( ) 2( )]c d p q c d m p n q( 2 ) ( 2 ) ( 2 ) [( ) 2( )]( 2 ) ( 2 ) ( 2 ) [( ) 2( )]c d p q c d m p n q( 2 ) ( 2 ) ( 2 ) [( ) 2( )]( 2 ) ( 2 ) ( 2 ) [( ) 2( )]c d p q c d m p n q( 2 ) ( 2 ) ( 2 ) [( ) 2( )]( 2 ) ( 2 ) ( 2 ) [( ) 2( )]c d p q c d m p n q( 2 ) ( 2 ) ( 2 ) [( ) 2( )]( 2 ) ( 2 ) ( 2 ) [( ) 2( )]c d p q c d m p n q( 2 ) ( 2 ) ( 2 ) [( ) 2( )]( 2 ) ( 2 ) ( 2 ) [( ) 2( )]c d p q c d m p n q( 2 ) ( 2 ) ( 2 ) [( ) 2( )]( 2 ) ( 2 ) ( 2 ) [( ) 2( )]c d p q c d m p n q( 2 ) ( 2 ) ( 2 ) [( ) 2( )]( 2 ) ( 2 ) ( 2 ) [( ) 2( )]c d p q c d m p n q( 2 ) ( 2 ) ( 2 ) [( ) 2( )]( 2 ) ( 2 ) ( 2 ) [( ) 2( )]c d p q c d m p n q( 2 ) ( 2 ) ( 2 ) [( ) 2( )]( 2 ) ( 2 ) ( 2 ) [( ) 2( )]c d p q c d m p n q( 2 ) ( 2 ) ( 2 ) [( ) 2( )]( 2 ) ( 2 ) ( 2 ) [( ) 2( )]c d p q c d m p n q( 2 ) ( 2 ) ( 2 ) [( ) 2( )]( 2 ) ( 2 ) ( 2 ) [( ) 2( )]c d p q c d m p n q( 2 ) ( 2 ) ( 2 ) [( ) 2( )]( 2 ) ( 2 ) ( 2 ) [( ) 2( )]c d p q c d m p n q( 2 ) ( 2 ) ( 2 ) [( ) 2( )]( 2 ) ( 2 ) ( 2 ) [( ) 2( )]c d p q c d m p n q( 2 ) ( 2 ) ( 2 ) [( ) 2( )]( 2 ) ( 2 ) ( 2 ) [( ) 2( )]c d p q c d m p n q( 2 ) ( 2 ) ( 2 ) [( ) 2( )]

where, of course, ( 2 ) [ 2]p q( 2 ) [ 2]( 2 ) [ 2]( 2 ) [ 2]( 2 ) [ 2]( 2 ) [ 2]p q( 2 ) [ 2]p q( 2 ) [ 2]( 2 ) [ 2]p q( 2 ) [ 2]( 2 ) [ 2]p q( 2 ) [ 2]( 2 ) [ 2]p q( 2 ) [ 2]( 2 ) [ 2]p q( 2 ) [ 2]Z  as p, q are integers
we can thus write

2a ba ba ba ba b2a b2 = ( 2 ) ( 2 )c d p q rc d p q rc d p q rc d p q r( 2 ) ( 2 )c d p q r( 2 ) ( 2 )( 2 ) ( 2 )c d p q r( 2 ) ( 2 )( 2 ) ( 2 )c d p q r( 2 ) ( 2 )( 2 ) ( 2 )c d p q r( 2 ) ( 2 )( 2 ) ( 2 )c d p q r( 2 ) ( 2 )( 2 ) ( 2 )c d p q r( 2 ) ( 2 )( 2 ) ( 2 )c d p q r( 2 ) ( 2 )( 2 ) ( 2 )c d p q r( 2 ) ( 2 )( 2 ) ( 2 )c d p q r( 2 ) ( 2 )

where r = ( 2 ) [( ) 2 ( )]c d m p n q( 2 ) [( ) 2 ( )]c d m p n qc d m p n qc d m p n qc d m p n q( 2 ) [( ) 2 ( )]c d m p n q( 2 ) [( ) 2 ( )]( 2 ) [( ) 2 ( )]c d m p n q( 2 ) [( ) 2 ( )]( 2 ) [( ) 2 ( )]c d m p n q( 2 ) [( ) 2 ( )]( 2 ) [( ) 2 ( )]c d m p n q( 2 ) [( ) 2 ( )]( 2 ) [( ) 2 ( )]c d m p n q( 2 ) [( ) 2 ( )]( 2 ) [( ) 2 ( )]c d m p n q( 2 ) [( ) 2 ( )]( 2 ) [( ) 2 ( )]c d m p n q( 2 ) [( ) 2 ( )]( 2 ) [( ) 2 ( )]c d m p n q( 2 ) [( ) 2 ( )]( 2 ) [( ) 2 ( )]c d m p n q( 2 ) [( ) 2 ( )]

and as r = ( 2 ) ( 2 ) ( 2 )a b c d p qa b c d p qa b c d p qa b c d p qa b c d p qa b c d p q( 2 ) ( 2 ) ( 2 )a b c d p q( 2 ) ( 2 ) ( 2 )( 2 ) ( 2 ) ( 2 )a b c d p q( 2 ) ( 2 ) ( 2 )( 2 ) ( 2 ) ( 2 )a b c d p q( 2 ) ( 2 ) ( 2 )( 2 ) ( 2 ) ( 2 )a b c d p q( 2 ) ( 2 ) ( 2 )( 2 ) ( 2 ) ( 2 )a b c d p q( 2 ) ( 2 ) ( 2 )( 2 ) ( 2 ) ( 2 )a b c d p q( 2 ) ( 2 ) ( 2 )( 2 ) ( 2 ) ( 2 )a b c d p q( 2 ) ( 2 ) ( 2 )( 2 ) ( 2 ) ( 2 )a b c d p q( 2 ) ( 2 ) ( 2 )( 2 ) ( 2 ) ( 2 )a b c d p q( 2 ) ( 2 ) ( 2 )( 2 ) ( 2 ) ( 2 )a b c d p q( 2 ) ( 2 ) ( 2 )( 2 ) ( 2 ) ( 2 )a b c d p q( 2 ) ( 2 ) ( 2 )( 2 ) ( 2 ) ( 2 )a b c d p q( 2 ) ( 2 ) ( 2 )( 2 ) ( 2 ) ( 2 )a b c d p q( 2 ) ( 2 ) ( 2 )

we notice  r ∈ [ 2]Z

Now if r  0, d(r) = [( 2 ){( ) ( ) 2}]d c d m p n q[( 2 ){( ) ( ) 2}][( 2 ){( ) ( ) 2}][( 2 ){( ) ( ) 2}][( 2 ){( ) ( ) 2}]d c d m p n qd c d m p n q[( 2 ){( ) ( ) 2}]d c d m p n q[( 2 ){( ) ( ) 2}][( 2 ){( ) ( ) 2}]d c d m p n q[( 2 ){( ) ( ) 2}][( 2 ){( ) ( ) 2}]d c d m p n q[( 2 ){( ) ( ) 2}][( 2 ){( ) ( ) 2}]d c d m p n q[( 2 ){( ) ( ) 2}][( 2 ){( ) ( ) 2}]d c d m p n q[( 2 ){( ) ( ) 2}]

= [( 2 )][ (( ) 2( ))]d c d d m p n q[( 2 )][ (( ) 2( ))]d c d d m p n qd c d d m p n qd c d d m p n qd c d d m p n q[( 2 )][ (( ) 2( ))]d c d d m p n q[( 2 )][ (( ) 2( ))][( 2 )][ (( ) 2( ))]d c d d m p n q[( 2 )][ (( ) 2( ))][( 2 )][ (( ) 2( ))]d c d d m p n q[( 2 )][ (( ) 2( ))][( 2 )][ (( ) 2( ))]d c d d m p n q[( 2 )][ (( ) 2( ))][( 2 )][ (( ) 2( ))]d c d d m p n q[( 2 )][ (( ) 2( ))][( 2 )][ (( ) 2( ))]d c d d m p n q[( 2 )][ (( ) 2( ))][( 2 )][ (( ) 2( ))]d c d d m p n q[( 2 )][ (( ) 2( ))][( 2 )][ (( ) 2( ))]d c d d m p n q[( 2 )][ (( ) 2( ))][( 2 )][ (( ) 2( ))]d c d d m p n q[( 2 )][ (( ) 2( ))]
[using (1) one may notice here that in proving (1) we do not essentially require that a, b, c,
d are integers]

 d(r) = | c2 – 2d2 | | (m – p)2 – 2 (n – q)2 |
 | c2 – 2d2 | | (m – p)2 + 2 (n – q)2 |

 2 2 1 2| 2 |
4 4

c d2 2 1 2| 2 |2 2| 2 |2 2
4 4

2 2c d2 2| 2 |c d| 2 |2 2| 2 |2 2c d2 2| 2 |2 2

 | c2 – 2d2 | = ( 2 )d c d( 2 )( 2 )( 2 )( 2 )d c dd c d( 2 )d c d( 2 )( 2 )d c d( 2 )( 2 )d c d( 2 )( 2 )d c d( 2 )

Hence, for 2 , 2 [ 2] 2 , [ 2]a b c d p q r2 , 2 [ 2] 2 , [ 2]2 , 2 [ 2] 2 , [ 2]2 , 2 [ 2] 2 , [ 2]2 , 2 [ 2] 2 , [ 2]a b c d p q ra b c d p q ra b c d p q ra b c d p q ra b c d p q ra b c d p q ra b c d p q ra b c d p q ra b c d p q ra b c d p q r2 , 2 [ 2] 2 , [ 2]a b c d p q r2 , 2 [ 2] 2 , [ 2]2 , 2 [ 2] 2 , [ 2]a b c d p q r2 , 2 [ 2] 2 , [ 2]2 , 2 [ 2] 2 , [ 2]a b c d p q r2 , 2 [ 2] 2 , [ 2]2 , 2 [ 2] 2 , [ 2]a b c d p q r2 , 2 [ 2] 2 , [ 2]2 , 2 [ 2] 2 , [ 2]a b c d p q r2 , 2 [ 2] 2 , [ 2]2 , 2 [ 2] 2 , [ 2]a b c d p q r2 , 2 [ 2] 2 , [ 2]2 , 2 [ 2] 2 , [ 2]a b c d p q r2 , 2 [ 2] 2 , [ 2]2 , 2 [ 2] 2 , [ 2]a b c d p q r2 , 2 [ 2] 2 , [ 2]2 , 2 [ 2] 2 , [ 2]a b c d p q r2 , 2 [ 2] 2 , [ 2]2 , 2 [ 2] 2 , [ 2]a b c d p q r2 , 2 [ 2] 2 , [ 2]2 , 2 [ 2] 2 , [ 2]a b c d p q r2 , 2 [ 2] 2 , [ 2]2 , 2 [ 2] 2 , [ 2]a b c d p q r2 , 2 [ 2] 2 , [ 2]2 , 2 [ 2] 2 , [ 2]a b c d p q r2 , 2 [ 2] 2 , [ 2]Z Z  s.t.,

( 2 )a b( 2 )( 2 )( 2 )( 2 )( 2 )a b( 2 )( 2 )a b( 2 )( 2 )a b( 2 )( 2 )a b( 2 )  = ( 2 ) ( 2 )c d p d rc d p d rc d p d rc d p d r( 2 ) ( 2 )c d p d r( 2 ) ( 2 )( 2 ) ( 2 )c d p d r( 2 ) ( 2 )( 2 ) ( 2 )c d p d r( 2 ) ( 2 )( 2 ) ( 2 )c d p d r( 2 ) ( 2 )( 2 ) ( 2 )c d p d r( 2 ) ( 2 )( 2 ) ( 2 )c d p d r( 2 ) ( 2 )( 2 ) ( 2 )c d p d r( 2 ) ( 2 )( 2 ) ( 2 )c d p d r( 2 ) ( 2 )( 2 ) ( 2 )c d p d r( 2 ) ( 2 )

where either r = 0 or ( ) ( 2 )d r d c d( ) ( 2 )( ) ( 2 )( ) ( 2 )( ) ( 2 )d r d c dd r d c d( ) ( 2 )d r d c d( ) ( 2 )( ) ( 2 )d r d c d( ) ( 2 )( ) ( 2 )d r d c d( ) ( 2 )( ) ( 2 )d r d c d( ) ( 2 )

showing that [ 2]Z  is a Euclidean domain.

Theorem 6: Let a, b be two non zero elements of a Euclidean domain R. If b is not a unit
in R then d(a) < d(ab).

Proof: Let b be not a unit. Then for a, ab in R   t, r   R s.t.,
a = tab + r
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where either r = 0 or d(r) < d(ab)
If r = 0, then a = tab  a (1 – t b) = 0

 tb = 1 or that b is a unit, which is not so.
Thus r  0 and d(r) < d(ab)
Now r  = a – tab = a(1 – tb)
Hence d(a)  d(a(1 – tb)) = d(r) < d(ab).

Cor.: If a, b are non zero elements of a Euclidean domain R then d(a) = d(ab) iff b is a unit.
If b is a unit then c s.t., bc = 1
Now d(a)  d(ab)  d((ab)c) = d(a)

 d(a) = d(ab)
Converse follows from above theorem.

Problem 7: Show that an element x in a Euclidean domain is a unit if and only if
d(x) = d(1).

Solution: Let d(x) = d(1)
Suppose x is not a unit, then by above theorem

d(1) < d(1 . x) Taking a = 1, b = x
i.e., d(1) < d(x)

a contradiction
x is a unit.

Conversely, let x be a unit in R, then  y  R s.t.,
  xy = 1

Now      d(x) d(xy) (by definition)
 d(x)  d(1)

Also  d(1)  d(1 . x)
 d(1)  d(x)

Hence     d(x) = d(1).

Problem 8: Show by an example that it is possible to find two elements a, b in a Euclidean
domain such that d(a) = d(b) but a, b are not associates.

Solution: Consider D = {a + ib | a, b  Z} = Z[i], the ring of Gaussian integers
where d(a + ib) = a2 + b2

then D is a Euclidean domain. (See problem 5)
Here d(2 + i3) = 13 = d(2 – 3i)

but 2 + 3i and 2 – 3i, are not associates.
Notice that units of D are 1, i and thus an associate of 2 + 3i can be

(2 + 3i)1, (2 + 3i)(– 1), (2 + 3i)i, (2 + 3i)(– i)
i.e., 2 + 3i, – 2 – 3i, 2i – 3, 3 – 2i
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which are all different from 2 – 3i.

Theorem 7: Any two non zero elements a, b in a Euclidean domain R have a g.c.d. d and it
is possible to write.

d = a + b for some , R

Proof: Let A = {ra + sb | r, s  R}
then A is an ideal of R as

0 = 0. a + 0. b  A  A  
 Let  x, y  A
    x = r1a + s1b,  y = r2a + s2b r1, r2, s1, s2  R
Thus  x – y = (r1 – r2)a + (s1 – s2)b  A
Again  x  A, r  R, x = r1a + s1b

  rx = r(r1a + s1b) = (rr1)a + (rs1)b  A
showing that A is an ideal of R.

Since a Euclidean domain is a PID, A will be generated by some element, say, d.
We claim d = g.c.d.(a, b)
Now d  A  d = a + b for some ,   R
Again since a = 1.a + 0. b  A

b = 0 . a + 1 . b  A
(Note R being a Euclidean domain has unity)
So a  A, A = (d)  a = d for some   R

b  A, A = (d)  b = d for some   R
 d | a and d | b

Again, if c | a and c | b
then c | a,  c | b

 c | a + b
i.e. c | d  d = g.c.d.(a, b).

Remarks: (i) The theorem clearly then holds in a PID, and the next result that we prove in
a PID holds in a Euclidean domain.

(ii) Similarly one can show that any finite number of non-zero elements
a1, a2 ..., an in a Euclidean domain (PID) R have a g.c.d. which can be put in the form 

) Similarly one can show that any finite number of non-zero elements
1a1

+ 2a2 + ... + 
 in a Euclidean domain (PID) 

n an, 
 in a Euclidean domain (PID) 

i 
 in a Euclidean domain (PID) 

 R.

Theorem 8: Any two non zero elements a, b in a PID R have a least common multiple.

Proof: Let A = (a), B = (b) be the ideals generated by a and b.
Then A  B is an ideal of PID R. Suppose it is generated by l.
We show  l = l.c.m.(a, b)
Now A  B  A, A  B  B

l  (l)  l  (a)  l = au for some u
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l  (l)  l (b)  l = bv for some v
 a | l and b | l

Again, suppose a | x and b | x
 x = a , x = b  ,   R
 x  (a), x (b)
 x  A  B = (l)
 x = kl  l | x

Hence l = l.c.m.(a, b).

Definition: In an integral domain R with unity, a, b (non zero) are said to be co-prime or
relatively prime, if g.c.d.(a, b) is a unit in R.

Problem 9: Two elements a, b in an integral domain with unity are co-prime iff
g.c.d.(a, b) = 1.

Solution: Let a, b be co-prime. By theorem 1 any associate of a g.c.d. is a g.c.d.
Since 1 is associate of any unit
1 will be an associate of d = g.c.d.(a, b) = a unit

 1 = g.c.d.(a, b)
Converse is obvious as 1 is a unit.

Problem 10: Let R be a PID and a, b be two non zero elements of R. Show  that
[a, b] (a, b) = abu where u is a unit and (a, b) = g.c.d.(a, b), [a, b] = l.c.m. (a, b).

Solution: Let g.c.d.(a, b) = d
l.c.m.(a, b) = l

Since R is a PID existence of d and l is ensured. We show dl | ab and ab | dl
Since l = l.c.m.(a, b),  a | l and b | l
we get l = au,  l =  bv for some u, v  R
Again d = g.c.d(a, b)   x, y  R, s.t.,

ax + by = d  (theorem done)
 l (ax + by) = dl
 lax + lby = dl
 bvax + auby = dl
 ab(vx + uy) = dl  ab | dl ...(1)

Again as d | a, d | b, a = dd , b = dd , ,   R
 ab = d  d  = d( d)

Now a = dd  and dd  | dd
b = dd  and dd  | d | d
a | dd , b | dd

 l | dd
 dd  = lk  for some k
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Thus ab = d( k) = (dl)k
 dl | ab ...(2)

(1) and (2) imply dl = uab
where u is a unit (result proved).
Note: See page 433 for method explaining how to find g.c.d. in general.

Prime and Irreducible Elements

Definitions: Let R be a commutative ring with unity. An element p R is called a prime element
if

(i) p  0, p is not a unit.
(ii) For any a, b  R, if p | ab then p | a or p | b.

Let R be a commutative ring with unity. An element p  R is called an irreducible element
if

(i) p  0, p is not a unit.
(ii) whenever p = ab then one of a or b must be a unit. (In other words, p has no proper

factors.)

Example 5: In the ring < Z, +, · > of integers, every prime number is a prime element as well
as irreducible element.

Example 6: Cosider the ring

[ 5][ 5]Z  = { 5 | , }{ 5 | , }{ 5 | , }{ 5 | , }{ 5 | , }{ 5 | , }a b a b Z
under the operations defined by

( 5 )a b( 5 )( 5 )( 5 )( 5 )( 5 )a b( 5 )( 5 )a b( 5 )( 5 )a b( 5 )( 5 )a b( 5 )  + ( 5 )c d( 5 )( 5 )( 5 )( 5 )c dc d( 5 )c d( 5 )( 5 )c d( 5 )( 5 )c d( 5 )( 5 )c d( 5 )  = (a + c) + 5( )b d5( )b d5( )b d5( )

( 5 )a b( 5 )( 5 )( 5 )( 5 )( 5 )a b( 5 )( 5 )a b( 5 )( 5 )a b( 5 )( 5 )a b( 5 ) . ( 5 )c d( 5 )( 5 )( 5 )( 5 )c dc d( 5 )c d( 5 )( 5 )c d( 5 )( 5 )c d( 5 )( 5 )c d( 5 )  = (ac – 5bd) + 5( )ad bc5( )ad bc5( )ad bc5( )

 (i) We show 55  is a prime element.

55   0, it is also not a unit as, if it were a unit then  5a ba ba ba ba ba b5a b5 , s.t.,

5( 5 )a b5( 5 )5( 5 )5( 5 )5( 5 )5( 5 )a b5( 5 )5( 5 )a b5( 5 )5( 5 )a b5( 5 )5( 5 )a b5( 5 )  = 1

 55 = 1 + 5b, which is not possible as R.H.S. is an integer whereas L.H.S. is not an
integer.

Suppose now 55  divides ( 5 )( 5 ),( 5 )( 5 ),( 5 )( 5 ),( 5 )( 5 ),( 5 )( 5 ),( 5 )( 5 ),( 5 )( 5 ),( 5 )( 5 ),( 5 )( 5 ),( 5 )( 5 ),a b c d

then  ( 5 )x y( 5 )( 5 )x y( 5 )x y( 5 )( 5 )x y( 5 )( 5 )x y( 5 )( 5 )x y( 5 )( 5 )x y( 5 )  s.t.,

5( 5 )x y5( 5 )5( 5 )x y5( 5 )x y5( 5 )5( 5 )x y5( 5 )5( 5 )x y5( 5 )5( 5 )x y5( 5 )5( 5 )x y5( 5 )  = ( 5 )a b( 5 )( 5 )( 5 )( 5 )( 5 )a b( 5 )( 5 )a b( 5 )( 5 )a b( 5 )( 5 )a b( 5 ) ( 5 )c d( 5 )( 5 )( 5 )( 5 )c dc d( 5 )c d( 5 )( 5 )c d( 5 )( 5 )c d( 5 )( 5 )c d( 5 )
which on comparison gives,

–5y = ac – 5bd
5(bd – y) = ac  5 | ac

But 5 being a prime number
either 5 | a or 5 | c.
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If 5 | a then ( 5)( 5) | a( 5)( 5) | ( 5)( 5) | ( 5)( 5) | ( 5)( 5) | ( 5)( 5) | 

 5 | a5 | a

 5 | 5a b5 | 55 | 55 | 55 | 55 | 55 | 5a b5 | 5

Similarly, if 5 | c then 5 | 5c d5 | 55 | 55 | 55 | 5c dc d5 | 5c d5 | 55 | 5c d5 | 55 | 5c d5 | 55 | 5c d5 | 5

Hence 55  is a prime element.
(ii) We show further that 3 is an irreducible element which is not prime.

Suppose 3 = ( 5 )a b( 5 )( 5 )( 5 )( 5 )( 5 )a b( 5 )( 5 )a b( 5 )( 5 )a b( 5 )( 5 )a b( 5 ) ( 5 )c d( 5 )( 5 )( 5 )( 5 )c dc d( 5 )c d( 5 )( 5 )c d( 5 )( 5 )c d( 5 )( 5 )c d( 5 ) , a, b, c, d  Z
Taking conjugates, we get

3  = ( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )a b c d

Thus 3.3  = (a2 + 5b2)(c2 + 5d2)
i.e., 9 = (a2 + 5b2)(c2 + 5d2)
 a2 + 5b2 = 1, 3 or 9
Now a2 + 5b2 = 3 is not possible as a, b  Z
If a2 + 5b2 = 1 then a = ± 1 and b = 0
If a2 + 5b2 = 9 then a2 + 5d2 = 1, giving c = ± 1 and d = 0

Thus, if a2 + 5b2 = 1 then 2 55a b  = ±1 = unit (see Problem 11 below)

and if a2 + 5b2 = 9 then 5c dc dc dc dc d5c d5  = ± 1 = unit

Hence 3 is an irreducible element of [ 5].[ 5].Z

Now (2 5)(2 5)(2 5)(2 5)(2 5)(2 5)(2 5)(2 5)(2 5)(2 5)(2 5)(2 5)(2 5)(2 5)(2 5)(2 5)(2 5)(2 5)(2 5)(2 5)  = 9 and thus

3 | (2 5)(2 5)3 | (2 5)(2 5)3 | (2 5)(2 5)3 | (2 5)(2 5)3 | (2 5)(2 5)3 | (2 5)(2 5)3 | (2 5)(2 5)3 | (2 5)(2 5)3 | (2 5)(2 5)3 | (2 5)(2 5)

We show it does not divide any one of these. Suppose 3 | (2 5)3 | (2 5)3 | (2 5)3 | (2 5)3 | (2 5)3 | (2 5)  in [ 5][ 5]Z

Then (2 5)(2 5)(2 5)(2 5)(2 5)(2 5)  = 3 ( 5 )a b( 5 )( 5 )( 5 )( 5 )( 5 )a b( 5 )( 5 )a b( 5 )( 5 )a b( 5 )( 5 )a b( 5 ) a, b  Z

 2 52 52 52 52 5  = 3( 5 )a b3( 5 )3( 5 )3( 5 )3( 5 )3( 5 )a b3( 5 )3( 5 )a b3( 5 )3( 5 )a b3( 5 )3( 5 )a b3( 5 )
 9 = 9 (a2 + 5b2)
 1 = a2 + 5b2  a = ± 1, b = 0

 2 + 55  = ±3 which is not possible

Thus 3  (2 5)(2 5)(2 5)(2 5)(2 5)(2 5) . Similarly 3  (2 5)(2 5)(2 5)(2 5)(2 5)(2 5)

Hence 3 is not a prime element of [ 5][ 5]Z .

Problem 11: Find all the units of [ 5][ 5]Z .

Solution: Suppose 5a ba ba ba ba b5a b5  is a unit in [ 5][ 5]Z .

Then ( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )a b c d  = 1 5 . 01 5 . 01 5 . 01 5 . 01 5 . 0  for some c, d  Z
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So, ( 5 )( 5 )a b c d( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )( 5 )a b c da b c da b c d( 5 )( 5 )a b c d( 5 )( 5 )( 5 )( 5 )a b c d( 5 )( 5 )( 5 )( 5 )a b c d( 5 )( 5 )( 5 )( 5 )a b c d( 5 )( 5 )( 5 )( 5 )a b c d( 5 )( 5 )( 5 )( 5 )a b c d( 5 )( 5 )( 5 )( 5 )a b c d( 5 )( 5 )  = 1  = 1
giving (a2 + 5b2)(c2 + 5b2) = 1 in Z

 a2 + 5b2 = 1  a = ±1, b = 0

Thus 5a ba ba ba ba ba b5a b5  = ±1 are the units in [ 5][ 5]Z .
The following theorem exhibits the ‘closeness’ of prime and irreducible elements.

Theorem 9: In a PID an element is prime if and only if it is irreducible.

Proof: Let D be a PID and let p  D be a prime element. We need prove only that if p = ab,
then a or b is a unit.
So let p = ab then p | ab

  p | a  or p | b (p is prime)
If p | a then a = px for some x
So p = ab = (px)b

 p(1 – xb) = 0
 1 – xb = 0 as p  0
 xb = 1  b is a unit.

Similarly, if p | b then a will be a unit.
Conversely , let p be irreducible element and suppose p  | ab. We show either
p | a or p | b.
If p | a, we have nothing to prove.
Suppose p  a
Since p, a are elements of a PID they have a g.c.d., say, d.
We show d is a unit.
Now d | p and d | a
  u, v s.t., p = du, a = dv
If d is not a unit then as p is irreducible and p = du, u will be a unit
 u–1 exists
 pu–1 = d

a = pu–1v  p | a which is not so.
Thus d is a unit.
Again, we know that d can be expressed as

d = a + p
which gives dd–1 = d–1 a + d–1 p

 b . 1 = d–1ab + d–1bp
But p | ab, p | d–1 bp

p | (ab d–1 + d–1bp)
 p | b

Hence the result follows.
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Cor.: In an integral domain with unity, every prime element is irreducible. The converse is not
true. See exercises.

Remark: Combining the results of Example 6 and the above theorem, we can say [ 5][ 5]Z
is not a PID.

Example 7: Consider the ring Z6 = {0, 1, 2, 3, 4, 5} mod 6.
2 is a prime element in Z6 but is not irreducible.
2 is, of course, non zero, non unit.
Suppose 2 | a  b
Since ab = 6q + a  b for some q
and as 2 | 6q, 2 | a  b, we find 2 | ab

 2 | a or 2 | b
 2 | a or 2 | b in Z6

Hence 2 is a prime element.
Again, as 2  4 = 2, where neither 2 nor 4 is a unit, we find 2 is not irreducible. (Note,

Z6 is not an integral domain.)

Theorem 10: Let R be a PID which is not a field, then an ideal A = (ao) is a maximal ideal
if and only if ao is an irreducible element.

Proof: Let A = (ao) be a maximal ideal.
(i) ao  0.
Suppose ao = 0, then since R is not a field,  at least one 0  b  R, s.t., b–1 does not exist.
Let B = (b) and as ao = 0, A = (0)

and (0)  B  R  A  B  R
Now B  A as b  B, b  0, and A = (0)

B  R as 1 R, but 1  B
Note if 1  B = (b) then  some x s.t., 1 = bx
Showing that b is invertible which is not so
Hence ao  0.
(ii) ao is not a unit.
Suppose ao is a unit, then aoao

–1 = 1
ao  A, ao

–1  R  aoao
–1  A

 1  A
 A = R

which is not possible as A is maximal.
Thus ao is not a unit.
(iii) Let now ao = bc for some b, c  R. We show either b or c is a unit.
Let B = (b)
Since ao = bc, ao  B

 all multiples of ao are in B
 A  B
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But A is maximal thus either B = R or B = A
If B = R, then 1  B = (b) as 1  R

  1 = xb for some x
  b is a unit.

If B = A, then b  A = (ao)
 b = yao for some y
 ao = bc = yaoc
 ao – yaoc = 0
 ao(1 – yc) = 0
 1 – yc = 0 (as ao  0)
 c is a unit.

Hence the result is proved.
Conversely, let ao be irreducible element.
We show A = (ao) is maximal.
Let I be any ideal s.t., A  I  R.
Since R is a PID, I is generated by some element, say, x
Now x  A as if x  A
then (x)  A.
i.e., I  A but A  I
means A = I which is not so.
Thus x  A.
Again, A = (ao)  I

 ao = xy for some y
ao is irreducible  x or y is a unit.
If y is a unit, then yy–1 = 1
and ao= xy

 aoy
–1 = x

But ao  A, y–1  R  aoy
–1  A

 x  A, which is not true.
Thus y is not a unit.
So x is a unit and xx–1 = 1.
Now x  I,  x–1  R,  I is an ideal

xx–1  I  1  I  I = R
 A is maximal ideal of R.

Remark: Recall, a field F has only two ideals F and {0}. F is not maximal and 0 is not
irreducible.
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Exercises
1. In a Euclidean domain R with valuation d, show that

(i) d(a) = d(–a) for all 0  a  R
(ii) if a, b are associates then d(a) = d(b)

(iii) if a | b and d(a) = d(b) then a, b are associates
(iv) if for 0  a  R, d(a) = 0 then a is a unit
(v) if a | b and a is not an associate of b then d(a) < d(b). (a, b  0).

2. In a commutative ring R with unity, Prove that associate of a prime (irreducible)
element is prime (irreducible).

3. If p, q are prime elements in an integral domain with unity such that p | q then show
that p, q are associates.

4. Show that
(i) in Z8, l.c.m. (3, 6) = 6 and 2

(ii) in 
(20)

Z
, g.c.d. (9, 18) = 9, l.c.m. (9, 18) = 18

(iii) in ring of even integers, l.c.m. (4, 6) does not exist

(iv) in 
(12)
Z

, 6, 8 have no l.c.m.

5. Let R be a PID. Show that
(i) two non zero elements a, b are co-prime iff  x, y  R s.t., ax + by = 1

(ii) if a | bc and a, b are co-prime then a | c
6. Show that every field is a Euclidean domain.

7. Prove that in 
(8)
Z

,  2  is a prime element but not irreducible.

8. If A, B, C are ideals in a PID R, prove that
(i) A  (B + C) = A  B + A   C

(ii) A + (B  C) = (A + B)  (A + C)
9. Show that quotient ring of a PID is a PID and the same is true of the homomorphic

image.
10. Show that ±1, ±i are the units in Z[i] and prove that if a + ib is not a unit in Z[i] then

a2 + b2 > 1.
11. Prove that 1 + i is an irreducible element in the ring Z[i] of Gaussian integers.

12. In the ring [ 5][ 5]Z  = { 5 | , }{ 5 | , }{ 5 | , }{ 5 | , }{ 5 | , }{ 5 | , }a b a b Z , show that 1 3 51 3 51 3 51 3 51 3 5  is irreducible element
but is not prime.

13. Show that in [ 3][ 3]Z , 1 31 31 31 31 3  is irreducible but not prime element.
14. Show that in an integral domain R with unity, any pair of non zero elements has g.c.d.

iff it has l.c.m.
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15. Show that [ 3]Z  = { 3 | , }a b a b{ 3 | , }{ 3 | , }{ 3 | , }{ 3 | , }{ 3 | , }a b a b{ 3 | , }{ 3 | , }a b a b{ 3 | , }{ 3 | , }a b a b{ 3 | , }{ 3 | , }a b a b{ 3 | , }Z  is a Euclidean domain.
16. Let A = (a), B = (b) be two ideals in an integral domain with unity. Show that

A = B iff a and b are associates. Show further that if (a) + (b) = (d), then
d = g.c.d. (a, b).

17. Let R be an integral domain with unity. Show that an element 0  p  R is a prime
element iff (p) is a prime ideal.

Polynomial rings

Let R be a ring. By a polynomial over R, we mean an expression of the form
f (x) = ao + a1x + a2x2 + ... + amxm, ai  R

What is x? The symbols x, x2, .... here are not unknown elements or variables from the ring
R. These are there only for convenience, say as place indicators for the elements ao, a1, a2, ...
of the ring. The idea behind the notation is only our familiarity to polynomials of this type that
we are so used to (and there, of course, x does represent a variable). A further justification of
this notation follows when we come to defining addition and multiplication of polynomials in
the usual way.

Alternatively, any infinite sequence (ao, a1, a2, ...) of elements of R is called a polynomial
over R if all except finite number of its terms ai are zero. (Thus after a finite number of terms,
all members will be zero). The first term ao is called the constant term of the polynomial. If
m is the largest non negative integer such that am 

 is called the constant term of the polynomial. If
 0, then am is called the last (or leading)

coefficient of the polynomial.
If f (x) = ao + a1x + ... + amxm, ai  R

g(x) = b0 + b1x + ... + bnx
n,  bj  R

be two polynomials over R, then we say f (x) = g(x) if m = n and ai = bi for all i.
Again, addition of polynomials f (x) and g(x) is defined by

f (x) + g(x)= (ao + bo) + (a1 + b1) x + (a2 + b2) x2 + ...
Product is also defined in the usual way,

f (x) g(x) = (ao + a1x + ... + amxm) (bo + b1x + . . . + bnx
n)

= aobo + (a1bo + aob1) x ...
= co + c1x + c2x

2 + . . . + cm+n xm + n

where ck = aobk + a1bk–1 + ... + akbo
Let now R[x] be the set of all polynomials over R. Then R[x] is a non empty set and addition

and multiplication as defined above on the members of R[x], clearly are binary compositions.
It is easy to see that R[x] forms a ring under these operations. Zero of the ring will be the zero
polynomial

O(x) = 0 + 0x + 0x2 + ....
Additive inverse of f (x) = ao + a1x + ..... + amxm will be the polynomial

– f (x) = – a0 – a1x + ... + (–am) xm. In fact, if R has unity 1 then the polynomial
e(x) = 1 + 0x + 0x2 +...
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will be unity of R[x]. e(x) is also sometimes denoted by 1. Instead of a ring R if we start
with a field F we get the corresponding ring F[x] of polynomials.

Remark: Let R = Z3 = {0, 1, 2} modulo 3. Define
f : Z3  Z3, s.t.,  f (x) = x3 + 2x and
g : Z3  Z3, s.t.,  g(x) = x5 + 2x

Then f (0) = 0 = g(0),  f (1) = 1 + 2 = g(1)
f (2) = 5 + 1 = 2 + 4 = g(2)

Hence f (a) = g(a)  a  Z3
and thus f (x) = g(x) by our definition of a function.

On the other hand we notice
f (x) = (0, 2, 0, 1, 0, 0, ...)
g(x) = (0, 2, 0, 0, 0, 1, 0, ...)

are not equal as polynomials over Z3. Thus f (x)  g(x) in Z3[x].

Definition: Let f (x) = ao + a1x + a2x
2 + . . . + amxm be any non zero polynomial in R[x]. We

say f (x) has degree m if am  0 and ai = 0 for all i > m, and write
deg f (x) = m.

We do not define degree of zero polynomial.
We say degree of f (x) is zero if ao  0, ai = 0 for all i > 0. In that case it is called a constant

polynomial. Also clearly, deg (– f (x)) = deg f (x).
Suppose R is any ring and R[x] is the corresponding ring of polynomials over R. If we define

a map
f : R  R[x], s.t.,
f (a) = a + 0.x + 0x2 + ...

then it is easy to see that f will be 1 – 1 homomorphism. Indeed,
f (a + b) = (a + b) + 0x + 0x2 + ...

= (a + 0x + 0x2 + . . .) + (b + 0x + 0x2 + . . .)
= f (a) + f (b)

    f (ab) = ab + 0.x + 0.x2 + . . .

= (a + 0x + 0x2 + . . .) (b + 0x + . . .)
= f (a) f (b)

Hence R can be imbedded into the ring R[x]. In other words, R is isomorphic to a subring
of R[x].

Thus R can be identified with a subring of R[x] in view of which we sometimes take the
liberty of calling R to be a subring of R[x]. The following theorem is now easy to prove.

Theorem 11: Let R[x] be the ring of polynomials over a ring R then
(i) R is commutative iff  R[x] is commutative.

(ii) R has unity iff R[x] has unity.
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Proof: (i) If R[x] is commutative then any subring of R[x] is commutative and as R is isomprphic
to a subring of R[x], R will be commutative.

Conversely, if R is commutative
and f (x) = ao + a1x + a2x

2 + . . . + amxm

g(x) = bo + b1x + b2x
2 + . . . + bnx

n

be two members of R[x], then by definition of product
f (x)g(x) = aobo + (a1bo + aob1)x + . . .

= boao + (b1ao + boa1)x + . . .

= g(x) f (x).
(ii) If R has unity 1 then the polynomial
e(x) = 1 + 0x + 0x2 + . .  . is unity of R[x] as f (x)e(x) will be f (x) for any

polynomial f (x).
Conversely, let R[x] have unity.
Define a map  : R[x]  R, s.t.,

( f (x)) = (ao + a1x + .. + amxm) = ao
then  is an onto homomorphism. (See theorem 15).
Thus R is a homomorphic image of R[x] and hence has unity, as homomorphic image of

a ring with unity is a ring with unity. It fact, 
] and hence has unity, as homomorphic image of

 (e(x)) will be unity of R where e(x) is unity
of R[x].

Theorem 12: Let R[x] be the ring of polynomial of a ring R and suppose
f (x) = ao + a1x + . . . + amxm

g(x) = bo + b1x + . . . + bnx
n

are two non zero polynomials of degree m and n respectively, then
(i) If f (x) + g(x)  0, deg( f (x) + g(x)) max(m, n)

(ii) If f (x) g(x)  0, deg ( f (x) g(x))  m + n
(iii) If R is an integral domain, deg ( f (x) g(x)) = m + n
(iv) R is an integral domain iff R[x] is an integral domain.
(v) If F is a field, F[x] is not a field.

Proof: (i) By definition,
f (x) + g(x) = (ao + bo) + (a1 + b1)x + (a2 + b2)x

2 + . . . + (at + bt)x
t

where t = max (m, n).
Now ak + bk = 0 for all k > t as ak = 0, bk = 0
thus degree of f (x) + g(x) is less than or equal to t = max (m, n). Notice it is possible to

have deg (f (x) + g(x)) < max (m, n). Consider the ring Z of integers.
Let f (x) = 1 + 2x – 2x2

g(x) = 2 + 3x + 2x2

be two members of Z[x],
then f (x) + g(x) = (1 + 2) + (2x + 3x) + (– 2x2 + 2x2)

= 3 + 5x



9. Euclidean and Factorization Domains 419

Thus deg (f (x) + g(x)) = 1 whereas deg f (x) = 2 = deg g(x)
(ii) Let f (x) g(x) = c0 + c1x + c2x

2 + . . .

where ck = (akb0 +ak – 1 b1 + ... + a0bk).
Here cm + n = a0bm + n + a1bm + n – 1 + . . . + ambn  ...... + am + nb0

= ambn
as all other terms would be zero. (am + i = 0, bn + j = 0 for all i, j > 0).
Again, cm + n + t = 0 for all t > 0 and
thus deg (f (x) g(x))  m + n (ambn can be zero even if am  0 bn  0)
We show that it is possible that deg ( f (x) g(x)) < m + n.
Consider the ring R = {0, 1, 2, 3, 4, 5} modulo 6
Take f (x) = 1 + 2x3

g(x) = 2 + x + 3x2

two polynomials in R[x] of degree 3 and 2 respectively.
Here f (x)g(x) = 2 + x + 3x2 + 4x3 + 2x4

which is of degree 4 < 5.
Notice, here R is not an integral domain.
(iii) If R is an integral domain then as am  0, bn  0, therefore, ambn  0 and hence

cm + n = ambn 
 is an integral domain then as 

 0 showing that deg ( f (x)g(x)) = m + n.
(iv) If R[x] is an integral domain then since R is isomorphic to a subring of R[x], R will

also be an integral domain.
Conversely, suppose R is an integral domain.
Let f (x), g(x) be any two non zero members of R[x] s.t.,

f (x)g(x) = 0
where f (x) = ao + a1x + . . . + amxm

g(x) = bo + b1x + . . . + bnx
n

Now both f (x) and g(x) cannot be constant polynomials as then ao  0, bo  0
(so co = aobo

f
 0)
f (x)g(x)  0

Since at least one of f (x), g(x) is non constant polynomial, its degree is  1.
R being an integral domain
deg ( f (x)g(x)) = deg f (x) + deg g(x)  1
which is a contradiction as it implies then ck  0 for some k > 0
whereas f (x)g(x) = 0.
Hence f (x)g(x) = 0  f (x) = 0 or g(x) = 0
 R[x] is an integral domain.
(v) Let F be a field, then since F is commutative, has unity, by previous results we find F[x]

will be a commutative ring with unity. In fact F being an integral domain, F[x] will also be an
integral domain. We show, not all non zero elements of F[x] have multiplicative inverse. Consider
the non zero polynomial
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f (x) = 0 + 1x + 0x2 +0x3 + ... (= ao + a1x + a2x
2 + ......)

Suppose g(x) = bo + b1x +b2x
2 + ... is its multiplicative inverse

then f (x)g(x) = co + c1x + c2x
2 + ...

should be unity e(x) = 1 + 0x + 0x2 + ... of F[x]
 co = 1, ci = 0 for all i > 0
where co = aobo = 0 . bo = 0  1.
Hence no g(x) can be multiplicative inverse of f (x) = x.
Showing that F[x] is not a field.
If R is a ring, we get R[x] the corresponding ring of polynomials. Since R[x] is a ring, we

can similarly get R[x, y] the corresponding ring of polynomials of R[x] and
the process can be extended. Elements of R[x, y] will be of the type

g = f0(x) + f1(x)y + f2(x)y2 + . . . +fn(x)yn

where fi(x)  R[x], i = 1, 2, . . . n

If F is a field then F[x] is a ring with unity and similarly F[x, y] will be a ring with unity.
We shall use it a little later when we come to factorisation domains.

Problem 12: Let R and S be two isomorphic rings. Show that R[x] and S[x] are also isomorphic.

Solution: Let  : R  S be the given isomorphism.
Define a mapping

f : R[x]  S[x], s.t.,
f (ao + a1x + ... + anx

n) = (a0) + (a1)x + . . . + (an)xn.
It should now be a routine exercise for the reader to show that this f is an isomorphism.

Problem 13: (i) Show that the mapping

: Q[x]  Q[x], s.t.,

(f (x))  f (ax + b), a, b  Q, a  0 is an automorphism.

(ii) Prove that any automorphism of Q[x] is of the form as in (i)

Solution: (i) We show  as defined above is a ring automorphism
Since (f(x) + g(x)) = (h(x)) where h(x) = f(x) + g(x)

= h(ax + b)
= f(ax + b) + g(ax + b)
= (f(x)) + (h(x))

and (f(x)g(x)) = (r(x)), where r(x) = f(x)g(x)
= r(ax + b) = f(ax + b)g(x + b)

 is a homomorphism.
Let f(x)  Ker  be any member, then

(f(x)) = 0 i.e., f(ax + b) = 0
Suppose f(x) = a0 + a1x+ . . . +anx

n
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then  f(ax + b) = a
0
 + a

1
(ax + b)+ . . . +a

n
(ax + b)n

Since  f(ax + b) = 0, we'll get  a
n
an = 0

and as a � 0, a
n
 = 0

So f(x) = a
0
 + a

1
x+ . . . +a

n�1
xn�1

Proceeding as above, we find a
i
 = 0, �i

�� f(x) = 0 ��Ker� = {0}

��� is one one

Again, for any f(x) � Q[x], Since f(a�1x � a�1b) � Q[x]

and as � (f(a�1x � a�1b)) = f(a�1(ax + b) � a�1b) = f(x)

� is onto and hence it is an automorphism.

(ii) Let now � : Q[x] � Q[x] be a ring automorphism, then

� (a0 + a1x+....+anx
n) = a0 + a1� (x) + a2(� (x))2 + . . . + an(� (x))n

= a
0
 + a

1
� (x) + . . . + a

n
� (xn)

Notice that Q

as � (1) = 1���  i.e, 

So

Now �  is completely known if � (x) is known

Suppose � (x) = c
0
 + c

1
x + c

2
x2 + . . . + c

n
xn

= c0 + x(c1 + c2x +
 . . . + cnx

n�1)

Thus � (x) can be put in the form

� (x) = xg(x) + b, where g(x) � Q[x], b � Q

Since �  is onto, both g(x) and x have pre images in Q[x].

Let g(x) = � (h(x)),  x = �(p(x))

Then � (x) = � (h(x))� (p(x)) + b = � (h(x) p(x) + b) as � (b) = b

As �  is 1-1, we get

     x = h(x)p(x) + b

��  deg x = deg (h(x)p(x) + b) = deg h(x) + deg p(x)

i.e., 1 = deg h(x) + deg p(x)

��either deg h(x) = 1  and deg p(x) = 0

or deg h(x) = 0 and deg p(x) = 1

If deg p(x) = 0, then p(x) is constant poly, say c � Q and so x = � p(x) = � (c) = c

a contradiction.

Thus deg p(x) = 1 and deg h(x) = 0,

Let h(x) = a, then a � Q, a � 0, as h(x) is not a zero polynomial
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otherwise also a = 0  x = b which is not true.
Now (x) = (h(x)p(x) + b)
gives (x) = (h(x) (p(x)) + (b)

(x) = (a)x + b = ax + b, a, b  Q,  a  0
Hence for any f(x)  Q[x]

(f(x)) = f(ax + b),  a, b  Q,  a  0
or that any automorphism of the ring Q[x] is of the form (f(x)) = f(ax + b), a, b  Q,
a 
or that any automorphism 

 0
Remark: If we are in Z[x], then a = ±1 as a is invertible. Thus only ring automorphism of
Z[x] would be (f(x)) = f(±x + b), b Z.

Theorem 13: If F is a field, then F[x] is a Euclidean domain.

Proof: We have seen that F[x] is an integral domain with unity.
For any f (x)  F[x], f (x)  0, define

d( f (x)) = deg f (x) which is non – ve integer
Since, for any f (x), g(x)  F[x], f (x), g(x)  0

deg ( f (x) g(x)) = deg f (x) + deg g(x)
we get deg ( f (x))  deg ( f (x)g(x)), as deg (g(x))  0

d ( f (x))  d ( f (x)g(x))
Lastly, we show for any non zero f (x), g(x) in F[x],  t(x) and r(x) in F[x] such that

f (x) = t(x)g(x) + r(x)
where either r(x) is zero or deg r(x) < deg g(x)

If deg f (x) < deg g(x)
then f (x) = 0. g(x) + f (x) gives the result.

Assume now the result is true for all (non zero) polynomials in F[x] of deg. less than deg
f (x).

Let                 f (x) = a0 + a1 + . . . + amxm

g(x) = b0 + b1x + . . . + bnx
n

Suppose deg f (x)  deg g(x)

Define f1(x) = f (x) – 1
m na b 1  xm – n g(x)

then coefficient of xm in f1(x) is

am – 1
m na b 1 . bn = am – am = 0

either f1(x) = 0 (zero polynomial) or deg f1(x) < m
If  f1(x) = 0, then

0 = f (x) – 1
m na b 1 xm – n g(x)

gives f (x) = 1
m na b 1 xm–n g(x) + 0

So by taking t(x) = 1
m na b 1 xm – n and r(x) = 0 we get the required result.
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Suppose f1(x)  0,
then deg f1(x) < m

i.e., deg f1(x) < deg f (x)
By induction hypothesis

f1(x) = t1(x) g(x) + r(x)
where either r(x) = 0 or deg r(x) < deg g(x)

f (x) – 1
m na b 1  xm – n g(x) = t1(x) g(x) + r(x)

or f (x) = [ 1
m na b 1  xm – n + t1(x)] g(x) +r(x)

 = t(x)g(x) + r(x)
where either r(x) = 0 or deg r(x) < deg g(x)
and hence F[x] is a Euclidean domain (and also, therefore, a PID)

Remarks: (i) Thus Q[x] is a Euclidean domain which is not a field.
(ii) One can show that the above defined t(x) and r(x) are unique.
Suppose f (x) = t(x) g(x) + r(x)  where either r(x) = 0 or deg r < deg g

and      f (x) = tt (x) g(x) + rr (x)  where either rr (x) = 0 or deg rr  < deg g
then t(x) g(x) + r(x) = tt (x) g(x) + r(x)

   g(t – tt – t ) = rr  – r ...(1)
Suppose t(x) tt (x)
then t – tt   0 and thus has degree  0
(1)   deg (g(t – tt – t )) = deg (rr  – r)

  deg g +deg (t – tt ) = deg (rr  – r) ...(2)
Also since g(t – t ) has positive degree (  n), r  – r cannot be zero, otherwise

g(t – tt ) would be a constant polynomial, so its degree cannot be n.
rr  – r cannot be zero  both r and rr  cannot be zero together.
Now L.H.S. of (2) is greater than or equal to deg g

whereas R.H.S. of (2) is  max (deg rr , deg r) < deg g
as if both r, r r  are non zero then deg r < deg g

deg rr  < deg g
  max (deg r, deg rr ) < deg g

If one of r, rr  is zero, the other has deg less than deg g. In any case R.H.S. < deg g,
which is a contradiction.
Thus t – tt = 0  t = tt

 (1)  r = rr .
Hence the uniqueness is established.
If F is a field then F[x] being a Euclidean domain will be a PID. Hence we can state

Theorem 14: If F is a field, every ideal in F[x] is principal.
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Problem 14: Let F be a field and I a non zero ideal in F[x] and g(x) F[x]. Then I = < g(x) >
iff g(x) is non zero polynomial of minimal degree in I.

Solution: Let g(x) I be of minimal degree then < g(x) > I (def. of ideal)

Let f(x) F[x] be any element, since F[x] is a Euclidean domain, for f(x), g(x) F[x],  q(x),
r(x) 

f(f(f )
F[x] , s.t.,

f (x) = q(x)g(x) + r(x), where either r(x) = 0 or deg r(x) < deg g(x)

If r(x)  0, then deg r < deg g and as r(x) = f(x)  g(x)q(x) I.

we get a contradiction as g(x) is of minimal degree in I.

Hence     r(x)  0

  f(x)  g(x)q(x)  f(x) < g(x) >

or that     I    I < g(x) >

and thus     I = < g(x) >.

Conversely, Let     I = < g(x) >

If f(x) I be any member then f(x)  g(x)h(x)

 deg f(x)  deg g(x) + deg h(x)

 deg g(x)  deg f(x) as deg h(x)  0

 or that g(x) is of minimal degree.

Problem 15: If R is the field of reals show that 2
[ ] ,

1
x

x
,2 1x

R C  the ring of complex numbers.

Solution: Define a mapping

: R[x]  C, st.,

: (f (x))  f (i),

Then is easily seen to be an onto homomorphism and thus by Fundamental theorem of ring
homomorphism,

[ ]
Ker

x[ ]
Ker
RC

Let f(x) Ker  be any member

where f(x) = a0 + a1x+ . . . + anx
n

Then (f(x)) = 0

i.e., a0 + a1i+ . . . + ani
n = 0

If f(x) is a polynomial of 1st degree then it is of the type ax + b, where a  0

thus in that case (f(x)) = ai + b  0 as a  0
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So polynomial of first degree is not in the Kernel.

Consider the second degree polynomial x2 + 1,

(x2 + 1) = (0 + 0x + 1.x2 + 0x3+ . . .) + (1 + 0.x + . . .)

   = (0 + 0.i + i2 + 0.i3 + . . .) + (1 + 0i+ . . .)

   = 1 + 1 = 0

So x2 + 1 Ker  and is of minimial degree. Since Ker is an ideal of R[x], by above problem,
Ker  = <x2 + 1> proving our cliam.

Example 8: Let R = {0, 1} mod 2, then R[x] is an infinite integral domain.
If f (x)
Example 8:

R[x] be any member and if,
f (x) = ao + a1x + . . . + amxm  then we have

2 f (x) = f (x) + f (x)
= (ao  ao) + (a1  a1) x + . . . + (am  am) xm

= 0 + 0.x + 0.x2 + . . .

= O(x), zero of R[x]
Thus 2 f (x) = 0  f R[x], showing that R[x] is of finite characteristic (although it is

infinite). Note also that ch R = ch R[x]. Here R[x] = Z2[x] which is infinite integral domain
having finite characteristic. The quotient field Z2(x) of Z2[x] will be an infinite field with
characteristic 2.

Problem 16: Let R be a commutative ring with unity. Let A be an ideal of R. Show that
[ ]
[ ]

R x R
A x A
R x R
A x A

[x].

Show that
A is prime ideal of R  A[x] is prime ideal of R[x].

Solution:  Define a mapping

 : R[x]  R
A

[x] s.t.,

 ( f (x)) = (ao + a1x + . . . + anx
n)

= (ao + A) + (a1 + A) x + . . . + (an + A)xn

then  is clearly well defined.
If f (x) = ao + a1x + a2x

2 + . . .

g(x) = bo + b1x + b2x
2 + . . .

f (x)g(x) = co + c1x + c2x
2 + . . .

then  ( f (x) + g(x)) = ((ao + bo) + (a1 + b1) x + . . . )
= [(ao + bo) + A] + [(a1 + b1) + A] x + . . .

= (ao + A) + (bo + A) + (a1 + A)x + (b1 + A) x + . . .

= ((ao + A) + (a1 + A)x + .....) + ((bo + A) + (b1 + A)x + . . . )
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= ( f (x)) + (g(x))
( f (x)g(x)) = (co + c1x + c2x

2 + .....)
= (co + A) + (c1 + A)x + .....
= (aobo + A) + (a1bo + aob1 + A)x + .....
= (ao + A) (bo + A) + [(a1bo + A) + (aob1 + A)]x + .....
= (ao + A) (bo + A) +

[(a1 + A) (bo + A) + (ao + A) (b1 + A)]x + .....
Also ( f (x)) (g(x)) = [(ao + A) + (a1 + A)x + .....] [(bo + A) + .....]

= (ao + A) (bo + A) + [(a1 + A) (bo + A) + (ao + A) (b1 + A)]x + .....
  is a homomorphism.
That  is onto is evident from the definition of  and hence by Fundamental theorem

[ ]
Ker
R x R

θ A
R x R

θ A
[x].

Now f (x)  Ker ( f (x)) = (0 + A) + (0 + A) x + .....
(a0 + A) + (a1 + A) x + ..... = (0 + A) + (0 + A) x + .....
ai + A = A  for all i
ai  A        for all i
f (x)  A[x]

Hence [ ]
[ ]

R x R
A x A
R x R
A x A

[x]

Finally, let A be a prime ideal of R.

Then R
A

 is an integral domain

  R
A

[x] is an integral domain

  [ ]
[ ]

R x
A x

 is an integral domal, because of the isomorphism

  A[x] is a prime ideal of R[x].

Remarks: (i) It is clear then if A is an ideal of a ring R then A[x] is an deal of R[x]
(Kernels are ideals).

(ii) If A  is maximial ideal of R then R/A is a field  R
A

[x] is not a field   [ ]
[ ]

R x
A x

is not a field

 A[x] is not maximal ideal of R[x]. (See exercise 20 on page 471).

Problem 17: Show that 3[ ]x
I

Z  where I = < x2 + x + 1 > is not an integral domain.

Solution:  (x + 2) + I 3[ ]x
I

Z
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and ((x + 2) + I)2 = (x + 2)2 + I = (x2 + 1. x + 1) + I

= I = zero of 3[ ]x
I

Z

but (x + 2) + I is not zero of 3[ ]x
I

Z

Hence 3[ ]x
I

Z  is not an integral domain.

Notice 3 being prime, Z3 is an integral domain and thus Z3[x] is also an integral domain. So
quotient ring of an integral domain may not be an integral domain, a result we discussed earlier
also. (See page 356).

Theorem 15: For any commutative ring R with unity, 
[ ]R x
xx

  R.

Proof:  Define a map  : R[x]  R, s.t.,
(ao + a1x + . . . + anx

n) = ao
then  is clearly well defined. Also

[(ao + a1x + . . . + anx
n) + (bo + b1x + . . . + bmxm)]

= [(ao + bo) + (a1 + b1)x + . . .  ]
= ao + bo = (ao + a1x + . . . + anx

n) + (bo + b1x + . . . + bmxm)
Similarly the result for product follows.
Thus  is a homomorphism which is clearly onto. By Fundamental theorem, we get

[ ]
Ker
R x

θ
  R

Let f (x) = a0 + a1x+ . . . + anx
n  Ker 

 (a0 + a1x + . . . + anx
n) = 0

  a0 = 0
  f (x) = x [a1 + a2x + . . . + anx

n – 1] = xh(x)
  f (x)  < x >

Hence Ker  = < x > which proves our result.

Remark: If Z be the ring of integers then < x > is a prime but not maximal ideal
of Z[x].

By theorem 15, 
[ ]x
x

Z
  Z

Since Z is an integral domain, so would be 
[ ]x
x

Z
 and thus < x > is a prime ideal.

If < x > is maximal ideal of Z[x] then 
[ ]x
x

Z
will be a field implying that Z is a field which

is not true. Hence < x > is not maximal. See also problems 20 and 21 ahead.
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Theorem 16: Let R be a commutative ring with unity such that R[x] is a PID, then
R is a field.

Proof:  By previous theorem,

[ ]R x
xx  R.

We claim < x > is a maximal ideal of R[x].
Suppose I is any ideal s.t. < x >  I  R[x].
Since R[x] is a PID, I = < f (x) > for some f (x) = a0 + a1x + . . . + anxn
Now x  < x >  I = < f (x) >

 x = f (x)g(x)  for some g(x)  R[x]
which implies either f (x) = x,   g(x) = 1. (unity of R[x])
or f (x) = x, g(x) = –1,  R
or f (x) = 1,   g(x) = x
(Second case being conditional to the existence of –1)
If f (x) = x, I = < f (x) >   I = < x >
if f (x) = x, I = < f (x) >   I = < x > = < x >
if f (x) = 1, I = < f (x) >  I = < 1 > = R[x]
Hence < x > is a maximal ideal.

[ ]R x
xx

 is a field.

Hence R is a field.

Theorem 17: An integral domain R with unity is a field iff R[x] is a PID.

Proof: If R[x] is a PID, we've proved then R is a field (previous theorem).
Conversely, let R be a field.
Then R[x] is a Euclidean domain (Theorem 13)
 R[x] is a PID. (Theorem 5)
The above theorem can be restated as
If R is an integral domain with unity, which is not a field then R[x] is not a PID.

Cor. 1:  Z[x] is not a PID as Z is not a field.
For another proof see problem 22.

Cor. 2: If F is a field then F[x, y] is not a PID.

Proof: If F[x, y] is a PID then F[x] is a field which is not true as x is not invertible. See theorem
12 earlier.
Problem 18: Show that < x2 + 1 > is not a prime ideal of Z2[x].

Solution: We notice that
(x + 1)2 = x2 + 2x + 1

= x2 + 1 in Z2[x]



9. Euclidean and Factorization Domains 429

Thus x2 + 1 = (x + 1)2 = (x + 1) (x + 1)  < x2 + 1 >
but (x + 1)  < x2 + 1 >.

Problem 19: Let I = {f(x)  Z[x] | f (0) = 0 }. Show that I is an ideal of Z[x] and is < x >.

Solution: I contains those polynomials in Z[x] whose constant term is zero, i.e., polynomials
of the type 0 + a1x + a2x

2 + ...+ anx
n where ai 

] whose constant term is zero, i.e., polynomials
 Z. Clearly I 

] whose constant term is zero, i.e., polynomials
 

] whose constant term is zero, i.e., polynomials
 and difference of any two

polynomials of this type has zero as its constant term.
If f(x) = 0 + a1x + a2x

2 + . . . + anx
n  I

and g(x) = b0 + b1x + . . . + bmxm  Z[x]
be any members then

f(x)g(x) = c0 + c1x + c2x
2 + ....

where c0 = a0b0 = 0.b0 = 0
and thus f(x)g(x)  I and so I is an ideal of Z[x]
Let f(x)  I be any member

 f(0) = 0
i.e., f(x) = 0 + a1x + a2x

2 + . . . +anx
n ai  Z

= x(a1 + a2x + . . . +anx
n 1)  < x >

or that I < x >
Again if f(x)  < x > be any member then

f(x) = xg(x) = x(b0 + b1x +....bmxm) bi  Z
= b0x + b1x

2 + ....
= 0 + b0x + b1x

2 +...  I
or that < x > I
and hence I = < x >.
Problem 20: Prove that the ideal < x > of Z[x] is a prime ideal but not maximal.

Solution: Let f (x) = a0 + a1x + . . . + amxm

g(x) = b0 + b1x + . . . + bnx
n

be two polynomials of Z[x] such that f (x)g(x)  < x >
then (ao + a1x + . . . + amxm) (bo + b1x + b2x

2 + . . . + bnx
n)  < x >

 co + c1x + c2x
2 + . . .   < x >,  where ck = aobk + a1bk–1 + . . . + akbo

 co + c1x + c2x
2 + . . . =  x[do + d1x + d2x

2 + . . . + dtx
t]

Comparing coefficients, we get
co = aobo = 0

 ao = 0  or bo = 0
If ao = 0 then f (x) = a1x + a2x

2 + . . . + amxm

= x(a1 + a2x + . . . + amxm–1)  < x >
If b0 = 0 then g(x)  < x >

thus < x > is prime ideal of Z[x].
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We show < x > is not maximal.
Consider A = {x f (x) + 2g(x)] | f (x), g(x) Z[x]}

then A is an ideal of Z[x] as
[x f (x) + 2g(x)] – [x ff (x) + 2gg (x)]
= x[ f (x) – ff (x)] + 2 [g(x) – g g (x)]  A

and for h(x)  Z[x]
[x f (x) + 2g(x)] h(x) = xf (x) h(x) + 2g(x) h(x)  A

Now 2  A, 2  < x >
As 2 = x (0 + 0.x + . . . ) + 2 (1 + 0.x + 0.x2 + . . . )
Thus < x >  A. Notice < x >  A by definition of A.
Again, A  Z[x], because if A = Z[x] then as 1 Z[x]
1  A  1 = xf (x) + 2g(x)

 1 = x(a0 + a1x + . . . + amxm) + 2 (b0 + b1x + . . . + bnx
n)

 1 = 2b0,  b0  Z
a contradiction
Hence A  Z[x]
or that < x >  A  Z[x]

showing thereby that < x > is not maximal.

Note: (i) < x > will be maximal in Q[x]. See also remark after theorem 15.

(ii) The above ideal A is also denoted by < x, 2 > and it is the ideal

J = {f(x)  Z[x] | f (0) = even integer}.

Problem 21: Let R be a commutative ring with unity and < x > be a prime ideal of R[x]. Show
that R must be an integral domain.

Solution: Let a, b  R be such that ab = 0
Then the polynomials

(0 + 1x + 0x2 + . . .) + (a + 0x + 0x2 + . . .) and
(0 + 1x + 0x2 + . . .) + (b + 0x + 0x2 + . . . ) belong to R[x]

  x + a, x + b  R[x]
  (x + a) (x + b)  R[x]
  x2 + x (a + b) + ab  R[x]

Since ab = 0, x2 + x(a + b) = x [x + a + b]  < x >
thus (x + a) (x + b)  < x >

 (x + a)  < x > or (x + b)  < x > as < x > is prime ideal
Now (x + a)  < x >  x + a = xf (x)  for some f (x)  R[x]

  = x (a0 + a1x + . . .)
 a = 0
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Similarly if (x + b)  < x >  then b = 0
Hence R is an integral domain.

Problem 22: Show that the ideal
A = {xf (x) + 2g(x) | f (x), g(x)  Z[x]} of Z[x] is not a principal ideal.

Solution: Suppose A is a principal ideal generated by k(x), k(x)  Z[x]
Since x = x(1 + 0x + 0x2 + . . .) + 2 (0 + 0x2 + . . .)  A = <k(x)>

x = k(x) h(x)
Also 2  < k(x) >  2 = k(x)t(x) ...(1)
Thus xk(x)t(x) = 2k(x)h(x)

 2h(x) = xt(x)
 each coefficient of t(x) is an even integer.
i.e., t(x) = 2r(x) for some r(x)  Z[x]

 2 = 2k(x)r(x)
 r(x)k(x) = 1
 1  < k(x) >
 < k(x) > = Z[x] [ideal with unity]
 A = Z[x]

which is not true as A is proper ideal of Z[x] as seen in problem 20.

Remark: The above problem shows us that Z[x] is not a PID, a result we proved earlier also.

Problem 23: Show that the above ideal A is maximal ideal in Z[x].

Solution: Let I be an ideal such that A  I  Z[x].
Since A  I, h(x)  I, s.t., h(x)  A.
Let h(x) = bo + b1x + b2x

2 + . . . + bmxm

then bo is odd as if bo is even then h(x)  A.
h(x) = 2k + b1x + b2x

2 + . . . + bmxm = g(x) + xf (x) type
Thus h(x) = (2a + 1) + b1x + b2x

2 + . . . + bmxm

h(x) = g(x) + 1
 1 = h(x) – g(x)
 1  I  as h(x)  I, g(x)  A  I
 I = Z[x]
 A is maximal.

Problem 24: Let R be a commutative ring. If f (x) = ao + a1x + . . . + amxm  R[x]
is a zero divisor, show that there exists an element b 0 in R such that
bao = ba1 = . . .  = bam = 0.

Solution: Since f (x) is a zero divisor,  some g(x)  0 s.t.,
f (x) g(x) = 0
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Let g(x) be such polynomial with least degree
    and suppose g(x) = bo + b1x + ..... + bnx

n

Let f (x) g(x) = co + c1x + c2x
2 +..... .....(1)

Since f (x) g(x) = 0, we get co = c1 = c2 = ..... = 0
Now 0 = cm + n = am + nbo + am + n – 1 b1 + ..... + ambn + .....

 ambn = 0 as each aibj = 0 when i > m
or when j > n

Consider amg(x) = ambo + amb1x + ..... + ambnx
n

Since ambn = 0
deg (amg) < n = deg g

Now if amg  0 then since
f . amg = am fg = 0 as fg = 0

we find amg is a polynomial such that f (amg) = 0
    with deg (amg) < deg g
    a contradiction to the choice of g.

Hence amg = 0
We claim now am – r g = 0. for all r, 0  r  m.
Result is true (proved) for r = 0. Suppose it is true for r – 1, we show it holds for r.
So we are given that am – (r – 1) g = 0
we show am – r g = 0
Consider, coefficient of xm+n–r in (1), it is cm+n–r which is, of course, zero. So

0 = cm+n–r = am+n–r bo + am+n–r+1 b1 + ..... + .....
 0 = ambn – r + am – 1 bn – r + 1 + ..... + am – rbn

(rest of the terms being zero)
Since result am – ig = 0 holds when i < r
we find ambn – r = am – 1 bn – r + 1 = ..... = 0
Note am – ig = am – ibo + am – i b1x  + ..... + am – i bnx

n = 0
 am – i bo = 0, am – i bi = 0, ..... , am – i bn = 0

Hence am – r bn = 0  deg (am – r g) < n = deg g
am – r g = am – r bo + am – r b1x + ..... + am – r bnx

n

Also f . am – r g = am – r fg = 0
Since deg am – r g < deg g
we find am – r g = 0  for  all r = 0, 1, 2, .....
Thus aog = 0, a1g = 0, ....., amg = 0

 aobn = 0, a1bn = 0, a2bn = 0, ....., ambn = 0
bn  0 in R.
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Problem 25: We have seen earlier (exercises on page 351) that for ideals A, B, C of a ring R,
(A + C) (B + C)  AB + C,  (A  B) (A + B)  AB hold.

Show by an example that equality may not hold in either case.

Solution: Consider the ideals
A = < 3x >, B = < 2 >, C = < x2 > in Z[x]

Then AB = < bx >, A + C = < 3x, x2 >, B + C = < 2, x2 >
AB + C = < bx, x2 >, (A + C) (B + C) = < 6x, 3x3, 2x2, x4 >

Now x2  AB + C and if x2  (A + C) (B + C), then
x2 = f (x) 6x + g(x) 3x2 + h(x) 2x2 + r(x)x4

for f, g, h, r  Z[x]
Suppose f (x) = 0 + 1x + .....

h(x) = 0 + 1x + ..... i, i  Z
Then comparing coefficients of x2 on both sides
we get
1 = 6 1 + 2 0 which is not possible and hence equality cannot hold in first case.
Again, A  B = < 6x > = AB, A + B = < 3x, 2 >

(A  B) (A + B) = < 18x2, 12x >
Now 6x  AB and if 6x  (A  B) (A + B), then

6x = f (x) 2x + g(x) 18x2, f, g  Z[x]
If f = 0 + 1x + ....., i  Z
Then comparing coefficients of x we get
6 = 12 0 i.e., 1 = 2 0, 0  Z, which is not possible. Hence equality cannot hold in second

case also.

Greatest Common Divisor

Let us see how we calculate g.c.d. of any two elements in a Euclidean domain. (See page 29
also) Let a, b be two non zero elements of a Euclidean domain R. By repeated use of the
Euclidean division algorithm we get

a = t1 b + r1 where d(r1) < d(b) (or r1 = 0)
b = t2 r1 + r2 where d(r2) < d(r1) (or r2 = 0)
r1 = t3r2 + r3 where d(r3) < d(r2)

. . . . . . .

. . . . . . .
rk–2 = tkrk – 1 + rk where d(rk) < d(rk–1)
rk–1 = tk + 1 rk + 0

Then if r1 = 0, g.c.d.(a, b) = b otherwise g.c.d.(a, b) = rk
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One may notice here, the adove process must finish as d(b), d(r1), d(r2), ..... is a decreasing
sequence of non – ve integers and hence ri = 0 for some i.

Let us prove the result for, say, k = 3.
We have

a = t1 b + r1 ...(1)
b = t2 r1 + r2 ...(2)
r1 = t3r2 + r3 ...(3)
r2 = t4r3 + 0 ...(4)

To show that g.c.d.(a, b) = r3 we prove that r3 |a, r3 | b and whenever r | a and
r |b then r |r3.

Now (4)  r3 | r2  r3 | t3r2 and as  r3 | r3
we find r3 | (t3r2 + r3)  r3 | r1 using (3)
Similarly, r3 | r1, r3 | r2  r3 | b by (2)
and r3 | b, r3 | r1  r3 | a by (1)
Let now r |a and r |b, then r | r1 using (1)
Also r | b, r | r1  r | r2 using (2)

r | r1, r | r2  r | r3 using (3)
Hence g.c.d.(a, b) = r3, proving our assertion.
Again we know that g.c.d. (a, b) can be put in the form a  + b, for some

, 
Again we know that g.c.d. (

 
Again we know that g.c.d. (

 R. We can get this expression from above equation rk–2 = tk rk–1 + rk as here
rk = rk –2 – tk rk–1 and by successively going up the above equations we get the desired form.

We now discuss how to find g.c.d. of any two members of F[x].
Let f1, f2  F[x] be any two members.
Divide f1 by f2 to get  f1 = f2q1 + f3, deg f3 < deg f2

Divide f2 by f3 to get  f2 = f3q2 + f4, deg f4 < deg f3

Continuing like this, we'll finally reach
fn–1 = fnqn–1 + 0

then we claim fn = g.c.d.(f1, f2)
Consider the ideal ( f1, f2) generated by f1 & f2.

( f1, f2) = {g f1 + h f2 | g, h  F[x]}
Let g f1 + h f2 be any member of this ideal, then

g f1 + h f2 = g( f2q1 + f3) + h f2

= f2 (gq1 + h) + gf3  ( f2, f3)
giving that ( f1, f2)  ( f2, f3)

Similarly we can show ( f2, f3)  ( f1, f2) and hence ( f1, f2) = ( f2, f3)
which would finally lead us to the result

( f1, f2) = ( f2, f3) = ..... = ( fn, 0) = ( fn)
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That fn is g.c.d.( f1, f2) now follows from exercise 16 page 416.
We illustrate through the following :

Problem 26: Find g.c.d. of
(i) 9, 15;  7, 10 in Z

(ii) 11 + 7i,  18 – i in Z[i]
(iii) x4 + x3 + 2x2 + x + 1, x3 – 1;  x2 + 1, x6 + x3 + x + 1 in Q[x]

Solution: (i) We have
15 = 9×1 + 6 10 = 7×1 + 3
9 = 6×1 + 3 7 = 3×2 + 1
6 = 3×2 + 0 3 = 1×3 + 0

i.e., g.c.d. (9, 15) = 3 and g.c.d.(7, 10) = 1
(ii) Dividing 18 – i by 11 + 7i, we get

18
11 7

i
i
i

11 7i
=

(18 ) (11 7 )
(11 7 ) (11 7 )

i i
i i

(18 ) (11 7 )(18 ) (11 7 )i i(18 ) (11 7 )
(11 7 ) (11 7 )(11 7 ) (11 7 )i i(11 7 ) (11 7 )

 = 
191
170

 – 
137
170

i

= 211
170
21211 211 21

170
1

170170
 – 331

170
33331 331 33

170
1

170170
 i = (1 – i) + 21 33

170 170
i21 33i21 33ii21 3321 33i

170 170170 170170 170

Thus 18 – i = (11 + 7i) (1 – i) + 3i ...(1)
Dividing 11 + 7i by 3i, we get

11 7
3

i
i

11 7i
 =

(11 7 )( 3 )
3 ( 3 )

(11 7 )( 3 )
3 ( 3 )

i i
i i

 = 
21
9

 – 
33
9

i = 
7
3

 – 
11
3

i = (2 – 3i) + 1 2
3 3

i1 2i1 2i1 21 2i
3 33 33 3

Giving 11 + 7i = 3i (2 – 3i) + (2 + i) ...(2)

Again
3

2
i

i
= 

3 (2 )
(2 ) (2 )

i i
i i

3 (2 )3 (2 )i i3 (2 )
(2 ) (2 )(2 ) (2 )i i(2 ) (2 )

 = i + 3 1
5 5

i3 13 13 1 i3 1 i
5 55 55 5

i

or 3i = i (2 + i) + 3 1
5 5

i3 13 13 1 i3 1 i
5 55 55 5

i  (2 + i)

3i = i (2 + i) + (1 + i) ...(3)
Dividing (2 + i) by (1 + i), we get

2
1

i
i
i
i

= 
2
1

i
i
i
i

· 
1
1

i
i
i
i

 = 
3
2

 – 
1
2

i = 1 + 
1 1
2 2

i1 11 11 1 i1 1 i
2 22 22 2

i

2 + i = (1 + i) . 1 + 1 ...(4)
Dividing 1 + i by 1 we have (1 + i) = 1· (1 + i) + 0
Hence g.c.d.(11 + 7i, 18 – i) = 1.
If we retrace the steps backwards from (4) to (1) we get

1 = (11 + 7i) (6 – 6i) – (6 – 6i) (18 – i)
i.e., we can express the g.c.d. in the form a + b.
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(iii) By actual division

3 1 4 3 2

1

2 1x

x

x x x x1 x x x x

1
4 3 22 14 3 22 14 3 2x x x x2 1x x x x2 1
4

3 22 2 1
x x
x x x
x x

3 22 2 13 22 2 13 2x x x2 2 1x x x2 2 1
3

2
1

2 2 2
x
x x

1
2 2 2x x2 2 2x x2 2 2

we find x4 + x3 + 2x2 + x + 1 = (x3 – 1) (x + 1) + (2x2 + 2x + 2)

Similarly, x3 – 1 = (2x2 + 2x + 2) 1
2 2
x 1x 1x 1
2 22 22 2

 + 0

Hence required g.c.d. is 2x2 + 2x + 2.
One can similarly tackle the second part. We notice
x6 + x3 + x + 1 = (x2 + 1) x2 + (x + 1) (Dividing x6 + x3 + x + 1 by x2 + 1)

x2 + 1 = (x + 1) (x – 1) + 2 (Dividing x2 + 1 by x + 1)

x + 1 = 12
2

x1 x1 x
22

x  + 1 (Dividing x + 1 by 2)

2 = 1 × 2 + 0 (Dividing 2 by 1)
Thus g.c.d. is 1

Unique Factorization Domains

Definition: Let R be an integral domain with unity then R is called a unique factorization
domain (UFD) if

(i) every non zero, non unit element a of R can be expressed as a product of finite number
of irreducible elements of R and

(ii) if a = p1p2 ..... pm
  a = q1q2 ..... qn

where pi and qj are irreducible in R then m = n and each pi is an associate of some qj.
(It would, of course, be possible to write qis in such a manner that each pi will be an

associate of qi.)

Example 9: The ring < Z, + , · > of integers is a UFD. We know it is an integral domain with
unity. If n 

 The ring <
 Z be any non zero, non unit element (i.e., n 

, + , · > of integers is a UFD. We know it is an integral domain with
 0, ±1) of Z then if

n > 0, we can write

n = 1
1p 1 2

2p 2
2 ..... m

mp m  where pi are primes
 n = (p1p1 ..... p1) (p2p2 ..... p2) ..... (prpr ..... pr)

or that n is a product of prime (and thus irreducible) elements of Z. Again this representation
of n is unique (by Fundamental theorem of Arithmetic).
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In case n < 0, let n = (– m) where m > 0 then we can express m as product of primes
(therefore, irreducibles) in Z

say, m = q1q2 ..... qk
then (–m) = n = (–q1) (q2) ..... (qk)

Example 10: A field < F, +, · > is always a UFD as it contains no non zero, non unit elements.

Example 11: [ 5][ 5]Z  is an integral domain which is not a UFD.

46  [ 5][ 5]Z  is a non unit, non zero element and we can express it as product of irreducibles
in two ways

46 = 2 . 23

46 = (1 3 5)(1 3 5)(1 3 5)(1 3 5)(1 3 5)(1 3 5)(1 3 5)(1 3 5)(1 3 5)(1 3 5)(1 3 5)(1 3 5)(1 3 5)(1 3 5)(1 3 5)(1 3 5)(1 3 5)(1 3 5)(1 3 5)(1 3 5)

But 2 is not an associate of 1 3 51 3 51 3 51 3 51 3 5  or 1 3 51 3 51 3 51 3 51 3 5 . Hence [ 5][ 5]Z  is not a UFD.
To prove that 2 is irreducible, mimic the proof of example 6.
In fact, 6 = 3.2

6 = (1 5)(1 5)(1 5)(1 5)(1 5)(1 5)(1 5)(1 5)(1 5)(1 5)(1 5)(1 5)(1 5)(1 5)(1 5)(1 5)(1 5)(1 5)(1 5)(1 5)

is another example of two distinet factorizations of 6 into irreducibles.
Remark: As in example 6 on page 410 we can show that 2 is irreducible but not prime in

[ 5][ 5]Z  and thus by using next theorem, [ 5][ 5]Z  cannot be a UFD.

Theorem 18: In a UFD R an element is prime iff it is irreducible.

Proof : Let a  R be a prime element, then since R is an integral domain with unity,
a will be irreducible. (See Cor. after theorem 9).

Conversely, let a  R be irreducible. Then a is non zero, non unit. Let a | bc
then  bc = ak for some k

Case (i):  b is a unit
then c = akb–1 = a (kb–1)  a | c.
Case (ii):  c is a unit then similarly, a | b.
Case (iii):  b, c are non units

If k is a unit, then bc = ak
 a = b(ck–1)

Since a is irreducible, either b or ck–1 is a unit. But b is not a unit. Thus ck–1 is
a unit.

But that implies c is a unit, which is again not true. Hence k is not a unit.
We can thus express

b = p1p2 ..... pm.
c = q1q2 ..... qn
k = r1r2 ..... rt
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as product of irreducibles (by def. of UFD).
So bc = ak  becomes

p1p2 ..... pm q1q2 ..... qn = ar1 r2 ..... rt = x (say)
Then x is an element having two representations as product of irreducible elements. By Def.

of UFD each element in one representation is an associate of some element in the other.
 a is an associate of some pi or some qj
 ua = pi or ua = qj for some unit u

 a | pi or a | qj
 a | b or a | c  (pi | b, qj | c)
 a is prime element.

Theorem 19: If R is an integral domain with unity in which every non zero, non unit element
is a finite product of irreducible elements and every irreducible element is prime, then R is a
UFD.

Proof: To show that R is a UFD we need prove that if a R be a non zero, non unit element
and

a = p1p2 ..... pm = q1q2 ..... qn
where pi and qj are irreducible elements then m = n and each pi is an associate of some qj.
We use induction on n.
Let n = 1, then a = p1p2 ..... pm = q1 and as q1 is irreducible some pi is a unit. But each

pi being irreducible cannot be a unit. Thus m = 1.
a = p1 = q1 or that the result is true for n = 1. Let it be true for n – 1.

Let now a = p1p2 ..... pm = q1q2 ..... qn
Then p1p2 ..... pm = q1(q2 ..... qn)

 q1 | p1p2 ..... pm
Since q1 is irreducible, it is prime (given)

 q1 | pi for some i
Without loss of generality, we can take  i = 1
then  q1 | p1  p1 = q1u1
But p1 irreducible  q1 or u1 is a unit.
As q1 is not a unit (being irrducible), u1 will be a unit and thus p1, q1 are associates.
Now (q1u1)p2p3 ..... pm = q1q2 ..... qn
or (u1p2)p3 ..... pm = q2q3 ..... qn
 p2 p3 ..... pm = q2q3 ..... qn, p2 = u1p2 is irreducible.
R.H.S. contains n – 1 elements and result being true for n – 1, we find

m – 1 = n – 1  m = n.
Also, just as we showed that q1 is an associate or p1, we can show that q2 is an associate

of p2, by considering p1p2 ..... pm = q2(q1q3 ..... qn)
Thus qi will be an associate of pi.
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Hence R is a UFD
Since we've already proved that in a UFD every irreducible element is prime, we have proved

Theorem 20: An integral domain R with unity is a UFD if and only if every non zero, non
unit element is a finite product of irreducible elements and every irreducible element is prime.

Which could be taken as a second definition of a UFD.

Theorem 21: An integral domain R with unity is a UFD iff every non zero, non unit element
is finite product of primes.

Proof: If R is a UFD then every non zero, non unit element is a finite product of irreducibles
(by def.) and also every irreducible element is prime, hence the result follows.
Conversely, let a  R be a non zero, non unit element. Then a = p1p2 ..... pn, where pi are
prime elements  i. Since R is an integral domain, prime elements are irreducible and so each
pi is irreducible. We now show that every irreducible element of R is a prime element. Let xi

 R be any irreducible element. Then x  0, non unit. Thus x = q1q2 ..... qm where qi are
prime. Suppose m > 1. Since x is irreducible, either q1 or (q2q3 .. qm) is a unit. But q1 is
prime and thus cannot be a unit. So (q2q3 ..... qm) is a unit which implies q2 is a unit but that
is not true as q2 is a prime. Hence m = 1 or that x is prime. By theorem 20 then, R is a UFD.
Summing up the above results we have proved

Theorem 22: If R is an integral domain with unity then the following are equivalent:
(i) R is a UFD.

(ii) Every non zero, non unit element of R is a finite product of irreducible elements and
every irreducible element is prime.

(iii) Every non zero, non unit element of R is finite product of prime elements.

Theorem 23: In a UFD R any two non zero elements have a g.c.d.

Proof : Let a, b be any two non zero elements of R.
Suppose one of them (say a) is a unit then aa–1 = 1

b = (aa–1)b = a(a–1 b)
 a | b

Also   a = 1. a  a | a
Now if c | a and c | b then as it means c | a
we get a = g.c.d.(a, b).
Similarly if b is a unit, b = g.c.d.(a, b).
Let now a & b be non units. Since R is a UFD we can express

a = 1 2
1 2

1 2p p ..... n
np

b = 1 2
1 2

1 2p p ..... n
np

as product of irreducibles (Note it is possible to express both a, b as product of same
irreducibles by suitably choosing the powers).
Let si = min ( i, i)
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we show d = 1
1
sp 2

2
sp ..... ns

np  is g.c.d.(a, b)

Now a = ( 1
1
sp 2

2
sp ..... ns

np ) ( 1 1
1

sp 1 1s1 1s1 1 2 2
2

2 2sp ..... n ns
np )

= d ( 1 1
1

sp 1 1p 1 1s1 1s1 11 1s1 1s1 1 2 2
2

sp 2 2p 2 2s2 2s2 22 2s2 2s2 2 ..... n ns
np n np n nsn nsn nn nsn nsn n )

 d | a
Similarly d | b
Let now c |a and c |b
If c is a unit,  d = (cc–1)d  c | d
If c is not a unit, we can write

c = 1
1
rp 2

2
rp ..... nr

np
Since c |a, ri i  for all i

c |b, ri i  for all i
 ri  min ( i, i) = si  for all i

Thus d = 1
1
sp 2

2
sp ..... ns

np  = ( 1
1
rp 2

2
rp ..... nr

np ) ( 1 1
1
s rp 1 1s r1 1s r1 1 ..... n ns r

np n ns rn ns rn n )
 c |d

Hence d = g.c.d.(a, b)
which proves our result.

As seen earlier, if d1 and d2 are two g.c.d.s of a, b then d1 and d2 are associates.
It should now be a simple exercise for the reader to prove

Theorem 24: Any two non zero elements in a UFD have an l.c.m.

Problem 27: If in a UFD R, a, b are relatively prime then a | bc  a | c.

Solution: Let a | bc then  r such that bc = ar
If a is a unit

c = (aa–1)c = a(a–1c)  a |c
If b is a unit

ba = ar  c = b–1 ar
 c = a(b–1 r)  a |c

If c is a unit bc = ar
 b = arc–1  a |b
 g.c.d.(a, b) = a

But a, b  being relatively prime
g.c.d.(a, b) will be a unit

 a is a unit
 a | c as before.

If r is a unit
    then bc = ar
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 bcr–1 = a  a | b
 g.c.d.(a, b) = b  b is a unit
 a | c as  before.

Suppose now none of a, b, c, r are units.
If b = 0, g.c.d.(a, b) = a, a unit which is not true

b  0.
If c = 0, then c = a . 0  a | c
So assuming that b  0, c  0, we'll get a  0, r  0

(as bc = ar)
Now a, b, c, r being non zero, non units in a UFD
we can express

a = a1a2 ..... am
b = b1b2 ..... bn
c = c1c2 ..... ct
r = r1r2 ..... rk

as product of irreducible elements.
Thus (b1b2 ..... bn) (c1c2 ..... ct) = (a1a2 ..... am) (r1r2 ..... rk) = x (say)
then x has two representations as product of irreducible elements. Therefore, by def. of a

UFD these representations should have same number of elements and each element on one side
will be associate  of an element on the other. So n + t = m + k and each ai is an associate of
some bi or ci.

If ai is an associate of some bi then
bi = aiu  for a unit u

 ai | bi and as bi | b
we get ai | b

 ai | g.c.d.(a, b) = 1 as ai | a
 ai is a unit, which is not true as ai is irreducible

Hence each ai has to be an associate of some ci
 ai = ciui  for unit ui

which gives (b1b2 ..... bn) (c1c2 ..... ct) = (c1u1c2u2 ..... cmum) (r1r2 ..... rk)
 b(cm + 1cm + 2 ..... ct) = (u1u2 ..... um)r
 b(cm + 1cm + 2 ..... ct) (u1u2 ..... um)–1 = r
 b | r  r = bd for some d
 bc = ar = abd
 b(c – ad) = 0  c = ad.  a | c.

We come now to the proof of a very important theorem that every PID is a UFD, but before
that a bit of warming  up by proving a few lemmas would be of great help.
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Lemma 1: In a ring R, the union of an ascending chain of ideals A1  A2  A3  ..... is an
ideal of R.

Proof: Let A =  Ai
x, y  A  x  Ai, y  Aj for some i, j

Without loss of generality we take  i  j then Ai  Aj
x, y  Aj = x – y  Aj  A.

Again x  A, r  R would imply, similarly that xr, rx  A. Hence the lemma.

Lemma 2: (Ascending Chain Condition): In a PID R every ascending chain of ideals must
terminate after finite number of steps.

Proof: Let A1  A2  A3  ..... be the given chain.
Let A =  Ai
Then A is an ideal of R, which being a PID means A is a principal ideal.
Let A = (a).
Then  a  (a) = A =  Ai

 a  Ai for some i
 all multiples of a are in Ai  (a) Ai
 A  Ai  Ai + 1  .....

i.e., A  At  for each t  i
i.e., A  Ai  At  A

 Ai = At
which proves our assertion.

Lemma 3: Every non zero, non unit element in a PID R is divisible by an irreducible element.

Proof: Let a R be a non zero, non unit element.
Let    I1 = (a).
If I1 is maximal ideal, then a is irreducible and as a | a, our lemma stands proved. Suppose

I1 is not maximal, then  some ideal I2  R, s.t., I1 
 | 

 I2 
, our lemma stands proved. Suppose

 R.
Let I2 = (p2).
If I2 is maximal then p2 will be irreducible and as p2 | a, the lemma is proved.

(a  I1  I2 = (p2)  a = tp2).
Suppose I2 is not maximal, then  an ideal I3 such that I1  I2  I3  R and proceeding

like this we get an ascending chain of ideals in R which by lemma 2 must terminate after a
finite number of steps, say at In = (pn) which will then be maximal and pn will be irreducible
with pn | a.

We are now ready to prove

Theorem 25: A PID R is a UFD.

Proof: Let a  R be any non zero, non unit element. If a is irreducible then as
a = a, we can express a as finite product of irreducibles. If a is not irreducible then by lemma 3,
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a is divisible by some irreducible element p1.
p1| a  a = a1 p1 for some a1

If a1 is irreducible we've been able to express a as a product of finite number of irreducible
elements.

Suppose a1 is not irreducible.
Then a1 is a non zero, non unit element as a1 = 0  a = 0, which is not so. Again if a1

is a unit then as a = a1p1, we find a and p1 are associates and so a is irreducible as p1 is
irreducible (see exercises). But a1 is not irreducible.

Thus again by lemma 3,  an irreducible element p2 such that p2 | a1
 a1 = p2a2 for some a2

If a2 is irreducible, then as
a = a1p1 = p2p1a2

We are done. If a2 is not irreducible, we continue like this.
Consider the ideals (a), (a1), (a2), .....
Then (a)  (a1)  (a2)  .....
as x  (a)  x = ar = p1a1r  (a1) etc.
Thus we get an ascending chain of ideals which must terminate after a finite number of steps

(by lemma 2). Hence we'll get some irreducible element an so that
a = p1p2 ..... pnan

i.e., a is expressed as a product of finite number of irreducible elements.
We need show now that if a has more than two such representations then the number of

elements is same in both and each element in one representation is an associate of an element
in the other.

Let a = p1p2 ..... pm = q1q2 ..... qn
and proceed exactly as in theorem 19 and our result is proved.

Remark: For example of a UFD which is not a PID, see examples 16, 17 page 455.

Problem 28: Show that in any PID every non zero ideal is a unique product of prime ideals.

Solution: Let I  0 be any ideal in a PID R.
Suppose I  R.
Since R is a PID, I = < a > for some a, where a will not be a unit otherwise I = R.
Thus a is non zero, non unit element of R.
Now R being a PID is a UFD and, therefore, we can express

a = p1p2 ..... pr where pi are irreducible.
Let Pi = < pi >        then each Pi is a maximal ideal

 each Pi is a prime ideal. (See problem 28, page 390)
Now a = p1p2 ..... pr  P1P2 ..... Pr

 multiples of a are in P1P2 ..... Pr
 < a >  P1P2 ..... Pr



444 A Course in Abstract Algebra

 I  P1P2 ..... Pr
Again let b  P1P2 ..... Pr be any element, then

b = (x1x2 ..... xr) + (y1y2 ..... yr) + ..... (finite sum)
xi, yi, ..... Pi

Now x1  P1 = < p1 >  x1 = p1k1
Similalry x2 = p2k2

........
xr = prkr

 x1x2 ..... xr = p1p2 ..... prk1k2 ..... kr = a(k1k2 ..... kr)  < a > = I
Similaly, y1 y2 ..... yr  I and others are also in I

 b  I
 P1P2 ..... Pr  I
 I = P1P2 ..... Pr

uniqueness follows from the fact that each pi is uniquely determined.

Definition: Let R be a UFD and let
f (x) = ao + a1x + ..... + anx

n  R[x] be a non zero polynomial.
Then d = g.c.d.(a0, a1, ....., an) is called the content of f (x) and is denoted by c( f ).
A polynomial f (x) is called primitive if c ( f ) is a unit.
Since g.c.d. is not essentially unique, one may have more than one content of a polynomial.

Two contents would, however, be associates.

Example 12:    f (x) = 8x3 + 6x + 1  Z[x] is primitive
whereas g(x) = 8x3 + 6x + 2  Z[x] is not primitive
as c( f ) = g.c.d.(8, 6, 1) = 1 whereas c(g) = 2

Since g(x) = 2 (4x3 – 3x – 1) = 2g1(x) where c(g1) = 1
we find it is pcssible to write

g(x) = 2g1(x)  where g1(x) = is primitive
In fact, we can prove

Theorem 26: If f (x) be a non zero polynomial in R[x] where R is a UFD,
then f (x) = df1(x) where f1 is primitive and d = c( f ).

Proof: Let f (x) = ao + a1x + ..... + anx
n

and let c( f ) = d = g.c.d.(ao, a1, ..... an)
Then   d | ai  for all i
 ai = dui  for some ui

f (x) = duo + du1x + ..... + dunx
n

=  d(uo + u1x + ..... + unx
n) = df1(x) where f1(x) will be primitive.

Note: If t = g.c.d.(uo, u1 ,....., un)
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then t | ui  i  td | dui  i
 td | ai  i and thus td | d
 t | 1 or that t is a unit.

Theorem 27: (Gauss' Lemma): Let R be a UFD, then in R[x] the product of two primitive
polynomials is a primitive polynomial.

Proof: Let f (x) = ao + a1x + ..... + amxm

g (x) = bo + b1x + ..... + bnx
n

be two primitive polynomials in R[x], then f (x) and g(x) are non zero (by definition). Thus
f (x)g(x) = co + c1x + c2x

2 + ..... is also non zero.
Let d = g.c.d.(co, c1, c2, .....)
We show d is a unit. Suppose it is not, then there exists an irreducible element

p s.t., p|d.
[Recall that in a UFD, a non unit element a can be expressed as a product of irreducibles,

a = p1p2 ..... pn  p1 | a]
Thus p | d  p | ci for all i ...(1)
Now if  p | ai for all i then p | g.c.d.(ao, a1, ....., am), which is a unit, say, u.
Now p | u  u = pk  1 = p(ku–1)

 p is a unit,
which is not true as p is irreducible.

p  ai for some i
Let i be such least +ve integer, then

p | ao, p | a1, ....., p | ai–1, p  ai

Similarly  some integer j, s.t.,
p | bo, p | b1, ....., p | bj–1, p  bj

Now ci + j = (aobi + j + a1bi + j–1 + ..... + ai–1 bj + 1)
+ aibj + (ai + 1 bj – 1 + ..... + ai + j bo)

Since p | ci + j by (1) and also
p | (aobi + j + a1bi + j – 1 + ..... + ai–1 bj + 1),
p | (ai + 1 bj – 1 + ..... + ai + j b0)

we find  p | aibj, but p being irreducible in a UFD is prime
 p | ai or p | bj, a contradiction. Hence the result.

Cor.: If R is a UFD and f (x), g(x)  R[x], then
c ( fg) = c( f ) c(g) (up to units)

Since we can write f (x) = df1(x), d = c( f )
g(x) = d g1(x), d  = c(g)

f (x)g(x) = dd f1(x) g1(x)
where f1, g1 being primite give f1g1 to be primitive
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c( f1g1) = 1 (or a unit)
c( fg) = dd  = c( f ) c(g)

Converse of Gauss' Lemma is also true as we can prove

Theorem 28: If  f (x)g(x) is primitive polynomial in R[x], R being a UFD then so are f (x)
and g(x).

Proof:  fg is primitive
 c( fg ) is a unit
  an element r  R s.t., c( fg)r = 1
 c( f ) c(g) r = 1
 c( f ) [c(g) . r] = 1
 c( f ) is a unit   f is primitive.

Similarly c(g) is a unit  g is primitive.

Theorem 29: If R is an integral domain with unity, then units of R and R[x] are same.

Proof: Let ao be a unit of R.
Then  bo  R s.t., aobo = 1

Let f (x) = ao + 0.x + 0.x2 + .....
g(x) = bo + 0.x + 0.x2 + .....

then f (x)g(x) = aobo + 0.x + 0.x2 + .....
= 1 = 1 + 0.x + 0.x2 + .....

 f (x) is a unit in R[x]
i.e., ao is a unit in R[x].
Conversely, let f (x) be any unit of R[x]
Then  g(x) R[x] s.t.,

f (x)g(x) = 1 (= 1 + 0.x + 0.x2 + .....)
  deg ( fg) = deg 1
  deg f + deg g = 0
  deg f = deg g = 0
  f and g are constant polynomials

i.e., f (x) = ao + 0x + 0x2 + ..... ao  R
g(x) = bo + 0x + 0x2 + ..... bo  R

Since fg = aobo = 1
we find, ao = f (x) is a unit of R
Hence the result.

Problem 29: Show that 2x + 1 is a unit in Z4[x].

Solution: Since (2x + 1) (2x + 1) = 0x2 + 0x + 1 = 1
[4 = 0 in Z4]
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we find 2x + 1 is a unit in Z4[x].

Remark: Notice 2x + 1 is a non constant polynomial and therefore, does not belong to Z4 and
thus cannot be a unit in Z4. But then Z4 is not an integral domain. In fact, 1 and 3 are units
of Z4. [3  3 = 1].

Theorem 30: If R is an integral domain with unity and a is an irreducible element of R then
a is irreducible element of R[x].

Proof: Suppose a is not irreducible element of R[x] then  p(x), q(x)  R[x] s.t.,
a = p(x) q(x)
where p(x) and q(x) are non units.

Now  a = pq
  deg a = deg p + deg q
  0 = deg p + deg q
  deg p = deg q = 0

 p, q are constant polynomials  p, q  R
Thus a = pq, p, q  R and p, q are non units [units of R and R[x] are same], a contradiction

to the fact that a is irreducible in R.
Hence the result follows. (See theorem 32 also).

Definition: Let R be an integral domain with unity. A polynomial f (x)  R[x] of positive degree
(i.e., of deg  1) is said to be an irreducible polynomial over R if it cannot be expressed as
product of two polynomials of positive degree.

In other words, if whenever f (x) = g(x)h(x),
then deg g = 0  or  deg h = 0

A polynomial of positive degree which is not irreducible is called reducible over R.

Example 13: x2 + 1  Z[x] is irreducible over Z.
whereas it is reducible over C
as x2 + 1 = (x – i) (x + i)
Again x2 – 2 is irreducible over Z, but reducible over R, the reals as

x2 – 2 =  ( 2)x( 2)( 2)( 2)( 2)( 2) ( 2)x( 2)( 2)( 2)( 2)( 2)

Remarks: (a) Any polynomial of degree 1 is irreducible over a field F.
(b) If f (x)  F[x] is any polynomial of degree > 1 and f (a) = 0 for some a  F then f (x)

is reducible over F.
By division algorithm, for f (x), g(x) = (x – a), we can find t and r such that

f (x) = (x – a)t(x) + r, where, either r = 0 or deg r < deg (x – a), i.e., either r = 0 or is a constant
polynomial.

Since f (a) = 0, we get 0 = f (a) = r
 f (x) = (x – a) t(x)
 deg f = deg (x – a) + deg t(x)
 deg t(x)  1 as deg f > 1, deg (x – a) = 1
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thus f is reducible.
(c) Let f (x)  F[x] be a polynomial of degree 2 or 3 then f (x) is reducible implies

 a 
) Let 

 F ; s.t., f (a) = 0
f (x) is reducible  f (x) = g(x)h(x)  where deg g, deg h  1
Now       deg f =  deg g + deg h

 2, 3 = deg g + deg h
 one of deg g or deg h is 1

Let deg g = 1 and suppose g(x) = ao + a1x,  (a1  0)
then g(– aoa1

–1) = 0
 f (– aoa1

–1) = 0.  Take a = – aoa1
–1.

(d) f (x) F[x] a polynomial of degree 2 or 3 is reducible iff  a  F such that
f (a) = 0

Follows by (b) and (c).
(e) The fact that f (a) = 0 is also expressed by saying that a is a root or a zero of the

polynomial f (x).
(f ) Polynomials of degrees greater than 3 may be reducible over a field even though they

have no root in the field.
For instance, the polynomial x4 + 2x2 + 1 = (x2 + 1)(x2 + 1)  Q[x], but has no root in Q.
We should be careful while talking about irreducible elements and irreducible polynomials

as the following example shows us the difference between the two.

Example 14: Consider the polynomial 2x2 + 2
Since it cannot be expressed as product of two positive degree polynomials in Z[x], we

notice it is irreducible polynomial over Z.
Again        2x2 + 2 = 2 (x2 + 1)

= product of two polynomials
= gh (say)

Since g and h are non units in Z[x] as 1, – 1 are the only units of Z and, therefore, of Z[x]
we find 2x2 + 2 can be expressed as product of two non units and thus
2x2 + 2 is not an irreducible element in Z[x]. Hence an irreducible polynomial need not be an
irreducible element.

The converse, however, follows by

Theorem 31: Every irreducible element in R[x] is an irreducible polynomial, R being an
integral domain with unity.

Proof: Let f (x)  R[x] be any irreducible element.
Suppose f (x) is reducible polynomial,

then f (x) = g(x)h(x),  g, h  R[x], with deg g > 0, deg h > 0
Since degree of g and h is positive, g and h are not constant polynomials

g, h  R
 g, h cannot be units in R
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 g, h cannot be units in R[x]
 f is not irreducible element.

a contradiction which proves our result. (See remark on page 450)

Example 15: The polynomial f (x) = x2 – 2x – 15
is both primitive as well as reducible over Z as

c( f ) = g.c.d.(1, – 2, – 15) = 1
and x2 – 2x – 15 = (x – 5)(x + 3)
However, the polynomial x2 – 2 is primitive as well as irreducible over Z.

Theorem 32: If R is a UFD then any f (x)  R[x] is an irreducible element of R[x] iff either
f is an irreducible element of R or f is an irreducible primitive polynomial of R[x].

Proof: Let f (x) R[x] be an irreducible element of R[x]. If f R then f will be
irreducible element of R as well. [Units of R and R[x] are same.]

Suppose f  R, we show f is then irreducible primitive polynomial of R[x].
Suppose f = gh  for some g, h  R[x].
Since f is irreducible element of R[x], one of g or h must be a unit of R[x].

 one of g or h must be in R (as units of R[x] and R are same).
 deg g = 0 or deg h = 0

thus f is not reducible or that f is irreducible polynomial of R[x].
(In fact, it follows by theorem 31).
Again since any polynomial f (x) can be written as a product of c( f ) and a primitive

polynomial we can write f = df1 where c( f ) = d 
) can be written as a product of 

 R and f1 is primitive.
Since     d  R, deg f1 = deg f

 deg f1  1
 f1  R
 f1 cannot be a unit of R[x].

Thus f = df1, f1 is not a unit, f is irreducible element.
  d is a unit
  c( f ) = unit
  f  is primitive polynomial.

Conversely, if f  is an irreducible element of R then f  is an irreducible element of R[x], (see
theorem 30).

Suppose now f is an irreducible primitive polynomial of R[x]. We show f is irrdeucible
element of R[x].

Since f is irreducible polynomial, deg f   1
and so f R
 f cannot be a unit [as units of R and R[x] are same]. Also, of course, f  is non zero.
Suppose now f (x) = g(x)h(x) for some g, h  R[x].
Since f is irreducible polynomial



450 A Course in Abstract Algebra

either  deg g = 0  or  deg h = 0
Without any loss of generality, we can take deg g = 0.

 g is a constant polynomial say, bo + 0x + 0x2 + .....
 g  R

Now  c( f ) = c(gh) = c(g) c(h)
f  being primitive, c( f ) = unit u

c(g) c(h) = u  c(g) | u
 c(g) is a unit

or that g is a unit of R[x].
(Unit = c(g) = g.c.d.(bo) = bo = g)
Hence f (x) is irreducible element of R[x].

Remark: If F is a field then every irreducible polynomial of F[x] is irrdeducible element of
F[x] and conversely.

Let f (x) be irreducible polynomial in F[x] and suppose f = gh.
Since  f  is irreducible polynomial,
either deg g = 0,  or  deg h = 0.
Suppose deg g = 0, then g is a constant polynomial, say,

g(x) = bo + 0.x + 0x2 + .....
where bo  F, bo  0,  bo

–1  F
i.e., bo = g is a unit in F and, therefore, a unit in F[x].
Thus f is irreducible element of F[x].
Notice, since f is irreducible polynomial, deg f  1 and so f  is non zero, non unit element

of F[x].
Converse follows by theorem 31.

Theorem 33: If F is a field then an ideal < p(x) >  {0} in F[x] is maximal iff
p(x) is irreducible in F[x].

Proof: If p(x) is irreducible polynomial over F, then it is irreducible element of F[x] and also
since F is a field, F[x] is a PID which is not a field. (See page 423). The result now follows
by theorem 10 on page 413.

Problem 30: Show that [ ]x
I

Q  where I = < x2 – 5x + 6 > is not a field.

Solution: Since x2 – 5x + 6 = (x – 2) (x – 3) we find it is not irreducible polynomial over Q.

Thus I = < x2  – 5x + 6 > is not a maximal ideal of Q[x] and hence [ ]x
I

Q  is not a field.

Problem 31: Show that f (x) = x3 – 9 is reducible in Z11.

Solution: Since 4  4  4 = 9 in Z11, we find (x – 4) is a factor of x3 – 9. By actual division
we find

x3 – 9 = (x – 4) (x2 + 4x + 5) in Z11.
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Hence x3 – 9 is reducible.

Problem 32: Show that Z5[x] is a UFD. Is x2 + 2x + 3 reducible over Z5[x]?

Solution: Since 5 is a prime, Z5 is a field
 Z5 is a UFD
 Z5[x] is a UFD. (See theorem 34 on page 455)

Again x2 + 2x +3 will be reducible over Z5 if it has a root in Z5, but none of the elements
in Z5 is a root of x2 + 2x + 3, hence it is an irreducible polynomial over Z5.

Problem 33: Show that the polynomial x2 + x + 2 is irreducible over
F = {0, 1, 2} mod 3. Use it to construct a field of 9 elements.

Solution: Let f (x) = x2 + x + 2. If it is reducible over F, we should be able to find some 
 F s.t., f ( ) = 0. [See remark (c) on page 448.]
But for no  F, f ( ) = 0. [For example, for  = 1, 12 + 1 + 2 = 1  0 etc.]
Thus f (x) is irreducible polynomial over F and as F is a field, f (x) is irreducible element

of F[x]. Hence < f (x) > is a maximal ideal of F[x] proving thereby that
[ ]

( )( )
F x
f x

 is a field.

Any element of this field is of the type
p(x) + < f (x) >, where p(x) F [x].

Since F[x] is a Euclidean domain,
for f (x), p(x)  F[x],  t(x), r(x) s.t.,

p(x) = f (x) t(x) + r(x), where either
r(x) = 0 or deg r(x) < deg f (x) = 2
In either case r(x) is of the type ax + b, a, b  F
So p(x) – r(x) = f (x) t(x) ∈ < f (x) >
i.e., p – r  I, where I = < f (x) >

 p – r + I = I
i.e., p + I = r + I = ax + b + < f (x) >

Hence any member p + < f (x) > of 
[ ]
( )

F x
f x( )f x( )f x( )

 is of the type ax + b + < f (x) >.

Thus
[ ]
( )

F x
f x( )f x( )f x( )

= {ax + b + < f (x) > | a, b  F}

Since a  F = {0, 1, 2} can be chosen in three ways and for each choice of a, b can be

selected in three ways, we find the number of elements of [ ]
( )

F x
f x( )f x( )f x( )

 will be

3 × 3 = 9. Thus [ ]
( )

F x
f x( )f x( )f x( )

 is the required field of nine elements.
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Remark: Theorem 33 also implies that if F is a field and <p(x)> is an ideal of F[x]

then,
[ ]
( )

F x
p x( )p x( )p x( )

is a field iff p(x) is irreducible over F.

Problem 34: Show that the polynomial x3 + 2x + 1 is irreducible in Z3[x] and use it to construct
a field with 27  elements. Find the inverse of x2 + I in that field [where
I = < x3 + 2x  + 1 >].

Solution: It is easily seen that there doesn't exist any  Z3 = {0, 1, 2} mod 3 s.t.,
3 + 2  + 1 = 0. Hence f (x) = x3 + 2x + 1 is irreducible over Z3 and as in previous problem

3[ ]
( )

x
f x( )f x( )f x( )

Z
 is a field. Also this field is given by

3[ ]
( )

x
f x( )f x( )f x( )

Z
 = {a0 + a1x + a2x

2 + < f (x) > | ai Z3}

Let < f (x) > = I

Then 3[ ]x
I

Z  = {a0 + a1x + a2x
2 + I | ai  Z3}

Clearly since ai vary in Z3 = {0, 1, 2}, 3[ ]x
I

Z  has 3 × 3 × 3 = 27 elements.

Suppose now p(x) + I is inverse of x2 + I in 3[ ]x
I

Z .

Then (p(x) + I) (x2 + I) = 1 + I
 p(x) x2 + I = 1 + I  p(x) x2 – 1  I = < f (x) >

i.e., p(x)x2 – 1 is a multiple of f (x). Thus  some t(x) s.t.,
p(x)x2 + t(x) f (x) = 1

To find p(x) we use Euclidean algorithm

2 3

3
2 1

2 1

x
x

x x
x

x

2 1x x2 1x x2 1

2 1

2 1 2

2

2 2

2

2
1

x
x

x
x x
x
x

2 1 x
2 2

2x x2x x2

2

Notice operations are in Z3

Thus
x3 + 2x + 1 = x(x2) + (2x + 1)

x2 = (2x + 2) (2x + 1) + 1
giving  1 = x2 – (2x + 2) (2x + 1)

= x2 – [(2x + 2) {(x3 + 2x + 1) – x(x2)}]
= x2 – (2x + 2) (x3 + 2x + 1) + x(x2) (2x + 2)
= x2[1 + x(2x + 2)] – (2x + 2) (x3 + 2x + 1)

1 = x2(2x2 + 2x + 1) – (2x + 2) (x3 + 2x + 1)
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Hence p(x) = 2x2 + 2x + 1 and thus inverse of x2 + I in 3[ ]x
I

Z  is (2x2 + 2x + 1) + I.

Problem 35: Let F be a field and p(x), f(x), g(x) F[x] where p(x) is irreducible over F. Show
that if p(x) | f(x)g(x) then either p(x) | f(x) or p(x) | g(x).

Solution: Since p(x) is irreducible [ ]
( )

F x
p x( )p x( )p x( )

 is a field and therefore an integral domain. Let

I = < p(x) > and suppose : [ ][ ] F xF x
I

F x
I

 is the natural homomorphism, then

(f(x)) = f(x) + I, (g(x)) = g(x) + I

Now p(x) | f(x)g(x)  f(x)g(x) < p(x) >  = I

 fg + I = I

 (f + I )(g + I ) = 0 + I

 either f + I  = I or g + I = I

 f I  or g I, I = < p(x) >

 p(x) | f(x) or p(x) | g(x).

Lemma: If R is a UFD and p(x) is primitive polynomials in R[x] then it can be factored in
a unique way as a product of irreducible elements of R[x].

Proof: Let K be the field of quotients of R, then K[x] is a Euclidean domain and hence a PID
and thus a UFD.

Now p(x) R[x]   p(x) K[x] and as K[x] is a UFD we can express
p(x) = p1(x) p2(x) ..... pk(x).

as product of irreducible elements pi(x) of K[x].

Again pi(x)  K[x]  pi(x) = 1

ia
 fi(x)

where ai  R, fi R[x]
Since pi(x)  K[x]  pi(x) = o + 1x + 2x

2 + .....

where i K, which being field of quotients of R, means each i can be expressed as i

i

b
a

ai, bi  R, ai  0

or that pi(x) = o

o

b
a

 + 1

1

b
a

x + 2

2

b
a

x2 + ......

= 
1
a

 [co + c1x + c2x
2 + .....] = 

1
a

 f (x), f  R[x]

Again pi(x) is irreducible element in K[x].
fi(x) will be irreducible element in K[x] because if it is not so then we can write it as

fi = gi hi where gi, hi are non units.
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 pi = 1

ia
gi hi, where gi, hi are non units

 pi is not irreducible element
Again f1(x)  R[x]  fi = di fi

*(x) where fi
*(x) is primitive and di = c( fi)

pi = i

i

d
a

fi
*, i = 1, 2, ....., k

 p1 p2 ..... pk = 1 2

1 2

...

...
k

k

d d d
a a a

f1
*f2

* ..... fk
*

 p = 1 2

1 2

...

...
k

k

d d d
a a a

 f1
*f2

* ..... fk
*

 (a1a2 ..... ak)p = (d1d2 ..... dk)( f1
*f2

* ..... fk
*) ...(1)

Now as pi = i

i

d
a

 fi
* and pi is irreducible element we find fi

* will also be irreducible element

of K[x] otherwise pi will not remain irreducible element (as seen earlier).
Content of L.H.S. of (1) is (a1a2 ..... ak)u for some unit u as p is primitive and content of

R.H.S. of (1) is (d1d2 ..... dk)v, for some unit v as fi
* are primitive.

Equating the contents of both sides we get
a1a2 ..... ak = (d1d2 ..... dk)w where w = vu–1 is a unit.

Thus p(x) = (w–1 f1
*) ( f2

* f3
* ..... fk

*)
which is a product of irreducible elements in K[x]. Again fi

* being primitive and irreducible
elements in K[x], we find fi

* will be irreducible elements in R[x]. To show uniqueness
Let p(x) = r1(x) r2(x) ..... rk(x), where ri(x) are irreducible in R[x].
(Notice the number of elements in the product remain same as k as we are in a UFD)
Now p(x) primitive  each ri is primitive
because p = r1r2 ..... rk  c(p) = c(a1) c(a2) ..... c(ak)

 d = d1d2 ..... dk
 each di is a unit
 each ai is primitive

Hence each ai is primitive and irreducible element in R[x]
 ri(x) is irreducible in K[x] for all i.
But K[x] being a UFD, each ri is uniquely determined upto associates in K[x].

 ri & fi
* are associates for all i

 ri = ui fi
*

where ui is a unit in K[x] and thus in K  ui is of the form i

i

a
b

Hence ri = i

i

a
b

 fi
*
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 biri = ai fi
*

Equating contents on both sides, we get

bi = uai for some unit u in R or i

i

a
b

 = u–1 a unit in R or that ri is associate of

fi
* in R[x].

Theorem 34: R is a UFD  R[x] is a UFD.

Proof: Let f  R[x] be non zero, non unit element.
Let f = d f *(x) where d = c( f ), f * is primitive.
By lemma
f * = f1

* f2
* ..... fx

* where fi
* are irreducible elements of R[x] and this representation is unique

upto associates.
Also d  R and R is a UFD, thus either d is a unit or it can be written as

d = d1d2 ..... dr
where di are irreducible elements in R.
If d is a unit

f = d f * gives
f = (df1

*) f2
* ..... fk

*, df1
*, f2

*, ..... fx
* are irreducible,

which gives us the result.
If d is not a unit, let d = d1d2 ..... dr
Since each di is irreducible element of  R each di will be irreducible element of R[x], thus

f = finite product of irreducible elements in R[x] and representation is unique upto associates
thereby proving our theorem.

Remark: a, b  R are associates in R iff a, b are associates in R[x]. The result follows as
units of R and R[x] are same.

Example 16: Let F be a field then we've already seen that F[x, y] is not a PID.
Now F being a field is a UFD and therefore by above theorem F[x, y] will be a UFD. Thus

F[x, y] is an example of a UFD which is not a PID.

Example 17: Z is a PID and thus a UFD  Z[x] is UFD.
But Z[x] is not a PID otherwise Z has to be a field, which it is not and hence Z[x] is a UFD

but not PID. (See Cor. 1 page 428).

Theorem 35: Let R be a UFD and f (x)  R[x] be primitive polynomial. If f (x) is irreducible
element of K[x] then f (x) is an irreducible element of R[x].

Proof: Suppose f (x) is not irreducible element of R[x]
Then f = gh, g, h  R[x] are non units
Also we can write

g = dg*(x)
h = d h*(x), where g* and h* are primitive
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 f = dd g*h*

Equating contents on both sides, we get
u = dd vw as f is primitive and so are g*, h*

where u, v, w are units
Thus 1 = dd vwu–1

 d is a unit
Similarly d  is a unit

 g = dg*
 c(g) = c(dg*) = dc(g*) = unit × unit = unit
 g is primitive

Similarly h is primitive
Again g, h  R[x]  g, h  K[x]
Now f = gh, f is irreducible element of K[x]

 g or h is a unit of K[x]
Without any loss of generality let g be a unit in K[x]
Then  r  K[x], s.t., gr = 1

 deg g + deg r = 0
 deg g = deg r = 0
 g, r  K

Let g = , ,  R

Then f = h or that f = h

 c( f ) = c( h)
 u = v, u, v being units, (f, g primitive)

  = uv'

 g =  = uv' = unit in R

 g is a unit in R[x]
a contradiction giving us the result.
We now prove the converse in

Theorem 36: If f (x) R[x] is both primitive and irreducible element of R[x] then
f (x) is irreducible element of K[x].

Proof: Suppose f (x) is not irreducible element of K[x]
Then f = gh, where f, g are non units in K[x]
Thus f, g are non units of K.
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i.e., f, g  K
Note if g  K then as g  0, it will have multiplicative inverse being an element of a field

and hence will be a unit.
Thus deg g, deg h > 0

Now g(x) = 
1
d

 go(x)

 go(x) = dg(x)  R[x]
Similarly ho(x) = d h(x)  R[x]
Again go(x) = g*(x)

ho(x) = h*(x) where g*, h* are primitive
and , are g.c.d. of coeffs. of go and ho

c(go) =  c(ho) = 

f (x) = 
1

dddd
 g*h*

 dd'f = g*h*

Since g*, h* are primitive, by Gauss Lemma g*h* will be primitive.
 c(dd'f ) = c( g*h*) = 
 dd' = u  as f is primitive
 f (x) = u–1g*(x) h*(x), g*, h*  R[x], u  R

deg u–1g* = deg g* = deg g*

= deg g0 = deg 
1
d

g0 = deg g > 0

Also deg h* = deg h > 0
u–1g*, h* are non units in R[x]

Note deg h* > 0  h* is not a member of R
i.e., h* cannot be a unit of R and therefore, a unit of R[x]
Hence f = (u–1g*) h*

where u–1g* & h* are non units in R[x].
 f is not irreducible in R[x]

a contradiction, proving our result.

Problem 36: Find g.c.d.(2, x) in Z[x] and show that it cannot be put in the form
2r(x) + xs(x), for any r(x), s(x) 

)
Z[x].

Solution: We have
2 = 2 + 0.x + 0.x2 + .....
x = 0 + 1.x + 0.x2 + .....

Now 1 | 2 and 1 | x is obvious by definition as 1 is unity.
Suppose f | 2 and f | x. We show that f | 1
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Now f | 2  2 = fg for some g
 deg 2 = deg f + deg g
 0 = deg f + deg g
 deg f = 0 or that f is a constant polynomial

Let f = ao + 0.x + 0.x2 + .....
Again, f | x  ao | x  x = aoh(x)
Thus deg x = 0 + deg h which gives deg h = 1
Let h(x) = bo + b1x + 0 . x2 + 0 . x3 + .....
Then x = aoh = ao(bo + b1x) = aobo + aob1x

 1 = aob1 = f (x) b1
or that f | 1
Hence 1 = g.c.d.(2, x)
In view of theorem 1 page 398, any other g.c.d.(2, x) will be an associate of 1. Thus

1, – 1 are the g.c.d. of 2 and x in Z[x]. (Recall units of Z and Z[x] are same and also associate
of a unit will be a unit.)

Now suppose it is possible to express any g.c.d. f of (2, x) as f = 2r + xs, then
1 = (2r + xs) b1 = 2b1 (co + c1x + c2x

2 + .....) + b1xs(x)
where r(x) = co + c1x + c2x

2 + .....
i.e., 1 = 2b1co, showing that 2 is a unit in Z, which is not true. Hence the result follows.

Note: Z[x] is a UFD but not a PID. See example 17 page 455.
We now give a test for the irreducibility of a polynomial in Z[x] over Q the ring of rationals.

Theorem 37: (Eisenstein's Criterion): Let f (x) = ao + a1x + a2x
2 + ..... + anx

n be a polynomial
with integer coefficients (i.e., f (x) 

(Eisenstein's Criterion):
 Z[x]). Suppose that for some prime number p,

p | ao, p | a1, p | a2 ..., p | an–1, p an, p2 ao

then f (x) is irreducible polynomial over Q, the ring of rationals.
We first prove.

Lemma: If f (x)  Z[x] is primitive and f (x) is irreducible over Z then f is irreducible over
Q.

Proof: Suppose f is not irreducible over Q,
then we can write f = gh, g, h  Q[x]

with deg g, deg h > 0

Then g(x)  Q[x]  g = 
1

g1(x) where g1(x) Z[x]

h(x)  Q[x]  h = 1 h1(x) where h1(x) Z[x]

(For  instance, if g(x) = 
2
3

x2 + 1
2

x + 1  Q[x] then g(x) = 
1
6

 (4x2 + 3x + 6), where then

g1(x) = 4x2 + 3x + 6  Z[x]).
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Again g1(x)  Z[x]  g1 = dg1
* where g1

* is primitive
h1(x)  Z[x]  h1 = d' h1

* where h1
* is primitive

Thus f = gh =
1

 dd g1
*h1

*

 f = dddd g1
*h1

*

 c( f) = c(dd g1
*h1  

*)
Since f is primitive polynomial in Z[x], its content is a unit in Z and as units in Z are 1 or

– 1, c( f ) = ±1. Similarly, c(g1
*), c(h1

*) can be ±1.
Equating the contents on both sides we get

±  = ± dd'
i.e.,  = ± dd'

and hence the equation f = dd'g1
*h1

* reduces to f = ±g1
*h1

*

Now deg (±g1
*) = deg g1

* = deg dg1
* = deg g1

= deg 
1

g1 = deg g > 0

Similarly, deg (h1
*) > 0.

Thus we can write f = ±g1
*h1

* where ±g1
*,h1

* are polynomials in Z[x] and have positive
degree

 f is reducible over Z, a contradiction
hence the lemma is proved.

We now come to the proof of the main theorem.
We show f is irreducible over Z.
Suppose it is not irreducible over Z, then  g, h  Z[x] s.t., f = gh

with deg g, deg h > 0
Let g(x) = bo + b1x + ...... + bsx

s

h(x) = co + c1x + ...... + ctx
t

then g(x) h(x) = boco + (b1co + boc1)x + ......
So f = gh

 ao + a1x + ...... = boco + (b1co + boc1) x + ...
 ao = boco

Now p | ao  p | boco  p | bo or p | co as p is prime
Suppose p | b0 then p c0 as p2  ao

[p | b0, p | c0  p2 | b0c0  p2 | a0]
Again, p cannot divide all of b0, b1, b2, ......, bs as if it does

then p divides each term of the type
b0c0, b1c0 + b0c1, ......

i.e., p divides all of a0, a1, ......, an
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But p an

Let k be the smallest integer such that p bk, k  s  n

So p | b0, p | b1, ....., p | bk–1, p bk

Now ak = bkc0 + bk–1c1 + ..... + bock
p | ak by given condition as k < n
Also p | (bk–1c1 + bk –2c2 + ..... + b0ck)

 p | bkc0  p | bk or p | c0
both leading to a contradiction. Hence f (x) is irreducible over Z.

If f (x) is primitive, it will be irreducible over Q by lemma. If f (x) is not primitive we can
write f = d f1 where f1 is primitive and d = c( f )

Then f irreducible over Z  d f1 is irreducible over Z
 f1 is irreducible over Z
  f1 is irreducible over Q (as f1 is primitive)
 d f1 is irreducible over Q
 f is irreducible over Q

Hence the theorem is proved.

Remark: Since f (x) = g(x)h(x)  f (x + 1) = g (x + 1) h(x + 1)
We find f (x) will be reducible (irreducible) iff f (x + 1) is reducible (irreducible). In fact

one can take any integer in place of 1 above.

Example 18: The polynomial x2 – 4x + 2 is irreducible over Q, as if we take p = 2, then p
| 4, p | 2, p 1, p2 2.

Again, consider the polynomial x2 + 1 = f (x).
Since there is no prime p which divides 1, we cannot apply the Eisenstein's criterion to f

(x).
Consider f (x + 1) = (x + 1)2 + 1

= x2 + 2x + 2 (ao = 2, a1 = 2, a2 = 1)
Take p = 2, then p | 2, p 1, p2 2
Hence f (x + 1) is irreducible.
 f (x) is irreducible (by using above remark)
Again, let f (x) = x3 + x2 – 2x – 1
Since there is no prime that divides 1, we cannot apply the criterion here
Consider f (x + 1) = (x + 1)3 + (x + 1)2 – 2 (x + 1) – 1

= x3 + 4x2 + 3x – 1
we have the same situation. Let us consider

f (x – 1) = (x – 1)3 + (x – 1)2 – 2 (x – 1) – 1
= x3 – 2x2 – x – 1

Again it is not possible to apply the criterion.
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Consider f (x + 2)= x3 + 7x2 + 14x + 7
then p = 7 will do as here a0 = 7, a1 = 14, a2 = 7, a3 = 1 and 7 | 7, 7 | 14, 7 | 7, 7 1, 72 7.

Thus by criterion f (x + 2) and therefore, f (x) is irreducible.

Remark: One may note that Eisenstein's criterion is not necessary for irreducibility of a
polynomial as we've seen there does not exist any prime p such that p | 1 (although the polynomial
could be irreducible). x3 – x + 1 is irreducible over Q, but Eisenstein's criterion is not applicable.

The polynomial f (x) = x3 – x + 1 is irreducible over Q, as suppose it is reducible then it
has a root in Q.

Let
m
n

[m, n integers, n  0, (m, n) = 1] be a root

Then
3

3
m
n

 – 
m
m  + 1 = 0

 m3 – mn2 + n3 = 0
 m3 = n2 (m – n)
 n2 | m3  n | m3. 1  n | 1 as (m, n) = 1
 n = ±1


m
n

 = ± m

or that m3 – m + 1 = 0
 m (m2 – 1) = – 1
 m | 1 or that m = ±1


m
n

 = ±1 which gives

1 – 1 + 1 = 0, which is not possible.
Hence x3 – x + 1 is not reducible over Q.

Problem 37: For any prime p, show that the polynomial
xp–1 + xp–2 + ..... + x2 + x + 1 is irreducible over Q.

Solution: Let f (x) = x p–1 + x p–2 + ..... + x2 + x + 1

= 
1

1

px
x

1
1

 (sum of a G.P.)

Now

f (x + 1) = 
( 1) 1
( 1) 1

px
x

( 1) 1p( 1) 1p( 1) 1
( 1) 1

 = 1
1 2... ... 1

r p
p p p

c c cx p x p x p

x
1

... 1
r p

p p p
c c c... 1c c c... 1c c c1c c c1c c cr pc c cr p

x p x p x p...x p x p x p... ... 1x p x p x p... 1p p px p x p x pp p p
1c c c1

x p x p x p
1c c c1c c cx p x p x pc c c...c c c...x p x p x p...c c c... ... 1c c c... 1x p x p x p... 1c c c... 1

r pc c cr p
x p x p x p

r pc c cr p
1 2p p p1 2p p p1 2x p x p x pp p px p x p x pp p p

= 1 1
1 ...

p
p p

c cx p x p x

x
1 1

x p x p x
1 1

x p x p x
1 11 11 1p1 1

p p
c c1 1c c1 1

x p x p x
1 1

x p x p x
1 1

...x p x p x...
1 1p1 1

x p x p x
1 1p1 1

p px p x p xp p
c cx p x p xc c1 1c c1 1

x p x p x
1 1c c1 1

...c c...x p x p x...c c...1x p x p x

= 
1 1

1 2 ...
p

p p
c cx p x p
1 1

1 2p p1 2p p1 2x p x pp px p x pp p
1 11 1p1 1c c1 1c c1 1

x p x p...x p x p...c cx p x pc c1 1c c1 1
x p x p

1 1c c1 1
...c c...x p x p...c c...1 2p p1 2p p1 2x p x pp px p x pp p



462 A Course in Abstract Algebra

Since p is a prime number p | pcr
 for all 1  r  p – 1. (See example 3, page 357)

Also
1pcp p
1

p p
1

p p
1

p pp p  or p2 pcp–1

Hence by Eisenstein's criterion f (x + 1) and, therefore, f (x) is irreducible.

Problem 38: Let F be the field of quotients of an integral domain R. Define.

: R[x]  R[x] s.t.,
(a0 + a1x+ . . . +anxn) = a0xn + alxn 1+ . . . +an 1 x+an

then show that

  (i) ( f(x)) = xnf
1
x
1

f
1
xf xf  in F[x]

 (ii) is 1  1, onto
(iii) ( fg) = (f ) (g).

Solution: (i) If f(x) = a0 + a1x+ . . . +anxn, then

1
0

1 . . . n
n

aaf a
x x x
1 1

0
. . . n

n
aa1f a1f a1f a

x x
f af a

x x
f af af af a   and thus

1
0 1

1 . . . ( ( ))n n n
nx f a x a x a f x

x
x f a x a x a f x( ( ))x f a x a x a f x( ( ))1n n n

0 1 nx f a x a x a f x0 1x f a x a x a f x0 1
. . .x f a x a x a f x. . .n n nx f a x a x a f xn n n

nx f a x a x a f xnx f a x a x a f x( ( ))x f a x a x a f x( ( ))1x f a x a x a f x1x f a x a x a f x11n n n1n n n1n n nx f a x a x a f xn n n1n n n1x f a x a x a f x1n n n1n n nn n nx f a x a x a f xn n n
x

x f a x a x a f xx f a x a x a f x
x

x f a x a x a f xx f a x a x a f xn n nx f a x a x a f xn n nx f a x a x a f xx f a x a x a f xn n nx f a x a x a f xn n n

(ii) Let (f(x)) = (g(x)), where
f(x) = a0 + a1x+ . . . +anxn

g(x) = b0 + b1x+ . . . +bmxm

then
a0xn + a1xn 1+ . . . +an = b0xm + b1xm 1+ . . . +bm
 m = n and ai = bi for all i

or that f(x) = g(x) and so is 1-1
Again, for any f(x) = a0 + a1x+ . . . +anxn

 R[x]
g(x) = a0xn + alxn 1+ . . . +an will be the required pre image to show that  is

onto.
(iii) Let f(x)g(x) = h(x) , where f(x), g(x) are as defined above
Now  (f(x)g(x)) =  (h(x))

= xn+m h
1
x
11
xx

= xnf
1
x
1

f
1
xf xf xmg

1
x
11
xx

= (f(x)) (g(x))
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Problem 39: Let f(x)  a0 + a1x+ . . . +anxn
 Z[x], an  0. Suppose there exists a prime p, such

that p|a1, p|a2,....p|an, p a0, p2 an,

Show that f(x) is irreducible over Q.
Hence show that 2x4  4x3 + 6x2 + 2x + 1 is irreducible over Q.
Solution:  Define : Z[x]  Z[x] s.t.,

(f(x)) = (a0 + a1x+ . . . +anxn) = a0xn + alxn 1+ . . . +an

then 11
0 1 . . .( )  n n n

nxx f a x a x a0 1
n n n

0 1x f a x a x a0 1x f a x a x a. . .x f a x a x a. . .n n nx f a x a x an n n 11x f a x a x a1x f a x a x a

(f(x)) = an + an 1x + . . . + a1xn 1 + a0xn = g(x)
By Eisenstein's Criterion,  g(x) is irreducible over Q.
Suppose now f(x) is reducible over Q, then f(x) is reducible over Z.
Let f(x) = h(x)k(x), h(x), k(x) Z[x]

deg h(x) = r, deg k(x) = s, 1  r, s < n
Then (f(x)) = (h(x)) (k(x)) by previous problem
So g(x) = (h(x)) (k(x))
But g(x) is irreducible over Q, so either (h(x)) is constant or (k(x)) is constant.
Suppose (h(x)) = c a constant.
Then h(x) = cxr

Thus the constant term in f(x) = h(x)k(x) is zero, contradicting that p a0

So f(x) is irreducible over Z and therefore over Q.
For the last part, choose p = 2 and the result follows by the problem.
We discuss now another method for finding the irreducibility of a polynomial (with integer
coefficients) over Q.
Lemma: Let p be a prime. Define

: Z[x]  Zp[x], s.t.,
(f(x)) = ( )f x

where f(x) = a0 + a1x+ . . . +anxn
 Z[x]

and 0 1 . . .( ) [ ]n
n pf x a a x a x xn

0 1 n pf x a a x a x xf x a a x a x xf x a a x a x xf x a a x a x x0 1f x a a x a x x0 1 . . .f x a a x a x x. . . nf x a a x a x xn
n pf x a a x a x xn pZ

where i ia ai ia ai ia ai i (mod p)

Then  is an onto homorphism.
Proof:  Consider (f(x) + g(x))

= (h(x)), h(x) = f(x) + g(x)

= ( )h x
= ( ( )) ( ( ))( ) ( ) f x g xf x g x f x g x( ( )) ( ( ))f x g x( ( )) ( ( ))( ( )) ( ( ))f x g x( ( )) ( ( ))f x g x( ( )) ( ( ))f x g x( ) ( )f x g x( ) ( )( ) ( )f x g x( ) ( )
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and (f(x)g(x))
= (r(x))  where .f(x)g(x) = r(x)

= ( )r x

= ( ( )) ( ( ))( ) ( ) f x g xf x g x f x g x( ( )) ( ( ))f x g x( ( )) ( ( ))( ( )) ( ( ))f x g x( ( )) ( ( ))f x g x( ( )) ( ( ))

where suppose
f(x) = a0 + a1x+ . . . +anxn, 

0
( )

n
i

i
i

a xf x
0

n
i

i
i

a xia xi
0

g(x) = b0 + b1x+ . . . +bmxm,  
0

( )
m

j
j

j
b xg x

0

m
j

j
j

b xjb xj
0

j

r(x) = c0 + c1x+ . . . +cn+mxn+m, 
0

( )
n m

s
s

s
c xr x

n m

0

s
n m

sc xsc xs

n m

0

Then ck = a0bk + a1bk-1+ . . . +akb0

So 0 1 1 0
. . .

k k k kc a b a b a b0 1 1 00 1 1 0k k k k0 1 1 0k k k k0 1 1 0k k k k0 1 1 0c a b a b a bc a b a b a bc a b a b a bc a b a b a b0 1 1 0c a b a b a b0 1 1 0
. . .c a b a b a b. . .

k k k kc a b a b a bk k k k0 1 1 0k k k k0 1 1 0c a b a b a b0 1 1 0k k k k0 1 1 0
. . .

k k k k
. . .c a b a b a b. . .

k k k k
. . .

0 1 1 0
. . .

0 1 1 0k k k k0 1 1 0
. . .

0 1 1 0c a b a b a b0 1 1 0
. . .

0 1 1 0k k k k0 1 1 0
. . .

0 1 1 00 1 1 0k k k k0 1 1 0c a b a b a bk k k kc a b a b a bk k k k0 1 1 0k k k k0 1 1 0c a b a b a b0 1 1 0k k k k0 1 1 0

 a0bk + a1bk-1+ . . . +akb0 (mod p)
 ck (mod p)

Therefore, ( ) ( )( ) f x g xr x f x g x( ) ( )f x g x( ) ( )

So,  is a ring homomorphism.

Let 0 1 . . .( ) [ ]n
n pf x a a x a x x0 1

n
n pf x a a x a x xf x a a x a x xf x a a x a x xf x a a x a x x0 1f x a a x a x x0 1 . . .f x a a x a x x. . . nf x a a x a x xn
n pf x a a x a x xn pZ

Then f(x) = a0 + a1x+ . . . +anxn
 Z[x]

and as  (f(x)) = ( ),f x is onto

which proves the lemma.
Theorem 38: Let f(x) = a0 + a1x+ . . . +anxn Z[x], an  0.
Let p be a prime such that p does not divide an

Consider 0 1( ) [ ]n
n pf x a a x a x xn

0 1 n pf x a a x a x xf x a a x a x xf x a a x a x xf x a a x a x x0 1f x a a x a x x0 1
nf x a a x a x xn

n pf x a a x a x xn pZ , where i ia ai ia ai ia ai i (mod p)

Then if ( )f x is irreducible in Zp[x], then f(x) is irreducible in Q[x].

Proof: Suppose f(x) is reducible in Q[x]
Then f(x) is reducible in Z[x]
Let f(x) = g(x)h(x), g(x), h(x) Z[x]

1  deg g(x), h(x) < n
Since p does not divide an, it does not divide the leading coefficients of g(x) and h(x).
So, deg ( )g x  = deg g(x), deg ( )h x = deg h(x)
By above lemma,

( )f x =  (f(x)) =  (g(x))  (h(x)) = ( ) ( )g x h x
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Contradicting that ( )f x  is irreducible in Zp[x]
Therefore, f(x) is irreducible in Q[x].
Sometimes the above result is useful for determining the irreducibility of a polynomial by
considering the primes, 2, 3 or 5.
Problem 40: Show that f(x) = 8x3  2x2  5x + 10 is irreducible over Q.

Solution: Let p = 3.

Then ( )f x = 2x3  x2  x + 1 Z3[x]

Now (0)f = 1, (1)f = 2, (2)f = 2 (Remember it is modulo 3)

So, ( )f x  has no zero in Z3 implying ( )f x is irreducible in Z3[x].

Therefore, f(x) is irreducible in Q[x].

The next problems show that there can exist a polynomial f(x) Z[x] for which there is no
prime p such that f(x) is irreducible in Zp[x]. So, we can not use the above theorem.

Problem 41: Let p be an odd prime. Let * {0}p p {0}p pZ Z

Then 
*
pZ  is a multiplicative group.

Define: : * *
p p
* *
p pZ Z such that (x) = x2. Show that is a homomorphism such that

Ker  = {1, 
p p
1} and H = Im  = * )( pZ contains 1, 2 or 2.

Solution: Now (xy) = (xy)2 = x2y2 = (x) (y) as *
pZ is an abelian group. So, is a

homomorphism.

Also, a Ker  implies (a) = 1 or a2 = 1. So, p|(a  1)(a  1) implies a = 1 (mod p) or
a = 1 (mod p).

But (1) = 1 and ( 1) = 1. Therefore, Ker ={1, 1}.

Now
*
p H

Ker
HH

Z
and o(Ker ) = 2 implies H has index 2 in *

pZ .

Suppose that neither 1 nor 2 H

Since index of H is 2, ( 1)H = 2H,

Also
*
po

H

*
pp

H
p

H
Z  = 2 implies (xH)2 = H for every x *

pZ .

Therefore, x2 H for all x *
pZ

So, ( 1)H( 1)H = ( 1)H2H = 2H = H.

So, 2 H.

Similarly if 1 H and 2 H,

then ( 1)H = ( 2)H and ( 1)H ( 1)H = ( 1)H( 2)H = 2H = H implies 2 H.

If 2 H, 2 H
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then (2)H = ( 2)H.

So, ( 2)H( 2)H = ( 2)H2H = 4H = H

implies 4 H.

Also 4 H as x2 H for all x *
pZ .

so, 4 1 H and 4. 4 1 = 1 H

In any case 1, 2 or 2 H.

Problem 42: Show that x4 + 1 is not irreducible over Zp for any prime p.

Solution: Suppose p is an odd prime. By above problem one of the elements in { 1, 2, 2}
is in H.

If 1 H, then 1 = (a), a *
pZ

So a2 =  1.

Then x4 + 1 = (x2 + a)(x2  a)

If 2 H then 2 = (a), a *
pZ

So a2 = 2.

Then x4 + 1 = (x2 + ax  1)(x  ax  1)

If 2 H, then 2 = (a), a *
pZ

So, a2 = 2. Then x4 + 1 = (x2 + ax  1)(x2  ax  1)

In any case, x4 + 1 is reducible over Zp.

If p = 2, then x4 + 1 = (x2 + 1)(x2 + 1).

so, x4 + 1 is reducible over Z2.

Noetherian Rings

We'll, briefly, discuss noetherian rings here which are in fact a natural generalisation of PIDs.
We begin with

Definition I: A ring R is called a noetherian ring if every ideal of R is finitely generated.

Definition II: A ring R is called noetherain ring if every ascending chain of ideals in R terminates
after finite number of steps.

Before giving any examples let us first show the equivalence of the two definitions.

Definition I  Definition II
Let R be a ring in which every ideal is finitely generated. Let

A1  A2  A3  . . .
be any ascending chain of ideals in R,

Let A = i
i

Ai
i

A
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then A is an ideal of R (See lemma 1 on page 442)
Thus A is finitely generated.
Let A = < a1, a2, ....., an >
Consider any aj, then aj  A = Ai

 aj  Ai for some i
Suppose a1 

j
 Ai1

, a2  Ai2
 ....., an  Ain

Let k be such that Aij
  Ak j = 1, 2,....., n

Then a1, a2, ....., an Ak
 A  Ak  A
Hence Ak = A or that the chain terminates at Ak which proves the result.

Definition II  Definition I
Let R be a ring satisfying the condition of def. II.
Let I be any ideal of R. We  show I is finitely generated.
Let a1 I be any element.
If I = < a1 >, we are done.
If I  < a1 > then  same a2 I s.t., a2  < a1 >
Consider < a1, a2 >. If I = < a1, a2 > then the result is proved.
If not then   a3 I s.t.,  a3 < a1, a2 > continuing like this we get an ascending chain

of ideals
< a1 >  < a1, a2 >  < a1, a2, a3 >  . . .

which must break off after a finite number of steps, say at <a1, a2, ....., an>. Then
I = < a1, a2, ....., an > and the result is proved.

Example 19: A PID is a noetherian ring. (See lemma 2 on page 442). Thus in particular, Z,
Z[i], F[x] where F is a field are all noetherian.

Example 20: A finite ring will be noetherian and so would be any field. Remeber a field F has
only two ideal {0} and F.

Remark: A ring R is defined to be right noetherian if every ascending chain of right ideals
in R terminates after finite number of steps. Similarly one can talk of a left noetherian ring by
considering left ideals.

Again the condition of termination of an ascending chain is also referred to as ACC(ascending
chain condition). A ring in which ACC holds for right as well as left ideals is called a noetherian
ring.

One can have examples of right noetherian rings that are not left noetherian and vice versa.

Theorem 39: Quotient ring of a noetherian ring is noetherian.

Proof: Let R/I be any quotient ring of a noetherian ring R.
Let f : R  R/I be the the natural homomorphism, where f (r) = r + I

Let J  be any ideal of R/I. We show J  is finitely generated.
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Let J = {r  R | f (r) J }
then it is easy to see (and we urge the reader to prove) that J is an ideal of R.
Since R is noetherian, J is finitely generated.

Let J = < r1, r2, ....., rn >, then we can show that

J = < f (r1), f (r2), ....., f (rn) >

Let f (r) J  be any element then r  J and as J is generated by r1, r2, ....., rn, we get
r = 1 r1 + 2r2 + ...... + n rn i  R

 f (r) = f ( ) f (r1) + f ( 2) f (r2) + ..... + f ( n) f (rn), f ( i)  R/I

Showing that J  = < f (r1), f (r2), ....., f (rn) >
Hence R/I is noetherian.

Theorem 40: Homomorphic image of a noetherian ring is noetherian

Proof: Let f : R  R  be an onto homomorphism and suppose R is noetherian.
By Fundamental theorem of ring homomorphism
R  is isomorphic to a quotient ring of R, which will be noetherian by above theorem. Hence

R  will be noetherian.

Problem 43: Let R be a noetherian ring. Show that any ideal I  R is contained in a maximal
ideal of R.

Solution: If I itself is maximal we have nothing to prove. If I is not maximal then  an ideal
I1, s.t., I  I1. If I1 is maximal, we are done. If  not then 

 itself is maximal we have nothing to prove. If 
 another ideal I2 s.t., I  I1  I2

and continuing like this we get an ascending chain of ideals which must become stationary after
a finite number of steps

i.e., I  I1  I2 .....  In = In+1 = In+2 .....
and thus In will be maximal.

Problem 44: Let R be a commutative ring with unity. Let R[x] be noetherian. Show that R is
also noetherian.

Solution: By Theorem 15, page 427, we know that
[ ]R x R
x

R
x

R

Since R[x] is noetherian, its quotient ring [ ]R x
xx

 is noetherian and therefore so is R.

We use the famous Hilbert Basis theorem which says that polynomial ring R[x] of a noetherian
ring R is noetherian in proving the following

Problem 45: Show by an example that subring of a noetherian ring may not be noetherian.

Solution: Let Q be the field of rational numbers, then Q is a noetherian ring and thus Q[x]
is noetherian.

Let S = { f (x)  Q[x] |  f (x) = ao + a1x + a2x
2 + ..... + anx

n, ao Z, ai  Q i 1}
It is easy to see that S is a subring of Q[x].
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We notice  the chain

...
2 4
x xx
2 4

...x xx ...
2 4
x x
2 4

is an ascending chain of ideals in S which does not terminate after finite number of steps.

Suppose for instance, equality holds at < x > = 
2
x
2
x , then

2
x  < x >   

2
x  = h(x)x for some h(x) = 0 + 1x + ..... + m xm

where 0  Z


2
x  = 0x + 1x

2 + ..... + m xm+1

 210 0 ...
2

x x210 0 ...0 0 ...20 0 ...210 0 ...1
2

0 0 ...x x0 0 ...  = 2 1
10 ... m

o mx x x2 12 1m2 1m2 1
o m1o m1 ...o m...x x x1x x x1 ...x x x...o mx x xo m1o m1x x x1o m1 ...o m...x x x...o m...

 1
2

 = o But 1
2

Z

Hence .
2
xx .
2
xx  Similarly it follows that equality does not hold in the above chain at

any step.

Definition: A ring R is called artinian ring if every decending chain of ideals
I1  I2  I3  .....

terminates after a finite number of steps (the condition being called DCC or Decending Chain
Condition)

It is clear that any finite ring is artinian and so would be a field. The ring Z of integers is
not artinian as the decending chain

< n > < 2n > < 4n > .....

of ideals (for any +ve integer n) is infinite.
This also shows that subring of an artinian ring may not be artinian. Notice Q the ring of

rationals being a field is artinian. One can talk of left and right artinian rings also by considering
chain of left (right) ideals. See exercises ahead for  more results.

Exercises
1. Find sum and product of the polynomials f (x) = 4x – 5 and

g(x) = 2x2 – 4x + 2 in Z8[x].
2. Find all the units of Z[x] and Z7[x].
3. Show by using the long division process that

3x4 + x3 + 2x2 + 1 = (x2 + 4x + 2) (3x2 + 4x) + (2x + 1) in Z5[x].
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4. If R is a UFD and f (x) R[x] then it is possible to write f (x) = ag(x),
a  R, g(x) R[x] being primitive. Show that if f (x) = ag(x) = bh(x), a, b

ag
R, g,

h being primitive then a, b are associates and so are g(x) and h(x).
5. Give example of a polynomial, which is

(i) primitive and irreducible.
(ii) primitive and reducible.

(iii) not primitive but irreducible.
(iv) not primitive but reducible.

6. Show that 4x2 + 6x + 2 is not a primitive polynomial in Z[x]. Is it primitive
over Q? Justify.

7. If R is a commutative ring, show that ch R[x] is same as ch R.
8. Let R be a commutative ring and let f (x) = a0 + a1x + ..... + anxn  R[x]. Show that

f (x) is nilpotent in R[x] if and only if a0, a1, ....., an are nilpotent in R.
9. Show that the following polynomials are irreducible over Q, (the rationals)

(i) 8x3 – 6x – 1
(ii) x4 + x3 + x2 + x + 1

(iii) 2x10 – 25x3 + 10x2 – 30. (p = 5).
(iv) 3x4 + 9x3  7x2 + 15x +25. by using the modulo p method. Take p = 2.

10. Find g.c.d. of (i) 3 + 4i and 4 – 3i in Z[i]. Are these associates?
(i) 2x2 + x3 – 6x2 + 7x – 2, 2x3 – 7x2 + 8x – 4 in Q[x].

(ii) 11 + 7i and 3 + 7i in Z[i]
(iii) 10 + 11i and 8 + i in Z[i]
(iv) 2 and 3 + 5i in Z[i]
(v) 2x4 + 2 and x5 + 2 in Z3[x]

11. (i) Show that the ideal < x2 + 1 > is maximal ideal in R[x].

(ii) Show that [ ]x
I

Q , where I = < x2 – 6x + 6 > is a field.

(iii) Show that x3 + 3x + 1 is irreducible over Q. Hence prove that [ ]x
I

Q  is a field

where I = < x3 + 3x + 1 >. Write an element of [ ]x
I

Q .

(iv) Show that 2[ ]x
I

Z , I = < x2 + x + 1 > is a field with 4 elements. Show that x +
I is inverse of (x + 1) + I in this field.

(v) Show that [ ]x
I

Q , I = < x3 – 5 > is a field. Find inverse of (x + 1) + I.

12. Show that in a PID, every ideal is contained in a maximal ideal.
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13. Show that x2 + 1 and x2 + x + 4 are irreducible over F the field of integers modulo

11. Prove also that 2
[ ]

1
F x

x2 1x
 and 2

[ ]
4

F x
x x2 4x x

 are isomorphic fields each having

121 elements.
14. If P is a prime ideal of R[x] then show that P  R is a prime ideal of R.
15. Let I be an ideal of R[x] and let An be the set of all leading coefficients of polynomials

in I together with 0. i.e.,
An = {0 a R | f (x) = o + 1x + ..... + n–1xn–1 + axn I}  {0}.

Show that An is an ideal of R. (For some fixed n)
16. Let K be the field of quotients of a UFD R then show that primitive polynomials f, g

 R[x] are associates in R[x] iff f, g are associates in K[x].
17. If F is a field and f(x) | g(x) in F[x] then show that f is either a unit, an associate of

g or deg f < deg g.
18. Show that I = { f(x)  Z[x] | f (0) = even integer} is the ideal < x, 2 > of Z[x].
19. Show that the ideal < x > is maximal ideal in Q[x]. See note on page 430.
20. If A = (2), show that A[x] is not a maximal ideal of Z[x]. [See remark (ii) on page

426]
21. If R is a Euclidean domain, show that every element of R is either a unit or can be

uniquely expressed (upto associates) as product of primes.
22. Show that the set of all polynomials with even coefficients is a prime ideal in Z[x].

23. Show that [ 3][ 3]Z  is not a UFD. (See exercise 13 page 415).

24. If F is a field, show that every non zero prime ideal of F[x] is a maximal ideal.
25. Show that in a UFD R, every non zero prime ideal (  R) contains a prime element.
26. Factorize x2 + x + 5 in F[x], where F is the field of integers mod 11.
27 Let R be an integral domain with unity. Show that a prime element in R is a prime

element in R[x].
28. Let A be the set of all polynomials f (x)  R[x] s.t., f (0) = 0 = f (1). Show that A

is an ideal of R[x] but is not a prime ideal.
29. Show that any ring which is a quotient ring of a polynomial ring over Z (or a field F)

is noetherian.
30. Show that

(a) Homomorphic image of an artinian ring is artinian.
(b) An artinian ring which is an integral domain is a field.
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Definitions and existence of g.c.d., and l.c.m., in rings. In an integral domain with
unity if there exist more than one g.c.ds (l.c.ms) then they are associates and
conversely.
Every ideal in a Euclidean Domain is a principal ideal.
The ring of Gaussian integers is a Euclidean Domain and hence a PID.
Any two non-zero elements in a PID (Euclidean Domain) have g.c.d., and l.c.m.
Any non-zero, non-unit element p in a commutative ring is called a prime element
if  whenever  p|ab then either p|a or p|b. It is called irreducible element if
whenever p = ab then either a is a unit or b is a unit.
If F is a field then the ring of polynomials F[x] is a Euclidean Domain.
An integral domain R with unity is a field iff R[x] is a PID.
Z[x] is not a PID as Z is not a field.
If R is an integral domain with unity then the following are equivalent:
(i) R is a UFD.
(ii) Every non-zero, non-unit element of R is a finite product of irreducible
elements and every irreducible element is prime.

        (iii) Every non-zero, non-unit element of R is a finite productof prime elements.
A PID is a UFD.Z[x] is a UFD but not a PID.
Gauss Lemma says that if R is a UFD then product of two primitive polynomials
over R is primitive.
An irreducible element is irreducible polynomial, but converse is not always true.
If R is a UFD then any f(x) in R[x] is an irreducible element of R[x] iff either f is
an irreducible element of R or f is an irreducible primitive polynomial of R[x].
R is a UFD R[x] is a UFD.
Eisenstein’s criterion gives us a method to check irreducibility of a polynomial
over rationals.
A ring is called Noetherian if every ideal of it is finitely generated or if every
ascending chain of ideals in it terminates after finite number of steps.

A Quick Look at what's been done
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Definition: Let < V, + > be an abelian group and < F, +, > be a field. Define a function 
(called scalar multiplication) from F × V

, + > be an abelian group and <
V, s.t., for all F, v V, v V. Then V

is said to form a vector space over F if for all x, y  V, ,  F, the following hold
(i) (  + ) x = x + x

(ii)  (x + y) = x + y
(iii) ( ) x =  ( x)
(iv) 1 . x = x, 1 being unity of F.
Also then, members of F are called scalars and those of V are called vectors.

Remark: We have used the same symbol + for the two different binary compositions of V
and F, for convenience. Similarly same symbol . is used for scalar multiplication and product
of the field F.

Since < V, + > is a group, its identity element is denoted by 0. Similarly the field F would
also have zero element which will also be represented by 0. In case of doubt one can use
different symbols like 0v and 0F etc.

Vector Spaces

10

Introduction
The motivating factor in rings was set of integers and in groups the set of all permutations
of a set. A vector space originates from the notion of a vector that we are familiar with in
mechanics or geometry. Our aim in this volume is not to go into details of that. Reader would
recall that a vector is defined as a directed line segment, which in algebraic terms is defined
as an ordered pair (a, b), being coordinates of the terminal point relative to a fixed coordinate
system. Addition of vectors is given by the rule

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2)
One can easily verify that set of vectors under this forms an abelian group. Also scalar

multiplication is defined by the rule 
One can easily verify that set of vectors under this forms an abelian group. Also scalar

 (a, b) = (
One can easily verify that set of vectors under this forms an abelian group. Also scalar

a, 
One can easily verify that set of vectors under this forms an abelian group. Also scalar

b) which satisfies certain properties.
This concept is extended similarly to three dimensions. We generalise the whole idea through
definition of a vector space and vary the scalars not only in the set of reals but in any field
F. A vector space thus differs from groups and rings in as much as it also involves elements
from outside itself.
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Since we generally work with a fixed field we shall only be writing V is a vector space (or
sometimes V (F) or VF). It would always be understood that it is a vector space over F (unless
stated otherwise).

We defined the scalar multiplication from F × V  V. One can also define it from
V × F 

We defined the scalar multiplication from 
 V and have a similar definition. The first one is called a left vector space and the

second a right vector space. It is easy to show that if V is a left vector space over F then it
is a right vector space over F and conversely. In view of this result it becomes redundant to
talk about left or right vector spaces. We shall thus talk of only vector spaces over F.

One can also talk about the above system when the scalars are allowed to take values in a
ring instead of a field, which leads us to the definition of modules.

Theorem 1: In any vector space V(F) the following results hold
(i) 0.x = 0

(ii) .0 = 0
(iii) (–) (– )x = –( x) = (– x)
(iv) (  – )x = x – x, ,   F, x  V

Proof: (i) 0.x = (0 + 0).x = 0.x + 0.x
 0 + 0.x = 0.x + 0.x
 0 = 0.x (cancellation in V)

(ii) .0 = .(0 + 0) = .0 + .0  .0 = 0
(iii) (–) (– )x + x = [(– = [(– ) + ]x = 0 . x = 0
 (–(– x) = – x

(iv) follows from above.

Example 1: If < F, +, . > be a field, then F is a vector space over F as < F, + > =
< V, + > is an additive abelian group. Scalar multiplication can be taken as the product of F.
All properties are seen to hold. Thus F(F) is a vector space.

Example 2: Let < F, +, . > be a field
Let V = {( 1, 2) | 1, 2  F}
Define + and . (scalar multiplication) by

( 1, 2) + ( 1, 2) = ( 1 + 1, 2 + 2)
( 1, 2) = ( 1, 2)

One can check that all conditions in the definition are satisfied. Here V = F × F = F2

One can extend this to F3 and so on. In general we can take n–tuples
( 1, 2, ..., n), i F and define Fn or F(n) = {(

 and so on. In general we can take 
1, 

 and so on. In general we can take 
2, ..., 

 and so on. In general we can take 
n) |

 and so on. In general we can take 
i 

 and so on. In general we can take 
 F} as a Vector space

over F.

Example 3: If F  K be two fields then K(F) will form a vector space, where addition of K(F)
is + of K and for any and for any  F, x  K, . x is taken as product of 

) will form a vector space, where addition of 
 and x in K.

Thus C (R), C (C), R(Q) would be some examples of vector spaces, where
C = complex nos., R = reals and Q = rationals.
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Example 4: Let V = set of all real valued continuous functions defined on [0, 1]. Then V forms
a vector space over the field R of reals under addition and scalar multiplication defined by

( f + g)x = f (x) + g(x) f, g V
( f )x = f (x)  R

for all x  [0, 1]
It may be recalled here that sum of two continuous functions is continuous and scalar

multiple of a continuous function is continuous.
Example 5: The set F [x] of all polynomials over a field F in an indeterminate x forms a vector
space over F w.r.t., the usual addition of polynomials and the scalar multiplication defined by:

For f (x) = a0 + a1x + ... + anx
n  F [x],  F

.( f (x)) = a0 + a1x + ... + anx
n.

Example 6: Mm × n (F), the set of all m × n matrices with entries from a field F forms a vector
space under addition and scalar multiplication of matrices.

We use the notation Mn (F) for Mn × n (F).

Example 7: Let F be a field and X a non empty set.
Let F X = {f | f : X  F}, the set of all mappings from X to F. Then F X forms a vector space

over F under addition and scalar multiplication defined as follows:
For f, g  FX,   F
Define  f + g : X  F, F : X , F such that

( f + g)(x) = f (x) + g(x)
( f )(x) = f (x)  x  X

Example 8: Let V be the set of all vectors in three dimensional space. Addition in V is taken
as the usual addition of vectors in geometry and scalar multiplication is
defined as:

 R, 
v   V  

v  is a vector in V with magnitude | | times that of V. Then V forms
a vector space over R.

Subspaces

Definition: A non empty subset W of a vector space V(F) is said to form a subspace of V
if W forms a vector space under the operations of V.

Theorem 2: A necessary and sufficient condition for a non empty subset W of a vector space
V(F) to be a subspace is that W is closed under addition and scalar multiplication.

Proof: If W is a subspace, the result follows by definition.
Conversely, let W be closed under addition and scalar multiplication.
Let x, y, W since 1 F, –1  F

– 1. y  W  – y  W
x, – y  W  x – y  W

 < W, + > forms a subgroup of < V, + >.
Rest of the conditions in the definition follow trivially.
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Theorem 3: A non empty subset W of a vector space V(F) is a subspace of V iff
x + y  W  for 

A non empty subset W of a vector space V
, 

A non empty subset W of a vector space V
 

A non empty subset W of a vector space V
 F, x, y 

A non empty subset W of a vector space V
 W.

Proof: If W is a subspace, result follows by definition.
Conversely, let given condition hold in W.
Let x, y  W be any elements. Since 1  F

1 . x + 1 . y = x + y  W
 W is closed under addition.
Again, x  W,   F then

x = x + 0.y  for any y  W, 0  F
which is in W. (Note here 0 may not be in W)

Hence W is closed under scalar multiplication.
The result thus follows by previous theorem.

Remark: V and {0} will be trivial subspaces of any vector space V(F).

Example 9: Consider the vector space R2(R)
then W1 = {(a, 0 ) | a  R}

W2 = {(0, b) |  b  R}
are subspaces of   R2

As for any ,   R,  (a1, 0), (a2, 0)  W1, we find
(a1, 0) + (a2, 0) = ( a1, 0) + ( a2, 0)

= ( a1 + a2, 0)  W1

Hence W1 is a subspace. Similarly we can show W2 is a subspace of R2.

Problem 1: Show that union of two subspaces may not be a subspace.

Solution: Consider the previous example.
W1 W2 will be the set containing all pairs of the type (a, 0), (0, b)
In particular (1, 0), (0, 1)  W1  W2
But (1, 0) + (0, 1) = (1, 1)  W1  W2.
Hence W1  W2 is not a subspace.
Reader is referred to exercises for more results pertaining to intersection and union of

subspaces.
We take up few more examples of subspaces.

Example 10: Let V = R[x] and suppose W = {f (x) V | f (x) = f (1– x)}
Then W is a subspace of V as
W   since 0  W as f (x) = 0 = f (1 – x)
Again, if f (x), g(x)  W, then f (x) = f (1 – x), g(x) = g(1 – x)
Let f (x) + g(x) = h(x)
Then h(1 – x) = f (1 – x) + g(1 – x)

= f (x) + g(x) = h(x)
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 h(x)  W or that f (x) + g(x)  W
Again, for  R, let f (x) = r(x)
Then r(1 – x) = f (1 – x) =  f (x) = r(x)

 r(x)  W  f (x) W
Hence W is a subspace.

Example 11: Let V = FX (see example 7) and suppose Y  X
Then W = {f  V | f (y) = 0  y Y} is a subspace of V
Clearly 0 W and for f, g  W, f (y) = 0 = g(y)  y Y
So (f + g)(y) = f (y) + g(y) = 0  y  Y

  f + g  W
Again, if   F, then ( f )y = ( f (y)) = 0  y Y

  f   W.

Example 12: If V = Rn, then
W = {(x1, x2, ..., xn) | x1 + x2 + ... + xn = 1} will not be a subspace of V.

Notice, (1, 0, 0, ..., 0) + (0, 1, 0, ..., 0) = (1, 1, 0, ..., 0)  W.

Example 13: Let V = M2 × 1 (F). Let A be a 2 × 2 matrix over F.

Then W = 1 1

2 2
0

x x
V A

x x
x x1 1x x1 11 1x x1 1x x1 11 1x x1 11 1x x1 1x x1 11 11 11 1x x1 11 1x x1 11 1 0V AV A 0V AV A 0V AV A1 11 1 0V AV A1 1V A1 11 1V A1 1 0V AV A
2 22 2x x2 22 2x x2 2x x2 2x xx x

0V AV A
2 2x x2 2x x2 2x x2 2x x2 2x x

 forms a subspace of V

W  as 
0
0
0
00

W

For 1

2

x
x

1x1

2x2x
, 1

2

y
y

1y1y

2y2y
 in W, we have

A 1

2

x
x

1x1

2x2x
 = 0 = A 1

2

y
y

1y1y

2y2y

 A 1 1

2 2

x y
x y

1 1x y1 1x y1 11 1x y1 1x y1 11 1x y1 1x y1 11 11 1x y1 11 11 1x y1 1x y1 11 11 1x y1 1

2 2x y2 2x y2 22 2x y2 2x y2 2x y
 = 0

 1

2

x
x

1x1

2x2x
 + 1

2

y
y

1y1y

2y2y
  W

Also A 1

2

x
x
x1x1x1

2x2xx
 = 1

2

x
A

x
1x1x1A 1

2x2x
 = 0  1

2

x
x
x1x1x11

2x2x
  W

Hence W is a subspace of V.

Example 14: Let V = 2
2F , where F2 = {0, 1} mod 2.

If W1 = {(0, 0), (1, 0)}
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W2 = {(0, 0), (0, 1)}
W3 = {(0, 0), (1, 1)}

Then W1  W2  W3 = {(0, 0), (1, 0), (0, 1), (1, 1)} = V
Thus we notice that here V is union of finite number of proper subspaces.
This result may, however, not hold if V happens to be a vector space over an infinite field.

(See Exercise 11, page 484)

Problem 2: Let V be a vector space over a finite field F. Suppose
V = W1 W2 ...  Wk , Wi being subspaces of V  i. If o(F)  k then, show that
V = Wi for some i.

Solution: Suppose V  Wi for any i
Now Wk  W1  W2 ...  Wk–1

and W1  W2 ...  Wk–1  Wk

  x  Wk s.t., x  W1  W2 ...  Wk–1
and  y  W1 ...  Wk–1 s.t., y  Wk
Let S = {ax + y | a  F}
Then no element of S can belong to Wk, as

ax + y  Wk  ax + y – ax = y  Wk, a contradiction
So ax + y Wk  a  F
 ax + y  W1  W2 ......  Wk–1  a  F
So  ,   F,   such that

x + y  Wj, x + y Wj for some j, 1  j  k – 1
( x + y) – (

j
x + y)  Wj

 (  – )x  Wj
 x  Wj  x 

j
 W1  .....  Wk–1, a contradiction

V = Wi for some i
(One may notice here that in previous example o(F) = 2 and we could write

V = W1 
(One may notice here that in previous example 

 W2 
(One may notice here that in previous example 

 W3, V 
(One may notice here that in previous example 

 Wi for any i)

Sum of Subspaces

If W1 and W2 be two subspaces of a vector space V(F) then we define
W1 + W2 = {w1 + w2 | w1  W1, w2  W2}
W1 + W2   as 0 = 0 + 0  W1 + W2

Again, x, y  W1 + W2, ,  F implies
x = w1 + w2
y = w'1 + w'2 w1, w'1  W1, w2, w'2  W2

x + y =  (w1 + w2) + (w'1 + w'2)
= ( w1 + w'1) + ( w2 + w'2)  W1 + W2
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Showing thereby that sum of two subspaces is a subspace.
One can extend the definition, similarly, to the sum of n subspaces W1, W2, ..., Wn, which

would also be a subspace and we write W1 + W2 + ... + Wn = 
1

n

i
i

W

Definition: Let W1, W2,..., Wn be subspaces of V then W1 + W2 + ... + Wn is called the direct
sum if each x 

2
 W1 + W2 + ... + Wn can be expressed uniquely as

x = w1 + w2 + ... + wn, wi  Wi and in that case we write
W1 + W2 + ... + Wn = W1  W2  ...  Wn

We say, a vector space V is the direct sum of its subspaces W1, W2, ..., Wn if
V = W1

We say, a vector space 
 W2 

We say, a vector space 
 ... 

We say, a vector space 
 Wn, i.e., if

V = W1 + W2 + ... + Wn

and each v  V can be expressed uniquely as v = w1 + w2 + ... + wn, wi  Wi.

Theorem 4: V = W1  W2  V = W1 + W2, W1  W2 = (0).

Proof: Let V = W1  W2

We need to prove W1  W2 = (0)
Let  x  W1  W2, then x  W1 and x  W2

 x = 0 + x  W1 + W2 = V
 x = x + 0  W1 + W2 = V

Since x has been expressed as x = x + 0 and 0 + x and the representation has to be unique,
we get x = 0

 W1  W2 = (0).
Conversely, let v  V be any element and suppose

v = w1 + w2

v = w'1 + w'2
are two representations of v
then w1 + w2 = w'1 + w'2 (= v)

 w1 – w'1 = w'2 – w2
Now L.H.S. is in W1 and R.H.S. belongs to W2

i.e., each belongs to W1  W2 = (0)
 w1 – w'1 = w'2 – w2 = 0
 w1 = w'1, w2 = w'2.

Hence the result.

Remark: The above theorem can also be stated as
W1 + W2 = W1  W2  W1  W2 = {0}.

Example 15: Consider the space V(F) = F2(F) where F is a field
Let W1 = {(a, 0) | a  F}
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W2 = {(0, b) | b  F}
then V is direct sum of W1 and W2

v  V  v = (a, b) = (a, 0) + (0, b)  W1 + W2

thus V  W1 + W2

or that V = W1 + W2

Again if (x, y)  W1  W2 be any element then
(x, y)  W1  and  (x, y)  W2

 y = 0  and  x = 0
 (x, y) = (0, 0)
 W1  W2 = (0)

Hence V = W1  W2.

Problem 3: Let V be the vector space of all functions from R  R. Let
Ve = { f  V | f is even}, V0 = {f 

Let V be the vector space of all functions from 
 V | f is odd}. Then Ve and V0 are subspaces of V and

V = Ve 
f 

 V0.

Solution: Addition and scalar multiplication in V are given by the rule
( f + g) x = f (x) + g(x); (

 Addition and scalar multiplication in 
f ) x = 

 Addition and scalar multiplication in 
f (x)

Now Ve  as 0(x) = 0  0(x) = 0(– x)
 0  Ve

Again for ,   R, f, g  Ve, we have
( f + g) (– x) = ( f ) (– x) + ( g) (– x) = ( f (– x)) + (g (– x))

= f (x) + g(x)
= ( f + g)x

 f + g  Ve

 Ve is a subspace of V
Similarly, V0 is a subspace of V.
Thus Ve + V0 is a subspace of V. We show V  Ve + V0

Let f  V be any member
Let g : R  R be such that g(x) = f (– x), then g  V

Also then f = 1 1 1 1
2 2 2 2

f g f g1 1 1 11 1 1 1f g f g1 1 1 1f g f g1 1 1 1f g f g1 1 1 1f g f gf g f gf g f gf g f g1 1 1 1f g f gf g f gf g f gf g f g1 1 1 1f g f g1 1 1 1
2 2 2 22 2 2 2

f g f g
2 2 2 2

f g f g
2 2 2 22 2 2 2

f g f g
2 2 2 2

f g f g
2 2 2 2

Since 1 1 1 1 1 1
( ) ( ) ( ) ( ) ( )

2 2 2 2 2 2
1 1 1 1 1 11 1 1 1 1 1

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
1 1 1 1 1 1

( ) ( ) ( ) ( ) ( )
1 1 1 1 1 1
2 2 2 2 2 2

( ) ( ) ( ) ( ) ( )
2 2 2 2 2 2

( ) ( ) ( ) ( ) ( )
1 1 1 1 1 11 1 1 1 1 11 1 1 1 1 1

( ) ( ) ( ) ( ) ( )
1 1 1 1 1 1

( ) ( ) ( ) ( ) ( )
1 1 1 1 1 1
2 2 2 2 2 22 2 2 2 2 2

( ) ( ) ( ) ( ) ( )
2 2 2 2 2 2

( ) ( ) ( ) ( ) ( )
2 2 2 2 2 2

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )f g x f x g x g x f x

= 
1 1
2 2

f g x1 11 1f g xf g xf g x1 1f g x1 1f g x1 1f g xf g x1 1f g xf g x1 1f g x1 1
2 22 2

f g xf g x
2 2

f g x
2 22 2

f g x
2 2

f g x
2 2

we find 1 1
2 2
1 1
2 2

f g  Ve
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Similarly, 1 1
2 2

f1 1
2 2

g  V0

 f  Ve + V0  V  Ve + V0

or that V = Ve + V0

Finally,  f  Ve  V0  f  Ve, f  V0

 f (– x) = f (x) and f (– x) = – f (x)
 f (x) = – f (x)  f (x) + f (x) = 0 = 0(x)

 2f (x) = 0 (x) for all x
 2f = 0  f = 0  Ve  V0 = (0).

Hence the result.

Problem 4: If L, M, N are three subspaces of a vector space V, such that M  L then show
that L  (M + N) = (L 

If L, M, N are three subspaces of a vector space V, such that M
 M) + (L 

If L, M, N are three subspaces of a vector space V, such that M
 N) = M + (L 

If L, M, N are three subspaces of a vector space V, such that M
 N).

Also give an example, where the result fails to hold when M  L.

Solution: We leave the first part for the reader to try. Recall a similar result was proved for
ideals in rings. The equality is called modular equality.

Consider now the vector space V = R2

Let L = {(a, a) | a R}
M = {(a, 0) | a  R}
N = {(0, b) | b  R}

It is a routine matter to cheek that L, M, N are subspaces of V. Indeed
(a, a) + (a , a ) = ( a, a) + ( a , a )

= ( a + a , a + a )  L etc.
Now (x, y)  L  M  (x, y)  L and (x, y)  M

 y = x and y = 0
 x = 0 = y  (x, y) = (0, 0)

Similarly, L  N = {(0, 0)}
 L  M + L  N = {(0, 0)}

Again, M + N = {(a, b) | a, b  R} and as (1, 1)  M + N
(1, 1)  L

we find (1, 1)  L  (M + N), but (1, 1)  L  M + L  N
Hence L  (M + N)  (L M) + (L  N), when M  L.

Problem 5: Let V = RX (See example 7) and fix x0  X. Define
W = { f  V | f (x0) = 0}
WW = {g  V | g(x) = 0  x  X – {x0}}

then show that W, WW  are subspaces of V and V = W  WW .

Solution: We leave it for the reader to show that W, W' are subspaces.
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Let  f  W W ' then f  W and f  W
 f (x0) = 0, f (x) = 0  x  X, x  x0
 f (x) = 0,  x  X,
 f = 0 and thus W WW  = {0}.

Let  f  V and let f (x0) = r
Then ( f – r x0)  W,  r x0  WW
and f = ( f – r x0) + r x0  W + W

V = W + W
i.e., V = W  W
Notice here x0 denotes the Kronecker delta i.e., x0 (x0) = 1, x0 (x) = 0  x x0.

Quotient Spaces

If W be a subspace of a vector space V(F) then since < W, + > forms an abelian group of

< V, + >, we can talk of cosets of W in V. Let V
W

 be the set of all cosets W + v,

v  V, then we show that V
W

 also forms a vector space over F, under the operations defined

by
(W + x) + (W + y) = W + (x + y) x, y  V

(W + x) = W + x   F
Addition is well defined, since,

W + x = W + x
W + y = W + y

 x – x   W, y – y   W
 (x – x ) + (y – y )  W
 (x + y) – (x  + y )  W
 W + (x + y) = W + (x  + y )

Again, W + x = W + x
 x – x   W,
 (x – x )  W   F
 x – x   W
 W + x = W + x
 (W + x) = (W + x )

Thus, scalar multiplication is also well defined. It should now be a routine exercise to check
that all conditions in the definition of a vector space are satisfied.

W + 0 will be zero of V
W

W – x will be inverse of W + x
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Also
((W + x) + (W + y)) = (W + (x + y)) = W + (x + y) = W + ( x + y)

= (W + x) + (W + y) = (W + x) + (W + y) etc.
Hence, V/W forms a vector space over F, called the quotient space of V by W.

Exercises
1. Show that in a vector space V(F)

(i) v = v   = (v  0)
(ii) v1 = v2  v1 = v2 (   0)

(iii) v = 0, v  0   = 0
(iv) v = 0,  0  v = 0
(v) v = v   = 1 or v = 0. where ,  F; v, v1, v2  V.

2. Is the set of all 2 × 2 Skew-Hermitian matrices a vector space over C w.r.t., matrix
addition and multiplication of a matrix by a scalar?

3. Let V be the set of all the +ve real numbers. Define addition in V by v1 + v2 = v1v2,
the multiplication of real nos. v1 & v2. Define scalar multiplication in V by v = v

2
,

v  V,  R. Show that V forms a vector space over R w.r.t. these operations. [Hint:

Zero will be 1 and – v = 1
v

].

4. Let V(F) be a vector space, where char F = p, a prime. Define scalar multiplication
in V by

ov = pv,  F, v  V
Show that V forms a vector space over F, w.r.t., the original addition and new scalar
multiplication.

5. Let V be a vector space over C. Define scalar multiplication on V by ov = v,
  C, v 

 be a vector space over 
 V. Show that V also forms a vector space over C w.r.t. this new scalar

multiplication.
6. Let V = {(z1, z2, z3) | z1, z2, z3 C} = C3 be the vector space over C. Check whether

(i) W1 = {(z1, z2, z3) | z1 is a real number}
(ii) W2 = {(z1, z2, z3) | z1 + z2 = 0}

(iii) W3 = {(z1, z2, z3) | z1 + z2 = 1}
are subspaces of V or not.

7. Which of the following are subspaces of R3?
(i) W = {(x1, x2, 1) | x1, x2  R}

(ii) W = {(x1, x2, x3)  R3 | x1 + x2 + x3 = 0}
(iii) W = {(x1, x2, x3)  R3 | x1 – 2x2 + 3x3 = 0}

8. Which of the following are subspaces of R[x]?
(i) W = {f (x)  R[x] | f (2) = 0}
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(ii) W = {f (x)  R[x] | f (1)  0}
(iii) W = {f (x)  R[x] | f (x) = f (– x)}

9. Show that intersection of two subspaces is a subspace.
10. Prove that union of two subspaces is a subspace iff one of them is contained in the

other.
11. If V is a vector space over an infinite field F then show that it is not possible to write

V as union of a finite number of proper subspaces.
12. Which of the following are subspaces of Mn (F)?

(i) W = {A  Mn(F) | A is diagonal matrix}
(ii) W = {A  Mn(F) | Trace A = 0}

(iii) W = {A  Mn(F) | A is upper triangular matrix}
(iv) W = {A  Mn(F) | A is symmetric}

13. Let V = R4. Show that
W1 = {(a, b, c, d) | a = b + c + d}
W2 = {(a, b, c, d) | a = 3c, b = 4d}

are subspaces of V.
14. Give an example of a vector space having (i) two elements (ii) four elements.

[Hint: Take F = {0, 1} mod 2 and V = {( , ) | ,   F}].
15. Let V be an abelian group under addition with at least two elements. Define scalar

multiplication by 
 be an abelian group under addition with at least two elements. Define scalar

 . v = 0 
 be an abelian group under addition with at least two elements. Define scalar

 F, v 
 be an abelian group under addition with at least two elements. Define scalar

 V where F is a field. Is V a vector space
over F?

16. Let G be an abelian group such that px = 0  x  G, where p is a fixed prime. Define
scalar multiplication by a x = ax, a  Zp, x G. Show that this multiplication is well
defined and G forms a vector space over Zp.

17. Let W1 & W2 be proper subspaces of V. Show that there exists v V s.t.,
v  W1, v  W2.

18. Let W1, W2,..., Wn be subspaces of V. Show that

W1 + W2 + ... + Wn = W1  W2  ...  Wn if and only if Wk  
1111

n

j
j
j k

W  = {0}

19. Let V be the set of all sequences of real numbers a = (a1, a2,..., an, ...) s.t., 
2

1

2

1
ia < .

Show that V forms a vector space over R with component-wise addition and
multiplication.

[Hint: 2 2 2 2

1 1 1 1 11 1 1 1 11 1 1 1 1

2 2 2 22 2 2 22 2 2 22 2 2 2

1 1 1 1 1

n n n

i i i i i ia b a b a b


1

i ia b
1

i ia bi ia bi i <  2

1
( )i ia b 2( )i i( )i i( )( )a b( )( )i i( )a b( )i i( )

1
( )i i( )i i( )( )a b( )( )i i( )a b( )i i( )i i( )i i( )( )a b( )( )i i( )a b( )i i( ) < ].
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20. Let V = {a0 + a1x + a2x
2 | ai  F} and

W1= {f (x)  V | f (0) = 0}, W2 = {f (x)  V | f (1) = 0}
Show that W1 and W2 are subspaces of V and W1  W2 is not a subspace of V. Find
also W1  W2 and W1 + W2.

21. Let V be the vector space of all n × n matrices over R. Let W1 be the set of all
symmetric matrices in V and W2 be the set of all skew symmetric matrices in V. Show
that W1 and W2 are subspaces of V and V = W1 

 be the set of all skew symmetric matrices in 
 W2.

Homomorphisms or Linear Transformations

We are already familiar with the concept of a homomorphism in case of groups and rings. We
introduce the same in vector spaces.
Definition: Let V and U be two vector spaces over the same field F, then a mapping
T : V  U is called a homomorphism or a linear transformation if

T(x + y) = T(x) + T(y) for all x, y  V
T( x) = T(x)  F

One can combine the two conditions to get a single condition
T( x + y) = T(x) + T(y) x, y  V; ,  F

It is easy to see that both are equivalent. If a homomorphism happens to be one-one onto
also we call it an isomorphism , and say the two spaces are isomorphic.
(Notation V  U).

Example 16: Identity map I : V  V, s.t.,
I(v) = v

and the zero map O : V  V, s.t.,
O(v) = 0

are clearly linear transformations.

Example 17: For a field F, consider the vector spaces F2 and F3. Define a map
T : F3 
Example 17:

 F2, by
T( , , ) = ( , )

then T is a linear transformation as
for any x, y  F3, if x = ( 1, 1, 1)

y = ( 2, 2, 2)
then T(x + y) = T( 1 + 2, 1 + 2, 1 + 2) = ( 1 + 2, 1 + 2)

= ( 1, 1) + ( 2, 2) = T(x) + T(y)
and T( x) = T(  ( 1, 1, 1)) = T( 1, 1, 1)

= ( 1, 1) = ( 1, 1) = T(x)

Example 18: Let V be the vector space of all polynomials in x over a field F. Define
T : V  V, s.t.,
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T(f (x)) = d
dx

f (x)

then T(f + g) = d
dx

(f + g) = d df
dx dx
d d
dx dx

g = T( f ) + T(g)

T( f ) = d
dx

( f ) = d
dx

f = T(f )

shows that T is a linear transformation.
In fact, if  : V  V be defined such that

( f ) = 
0

( )
x

f t
0

( )
x

f t( )f t( )  dt

then  will also be a linear transformation.

Example 19: Consider the mapping
T : R3  R, s.t.,

T(x1, x2, x3) = 2 2 2
1 2 3x x x2 2 2
1 2 3x x x1 2 3x x x1 2 3

then T is not a linear transformation.
Consider, for instance,

T((1, 0, 0) + (1, 0, 0)) = T(2, 0, 0) = 4
T(1, 0, 0) + T(1, 0, 0) = 1 + 1 = 2.

Exercises
Check which of the following are linear transformations

1. T : R2  R2, s.t., T(x1, x2) = (1 + x1, x2)
2. T : R2  R2, s.t., T(x1, x2) = (x2, x1)
3. T : C  C, s.t., T(z) = z , where C is vector space of complex numbers over reals.
4. T : C  C, s.t., T(x + iy) = x
5. T : R3 R4, s.t., T(x1, x2, x3) = (x1,  x1 + x2,  x1 + x2 + x3,  x3)
6. T : R2  R3, s.t., T(x1, x2) = (x1,  x1 + x2,  x2)
7. T : R  R3, s.t., T(x) = (x, x2, x3)
8. Show that T : Mn(F)  F, s.t., T(A) = Trace A = Sum of diagonal elements of A is

an onto linear transformation which is not 1–1.
9. Let T : Mm × n(F)  Mn × m(F) s.t.,

T(A) = A  = Transponse of A
Show that T is a linear transformation. Is it 1–1? Is it onto?

10. Show that T : F[x]  F, s.t.,
T(a0 + a1x + ... + anxn) = a0 + a1  + ... + an

n,   F
is an onto linear transformation but is not 1–1.

11. Show that any linear transformation T : R  R is of the form T(x) = x for someShow that any linear transformation 
R.
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In the theorems that follow, we take V and U to be vector spaces over the same field F.
Theorem 5: Under a homomorphism T : V  U,

(i) T(0) = 0 (ii) T(– x) = – T(x).
Proof: T(0) = T(0 + 0) = T(0) + T(0)

 T(0) = 0
Again T(– x) + T(x) = T(– x + x) = T(0) = 0

 – T(x) = T( – x).

Definition: Let T : V  U be a homomorphism, then kernel of T is defined by
Ker T = {x  V | T(x) = 0}

It is also called the null space of T.

Theorem 6: Let T : V  U be a homomorphism, then Ker T is a subspace of V.

Proof: Ker T   as 0  Ker T
Let ,   F, x, y  Ker T be any elements
then T( x + y) = T(x) + T(y)

= . 0 + . 0 = 0 + 0 = 0
 x + y  Ker T.

Theorem 7: Let T : V  U be a homomorphism, then
Ker T = {0} iff T is one-one.

Proof: Let Ker T = {0}. If T(x) = T(y)
then T(x) – T(y) = 0
 T(x – y) = 0
 (x – y)  Ker T = {0}
 x – y = 0
 x = y  T is 1–1.

Conversely, let T be one-one
if x Ker T be any element, then T(x) = 0
 T(x) = T(0)
 x = 0
 Ker T = {0}.

Definition: Let T : V  U be a linear transformation then range of T is defined to be
T(V) = {T(x) | x  V} = Range T = RT

= {u  U | u = T(v), v  V}

Theorem 8: Let T : V  U be a L.T. (linear transformation) then range of T is subspace of
U.

Proof: Since T(0) = 0, 0  V
T(0)  Range T

i.e., Range T  
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Let ,   F, T(x), T(y)  T(V) be any elements
then x, y  V
Now T(x) + T(y) = T( x + y)  T(V)
as x + y  V
Hence the result.
Note: T(V) = U iff T is onto.

Theorem 9: Let T : V  U be a L.T. then
V

Ker T
  Range T = T(V).

Proof: Let T : V  U and put Ker T = K, then K being a subspace of V, we can talk of
V/K.

Define a mapping  : V/K  T(V), s.t.,
(K + x) = T(x),  x  V

Then  is well defined, one-one map as
K + x = K + y

 x – y  K = Ker T
 T(x – y) = 0
 T(x) = T(y)
 (K + x) = (K + y)

If T(x) T(V) be any element, then x  V and (K + x) = T(x), showing that  is onto.
Finally, ((K + x) + (K + y)) = (K + (x + y))

= T(x + y)
= T(x) + T(y)
= (K + x) + (K + y)

and ( (K + x)) = (K + x) = T( x) = T(x) = (K + x)
shows  is a L.T. and hence an isomorphism.
Note: The above is called the Fundamental Theorem of homomorphism for vector spaces.

If the map T is also onto, then we have proved 
Ker

V
T

  U.

Theorem 10: If A and B be two subspaces of a vector space V(F), then
A B B

A A B
A B BA B B

A A B
A B B

A A BA A B
.

Proof: A being a subspace of A + B and A  B being a subspace of B, we can talk of A B
A

A B

and B
A BA B

.

Define a map  : B A B
A

A B  s.t.,
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(b) = A + b,  b  B
Since b1 = b2  A + b1 = A + b2, we find  is well defined.
Again, as ( b1 + b2) = A + ( b1 + b2)

= (A + b1) + (A + b2)
= (A + b1) + (A + b2)
= (b1) + (b2)

 is a L.T.

For any A + x  A B
A

A B , we find x  A + B

 x = a + b,  a  A, b  B
A + x = A + (a + b)

= (A + a) + (A + b) = A + (A + b)
= A + b = (b).

Showing that b is the required pre image of A + x under  and thus  is onto.
Hence by Fundamental theorem

A B
A

A B  
Ker

B .

We claim Ker  = A  B
Indeed x  Ker  (x) = A

 A + x = A
 x  A, also x Ker  B
 x  A  B

Hence A B
A

A B  B
A BA B

Note: By interchanging A and B, we get B A
B

B A   A
B AB A

i.e., A B
A

A B  B
A BA B

.

Cor.: If A + B is the direct sum then as A  B = {0}

we get
(0)
A  A B

B
A B

But 
(0)
A   A (see remark below after theorem 11) gives us A  A B

B
A B .

Theorem 11: Let W be a subspace of V, then  an onto L.T.  : V  V
W

 such that

Ker = W.
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Proof: Define : V  V
W

 s.t.,

(x) = W + x
then  is clearly well defined.
Also ( x + y) = W + ( x + y)

= (W + x) + (W + y)
= (W + x) + (W + y) = (x) + (y)

Shows  is a L.T.
 is clearly onto.

Again, x  Ker  (x) = W
 W + x = W
 x  W

Hence Ker  = W.
 is called the natural homomorphism or the quotient map.

Remark: In case W = (0) in the above we find  will be 1–1 also as
(a) = (b)

 W + a = W + b
 a – b  W = (0)
 a – b = 0
 a = b.

Hence in that case or
(0)

or
(0)

V VV V
W

.

Note W = (0)   Ker  = (0)   is one-one.

Problem 6: Let W and U be subspaces of V(F) such that W  U  V.
Let f : V  V/W be the quotient map. Show that f (U) is a proper subspace of V/W.

Solution: Since f is a L.T., f (U) is a subspace of V/W.
If f (U) = 0 then f (x) = 0 for all x  U

 W + x = W  for all x  U
 x  W for all x  U
 U  W, a contradiction

Again since U  V,  v0  V s.t., v0  U.
If f (v )  f (U) then f (v0) = f (x) for some x  U

 f (v0 – x) = 0
 W + (v0 – x) = W
 v0 – x  W
 v0 = x + w  for some w  W
 v0  U, a contradiction
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Hence f (v0)  f (U)  f (U)  V
W

or that f (U) is a proper subspace of V
W

.

Theorem 12: Let T : V  U be an onto homomorphism with Ker T = W. Then there exists
a one-one onto mapping between the subspaces of U and the subspaces of V which contain
W.

Proof: LetA = set of all subspaces of V, which contain W
B = set of all subspaces of U

Define a mapping  : A  B, s.t.,
(W1) = T(W1)

Since T : V  U, T(W1) will be a subspace of U as
for any T(x), T(y)  T(W1) and ,   F.

T(x) + T(y) = T( x + y)  T(W1), as x, y  W1
Again W1 = W1

 T(W1) = T(W1 )
  is well defined.

Now if (W1) = (W1 )
Then T(W1) = T(W1 )  W1 = W1
as x W1  T(x)  T(W1) = T(W1 )

 T(x)  T(W1 )
 T(x) = T(y), y  W1
 T(x – y) = 0
 x – y  Ker T = W  W1
 x  W1  as y  W1
 W1  W1 . Similarly W1   W1

Hence  is 1–1.
Let U1  B be any member.
Define T–1(U1) = {x  V | T(x)  U1}
Then 0  T–1(U1) as T(0) = 0  U1

 T–1(U1) 
For ,   F, x, y  T–1(U1), we have

T(x)  U1, T(y)  U1
 T(x) + T(y)  U1
 T( x + y)  U1
 x + y  T–1(U1)

or that T–1(U1) is a subspace of V.
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Let x W then x  Ker T
 T(x) = 0  U1
 x  T–1(U1)
 W  T–1(U1)
 T–1(U1)  A

Also T(T–1(U1)) = {T(x)  V | T(x)  U1}  U1.
Let y U1  y  U   x  V, s.t., T(x) = y
as T is onto, x  T–1(U1)

 y = T(x)  (T(T–1) (U1))
 T(T–1)(U1)) = U1
 (T–1(U1)) = U1
  is onto.

Hence the theorem is proved.

Linear Span

Definition: Let V(F) be a vector space, vi V, i  F be elements of V and F respectively.

Then elements of the type 
1

n

i i
i

v
1

n

i 1
i ivi ivi i  are called linear combinations of

v1, v2, ..., vn over F.
Let S be a non empty subset of V, then the set

L(S) = 
1

| , , finite
n

i i i i
i

v F v S n
n

| , , finite| , , finitev F v S n| , , finite| , , finite| , , finitev F v S n| , , finite| , , finitei i i i| , , finitei i i i| , , finitev F v S n| , , finitev F v S n| , , finitei i i iv F v S ni i i i| , , finitei i i i| , , finitev F v S n| , , finitei i i i| , , finite| , , finitev F v S n| , , finitev F v S n| , , finite| , , finite| , , finitei i i i| , , finitei i i i| , , finite
i 1

n

i i i iv F v S ni i i iv F v S ni i i iv F v S ni i i i
i 1

i.e., the set of all linear combinations of finite sets of elements of S is called linear span of S.
It is also denoted by < S >. If S = , define L(S) = {0}.

Theorem 13: L(S) is the smallest subspace of V, containing S.

Proof: L(S)  as v  S  v = 1 . v, 1  F
 v  L(S)

thus, in fact, S  L(S).
Let      x, y  L(S), ,   F be any elements
then    x = 1v1 + 2v2 + ... + nvn

   y = 1v11 + 2v2v2 +...+ mvmm vi, vjj S, i, j  F
Thus x + y = 1v1 + 2v2 + ... + 

j

nvn + 1v1

j

1 + ... + mvmm.
R.H.S. being a linear combination belongs to L(S)
Hence L(S) is a subspace of V, containing S.
Let now W be any subspace of V, containing S
We show L(S)  W
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x  L(S)  x = ivi vi S, i  F
vi  S  W for all i and W is a subspace

 ivi  W  x  W
 L(S)  W
Hence the result follows.

Theorem 14: If S1 and S2 are subsets of V, then
(i) S1  S2  L(S1)  L(S2)

(ii) L(S1  S2) = L(S1) + L(S2)
(iii) L(L(S1)) = L(S1).

Proof: (i) x  L(S1)  x = ivi   vi S1, i F
thus vi  S1  S2 for all i
 ivi  S2  x  L(S2)
 L(S1)  L(S2).
(ii) S1  S1  S2  L(S1)  L(S1 S2)

S2  S1  S2  L(S2)  L(S1 S2)
 L(S1) + L(S2)  L(S1  S2)
Again, S1 L(S1)  L(S1) + L(S2)

S2  L(S2)  L(S1) + L(S2)
 S1  S2  L(S1) + L(S2).
Hence L(S1  S2)  L(S1) + L(S2)
as L(S1  S2) is the smallest subspace containing S1  S2 and L(S1) + L(S2) is a subspace,

being sum of two subspaces (and contains S1 
) is the smallest subspace containing 

 S2).
Thus L(S1  S2) = L(S1) + L(S2).
(iii) Let L(S1) = K then we show L(K) = L(S1)
Now K  L(K) L(S1)  L(L(S1))
Again x  L(L(S1))  x is linear combination of members of L(S1) which are linear

combinations of members of S1.
So x is a linear combination of members of S1
 x  L(S1)
Thus L(L(S1))  L(S1)
Hence L(L(S1)) = L(S1).

Theorem 15: If W is a subspace of V, then L(W) = W and conversely.

Proof: W  L(W) by definition and since L(W) is the smallest subspace of V containing W and
W is itself a subspace

L(W)  W
Hence L(W) = W.
Conversely, let L(W) = W
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Let x, y W, ,   F
Then x, y  L(W)

 x, y are linear combinations of members of W.
 x + y is a linear combination of members of W
 x + y  L(W)
 x + y  W
 W is a subspace.

Definition: If V = L(S), we say S spans (or generates) V. The vector space V is said to be
finite-dimensional (over F) if there exists a finite subset S of V such that
V = L(S). We use notation F.D.V.S. for a finite dimensional vector space.

It now follows, from the results we've proved that
If S1 and S2 are two subspaces of V, then S1 + S2 is the subspace spanned by S1 S2
Indeed, L(S1  S2) = L(S1) + L(S2) = S1 + S2.

Problem 7: Let S = {(1, 4), (0, 3)} be a subset of R2(R). Show that (2, 3) belongs to L(S).

Solution: (2, 3)  L(S) if it can be put as a linear combination of (1, 4) and (0, 3).
Now (2, 3) = (1, 4) + (0, 3)

 (2, 3) = (  + 0, 4  + 3 )
 2 = , 4  + 3  = 3

  = 2,  = – 5
3

Hence (2, 3) = 2 (1, 4) – 5
3

 (0, 3)

Showing that (2, 3)  L(S).

Problem 8: Let V = R4(R) and let S = {(2, 0, 0, 1), (– 1, 0, 1, 0)}. Find L(S).

Solution: Any element ( 1, 2, 3, 4)  L(S) is a linear combination of members of S.
Let ( 1, 2, 3, 4) = (2, 0, 0 1) + (– 1, 0, 1, 0), , R
then ( 1, 2, 3, 4) = (2  – , 0, , )
i.e., L(S) = {(2  – , 0, , ) | ,  R}

Problem 9: Show that the vector space F[x] is not finite dimensional.

Solution: Let V = F[x] and suppose it is finite dimensional.
Then  S  V, s.t., V = L(S) and S is finite.
Suppose S = {p1, p2,..., pk}. We can assume pi  0 i
Let deg pi = ri and let t = Max {r1, r2,..., rk}
Now xt+1 V and since V = L(S),

x t+1 = 1p1 + 2p2 + ... + kpk, i  F
So 0 = (– 1) xt+1 + 1p1 + ... + kpk
Since xt+1 does not appear in p1, p2,..., pk
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we get – 1 = 0, a contradiction. Hence V is not FDVS over F.
Note if S = {1, x,..., xn,...} then V = L(S).

Problem 10: Let V = FS and W = { f  V | f (s) = 0, for almost all s  S}.
Show that W is a subspace of V and it is FDVS if S is finite.

Solution: It is easy to check that W is a subspace of V.
Define s : S  F, s.t., (s  S)

s (t) = 1 if s = t
= 0 if s  t

Then s  W  s  S
Let T = { s | s  S}  W.
We show W = L(T)

Let f W and let f (s1) = s1
, f (s2) = 

2s2s ,..., f (sn) = 
nsns

Such that
isis  0 i

and f (s) = 0  s  si in S

Then f = 
1s1s 1s1s  + ... + 

nsns nsns

and so W = L(T).
If S is finite then T is also finite.

W is a FDVS if S is finite.

Linear Dependence and Independence

Let V(F) be a vector space. Elements v1, v2, ..., vn in V are said to be linearly dependent (over
F) if 

(
 scalars 
) be a vector space. Elements 

1, 
) be a vector space. Elements 

2,... 
) be a vector space. Elements 

n 
) be a vector space. Elements 

 F, (not all zero) such that

1v1 + 2v2 + ... nvn = 0
(v1, v2, ..., vn are finite in number, not essentially distinct).
Thus for linear dependence ivi = 0 and at least one i  0.
If v1, v2...vn are not linearly dependent (L.D.) these are called linearly independent (L.I.)
In other words, v1, v2,.., vn are L.I. if

ivi = 0  i = 0 for all i
A finite set X = {x1, x2..., xn} is said to be L.D. or L.I. according as its n members are L.D.

or L.I.
In general any subset Y of V(F) is called L.I. if every finite non empty subset of Y is L.I.,

otherwise it is called L.D.
So, if some subsets are L.I. and some are L.D. then Y is called L.D.

Observations: (i) A non zero vector is always L.I. as v  0, v = 0 would mean
 = 0.

(ii) Zero vector is always L.D.
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1 . 0 = 0 1  0, 1  F
Thus any collection of vectors to which zero belongs is always L.D.
In other words, if v1, v2,..., vn are L.I. then none of these can be zero. (But not conversely,

see example ahead).
(iii) v is L.I. iff v  0.
(iv) Any subset of a L.I. set is L.I.
(v) Any super set of a L.D. set is L.D.

(vi) Empty set  is L.I. since it has no non empty finite subset and consequently it satisfies
the condition for linear independence. In other words, whenever 

since it has no non empty finite subset and consequently it satisfiessince it has no non empty finite subset and consequently it satisfies
ivi = 0 in 

since it has no non empty finite subset and consequently it satisfies
 then as there

is no i for which 
the condition for linear independence. In other words, whenever 

i 
the condition for linear independence. In other words, whenever 

 0, set 
the condition for linear independence. In other words, whenever 

 is L.I. We sometimes express it by saying that empty set is L.I.
vacuously.

(vii) A set of vector is L.I. if and only if every finite subset of it is L.I.

Example 20: Consider R2(R), R = reals.
v1 = (1, 0), v2 = (0, 1)  R2 are L.I.

as 1v1 + 2v2 = 0  for 1, 2 R
 1(1, 0) + 2(0, 1) = (0, 0)
 ( 1, 2) = (0, 0)  1 = 2 = 0.

Example 21: Consider the subset
S = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (2, 3, 4)}

in the vector space R3(R).
Since 2(1, 0, 0) + 3(0, 1, 0) + 4(0, 0, 1) – 1(2, 3, 4) = (0, 0, 0)
we find S is L.D.

Example 22: In the vector space F[x] of polynomials the vectors f (x) = 1 – x,
g(x) = x – x2, h(x) = 1 – x2 are L.D. since f (x) + g(x) – h(x) = 0.

Problem 11: Show that the vectors v1 = (0, 1, – 2), v2 = (1, – 1, 1), v3 = (1, 2, 1)
are L.I. in R3(R).

Solution: Let ivi = 0 for i  R
Then 1(0, 1, – 2) + 2 (1, – 1, 1) + 3 (1, 2, 1) = (0, 0, 0)

 (0, 1, – 2 1) + ( 2, – 2, 2) + ( 3, 2 3, 3) = (0, 0, 0)
 0 + 2 + 3 = 0

1 – 2 + 2 3 = 0
– 2 1 + 2 + 3 = 0

Since the coefficient determinant 
0 1 1
1 1 2
2 1 1
1 1 2
2 1 1

 is – 6  0 the above equations have only

the zero common solution
 1 = 2 = 3 = 0  v1, v2, v3 are L.I.
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Problem 12: Show that {f (x), g(x), h(x)} is L.I. in F[x], whenever. deg f (x), deg g(x), deg
h(x) are distinct.

Solution: Let f (x) = a0 + a1x + ... + amxm, am  0
g(x) = b0 + b1x + ... + bnx

n, bn  0
h(x) = c0 + c1x + ... + ctx

t, ct  0
Let f (x) + g(x) + h(x) = 0, , ,   F
Let m < n < t (without any loss of generality)
then ct = 0   = 0 as ct  0

 f (x) + g(x) = 0
and so bn = 0   = 0 as bn  0

  f (x) = 0   am = 0   = 0 as am  0
Hence {f (x), g(x), h(x)} is L.I. in F [x] over F.

Problem 13: Show that the vectors
v1 = (1, 1, 2, 4), v2 = (2, – 1, – 5, 2), v3 = (1, – 1, – 4, 0) and v4 =  (2, 1, 1, 6)

are L.D. in R4(R).

Solution: Suppose av1 + bv2 + cv3 + dv4 = 0,  a, b, c, d  R
then a (1, 1, 2, 4) + b(2, – 1, – 5, 2)

+ c (1, –1, –4, 0) + d(2, 1, 1, 6) = (0, 0, 0, 0)
or (a, a, 2a, 4a) + (2b, – b, – 5b, 2b) + (c, – c, – 4c, 0)

+ (2d, d, d, 6d) = (0, 0, 0, 0)
 a + 2b + c + 2d = 0

a – b – c + d = 0
2a – 5b – 4c + d = 0
4a + 2b + 0c + 6d = 0



1 2 1 2
1 1 1 1
2 5 4 1
4 2 0 6

a
b
c
d

1 2 1 2 a
1 1 1 1 b1 1 1 11 1 1 1 b1 1 1 1 b1 1 1 11 1 1 1
2 5 4 1 c2 5 4 12 5 4 12 5 4 1 c2 5 4 12 5 4 1
4 2 0 6 d4 2 0 6 d

 = 

0
0
0
0

0
000
00
00

R2  R2 – R1, R3  R3 – 2R1, R4  R4 – 4R1

1 2 1 2
0 3 2 1
0 3 2 1
0 3 2 1

a
b
c
d

1 2 1 2 a
0 3 2 1 b0 3 2 10 3 2 1 bb0 3 2 10 3 2 10 3 2 1
0 3 2 1 c0 3 2 1 c0 3 2 10 3 2 1
0 3 2 1 dd0 3 2 10 3 2 10 3 2 1

 = 

0
0
0
0

0
000
00
00

R4  1
2

R4, R3  1
3

R3
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1 2 1 2
0 3 2 1
0 1 2/3 1/3
0 3/4 1 1/2

a
b
c
d

1 2 1 2 a
0 3 2 1 b0 3 2 10 3 2 1 b0 3 2 1 b0 3 2 10 3 2 1

c0 1 2/3 1/30 1 2/3 1/3 c0 1 2/3 1/30 1 2/3 1/3
0 3/4 1 1/2 dd0 3/4 1 1/20 3/4 1 1/20 3/4 1 1/2

 = 

0
0
0
0

0
000
00
00

R4  R4 – R2, R3  R3 – R2

1 2 1 2
0 3 2 1
0 0 0 0
0 0 0 0

a
b
c
d

1 2 1 2 a
0 3 2 1 b0 3 2 10 3 2 1 b0 3 2 1 b0 3 2 10 3 2 1
0 0 0 0 c0 0 0 0 c
0 0 0 0 d0 0 0 0 d

 = 

0
0
0
0

0
000
00
00

 a + 2b + c + 2d = 0
– 3b – 2c + d = 0
3b + 2c + d = 0

a = – 1, b = – 1, c = 1, d = 1 satisfy the equations.
Since coefficients are non zero, the given vectors are L.D.

Problem 14: Show that

(i) {1, 2 } is L.I. in R over Q.

(ii) {1, 2 , 3 } is L.I. in R over Q.

(iii) {1, 2 , 3 , 6 } is L.I. in R over Q.

Solution: (i) Suppose 2a ba b  = 0,  a, b  Q

Suppose b  0, then 2  = – a
b

  Q, a contradiction

Hence b = 0 and so a = 0. Thus {1, 2 } is L.I. in R over Q.

(ii) Let 2 3a b c2 32 32 32 3a b ca b ca b ca b ca b c2 3a b c2 3  = 0, a, b, c  Q
Let c  0, then

3  = – a b
c c
a b  2  = 22 , ,   Q

 3 = 2 + 2 2 + 2 2

 2   Q   = 0

Let  = 0 then  = 3
2

, a contradiction

So, c = 0 giving 2a ba b  = 0  a = b = 0 by (i)
Hence the result follows.

(iii) Let 2 3 6a b c d2 3 62 3 62 3 62 3 6a b c da b c da b c da b c da b c d2 3 6a b c d2 3 62 3 6a b c d2 3 62 3 6a b c d2 3 62 3 6a b c d2 3 6  = 0, a, b, c, d  Q

Then ( 2a ba b ) + 3 ( 2c dc d ) = 0
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Let 2c dc d   0

Then 3 = ( 2)
( 2)

a b
c d
( 2)( 2)( 2)( 2)( 2)( 2)a b( 2)

( 2)( 2)( 2)( 2)( 2)c d( 2)c d( 2)
 = 2 2

( 2) ( 2)
2

a b c d
c d

( 2) ( 2)( 2) ( 2)( 2) ( 2)( 2) ( 2)( 2) ( 2)( 2) ( 2)( 2) ( 2)( 2) ( 2)a b c da b c da b c d( 2) ( 2)a b c d( 2) ( 2)( 2) ( 2)a b c d( 2) ( 2)( 2) ( 2)a b c d( 2) ( 2)( 2) ( 2)a b c d( 2) ( 2)( 2) ( 2)a b c d( 2) ( 2)
2 2c d2 2c d2 22c d22 222 2c d2 222 2

= 22 , ,  Q

 2 ( 1) 32 ( 1) 32 ( 1) 32 ( 1) 32 ( 1) 32 ( 1) 3  = 0
 – 1 = 0 by (ii), a contradiction

2c dc d  = 0  c = d = 0  2a ba b  = 0
 a = b = 0
Hence the result follows.

Problem 15: If two vectors are L.D. then one of them is scalar multiple of the other.

Solution: Suppose v1, v2 are L.D. then  i  F, s.t.,

1v1 + 2v2 = 0 for some i  0
without loss of generality we can take 1  0, then 1

–1 exists and 1v1 = (– 2v2)
 v1 = (– 1

–1 2)v2 = v2

which proves the result.

Problem 16: If x, y, z are L.I. over the field C of complex nos. then so are x + y,
y + z and z + x over C.

Solution: Suppose 1(x + y) + 2(y + z) + 3(z + x) = 0, i  C
Then ( 1 + 3) x + ( 1 + 2) y + ( 2 + 3) z = 0

 1 + 3 = 1 + 2 = 2 + 3 = 0 as x, y, z, are L.I.
Solving we find

1 = 2 = 3 = 0.
Hence the result.

Problem 17: If v1, v2, v3  V(F) s.t., v1 + v2 + v3 = 0 then show that {v1, v2} spans the same
subspace as {v2, v3} i.e., show that

L({v1, v2}) = L({v2, v3}).

Solution: Let x  L ({v1, v2}) then x = v1 + v2 ,   F
 x = (– v2 – v3) + v2  as v1 + v2 + v3 = 0

= (  – )v2 + (– ) v3  L({v2, v3})
Showing that L({v1, v2})  L({v2, v3})
Similarly we can show that L({v2, v3})  L({v1, v2})
Hence the result follows.

Note (i): Linear dependence depends not only upon the vector space, but the field as well.
Consider, for instance, C(C), C(R), C = complex, R = reals.
Take 1, i  C, if a,   R
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then . 1 + . i = 0 = 0 + i 0
  = 0,  = 0
 1, i are L.I. in C(R)

Now if we take ,  in C, then as we can take  = i,  = – 1, so that
i . 1 + (– 1)i = 0, we find  ,   0

s.t., sums of the type ivi = 0
i.e., 1, i are L.D. in C(C)

Note (ii): In example 20 above, we showed that (1, 0) and (0, 1) are L.I. in R2 (R)
if v = (a, b)  R2 be any element
then since (a, b) = a (1, 0) + b(0, 1),  a, b  R
We find any element of R2 can be written as a linear combination of

{(1, 0), (0, 1)} = S
i.e., v  R2  v  L(S)

 R2  L(S)
But L(S)  R2

i.e., R2 = L(S)
or that S spans R2.
We generalise this through

Definition: Let V(F) be a vector space. A subset S of V is called a basis of V if S consists
of L.I.  elements (i.e. , any finite number of elements in S  are L.I.) and
V = L(S), i.e., S spans V.

Thus in example 20, S = {(1, 0), (0, 1)} is a basis of R2 (R). It is rather easy to see then
that {(1, 0, 0), (0, 1, 0), (0, 0, 1)} will form basis of R3 (R), and one can trivially extend this
to R(n)

Again {(1, 1, 0), (1, 0, 0), (0, 1, 1)} also forms a basis of R3 (R). (Show!) Thus a vector
space may have more than one basis.

If the elements in a basis are written in a certain specific order, we call it ordered basis. Also
{(1, 0), (0, 1)} {(1, 0, 0), (0, 1, 0), (0, 0, 1)} etc. are called standard basis of R2, R3 etc.
Also 
{(1, 0), (0, 1)} {(1, 0, 0), (0, 1, 0), (0, 0, 1)} etc. are called 

 is a basis for V = {0}.

Problem 18: Show that the set S = {(1, 2, 1), (2, 1, 0), (1, – 1, 2)} forms a basis of R3 (R).

Solution: Let

1 (1, 2, 1) + 2(2, 1, 0) + 3(1, – 1, 2) = (0, 0, 0) i R
 ( 1 + 2 2 + 3, 2 1 + 2 – 3, 1 + 0 + 2 3) = (0, 0, 0)
 1 + 2 2 + 3 = 0

2 1 + 2 – 3 = 0

1 + 0 + 2 3 = 0

In matrix form, we get 
1

2

3

1 2 1
2 1 1
1 0 2

1 2 1 1

2 1 1
1

2 1 12 1 12 1 1 22 1 1 22 1 1
1 0 2 3333

 = 
0
0
0

0
000
0
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i.e., AX = O
where | A | = – 9  0.

So A is a non singular matrix and thus AX = O has the unique zero solution
1 = 2 = 

 is a non singular matrix and thus 
3 = 0.

Hence S is L.I. set.
Again, to show that L(S) = R3, let (a, b, c)  R3 be any element. We want that
(a, b, c) = 1 (1, 2, 1) + 2 (2, 1, 0) + 3 (1, –1, 2) for some 1, , 3  R

i.e., we want some i  R s.t., the equations

1 + 2 2 + 3 = a
2 1 + 2 – 3 = b

1 + 0 2 + 2 2 = c
are satisfied. i.e., in matrix form

AX = B where A = 
1 2 1
2 1 1
1 0 2

1 2 1
2 1 12 1 12 1 12 1 12 1 12 1 1
1 0 2

,  B = 
a
b
c

a
bbb
c

Since | A | = – 9  0, AX = B has a unique solution i.e.,  some i s.t., above equations
are satisfied or that it is possible to express any (a, b, c)  R3 as a linear combination of
members of S. i.e., L(S) = R3

Hence S forms a basis of R3(R).
The next few theorems give a concrete shape to the concept of a basis of a vector space.

Theorem 16: If S = {v1, v2,.... vn} is a basis of V, then every element of V can be expressed
uniquely as a linear combination of v1, v2,..., vn.

Proof: Since, by definition of basis, V = L(S), each element v  V can be expressed as linear
combination of v1, v2,..., vn.

Suppose v = 1v1 + 2v2 + ... + nvn, i  F
v = 1v1 + 2v2 + ... + nvn, i  F

then 1v1 + 2v2 + ... + nvn = 1v2 + 2v2 + ... + nvn

 ( 1 – 1) v1 + ( 2 – 2) v2 + ... + ( n – n) vn = 0
 i – i = 0 for all i (v1, v2,... vn are L.I.)
 i = i for all i.

Theorem 17: Suppose S is a finite subset of a vector space V such that V = L(S)
[i.e., V is a F.D.V.S.] then there exists a subset of S which is a basis of V.

Proof: If S consists of L.I. elements then S itself forms basis of V and we've nothing to prove.
Let now T be a subset of S, such that T spans V and T is such minimal subset of S. (Existence

of T is ensured as S is finite).
Suppose T = {v1, v2,..., vn}
we show T is L.I.
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Let ivi = 0, i  F
Suppose i  0 for some i. Without any loss of generality we can take 1  0.

Then 
Suppose 

1
–1 exists.

Now 1v1 + 2v2 + ... + nvn = 0
 1

–1( 1v1 + 2v2 + ... + nvn) = 0
 v1 = (– 1

–1
2)v2 + (– 1

–1 3)v3 + ... + (– 1
–1

n)vn

= 2v2 + 3v3 + ... + nvn i  F
If v  V be any element then

v = 1v1 + 2v2 + ... nvn i  F as V = L(T)
 v = 1( 2v2 + ... + nvn) + 2v2 + ... + nvn

i.e., any element of V is a linear combination of v2, v3,..., vn
 {v2, v3,...vn} spans V, which contradicts our choice of T (as T was such minimal)
Hence 1 = 0
or that i = 0 for all i

 v1, v2,... vn are L.I.
and thus T is a basis of V.

Cor :  A F.D.V.S. has a basis.
In fact, one can prove this result for any vector space. (i.e. any vector space has a basis)

Theorem 18: Let V be a F.D.V.S. Suppose S and T are two finite subsets of V such that S spans
V and T is L.I. Then o(T) 

Let V be a F.D.V.S. Suppose S and T are two finite subsets of V such that S spans
 o(S).

Proof: Suppose S = {v1, v2,..., vn}
T = {w1, w2,..., wm}

Suppose m > n.
Since S spans V, we have

w1 = a11 v1 + a12 v2 + ... + a1n vn
w2 = a21 v1 + a22 v2 +...+ a2nvn
... ... ...
wm = am1 v1 + am2 v2 +...+ amn vn where aij  F

Consider the system of equations
a11 x1 + a21 x2 +...+ am1 xm = 0
a12 x1 + a22 x2 + ... + am2 xm = 0
... ... ...
a1n x1 + a2n x2 + ... + amn xm = 0

where x1, x2,..., xm F are unknowns.
Since the mumber of equations is less than the number of unknowns,  a non zero solution

1, 
Since the mumber of equations is less than the number of unknowns, 

2,.., 
Since the mumber of equations is less than the number of unknowns, 

m (some 
Since the mumber of equations is less than the number of unknowns, 

i 
Since the mumber of equations is less than the number of unknowns, 

 0) in F s.t.,
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a11 1 + ... + am1 m = 0
... ... ...
a1n 1 + ... + amn m = 0

Thus 1 (a11 v1 + ... + a1n vn) + ... + m (am1 v1 + ... + amn vn) = 0
 1 w1 + 2 w2 + ... + m wm = 0
 i = 0 i as w1, w2,..., wm are L.I.

which is a contradiction and thus m  n
i.e., o(T)  o(S).

Cor. 1: Any basis of a F.D.V.S. is finite.

Proof: Let S be a basis of a F.D.V.S  V and suppose S is not finite.
Since V is finite dimensional,  a finite subset T of V s.t., V = L(T). Suppose

o(T) = m
Let S1 be a L.I. subset of S s.t., o(S1) = m + 1
By above theorem then o(T)  o(S1) giving  m  m + 1, a contradiction.
Hence S must be finite.

Cor. 2: Any two bases of a F.D.V.S. have same number of elements.

Proof: Let S and T be two bases of a F.D.V.S. V
By above cor., S and T are finite and by the theorem o(T)  o(S) and o(S)  o(T)
Hence o(T) = o(S).
With the result of cor.2 in our mind we make

Definition: A F.D.V.S. V is said to have dimension n if n is the number of elements in any basis
of V.

We use the notation dimF V = n or simply dim V = n and say V is n-dimensional vector space.
In view of an example done earlier
dim R2 = 2. In fact dim Rn = n

Cor. 3: If dim V = n, then any n + 1 vectors in V are linearly dependent.

Proof: Let T  V be a L.I. set s.t., o(T) = n + 1
Let S be a basis of V. Then S spans V and o(S) = n.
By theorem, 18. o(T)  o(S)
giving n + 1  n a contradiction
Thus any n + 1 vectors in V are L.D.

Theorem 19: A basis of a vector space is maximal linearly independent set and conversely,
every maximal linearly independent set in a vector space is its basis.

Proof: Let S be a basis of a vector space V, then S is linearly independent set in V. Let T be
a linearly independent set in V such that S 

 is linearly independent set in 
 T. If S  

 is linearly independent set in 
 T then  some

t
a linearly independent set in 

T s.t., t 
a linearly independent set in 

 S.
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Now t  T   t  V  t = 1s1 + 2s2 + ... + nsn, i  F, si  S as S spans V
 (– 1) t + 1s1 + 2s2 + ... + nsn = 0, where t  si for any i
 – 1 = 0

as {t, s1, s2,..., sn}  T is a linearly independent set. So we get a contradiction.
Hence S is a maximal linearly independent set.
Conversely, let S  V be a maximal linearly independent set. Let v  V, and suppose

v 
Conversely
 L(S)

Then S  S  {v} as v  L(S)  v  S
and so S  {v} is a L.D. set and thus  a finite subset of S {v} which is a L.D. set.
i.e., s1, s2,... sn  S s.t., {v, s1, s2,..., sn} is a L.D. set.
i.e., v + 1s1 + ... + nsn = 0,   F, i  F
where  or some i is not zero.
If  = 0 then 1s1 + 2s2 + ... + nsn = 0
 i = 0  i.

Thus   0
So v = (– –1

1)s1 + ... + (– + ... + (– –1
n) sn

 v  L(S), (a contradiction)
Thus V = L(S) and so S is a basis of V.

Cor.: Suppose n is the maximum number of L.I. vectors in any subset of a vector space V.
Then dim V = n.

Proof: Let S be a L.I. subset of V such that o(S) = n
Then S is a maximal L.I. set in V. By above theorem then S is a basis of V. Hence

dim V = o(S) = n.

Theorem 20: Let V(F) be a vector space. A minimal generating set of V is a basis of V and
conversely, every basis of V is a minimal generating set of V.

Proof: Let S be a minimal generating set of V
Then V = L(S) and no proper subset of S generates V. We show S is L.I. set. Suppose it

is not, then there exists a finite subset S1, of S such that S1 is not L.I. Thus 
 set. Suppose it

 s 
 set. Suppose it

 S1 s.t., s
is linear combination of elements of S1, and so of S.

Let T = S – {s}
then V = L(T) and T S, a contradiction as S is minimal generating set of V.
Hence S is a basis of V.
Conversely, let B be a basis of V. We show no proper subset of B generates V.

Let B
Conversely

  B and V = L(B ). Then  b 
. We show no proper subset of 

B, s.t., b 
. We show no proper subset of 

B
. We show no proper subset of 

Now b B  b V = L(B )   b = 
1

n

i ib
1

n

i ibi ibi i ,   bi  B

 0 = (– 1) b 
1

n

i ib
1

n

i ibi ibi i , b  b i for any i
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 – 1 = 0 as {b, b 1,..., b n}  B is a L.I. set, a contradiction.
Thus B is minimal generating set of V.

Theorem 21: If V is a F.D.V.S. and {v1, v2,..., vr} is a L.I. subset of V, then it can be extended
to form a basis of V.

Proof: If {v1, v2,... vr} spans V, then it itself forms a basis of V and there is nothing to prove.
Let S = {v1, v2,... vr, vr + 1,... vn} be the maximal L.I. subset of V, containing

{v1, v2, ..., vr}.
We show S is a basis of V, for which it is enough to prove that S spans V.

Let v  V be any element
then T = {v1, v2,...vn,v} is L.D. by choice of S
  1, 2,..., n,   F (not all zero) such that

1v1 + ... + nvn + v = 0
We claim   0. Suppose  = 0
then 1v1 + ... + nvn = 0
 i = 0 for all i as v1, v2,..., vn are L.I.

 = i = 0 for all i which is not true.
Hence  0 and so –1 exists.
Since v = (– –1

1)v1 + (– –1
2)v2 + ... + (– –1

n)vn

v is a linear combination of v1, v2,..., vn
which proves our assertion.

Aliter: Let dim V = n and S = {v1, v2,..., vr}. If S is maximal L.I. set in V then by theorem
19, it is a basis of V. If S is not maximal L.I. set in V then  a set T  S such that T is L.I.
set in V. Since a L.I. set cannot have more than n vectors, after finite number of steps, there
would be a maximal L.I. set B  S in V. By theorem 19, B would be a basis of V. Hence S
can be extended to form a basis B of V.

Remark: This result can be proved even if the vector space is not finite dimensional.

Theorem 22: If dim V = n and S = {v1, v2,..., vn} spans V then S is a basis of V.

Proof: Since dim V = n, any basis of V has n elements. By theorem 17, a subset of S will be
a basis of V but as S contains n elements, it will itself form basis of V.

Theorem 23: If dim V = n and S = {v1, v2,...,vn} is L.I. subset of V then S is a basis of V.

Proof: Since {v1, v2,..., vn} = S is L.I. it can be extended to form a basis of V, but
dim V being n it will itself be a basis of V.

Aliter: Let v  V, then
v, v1, v2,..., vn will be L.D. by cor. 3 on page 503. Thus  , 1, 2,..., n  F s.t.,

v + 1v1 + 
 by cor. 3 on page 503. Thus 

2v2 + ... + 
 by cor. 3 on page 503. Thus 

nvn = 0
where some i or  is not zero.
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If  = 0, then
1v1 + 2v2 + ... + nvn = 0

 i = 0 i as v1, v2 ..., vn are L.I.
Thus   0 and so

v = (– –1
1)v1 + ..... + (– –1

n)vn  L(S)
 V  L(S)
 V = L(S) and as S is L.I., S is a basis of V.

Remark: In view of these theorems the proof of problem 18 on page 500 can be shortened
as we know dim R3 = 3.

Problem 19: If {v1, v2,.. ., vn} is a basis of F.D.V.S. V of dim n and v = ivi,
r  0 then prove that {v1, v2,..., vr–1, v, vr + 1 ..., vn} is also a basis of V.

Solution: We have
v = 1v1 + ... + rvr + ... + nvn r  0,  r

–1 exists
 vr = (– r

–1
1) v1 + ... + (– r

–1 r–1) vr–1 + r
–1v + ... + (– r

–1
n)vn

= 1v1 + ... + r–1vr–1 + rv + r + 1 vr + 1 + ... + nvn.
If x  V  be any element, then

x = 1v1 + 2v2 + ... + nvn i  F
 x = a1v1 + ... + ar–1vr–1 + ar( 1v1 + ... + nvn) + ... + anvn

or that x is a linear combination of
v1, ..., vr–1, v, vr+1,..., vn

and x being any element, we find V is spanned by {v1,..., vr–1, v, vr+1,... vn} and it forms a
basis of V, using theorem done above.

Theorem 24: Two finite dimensional vector spaces over F are isomorphic iff they have the
same dimension.

Proof: Let V and W be two isomorphic vector spaces over F and let  : V  W be the
isomorphism.

Let dim V = n and {v1, v2, .., vn} be a basis of V.
We claim { (v1), (v2), ..., (vn)} is a basis of W.

Now
1

n

i
i 1

n

i 1
i  (vi) = 0 i  F,

 ( )i iv( )i i( )i i( )( )v( )( )i i( )v( )i i( )( )( )i i( )i i( )( )v( )( )i i( )v( )i i( )  = 0 = (0)

 i ivi ivi ivi i  = 0 (  is 1–1)

 i = 0 for all i as v1, v2, ..., vn are L.I.
 (v1), (v2), ..., (vn) are L.I.

Again, if w  W is any element, then as  is onto,  some v  V s.t., (v) = w
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Now v  V  v = 
1

n

i i
i

v
1

n

i 1
i ivi ivi i  for some i  F

 w = (v) = i ivi ivi ivi i

 w = )i iv )i ivi ivi ii ivi ivi ii ivi ivi i  = 1 (v1) + 1 (v2) + ... + n (vn)

or that w is a linear combination of (v1), (v2), ..., (vn)
Hence (v1), (v2),..., (vn) span W and therefore, form a basis of W showing that dim W

= n.
Conversely, let dim V = dim W = n and suppose. {v1, v2, ..., vn} and {w1, w2, ...,wn} are

basis of V and W respectively.
Define a map  : V  W s.t.,

(v) = ( 1v1 + 2v2 + ... + nvn)
= 1w1 + 2w2 + ... + nwn

then  is easily seen to be well defined. (Indeed any v  V is unique linear combination of
members of basis).

If v, v   V be any elements then

v = i ivi ivi ivi i, v  = i ivi ivi ivi i i, i  F

(v + v ) = i i i iv vi i i iv vi i i iv vi i i i

= )i i iv)i i i)i i i)vi i ivi i ii i i

= ( )i i iw( )i i i( )i i i( )wi i iwi i i( )( )i i i( )i i i( )

= i i i iw wi i i iw wi i i iw wi i i i  = (v) + (v )

Also  ( v) = i ivi ivivi  = i ivi ivi ivi ii ivi ivi i  = i( ) iw( ) w( )i( )i( )i

 = i iwi iwiwi  = (v)

Thus  is a homomorphism.
Now if v  Ker 
then (v) = 0

 i ivi ivivi  = 0

 i iwi iwiwi = 0
 i = 0 for all i w1, w2, ..., wn being L.I.
 v = 0
 Ker  = {0}
  is one–one.

That  is onto is obvious. Hence  is an isomorphism.
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Cor.: Under an isomorphism, a basis is mapped onto a basis.
Follows by first part of the theorem.

Problem 20: Show that the set of all real valued continuous functions y = f (x) satisfying the

differential equation 
3 2

3 26 11 6 0d y d y dy y
dxdx dx3 26 11 6 06 11 6 06 11 6 03 26 11 6 03 2

d y d y dy6 11 6 0d y d y dy6 11 6 0y6 11 6 0y6 11 6 0
dx3 2dx dx3 2  is a vector space over R. Find a basis of

this.

Solution: One can check that V = {f | f : R R, f cont.} is a vector space over R, under
( f + g) x = f (x) + g(x)
(( f ) x = (f (x))

Let W = {f  V | f is a solution of given differential equation}
The given differential equation is

(D3 + 6D2 + 11D + 6) y = 0
(D + 1) (D + 2) (D + 3) y = 0

      D = – 1, – 2, – 3
and the general solution is

y = Ae–x + be–2x + Ce–3x

If S = {e–x, e–2x, e–3x} then clearly S spans W
Let Ae–x + Be–2x + Ce–3x = 0
Then –Ae–x + (– 2) Be–2x + (– 3C) e–3x = 0

Ae–x + (4B) e–2x + (9C) e–3x = 0  x
Put x = 0

1 1 1
1 2 3
1 4 9

A
B
C

1 1 1 A
B1 2 3 BB1 2 31 2 3

1 4 9 C
 = 0  M 

A
B
C

A
BBB
C

 = 0

where det M = 1(–18 + 12) – 1 (–9 + 3) + 1 (– 4 + 2) = – 2  0
thus M –1 exists and so A = B = C = 0
 S is L.I. and hence a basis of W.

Note: W is a vector space as it is a subspace of V. [y1, y2  W  1y1 + 2y2 is a solution
of the given differential equation  

 is a vector space as it is a subspace of 
1y1 + 

 is a vector space as it is a subspace of 
2y2 

. [
 W ].

Problem 21: If S = {v1, v2,..., vr} is a L.I. subset of V and v  V be such that
v L(S), then show that S  {v} is a L.I. subset of V.

Solution: S  {v} = {v1, v2,..., vr, v}
Let 1v1 + 2v2 + ... + rvr + v = 0 i  F,   F
If   0 then –1 exists and we get

–1( 1v1 + 2v2 + ... + rvr + v) = 0
 v = (– –1

1)v1 + (– –1
2)v2 + ... + ( –1

r)vr

 v L(S), a contradiction



10. Vector Spaces 509

thus  = 0
 1v1 + 2v2 + ... + rvr = 0
 i = 0 for all i as v1, v2,..., vr are L.I.
  = i = 0 for all i
 v1, v2,..., vr, v are L.I.

Hence the result follows.

Problem 22: (1, 1, 1) is L.I. vector in R3(R) Extend it to form a basis of R3
.

Solution: (1, 1, 1) is non zero vector and is therefore L.I. in R3.
Let S = {(1, 1, 1)}, then L(S) = { (1, 1, 1) |   R}
Now (1, 0, 0)  R3, but (1, 0, 0)  L(S)
thus by above problem S1 = {(1, 1, 1), (1, 0, 0)} is L.I.
Now L(S1) = { (1, 1, 1) + (1, 0, 0) | ,   R}

= {(  + , , ) | ,   R}
Again (0, 1, 0)  L(S1) and by above problem

S2 = {(1, 1, 1), (1, 0, 0), (0, 1, 0)} is L.I. subset of R3.
Since dim R3 = 3, we find S2 will be a basis of R3.

Problem 23: A finite set of non zero vectors {v1, v2,..., vn} in a vector space V(F) is L.D.
iff  vk, 2  k 

A finite set of non zero vectors 
 n, s.t., vk is a linear combination of v1, v2,..., vk–1.

Solution: Let v1, v2,..., vn be L.D. Then  i  F, not all zero s.t., 
1

0
n

i i
i

v
1

0
n

i 1
i ivi ivi i .

Let k be the largest integer s.t., k  0 and i = 0  i > k.
then k  1 as if k = 1,
then 1v1 = 0, 1  0 ( i = 0 for all i  2)

 v1 = 0, not true as vi are non zero
Hence 2  k  n
Thus k  0 and i = 0 for all i  k + 1. Also then k

–1 exists
 1v1 + 2v2 + ... + kvk = 0
 k

–1 ( 1v1 + 2v2 + ... + kvk ) = 0
 vk = (– k

–1
1)v1 + (– k

–1
2) v2 + ... + (– k

–1
k–1)vk–1

which proves the result.
Conversely, suppose  k, 2  k  n s.t., vk is a linear combination of v1, v2, . . .,vk–1

Let vk = a1v1 + a2v2 + . . . + ak–1vk–1     ai  F
Then a1v1 + a2v2 + . . . + ak–1vk–1 – 1. vk = 0

 v1, v2,. . . ,vk are L.D. as (– 1)  0
 v1, v2,. . .,vk, vk+1,. . . ,vn are L.D.
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as any super set of a L.D. set is L.D.
Hence the result follows.

Remark: If v1, v2,..., vn be in V then either these are L.I. or some vk is a linear combination
of the preceeding ones v1, v2,..., vk–1.

All this time we've been talking about basis of a F.D.V.S. V. What about a subspace of V.
Would it also be finite dimensional? The answer is a natural yes. We formalise it through

Theorem 25: Let W be a subspace of a F.D.V.S. V, then W is finite dimensional and
dim W  dim V. In fact, dim V = dim W iff V = W.

Proof: Let dim V = n, then n is the maximum number of L.I. elements in any subset of V.
Since any subset of W will be a subset of V, n is the maximum number of L.I. elements in W.

Let w1, w2,..., wm be the maximum number of L.I. elements in W then m  n.
We show {w1, w2,..., wm} is a basis of W. These are already L.I. If w  W be any element

then the set {w1, w2, ..., wm, w} is L.D.
  1, 2,..., m,  in F (not all zero) s.t.,

1w1 + ... + m wm + w = 0.
If  = 0, we get i = 0 for all i as w1,..., wm are L.I. which is not true. Thus   0 and

so –1 exists.
The above equation then gives us

w = (– = (– –1
1)w1 + ... + (– + ... + (– –1 m) wm

Showing that {w1, w2,..., wm} spans W (and thus W is finite dimensional)
 {w1, w2,..., wm} is a basis of W
 dim W = m  n = dim V

Finally, if dim V = dim W = n
and {w1, w2,..., wn} be a basis of W then as {w1, w2,..., wn} is L.I. in W it will be L.I. in V.
and as dim V = n, {w1, w2,..., wn} is a basis of V.

Now if v  V be any element then
v = 1w1 + 2w2 + ... + nwn  W

 V  W  V = W.
Conversely, of course, V = W  dim V = dim W.

Remarks:
(i) If W is a subspace of V where W = (0) then dimension of W is taken to be zero.

(ii) C (Q) is not finite dimensional as if it is then its subspace R(Q) will also be finite
dimensional, which is not true, as suppose dim R(Q) = n. Let x1, x2,..., xn be a basis
of R(Q), then

R = { 1x1 + 2x2 + ... + nxn | i Q}
Since Q is a countable set, each i has countable choices. So R should be countable,
which is not true. Hence dim R(Q) is not finite.
Aliter: Suppose [R: Q] = n and let f(x) = xn+1  2  Q[x]. Then f(x) is irreducible
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over Q. Let 1 2n 2nn 1  be a real root of f(x), then [Q( ): Q] = deg f(x) = n + 1. Also
Q( )/Q is a subspace of R/Q. But dimension of Q( )/Q is n + 1 which is more than
the dimension n of R/Q, a contradiction. So R/Q is not finite dimensional.

(iii) The result of theorem may not hold if V is not finite dimensional. Consider
V = F[x] and take W = F[x2], then W is a subspace of V, W  V as x  V, x  W. Here
S = {1, x, x2,..., xn,...} is a basis of V and T = {1, x2,..., x2n,...} is a basis of W. The
map  : S  T, s.t., (xi) = x2i is 1–1 onto and thus S & T have same cardinality 
dim V = dim W.

Theorem 26: Let W be a subspace of a F.D.V.S. V. Then

dim V
W

= dim V – dim W.

Proof: Let dim W = m and let {w1, w2, ..., wm} be a basis of W.
w1, w2,..., wm being L.I. in W will be L.I. in V and thus {w1, w2,..., wm} can be extended

to form a basis of V.
Let {w1, w2,..., wm, v1, v2,..., vn} be this extended basis of V.
then dim V = n + m

Consider the set S = {W + v1, W + v2,..., W + vn}, we show it forms a basis of V
W

.

Let 1(W + v1) + ..... + n(W + vn) = W, i  F
Then W + ( 1v1 + ..... + nvn) = W

 1v1 + ..... + nvn  W
 1v1 + ..... + nvn is a linear combination of w1,..., wm
 1v1 + ..... + nvn = 1w1 + ..... + mwm j  F
 1v1 + ..... + nvn – 1w1 – ..... – mwm = 0
 i = j = 0 for all i, j.
 {W + v1, W + v2,....., W + vn} is L.I.

Again, for any W + v V
W

, v  V means v is a linear combination of

w1,..., wm, v1,..., vn.
i.e., v = 1w1 + ... + mwm + 1v1 + ... + nvn i, j F
giving W + v = W + ( 1w1 + . . . + mwm) + ( 1v1 + . . . + nvn)

= W + ( 1v1 + . . . + nvn)
= (W + 1v1) + . . . + (W + nvn)
= 1(W + v1) + 2(W + v2) + . . . + n(W + vn).

Hence S spans V
W

 and is therefore a basis.

dim V
W

 = n
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Thus dim V
W

 = dim V – dim W.

Remark: Thus we notice that if V is a F.D.V.S. then so is V
W

. Converse of this may not be

true. Consider
V = F[x],  W = {x2 f (x) | f (x)  V}

Then W is a subspace of V and
V
W

 = {W + a0 + a1x | ai  F} which

is spanned by {W + 1, W + x} and thus V
W

 is finite dimensional, whereas V is not.

Theorem 27: If A and B are two subspaces of a F.D.V.S. V then
       dim (A + B) = dim A + dim B – dim (A  B).

Proof: We've already proved that
A B

A
A B  B

A BA B

dim 
A B

A
A B

 = dim 
B

A BA B
 dim (A + B) – dim A = dim B – dim (A  B)

or that  dim (A + B) = dim A + dim B – dim (A  B).

Remark: The reader should try to give an independent proof of the above theorem as an
exercise.

Cor.: If A  B = (0) then dim (A + B) = dim A + dim B
i.e., dim (A  B) = dim A + dim B.

Problem 24: Let W1, W2, W3 be subspaces of a F.D.V.S. Show that
dim (W1 + W2 + W3)  dim W1 + dim W2 + dim W3 – dim (W1 W2)

– dim (W1  W3) – dim (W2  W3) + dim (W1  W2  W3).
Solution: We have

dim (W1 + W2 + W3) = dim W1 + dim (W2 + W3) – dim (W1  (W2 + W3))
= dim W1 + dim W2 + dim W3 – dim (W2  W3)

– dim (W1  (W2 + W3))
 dim W1 + dim W2 + dim W3 – dim (W2  W3)
– dim (W1  W2) – dim (W1  W3) + dim (W1  W2  W3)

as (W1  W2) + (W1  W3)  W1  (W2 + W3).

Problem 25: Let Pn be the vector space of all polynomials of degree  n over R.

Exhibit a basis of P4/P2. Hence verify that dim 4

2

P
P

 = dim P4 – dim P2.
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Solution: It is easy to see that {1, x, x2, x3, x4} is a basis of P4 and thus dim P4 = 5. Similarly
dim P2 = 3 as {1, x, x2} will be a basis of P2.

Let  S = {P2 + x3, P2 + x4} then S is a basis of 4

2

P
P

 as

P2 + f  4

2

P
P
 P2 + 0 + 1x + 2x

2 + 3x
3 + 4x

4 = P2 + f

 P2 + f = 3(P2 + x3) + 4(P2 + x4)

 S spans 4

2

P
P

.

Again, (P2 + x3) + (P2 + x4) = zero = P2

 P2 + x3 + x4 = P2

 x3 + x4 = a + bx + cx2  P2
 a = b = c =  =  = 0 as polynomial is zero, if each coefficient is zero.

Thus S is a basis of 4

2

P
P

.

Hence  dim 4

2

P
P

 = 2 = 5 – 3 = dim P4 – dim P2.

Problem 26: Let V = M2(R) and let W = {A  V |A = A }be a subspace of V. Find a basis
of W.

Solution: Let A = 11 12

21 22

a a
a a

11 12a a11 12a a11 1211 12

21 22a a21 22a a21 2221 22a a21 22a a21 22
 be in W, then

A = a11 E11 + a12 E12 + a12 E21 + a22 E22
where Eij = (aij) s.t., aij = 1 and 0 elsewhere
Thus A = a11 E11 + a12 (E12 + E21) + a22 E22

S = {E11, E12 + E21, E22}  W spans W
Also S is L.I. and hence forms a basis of W and dim W = o(S) = 3.

Problem 27: Let V = R(n), then W = {(x1, x2,..., xn) | 
1

n

ix
1

n

ix  = 0} is a subspace of V. Find

a basis for W.

Solution: Let (x1, x2,..., xn)  W, then x1 + x2 +...+ xn = 0
 xn = – x1 – x2 ..... – xn–1
 (x1, x2,..., xn) = (x1, x2,..., xn–1, – x1 – x2,..., – xn–1)

= x1 (1, 0, 0,..., 0, –1) + x2 (0, 1,..., 0, – 1) + ...
xn–1(0, 0, ..., 1, –1)

 S = {(1, 0, 0,..., 0, – 1), (0, 1,..., 0, – 1),...(0, 0,..., 1, –1)}  W spans W.
Again, let 1(1, 0,..., 0, – 1) +...+ n–1 (0, 0,..., 1, –1) = (0, 0,..., 0)
Then ( 1, 2,..., n–1, – 1,...,  – n–1) = (0, 0,..., 0)
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 i = 0 i = 1, 2,..., n–1
Hence S is a basis of W and dim W = 0(S) = n – 1.

Theorem 28: Let W be a subspace of a F.D.V.S. V, then there exists a subspace WLet W be a subspace of a F.D.V.S. V, then there exists a subspace W  of V such
that V = W 

Let W be a subspace of a F.D.V.S. V, then there exists a subspace W
 W
Let W be a subspace of a F.D.V.S. V, then there exists a subspace W
 W .

Proof: Let {w1, w2,... , wm} be a basis of W, then w1, w2,..., wm being L.I. in W
will be L.I.  in V. We extend these L.I.  elements to form a basis of V, say
{w1,..., wm, v1,..., vn}

Let W  = L ({v1, v2,..., vn}), i.e., W  be the subspace spanned by {v1, v2,..., vn}.
We show W  W  = V
Let v  V be any element, then

v = ( 1w1 + ... + mwm) + ( 1v1 + ... + nvn), i, j  F
where the first bracket term belongs to W and the second to W

v  W + W  and thus V W + W
 V = W + WW

Again,  if x  W  W  be any element
then  x  W and x  WW

 x = a1w1 + ... + amwm ai, bj  F
x = b1v1 + ... + bnvn

 a1w1 + ... + amwm + (–b1)v1 + ... + (–bn)vn = 0
 ai = bj = 0 for all i, j w1,..., wm, v1,..., vn being L.I.

Hence x = 0
 W  W  = (0)

or that V = W  W

Remarks:
(i) W  is called complement of W. Thus we have proved that every subspace of a F.D.V.S.

has a complement.
(ii) The above throrem can also be proved in any vector space (not essentially finite

dimensional).
Cor.: If W  is any complement of W in V then dim W  = dim V – dim W.

Since V = W  W   dim V = dim (W  W ) = dim W + dim W
 dim W  = dim V – dim W.

Although every complement of a subspace has same dimension it does not mean that a
subspace has a unique complement. Consider

Example 23: Let V = R2(R) and let
W = {(a, 0) | a  R}
W1 = {(0, b) | b  R}
W2 = {(c, c) | c  R}

It is easy to see that W, W1, W2 are subspaces of V.
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We show      V = W  W1 and V = W  W2
Now v  V  v = (x, y) = (x, 0) + (0, y)  W + W1

 V  W + W1  V = W + W1
Again x  W  W1  x  W and x  W1

 x = (a, 0), x = (0, b)
 (a, 0) = (0, b)  a = b = 0  x = 0

Hence W W1 = 0
or that V = W  W1.
Also v  V  v = (x, y) = (x – y, 0) + (y, y)  W + W2

 V  W + W2  V = W + W2
Now x  W  W2  x  W and x  W2

 x = (a, 0), x = (c, c)
 (a, 0) = (c, c)
 c = 0, a = 0
 x = (0, 0)

thus W  W2 = (0)
or that V = W  W2
Notice that W, W1, W2 are spanned by {(1, 0)}, {(0, 1)}, {(1, 1)} respectively and as each

of these is L.I. (they are non zero). These subsets form bases of W, W1, W2 respectively.
Hence dim W  = dim W1 = dim W2 = 1.

Definition: Let V(F) be a vector space. Subspaces W1, W2,..., Wm of V are said to be independent
if

w1 + w2 + ... + wm = 0  wi = 0 i,  wi  Wi

Theorem 29: Let V be a F.D.V.S. Let W1, W2,.. ., Wm be subspaces of V, where
W = W1 + W2 + ... + Wm, then the following are equivalent

(i) W1, W2,..., Wm are independent
(ii) Wj  (W1 + W2 + ... + Wj–1) = {0}, j,  2  j  m

(iii) If i is an ordered basis of Wi, 1  i  m, then  = { 1, 2,..., m} is an ordered basis
of W.

Proof: (i)  (ii)
Let x  Wj  (W1 + W2 + ... + Wj–1) be any element
 x  Wj and x  W1 + W2 + ... + Wj–1
 x = wj, x = w1 + w2 + ... + wj–1 wi  Wi
 w1 + w2 + ... + wj–1 = wi
or that w1 + w2 + ... + wj–1 + (–1) wj + 0 + 0 ... + 0 = 0
 wi = 0 i using (i)
 x = 0  result.
(ii)  (iii)
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Let i = 
1

{ ,..., }
dii ix x be basis of Wi.

Let 
11 1 2 2

1
...

i

k

i i i i id id
i

a x a x a xi i i i id id1 1 2 2i i i i id id1 1 2 2a x a x a xi i i i id ida x a x a xi i i i id id1 1 2 2i i i i id id1 1 2 2a x a x a x1 1 2 2i i i i id id1 1 2 2
1

1i i i i id id1i i i i id id1
...i i i i id id...a x a x a xi i i i id ida x a x a xi i i i id id...i i i i id id...a x a x a x...i i i i id id...

k

i i i i id id1 1 2 2i i i i id id1 1 2 2
i

a x a x a xi i i i id ida x a x a xi i i i id id1 1 2 2i i i i id id1 1 2 2a x a x a x1 1 2 2i i i i id id1 1 2 2
1

 = 0

Then 
1

k

i
i

w
1

k

i
i

wiwi
1

 = 0  wi = 0 for all i (since, if j is the largest integer s.t., wj  0, then

 w1 + ... + wj = 0  wj  Wj  (W1 + ... + Wj–1) = {0}  wj = 0, a contradiction).
 = { 1,..., k} is an independent set in W. Since i spans Wi for all i,  spans W.
 is a basis  of W.

(iii)  (i)
Let x1 + ... + xm = 0, xi  Wi

Then
1 1 1 1 111 1 1 1.... ... ...

d dkd k k kx x x x
1 1 11 1 1 11 11 1 1 11 1 11 1 1 111 1 1 1....1 1 1 1 ... ...

d d1 1d d1 11d d1 kd dkd dd1d11 1 1 1d1 1 1 111 1 1 11d11 1 1 11 k k k... ...k k k... ...
d dk k kd d1 1d d1 1k k k1 1d d1 1

x x x x1 1 1 1x x x x1 1 1 11 1 1 1....1 1 1 1x x x x1 1 1 1....1 1 1 1 ... ...x x x x... ...dx x x xd1 1 1 1d1 1 1 1x x x x1 1 1 1d1 1 1 1 k k kx x x xk k k... ...k k k... ...x x x x... ...k k k... ... = 0

 each coefficient ij = 0 as  is linearly independent
 each xi = 0
 W1,..., Wm are independent.

Problem 28: Let  V be a finite dimensional space and W1,..., Wm be subspaces of V s.t.
V = W1 + ... + Wm and dim V = dim W1 + ... + dim Wm

Prove that V = W1  ...  Wm.

Solution: Let i be an ordered basis of Wi for all i. Let dim Wi = di. Let x  V. Then
x = x1 + ... + xm, xi  Wi, xi  Wi  xi is a linear combination of vectors in i.
  x is a linear combination of vectors in  = { 1, ..., m}
 spans V
 is a basis of V (for if  is not a basis of V, then some subset of  is a basis of V 

dim V < o( 1) + ... + o(
 (for if 

m) = dim W1 + ...... + dim Wk = dim V, a contradiction)
  W1, ..., Wm are independent by Theorem 29
  Wj  (W1 + ... + Wj – 1) = {0} for all j,  2  j  m by theorem 29
  V = W1  W2 + ... +  Wm. (by exercise 18 on page  484).

Exercises
1. Show that the following vectors are L.I.

(i) (1, 0, 0), (1, 1, 1), (1, 2, 3), in R3(R)
(ii) (1, 1, 0), (1, 0, 1), (0, 1, 1) in R3(R)

(iii) (1, 2, –1), (2, 2, 1), (1, –2, 3) in R3(R)
(iv) (1, 0, 0, 0), (1, 1, 0, 0), (0, 0, 1, 1), (1, 1, 1, 1) in R4(R).

2. Show that the following vectors are L.D.
(i) (1, – 1, 2, 0), (3, 0, 0, 1), (2, 1, – 1, 0), (1, – 1, 2, 0) in R4(R)
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(ii) (1, 1, 2), ( – 3, 1, 0), (1, – 1, 1), (1, 2, – 3) in R3(R)
(iii) (1, 2, 3, 4), (0, 1, – 1, 2,), (1, 5, 1, 8), (3, 7, 8, 14) in R4(R)
(iv) (1, 1, 2,), (1, 2, 5), (5, 3, 4) in R3(R).

3. Show that vectors (v1, v2) and (w1, w2) in C are L.D. iff v1 w2 = v2w1.
4. Prove that every subset of a L.I. set is L.I. whereas  every super set of a L.D. set

is L.D. Hence show that in C the vector space of complex numbers, every set with
more than one element is L.D. set.

5. Let 1 = (1, 1, – 2, 1), 2 = (3, 0, 4, – 1), 3 = (– 1, 2, 5, 2). Show that the vector
(4, – 5, 9, – 7) is spanned by 

 = (3, 0, 4, – 1), 
1, 

 = (3, 0, 4, – 1), 
2, 

 = (3, 0, 4, – 1), 
3.

6. If S spans V then show that every super set of S spans V.
7. Let v1, v2,.. ., vn  V(F), a vector space. Show that L({v1, v2,.. ., vn}) =

L1({a1v1, a2v2,..., anvn}), ai 
), a vector space. Show that 

 0 in F and L({v1, v2}) = L({v1 – v2, v1 + v2}).
8. Show that {1, i} forms a basis of C (R).
9. Show that {(1, 1, 0), (1, 0, 1), (0, 1, 1)}, {(1, – 1, 1), (0, 1, 1), (1, 1, 1)} and {(1,

2, 1), (1, 0, – 1), (0, – 3, 2)} form basis of R3(R).
10. Show that the identity map i : V  V s.t., i(x) = x and zero map O : V  V s.t., O(x)

= 0 are linear transformations.
11. Show that every set of three vectors in R2(R) is L.D.
12. Find a basis and dimension of the following subspaces of Rn:

(i) W = {(x1, x2,..., xn)  Rn | x1 = xn}
(ii) W = {(x1, x2,..., xn)  Rn | xk = 0 if k is even}

(iii) W = {(x1, x2,..., xn)  Rn | xk s are equal when k is even}.
13. Find a basis and dimension of the following subspaces of Mn(R) = V

(i) W = {A V | A = A , the transpose of A}
(ii) W = {A  V | A = – A }

(iii) W = {A  V | Trace A = 0}.
14. Show that W1 = {(a, b, 0, 0) | a, b  F}, W2 = {(0, 0, c, d) | c, d  F} are subspaces

of F4(F), F a field such that F4 = W1 
}, 

 W2.
15. Let W be a subspace of a vector space V(F). For a , b   V, define

a  b mod W(a is congruent to b modulo W) iff a – b 
). For 

 W and (a – b)  W, for
all   F. Show that this relation is an equivalence relation on V and for any a  W,
cl(a) = W + a.

16. Extend the set S = {(1, 1, 0)} to form two different bases of R3(R).
17. Let S be a finite subset of a vector space V such that S is L.I. and every proper superset

of S in V is L.D. Show that S is a basis of V.
18. If W1 and W2 are subspaces of R4 and {(1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0)}, {(0,

0, 0, 1), (0, 0, 1, 1), (0, 1, 1, 1)} are bases of W1 and W2 respectively, find a basis
of W1 
0, 0, 1), (0, 0, 1, 1), (0, 1, 1, 1)} are bases of 

 W2.
[Hint: W1  W2 = {(0, a, b, 0) | a, b  R}]
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19. Find two subspaces A and B of R4(R) such that dim A = 2, dim B = 3 and
dim (A 
Find two subspaces 

 B) = 1.
20. Let F be a field. Let A = {(x, y, 0) | x, y,  F}, B = {(0, y, z) | y, z  F} be subspaces

of F3(F). Find dimension of the subspace A + B.
21. Let W be the subspace of R3(R), spanned by {(1, 0, 0), (0, 1, 0)}. Find a complement

of W.
22. Let S be a set of four vectors such that any three of them are L.I. Does it follow that

the four vectors are L.I.?
[No. consider (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)]

23. Let V be a vector space over F. Assume that every linearly independent set in V can
be extended to a basis of V. Deduce that V has a basis.

24. If W1, W2, and W3 are subspaces of a F.D.V.S. V then show that
dim (W1  W2  W3) = dim W1 + dim W2 + dim W3

25. Let W1 and W2 be subspaces of Rn such that every vector in Rn is the sum of a vector
in W1 and a vector in W2. Let B1 and B2 be basis for W1 and W2 respectively. Under
what condition is B1  B2 a basis of Rn?

[W1  W2 = (0)]

26. If W is a finite dimensional subspaces of a vector space V such that V
W

 is finite

dimensional then show that V is also finite dimensional.
27. Prove that if S  = {v1, v2,.. ., vn} is a basis of a vector space V(F)

and SS  = {w1, w2,..., wm} is a L.I. subset of V then m 
} is a basis of a vector space 

 n.

28. Give an example of a vector space V and its subspace W such that V, W and V
W

 are

infinite dimensional and

    dim V = dim W = dim V
W

.

[Hint: Take V = F [x], W = F [x2]]

Inner Product Spaces

In general a vector space is defined over an arbitrary field F and this is what we did earlier.
In this section we restrict F to the field of real or complex numbers. In the first case, the vector
space is called real vector space and in the second case it is called a complex vector space.
We study real vector spaces in analytical geometry and vector analysis. There we discuss the
concept of length and orthogonality. We also have dot or scalar product of two vectors which
among other things satisfies the following:

(i) . 0v v. 0   and ( . )v v   = 0  v  = 0
(ii) .v w   = .w v 

(iii) . ( )u v w. ( ). ( )u v w. ( )    = ( . )u v( . )( . )u v( . )   + ( . )u w( . )( . )u w( . ) 

where , ,u v w    are vectors and ,  real numbers.
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We wish to extend the concept of dot product to complex vector spaces also. We define
a map on V × V to F (where V = vector space over F) with same property as dot product,
called inner product and study the concept of length and orthogonality.

Definition: Let V be a vector space over field F (where F = field of real or complex numbers).
Suppose for any two vectors u, v 

 (where 
 V 

 (where 
 an element (u , v) 

 = field of real or complex numbers).
 F s.t.,

[(u, v) here is just an element of F and should not be confused with the ordered pair.]

(i) (u, v) = ( , )v u  (i.e., complex conjugate of (v, u))
(ii) (u, u)  0 and (u, u) = 0  u = 0

(iii) ( u + v, w) = (u, w) + (v, w)
for any u, v, w  V and ,   F.

Then V is called an inner product space and the function satisfying (i), (ii) and (iii) is called
an inner product.

Thus inner product space is a vector space over the field of real or complex numbers with
an inner product function.

Remarks:
1. Property (ii) in the definition of inner product space makes sense in as much as (u, u)

= ( , )u u  by (i)  (u, u) = real.
2. Property (iii) can also be described by saying that inner product is a linear map in 1st

variable.
3. Can we say that inner product is linear in 2nd variable?

Let’s evaluate

(u, v + w) = ( , )v w u( , )( , )v w u( , )  by (i)

= ( , ) ( , )v u w u( , ) ( , )( , ) ( , )v u w u( , ) ( , )

=  (u, v) +  (u, w)
So, it need not be linear in 2nd variable.

4. If F = field of real numbers, then the function inner product satisfies same properties
as dot product seen earlier.

5. Inner product space over real field is called Euclidean space and over complex field is
called Unitary space.

6. In the vector space of all vectors in 3-dimensional space over reals, the inner product
will be the usual dot product of two vectors, i.e.,

< ,u v  > = | | | |u v   cos .

Example 24: Let V = F(n), F = field of complex numbers.
Let u = ( 1, 2,..., n)

v = ( 1, 2,..., n) in F(n)

Define (u, v) = 1 11  + ... + n nn

It can be easily shown that (u, v) defines an inner product, called standard inner product.
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Example 25: Let V = R(2), u = ( 1, 2), v = ( 1, 2)
Define (u, v) = 1 1 – 2 1 – 1 2 + 4 2 2
Then

(i) (u, v) = (v, u) = ( , )v u

(ii) (u, u) = ( 1 – 2)
2 + 2

23 2
2   0

(u, u) = 0 1 = 2, 2 = 0
 1 = 0 = 2
 u = ( 1, 2) = (0, 0) = 0

(iii) ( u + u, w) = (u, w) + (v, w)
can be easily verified.

Thus (u, v) defines an inner product.

Example 26: One may construct a new inner product from a given one. Let V, W be vector
spaces over F and T, a one–one linear transformation from V into W.

Suppose ( , ) is an inner product on W. Then
< u, v > = (T(u), T(v))

defines an inner product on V as

(i) < ,v u > = ( ( ), ( ))T v T u
= (T(u), T(v))
= < u, v >

(ii) < u, v > = (T(u), T(u))  0
and < u, u > = 0 (T(u), T(u)) = 0

 T(u) = 0  u = 0 as T is 1–1
(iii) < u + v, w > = (T( u + v), T(w))

= ( T(u) + T(v), T(w))
= (T(u), T(w)) + (T(v), T(w))
=  < u, w > +  < v, w >

Example 27: Let V = Mm×n (C). Then < A, B > = Trace (AB*) where B* = B , defines an
inner product on V as

(i) < ,B A > = Trace *BA
Let A = (aij), B = (bij), AB* = C = (cij)

B* = (dij), where dij = jib

cik = ij jka dij jka dij jka dij jk  = kjija bija bija bij

 cii = ij kja bij kja bij kja bij kj

 Trace AB* = iiciic  = ( )ijija b( )ij( )ij( )( )a b( )( )ij( )a b( )ij( )
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Let A* = (eij), where eij = jia
Let BA* = F = (fij), then

fik = ij kjb aij kjb ab aij kjb aij kj

 Trace BA* = iifiifiifii  = ( )ij ijb a( )ij ij( )ij ij( )( )b a( )( )b a( )( )ij ij( )b a( )ij ij( )

 Trace *BA = ijija bija bija bij  = Trace AB*

 < ,B A >  =  < A, B >

(ii) < A, B > = Trace AB* = ( )ijija b( )ij( )ij( )( )a b( )( )ij( )a b( )ij( )

< A, A > = ij ija aij ija aij ija aij ij  = 2| | 0ija| | 02| | 02| | 02
ij| | 0ij| | 0| | 0a| | 0

and < A, A > = 0  | aij | = 0  i, j
 aij = 0  i, j
 A = 0

Similarly axiom (iii) can be verified.

Problem 29: Let V be an inner product space. Show that
(i) (0, v) = 0 for all v V

(ii) (u, v) = 0 for all v  V  u = 0

Solution: (i) (0, v) = (0, 0, v)
= 0 (0, v) = 0

(ii) (u, v) = 0 for all v  V
 (u, u) = 0  u = 0.

Problem 30: Let W1, W2 be two subspaces of a vector space V. If W1, W2 are inner product
spaces, show that W1 + W2 is also an inner product space.

Solution: Let    x, y  W1 + W2.
Then x = u1 + u2

y = v1 + v2 u1, v1  W1; u2, v2  W2
Define < x, y > = (u1, v1) + (u2, v2)
Then

(i) ,y xy x,y x, = 1 1 2 2( , ) ( , )v u v u( , ) ( , )1 1 2 21 1 2 2( , ) ( , )1 1 2 2( , ) ( , )v u v u( , ) ( , )1 1 2 2( , ) ( , )1 1 2 2v u v u1 1 2 2( , ) ( , )1 1 2 2

= 1 1 2 2( , ) ( , )v u v u( , ) ( , )1 1 2 21 1 2 2( , ) ( , )1 1 2 2( , ) ( , )v u v u( , ) ( , )1 1 2 2( , ) ( , )1 1 2 2v u v u1 1 2 2( , ) ( , )1 1 2 2
= (u1, v1) + (u2, v2)
= < x, y >

(ii) < x, x > = (u1, u1) + (u2, u2)  0
and < x, x > = 0 (u1, u1) = 0 = (u2, u2)

 u1 = 0 = u2
 x = 0



522 A Course in Abstract Algebra

(iii) < x + y, z > = < x, z > + < y, z >
can be easily verified.

 < x, y > defines an inner product on W1 + W2
So, W1 + W2 is an inner product space.

Norm of a Vector

Let V be an inner product space. Let v  V. Then norm of v (or length of v) is defined as
( , )v v  and is denoted by || v ||.
In the vector space of all vectors in 3-dimensional space,

|| ||u  = ,u u,u u,u u,   = | |u  = length of u .
For this reason, norm of vector in general is also called length of vector.

Problem 31: || v || = | | || v || for all   F, v  V

Solution: || v ||2 = ( v, v)
=  (v, v)
= | |2 || v ||2

 || v || = | | || v ||
We now prove an important inequality known as Cauchy-Schwarz inequality.

Theorem 30: Let V be an inner product space.
Then | (u, v) |  || u || || v ||  for all u, v  V.

Proof: If u = 0, then (u, v) = (0, v) = 0

and || u || = ( , )u u  = (0,0)  = 0
L.H.S. = R.H.S.

Let u  0. Then || u ||  0

(as || u || = 0 (0,0)  = 0
 (u, u) = 0  u = 0)

Let w = v – 2
( , )
|| ||
v u u
u

Then (w, w) = 2 2
( , ) ( , ),
|| || || ||
v u v uv u v u
u u

( , ) ( , )( , ) ( , )v u v u( , ) ( , )( , ) ( , )( , ) ( , )v u v u( , ) ( , )( , ) ( , )( , ) ( , )v u v u( , ) ( , )( , ) ( , )( , ) ( , )v u v u( , ) ( , )
2 2

( , ) ( , )v u v uv u v u2 2v u v u2 2
( , ) ( , )v u v u( , ) ( , )( , ) ( , )

2 2
( , ) ( , )

2 2,2 2v u v uv u v uv u v u2 2v u v u2 2
( , ) ( , )v u v u( , ) ( , ),v u v u,2 2,2 2v u v u2 2,2 2
( , ) ( , )
|| || || |||| || || ||u u|| || || ||2 2|| || || ||2 2|| || || ||2 2|| || || ||u u|| || || ||2 2|| || || ||2 2|| || || ||2 22 22 2,2 2|| || || ||2 2|| || || ||2 2

= (v, v) – 2
( , )
|| ||
v u
u

 (u, v)

= || v ||2 – 2
( , ) ( , )

|| ||
u v u v

u
 = || v ||2 – 

2

2
| ( , ) |

|| ||
u v
u

=
2 2 2

2
|| || || || | ( , ) |

|| ||
u v u v

u

2 2 2|| || || || | ( , ) |2 2 2|| || || || | ( , ) |2 2 2|| || || || | ( , ) ||| || || || | ( , ) |u v u v|| || || || | ( , ) |
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Since (w, w)  0,
| (u, v) |2  || u ||2 || v ||2

 | (u, v) |  || u || || v ||.

Remarks:
(i) The above inequality will be an equality if and only if u, v are linearly dependent.

Proof: Suppose | (u, v) | = || u || || v ||
If u = 0, then u = 0.v  u, v are linearly dependent.
Let u  0. Then from above

(w, w) = 0  w = 0

2
( , )
|| ||
v uv u
u

( , )( , )v u( , )
|| ||

v uv u( , )v u( , )  = 0

 v = 2
( , )
|| ||
v uv u
u

( , )
|| ||
( , )v u( , )v uv u( , )v u( , )   u, v are linearly dependent.

Conversely, let u = v,  F
Then | (u, v) | = | (v, v) | = | | || v ||2

|| u || || v || = | | || v || || v || = | | || v ||2

| (u, v) | = || u || || v ||.
(ii) In the vector space of all vectors in 3-dimensional space, since

| , |u v| , || , |u v| , |
 

= | | | | | cos |u v| | | | | cos |
 

 || || || ||u v
 

as | cos |  1

we find that Cauchy-Schwarz inequality holds.

Theorem 31: Let V be an inner product space.
Then (i) || x + y ||  || x || + || y ||  for all x, y  V

(Triangle inequality)
(ii) || x + y ||2 + || x – y ||2 = 2 (|| x ||2 + || y ||2)

(Parallelogram Law)

Proof: (i) || x + y ||2= (x + y, x + y)
= (x, x) + (y, x) + (x, y) + (y, y)

= || x ||2 + ( , )x y  + (x, y) + || y ||2

= || x ||2 + 2Re (x, y) + || y ||2

 || x ||2 + 2 | (x, y) | + || y ||2

 || x ||2 + 2 || x || || y || + || y ||2

= ( || x || + || y || )2

Hence, || x + y ||  || x || + || y ||
This is called triangle inequality as
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|| x || + || y || = sum of the lengths of two sides of a triangle
|| x + y || = length of the third side of the triangle showing that sum of two side of a triangle

is less than its third side.
(ii) || x + y ||2 + || x – y ||2

= (x + y, x + y) + (x – y, x – y)
= || x ||2 + || y ||2 + (x, y) + (y, x) + || x ||2 + || y ||2 – (x, y) – (y, x)
= 2 (|| x ||2 + || y ||2).

Note: || x + y ||2 + || x – y ||2 = sum of squares of lengths of diagonals of a parallelogram
2 (|| x ||2 + || y ||2) = sum of squares of sides of a parallelogram.

 sum of squares of lengths of diagonals of a parallelogram is equal to sum of squares of
lengths of its sides. For this reason (ii) is called parallelogram law.

Problem 32: Show that || x + y || = || x || + || y || if and only if one of the vectors x, y is a non
negative scalar multiple of the other, where x, y are in an inner product space.

Solution: Let || x + y || = || x || + || y ||
Therefore, <x + y, x + y> = || x ||2 + || y ||2 + 2|| x || || y ||
or || x ||2 + || y ||2 + < x, y > + < y, x > = || x ||2 + || y ||2 + 2|| x || || y ||
So 2 Re < x, y > = 2|| x || || y ||
or Re < x, y > = || x || || y ||

Let z = y  || ||
|| ||

y x
x

Then < z, z > = || || || ||,
|| || || ||

y yy x y x
x x

|| || || |||| || || ||y y|| || || |||| || || |||| || || ||y y|| || || ||y x y xy x y xy x y x|| || || ||y x y xy x y x|| || || ||y x y x|| || || ||y x y xy x y xy x y xy x y x|| || || |||| || || ||y y|| || || ||y x y xy x y xy x y x|| || || ||y x y x|| || || ||y yy x y xy y|| || || ||y y|| || || ||y x y x|| || || ||y y|| || || ||
|| || || |||| || || ||x x|| || || |||| || || ||

y x y xy x y x
|| || || ||

y x y x
|| || || |||| || || ||x x|| || || |||| || || ||

y x y xy x y xy x y x,y x y x,
|| || || ||

y x y x
|| || || ||

,
|| || || ||

,y x y x,
|| || || ||

,

= 2 2|| || || |||| || , , || ||
|| || || ||

y yy y x x y y
x x

2 2|| || || ||2 2|| || || ||2 2, || ||2 2, || ||2 22 2|| || || ||2 2|| || || ||2 2|| || ,2 2|| || ,2 2|| || || |||| || ,|| || || ||2 2|| || || ||2 2|| || ,2 2|| || || ||2 2
|| || || ||
|| || || ||y y|| || || ||2 2|| || || ||2 2y y2 2|| || || ||2 2|| || || |||| || ,|| || || ||y y|| || || |||| || ,|| || || ||2 2|| || || ||2 2|| || ,2 2|| || || ||2 2y y2 2|| || || ||2 2|| || ,2 2|| || || ||2 2y y x x y yy y x x y y|| || || ||y y x x y y|| || || |||| || ,y y x x y y|| || ,|| || ,y y x x y y|| || ,|| || || |||| || ,|| || || ||y y x x y y|| || || |||| || ,|| || || || , || ||y y x x y y, || ||
|| || || ||

y y x x y y
|| || || ||

|| || ,
|| || || ||

|| || ,y y x x y y|| || ,
|| || || ||

|| || ,y yy y x x y yy y|| || || ||y y|| || || ||y y x x y y|| || || ||y y|| || || |||| || ,y y|| || ,y y x x y y|| || ,y y|| || ,|| || || |||| || ,|| || || ||y y|| || || |||| || ,|| || || ||y y x x y y|| || || |||| || ,|| || || ||y y|| || || |||| || ,|| || || ||

= 2 || ||2 || || (2Re( , ))
|| ||

yy x y
x

|| |||| ||2 || || (2Re( , ))2 || || (2Re( , ))|| ||2 || || (2Re( , ))|| ||
|| ||

2 || || (2Re( , ))
|| ||

2 || || (2Re( , ))|| ||y|| ||2 || || (2Re( , ))y2 || || (2Re( , ))|| ||2 || || (2Re( , ))|| ||y|| ||2 || || (2Re( , ))|| ||

= 2|| y ||2  2|| y ||2 = 0

So, z = 0 implies || || || ||,
|| || || ||

y yy x cx c
x x|| || || ||

|| |||| ||y y|| ||y y|| || || ||y y|| ||,y x cx c,
|| ||

y x cx c
|| ||

y x cx cy x cx c|| ||y x cx c|| ||y yy x cx cy y|| ||y y|| ||y x cx c|| ||y y|| || is a non negative real number..

If x = 0, then x = 0y
Conversely, let y = cx, c, a non negtive real number.
Then || x + y || = || x + cx || = |(1 + c)| || x || = (1 + c) ||x||
and || x || + || y || = || x ||(1 + |c|) = (1 + c) ||x||
Hence || x + y || = || x || + || y ||

Problem 33: Using Cauchy-Schwarz inequality, prove that cosine of an angle is of absolute
vale at most 1.
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Solution: Let F = Field of real numbers and V = F(3)

Consider standard inner product on V.
Let u = (x1, y1, z1), v = (x2, y2, z2)  V
Let O = (0, 0, 0)
Let  be an angle between OU and OV.

Then cos = 1 2 1 2 1 2
2 2 2 2 2 2
1 1 1 2 2 2

x x y y z z

x y z x y z
1 2 1 2 1 2x x y y z z1 2 1 2 1 2x x y y z z1 2 1 2 1 2

2 2 2 2 2 22 2 2 2 2 2
1 1 1 2 2 21 1 1 2 2 2x y z x y zx y z x y zx y z x y zx y z x y z2 2 2 2 2 2x y z x y z2 2 2 2 2 22 2 2 2 2 2x y z x y z2 2 2 2 2 2
1 1 1 2 2 2x y z x y z1 1 1 2 2 21 1 1 2 2 2x y z x y z1 1 1 2 2 21 1 1 2 2 2x y z x y z1 1 1 2 2 2

 = ( , )
|| || || ||

u v
u v

| cos | = | ( , ) | || || || ||
|| || || || || || || ||

u v u v
u v u v
| ( , ) | || || || ||

|| || || || || || || ||
| ( , ) | || || || ||u v u v| ( , ) | || || || ||  = 1

Orthogonality

Let V be an inner product space. Two vectors u, v  V are said to be orthogonal if
(u, v) = 0   (v, u) = 0. So, u is orthogonal to v iff v is orthogonal to u. Since
(0, v) = 0 for all v  V, 0 is orthogonal to every vector in V.

Conversely, if u  V is orthogonal to every vector in V, then (u, u) = 0  u = 0.
Let W be a subspace of V.
Define WW  = {v  V | (v, w) = 0 for all w  W} (WW  is read as W perpendicular). Then WW

is a subspace of V as 0 
 | (

 W
) = 0 for all 

W   W
) = 0 for all 

W  
) = 0 for all 

  and v1, v2  WW , ,  
 perpendicular). Then 

 F
 ( v1 + v2, w) = (v1, w) + (v2, w) = 0 for all w  W
 v1 + v2  WW .
WW  is called orthogonal complement of W. The reason for calling it thus is because we shall

prove later that V = W 
orthogonal complement

 W
orthogonal complement

W .

Problem 34: Let V be an inner product space. Let x, y  V s.t., x  y
Then show that || x + y ||2 = || x ||2 + || y ||2. (This is  Pythagoras Theorem when

F = R as in triangle ABC with AB  BC, AB2 = || x ||2, BC2 = || y ||2, AC2 = || x + y ||2)

Solution: || x + y ||2 = (x + y, x + y)
= (x, x) + (y, y) + (x, y) + (y, x)
= || x ||2 + || y ||2  as (x, y) = 0 = (y, x).

Orthonormal Set

A set {ui} i of vectors in an inner product space V is said to be orthogonal if
(ui, uj) = 0 for i 

 of vectors in an inner product space 
 j. If further (ui, ui) = 1 for all i, then the set {ui} is called an orthonormal

set.

Example 28: Let V be the real vector space of real polynomials of degree less than or equal
to n. Define an inner product on V by

0 1
,

n n
i j

i j
i j

a x b x
n n

i j0 1i j0 1i j0 1i j0 1i j0 1i j0 1

n n
i ji ja x b xi ja x b xi ji j

i j,i j,a x b xi ja x b xi j,i j,a x b x,i j,i j
i j0 1

i j
i j0 1i j0 1

i j,i j,  = 
1

n

i ia b
1

n

i ia bi ia bi i
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Then {1, x,..., xn} is an orthonormal subset of V.

Theorem 32: Let S be an orthogonal set of non zero vectors in an inner product space V. Then
S is a linearly independent set.

Proof: To show S is linearly independent, we have to show that every finite subset of S is
linearly independent.

Let {v1,....., vn} be a finite subset of S.
Let 1v1 + ..... + nvn = 0, i  F

( 1v1 + ..... + nvn, 1v1 + ..... + nvn) = 0

 | 1 |2 || v1 ||2 + ..... + | n |2 || vn ||2 = 0
 | i |2 || vi ||2 = 0  for all i = 1, ....., n
 | i |2 = 0 for all i as || vi ||2 = 0  || vi || = 0  vi = 0

which is not true
 i = 0  for all i = 1, ..., n
 S is linearly independent.

Cor.: An orthonormal set in an inner product space is linearly independent.

Proof: Let S be an orthonormal set in an inner product space V. Let v  S. Then v  0 as
v = 0  (v, v) = 0 

 be an orthonormal set in an inner product space 
 1, a contradiction. Therefore, S is an orthogonal set of non zero vectors

and so linearly independent.

Theorem 33: (Gram-Schmidt Orthogonalisation process)
Let V be a non zero inner product space of dimension n. Then V has an orthonormal basis.

Proof: It is enough to construct an orthogonal basis of V. For let S  V be an orthogonal set.

Then T = |
|| ||

x x S
x
x | x S|x x Sx Sx S

|| |||| ||x|| ||
|

|| ||
x S

|| ||x|| ||
x S  is an orthonormal set.

Let {v1,..., vn} be a basis of V.

Let  w1 = v1. Define w2 = v2 – 2 1

1 1

( , )
( , )
v w
w w

 w1

 = v2 – 2 1

1 1

( , )
( , )
v v
v v

 v1

Then  (w2, w1) = (w2, v1)

 = (v2, v1) – 2 1

1 1

( , )
( , )
v v
v v

 (v1, v1) = 0

Also v2 = 1v1 + w2 = 1w1 + w2

where 1 = 2 1

1 1

( , )
( , )
v v
v v

  F.

(Note v1 is linearly independent  v1  0  (v1, v1)  0)

Define w3 = v3 – 3 2 3 1
2 1

2 2 1 1

( , ) ( , )
( , ) ( , )
v w v w

w w
w w w w

3 2 3 13 2 3 1( , ) ( , )3 2 3 1
2 1( , ) ( , )2 1( , ) ( , )2 1

( , ) ( , )v w v w( , ) ( , )3 2 3 1( , ) ( , )3 2 3 1v w v w3 2 3 1( , ) ( , )3 2 3 1w ww w3 2 3 1w w3 2 3 1
2 1w w2 12 1w w2 1
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Then (w3, w2) = 0 = (w3, w1)
Also v3 = 1w1 + 2w2 + w3, where 1, 2  F.
In this way, we can construct an orthogonal set {w1,... , wn} where each

vi = 
In this way, we can construct an orthogonal set {

1w1 + ... + wi,
In this way, we can construct an orthogonal set {

i 
In this way, we can construct an orthogonal set {

 F

1

1
,...,

|| || || ||
n

n

ww
w w

1 ww1w11 ,...,
|| || || ||

,...,
|| || || ||

,..., n
|| || || ||w w|| || || ||

1 nwnwnw1w1

1|| || || ||1|| || || ||1|| || || ||w w|| || || ||1|| || || ||1w w1|| || || ||1|| || || |||| || || ||w w|| || || ||
 is an orthonormal set which is linearly independent by Cor. to Theorem 32

and hence forms a basis of V as dim V = n.
Aliter: Let dim V = n. We use induction on n.

Let n = 1. Let 0  x V, then v = 
|| ||

x
x

  V s.t., || v || = 1.

So, {v} is an orthonormal basis of V.
Suppose now that the result holds for any inner product space of dimension less than or

equal to n – 1.
Let V be an inner product space of dimension n
Let 0  v  V be such that || v || = 1.
Define Tv : V  C s.t.,

Tv(v ) = < v , v >
Then Tv is a linear transformation.
Let   C, then  = || v ||2 = < v, v > = < v, v > = Tv ( v)
and so Tv is onto. i.e., Range Tv = C.
By Sylvester's law

dim V = dim Ker Tv + dim Range Tv
 n = dim Ker Tv + dim C

= dim Ker  Tv + 1
 dim W = n – 1, where W = Ker Tv

= {x V | Tu(x) = 0}
= {x V | < v, x > = 0}

By induction hypothesis, W has an orthonormal basis {w1, w2,..., wn–1}
Now wi  W  < v, wi > = 0 i = 1, 2,..., n – 1
Also < v, v > = || v ||2 = 1
So {w1, w2,..., wn–1, v} is an orthonormal set.
i.e., {w1, w2,..., wn – 1, v} is L.I. set by cor. to theorem 32.
Since dim V = n, {w1, w2,..., wn–1, v} is a basis of V and hence is an orthonormal basis of

V. So, result follows by induction.

Problem 35: Obtain an orthonormal basis, w.r.t. the standard inner product for the subspace
of R3 generated by (1, 0, 3) and (2, 1, 1).

Solution: Let v1 = (1, 0, 3), v2 = (2, 1, 1)
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Then w1 = v1, w2 = v2 – 2 1

1 1

( , )
( , )
v w
w w

 w1

Now (v2, w1) = (v2, v1) = 2 + 0 + 3 = 5
(w1, w1) = (v1, v1) = 1 + 0 + 9 = 10

|| w1 || = 10

So, w2 = (2, 1, 1) – 5
10

 (1, 0, 3) = 3 1,1,
2 2
3 13 1,1,3 1,1,3 1,1,3 13 1
2 2

,1,
2 2

,1,
2 2

,1,
2 2

|| w2 || = 9 11
4 4
9 119 119 1
4 4

 = 7
2

 required orthonormal basis is

1 2

1 2
,

|| || || ||
w w
w w

1 2w w1 2w w1 21 2,1 2w w1 2w w1 2

1 2|| || || ||1 2|| || || ||1 2|| || || ||w w|| || || ||1 2|| || || ||1 2w w1 2|| || || ||1 2
,

|| || || ||
,

|| || || ||
,

|| || || ||w w|| || || ||
 = 1 2 3 1(1, 0, 3), ,1,

7 2 210
1 2 3 11 2 3 11 2 3 11 2 3 11 2 3 11 2 3 11 2 3 11 2 3 11 2 3 11 2 3 11 2 3 11 2 3 11 2 3 1(1, 0, 3), ,1,(1, 0, 3), ,1,(1, 0, 3), ,1,(1, 0, 3), ,1,(1, 0, 3), ,1,(1, 0, 3), ,1,1 2 3 11 2 3 1(1, 0, 3), ,1,(1, 0, 3), ,1,1 2 3 1(1, 0, 3), ,1,1 2 3 11 2 3 1(1, 0, 3), ,1,1 2 3 1(1, 0, 3), ,1,(1, 0, 3), ,1,(1, 0, 3), ,1,(1, 0, 3), ,1,1 2 3 11 2 3 1(1, 0, 3), ,1,(1, 0, 3), ,1,1 2 3 1(1, 0, 3), ,1,1 2 3 11 2 3 1(1, 0, 3), ,1,1 2 3 11 2 3 1(1, 0, 3), ,1,(1, 0, 3), ,1,(1, 0, 3), ,1,(1, 0, 3), ,1,(1, 0, 3), ,1,(1, 0, 3), ,1,(1, 0, 3), ,1,

7 2 2
(1, 0, 3), ,1,(1, 0, 3), ,1,(1, 0, 3), ,1,

7 2 2
(1, 0, 3), ,1,

7 2 2
(1, 0, 3), ,1,

7 2 27 2 210
(1, 0, 3), ,1,

7 2 2
(1, 0, 3), ,1,

7 2 2
(1, 0, 3), ,1,

10 7 2 27 2 27 2 27 2 2
(1, 0, 3), ,1,

7 2 2
(1, 0, 3), ,1,

7 2 2

Problem 36: Let V be an inner product space over R. Let {v1, v2,..., vn} be a basis of V s.t.,
whenever v = 

Let V be an inner product space over 
ivi then || v ||2 =

Let V be an inner product space over Let V be an inner product space over Let V be an inner product space over 
i
2. Show that {v1, v2,..., vn} is an orthonormal basis.

Solution: We have vi = 1.vi  || vi ||2 = 1 i by hypothesis
Consider vi + vj, i  j, then

|| vi + vj ||2 = 2
 < vi, vi > + < vj, vj > + < vi, vj > + < vj, vi > = 2
 < vi, vj > + < vj, vi > = 0
 < vi, vj > + < vi, vj > = 0 as V is an inner product space over R
 < vi, vj > = 0 i  j

Hence {v1, v2,..., vn} is an orthonormal basis.

Theorem 34: (Bessel's inequality)
If {w1,..., wm} is an orthonormal set in V, then

2

1
| ( , ) |

m

i
i

w v
1
| ( , ) |

m

i| ( , ) |i| ( , ) |
i

| ( , ) |w v| ( , ) || ( , ) |i| ( , ) |w v| ( , ) |i| ( , ) |
1

 || v ||2 for all v  V.

Proof: Let x = v – 
1
( , )

m

i i
i

v w w
1
( , )

m

i
( , )v w w( , )

1

(x, wj) = (v, wj) – (v, wj) = 0  for all j = 1,..., m

Let w = 
1
( , )

m

i i
i

v w w
1
( , )

m

i
( , )v w w( , )

1
 = 

1
,

m

i i
i

w
1

,
m

i 1
i iwi iwi i  i = (v, wi)

 v = x + w
Also (w, x) = ( 1w1 + ..... + mwm, x)

= 1(w1, x) + ..... + m(wm, x) = 0
Now || v ||2 = (v, v)
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= (w + x, w + x)
= (w, w) + (x, x)
= || w ||2 + || x ||2  || w ||2

But || w ||2 = (w, w)
= ( 1w1 + ..... + mwm, 1w1 + ..... + mwm)

= 1 11  (w1, w1) + ..... + m mm  (wm, wm)
= | 1 |2 + ..... + | m |2

as {w1,....., wm} is an orthonormal set

= 2

1
| |

m

i
i 1

2| |
m

i 1

2| |i| |i| |  = 2

1
| ( , ) |

m

i i
i

v w
1
| ( , ) |

m

i i| ( , ) |i i| ( , ) |
i

| ( , ) |v w| ( , ) || ( , ) |i i| ( , ) |v w| ( , ) |i i| ( , ) |
1

 = 2

1
| ( , ) |

m

i
i

w v
1
| ( , ) |

m

i| ( , ) |i| ( , ) |
i

| ( , ) |w v| ( , ) || ( , ) |i| ( , ) |w v| ( , ) |i| ( , ) |
1

 = 2

1
| ( , ) |

m

i
i

w v
1
| ( , ) |

m

i| ( , ) |i| ( , ) |
i

| ( , ) |w v| ( , ) || ( , ) |i| ( , ) |w v| ( , ) |i| ( , ) |
1

2

1
| ( , ) |

m

i
i

w v
1
| ( , ) |

m

i| ( , ) |i| ( , ) |
i

| ( , ) |w v| ( , ) || ( , ) |i| ( , ) |w v| ( , ) |i| ( , ) |
1

  || v ||2 for all v  V.

Cor.: Equality holds if and only if v = w.

Proof: Suppose v = w

Then || v ||2 = || w ||2 = 2

1
| ( , ) |

m

i
i

w v
1
| ( , ) |

m

i| ( , ) |i| ( , ) |
i

| ( , ) |w v| ( , ) || ( , ) |i| ( , ) |w v| ( , ) |i| ( , ) |
1

Conversely, suppose equality holds
Then || v ||2 = || w ||2

 || x ||2 = 0  (x, x) = 0  x = 0
 v = w + x = w.

Theorem 35: If V is a finite dimensional inner product space and W is a subspace of V, then
V = W  W W .

Proof: Since V is an inner product space, so is W. By theorem 33, W  has an orthonormal basis
{w1,..., wm}.

Let v  V.

Let w = 
1
( , )

1
( , )

1

m

i i
i

v w w , wi  W and x = v – w

Then (x, wj) = 0 as in theorem 34, for all j = 1,..., m
(x, w) = (x, 1w1 + ..... + mwm)

= 11  (x, w1) + ..... + mm  (x, wm)

= 0 for all w  W
x  W W

So, v = w + x  W + WW
V  W + WW

 V = W + WW
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Let  y  W  WW   (y, w) = 0  for all w  W, y  W
 (y, y) = 0  as y  W
 y = 0

W  WW  = {0}
Hence V = W  WW .

Cor. 1: If W is a subspace of a finite dimensional inner product space V, then
(WW ) = W.

By above theorem, V = W  WW
Let w  W, x  W W
Then x  WW  < x, y > = 0  y  W

 < x, w) = 0  x  WW
 w  (WW )

i.e., WW   (WW )
Let v  (WW )  then v = w + w , w  W, w  WW

 0 = < w , v > = < w , w + w ) = < w , w > + < w , w > = < w , w >
So w  = 0  v = w  W
i.e., (WW )   W giving W = (WW ) .

Cor. 2: If S = {x1, x2,..., x r} is a basis of W and T = {y1, y2,..., ys} is a basis of WW  then
{x1, x2,..., xr, y1, y2,..., ys} is an orthonormal basis of V.
By above theorem V = W  WW
thus S  T is a basis of V
Also < xi, yj > = 0  i, j as yj  WW  j
proving the result.

Remark: Theorem 35 on page 529 need not hold in case  of infinite dimensional vector space.
For instance, take

V = {(an) | (an) is a sequence of complex nos. s.t., 2

1
| |na 2

1
| |n| |n| || |a| | .

Then V is a vector space w.r.t. componentwise addition and scalar multiplication
Take a = (an), b = (bn)  V

Define < a, b > = 
1

n na b
1

n na bn na bn n

Since ( | an | – | bn | )2  0
| an |2 + | bn |2  2 | an | | bn |

Now 2 | n na bn na bn na bn n |  2 | an | | nb |

 2 | an nb | 2 | an | | bn | as | bn | = | nb |

| an |2 + | bn |2 < 
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Thus < a, b > is well defined inner product on V.
Let Ak  V s.t., kth entry is 1 and zero elsewhere
Let S = {| Ak | k = 1, 2,..., }  V
Then < Ai, Aj > = lj.

Let W = L(S), then W  V as v = 2
1
n
11
2n2   V and v  L(S).

[In fact L(S), is the set of those sequences whose only finite number of entries are non
zero].

Also x  WW  < x, w > = 0  w  W
 < x, Ak > = 0  k = 1, 2, ...
 xk = 0 k where x = (xn)
 x = 0 or that WW  = {0}

So V  W  WW  = W.
Notice V is not F.D.V.S. by theorem 35.

Problem 37: If W is a subspace of V and v  V satisfies
(v, w) + (w, v)  (w, w) for all w  W

prove that (v, w) = 0 for all w  W, where V is an inner product space over F.

Solution: Let n be a +ve integer

Then w W  
w
n   W

,, ,v
w w w wv
n n n n
w w w ww w w wv w w w ww w w wv vv
w w w w
n n n n

, ,v
n n n n

, ,,, ,, v, ,v, ,

(v, w) + (w, v)  1
n

 (w, w)

Let n  
Then (v, w) + (w, v)  0 for all w  W

(v, –w) + (–w, v)  0 for all w  W
 – [(v, w) + (w, v)]  0 for all w  W
 (v, w) + (w, v)  0 for all w  W
 (v, w) + (w, v) = 0 for all w  W

If F  R, then (w, v) = (v, w)
 (v, w) + (v, w) = 0
 2(v, w) = 0 for all w  W
 (v, w) = 0 for all w  W

If F  C, then (v, iw) + (iw, v) = 0 for all w  W
 – i (v, w) + i (w, z–) = 0 for all w  W
 –i [z – z–] = 0, z = (v, w) = x + iy
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 – i (2iy) = 0
 y = 0
 z = (v, w) = real for all w  W
 (v, w) + (v, w) = 0
 2 (v, w) = 0
 (v, w) = 0  for all w W.

Problem 38: If V is a finite dimensional inner product space and f  V, prove that
 u0  V s.t., f (v) = (v, u0) for all v 

If V is a finite dimensional inner product space and f 
 V. Also show that u0 is uniquely determined.

Solution: Let {v1,..., vn} be an orthonormal basis for V. Let v  V.
Then v = 1v1 + ... + nvn, i  F
Let f (vi) = i, i = 1, 2,..., n

Define u0 = 11 v1 + ... + nn vn  V

Then (v, u0) = ( 1v1 + ... + nvn, 11 v1 + ... + nn vn)
= 1 1 + ... + n n  as (vi, vj) = ij

= f (v)  for all v  V
Suppose  u0   V s.t. f (v) = (v, u0 )
Then (v, u0) = (v, u0 ) for all v  V

 (v, u0 – u0 ) = 0 for all v  V
 (u0 – u0 , u0 – u0 ) = 0
 u0 = u0

u0 is uniquely determined.

Problem 39: Let A be an n  n symmetric matrix and suppose that Rn has the standard inner
product. Prove that if (u, uA) = (u, u) for all u in Rn, then A = I.

Solution: Let A = (aij). Take u = 1 = (1, 0, ..., 0)
Then ( 1, 

ij

1A) = ( 1, 1)
Therefore ( 1 (a11, a21,..., an1)) = 1
implies a11 = 1
Similarly, Take  i = u, then aii = 1 for all i.
So, the diagonal elements of A are 1.
Now take u = 1  2 = (1, 1, 0, ... 0)
Then (u, u) = 2
and ( 1  2, ( 1  2)A)

= ( 1  2, (a11 a12, a12 a22,..., a1n a2n))
= 1  a12  a12 + 1

So, a12 = 0
Similarly a13 = 0, ..., a1n = 0
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In this way, all entries other than diagonal would be 0.
Hence A = I.
Problem 40: Let Rn be an inner product space with the standard inner product. Let T be a
linear operator on Rn.  Show that for any vector u in Rn, || T(u) || = || u || if and only if (T(u),
T(v)) = (u, v) for all u, v in Rn. Such a linear operator is said to preserve inner products.

Solution: Let || T(u) || = || u || for all u in Rn

Then || T(u + v) || = || u + v || for all u, v in Rn

So (T(u) + T(v), T(u) + T(v)) = (u + v, u + v)
which implies (T(u), T(u)) + ((T(u), T(v)) + (T(u), T(v)) + (T(v), T(u))

= (u, u) + (v, v) + (u, v) + (v, u)
So, (T(u), T(v)) = (u, v) for all u, v in Rn

Conversely, let (T(u), T(v)) = (u, u) for all u, v in Rn

Then (T(u), T(u)) = (u, v) for all u in Rn

So, || T(u) ||2 = || u ||2

or || T(u) || = || u || for all u in Rn

Exercises
Throughout these exercises V stands for inner product space with inner product ( , ).

1. Show that (x, z) = (y, z) for all z  V  x = y.
2. Consider standard inner product on R2.

Suppose  = (1, 2),  = (–1, 1)  R2. If   R2 be s.t., ( , ) = – 1 and
(
Suppose 

, 
Suppose 

) = 3, find 
 = (1, 2), 

.
3. Show that for any  R2

 = ( , 1) 1 + ( , 2) 2
where 1 = (1, 0), 2 = (0, 1).

4. Let u = (x1, x2) and v = (y1, y2) R2

(i) Verify that the following is an inner product on R2

(u, v) = x1y1 – 2x1y2 – 2x2y1 + 5x2y2
(ii) For what values of k is the following an inner product on R2

(u, v) = x1y1 – 3x1y2 – 3x2y1 + kx2y2. (Ans. k > 9)
(iii) For what values of a, b, c, d  R is the following an inner product on R2.

(u, v) = ax1y1 + cx1y2 + dx2y1 + bx2y2

(Ans. c2 < ab, a  0, b  0, c = d)
5. Show that | || x || – || y || |  || x – y || for all x, y  V.

[Hint: || x || = || x – y + y||]
6. Let W1 and W2 be subspaces of a finite dimensional inner product space V. Show that

(i) (W1 + W2)  = W1   W2 (ii) (W1  W2)  = W1  + W2
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7. Obtain an orthonormal basis w.r.t. standard inner product for the subspace of R4

generated by (1, 0, 2, 0) and (1, 2, 3, 1).

1 2 2 26 2 26 26 26. , 0, , 0 , , , ,
5 5 5 5 5 5 5 5

1 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 26. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,1 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 26. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,1 2 2 26 2 26 26 26. , 0, , 0 , , , ,1 2 2 26 2 26 26 261 2 2 26 2 26 26 26. , 0, , 0 , , , ,1 2 2 26 2 26 26 26. , 0, , 0 , , , ,1 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 26. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,1 2 2 26 2 26 26 261 2 2 26 2 26 26 26. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,1 2 2 26 2 26 26 26. , 0, , 0 , , , ,1 2 2 26 2 26 26 261 2 2 26 2 26 26 26. , 0, , 0 , , , ,1 2 2 26 2 26 26 261 2 2 26 2 26 26 26. , 0, , 0 , , , ,1 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 26. , 0, , 0 , , , ,1 2 2 26 2 26 26 261 2 2 26 2 26 26 26. , 0, , 0 , , , ,1 2 2 26 2 26 26 261 2 2 26 2 26 26 26. , 0, , 0 , , , ,1 2 2 26 2 26 26 26. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,1 2 2 26 2 26 26 26. , 0, , 0 , , , ,1 2 2 26 2 26 26 261 2 2 26 2 26 26 26. , 0, , 0 , , , ,1 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 26. , 0, , 0 , , , ,1 2 2 26 2 26 26 261 2 2 26 2 26 26 26. , 0, , 0 , , , ,1 2 2 26 2 26 26 26. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,1 2 2 26 2 26 26 26. , 0, , 0 , , , ,1 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 26. , 0, , 0 , , , ,1 2 2 26 2 26 26 26. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,1 2 2 26 2 26 26 26. , 0, , 0 , , , ,1 2 2 26 2 26 26 261 2 2 26 2 26 26 261 2 2 26 2 26 26 26. , 0, , 0 , , , ,1 2 2 26 2 26 26 26. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,
5 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 5

. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,
5 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 5

. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,. , 0, , 0 , , , ,
5 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 5

. , 0, , 0 , , , ,
5 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 5

Ans

8. Obtain an orthonormal basis for V, the space of all real polynomials of degree at most
2, the inner product defined by

(f, g) = 
1

0
( ) ( )f x g x dx

1

0
f x g x dx( ) ( )f x g x dx( ) ( )

21 1. 1, 12 ,180
2 6

x x x. 1, 12 ,1801 11 11 11 11 11 121 12. 1, 12 ,180. 1, 12 ,1801 1. 1, 12 ,1801 1. 1, 12 ,1801 11 11 121 12x x x1 1x x x21 121 12. 1, 12 ,1801 1. 1, 12 ,1801 1. 1, 12 ,180. 1, 12 ,180. 1, 12 ,180. 1, 12 ,180. 1, 12 ,180. 1, 12 ,180. 1, 12 ,180x x x. 1, 12 ,180. 1, 12 ,180. 1, 12 ,180. 1, 12 ,180x x x. 1, 12 ,180. 1, 12 ,180. 1, 12 ,180. 1, 12 ,180x x x. 1, 12 ,180. 1, 12 ,180x x x. 1, 12 ,180. 1, 12 ,180. 1, 12 ,180x x x. 1, 12 ,180. 1, 12 ,180x x x. 1, 12 ,180x x x. 1, 12 ,180. 1, 12 ,180x x x. 1, 12 ,180x x x. 1, 12 ,180 2. 1, 12 ,180
2 62 62 62 6

x x xx x xx x x. 1, 12 ,180x x x. 1, 12 ,180x x x. 1, 12 ,180x x x. 1, 12 ,180
2 6

. 1, 12 ,180
2 6

. 1, 12 ,180. 1, 12 ,180
2 6

. 1, 12 ,180x x x. 1, 12 ,180. 1, 12 ,180
2 6

. 1, 12 ,180
2 6

. 1, 12 ,180. 1, 12 ,180x x x. 1, 12 ,180
2 62 62 62 6

. 1, 12 ,180
2 6

. 1, 12 ,180
2 6

. 1, 12 ,180x x x. 1, 12 ,180x x x. 1, 12 ,180. 1, 12 ,180. 1, 12 ,180. 1, 12 ,180. 1, 12 ,180Ans

9. Let 1, 2,... , n and 1, 2,... , n be positive real members such that
1 + 

1

2 + ... + n = 1. Show that

1

n

i i

n

11

n

i i
1

i i
1( )

ii( )1( )1( )1( )
i

( )
i

( )
i

( )i( )i( )1( )1( )1  1

[Hint: let  = 1 1( ,..., )n n1 1( ,..., )( ,..., )( ,..., )( ,..., )1 1( ,..., )1 1 n n( ,..., )n n( ,..., )   Rn

 = 
1

1 1
1( ,..., )

nn11( ,..., )( ,..., )( ,..., )( ,..., )
1

( ,..., )
11( ,..., )1 n

( ,..., )
n

( ,..., )n( ,..., )n( ,..., )1 11 1( ,..., )( ,..., )1 1( ,..., )1 11 1( ,..., )1 1   Rn

and use Cauchy-Schwarz inequality]
10. Let {u1,..., ur} be an orthonormal set in V. Show that for any v  V, the vector

w = v – (v, u1) u1 – ... – (v, ur) ur
is orthogonal to each of the ui.

11. Let W be the set of real valued functions y = f (x) satisfying 
2

2 4d y y
dx

4y  = 0. Prove

that W is two dimensional real vector space.

Define (y, z) = 
0

yzdz
0

yzdzyzdz  in W. Find an orthonormal basis of W.

2 2
. sin 2 , cos 2x x2 22 22 22 22 22 22 22 2
. sin 2 , cos 2. sin 2 , cos 2. sin 2 , cos 2. sin 2 , cos 2x x. sin 2 , cos 2x x. sin 2 , cos 2. sin 2 , cos 2x x. sin 2 , cos 2. sin 2 , cos 2x x. sin 2 , cos 2x x. sin 2 , cos 2. sin 2 , cos 2. sin 2 , cos 2. sin 2 , cos 2. sin 2 , cos 2. sin 2 , cos 2. sin 2 , cos 2. sin 2 , cos 2

2 22 22 2
. sin 2 , cos 2. sin 2 , cos 2. sin 2 , cos 2. sin 2 , cos 2. sin 2 , cos 2

2 2
. sin 2 , cos 2

2 22 2
. sin 2 , cos 2

2 22 2
. sin 2 , cos 2

2 2
. sin 2 , cos 2. sin 2 , cos 2x x. sin 2 , cos 2x x. sin 2 , cos 2x x. sin 2 , cos 2. sin 2 , cos 2. sin 2 , cos 2. sin 2 , cos 2x x. sin 2 , cos 2. sin 2 , cos 2. sin 2 , cos 2x x. sin 2 , cos 2x x. sin 2 , cos 2. sin 2 , cos 2. sin 2 , cos 2. sin 2 , cos 2x x. sin 2 , cos 2. sin 2 , cos 2. sin 2 , cos 2Ans

12. Let V be the vector space of real valued functions y = f (x) satisfying
3 2

3 2
6 11 6d y d y dy y

dxdx dx3 2 11 611 6d y d y dy6d y d y dy6 11 6d y d y dy11 6y
dx3 2dx dx3 2  = 0

Prove that V is a dimensional vector space over R. Define

(f, g) = 
0

fgdx
0

fgdxfgdx  in V

Find an orthonormal basis of V over R.

(Ans. 2 ex, 2 (3e2x – 2ex), (3ex – 12e2x – 10e3x) 6 )
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Definition, examples and elementary properties of vector spaces over a field
discussed.
A non-empty subset of a vector space is said to form a subspace if it forms a
vector space under the operations of the parent space. A non-empty subset W of
V(F) is a subspace iff 
vector space under the operations of the parent space. A non-empty subset 

x + 
vector space under the operations of the parent space. A non-empty subset 

y 
vector space under the operations of the parent space. A non-empty subset 

 W  for all x, y 
vector space under the operations of the parent space. A non-empty subset 

W and 
vector space under the operations of the parent space. A non-empty subset 

, 
vector space under the operations of the parent space. A non-empty subset 

 F.
Intersection(sum) of subspaces is a subspace but union is not.
If W is a subspace of V(F) then the set of all cosets of W in V forms a vector
space called the quotient spaceof V by W and is denoted by V/W.
If V andU be two vector spaces over the same field F then a mapping T: V  U
is called a homomorphism or a linear transformation (L.T.) if  T (

 then a mapping 
x + y) =

 T(x) + T(y) 
homomorphism

 x , y 
homomorphism

 V  and ,   F.
Kernel of a homomorphism T contains all those members that are mapped to 0;
and it is called the null space of T. Ker T = {0} iff T is one-one. Range of T is
defined to be { T(x) | x 

null space
V } = RT.

Fundamental theorem of homomorphism for vector spaces states that if
T : V 
Fundamental theorem of homomorphism

 U be a L.T., then  V/Ker T 
Fundamental theorem of homomorphism

 RT.
Elements of the type aivi, where ai  F, vi  V are called linear combinations of
vi over F. The set of all linear combinations of finite sets of elements of S is called
linear span of S, where S is a non-empty subset of V and is denoted by L(S).
If V = L(S), we say S spans (or generates) V. A vector space V is said to be finite-
dimensional (over F) if there exists a finite subset S of V such that
V = L(S). We use the notation F.D.V.S. for a finite-dimensional vector space.
Linearly dependent and linearly independent elements are defined, followed
by some results satisfied by them. A subset S of a vector space V(F) is called a
basis of V if S consists of L.I. elements and S spans V.
Any basis of a F.D.V.S. is finite, and any two bases have the same number of
elements. A F.D.V.S. V is said to have dimension n if n is the number of elements
in any basis of V.
Two finite-dimensional vector spaces over F are isomorphic iff they have same
dimension.
If W is a subspace of a F.D.V.S. V, then dim V/W =dim V – dim W.
If A, B are two subspaces of a F.D.V.S. V, then
dim(A + B) = dim A + dim B – dim(A  B).
Inner product spaces, norm of a vector, orthogonality and orthonormal
vectors are defined and discussed in later part of the chapter.
Gram-Schmidt orthogonalization process says that every finite dimensional inner
product space has an orthonormal basis.
Cauchy-Schwarz inequality and Bessel’s inequality are proved.

A Quick Look at what's been done
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Theorem 1: A L.T.  T : V  V is one-one iff T is onto.

Proof: Let T : V  V be one-one. Let dim V = n.
Let {v1, v2, ....., vn} be a basis of V, then {T(v1), ....., T(vn)} will also be a basis of V as

1T(v1) + 2T(v2) + ..... + nT(vn) = 0
 T( 1v1 + ..... + nvn) = T(0) (T a L.T.)
 1v1 + ..... + nvn = 0 (T is 1-1)
 i = 0 for all i

thus T(v1), ..... T(vn) are L.I. and as dim V = n the result follows (Theorem done earlier).
Let now v V be any element

then v = a1T(v1) + a2T(v2) + ..... + anT(vn) ai F
= T(a1v1 + ..... + anvn)
= T(v ) for some v

Hence T is onto.
Conversely, let T be onto.
Here again we show that if {v1, v2, ..... vn} is a basis of V then so also is

{T(v1), T(v2), ....., T(vn)}
For any v  V, since T is onto,  some v   V s.t.,

T(v ) = v

Linear Transformations

11

Introduction
We defined a linear transformation (homomorphism) in the previous chapter and proved a
few results pertaining to it, including a few on isomorphisms. We now come back to it and
study it in a little more detail. To recall the definition, by a linear transformation (L.T.) we
mean a map T : V 
study it in a little more detail. To recall the definition, by a linear transformation (

 W, s.t., T(
study it in a little more detail. To recall the definition, by a linear transformation (

x + 
study it in a little more detail. To recall the definition, by a linear transformation (

y) = 
study it in a little more detail. To recall the definition, by a linear transformation (

T(x) + 
study it in a little more detail. To recall the definition, by a linear transformation (

T(y) where x, y 
study it in a little more detail. To recall the definition, by a linear transformation (

V, 
study it in a little more detail. To recall the definition, by a linear transformation (

,
study it in a little more detail. To recall the definition, by a linear transformation (

 F and
V, W are vector spaces over the field F. We urge the reader to go through the definitions
and results done earlier, especially on kernel and range of a L.T. Also, we’ll be dealing with
vector spaces that are finite dimensional, unless mentioned otherwise.
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Again v V means v  = i ivi ivi ivi i i  F

v = T(v ) = T( i ivi ivi ivi i ) = ii T(vi)

 T(v1), T(v2), ..., T(vn) span V
and as dim V = n, {T(v1), ..., T(vn)} forms a basis of V.
Now if v  Ker T be any element
then T(v) = 0

 T( ivi) = 0
 iT(vi) = 0
 i = 0 for all i  as T(v1), ..., T(vn) are L.I.
 v = ivi = 0
 Ker T = {0}  T is 1-1.

Theorem 2: Let V and W be two vector spaces over F. Let {v1, v2, ..., vn} be a basis of V
and w1, w2, ..., wn be any vectors in W (not essentially distinct). Then there exists a unique L.T

T : V  W s.t., T(vi) = wi  i = 1, 2, ..., n.

Proof: Let v  V be any element, then v = 
1

n

i i
i

v
1

n

i 1
i ivi ivi i , i  F

as {v1, v2, ..., vn} is a basis of V.
Define T : V  W s.t.,

T(v) = iwi
Then T is a linear transformation (verify!).
Clearly here, T(vi) = T(ov1 + ... + 1 . vi + ... + ovn) = 1wi for all i
To show uniqueness let T  be any other L.T. from V  W s.t.

 T (vi) = wi
Let v  V be any element, then v = ivi

T (v) = T ( ivi) = iT (vi) = iwi = T(v)
Hence T = T.
Thus we notice that a linear transformation is completely determined by its values on the

elements of a basis.

Definition: Let T : V  W be a L.T.
then we define Rank of T = dim Range T = r(T)

Nullity of T = dim Ker T = v(T).

Theorem 3: (Sylvester’s Law) : Let T : V  W be a L.T., then
Rank T + Nullity T = dim V.

Proof: Let {x1, x2, ..., xm} be a basis of Ker T then {x1, x2, ..., xm} being L.I. in
Ker T will be L.I. in V. Thus it can be extended to form a basis of V.

Let {x1, x2, ..., xm, v1, v2, ..., vn} be the extended basis of V.
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Then dim Ker T = nullity of T = m
dim V = m + n

we show {T(v1), T(v2), ..., T(vn)} is a basis of Range T
Now 1T(v1) + 2 T(v2) + ... + nT(vn) = 0

 T( 1v1 + ... + nvn) = 0
 1v1 + 2v2 ... + nvn  Ker T
 1v1 + ... + nvn = 1x1 + ... + mxm

or 1v1 + ... + nvn + (– 1)x1 + ... + (– m)xm = 0
 1 = 2 = ... = 1 = ... = m = 0
 i = 0 for all i

i.e., {T(v1), T(v2), ..., T(vn)} is L.I.
Now if T(v) Range T be any element then as v V

v = a1x1 + ... + amxm + b1v1 + ... + bnvn ai, bj  F
T(v) = a1T(x1) + ... + amT(xm) + b1T(v1) + ... + bnT(vn)

= 0 + ... + 0 + b1T(v1) + ... + bnT(vn) [as xi  Ker T]
or that T(v) is a linear combination of T(v1), ..., T(vn)
which, therefore, form a basis of Range T.

  dim Range T = n = rank T
which proves the theorem.

Theorem 4: If T : V  V be a L.T. Show that the following statements are equivalent.
(i) Range T  Ker T = {0}

(ii) If T(T(v)) = 0 then T(v) = 0, v  V
Proof: (i)  (ii)

T(T(v)) = 0  T(v)  Ker T
Also T(v) Range T (by definition)

 T(v) = 0
(ii)  (i)
Let x  Range T  Ker T

 x  Range T and x  Ker T
 x = T(v) for some v  V

and T(x) = 0
x = T(v)  T(x) = T(T(v))

 0 = T(T(v))
 T(v) = 0 (given condition)
 v = 0.

Algebra of Linear Transformations

Let V and W be two vector spaces over the same field F. Let T : V  W and
S : V  W be two linear transformations. We define T + S, the sum of T and S by
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T + S : V  W, s.t.
(T + S)v = T(v) + S(v), v  V

Then T + S is also a L.T. from V  W as
(T + S) ( x + y) = T( x + y) + S( x + y)

= T(x) + T(y) + S(x) + S(y)
= (T + S)x + (T + S)y

Again for  F, we define the product of a L.T. T : V  W with , by
( T) : V 

Again for 
 W s.t., ( T)v = 

, we define the product of a 
(T(v)).

It is easy to see that T is a also a L.T. from V  W. Let Hom (V, W) be the set of all linear
transformations from V  W. Then we show Hom (V, W) forms a vector space over F under
the addition and scalar multiplication as defined above.

We have already seen that when T, S  Hom (V, W),   F then T + S ,
T 

We have already seen that when 
 Hom (V, W), thus closure holds for these operations. We verify some of the other

conditions in the definition.
(T + S)v = T(v) + S(v) = S(v) + T(v) = (S + T)v for all v  V

 T + S = S + T for all S, T  Hom (V, W)
The map O : V  W, s.t.,O(v) = 0 is a L.T. and

(T + O)v = T(v) + O(v) = T(v) = (O + T)v for all v
thus O is zero of Hom (V, W)
For any T  Hom (V, W), the map (–T) : V  W, s.t.,

(–T)v = –T(v)
will be additive inverse of T.
Again, [ (T + S)]v = [(T + S)v] = [T(v) + S(v)] = T(v) + S(v)

= ( T)v + ( S)v = ( T + S)v for all v  V
 (T + S) = T + S

[( )T]v = ( )T(v) = [ T(v)] = [ ( T)]v for all v
 ( )T = ( T)

(1T)v = 1 . T(v) = T(v) for all v
 1 . T = T
Hence one notices that Hom (V, W) forms a vector space over F.

Note: The notation L(V, W) is also used for denoting Hom (V, W).

Definition: Product (composition) of two linear transformations
Let V, W, Z be three vector spaces over a field F
Let T : V  W,  S : W  Z  be L.T.
We define ST : V  Z, s.t.,

(ST)v = S(T(v))
then ST is a linear transformation (verify!), called product of S and T.

Note: TS may not be defined and even if it is defined it may not equal ST.
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Definition: A L.T. T : V V is called a linear operator on V, whereas a L.T.
T : V  F is called a linear functional. We use notation T2 for T.T and Tn = T n–1T etc.

Theorem 5: Let T, T1, T2 be linear operators on V, and let I : V  V be the identity map
I(v) = v for all v (which is clearly a L.T.) then

(i) IT = TI = T
(ii) T(T1 + T2) = TT1 + TT2

(T1 + T2)T = T1T + T2T
(iii) (T1T2) = ( T1)T2 = T1( T2)   F
(iv) T1(T2T3) = (T1T2)T3.

Proof: (i) Obvious.
(ii) [T(T1 + T2)]x = T[(T1 + T2)x] = T[T1(x) + T2(x)]

= T(T1(x)) + T(T2(x)) = TT1(x) + TT2(x)
= (TT1 + TT2)x

 T(T1 + T2) = TT1 + TT2
Other result follows similarly.

(iii) [ (T1T2)]x = [(T1T2)x] = [T1(T2(x))]
[( T1)T2]x = ( T1) [T2(x)] = [T1(T2(x)]
[T1( T2)]x = T1( T2)x = T1( T2(x)) = T1(T2(x))]
Hence the result follows.

(iv) Follows easily by definition.
See exercises for the generalised version of above theorem.

Theorem 6: Let V and W be two vector spaces (over F) of dim m and n respectively. Then
Hom (V, W) has dim mn.

Proof: Let {v1, v2, ..., vm} and {w1, w2, ..., wn} be basis of V and W respectively.
Define mappings Tij : V  W, s.t.

     Tij(v) = iwj 1  i  m
1  j  n

where v  V is any element and therefore,
v = 1v1 + 2v2 + ... mvm for some i  F
Note also that Tij(vk) = 0 if k  i

= wj if k = i
We show Tij are L.T.

Let  x, y  V then x = 
1

,
m

i iv ,
1

m
,i ivi ivi i   y = 

1

m

i iv
1

m

i ivi ivi i i, i F

Now Tij(x + y) = Tij[( 1v1 + ... + mvm) + ( 1v1 + ... + mvm)]
= Tij[( 1 + 1)v1 + ... + ( m + m)vm]
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= Tij( 1v1 + ... + mvm)
= iwj

= ( i + i)wj = iwj + iwj = Tij(x) + Tij(y)
Also, Tij( x) = Tij( ( 1v1 + ... + mvm))

= Tij( 1v1 + ... + mvm)
= ( i)wj = ( i wj) = Tij ( ivi)
= Tij(x)

Hence Tij  Hom (V, W). We claim S = {Tij | 1  i  m, 1  j  n} forms a basis of
Hom (V, W)
Suppose

11T11 + 12T12 + ... + 1nT1n + 21T21 + 22T22 + ... + 2nT2n + ... + m1Tm1 + m2Tm2
+ ... + 

11

mnTmn = 0, ij  F
[where 0 is, of course, zero of Hom (V, W)]
By operating on v1, we get

11T11(v1) + 12T12(v1) + ... + 1nT1n(v1) + 21T21(v1) + ... = 0
 11w1 + 12w2 + ... + 1nwn + 0 + ... + 0 + ... = 0
But w1, w2 ..., wn are L.I.
 11 = 12 = ... 1n = 0
Similarly, by operating on v2 we’ll get 21 = 22 = ... 2n = 0
Thus by operating on v3, v4 ... we find that all the coefficients are zero and hence S is L.I..

So, o(S) = mn.
Let Now T  Hom (V, W) be any element, then

T : V  W is a L.T.
We show T is a linear combination of Tij
Consider v1, then T(v1)  W and thus is a linear combination of w1, w2,... wn
Let T(v1) = 11w1 + 12w2 + ... + 1nwn
Put T0 = 11T11 + 12T12 + ... + 1nT1n + 21T21 + 22T22 + ... + amnTmn
(where 11, 12 ... are, of course, the same as before)
Then T0(v1) = 11T11(v1) + 12T12(v1) + ...

= 11w1 + 12w2 + 2nwn + 0 + 0 + ... + 0
 T0(v1) = T(v1)

Similarly proceeding with v2, v3, ... vm we get
T0(v2) = T(v2)
...........

T0(vm) = T(vm)
Thus T0 and T agree on all elements of the basis of V.
 T0 and T agree on all elements of V  T0 = T
But T0 is a linear combination of members of S
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 T is a linear combination of members of S
 S spansHom (V, W)
or that S forms a basis of Hom (V, W)
Hence dim  Hom (V, W) = mn.

Cor.: Obviously dim Hom (V, V) = m2 where dim V = m and
dim Hom (V, F) = m .1 = m as dim F(F) = 1 as F is generated by 1 and thus {1} is a basis

of F(F).

Problem 1: Find the range, Rank, Ker and nullity of the linear transformation
T : R3 R3, s.t.,
T(x, y, z) = (x + z, x + y + 2z, 2x + y + 3z)

Solution: Let (x, y, z)  Ker T be any element, then
T(x, y, z) = (0, 0, 0)

 (x + z,  x + y + 2z,  2x + y + 3z) = (0, 0, 0)
 x + 0 + z = 0

x + y + 2z = 0
2x + y + 3z = 0

Giving  x = –z,  –z + y + 2z = 0 i.e.,  y = –z
Thus Ker T consists of all elements of the type (x, x, –x) = x(1, 1, –1) where x is any real

no. i.e., Ker T is spanned by (1, 1, –1) which is L.I. Note (1, 1, –1) 
(1, 1, –1) where 

 Ker T
Hence dim (Ker T) = 1 = nullity of T
Again, from def. of T, we notice elements of the types (x + z,  x + y + 2z,  2x + y + 3z)

are in Range T
Now (x + z,  x + y + 2z,  2x + y + 3z) = (x + 0 + z,  x + y + 2z,  2x + y + 3z)

= (x, x, 2x) + (0, y, y) + (z, 2z, 3z)
= x(1, 1, 2) + y(0, 1, 1) + z(1, 2, 3)

Thus Range T is spanned by {(1, 1, 2), (0, 1, 1), (1, 2, 3)}
Since (1, 1, 2) + (0, 1, 1) = (1, 2, 3) we find these vectors are L.D.

So dim Range T 
Since (1, 1, 2) + (0, 1, 1) = (1, 2, 3) we find these vectors are 

 2
Again as (1, 1, 2) and (0, 1, 1) are L.I. we find

dim Range T = 2 = Rank T.

Problem 2: Find the range, rank, Ker and nullity of the following linear transformations
(a) T : R2  R3 s.t., T(x1, x2) = (x1, x1 + x2, x2)
(b) T : R4  R3 s.t., T(x1, x2, x3, x4) = (x1 – x4, x2 + x3, x3 – x4)

Solution: (a) From definition of T, we notice elements of the type (x1, x1 + x2, x2) will have
pre images in R2 i.e., elements of this type are in Range T.

Now (x1, x1 + x2, x2) = (x1 + 0, x1 + x2, 0 + x2)
= (x1, x1, 0) + (0, x2, x2)
= x1(1, 1, 0) + x2(0, 1, 1)
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or that Range T is spanned by {(1, 1, 0), (0, 1, 1)} and since

1(1, 1, 0) + 2(0, 1, 1) = (0, 0, 0)
 1 = 2 = 0

these are L.I. and thus form a basis of Range T
  Rank T = dim Range T = 2.

Again (x1, x2)  Ker T  T(x1, x2) = (0, 0, 0)
 (x1, x1 + x2, x2) = (0, 0, 0)
 x1 = 0, x1 + x2 = 0, x2 = 0
 x1 = x2 = 0
 Ker T = {(0, 0)}

Also then nullity T = dim Ker T = 0.
(b) From defintion of T, we find elements of the type (x1 – x4, x2 + x3, x3 – x4) have pre

image in R4.
Now
(x1 – x4,  x2 + x3,  x3 – x4) = (x1 + 0 + 0 – x4,  0 + x2 + x3 + 0,  0 + 0 + x3 –x4)

= x1(1, 0, 0) + x2(0, 1, 0) + x3(0, 1, 1) + x4(–1, 0, – 1)
or that Range T is spanned by
{(1, 0, 0), (0, 1, 0), (0, 1, 1), (–1, 0, –1)}
Since Range T is a subspace of R3 which has dim 3 these four elements cannot form basis

of Range T.
In fact these are L.D., elements as

(–1, 0, –1) + (1, 0, 0) + (0, 1, 0) + (0, 1, 1) = (0, 0, 0)
If we consider three members

(1, 0, 0), (0, 1, 0), (0, 1, 1)
we notice 1(1, 0, 0) + 2(0, 1, 0) + 3(0, 1, 1) = (0, 0, 0)

 i= 0 for all i
or that (1, 0, 0), (0, 1, 0) (0, 1, 1) are L.I., and hence form basis of Range T
 dim Range T = 3 = rank of T
one might notice here that as

(–1, 0, –1) = –1(1, 0, 0) –1(0, 1, 0) –1(0, 1, 1)
the elements (1, 0, 0), (0, 1, 0), (0, 1, 1) span Range T
Also then Range T = R3

Again (x1,  x2,  x3,  x4)  Ker T  T(x1,  x2,  x3,  x4) = (0, 0, 0)
 x1 – x4 = 0

x2 + x3 = 0
x3 – x4 = 0

if we fix x4, we get x1 = x4,  x2 = –x3 = –x4,  x3 = x4
or that elements of the type (x4,  – x4,  x4,  x4) are in the Ker T
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i.e., Ker T is spanned by (1, –1, 1, 1) (Note (1, – 1, 1, 1)  Ker T)
this being L.I. forms basis of Ker T

 dim Ker T = 1
 nullity of T = 1.

Problem 3: Let F be a subfield of complex numbers and T a function from F3  F3 defined
by

T(x1,  x2,  x3) = (x1 – x2 + 2x3,  2x1 + x2,  – x1 – 2x2 + 2x3)
(i) Show that T is a L.T.

(ii) What are the conditions on a, b, c such that (a, b, c) be in the null space of T? Find
nullity of T.

Solution: T [(x1, x2, x3) + (y1,  y2, y3)] = T(x1 + y1,  x2 + y2,  x3 + y3)
= (x1 + y1 – x2 – y2 + 2x3 + 2y3,  2x1 + 2y1 + x2 + y2,
– x1 – y1 – 2x2 – y2 + 2x3 + 2y3)

Also T(x1,  x2,  x3) + T(y1,  y2,  y3) = (x1 – x2 + 2x3,  2x1 + x2,  – x1 – 2x2 + 2x3)
+ (y1 – y2 + 2y3, 2y1 + y2, – y1 – 2y2 + 2y3)
= (x1 – x2 + 2x3 + y1 – y2 + 2y3,  2x1 + x2 + 2y1 + y2
– x1 – 2 x2 + 2x3 – y1 – 2y2 + 2y3)
= (x1 + y1 – x2 – y2 + 2x3 + 2y3, 2x1 + 2y1 + x2 + y2,
– x1 – y1 – 2x2 – y2 + 2y3 + 2y3)

Thus T ((x1,  x2,  x3) + (y1,  y2,  y3)) = T(x1,  x2,  x3) + T(y1,  y2,  y3)
It is easy to see that for any 

T( (x1,  x2,  x3)) = (x1,  x2,  x3)
Thus T is a L.T.
Now if (a,  b,  c)  Ker T then T(a, b, c) = (0, 0, 0)

 (a – b + 2c,  2a + b,  – a – 2b + 2c) = (0, 0, 0)
 a – b + 2c = 0

2a + b = 0
– a – 2b + 2c = 0

Since
1 1 2
2 1 0
1 2 2

1 1 2

1 2 2
 = 0

The above equations have a non zero solution.
Solving the equiations, we find

1 1 2
2 1 0
1 2 2

a
b
c

1 1 21 1 2 a
2 1 0 b2 1 02 1 0 bb
1 2 21 2 2 c

 = 
0
0
0

0
000
0

R2  R2 – 2R1, R3  R3 + R1
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1 1 2
0 3 4
0 3 4

a
b
c

1 1 21 1 2 a
0 3 4 b0 3 40 3 40 3 4 b0 3 40 3 4 bb
0 3 40 3 40 3 4 c

 = 
0
0
0

0
000
0

R3  R3 + R2

1 1 2
0 3 4
0 0 0

a
b
c

1 1 21 1 2 a
0 3 4 b0 3 40 3 40 3 40 3 40 3 4 bb
0 0 0 c

 = 
0
0
0

0
000
0

 a – b + 2c = 0
3b – 4c = 0

Since rank of coeficient matrix is 2, the number of L.I. solutions is 3 – 2 = 1.

If we take c = k,  we get a = 2
3
k2
3
k ,  b = 4

3
k ,  c = k as solution of the given equations.

In other words a , b , c should satisfy the relation 
2

a
2

 = 
4
b  = 

4
c  for

(a, b, c) to be in Ker T.
Now (– 2, 4, 3) is one member of Ker T and all other members would be multiples of this,

i.e. , {(– 2, 4, 3)} generates ker T. Since (– 2, 4, 3) being non zero is L.I.
{(– 2, 4, 3)} forms a basis of Ker T or that dim Ker T = nullity T = 1.

In fact, the result dim V = dim Range T + dim Ker T will then give us
dim Range  T = Rank T = 2 as dim V = dim F3 = 3. (See exercises).

Problem 4: If T1, T2  Hom (V, W) then show that
(i) r( T1) = r(T1) for all   F,   0

(ii) | r(T1) – r(T2) |  r(T1 + T2)  r(T1) + r(T2)
where r(T) means rank of T.

Solution: (i) T1 : V  W
thus T1(V) = range T1, is a subspace of W
Now ( T1)v = (T1(v))  T1(V) for all v  V

 ( T1)V  T1 (V) ...(1)
Again as   0, –1 exists and thus

( –1T1) V  T1(V)
( –1T1)V T1(V)

 T1(V) T1(V)  T1(V) = T1(V) by (1)
 dim T1(V) = dim T1(V)

or r(T1) = r( T1).
(ii) Since (T1 + T2)x = T1(x) + T2(x) for all x  V

(T1 + T2)V  T1(V) + T2(V)
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 dim [(T1 + T2)V]  dim [T1(V) + T2(V)]
 dim T1(V) + dim T2(V)

 r(T1 + T2)  r(T1) + r(T2)
Again T1 = (T1 + T2) – T2 = (T1 + T2) + (– T2)

 r(T1) = r[(T1 + T2) + (–T2)]
 r(T1 + T2) + r(– T2) = r(T1 + T2) + r(T2)

(using (1)  = – 1)
 r(T1) – r(T2)  r(T1 + T2)

Similarly r(T2) – r(T1)  r(T1 + T2)
 | r(T1) – r(T2) |  r(T1 + T2)  r(T1) + r(T2).

Problem 5: Let T be a linear operator on V. If T 2 = 0, what can you say about the relation
of the range of T to the null space of T? Give an example of linear operator T of R2 such
that T 2 = 0, but T 
of the range of T to the null space of T

 0.

Solution: T 2 = 0  T 2 (v) = 0 for all v  V
 T(T(V)) = 0
 T(v)  Ker T for all v V
 range T  Ker T.

Define T : R2  R2, such that
T(x1, x2) = (x2, 0)

then T is a linear operator (Verify!)
Since T(2, 2) = (2, 0)  (0, 0)

T  0
But T 2(x1, x2) = T(T(x1, x2)) = T(x2, 0) = (0, 0)

 T 2 = 0.

Problem 6: Let T be a linear operator on V and let Rank T 2 = Rank T then show that Range
T  Ker T = {0}.

Solution: T : V  V, T 2 : V  V
Rank T 2 = dim V – dim Ker T 2

 dim Ker T = dim Ker T 2

We claim Ker T = Ker T 2

x  Ker T  T(x) = 0  T 2(x) = T(0) = 0
 x Ker T 2  Ker T  Ker T 2

 Ker T = Ker T 2 (as they have same dim)
Now x  Range T  Ker T  x  Range T and x  Ker T

 T(x) = 0, x = T(y) for some y  V
 T(T(y)) = 0
 T 2(y) = 0
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 y  Ker T 2 = Ker T
 T(y) = 0  x = 0
 Ker T  Range T = {0}.

Invertible Linear Transformations

We recall that a map T : V  W is invertible iff it is 1-1 onto, and inverse of T is the map T–

1: W 
We recall that a map 

 V such that
T–1(y) = x  T(x) = y

We show that inverse of a (1–1 onto) L.T. is also a L.T. Let T : V  W be a
1-1 onto L.T. and T–1: W 

We show that inverse of a (1–1 onto) 
 V be its inverse.

We have to prove
T–1( w1 + w2) = T–1(w1) + T–1(w2) F, w1, w2  W

Since T is onto, for w1, w2  W,  v1, v2  V such that T(v1) = w1, T(v2) = w2

 v1 = T–1(w1), v2 = T–1(w2)
Now T–1( w1 + w2) = T–1( T(v1) + T(v2))

= T–1(T( v1) + T( v2))
= T–1(T( v1 + v2))
= v1 + v2

= T–1(w1) + T–1(w2).

Definition: A L.T. T : V  W is called non-singular if Ker T = {0} i.e. if T is 1-1.

Theorem 7: A linear transformation T : V  W is non singular iff T carries each L.I. subset
of V onto a L.I. subset of W.

Proof: Let T be non-singular and {v1, v2 ..., vn} be a L.I. subset of V. we show
{T(v1), T(v2) ..., T(vn)} is L.I. subset of W.
Now    1T(v1) + 2T(v2) + ... + nT(vn) = 0 i  F

  T( 1v1 +...+ nvn) = 0
 1v1 +... nvn  Ker T = {0}
 1v1 +... nvn = 0
 i = 0 for all i as v1, v2..., vn are L.I.
Conversely, let v  Ker T be any element

Then   T(v) = 0
  {T(v)} is not L.I. in W
  v is not L.I. in V. (by hypothesis)
  v = 0  Ker T = {0}
  T is non singular.

Theorem 8: Let T : V  W be a L.T. where V and W are two F.D.V.S. with same dimension.
Then the following are equivalent
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(i) T is invertible
(ii) T is non singular (i.e., T is 1-1)

(iii) T is onto (i.e., Range T = W)
(iv) If {v1, v2,..., vn} is a basis of V then

{T(v1), T(v2),..., T(vn)} is a basis of W.

Proof: (i)  (ii) follows by definition.
(ii)  (iii) T is non-singular

 Ker T = {0}
 dim Ker T = 0

Since      dim Range T + dim Ker T = dim V, we get
    dim Range T = dim V
 dim Range T = dim W (given condition)
But Range T being a subspace of W, we find

Range  T = W
(iii)  (i) T onto means Range T = W

 dim Range T = dim W = dim V
and as  dim Range T + dim Ker T = dim V, we get
dim Ker T = 0
 Ker T = {0}
or that T is 1-1 and as it is onto T will be invertible.

(i)  (iv) T is invertible  T is 1-1 onto
i.e., T is an isomorphism, so result follows as done in theorem 24, chapter 10.

(iv)  (i)
Let {T(v1),..., T(vn)} be basis of W where {v1,...vn} is basis of V. Any w W can be
put as
w = 1T(v1) +...+ nT(vn)

= T( 1v1 +...+ nvn) = T(v) for some v V
 T is onto. Thus (iii) holds.

Hence (i) holds.

Problem 7: Let T be a linear operator on R3, defined by
T(x1, x2, x3) = (3x1, x1 – x2,  2x1 + x2 + x3)

show that T is invertible and find the rule by which T–1 is defined.

Solution: T : R3  R3

Let   (x1, x2, x3)  Ker T be any element
Then T(x1, x2, x3) = (0, 0, 0)

 (3x1,  x1 – x2,  2x1 + x2 + x3) = (0, 0, 0)
 3x1 = 0,  x1 – x2 = 0,  2x1 + x2 + x3 = 0
 x1 = x2 = x3 = 0 or that Ker T = {(0, 0, 0)}
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 T is non singular and thus invertible (See theorem 8)
Now if (z1, z2, z3) be any element of R3, then (x1, x2, x3) will be its image under T if

T(x1, x2, x3) = (z1, z2, z3)
 2x1 = z1

x1 – x2 = z2
2x1 + x2 + x3 = z3

which give x1 = 1
3
z ,  x2 = 1

3
z – z2,  z3 = z3 – z1 + z2

Hence T–1 : R3  R3 is defined by

T–1 (z1, z2, z3) = 1 1
2 3 1 2, ,

3 3
z z z z z z1 1z z1 1z z1 1z z1 1z z1 11 1

2 3 1 2z z z z2 3 1 2z z z z2 3 1 2z z z z
3 3

, ,
3 3

, ,
3 3

, ,2 3 1 2, ,2 3 1 2, ,2 3 1 2z z z z2 3 1 2z z z z2 3 1 2, ,z z z z, ,2 3 1 2, ,2 3 1 2z z z z2 3 1 2, ,2 3 1 2

Problem 8: If T : V  V is a L.T., such that T is not  onto, then show that there exists some
0  v in V s.t., T(v) = 0.

Solution: Since T is not onto, it is not 1-1 (theorem done)
Suppose  no 0  v  V s.t. T(v) = 0
Then T(v) = 0 only when v = 0
 Ker T = {0}  T is 1-1, a contradiction.

Theorem 9: Let T : V  W and S : W  U be two linear transformations. Then
(i) If S and T are one-one onto then ST is one-one onto and (ST)–1 = T–1 S–1.

(ii) If ST is one-one then T is one-one
(iii) If ST is onto then S is onto.

Proof: (i) Since S and T are 1-1 onto, S–1 and T–1 exist.
Let   ST(x) = ST(y)
Then S(T(x)) = S(T(y))

 T(x) = T(y) as S is 1-1
 x = y as T is 1-1
 ST is 1-1.

Again ST : V  U, let u  U be any element then as S in onto,  w  W s.t.,
S(w) = u and as T : V  W is onto 

 U be any element then as 
 v 

 U be any element then as 
 V s.t., T(v) = w 

Now T(v) = w  S(T(v)) = S(w)  ST(v) = u
or that ST is onto.
Also (ST)(T–1S–1) = S(T(T–1S–1)) = S(TT–1)S–1 = S(IS–1) = SS–1 = I
Similarly (T–1S–1)(ST) = T–1(S–1(ST)) = T–1(S–1S)T = T–1(IT) = T–1T = I
Showing that (ST)–1 = T–1S–1.
(ii) Let v  Ker T be any element
Then T(v) = 0

 S(T(v)) = S(0)
 ST(v) = 0
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 v  Ker ST  and  Ker ST = (0) as ST is 1-1
 v = 0  Ker T = (0)  T is 1-1.

(iii) Let u  U be any element. Since ST : V  U is onto,  some v  V s.t., ST(v) = u
i.e., S(T(v)) = u
Let T(v) = w and w  W such that

S(w) = u
Then S is onto.

Problem 9: In the above theorem show that if ST is 1-1 onto then T is 1-1 and S is onto. Again,
if V, W, U are of same dimension and ST is one-one onto then so are S and T.

Solution: First part of the problem follows by (ii) and (iii) of theorem 9.
Let now dim V = dim W = dim U
The result then follows by using theorem 8 we proved earlier that if T : V  W is a L.T.

where dim V = dim W then T is 1-1 iff T is onto.

Problem 10: Let T be a linear operator on F.D.V.S. V. Suppose there is a linear operator U
on V such that TU = I. Show that T is invertible and T–1 = U.

Solution: We have T : V V, U : V V s.t., TU = I we claim U is 1-1.
Let U(x) = U(y)
Then T(U(x)) = T(U(y))

 I(x) = I(y) (TU = I)
 x = y

or that U is 1-1 and, therefore, onto also.
Hence U is invertible.
Now U –1 : V  V s.t., UU –1 = 1
Thus UT = (UT)I = UT(UU –1) = U(TU)U –1 = UU –1 = I

 UT = I = TU
 T is invertible and T –1 = U.

Problem 11: Show that the conclusion of the previous problem fails if V is not finite dimensional.

Solution: Let V be the vector space of all polynomials in x over a filed F.
Let T = differential operator on V.
i.e., T : V  V, s.t.,

T(f (x)) = 
d
dx

f (x)

Notice this T is a linear transformation (example 18, chapter 10).
Let U : V  V s.t.,

U(f ) = 
0

( )
x

f t dt
0

x
f t dt( )f t dt( )

Then U is a linear transformation.

Again TU(f ) = T
0

( )
x

f t dt
0

x
f t dt( )f t dt( )  = f = I(f )

 TU = I
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Now T(2x) = 2, T(2x + 3) = 2
and as 2x  2x + 3, T is not 1-1 and hence T is not invertible. Thus UT  I.

Problem 12: Let V1 and V2 be vector spaces over F. Show that V1 × V2 is F.D.V.S. if and only
if V1 and V2 are F.D.V.S.

Solution: Let V1  = {(v1, 0) | v1  V1}
V2  = {(0, v2) | v2  V2}

then V1  and V2  are subspaces of V1 × V2
Define 1 : V1  V1  s.t.,

1(v1) = (v1, 0)
Then 1 is an isomorphism (Prove!)
Similarly 2 : V2  V2  s.t.,

2(v2) = (0, v2)
will be an isomorphism.

So V1  V1 ,  V2  V2

Suppose V1 × V2 is F.D.V.S., then V1  and V2  are F.D.V.S. (being subspaces
of V1 × V2)

 V1 and V2 are F.D.V.S.
Conversely, if V1 and V2 are F.D.V.S. then V1 × V2 is F.D.V.S. and dim (V1 × V2) =

dim V1 + dim V2. (Note: If {e1,  e2, ..., em} and {f1,  f2, ..., fn} are basis of V1 and V2 resp.,
then {(e1,  0), ..., (em, 0), (0,  f1), ..., (0,  fn)} is a basis of V1 × V2.)

Problem 13: Let W1 and W2 be subspaces of V such that 
1

V
W

 and 
2

V
W

 are F.D.V.S. Show that

1 2

V
W W1 2W W1 2W W1 2

  is also a F.D.V.S.

Solution: Define  : V  
1 2

V V
W W
V V
W W

 s.t.,

(v) = (W1 + v, W2 + v)
It is easy to see that  is a linear transformation where Ker  = W1  W2.

Hence  
Ker

V
θ

  (V)

Again, since 
1

V
W

 and 
2

V
W

 are F.D.V.S., so will be 
1 2

V V
W W
V V
W W

. In fact

dim
1 2

V V
W W
V VV VV VV V

1 2W W1 2W W1 2W WW W
 = dim 

1

V
W

 + dim 
2

V
W

. (See Problem 12).

Also (V) is a subspace of 
1 2

V V
W W
V V
W W

 and is therefore, finite dimensional.

Hence 
1 2

V
W W1 2W W1 2W W1 2

 is F.D.V.S.
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Exercises
1. Let T : F 3  F 3 be defined by

T(x1, x2, x3) = (x1 – x2 + 2x3, 2x1 + x2, – x1 – 2x2 + 2x3)
then T is a L.T. Find the conditions on a, b, c such that (a, b, c) is in Range T. Show
that rank T is 2. [a = b + c]

2. Show that image of a L.I. set by a L.T., need not be L.I. (consider zero L.T.).
3. Let dim V = n, T : V  V be a L.T. such that Range T = Ker T. Show that n is even.

Prove that T : R2  R2, s.t., T(x1, x2) = (x2, 0) is such a L.T.
4. Find a L.T. T : R3  R3 such that the set of all vectors (x1, x2, x3) satisfying the

equation 4x1 – 3x2 + x3 = 0 is Ker T.
[T(x1, x2, x3) = (4x1 – 3x2 + x3, 8x1 – 6x2 + 2x3, 0)]

5. Show that f : R4  R4, s.t., f (x, y, z, t) = (2x, 3y, 0, 0) is a L.T. Find its rank and
nullity.

6. Find range, rank, Ker and nullity of the L.T. defined by
(i) T : R2  R2 s.t., T(x1, x2) = (x1 + x2, x1) [R2, 2, (0), 0]

(ii) T : R2  R3 s.t., T(x1, x2) = (x1 + x2, x1 – x2, x2)
(iii) T : R3  R2 s.t., T(x1, x2, x3) = (x1 – x2, x1 + x3)

[(1, 1, 0) (1, –1, 1), 2, (0), 0]
(iv) The zero and the identity linear transformations
(v) T : R3  R2, s.t., T(x1, x2, x3) = (x1 + x2, 2x3 – x1).

7. Find the L.T. from R3  R3 which has its range the subspace spanned by
(1, 0, –1), (1, 2, 2).

8. Let G be the set of all invertible linear transformations from V  V then show that
G forms a group under product of linear transformations.

9. Let T, T1, T2 be linear transformations from V  W, S, S1, S2 from W  U and K,
K1, K2 from U  Z where V, W, U, Z are vector spaces over a field F then show that

(i) S(T1 + T2) = ST1 + ST2
(ii) (S1 + S2)T = S1T + S2T

(iii) K(ST) = (KS)T
(iv) ( S)T = (ST) = S( T)  F.

10. Let T : R3 R2, S : R2  R2 be linear transformations. Show that ST is not invertible.
11. Show that it is possible to find two linear operators T, U on R2 such that TU = 0 but

UT 
Show that it is possible to find two linear operators 

 0.
(Consider (x1, x2)  (x1, 0) and (x1, x2)  (0, x1)).

12. A linear transformation T : V  V is called idempotent or a projection if
T 2 = T. Show that if S, T are idempotent and ST = TS then ST and S + T – ST are
idempotent and if ST + TS = 0 then S + T is idempotent.

13. Let V be the real vector space and E an idempotent linear operator. Show that
I + E is invertible. [Hint: consider I – 1/2E].
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14. A linear transformation T : V  V is called nilpotent on V if T n = 0
for some integer n > 1. The smallest integer n (> 1) for which T n = 0 is
called degree of nilpotency of T. Show that T : R4 

(> 1) for which 
 R4, defined by

T(x1, x2, x3, x4) = (0, 2x1, 3x1 + 2x2, x2 + 4x3) is nilpotent of degree 4.
15. Show that a necessary and sufficient condition for the map T : F2  F2 s.t.,

T(x1, x2) = (
Show that a necessary and sufficient condition for the map 

x1 + 
Show that a necessary and sufficient condition for the map 

x2, 
Show that a necessary and sufficient condition for the map 

x1 + 
Show that a necessary and sufficient condition for the map 

x2),  [(
Show that a necessary and sufficient condition for the map 

, 
Show that a necessary and sufficient condition for the map 

, 
Show that a necessary and sufficient condition for the map 

, 
Show that a necessary and sufficient condition for the map 

) some fixed elements of F)] to be an

isomorphism is that   0.

16. If O  T  Hom (V, V) then show that there exists some S  Hom (V, V) such that
TS is an idempotent.

17. Show that the linear transformation T : R3  R3 defined by  T(x1, x2, x3) =
(2x1, x1 – x2, 5x1 + 4x2 + x3) is invertible.

18. If the L.T. T : R7  R3 has a four dimensional Kernel, show that range of T has
dimension three.

19. Let T be a L.T. from R7 onto a 3-dimensional subspace of R5. Show that
dim Ker T = 4.

Matrix of a Linear Transformation

Let U(F), V(F) be vector spaces of dimension n and m respectively. Let  = {u1, ..., un},
 = {v1, ..., vm} be their ordered basis respectively. Suppose T : U 

 respectively. Let 
 V is a linear transformation.

Since T(u1), ..., T(un) 
} be their ordered basis respectively. Suppose 

 V and {v1, ..., vm} spans V, each T(ui) is a linear combination of
vectors v1, ..., vm.

Let T(u1) = 11v1 + ... m1vm
T(u2) = 12v1 + ... + m2vm
........
T(un) = 1nv1 + ... + mnvm

where each ij  F. Then the m × n matrix

A = 

11 12 1

1 2

... ...
: : ... ... :
: : ... ... :
: : ... ... :

... ...

n

m m mn

11 12 1... ... n11 12 1n
: : ... ... :: : ... ... :
: : ... ... :: : ... ... :
: : ... ... :: : ... ... :

1 2m m1 2m m1 2 mn1 2 ... ...m m1 2m m1 2 mn

is called matrix of T with repsect to ordered basis , respectively. A is uniquely determined
by T as each ij  F is uniquely determined. We write

A = [T] ,
The word ordered basis is very significant, for as the order of basis is changed, the entries

ij will change their positions and so the corresponding matrix will be different.
In particular if U = V,  = , then instead of writing [T] , , we write [T] .
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Let Mm×n(F) denote the vector space of all m × n matrices over F. Let
Hom (U, V) denote the vector space of all linear transformations from U(F) into V(F). We
prove

Theorem 10: Hom (U, V)  Mm×n(F).

Proof:  Define : Hom (U, V)  Mm×n(F), s.t.,
(T) = [T] ,

Where  = {u1, ... un},  = {v1, ... vm} are ordered basis of U, V respectively.  is well
defined as [T] ,  is uniquely determined by T

It is not difficult to verify that  is a linear transformation.
Let (S) = (T), S, T  Hom (U, V)
Then [S] , = [T] ,
 (aij) = (bij)
 aij = bij for all i, j

 S(uj) = 
1

m

ij i
i

a v
1

m

ij i
i

a vij ia vij i
1

ij i  = 
1

m

ij i
i

b v
1

m

ij i
i

b vij ib vij i
1

ij i  = T(uj)  for all j = 1, ... n

 S = T   is 1-1.
Let A = (aij)m×n  Mm×n(F). Then  a linear transformation T  Hom (U, V) s.t.,

T(uj) = 
1

m

ij i
i

a v
1

m

ij i
i

a vij ia vij i
1

ij i for j = 1, ..., n

A = [T] ,  = (T)   is onto.
Hence is an isomorphism and so Hom (U, V) Mm×n(F).

Cor.: dim Hom (U, V) = mn.

Proof:  S = set of all m × n matrices with only one entry 1 and all other entries zero, is a basis
of Mm×n(F).

Clealy,  o(S) = mn   dim Mm×n(F) = mn
  dim Hom (U, V) = mn.

Theorem 11: Let S, T be two linear transformations from V(F) into V(F). Let  be an ordered
basis of V. Then

[ST]  = [S] [T]
Proof: Let  = {v1, ... vn}

Let S(v1) = a11v1 + ... an1v1
   ........

S(vn) = a1nv1 + ... + annvn

where aij  F

In general, S(vj) = 
1

n

ij i
i

a v
1

n

ij i
i

a vij ia vij i
1

ij i for all j = 1, ..., n

[S] = (aij)
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Similarly,
T(v1) = b11v1 + ... + bn1vn
........
T(vn) = b1nv1 + ... + bnnvn where bij  F

In general T(vk) = ,
1

n

jk j
j

b v
1

n

jk j
j

b vjk jb vjk j
1

jk j for all k = 1, ..., n

[T] = (bjk)

ST(vk) = S
1

n

jk j
j

b v
n

b vb vjk jjk jb vjk jb vjk j
j 1

jk j
j 1

n
b vb vjk jjk jb vjk jb vjk jjk j

j 1
jk j  = 

1
( )

n

jk j
j

b S v
1

n

jk j
j

b S vjk jb S vjk j
1

jk j

= 
1 1

n n

ij jk i
i j

a b v
i j1 1i j1 1

n n
a b va b vij jk iij jk ia b vij jk ia b vij jk i

1 1i j1 1i j1 1
ij jk i

1 11 1i j1 1

n n

i j1 1i j1 1i j1 1

n n
a b va b vij jk iij jk ia b vij jk ia b vij jk iij jk i

1 1
ij jk i

1 1i j1 1

[ST] = (cik), where cik = 
1

n

ij jk
j

a b
1

n

ij jk
j

a bij jka bij jk
1

ij jk

Also, (i, k)th entry in [S]  [T]

= 
1

n

ij jk
j

a b
1

n

ij jk
j

a bij jka bij jk
1

ij jk  = cik = (i, k)th entry in [ST]

[ST] = [S]  [T]

Cor.: If S is an invertible linear transformation from V(F) into V(F), then so is [S]  with respect
to any basis of V and conversely.

Proof: Since S is invertaible,  T : V  V s.t., ST = I = TS. Let be an ordered basis of V.
Then by above theorem,

[ST] = [I]  = I, where T = S–1

 [S] [T]  = I
 [S] [S–1]  = I
 [S–1]  = [S]–1  for any basis  of V

Conversely, let [S]  be invertible. Then  a matrix A = (aij) over F s.t., [S]  A = I
Let T : V  V be a linear transformation s.t.,

T(vj) = 
1

n

ij i
i

a v
1

n

ij i
i

a vij ia vij i
1

ij i for all j = 1, ... n

[T]  = A
[S]  [T]  = I

 [ST]  = I
 (ST)(vj) = vj for all j = 1, ..., n
 (ST)(x) = (ST)( 1v1 + ... + nvn)
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= 1v1 + ... + nvn
= x for all x  V

 ST = I  S is invertible.
We give a more general result of above theorem 11.

Theorem 11(a): Let T : V  W and S : W  Z be  linear transformations. Let ,  and 
be ordered basis for V, W and Z respetively. Then

[ST]  = [S] [T]

Proof: Let  = {v1, ...., vn},  = {w1, ...., wm},  and  = {z1, ...., zp},
Let [T]  = A = (aij)m  n, [S]  = B = (bij)p  m
Then, T(vk) = a1kw1 +. . .+amkwm

S(wj) = b1j z1 +. . .+bpjzp
(ST)(vk) = S(T(vk))

= S(a1kw1 +. . .+amkwm)

= a1kS(w1) +. . .+amkS(wm)

= a1k(b11z1+. . .+bm1zp) +. . .+amk(b1mz1+ . . .+bpmzp)

= (a1kb11+. . .+amkb1m)z1+. . .+(a1kbm1+ . . .+amkbpmzp)

=
1 1

p m

ij jk i
i j

b a z
i j1 1i j1 1

m

ij jk ib a zij jk ib a zij jk ib a z
1 1i j1 1i j1 1

ij jk i

p

i j1 1i j1 1i j1 1

m

ij jk ib a zij jk ib a zij jk ib a z
1 11 1i j1 1

ij jk iij jk i

=
1

,
p

ik i
i

c z
1

p

ik ic zik ic zik i
1

 where 
1

m

ik ij jk
j

c b a
1

ik ij jkc b aik ij jkc b aik ij jk

m

ik ij jkc b aik ij jkc b aik ij jk
1

ik ij jkik ij jkc b aik ij jkc b aik ij jk

[ST]  = (cik) = C

Also, (i, k)th entry of BA = 
1

m

ij jk
j

b a
1

m

ij jkb aij jkb aij jk
1

ij jk

= cik

= (i, k)th entry of [T]

[ST]  = BA = [S] [T]

In particular, if V = W = Z and  =  = , then

[ST]  = [S]  [T]

or
[ST]  = [S]  [T]

So, theorem 11 is a special case of above thorem 11(a).

Cor: Let T : V  W be a linear transformation. Then T is invertible if and only if [T]  is
invertible where  and  are bases of V and W respectively.
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Proof: Let T be  invertible. Then there exists a linear transformation T 1 : V  W such that
T 1T = IV, TT 1 = IW.

I = [IV]  = [TT 1T]  = [TT 1] , [T] ,

So, [T] ,  is invertible.

Conversely, let [T] ,  be invertible. There exists a matrix B such that [T] ,  = I = [T] , B.

Let  = {v1,. . . ,vn} and  = {w1,. . . ,wm} be bases for V and W respectively.

Then there exists a linear transformation S: W  V such that S(wk) = .
1

n

ik i
i

b v
1

.

n

ik i
i

b vik ib vik i
1

Here [S] ,  = B = (bij)n  m

[S] ,  [T] ,  = I. By above theorem [ST]  = I.

So, ST = IV.

Similarly, TS = IW.

Thus, T is invertible.

In particular, if V = W,  = . Then T: V  V is invertible if and only if [T]  is invertible. So,
Cor. to theorem 11 is a special case of above theorem.

We now give a relation between matrices of a linear transformation with respect to two
different basis of a vector space.

Theorem 12: Let T : V(F)  V(F) be a linear transformation. Let  = {u1, ..., un}, = {v1,
..., vn} be two ordered basis of V. Then 

 be a linear transformation. Let 
 a non singular matrix P over F such that

[T]  = P–1[T] P.

Proof: Let S : V  V be a linear transformation such that S(ui) = vi for all i = 1, ... n.
Now  x  Ker S  S(x) = 0, x = 1u1 + ... + nun, i F

 S( 1u1 + ... + nun) = 0
 1S(u1) + ... + nS(un) = 0
 1v1 + ... + nvn = 0
 i = 0 for all i
 x = 0
 Ker S = {0}
 S is 1-1 and so onto.

S is an isomorphism. Let [T]  = (aij)

Then T(uj) = 
1

n

ij i
i

a u
1

n

ij i
i

a uij ia uij i
1

ij i

(STS–1)(vj) = ST(uj)

= S
1

n

ij i
i

a u
n

i 1i 1

n

ij ia uij ia uij iij i
i 1

ij iij iij i  = 
1

n

ij i
i

a v
1

n

ij i
i

a vij ia vij i
1

ij i
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[STS–1]  = (aij) = [T]
 [S] [T] [S–1]  = [T]
 [S] [T] [S]–1 = [T]
 [T] = [S] –1 [T] [S]

= P–1[T]  P, where P = [S] .

As in theorem 11, we give a more general result of above theorem 12.

Theorem 12(a): Let  T : V(F)  W(F) be a linear transformation. Let ,  and ,  be
ordered basis for V and W respectively. Then

[T] ,  = SS 1[T] ,  P

where P is the matrix of  relative to  and S is the matrix of  relative to .

Proof: Let  = {v1, . . .,vn},  = {v 1, . . .,v n}
 = {w1, . . .,wm},  = {w 1, . . .,w m}

Let P = (pij)n  n , S = (sij)m  m

Then
1

,
n

j kj k
k

v p v
1

j kj kv p vj kj kv p vj kj kj kj kv p vj kj kv p vj kj k

n

j kj k
k

v p vj kj kv p vj kj k
1

j kj kj kj kv p vj kj kv p vj kj kj kj kj kj kv p vj kj kv p vj kj k 1  j  n

1
,

m

r kr k
k

w s w
1

r kr kw s wr kr kw s wr kr kr kr kw s wr kr kw s wr kr k

m

r kr k
k

w s wr kr kw s wr kr k
1

r kr kw s wr kr kw s wr kr kr kr kw s wr kr kw s wr kr k 1  r  m

Let : W  W be the linear transformation
(Wi) = w i for all i.

Then  is an isomorphism as takes basis of W into basis of W.
Also [ ] ,  = S
Since  is invertible, so is S.
Also, SS 1 = [ 1] ,

Let
1

,
m

r lr l
l

w s w
1

r lr lw s wr lr lw s wr lr l ,r lr l

m

r lr l
l

w s wr lr lw s wr lr l
1

r lr lw s wr lr lw s wr lr lr lr lw s wr lr lw s wr lr l 1  r  m

Then SS 1 = matrix of  relative to 
Let [T] ,  = A = (aij)m  n

[T] ,  = B = (bij)m  n

T(vk) = 
1

,
m

ik i
i

a w
1

m

ik i
i

a wik ia wik i
1

T(vjj ) = 
1

,
m

lj l
l

b w
1

,
m

lj l
l

b wlj lb wlj l
1

lj llj l

T(v j) = 
1

( )
n

kkj
k

p T v
1

n

kj
k

p T vkjp T vkj
1

kj

 = 
1 1

n m

ik ikj
k i

p a w
k i1 1k i1 1

n m

ik iik i
1 1k i1 1k i1 1

ik i

n m

kj
k i

p a wkjp a wkjkj
k i1 1k i1 1

n m

ik ip a wik ip a wik iik ip a wik ip a wik i
1 1k i1 1k i1 1

ik ip a wik ip a wik i
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 = 
1 1

m n

ik kj i
i k

a p w
i k1 1i k1 1

m n

ik kj ia p wik kj ia p wik kj iik kj iik kj ia p wik kj iik kj i
1 1i k1 1i k1 1

ik kj iik kj ia p wik kj i

m n

i ki k1 1i k1 1

m n
a p wik kj ia p wik kj ia p wik kj ia p wik kj iik kj i

1 1
ik kj i

i k1 1i k1 1
ik kj ia p wik kj ia p wik kj iik kj i

 = 
1 1 1

m n m

ik kj li l
i k l

a p s w
i k l1 1 1i k l1 1 1

m n m

1 1 1i k l1 1 1i k l1 1 1

m n m

i k li k l1 1 1i k l1 1 1

m n m
a p s wik kj li la p s wik kj li lik kj li la p s wik kj li la p s wik kj li la p s wik kj li la p s wik kj li lik kj li lik kj li la p s wik kj li lik kj li l

1 1 1
ik kj li l

i k l1 1 1i k l1 1 1
ik kj li la p s wik kj li la p s wik kj li lik kj li lik kj li lik kj li la p s wik kj li l

= 
1 1 1 1

m n m m

li ik kj l lj l
l k i l

s a p w b w
1ll k i1 1 1l k i1 1 1

m n m

1 1 1l k i1 1 1l k i1 1 1

mm n m

l k i
li ik kj l lj l

1
li ik kj l lj l

ll k i1 1 1l k i1 1 1

m n m

li ik kj l lj ls a p w b wli ik kj l lj ls a p w b wli ik kj l lj lli ik kj l lj ls a p w b wli ik kj l lj ls a p w b wli ik kj l lj ls a p w b wli ik kj l lj ls a p w b wli ik kj l lj ls a p w b ws a p w b wli ik kj l lj ls a p w b wli ik kj l lj ls a p w b ws a p w b wli ik kj l lj ls a p w b wli ik kj l lj ls a p w b ws a p w b wli ik kj l lj ls a p w b wli ik kj l lj lli ik kj l lj ls a p w b wli ik kj l lj lli ik kj l lj ls a p w b wli ik kj l lj l
1 1 1

li ik kj l lj l
l k i1 1 1l k i1 1 1

li ik kj l lj ls a p w b wli ik kj l lj ls a p w b wli ik kj l lj lli ik kj l lj lli ik kj l lj lli ik kj l lj ls a p w b wli ik kj l lj lli ik kj l lj lli ik kj l lj ls a p w b wli ik kj l lj l

blj = 
1 1

n m

li ik kj
k i

s a p
1 1k i1 1k i1 1

li ik kjs a pli ik kjs a pli ik kj

n m

li ik kj
k i

s a pli ik kjs a pli ik kj
1 1

li ik kj
k i1 1k i1 1

li ik kjs a pli ik kjs a pli ik kj

[T] ,  = SS 1[T] , P

In particular, if V = W,  = ,  = , then

[T]  = SS 1[T] P, S = P

= PP 1[T] P

So, theorem 12 is a special case of the above theorem 12(a).
The converse of theorem 12 is also true, as is seen in
Theorem 13: Let A and B be n  n matrices over F. Suppose A and B are similar. Then A
and B represent the same linear transformation with respect to two ordered basis for some vector
space over F.

Proof: Let V = F(n). Since A and B are similar there exists a non singular matrix P = (pij) over
F such that B = P 1AP.

Let  = {v1, v2,....,vn} be an ordered basis for V.

Let A = (aij). Then there exists a linear transformation. T : V  V such that

T(vj) = a1jv1 + a2 jv2+. . .+anjvn for all j = 1, 2,. . .,n

Also [T]  = A

Let wj = 
1

,
n

ij i
i

p v
1

n

ij i
i

p vij ip vij i
1

j = 1, 2, . . ., n.

Let  = {w1, w2,....,wn}. We show that is a basis of V.

Let a1w1 + a2w2 + . . .+anwn = 0

Then a1(p11v1+. . .+pn1vn)+. . . +an(p1nv1+. . . +pnnvn) = 0

or (a1p11+. . .+an p1n)v1+. . .+(a1pn1+. . .+anpnn)vn = 0

Since  is a linearly independent set,

a1p11+. . .+an p1n = 0
                          . . .

a1pn1+. . .+an pnn = 0
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or

1

2 0

n

a
a

P

a

1a1

2a2a
00

naa


So,

1

21 0

n

a
a

P P

a

1P P1P P1

1a1

2a2a
00

naa


Therefore, ai = 0 for all i

Hence  is a linearly independent set and so forms a basis for V as dim V = n

Define:  : V  V such that

(vi)  wi for all i

Then is an isomorphism.

Now ( TT 1) (wj) = ( T)( 1(wj))

= ( T)(vj)

= T(vj))

= (a1jv1+. . .+anjvn)

= a1jw1+. . .+anjwn

= 
1

n

ij i
i

a w
1

n

ij ia wij ia wij i
1

ij i

So, [ TT 1]  = (aij) = A

Now (wj) = (p1jv1+. . .+pnjvn)

= pljw1+. . .+pnjwn

= 
1

n

ij i
i

p w
1

n

ij ip wij ip wij i
1

So, [ ]  = (pij) = P

Since [ TT 1]  = A,

[ ]  [ 1]  = A

P[T] 1[ ][ ] 111  = A
P[T] PP 1 = A

or [T]  = PP 1AP = B

Hence, A and B represent same linear transformation T with respect to ordered basis  and
 respectively.
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Problem 14: Let T be a linear operator on C2 defined by T(x1, x2) = (x1, 0) Let  =
{ 1 = (1, 0), 

Let T be a linear operator on 
2 = (0, 1)}, 
Let T be a linear operator on 

 = {
Let T be a linear operator on 

1 = (1, i), 
Let T be a linear operator on 

2 = (–i, 2)} be ordered basis for C2. What is
the matrix of T relative to the pair 

 = (1,
, 

 = (1,
?

Solution: Now T( 1)= T(1, 0)
= (1, 0)
= a(1, i) + b(–i, 2)

 a – bi = 1 where a, b  C
ai + 2b = 0

 a = 2, b = –i
 T( 1) = 2 1 – i 2

Also T( 2) = T(0, 1) = (0, 0) = 0 1 + 0 2

[T]  = 
2 0

0i
2 0

000i 0i
.

Problem 15: Let T be the linear operator on R2 defined by T(x1, x2) = (–x2, x1)
(i) Prove that for all real numbers c, the operator (T – cI) is invertible.

(ii) Prove that if  is any ordered basis for R2 and [T]  = A, then a12a21  0,
where A = (aij).

Solution: (i) Let  = { 1 = (1, 0), 2 = (0, 1)} be an ordered basis for R2.
Then T( 1) = T(1, 0) = (0, 1) = 0 1 + 1 2

T( 2) = T(0, 1) = (–1, 0) = –1 1 + 0 2

[T]  = 
0 1
1 0
0 10 1
1 01 0 , [cI]  = 

0
0
c

c
0c

0 c0 c

[T – cI]  = 
1

1
c

c
1c

11 cc

det [T – cI]  = c2 + 1  0 for all real numbers c
[T – cI]  is invertible.

 T – cI is invertible for all real numbers c.
(ii) Let be any ordered basis for R2 s.t.,

[T]  = 
11 12

21 22

a a
a a

11 12a a11 12a a11 1211 12

21 22a a21 22a a21 2221 22a a21 22a a21 22
 = A,  aij  R

By (i) T – a11I is Invertible
 [T – a11I]  is invertible

 12

21 22 11

0 a
a a a

120 a12

21 22 11a a a21 22 11a a a21 22 11a a a21 22 11a a a21 22 1121 22 1121 22 11a a a21 22 1121 22 11a a a21 22 11a a a21 22 11
 is invertible

 –a12a21  0 as det of abve matrix  0
 a12a21  0.
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Problem 16: Let T be the linear operator on R3 defined by
T(x1, x2, x3) = (3x1 + x3, –2x1 + x2, –x1 + 2x2 + 4x3)

Show that T is invertible.

Solution: Let  = { 1 = (1, 0, 0), 2 = (0, 1, 0), 3 = (0, 0, 1)} be  an ordered basis of R3.

Then [T]  = 
3 0 1
2 1 0
1 2 4

3 0 1
2 1 02 1 02 1 02 1 02 1 02 1 0
1 2 41 2 4

  = A.

det A = 3(4) + 1 (– 4 + 1) = 12 – 3 = 9  0
So,  A is invertible
 T is invertible.

Problem 17: Let A be an n × n matrix over F. Show that A is invertible if and only if columns
of A are linearly independent over F.

Solution: Let V(F) be a vector space of dimension n. Let  = {v1,..., vn} be an ordered basis
of V. Let A = (aij). Then 

) be a vector space of dimension 
 a linear transformation T : V 

 = {
 V such that

T(vj) = 
1

n

ij i
i

a v
1

n

ij i
i

a vij ia vij i
1

ij i

[T]  = A.
Let Mn(F) denote the vector space of all n × n matrices over F.
Let A  Mn (F) be invertible. Then T is also invertible (by Cor. to Theorem 11) and so T

is 1-1, onto.

Let
11 1

1

1

: ... α :
n

n

n nn

a a

a a

11 1na a11a a1111 1n

1 α :α :: ... α :nα :nα :: ... α :

1n nn1n nna a1a a1na an

= 0, i  F


1 11 1

1 1

n n

n n nn

a a

a a

n n1 11 1n n1n n1a a1 11a a1 11 n na an nn n1 11 n n1n n1

n nnn nn1 1n1 1n1 1 n nn1 11 1n1 1 n nna a1 1a a1 11 1n1 1a a1 1n1 1 n nna an nn


  


= 0

 1a11 + ... + na1n = 0
... ...

1an1 + ... + nann = 0
 1a11 v1 + ... + na1n v1 = 0

... ...

1an1 vn + ... + nann vn = 0
  1(a11v1 + ... + an1vn) + ... + n(a1nv1 + ... + nnvn) = 0
 1T(v1) + ... + nT(vn) = 0
 T( 1v1 + ... + nvn) = 0
 1v1 + ... + nvn = 0 as T is 1-1
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 i = 0 for all i
 columns of A are linearly independent.

Conversely, let columns of A be linearly independent over F.
Now x  Ker T

 T(x) = 0, x  V
 T( 1v1 + ... + nvn , = 0
 1T(v1) + ... + nT(vn) = 0


1

( )
n

j j
j

T v
1

( )j j( )j j( )T v( )T v( )j jT vj j( )j j( )T v( )j j( )
n

j j
j 1

j jj jT vj jT vj j  = 0    
1 1

n n

j ij i
j i

a v
j i1 1j i1 1

n n

1 1j i1 1j i1 11 11 1j i1 1

n n

j ij i
j i1 1

j ij i
j i1 1j i1 1

n n
a v

n n

j ij ij ij ij ij ia vj ij ia vj ij ij ij ij ij ij ij i
1 1

j ij i
1 1j i1 1

 = 0


1 1

( )
n n

j ij i
i j

a v
i j1 1i j1 1

n n
( )a v( )a v( )( )( )( )a v( )( )j ij ij ij i( )j ij i( )a v( )a v( )j ij ia vj ij i( )j ij i( )a v( )j ij i( )j ij ij ij i( )j ij i( )( )a v( )( )j ij i( )a v( )j ij i( )

1 1i j1 1i j1 1
j ij i

1 11 1i j1 1
j ij i

n n

i j1 1i j1 1i j1 1

n n
( )( )

n n
( )( )a v( )( )( )j ij i( )j ij i( )j ij i( )( )a v( )( )j ij i( )a v( )j ij i( )j ij i

1 11 1i j1 1
j ij i  = 0


1

n

j ij
j

a
1

j ij

n

j ij
j 1

j ijj ijaj ijaj ij  = 0 for all i = 1, ..., n


11 1

1

1

: ... :
n

n

n nn

a a

a a

11 1na a11a a11 1a a111 1n

1 : ... :: ... :: ... :n: ... :n: ... :: ... :

1n nn1n nna a1a a1na an

 = 0

 each i = 0 as columns are linearly independent
 x = 0  Ker T = {0}
 T is 1-1 and so onto
 T is invertible.

Problem 18: Let T be the linear operator on R2 defined by T(x1, x2) = (– x2, x1).
Let = { 1 = (1, 0), 2 = (0, 1)}

= { 1 = (1, 2), 2 = (1, – 1)}
be ordered basis for R2. Find a matrix P such that

[T] = P–1[T]  P.

Proof: TT = T(1, 0) = (0, 1) = 0 1 + 1 2

TT = T(0, 1) = (– 1, 0) = – 1 1 + 0 2

[T] = 
0 1
1 0
0 10 1
1 01 0

Define    S : R2  R2 s.t.,
S( i) = i i = 1, 2

Now 1 = (1, 2) = 1 1 + 2 2

2= (1, – 1) = 1 1 + (– 1) 2

 S( 1) = 1 1 + 2 2

S( 2) = 1 1 + (– 1) 2
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 [S]  = 
1 1
2 1
1 1
2 12 12 12 1

 P = 
1 1
2 1
1 1
2 12 12 12 1

 and P–1 = 

1 1
3 3
2 1
3 3

1 1
3 33 33 3
2 12 12 1
3 33 3

 P–1 [T]  P = 

1 1
0 1 1 13 3

2 1 1 0 2 1
3 3

1 1
3 3 0 1 1 10 1 1 10 1 1 10 1 1 13 33 3 0 1 1 1
2 1 1 0 2 12 1 1 0 2 12 1 1 0 2 12 1 1 0 2 12 1 1 0 2 12 1 1 0 2 12 1 1 0 2 12 1 1 0 2 12 1 1 0 2 12 1 1 0 2 12 1 1 0 2 12 1 1 0 2 1
3 33 3

= 

1 1
1 13 3

1 2 2 1
3 3

1 11 1
3 33 3 1 11 13 33 3 1 1
1 2 2 11 2 2 11 2 2 11 2 2 11 2 2 11 2 2 11 2 2 11 2 2 11 2 2 11 2 2 1
3 33 3

= 

1 2
3 3
5 1
3 3

1 21 2
3 33 33 33 3
5 15 15 1
3 33 3

= [T]

Problem 19: Let T be linear operator on R3, the matrix of which in the standard ordered basis
is

A = 
1 2 1
0 1 1
1 3 4

1 2 1
0 1 10 1 10 1 1
1 3 41 3 4

Find a basis for the range of T and a basis for the null space of T.

Solution: Det A= 1(4 – 3) – 2 (1) + 1(1)
= 1 – 2 + 1 = 0

A is not invertible and so T is not invertible.
Let { 1 = (1, 0, 0), 2 = (0, 1, 0), 3 = (0, 0, 1)}
be standard ordered basis of R3.
Let (x1, x2, x3)  Ker T
Then T(x1, x2, x3) = 0

 T(x1(1, 0, 0) + x2(0, 1, 0) + x3(0, 0, 1)) = 0
 T(x1 1 + x2 2 + x3 3) = 0
 x1T( 1) + x2T( 2) + x3T( 3) = 0
 x1(1, 0, – 1) + x2(2, 1, 3) + x3(1, 1, 4) = 0
 (x1 + 2x2 + x3, x2 + x3, – x1 + 3x2 + 4x3) = 0
 x1 + 2x2 + x3 = 0, x2 + x3 = 0, – x1 + 3x2 + 4x3 = 0
 x1 + x2 = 0, x2 + x3 = 0
 (x1, x2, x3) = (– x2, x2, – x3)

= x2(– 1, 1, – 1)



11. Linear Transformations 565

 every element in Ker T is multiple of (– 1, 1, – 1)
 Ker T is spanned by (– 1, 1, – 1)

Since (– 1, 1, – 1)  0, {(– 1, 1, – 1)} is a basis of Ker T.
 dim Ker T = 1  dim Range T = 2

Since TT 1 = (1, 0, – 1)
TT 2 = (2, 1, 3)

belong to Range T and aTaT 1 + bTbT 2 = 0
we find a(1, 0, – 1) + b(2, 1, 3) = 0

 b = 0, a = 0
  {TT 1, TT 2} is a linearly independent set in Range T. As dim Range T = 2,

{(1, 0 , – 1), (2, 1, 3)} is a basis of Range T.

Problem 20: Let T be a linear operator on F n and let A be the matrix of T in the standard
ordered basis for F n. Let W be the subspace of F n spanned by the column vectors of A. Find
a relation between W and T.

Solution: T : F n  F n

Let  = {e1 = (1, 0, 0, ... 0), ..., en = (0, 0, ..., 1)} be the standard ordered basis of F n

and let

A = 

11 12 1

21 22 2

1 2

: :

n

n

n n nn

a a a
a a a

a a a

11 12 1na a a11 12 1a a a11 12 111 12 1n

21 22 2na a a21 22 2a a a21 22 221 22 2a a a21 22 2a a a21 22 2

: :: :

1 2n n1 2n n1 2 nna a a1 2a a a1 2n na a an n1 2n n1 2a a a1 2n n1 2a a a






thus T(e1) = a11e1 + a21e2 + ... + an1en

T(e2) = a12e1 + a22e2 + ... + an2e2
... ... ...
T(en) = a1ne1 + a2ne2 + ... + annen

and also W is spanned by
{(a11, a21, ..., an1), (a12, a22, ..., an2), ..., (a1n, a2n, ..., ann)}

We claim T : F n  W is onto L.T.
For any x  F n, x = 1e1 + 2e2 + ... + nen

 T(x) = 1T(e1) + 2T(e2) + ... + nT(en)
 T(x)  W as T(e1), T(e2), ...., T(en) W
Again, for any w  W, w= 1T(e1) + 2T(e2) + ... + nT(en)

= T( 1e1 + 2e2 + ... + nen)
showing that T is onto.
 Range T = W  dim Range T = dim W
or that rank of T = dim W
which is the required relation between T and W.
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Exercises
1. Let V be the space of all polynomial functions from R into R of the form

f(x) = co + c1x + c2x
2 + c2x

3

Let  = {1, x, x2, x3} be an ordered basis of V. Let D be the differential operator on
V. Show

[D]  = 

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

0 1 0 0
0 0 2 00 0 2 00 0 2 0
0 0 0 30 0 0 3
0 0 0 00 0 0 0

2. Let T be the operator on C2 defined by T(x1, x2) = (x1, 0). Let  be the standard ordered
basis of C2 and 

 be the operator on 
 = {

 defined by 
1 = (1, i), 

2

2 = (– i, 2)} be an ordered basis
for C2.
(i) what is [T] , ?
(ii) what is [T] ? Find P such that [T]  = P–1[T] P.

3. Let T be the linear transformation from R3 into R2 defined by
T(x1, x2, x3) = (x1 + x2, 2x3 – x1)

(i) If ,  are standard ordered basis for R3 and R2 respectively, find [T] , .
(ii) If  = { 1 = (1, 0, – 1), 2 = (1, 1, 1), 3 = (1, 0, 0)}

 = { 1 = (0, 1), 2 = (1, 0)}
are ordered basis for R3 and R2 respectively, find [T] , 

4. Let V be a two dimensional vector spacer over the field F and  be an ordered basis

for V. If T is a linear operator on V and [T]  = 
a b
c d
a b
c dc d

, prove that

T2 – (a + b)T + (ad – bc)I = 0.
5. Let T be the operator on R2 defined by T(x1, x2) = (x1, 0). Let  be the standard ordered

basis for R2 and 
 be the operator on 

 = { 1 = (1, 1), 
 defined by 

2 = (2, 1)} be an ordered basis for R2. Find P
s.t.,

[T]  = P–1[T] P.
6. Let A be n × n matrix over F. Show that A is invertible if and only if rows of A are

linearly independent over F.

7. Let A = 
a b
c d
a b
c dc d

 be a 2 × 2 matrix over F. Show that A is invertible if and only

{(a, b), (c, d)} is a basis of F2.
8. Let T be the linear operator on R3, the matrix of which in the standard ordered

basis is A = 
1 0 1
0 1 1
0 1 1

1 0 1
0 1 10 1 10 1 1
0 1 1

Find a basis of Range T and Ker T.
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9. Show that T : R3  R2 s.t., T(x, y, z) = (y, x) is a L.T. Find the matrix representation
of T for the standard ordered basis of R3 and {(0, 1), (2, 3)} of R2.

10. Let dim V = 2. Let T be a linear operator on V. Suppose matrix of T w.r.t. all bases
of V is same. Show that T = 

 be a linear operator on 
I for some 

 be a linear operator on . Suppose matrix of 
F.

[Hint: Let  = {v1, v2} be an ordered basis of V.
Then  = {v2, v1},  = {v1 + v2, v2} are also bases of V
By hypothesis, [T]  = [T]  = [T] ]

Dual Spaces

Earlier we saw that Hom (V, W), the set of all linear transformations from vector space V over
F into vector space W over F, is also a vector space over F. Further, if
dim V = m, dim W = n, then dim How (V, W) = mn. In particular, if W = F, then

Hom (V, F) is called dual space of V over F. It is denoted by V


 and read as V dual. In this
section we study these dual spaces.

Our first job will be to construct a basis of V


 , from a given basis of V.

Theorem 14: Let {v1, ..., vn} be a basis of V.
Define v



i : V  F s.t.,
v


i ( 1v1 + ... + nvn) = i i = 1, 2, ..., n
Then v



i  is a linear transformation for all i  = 1, ..., n and {v


1, ..., v


n} is a basis of V


.
Hence dim V = dim  V



 .

Proof: Let v, v   V
Suppose v = 1v1 + ... + nvn

v = 1v1 + ... + nvn, i, i  F
If v = v , then j = j for all j = 1, ..., n

v


i(v) = i = v


i (v )
v


i is well defined for all i = 1, ..., n

Also v


i(v + v ) = 1 1 1ˆ ( ... )i n n nv v v1 1 1 ... )n n nv v v1 1 1v v v1 1 1 ...v v v... n n nv v vn n n

= i + i

= v


i(v) + v


i(v )
and v



i( v) = v


i( 1v1 + ... + nvn)
= i = v



i(v)
v


i  is a L.T. for all i = 1, ..., n
By def., v



i(vj) = (0v1 + ... + 1vj + ... + 0vn) = 0 if j  i
= 1 if j = i

v


i(vj) = ij for all i, j = 1, ..., n
Let 1v



1+ ... + n v


n = 0 i  F
Then ( 1v



1+  ... + nv


n) (vj) = 0(vj) = 0
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 jv


j(vj) = 0
 j = 0 for all j = 1, ..., n

 {v


1, ..., v


n} is L.I. over F.
Let f  V



. Let f (vi) = i i = 1, ..., n
Then ( 1v



1 + ... + nv


n) (vi)
= iv



i(vi)
= i i = 1, ..., n

f and 1v


1 + ... + nv


n agree on all bases elements of V.
So,   f = 1v



1 + ... + nv


n

 {v


1, ..., v


n} spans V


.
Hence, {v



1, . .., v


n} is a basis of V


, called dual basis of {v1, . .., vn} s.t. ,
v


i (vj) = 
Hence, {

ij.

Cor.: Let V be a finite dimensional vector space over F. Let 0  v  V. Then 
f V



 s.t., f (v)  0.

Proof: Since v  0, {v} is L.I. set. So, it can be extended to form a basis of V.
Let {v = v1, v2, ..., vn} be a basis of V.
Let {v



1, ..., v


n} be corresponding dual basis. Then v


i(vj) = ij

v


1(v1) = 1
Let f = v



1 V


Then  f (v) = f (v1) = v


1(v1) = 1  0.

Theorem 15: Let V be a finite dimensional vector space over F.

Define  : V   V


V  s.t.,
(v) = Tv for all v  V

where Tv : V


 F s.t.,
Tv(f ) = f (v) for all f  V



Then  is an isomorphism from V onto V

. (Here V


Here V = dual of V



 , called double dual of V).

Proof: Let f, g  V


Then Tv(f + g) = (f + g) (v)
= f (v) + g(v)
= Tv( f ) + Tv(g)

Let   F
Then Tv( f ) = ( f ) (v)

= f(v)
= Tv( f )

Tv  V


 is well defined as v = v’  Tv( f ) = f (v)
= f (v ) = Tv ( f ) for all f  V



  Tv = Tv
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 is a L.T. as
(v + v ) = Tv + v  = Tv + Tv  = (v) + (v )

as Tv + v (f ) = f (v + v )
= f (v) + f (v’)
= Tv( f ) + Tvv ( f )
= (Tv + Tv ) ( f ) for all f  V



Tv + v = Tv + Tv

Also ( v) = TT v = Tv = (v)
as TT v( f ) = f ( v)

= f (v)
= Tv( f ) for all f  V



TT v = Tv

Let 0  v  Ker   (v) = 0  Tv = 0
By Cor. to Theorem 13  f  V



  s.t., f (v)  0
Tv( f )  0

a contradiction as Tv = 0  Tv(f) = 0
Ker = {0}   is 1-1

V  (V)  V


 dim (V) = dim V = dim V


  = dim V


V  (by Theorem 14)

(V) = V


) = dim 

 as (V) is a subspace of V


 is onto from V to V


 .
Thus  is an isomorphism.

Cor. 1: Let V be a finite dimensional vector space over F. If L is a linear functional on V


, then
 a unique v  V s.t., L( f ) = f (v) for all f V



.
Proof: L is a linear functional on V



 L  V


  unique v  V s.t.,
 (v) = L as  is 1-1 onto

Tv = L
 L( f ) = Tv( f ) = f (v) for all f  V



 .

Cor. 2: Let V be a finite dimensional vector space over the field F. Then each basis for  V


  is
the dual of some basis for V.

Proof: Let {f1, ..., fn} be a basis for V


 .
By theorem 13,  a basis {L1, ..., Ln} for V



 s.t., Li(fj) = ij. As in Cor. 1  unique vi
V for each i

s.t.,  Li= Tvi
 = (vi)

Since {L1, L2, ..., Ln} is a basis for V


, { –1 L1, ..., –1 Ln} = {v1, ..., vn} is basis for V
as 

Since {
 is an isomorphism.
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Also ij = Li(fj) = Tvi
(fj) = fj(vi)

{f1, ..., fn} is dual of basis {v1, ..., vn} for V.

Problem 21: Let V be the vector space of all polynomial functions from R to R which have
degree less than or equal to 2, Let t1, t2, t3 be three distinct real numbers and let Li : V  F
be s.t., Li(p(x)) = p(ti), i = 1, 2, 3. Show that {L1, L2, L3} is a basis of V



. Determine a basis
for V s.t., {L1, L2, L3} is its dual.
Solution: Li (p(x) + q(x))

= Li(r(x)),  r(x) = p(x) + q(x)
= r(ti) = p(ti) + q(ti)
= Li(p(x)) + Li(q(x))

Also Li( p(x)),   F
= Li(q(x)), q(x) = p(x)
= q(ti)
= p(ti) = Li(p(x)) for all i = 1, 2, 3

Li  V


 for all i = 1, 2, 3
Let 1L1 + 2L2 + 3L3 = 0
Apply it on polynomials 1, x, x2 to get

1 + 2 + 3 = 0

1t1 + 2t2+ 3t3 = 0
a1t

2
1
 + 2t

2
2
 + 3t

2
3
 = 0

1

1 2 3 2
2 2 2 31 2 3

1 1 1
t t t

t t t

1 1 1 11 1 1 1

1 2 3 2t t t1 2 3 2t t t1 2 3 2t t t1 2 3 21 2 3 21 2 3 21 2 3 21 2 3 21 2 3 2
2 2 2
1 2 3 21 2 3 21 2 3 2

331 2 3t t t1 2 3t t t1 2 3
2 2 2t t t2 2 2t t t2 2 2

 = 
0
0
0

0
000
0

1

2

3

A
11

22

33

= 0, A = 1 2 3
2 2 2
1 2 3

1 1 1
t t t

t t t

1 1 11 1 1

1 2 3t t t1 2 3t t t1 2 3t t t
2 2 2
1 2 3

1 2 3t t t1 2 3t t t1 2 3
2 2 2t t t2 2 2t t t2 2 2

det A = (t1 – t2) (t2 – t3) (t3 – t1)
 0 as t1, t2, t3 are distinct

Thus A–1 exists

 
1

2

3

11

22

33

 = 0  1 = 2 = 3 = 0

Hence {L1, L2, L3} is a L.I. set.
Since dim V = 3, {L1, L2, L3} is a basis of V



.
Let {p1(x), p2(x), p3(x)} be a basis of V s.t., {L1, L2, L3} is its dual basis.
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Then L1(p1) = 1, L2(p1) = 0, L3(p1) = 0
L2(p1) = 0  p1(t2) = 0

 t2 is a root of p1(x)
L3(p1) = 0  p1(t3) = 0

 t3 is a root of p1(x)
Since deg p1(x)  2,

p1(x) = (x – t2) (x – t3),  = constant
L1 (p1) = 1 p1(t1) = 1

 (t1 – t2) (t1 – t3) = 1

  = 
1 2 1 3

1
( ) ( )t t t t1 2 1 3( ) ( )1 2 1 3( ) ( )1 2 1 3( ) ( )t t t t( ) ( )1 2 1 3( ) ( )1 2 1 3t t t t1 2 1 3( ) ( )1 2 1 3

p1(x) = 2 3

1 2 1 3

( ) ( )
( ) ( )

x t x t
t t t t

2 3( ) ( )2 3( ) ( )2 3( ) ( )x t x t( ) ( )2 3( ) ( )2 3x t x t2 3( ) ( )2 3

1 2 1 3( ) ( )1 2 1 3( ) ( )1 2 1 3( ) ( )t t t t( ) ( )1 2 1 3( ) ( )1 2 1 3t t t t1 2 1 3( ) ( )1 2 1 3

Similarly, p2(x) = 1 3

2 1 2 3

( ) ( )
( ) ( )

x t x t
t t t t

1 3( ) ( )1 3( ) ( )1 3( ) ( )x t x t( ) ( )1 3( ) ( )1 3x t x t1 3( ) ( )1 3

2 1 2 3( ) ( )2 1 2 3( ) ( )2 1 2 3( ) ( )t t t t( ) ( )2 1 2 3( ) ( )2 1 2 3t t t t2 1 2 3( ) ( )2 1 2 3
, p3(x) = 1 2

3 1 3 2

( ) ( )
( ) ( )

x t x t
t t t t

1 2( ) ( )1 2( ) ( )1 2( ) ( )x t x t( ) ( )1 2( ) ( )1 2x t x t1 2( ) ( )1 2

3 1 3 2( ) ( )3 1 3 2( ) ( )3 1 3 2( ) ( )t t t t( ) ( )3 1 3 2( ) ( )3 1 3 2t t t t3 1 3 2( ) ( )3 1 3 2
.

Problem 22: Let V be the vector space of all polynomial functions p from R into R which have
degree 2 or less. Define three linear functionals on V by

f1(p) = 
1

20
( ) , ( )p x dx f p

1

0
p x dx f p( ) , ( )p x dx f p( ) , ( )  = 

1

0
( ) ,p x dx

1

0
p x dx( ) ,p x dx( ) ,

f3(p) = 
1

0
( )p x dx

1

0
p x dx( )p x dx( )

1
p x dx

Show that { f1, f2, f3} is basis of V


. Determine a basis for V s.t., { f1, f2, f3} is its dual basis.

Solution: It can be easily seen that f1, f2, f3  V


.
Let 1f1 + 2 f2 + 3 f3 = 0, i  R
Apply it on 1, x, x2 to get

1 + 2 2 – 3 = 0

31
2

4
2 2 2
1

2
4

2 2 222 2 22
3  = 0

31
2

8
3 3 3
1

2
8

3 3 323 3 32
3  = 0

Let A = 
1 2 1
1 4 1
1 8 1

1 2 11 2 1
1 4 11 4 11 4 1
1 8 11 8 1

Then
1

2

3

A
11

22

33

 = 0, det A  0
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1
1

2

3

A A1A A1A A1
11

22

33

 = 0  1 = 2 = 3 = 0

 { f1, f2, f3} is a L.I. set.
Since dim V = 3, { f1, f2, f3} is a basis of V



.
Let {p1(x), p2(x), p3(x)}, be a basis of V s.t., { f1, f2, f3} is its dual basis.

f1(p1) = 1, f2(p1) = 0, f3(p1) = 0
Let p1(x) = co + c1x + c2x

2

f2(p1) = 0  

2
2 3

1 2

0
2 3o
x xc x c c1 22 31 22 31 2
x xc x c c1 2c x c c1 21 2c x c c1 2c x c c = 0

 2 31 2
2 3o
c cc x x x2 31 22 31 22 3

2 3
c c2 3c c2 31 2c c1 22 31 22 3c c2 31 22 3c x x xc x x xc x x x1 2c x x x1 2  = 0 when x = 2

f3(p1) = 0 

1
2 3

1 2

0
2 3o
x xc x c c

1

1 22 31 22 31 2
x xc x c cc x c c1 2c x c c1 21 2c x c c1 2 = 0

 2 31 2
2 3o
c cc x x x2 31 22 31 22 3

2 3
c c2 3c c2 31 2c c1 22 31 22 3c c2 31 22 3c x x xc x x xc x x x2 3c x x x2 31 2c x x x1 22 31 22 3c x x x2 31 22 3  = 0 when x = – 1

2 31 2
2 3o
c cc x x x2 31 22 31 22 3

2 3
c c2 3c c2 31 2c c1 22 31 22 3c c2 31 22 3c x x xc x x xc x x x1 2c x x x1 2  = x(x – 2) (x + 1)

f1(p1) = 1 2 31 2
2 3o
c cc x x x2 31 22 31 22 3

2 3
c c2 3c c2 31 2c c1 22 31 22 3c c2 31 22 3c x x xc x x xc x x x1 2c x x x1 2  = 1 when x = 1

 . 1 (– 1) (2) = 1   = 1
2
1
2

2 31 2
2 3o
c cc x x x2 31 22 31 22 3

2 3
c c2 3c c2 31 2c c1 22 31 22 3c c2 31 22 3c x x xc x x xc x x x1 2c x x x1 2 = 1 ( 2) ( 1)

2
x x x1 ( 2) ( 1)

2
x x x( 2) ( 1)x x x( 2) ( 1)

= 3 21 1
2 2

x x x3 21 13 21 13 2
2 2

x x xx x x3 2x x x3 2

2
3
c

 = 11 ,
2 2

c1 ,
2 2

,
2 2

,  = 1
2

,  co = 1

co = 1, c1 = 1, c2 = 3
2
3
2

p1(x) = 231
2

x x3
2

x xx x

Similarly, we can find p2(x), p3(x).

Definition: Let W be a sub-set of V.
Define A(W) = { f  V



  | f (w) = 0 for all w  W}
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Then A(W) is a sub-space of V


  as ,   F,
f, g  A(W)  f (w) = 0 = g(w) for all w  W

 f (w) + g(w) = 0 for all w  W
 ( f + g) (w) = 0 for all w  W
 f + g  A(W)

A(W) is called annihilator of W.

Problem 23: Let U, W be sub-sets of V. If U  W, show that A(U)  A(W).

Solution: Let f  A(W) then,  f (w) = 0 for all w  W
 f (u) = 0 for all u  U as U  W
 f  A(U).

Theorem 16: Let V be a finite dimensional vector space and W, a subspace of V. Then
dim A(W) = dim V – dim W.

Proof: Let {w1, ..., wm} be a basis of W.
It can be extended to form a basis of V.
Let {w1, ..., wm, vm + 1, ..., vn} be a basis of V.
Let {f1, ..., fm, fm + 1, ..., fn} be corresponding dual basis.
Then fi(wj) = 0 i = m + 1, ..., n

 j = 1, ..., m
fi  A(W) for all i = m + 1, ..., n

We show {fm + 1, ..., fn} is a basis of A(W).
Let m + 1 fm + 1+... + n fn = 0

( m + 1 fm + 1 + ... + n fn) (vk) = 0 for all k = m + 1, .., n

k fk (vk) = 0

k = 0 for all k = m + 1, ..., n
So, {fm + 1, ..., fn} is a L.I. set.
Let f  A(W) then f (w) = 0 for all w W, f  V



f  V


 f = 1 f1 + ... + m fm + ... + n fn

 0 = f (wj) = j fj(wj) = j for all j = 1, ..., m
 f = m + 1 fm + 1 ... + n fn

 { fm + 1, ..., fn} spans A(W)
{ fm + 1, ..., fn} is a basis of A(W).

Hence dim A(W) = n – m = dim V – dim W.

Cor. 1: 
^

ˆ
( )
V W

A W
Ŵ

Proof: Since dim
^

( )
V

A W
= dim V


 – dim A(W)
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= dim V – dim V + dim W

= dim W = dim Ŵ

Hence  
ˆ

( )
V

A W
 Ŵ .

Cor. 2: If V is a finite dimensional vector space and W, a subspace of V, then
A(A(W))  W.

Proof: Define  : W  A(A(W)) s.t.,
(w) = Tw

where Tw : W


 F s.t.,
Tw(f )  f (w)

Tw  A(A(W)) as Tw(f ) = f (w) = 0 for all f  A (W)
Then as in Theorem 14,  is well defined 1-1 linear transformation.

W  (W)  A(A(W))
Since dim A(A(W)) = dim V



  – dim A(W)
= dim V – dim A(W)
= dim W by Theorem 16

and dim (W) = dim W
A(A(W)) = (W)

 is onto from W to A(A(W))
Hence W  A (A(W)).
For sake of convenience, we shall write A(A(W)) = W.
Consider for example, V = R2, W = {(x, 0) | x  R}
Then A(W) is a subspace of V



  spanned by f
where f (x1, x2) = x2

In fact, { f } is a basis of A(W) as dim W = 1.
Also, A(A(W)) is spanned by Tw where w = (1, 0)
Since dim A(A(W)) = 1, {Tw} is a basis of A(A(W))
Then  : W  A(A(W)) s.t.,

(w) = Tw

is an isomorphism as basis of W is mapped to basis of A(A(W)).

Problem 24: Let W1, W2 be subspaces of finite dimensional vector space V. Determine
A(W1 + W2).
Solution: f  A (W1 + W2)

 f (x) = 0  for all x  W1 + W2

 f (w1) = 0 = f (w2)  for all w1  W1, w2  W2

 f  A(W1)  A(W2)
A(W1 + W2) = A(W1)  A(W2).
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Problem 25: Let f1, f2, f3 be three linear functionals on R4 defined as follows:
f1(x1, x2, x3, x4) = x1 + 2x2 + 2x3 + x4

f2(x1, x2, x3, x4) = 2x2 + x4

f3(x1, x2, x3, x4) = – 2x1 – 4x3 + 3x4

Determine the subspace W of R4 s.t.,
fi(w) = 0, w  W i = 1, 2, 3.

Solution: Let (x1, x2, x3, x4)  W
Then fi(x1, x2, x3, x4) = 0 i = 1, 2, 3

x1 + 2x2 + 2x3 + x4 = 0
2x2 = x4 = 0
– 2x1 – 4x3 + 3x4 = 0

1

2

3

4

1 2 2 1
0 2 0 1
2 0 4 3

x
x
x
x

1x1x11 2 2 1 1x1x11

0 2 0 1 2x2xx
0 2 0 10 2 0 1 2

x3x3x
2 0 4 32 0 4 3 333x

4x4xx

 = 0

By elementary row transformations, we get

1

2

3

4

1 0 2 0
0 1 0 0
0 0 0 1

x
x
x
x

1x1 0 2 0 1x1

0 1 0 0 2x2xx
0 1 0 00 1 0 0 2

x3x3x
0 0 0 1 333x

4x4xx

 = 0

x1 + 2x3 = 0, x2 = 0, x4 = 0
(x1, x2, x3, x4) = (– 2x3, 0, x3, 0) = x3(– 2, 0, 1, 0)

W is spanned by (– 2, 0, 1, 0).

Problem 26: Let W be the subspace of R5 spanned by the vectors

1 = (2, – 2, 3, 4, – 1), 3 = (0, 0, – 1, – 2, 3)

2 = (– 1, 1, 2, 5, 2), 4 = (1, – 1, 2, 3, 0)
Describe A(W).

Solution: Let f A(W)
Then f (w) = 0 for all w  W

 f ( i) = 0 for all i = 1, 2, 3, 4
Let f (x1, x2, x3, x4, x5) = c1x1 + c2x2 + c3x3 + c4x4 + c5x5

(Note v1 = (1, 0, 0, 0, 0), v2 = (0, 1, 0, 0, 0), v3 = (0, 0, 1, 0, 0), v4 = (0, 0, 0, 1, 0),
v5 = (0, 0, 0, 0, 1) form a basis of R5).

Let {v1, v2, v3, v4, v5} be its dual basis.
Then f = c1v1 + c2v



2 + c3v


3 + c4v


4 + c5v5

 f (x1, x2, x3, x4, x5) = 
5

1
ˆi ic v

5

1
ˆi ic vi ic vi i (x1, x2, x3, x4, x5)
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= 
5

1
ˆi ic v

5

1
ˆi ic vi ic vi i (x1v1 + x2v2 + x3v3 + x4v4 + x5v5)

= c1x1 + c2x2 + c3x3 + c4x4 + c5x5

as vi (vj) = ij

f ( i) = 0 for all i = 1, 2, 3, 4



1

2

3

4

5

2 2 3 4 1
1 1 2 5 2
0 0 1 2 3
1 1 2 3 0

c
c
c
c
c

1c2 2 3 4 1 1c2 2 3 4 1 11

1 1 2 5 2 222c2cc
1 1 2 5 21 1 2 5 21 1 2 5 2 21 1 2 5 21 1 2 5 2

3c
0 0 1 2 3 3c
0 0 1 2 3 33333c
0 0 1 2 30 0 1 2 30 0 1 2 3

44cc
1 1 2 3 01 1 2 3 01 1 2 3 0 4c
1 1 2 3 01 1 2 3 0

55c5c

 = 0

By elementary row transformations, we get

1

2

3

4

5

1 1 0 1 0
0 0 1 2 0
0 0 0 0 1
0 0 0 0 0

c
c
c
c
c

1c1 1 0 1 01 1 0 1 0 1c1 1 0 1 0 11

0 0 1 2 0 222c2cc
0 0 1 2 00 0 1 2 0 2

3c
0 0 0 0 1 3c33333c
0 0 0 0 1

44cc
0 0 0 0 00 0 0 0 0 4c

55c5c

 = 0

 c1 – c2 – c4 = 0, c3 + 2c4 = 0, c5 = 0
 2c1 – 2c2 + c3 = 0, c5 = 0, c3 = – 2c4

Let c2 = a, c4 = b
Then c3 = – 2b

2c1 – 2a – 2b = 0  c1 = a + b
 f (x1, x2, x3, x4, x5) = (a + b) x1 + ax2 – 2bx3 + bx4

Take a = 1, b = 0
Then f1(x1, x2, x3, x4, x5) = x1 + x2

Take a = 0, b = 1
Then f2(x1, x2, x3, x4, x5) = x1 – 2x3 + x4

f = a f1 + b f2

 { f1, f2} spans A(W)
Let f1 + f2 = 0. Apply it on v1, v2 respectively. We get  +  = 0,  = 0  = 0.

 { f1, f2} is L.I. So, { f1, f2} is a basis of A(W)
Hence dim A(W) = 2.

Problem 27: Let V be a finite dimensional vector space. Suppose V = W1  W2, where W1,
W2 are subspaces of V. Show that V



  = A(W1) 
Let V be a finite dimensional vector space. Suppose V = W

 A(W2).

Solution: dim V = dim (W1  W2)
= dim W1 + dim W2
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Also dim (A(W1)  A(W2))
= dim A(W1) + dim A(W2)
= dim V – dim W1 + dim V – dim W2

= 2 dim V – (dim W1 + dim W2)
= 2 dim V – dim V = dim V = dim V



Since A(W1)  A(W2) is a subspace of V


and dim V


  = dim (A(W1)  A(W2)),
V


  = A(W1)  A(W2).

Problem 28: If f and g are in V


  s.t., f (v) = 0 implies g(v) = 0, prove that g = cf for some
c  F.

Solution: If f = 0, then g = 0 = cf where c = 0  F.
Let f  0 then  v  0 in V s.t., f (v)  0

Let c = ( )
( )

g v
f v

h = g – cf and x  V

and  = ( )
( )

f x
f v

.

Then f (x – v) = f (x) – f (v) = 0
 x – v  Ker f
 x – v = y  Ker f
 x = y + v

h(x) = g(x) – cf (x)
= g(y) + g(v) – cf (y) – c f (v)
= g(v) – c f (v) as y  Ker f  y  Ker g
= g(v) – g(v) = 0 for all x V

h = 0  g = cf
Hence the result follows.

Definition: Consider the system of m equations
a11x1 + ... + a1nxn = 0
... ... ...
am1x1 + ... + amnxn = 0, where aij  F

in n unknowns.
Let U be the subspace of F(n) generated by m vectors
u1 = (a11, ..., a1n), ..., um = (am1, ..., amn)
If dim U = r, we say the system of equations has rank r.
We determine the number of linearly independent solutions to the system of equations in F(n).

Consider
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Theorem 17: If the system of homogeneous linear equations
a11x1 + ... + a1nxn = 0
...  .. ...
am1x1 + ... + amnxn = 0,

where aij  F is of rank r, then there are n – r linearly independent solutions in F(n).

Proof: Let S be the set of solutions of the given system of equations
S = {( 1, 2, ..., n)  F n  | ij jaij jij jaij j = 0, i = 1, 2, .., m}

Then S is a subspace of F n = V
Let {v1, v2, ..., vn} be the standard basis of V
and { f1, f2, ..., fn} be its dual basis
Let U be the subspace of V as described above
Define  : S  A(U), s.t.,

(( 1, 2, ..., n)) = 1 f1 + 2 f2 + ... + n fn

Let         f = 1 f1 + 2 f2 + ... + n fn

Then f (u1) = ( 1 f1 + ... + n fn) (a11v1 + ... + a1nvn)
= 1a11 + ... na1n

= 0  as ( 1, ..., n)  S
Similarly f (u2) = ... = f (um) = 0
So  f  A(U)
It can be easily shown that  is a linear transformation.

If ( 1, 2, ..., n)  Ker  then 
1

n

i if
1

n

i ifi ifi i  = 0

 i = 0  i
 Ker  = {0} or that  is 1–1.

Let now f  A(U)  V


and suppose f = 1 f1 + 2 f2 + ... + n fn

Then 0 = f (u1) = 1a11 + ... + na1n
... ... ...

0 = f (um) = 1am1 + ... + namn

 ( 1, 2, ..., n)  S
and (( 1, 2, ..., n)) = 1 f1 + ... + n fn = f
or that  is onto.
Hence S  A(U)
 dim S = dim A(U) = dim V – dim U

= n – r
Hence there are n – r linearly independent solutions of the given system of equations.
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Cor.: If n > m, that is, if the number of unknowns exceed the number of equations, then the
system of equations has a non zero solution.

Proof: Since U is generated by m vectors, r = dim U  m < n  n – r > 0  system of
equations has a linearly independent solution, which is non zero (as zero vector is not linearly
independent).

Problem 28: Let m and n be positive integers. Let f1, ..., fm be linear functionals on F(n). For
 in F(n) define T(

Let m and n be positive integers. Let f
) = (f1 (

Let m and n be positive integers. Let f
), ..., fm(

Let m and n be positive integers. Let f
)).

Show that T is a linear transformation from F(n) into F(m). Then show that every linear
transformation from F(n) into F(m) is of the above form, for some f1, ..., fm.

Solution: Since f1, ..., fm are linear transformations, so is T. Let {e1, ..., en} be the standard
basis of F(n).

Then T(ei)  F(m) i = 1, ..., n.
So, T(ei) = ( i1, ..., im) i = 1, ..., n.

T( ) = T( 1e1 + ... + nen),  = 1e1 + ... + nen

= 1T(e1) + ... + nT (en)
= 1( 11, ..., 1m) + ... + n( n1, ..., nm)
= ( 1 11 + ... + n n1, ..., 1 1m + ... + n nm)

For each i(1  i  m),  a linear transformation
fi : F(n) F s.t.,

fi(e1) = 1i, ..., fi(en) = ni

f1( ) = f1( 1e1 + ... + nen)
= 1 11 + ... + n n1

.....................
fm( ) = fm ( 1e1 + ... + nen)

= 1 1m + ... + n nm

So, T( ) = ( f1( ), ..., fm( )).

Problem 29: Let V be the vector space of all 2 × 2 matrices over the field of real numbers,
and let

B = 
2 2
1 1
2 22 2
1 11 11 11 1

Let W be the subspace of V consisting of all A such that AB = 0. Let f be a linear functional
on V which is in the annihilator of W. Suppose that f (I) = 0 and f (C) = 3, where I is the 2
× 2 identity matrix and

C = 
0 0
0 1
0 0
0 10 1

Find f (B).

Solution: Now W = {A | AB = 0}
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Let A = 11 12

21 22

a a
a a

11 12a a11 12a a11 1211 12

21 22a a21 22a a21 2221 22a a21 22a a21 22
 V

Then A = 11 12 21 22
1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1

a a a a
1 0 0 1 0 0 0 01 0 0 1 0 0 0 0

22a a a aa a a a22a a a a12a a a a12 21a a a a21a a a a
0 0 0 0 1 0 0 1220 0 0 0 1 0 0 1220 0 0 0 1 0 0 122a a a a12 21 220 0 0 0 1 0 0 1120 0 0 0 1 0 0 112 210 0 0 0 1 0 0 121 220 0 0 0 1 0 0 122a a a a12a a a a12 21a a a a21

f (A) = 11 12 21 22
1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1

a f a f a f a f
1 0 0 1 0 0 0 01 0 0 1 0 0 0 0

a f a f a f a fa f a f a f a fa f a f a f a fa f a f a f a fa f a f a f a f12a f a f a f a f12 21a f a f a f a f21 22a f a f a f a f22a f a f a f a f
0 0 0 0 1 0 0 10 0 0 0 1 0 0 1

a f a f a f a f
0 0 0 0 1 0 0 1

a f a f a f a f
0 0 0 0 1 0 0 10 0 0 0 1 0 0 1120 0 0 0 1 0 0 112 210 0 0 0 1 0 0 121 220 0 0 0 1 0 0 122a f a f a f a f12a f a f a f a f12 21a f a f a f a f21 22a f a f a f a f220 0 0 0 1 0 0 1

a f a f a f a f
0 0 0 0 1 0 0 1120 0 0 0 1 0 0 112a f a f a f a f120 0 0 0 1 0 0 112 210 0 0 0 1 0 0 121a f a f a f a f210 0 0 0 1 0 0 121 220 0 0 0 1 0 0 122a f a f a f a f220 0 0 0 1 0 0 122

= a11  + a12  + a21  + a22  (say).
0 = f (I) =  + 
3 = f (C) = 

So, = – 3,  = 3

Let D = 
1 2
0 0
1 2
0 00 0

. Then DB = 0

So, D  W
 f (D) = 0 as f  A(W).

0 =  + 2   = 3
2

Also, let E = 
0 0
1 2
0 0
1 21 2

.

Then EB = 0.
So, E  W.

 f (E) = 0 as f  A(W)
 + 2 = 0   = – 6

So, f (B) = 2 × (– 3) + (– 2) 3
2
33
22

 + (– 1) (– 6) + (3) (1)

= – 6 – 3 + 6 + 3 = 0.

Problem 30: Let F be a subfield of complex numbers. We define n linear functionals on F(n)

(n  2) by

fk (x1, ..., xn) = 
1
( ) ,

n

j
j

k j x
1

k j x( ) ,k j x( ) ,( ) ,
n

j
k j x( ) ,k j x( ) ,

1
k j x( ) ,k j x( ) , 1  k  m.

What is the dimension of the subspace annihilated by f1, ..., fn?

Solution: Now f1(x1, ..., xn) = ox1 – x2 – 2x3 ... – (n – 1) xn

f2(x1, ..., xn) = x1 + ox2 – x3 ... – (n – 2) xn

f3(x1, ..., xn) = 2x1 + x2 + ox3 ... – (n – 3) xn
.....................................................................
fn(x1, ..., xn) = (n – 1) x1 + (n – 2) x2 + (n – 3) x3 + ... + 1 xn – 1 + oxn
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Let W be the subspace of F(n) annihilated by f1, ..., fn.
Then (x1, ..., xn) W

 fk(x1, ..., xn) = 0   k = 1, 2, ..., n.

1

2

3

0 1 2 ... ... ( 1)
1 0 1 ... ... ( 2)
2 1 0 ... ... ( 3)
... ... ... ... ... ...
1 2 3 ... ... 0 n

xn
xn
xn

xn n n

10 1 2 ... ... ( 1)0 1 2 ... ... ( 1)0 1 2 ... ... ( 1)n0 1 2 ... ... ( 1) 1x1x111

1 0 1 ... ... ( 2)
0 1 2 ... ... ( 1)0 1 2 ... ... ( 1) 1

1 0 1 ... ... ( 2) 221 0 1 ... ... ( 2)1 0 1 ... ... ( 2)1 0 1 ... ... ( 2)1 0 1 ... ... ( 2)n1 0 1 ... ... ( 2)1 0 1 ... ... ( 2)1 0 1 ... ... ( 2)n1 0 1 ... ... ( 2) 2x2x2x

32 1 0 ... ... ( 3) 3x3x32 1 0 ... ... ( 3)2 1 0 ... ... ( 3)n2 1 0 ... ... ( 3) 333x3x32 1 0 ... ... ( 3)2 1 0 ... ... ( 3)2 1 0 ... ... ( 3)n2 1 0 ... ... ( 3) 333x3x3

... ... ... ... ... ...
1 2 3 ... ... 0n n n1 2 3 ... ... 0n n n1 2 3 ... ... 0n n n1 2 3 ... ... 0 nnnnnx


 = 0

i.e., AX = 0, where A is the matrix on the left and X = 
1

n

x

x

1x1x11

nnx
 .

It can be easily seen that Rank A = 2.
 number of linear independent solutions in W is n – 2.
 dim W = n – 2.

Problem 31: Let V be a finite dimensional vector space and W1 and W2 be subspaces of V
such that A(W1) = A(W2). Show that W1 = W2.
Solution: Let W1  W2. Suppose W1 W2. Then there exists x  W1 such that x  W2.

Let {x1, x2,. . .xr}= S be a basis of W2.
Then  L(S) = W2.
Now x L(S) and S is a linearly independent set in V, S  {x} is a linearly independent set.
It can be extended to a basis of V.
Let {x1, x2,. . .xr, x = xr+1,. . .,xn} be a basis of V.
Let {f1, f2,. . ., fr, fr+1,. . . fn} be its dual basis
Then fr+1(x1) = fr+1(x2) = . . . = fr+1(xr) = 0
So, fr+1  A(W2)
Since A(W2) = A(W1),  fr+1  A(W1)
Now x = xr+1  W1 and fr+1(x) = fr+1(xr +1) = 1   0
contradicting  fr+1  A(W1)
So, W1 = W2.

Transpose of a Linear Transformation

Let V, W be vector spaces over F.
Let T be a linear transformation from V into W.

Define T t : W


  V


 s.t.,
T t(g) = gT

Then T t is a linear transformation called the transpose of T.
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It can be easily shown that
(i) (T1 + T2)

t = T1
t + T2

t, where T1, T2 are linear transformations from V into W.
(ii) (T1T2)

t = T2
t
 T1

t, where T1 : W  V and T2 : V  W are linear transformations
(iii) ( T) t = T t,  F, T : V  W is a linear trasnsformation
(iv) I t = I, I : V  V is the identity map.

Theorem 18: Let T : V  W be a linear transformation. Then
(a) The null space of T t = the annihilator of range of T.
(b) If V, W are finite dimensional, then

(i) rank of T = rank of T t

(ii) range of T t = annihilator of the null space of T.

Proof: (a) Now g  Null space of T t

 T t (g) = 0
 gT = 0  gTV = 0 g(Range T) = 0

 g  A(RT)
Where A(RT) denotes the annihilator of range T.
(b)  Let dim V = n, dim W = m,
Let r = rank of T = dim RT = dim T(V)
where RT denotes the range of T.
Now dim A(RT) = dim A(TV)

= dim W – dim T(V) = m – r
Nullity of T t = dimension of the null space of T t

= dim A(RT) = m – r
But nullity of T t = dim W – rank T t

= dim W – rank T t

 m – r = m – rank T t

 rank T t = r =  rank T
This proves (i).
Let N denote the null space of T.

Then A(N) = {f  V


 | f(n) = 0  n  N} = Annihilator of the null space of T.
Now f  Range T t

 f = Ttg, g  W
= gT

 f (n) = gT(n) = g(0) = 0  n  N
 f  A(N)
 Range T t  A(N)

So, dim A(N) = dim V – dim N
= dim V – nullity T = rank T
= rank T t = dim Range T t
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Therefore, A(N) = Range T t

This proves (ii).

Lemma: Let T : V  W be a linear transformation. Let  = {v1, ... , vn},
 = {w1, ..., wm} be ordered basis of V, W respectively. Let ˆ̂  = { f1, ..., fn} be the dual basis

of V such that fi(vj) = ij. Let F V̂ .
Then

f = 
1

( )
n

i if v f
1

n

i if v f( )f v f( )i if v fi i( )i i( )f v f( )i i( )

Proof: Sppose f = 
1

,
n

i ic f
1

n

i ic fi ic fi i ci  F

Then f (vj) = ( )i i jc f vi i jc f v( )c f v( )i i jc f vi i j( )i i j( )c f v( )i i j( )  = i ijci ijci ij  = cj

So, f = 
1

( ) .
n

i if v f
1

n

i if v f( ) .f v f( ) .i if v fi i( ) .i i( ) .f v f( ) .i i( ) .

Theorem 19: Let T : V  W be a linear transformation. Let  = {v1, ..., vn},  = {w1, ..., wm}
be ordered basis of V, W respectively. Let 



  = {f1, ..., fn}, ˆ̂  = {g1, .., gm} be the dual basis
of V, W respectively.

Let A = (aij) be the matrix of T w.r.t.   and B = (bij) be the matrix of T t w.r.t.,


 


.
Then aij = bji   i, j.
(This shows that the matrix of T t is the transpose of the matrix of T. For this reason T t

is called the transpose of T.)

Proof: Now T t : W


  V


 s.t.,
T t(gj) = gjT = f (say)

Then f(vi) = (T tgj) (vi)
= (gjT) (vi)

= (gjT) (vi) = 
1

m

j ki kg a w
m

j ki kg a wj ki kg a wj ki kg a wj ki kg a wj ki k
11

j ki kj ki kj ki kg a wj ki k

m
g a wj ki kg a wj ki k

1
j ki kj ki kj ki kg a wj ki k

= ( )ki j ka g wki j ka g wki j ka g wki j k  = ki jkaki jkki jkaki jk  = aji

By above lemma,

f = 
1

( )
n

j if v f
1

n

j if v f( )f v f( )j if v fj i( )j i( )f v f( )j i( )  = 
1

n

ji ia f
1

n

ji ia fji ia fji i

But f = T tgj = 
1

n

ij ib f
1

n

ij ib fij ib fij i
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So,
1

n

ij ib f
1

n

ij ib fij ib fij i  = 
1

n

ji ia f
1

n

ji ia fji ia fji i


1

n

ij ji ib a fij ji ib a fij ji ib a fij ji i
1

n

ij ji ib a fij ji ib a fij ji iij ji ib a fij ji ib a fij ji i = 0

 bij = aji  i, j. This proves the theorem.

Let A = (aij) be the m × n matrix over F. Then row rank of A is defined as
the dimension of the subspace of F(n) spanned by (a11, ..., a1n), ..., (am1, ..., amn).

Similarly, column rank of A is defined as the  dimension of the subspace of F(m) spanned
by (a11, a21, ..., am1), ..., (a1n, ..., amn).

Theorem 20: Let A be an m × n matrix over F. Then
Row rank of A = column rank of A.

Proof: Define T : F(n)  F(m) s.t.,
T ((x1, ..., xn)) = (y1, ..., ym)

where yi = 
1

n

ij j
j

a x
1

n

ij j
j

a xij ja xij j
1

ij j

Then T is a linear transformation.
Range  T = {T(x1, ..., xn) | xi  F}

= {T(x1 (1, ..., 0) + ... + xn(0, – 0, 1)) | xi  F}
= {x1T(e1) + ... + xn T(en) | xi  F}

ei = nth-tuple with ith co-ordinate 1 and zero elesewhere
= {linear combination of columns of A}

subspace generated by columns of A and vice-versa
Thus, Range T = subspace of F(n) generated by columns of A
So, Rank T = column rank of A
Also, Rank T t = column rank of At

= dimension of subspace of F(m) generated by columns of At

= dimension of subspace generated by rows of A
= Row rank of A

Thus, column rank of A
= Row rank of A (as Rank T t = Rank T)
= Rank T.

Problem 32: Let V be a finite dimensional vector space over F. Let T be a linear operator
on V. Let c  F. Suppose 

Let V be a finite dimensional vector space over F. Let T be a linear operator
 0 

Let V be a finite dimensional vector space over F. Let T be a linear operator
 v 

Let V be a finite dimensional vector space over F. Let T be a linear operator
 V such that T(v) = cv. Prove that there is a non zero linear

functional f on V s.t., T t f = cf.

Solution: Now (T – cI )v = 0, v  0
 v  Ker (T – cI)
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 Ker (T – cI)  {0}
 dim Ker (T – cI)  1
 nullity of (T – cI)  1
 rank of (T – cI) < n
 rank of (T – cI)t < n
 nulity of (T – cI)t  1
  f  V

 
such that f  0 and (T – cI)t f = 0

 T t f = cf, f  0.

Problem 33: Let A be m × n matrix with real entries. Prove that A = 0
 Trace (AtA) = 0.

Solution: Let A t = B = (bij)n × m
A = (ajk)m × n

AtA = BA = C = (cik), cik = 
1

m

ij jk
j

b a
1

m

ij jk
j

b aij jkb aij jk
1

ij jk

Trace  (AtA) = 0


1

n

iic
1

n

iic  = 0

 c11 + ... + cnn = 0

 
1 1

...
m m

ij ji nj jnb a b a
1 1

m m

ij ji nj jnb a b aij jib a b aij jib a b anj jnb a b anj jn...b a b a...b a b a...  = 0

 2 2( ) ... ( )ji jna a2 2( ) ... ( )2 2( ) ... ( )2 2
ji( ) ... ( )ji( ) ... ( )jn( ) ... ( )jn( ) ... ( )( ) ... ( )a a( ) ... ( )( ) ... ( )jn( ) ... ( )a a( ) ... ( )jn( ) ... ( )( ) ... ( )a a( ) ... ( )( ) ... ( )ji( ) ... ( )a a( ) ... ( )ji( ) ... ( )2 2( ) ... ( )2 2( ) ... ( )2 2( ) ... ( )( ) ... ( )a a( ) ... ( )  = 0

 aji = 0  i, j
 A = 0.

Converse is obvious.

Exercises
1. Let S = { 1, 2, 3} be the basis of C3 defined by

1 = (1, 0, – 1), 2 = (1, 1, 1), 3 = (2, 2, 0)
Find the dual basis of S,

{f1( ) = a – b, f2( ) = a – b + c, f3( ) = ,
2 2
a cb ,
2 2
a cba cba c = (a, b, c)}

2. Let {e1, ..., en} be the standard basis of F(n) (F = field). Define

i : F(n)  F s.t.,

i (a1, ..., an) = ai

Show that i is a linear functional for all i and { 1, ..., n} is dual basis of
{e1, ..., en}.
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3. Let F be a subfield of the field of complex numbers and V a vector space over F.
Suppose that f and g are linear functionals on V such that the function h defined by
h(v) = f(v) g(v) is also a linear functional on V. Prove that
(i) h(v) = 0 for all v  V

(ii) f = 0 or g = 0
(Hint: (ii) suppose g  0,  v  V s.t., g(v)  0  f (v) = 0

f (x – v) g(x – v) = 0 for all x  V  f (x) g(v) = 0 for all x  V).
4. Let V be the vector space of polynomials over R of degree  1. Let

1 : V 
 be the vector space of polynomials over 

 R, 
 be the vector space of polynomials over 

2 : V 
 be the vector space of polynomials over 

 R be defined by

1( f (x)) = 
1

0

( ) ,f x dx
0

f x dx( ) ,f x dx( ) , 2(f(x)) = 
1

0

( )f x dx
0

f x dx( )f x dx( )

Show that { 1, 2} is a basis of V


. Find a basis {v1, v2} of V which is dual to

{ 1, 2}. 1[{2 2 , }]
2

x x1[{2 2 , }]1[{2 2 , }]1
2

[{2 2 , }]
2

[{2 2 , }][{2 2 , }]x x[{2 2 , }][{2 2 , }]x x[{2 2 , }] .

5. Suppose u, v V and that (u) = 0  (v) = 0 for all V


. Show that v = u
for some scalar .

6. Let W be the subspace of R3 spanned by (1, 1, 0) and (0, 1, 1). Find a basis of the
annihilator of W. [

 spanned by (1, 1, 0) and (0, 1, 1). Find a basis of the
(x, y, z) = x – y + z]

7. Let W be the subspace of R4 spanned by (1, 2, – 3, 4), (1, 3, – 2, 6) and
(1, 4, –1, 8). Find a basis of the annihilator of W.

[ 1(x, y, z, t) = 5x – y + z, 2(x, y, z, t) = 2y – t]
8. Let W1, W2 be subspaces of a finite dimensonal vector space. Show that

A(W1  W2) = A(W1) + A(W2)
(Hint: apply problem (24) on A(W1) and A(W2)).

9. Let n be a +ve integer and F, a field. Let
W = {(x1, ..., xn) F(n) | x1 + ... + xn = 0}

Prove that A(W) = {f | f(x1, ..., xn) = 
1

}
n

j
j

c x
1

}
n

j
j

c x jc x j
1

j

10. Let W be a subspace of a finite dimensional vector space. Define
 : V



  W


  s.t.,

( f ) = f | W = f ( f (w) = f(w) for all w  W)

Show that  is onto linear transformation and Ker  = A(W).

(Thus 
ˆ

( )
V

A W
 Ŵ ).
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A L.T.  T : V   V is one-one iff T is onto.
Sylvester’s law says that if  T: V W is a linear transformation then
Rank T + Nullity T = dim V.
Under algebra of linear transformations, sums, products (composition) and  scalar
multiples of linear transformations are discussed.
A L.T.  T: V  V is called a linear operator on V, whereas a L.T.  T: V  F is
called a linear function.
If V and W be two vector spaces over F of dim m and n respectively then
dim Hom(V, W) = mn.
A L.T. is called non-singular if its Ker is {0}, i.e., it is one-one. A L.T.
T: V  W is non-singular iff T carries each L.I. subset of  V onto a L.I. subset of
W.
Matrix of a linear transformation is defined. If  Mm×n(F) denotes the vector space
of all m × n matrices over F then Hom (U,V)  Mm×n(F) and dim Hom(U, V) = mn.
Hom (V, F) is called dual space of V over F. Dimension of the dual space is same
as dimension of the vector space.
If W be a subspace of V then A(W), the annihilator of W, is defined to be the set
containing those members of dual of V that map all w in W  to 0. Also,
dimA(W)= dim V – dim W.
If W is a subspace of a F.D.V.S. V then   A(A(W))  W.
Using dual spaces, we have shown that if the number of unknowns exceeds the
number of equations in a system of equations then the system has a non-zero
solution.
If T t denotes the transpose of the L.T. T then matrix of T t is the transpose of the
matrix of T.

A Quick Look at what's been done
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Definition: Let V be a vector space over F. Let T be a linear operator on V.  If  
0  v  V s.t., T(v) = cv for some c 

 be a vector space over 
 F, then v is called an eigen vector or characteristic

vector of T and c is called an eigen value or characteristic value or characteristic root of T.

Example 1: Let T : R2  R2 be a linear operator defined by T(x, y) = (x, 0). If c  R is an
eigen value of T, then  (x, y) 

 be a linear operator defined by 
 (0, 0) in R2 s.t. T(x, y) = c(x, y)

(x, 0) = c(x, y) = (cx, cy)  cx = x, cy = 0
 x(c – 1) = 0, cy = 0

Now x(c – 1) = 0  x = 0 or c = 1
If x = 0, then y  0.  cy = 0  c = 0
If c = 0, then (0, 1) is an eigen value of T as T(0, 1) = (0, 0) = c(0, 1).

 0 is an eigen value of T. If c  0, then y = 0 and c = 1.
T(1, 0) = (1, 0) = 1 (1, 0)  (1, 0) is an eigen vector of T and 1 is an eigen value of

T.

Example 2: Let T : R2  R2 be a linear operator defined by T(x, y) = (x + y, x + y).
Then T(1, –1) = (0, 0) = 0(1, –1)  0 is an eigen value of T and (1, –1) is an eigen value

of T.
Also T(1, 1) = (2, 2) = 2(1, 1)  2 is an eigen value of T and (1, 1) is an eigen vector of T.

Eigen Values and
Eigen Vectors

12

Introduction
In this chapter we will be dealing with linear operators T on a finite dimensional vector space
V. The main idea is to find an ordered basis 
In this chapter we will be dealing with linear operators 

 of V s.t., matrix of T w.r.t. 
 on a finite dimensional vector space

 is a diagonal
matrix. We can know a lot about T through this. The question that arises is “Can we find
such an ordered basis for all linear operators?” and if not then for which operators such a
basis would exist? We shall attempt to answer it in this chapter. If 
such an ordered basis for all linear operators?” and if not then for which operators such a

 = {v1, ......, vn} s.t.
[T]  = diag (c1, ....., cn), then T(vi) = civi, i = 1, ...., n. This leads us to the concept of eigen
values ci and eigen vectors vi of T.
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Problem 1: Let v and w be eigen vectors of T corresponding to two distinct eigen values of
T(a linear operator on V). Show that v + w cannot be an eigen vector of T.

Solution: Let T(v) = v
T(w) = w,

We first show that {v, w} is a linearly independent  set.
Let av + bw = 0
Then T(av + bw) = 0

 aT(v) + bT(w) = 0
 a  v + b  w = 0
 – b  w + b  w = 0
 (b  – b )w = 0
 b  – b  = 0, as w  0
 b(  – ) = 0
 b = 0, as  –   0
 a = 0

So, {v, w} is a linearly independent set.
Suppose v + w is an eigen vector of T.
Let T(v + w) = c(v + w)
Then T(v) + T(w) = cv + cw

 v + w = cv + cw
 (  – c)v + (  – c)w = 0
  – c = 0 =  – c, as {v, w} is a linearly independent set.
  = , a contriadiction.

Hence v + w is not an eigen vector of T.

Problem 2: Suppose every non zero vector of a FDVS is an eigen vector of a linear operator
T on V. Show that T is a scalar multiple of I.

Solution:  Let 0 v  V.
By hypothesis T(v) = cv.
Let w  < v >
Then w = av

 T(w) = aT (v) = acv = c w
Let w  < v >
Then w 0
and T(w) = dw. Let d  c
By problem 1, v + w can not be an eigen vector of T. However, by hypothesis v + w is an

eigen vector of T (as w 
 can not be an eigen vector of 

< v >  v + w 
 can not be an eigen vector of 

 0)
d = c

T (w) = cw   w  V
T = cI.
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Problem 3: If T is a linear operator on V and  is an eigen value of T, show that f ( ) is
an eigen value of f (T) if f (x) 

If T is a linear operator on V and 
F[x].

Solution  Let f (x) = an xn + ... + a1x + a0
Then f (T) = an T

n + ... + a1T + a0I
 f (T) (v) = anT

n (v) + ... + a1T (v) + a0v
= an

nv + ... + a1 v + a0v
= (an

n + ... + a1  + a0)v
= f ( )v

where T(v) = v, v is an eigen vector of T w.r.t. eigen value  of T.

Definition: Let c be an eigen value of T.
Let Wc = {v  VV T(v) = cv}
Then 0  Wc as T(0) = 0 = c . 0  Wc  
Let ,   F, v1, v2  V. Then

T( v1 + v2) = T(v1) + T(v2)
= cv1 + cv2
= c( v1 + v2)

v1 + v2  Wc
Wc is a subspace of V.

Wc is called eigen space of T associated with eigen value c of T.

Example 3: Let T : R2  R2 be defined by T(x, y) = (x, 0).
As seen before, 1 is an eigen value of T.

 Eigen space of T associated with eigen value 1 is given by
W1 = {(x, y) T(x, y) = (x, y)}

= {(x, y) (x, 0) = (x, y)}
= {(x, 0)  R2 x R}
   i.e., the x-axis

Note: Eigen space Wc= {v  VV T(v) = cv}
= {v V | (T – cI)v = 0}
= Ker (T – cI)

i.e., Wc is the null space of T – cI.

Theorem 1: Let T be a linear operator on a finite dimensional vector space V over F. Then
c  F is an eigen value of T if and only if T – cI is singular (not invertible).

Proof: Let c be an eigen value of T.
Then  0  v  V s.t. T(v) = cv

(T – cI)v = 0
 0  v  Ker(T – cI)
 T – cI is not one-one
 T – cI is singular.



12. Eigen Values and Eigen Vectors 591

Conversely, T – cI is singular  T – cI is not one–one (as dim V = finite  T – cI is one-
one if and only if T – cI is onto)

  0  v  Ker (T – cI)
 (T – cI)v = 0, v  0  T(v) = cv, v  0
 c is eigen value of T.

Cor.: Let V be a FDVS and T a linear operator on V then T is invertible if and only if 0 is not
an eigen value of T.

Problem 4: Let dim V = n. Let T be a linear operator on V. Let v1, ..., vk be eigen vectors
of T, corresponding to distinct eigen values c1, ..., ck of T. Show that v1, ..., vk are linearly
independent.
Solution: Let T(vi) = civi

Then T r(vi) = cr
i vi rr  1

Let 1v1 + ... + k v k = 0
Apply T, T2, ..., Tk – 1 on above.
Thus 1c1v1 + ... + k ck vk = 0

.....................................

.....................................

1c1
k – 1v1 + ... + kck

k – 1vk = 0


1 1

1 2

–1 –1 –1
1 2

1 1 1

k

k kk k k
k

vc c c

v
c c c

1 1 1
1 1v1 1v1 11 11 11 1v1 11 1

1 2 kc c c1 2c c c1 2 kc c c1 2c c c1 2
1 1

–1 –1 –1k k k–1 –1 –1k k k–1 –1 –1 k kk kvk kvk kk k–1 –1 –1k k k–1 –1 –1k k k–1 –1 –1 k k–1 –1 –1
1 2
k k k–1 –1 –1k k k–1 –1 –1

kc c c1 2c c c1 2
k k kc c ck k k–1 –1 –1k k k–1 –1 –1k k k–1 –1 –1 k kk k




   




1 1

k k

v

v

1 1v1 1v1 11 11 1v1 1

k kk kvk kvk k

 = 0 as c1, ..., ck are distinct

 ivi = 0 i
 i = 0 i

v1, ..., vk are linearly independent.

Problem 5: Let V be a two dimensional vector space over the field RR of real numbers. Let
T be a linear operator on V such that

T(v1) = v1 + v2
T(v2) = v1 + v2, , , ,   R

where {v1, v2} is a basis of V.
Find necessary and sufficient condition that 0 be a characteristic root of T.

Solution: Let 0 be a characteristic root of T.
Then there exists 0  v  V such that
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T(v) = 0
T(av1 + bv2) = 0

 a( v1 + v2) + b( v1 + v2) = 0
 a  + b  = 0, a  + b  = 0

If   , then a = 0 = b  v = 0, a contradiction.
 =  

Conversely, let  = 
Then T(v1) = v1 + v2

 T( v1) = v1 + v2
T(v2) = v1 + v2

 T( v2) = v1 + v2
T( v1 – v2) = (  – )v1 = 0

If v1 – v2 = 0, then  = 0 = 
 T(v1) = v1 and T(v2) = v1
 T( v1 – v2) = 0

If v1 – v2 = 0, then  = 0 = 
 T(v1) = 0
 0 is a characteristic root of T.

If v1 – v2  0, then 0 is a characteristic root of T.
If v1 – v2  0, then 0 is a characteristic root of T.
So, necessary and sufficient condition for 0 to be a characteristic root of T is
= 

So, necessary and sufficient condition for 0 to be a characteristic root of 
.

Characteristic Polynomials

Let A be an n × n matrix over a field F. c  F is called an eigen value of A if A – cI is singular
(not invertible), i.e. det (A – cI) = 0.

Now, det (A – cI) = 0  det (cI – A) = 0.
Let f (x) = det (xI – A)
Then c is an eigen value of A if and only if f (c) = 0. For this reason f (x) is called char-

acteristic polynomial of A. Clearly deg f (x) = n and coefficient of highest degree term xn in
f (x) is 1 (i.e. f (x) is monic).

Theorem 2: Similar matrices have same characteristic polynomial.

Proof: Let A, B be similar matrices.
Then  non singular matrix P s.t.

B = P–1AP
 Characteristic polynomial of B = det (xI – B)

= det (xI – P–1AP)
= det (P–1 (xI – A)P)
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= det (xI – A) = characteristic polynomial of A.
However, the converse of above theorem need not be true. Consider

Example 4: Let A = 
1 1
0 1
1 1
0 10 1

, B = 
1 0
0 1
1 0
0 10 1

Then the characteristic polynomial of A is xI – A  = (x – 1)2

and that of B is xI – B  = (x – 1)2

But A and B are not similar matrices as A = P–1BP  A = I.

Characteristic Polynomial of a Linear Operator

If ,  are two ordered basis of V s.t. [T]  = A, [T]  = B, then B = P–1AP for some matrix
P.

c  F is an eigen value of operator T on a finite dimensional vector space V
T – cI is singular by Theorem 1
det [T – cI]  = 0
det {[T]  – cI} = 0
det (A – cI) = 0
c is an eigen value of A.

By theorem 2, A and B have same characteristic polynomial. So, c is an eigen value of A
 c is an eigen value of B.
Hence c  F is an eigen value of T if and only if c is an eigen value of corresponding matrix

of T w.r.t. any basis of V.
If [T]  = A, we say characteristic polynomial of T is det xI – A, which does not depend on

the basis of V by theorem 2.

Remarks:
1. If T : V V is a linear operator s.t. dim V = n, then [T]  is n × n matrix. Let A = [T] .

Then det (A – xI) is a polynomial of degree n. So, A (or T) can't have more than n distinct
eigen values.

2. T may not have any eigen value (See Problem 8).
3. Let A = (aij). Then

det (xI – A) = xn – (a11 + a12 + ... + ann)xn – 1 + ...
 sum of eigen values of A (or T) is sum of diagonal elements of A
 sum of eigen values of A (or T) is trace of A.

4. Put x = 0 in
det (xI – A) = xn – (a11 + ... + ann) xn–1... + constant term then det (–A) = constant
term

 (–1)n det A = constant term of characteristic polynomial of A or T.
5. If A is a matrix over C, the field of complex numbers, then by fundamental theorem of

algebra, characteristic polynomial of A must have a root in C. In other words A (or T)
has at least one eigen value in C.
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6. Let c  F be an eigen value of n × n matrix A over F.
Then det (cI – A) = 0.
So, columns of cI – A are linearly dependent over F.

 1, 2, ..., n  F such that 1c1 + ... + ncn = 0, i  0 for some i, where c1,
..., cn are columns of cI – A.

Thus, [c1, c2, ..., cn] 

1

2

n

11

22

n


 = 0

   (cI – A) 
1

n

11

nn

  = 0

So,   A
1

n

11

nn

  = c
1

n

11

nn

 .

Hence AX = cX, where X = 
1

n

11

nn

   0

X is called an eigen vector of A.
Conversely, let AX = cX, X  0 is an n × 1 matrix over F.

 (cI – A)X = 0
So, det (cI – A) = 0 as X  0.
Thus, c is an eigen value of A.

7. We now give a method of determining eigen vector of A = [T] , given an eigen vector
of T and conversely.
Let {v1, v2, ..., vn} =  be an ordered basis of V. Let A = (aij) = [T] .
Now 0 v V is an eigen vector of T

T(v) = cv, for some c  F
T( 1v1 + ... + nvn) = c( 1v1 + ... + nvn), i  F

1T(v1) + ... + nT(vn) = c 1v1 + ... + c nvn

1(a11v1 + ... + an1vn) + ... + n(a1nv1 + ... + annvn) = c 1v1 + ... + c nvn

1a11 + ... + na1n = c 1
. . . . . . . . . . . . . . . . . . .

1an1 + ... + nann = c n

A
1

n

11

nn

  = c
1

n

11

nn
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AX = cX, where X = 
1

n

11

nn

   0.

So, if v = 1v1 + ... + nvn is an eigen vector of T, then X = 
1

n

11

nn



is an eigen vector of A and conversely.
8. Let c be an eigen value of n × n matrix A over F.

Then WWc = {X  X = n × 1 matrix over F,  AX = cX}, is a subspace of n × 1 matrices
over F. W

 = {
c is called an eigen space of A w.r.t. eigen value c of A.

Let A = [T] , where T is a linear operator on V and , an ordered basis of V. We show
that dim WWc = dim Wc, where Wc = eigen space of T w.r.t. eigen value c of T.
Define  : Wc  WWc s.t.,

(v) = 
1

n

11

nn

  where v = 1v1 + ... + nvn

Then  is an isomorphism. (Verify!)
So, dim Wc = dim WWc

9. Let [T]  = A = diagonal matrix

= 1

n

Oc
cO

1 Oc1

ncO cO


Suppose Rank A = r. So, r entries in diagonal of A are non-zeros and all other entries are
zeros. Let first r entries c1, ..., cr be all non-zero and cr + 1 = ... =
cn = 0. Let  = {v1, ..., vr, vr + 1, ..., vn} = ordered basis of V. Then, T(vi) = civi, i =
1, 2, ... , r. Now {T(v1), ..., T(vr)} 

} = ordered basis of 
 Range T. Let 1T(v1) + ... +

rT(vr) = 0, i  F.
Then 1c1v1 + ... + rcrvr = 0
 ici = 0  i = 1, 2, ..., r
 i = 0  i = 1, 2, ..., r as ci  0

 S = {T(v1), ..., T(vr)} is a L.I. set.
Let T(v)  Range T.
Now v  V  v = 1v1 + ... + rvr + r + 1vr + 1 + ... + nvn

 T(v) = 1T(v1) + ... + rT(vr)
 S spans Range T
 S = basis of Range T
 dim Range T = r
 Rank T = r
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So, Rank A = Rank T, where [T]  = A = diagonal matrix.
In fact, Rank A = Rank T, even when A is not diagonal matrix.

Problem 6: Let A = (aij)n × n be such that

(i) ij
j

aij
j

a  = 1  for each i

(ii) ij
i

aij
i

a  = 1  for each j

Prove that 1 is characteristic value of A.

Solution: (i) Let dim V = n. Let T be the linear operator on V s.t., [T]  = A, where
 = {v1, v2, ..., vn} is an ordered basis of V. Then

T(v1) = a11v1 + ... + an1vn
. . . . . . . . . .
T(vn) = a1nv1 + ... + annvn

Then T(v1 + v2 + ... + vn) = v1 + v2 + ... + vn

as ij
j

aij
j

a  = 1 for each i

Hence 1 is a characteristic value of A.
(ii) Let A  denote the transpose of A. By (i) 1 is the characteristic value of A
Thus det (I – A ) = 0

 det (I – A )  = 0
 det (I – A) = 0
 1 is characteristic value of A.

Problem 7: Prove that it is impossible to find a 2 × 2 matrix C over F such that

C 
1 1
0 1
1 1
0 10 1

 C–1 = 
0

0
00

00
, ,   F.

Solution: Let A = 
1 1
0 1
1 1
0 10 1

 , B = 
0

0
00

00
.

Suppose there exists 2 × 2 matrix C over F such that
CAC –1 = B.

Since 1 is the only eigen value of A, 1 is also the only eigen value of B as the characteristic
polynomials of A and B are same. So, 

, 1 is also the only eigen value of 
 = 

, 1 is also the only eigen value of 
 = 1. 

, 1 is also the only eigen value of 
B = I

 CAC –1 = I  A = I, a contradiction.
So, there does not exist any 2 × 2 matrix C over F such that CAC –1 = B.

Problem 8: Let T be a linear operator on R2 which is represented in the standard ordered basis
by the matrix

A = 
0 –1
1 0
0 –1
1 01 0

Show that T has no eigen values in R.
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Solution: The characteristic polynomial of A (or T) is given by

det (xI – A) = 
1

–1
x

x
 = x2 + 1

which has no real roots. So T has no eigen values in R. However ± i are eigen values of T in
C.

Problem 9: Let c  0 be an eigen value of an invertible operator T. Show that
c–1 is an eigen value of T –1.

Solution: Since c is an eigen value of T,  0  v  V s.t.
T(v) = cv

 v = T –1(cv) = c(T–1(v))
 c–1v = T –1(v)
 c–1 is an eigen value of T–1.

Problem 10: Obtain the eigen values, eigen vectors and eigen spaces of

A = 
0 1 0
1 0 0
0 0 1

0 1 0
1 0 01 0 01 0 0
0 0 1

.

Solution: The characteristic polynomial of A is

det (xI – A) = 
–1 0

–1 0
0 0 –1

x
x

x
 = (x + 1) (x – 1)2

 eigen values of A are 1, –1.
The eigen vector corresponding to eigen value 1 is given by

1 1

2 2

3 3

0 1 0
1 0 0
0 0 1

x x
x x
x x

1 1x x1 1x x1 10 1 0 1 1x x1 1x x1 11 1

1 0 0
1 1

2 22 2x x2 22 2x x2 2x x2 22 22 2x x2 22 2x x2 2x x2 21 0 01 0 0 2 2x x2 2x x2 2x x2 2x x2 2

0 0 1 3 33 3x x3 3x x3 33 33 3x x3 3x x3 3

giving x2 = x1, x1 = x2, x3 = x3
Thus eigen vectors are

1

2 1 3

3

1 0
1 0
0 1

x
x x x
x

1x1x1 1 01

1 02 1 3x x x2 1 3x x x2 1 31 02 1 3x x x2 1 3x x x2 1 3x x x2 1 3x x x2 1 32 1 32 1 3x x x2 1 3x x x2 1 3x x x2 1 31 01 02 1 31 02 1 31 02 1 32 1 3x x x2 1 32 1 31 02 1 3x x x2 1 31 02 1 31 02 1 31 02 1 3x x x2 1 3x x x2 1 31 0x x x1 02 1 31 02 1 3x x x2 1 31 02 1 3

0 133x3x3

So, eigen space W1 corresponding to eigen value 1 is spanned by 
1 0
1 , 0
0 1

1 01 0
1 , 01 , 01 , 01 , 01 , 0
0 10 10 1

 which is linerly

independent.
dim W1 = 2
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Also eigen vectors corresponding to eigen value –1 are given by

1 1

2 2

3 3

0 1 0
1 0 0 (–1)
0 0 1

x x
x x
x x

1 1x x1 1x x1 10 1 0 1 1x x1 1x x1 1

1 0 0 (–1)
1 1

1 0 0 (–1)1 0 0 (–1)
1 1

1 0 0 (–1)2 22 21 0 0 (–1)2 22 2x x2 22 21 0 0 (–1)2 2x x2 21 0 0 (–1)2 22 21 0 0 (–1)x x2 2x x2 21 0 0 (–1)x x1 0 0 (–1)2 21 0 0 (–1)2 2x x2 21 0 0 (–1)2 21 0 0 (–1)1 0 0 (–1)x x1 0 0 (–1)2 21 0 0 (–1)2 2x x2 21 0 0 (–1)2 22 22 21 0 0 (–1)2 22 21 0 0 (–1)2 2x x2 21 0 0 (–1)2 21 0 0 (–1)1 0 0 (–1)x x1 0 0 (–1)2 21 0 0 (–1)2 2x x2 21 0 0 (–1)2 21 0 0 (–1)1 0 0 (–1)2 21 0 0 (–1)2 21 0 0 (–1)2 21 0 0 (–1)x x1 0 0 (–1)2 21 0 0 (–1)2 2x x2 21 0 0 (–1)2 21 0 0 (–1)1 0 0 (–1)x x1 0 0 (–1)2 21 0 0 (–1)2 2x x2 21 0 0 (–1)2 2

0 0 1 3 33 3x x3 3x x3 33 33 3x x3 3x x3 3

giving x2 = –x1, x1 = –x2, x3 = –x3

1 1

2 1 1

3

1
– –1

0 0

x x
x x x
x

x x1 1x x1 11 1 1x x1 1x x1 1x x1 1x x1 11 1x x1 1x x1 11 11 1x x1 1

– –1
1 11 1

– –1– –12 1 1x x x2 1 1x x x2 1 1x x x2 1 1x x x2 1 12 1 12 1 1x x x2 1 1x x x2 1 1x x x2 1 1– –1– –1– –12 1 1– –12 1 1– –12 1 12 1 1x x x2 1 12 1 1– –12 1 1x x x2 1 1– –12 1 1– –12 1 1– –12 1 1– –1x x x– –12 1 1– –12 1 1x x x2 1 1– –12 1 12 1 12 1 1x x x2 1 12 1 1– –12 1 1x x x2 1 1– –12 1 12 1 1x x x2 1 12 1 1– –12 1 1x x x2 1 1– –12 1 1– –1x x x2 1 1x x x2 1 1– –1x x x– –12 1 1– –12 1 1x x x2 1 1– –12 1 1

0 033x

i.e., eigen space W–1 corresponding to eigen value –1 is spanned by 
1

–1
0

1
–1–1–1
0

Thus dim W–1 = 1

Hence eigen values are ± 1 and eigen vectors are 
1 0 1
1 , 0 , –1
0 1 0

1 0 1
1 , 0 , –11 , 0 , –11 , 0 , –1
0 1 0

.

Problem 11: Show that eigen values of an n × n triangular matrix A are the diagonal elements
of A.

Solution: Let

A = 

11

22

0 nn

a
a

a

11a11

22a22a

0 nna0 a
 , aij = 0 for all i > j

Characteristic polynomial of A is
(x – a11) ... (x – ann)

 a11, ..., ann are eigen values of A.

Problem 12: Let A be a real n × n matrix. Let  be a real eigen value of A. Show that there
exists an eigen vector X of A corresponding to eigen value 

 be a real eigen value of A. Show that there
 such that X is also real.

Solution: Suppose Ay = y, y  0. Then y is eigen vector of A corresponding to eigen value
 of A. If y is real, then result follows. Suppose y is not real. Let y = u + iv where u and v

real column matrices.
Then Ay = y

 A(u + iv) = (u + iv)
 Au + iAv = u + i v
 Au = u, Av = v
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Since y  0, either u  0 or v  0. If u  0, then u is real eigen vector of A and
v  0  v is real eigen vector of A corresponding to eigen value 

 is real eigen vector of 
 of A.

Problem 13: Let A be n × n matrix given by

A = 

1 0 0
1 1 0
0 1 0

0 0 0

k
k

k

k

1 0 0k
1 1 0k1 1 0k1 1 01 1 0k1 1 0k1 1 01 1 01 1 0k1 1 0
0 1 0k0 1 0k

0 0 0 k

 
 
 

     
 

(i.e. diagonal entries of A are k and entries above and below the diagonal are 1 and zero
elsewhere).

Show that Xi(i = 1, ..., n) where Xis are column matrices with jth entry 
1

ijsin
n
ijsin
n
ijsin

11n
sin

n
 are eigen

vectors of A. Find corresponding eigen values of A.

Solution: Now

AXi = 

sin
1

1 0 0 2sin
1 1 0 1
0 1 0 3sin

1
0 0 0

sin
1

i
n

k i
k n

k i
n

k
ni
n

sin isinsin
1nn 11

1 0 0k 2i2i
1 1 0 1k n1 1 0 1k n1 1 0 1

sin
1 1 0 1k n1 1 0 1k n1 1 0 1

2sin isin
k n1 1 0 1k n1 1 0 1

sinsin
1 1 0 11 1 0 11 1 0 1k n1 1 0 11 1 0 11 1 0 1k n1 1 0 11 1 0 11 1 0 1k n1 1 0 11 1 0 11 1 0 1k n1 1 0 11 1 0 11 1 0 11 1 0 1k n1 1 0 11 1 0 1k n1 1 0 11 1 0 1k n1 1 0 1
0 1 k i0 3k i0 3k i0 3k i0 3k i0 3k i0 30 1 k i0 3k i0 30 3k i0 3sinsink i0 3k i0 30 3sin0 3k i0 3sin0 3sinsinsin0 3k i0 30 3sin0 3k i0 3sin0 3

1nn 11
0 0 0 k

sin ninisinsinsin
n 1

 
 
 

     
 

=

2sin sin
1 1

2 3sin sin sin
1 1 1

2 3 4sin sin sin
1 1 1

( 1)sin sin
1 1

i ik
n n

i i ik
n n n

i i ik
n n n

n i nik
n n

sin sini isin sini isin sink 2sin sini i2i i2sin sini isin sinsin sini isin sini isin sinsin sinsin sink sin sinsin sink sin sinsin sinsin sinsin sinsin sin
1 1

sin sin
1 1n nn n1 1n n1 1n n1 11 1n n1 1n n1 1

sin sin sini i isin sin sini i isin sin sin2 3i i i2 3i i i2 3sin sin sini i isin sin sin2 3i i i2 3i i i2 3sin sin sini i isin sin sin2 3sin sin sin2 3i i i2 3sin sin sin2 3sin sin sini i isin sin sinksin sin sini i isin sin sinsin sin sinsin sin sinsin sin sinsin sin sini i isin sin sini i i2 3i i i2 3sin sin sinsin sin sini i isin sin sinsin sin sinsin sin sinsin sin sinksin sin sinsin sin sini i i2 3i i i2 3sin sin sini i isin sin sin2 3sin sin sin2 3i i i2 3sin sin sin2 3sin sin sinksin sin sinsin sin sini i isin sin sinksin sin sini i isin sin sin
1 1 1

sin sin sin
1 1 1

sin sin sin
1 1 1

sin sin sinksin sin sin
n n nn n n1 1 1n n n1 1 1n n n1 1 11 1 1n n n1 1 1n n n1 1 11 1 1
2 3 42 3 4i i i2 3 42 3 4i i i2 3 4i i i2 3 42 3 4i i i2 3 4sin sin sinsin sin sin2 3 4sin sin sin2 3 4sin sin sin2 3 42 3 4i i i2 3 42 3 4sin sin sin2 3 4i i i2 3 4sin sin sin2 3 4i i i2 3 4i i i2 3 4sin sin sinsin sin sin2 3 4i i i2 3 42 3 4sin sin sin2 3 4i i i2 3 4sin sin sin2 3 4sin sin sinsin sin sinsin sin sinksin sin sinsin sin sinsin sin sinksin sin sinsin sin sin2 3 4i i i2 3 42 3 4sin sin sin2 3 4i i i2 3 4sin sin sin2 3 4sin sin sinksin sin sin2 3 4sin sin sin2 3 4i i i2 3 4sin sin sin2 3 4k2 3 4sin sin sin2 3 4i i i2 3 4sin sin sin2 3 4

1 1 1
sin sin sinsin sin sin

1 1 1
sin sin sinsin sin sin

1 1 1
sin sin sinksin sin sin

n n nn n n1 1 1n n n1 1 1n n n1 1 11 1 1n n n1 1 1n n n1 1 11 1 1

( 1)sin ( 1)n i ni( 1)( 1)( 1)n i ni( 1)( 1) sinn i ni( 1)n i ni( 1) sinn i nisin( 1)n i ni( 1)n i ni( 1) sinn i nisinn i nisinkn i nikn i nisin sinsinsin sink sink sinsinsink sinksin
n n

sin
1 1n n1 1n n1 1

sin
1 1



=

sin 2sin cos
1 1 1

2 2sin 2sin cos
1 1 1

3 3sin 2sin cos
1 1 1

sin 2sin cos
1 1 1

i i ik
n n n

i i ik
n n n

i i ik
n n n

ni ni ik
n n n

sin 2sin cosi i isin 2sin cosi i isin 2sin cosk sin 2sin cosi i isin 2sin cosi i isin 2sin cossin 2sin cosi i isin 2sin cosi i isin 2sin cossin 2sin cossin 2sin cossin 2sin cossin 2sin cosk sin 2sin cossin 2sin cossin 2sin cossin 2sin cossin 2sin cosk sin 2sin cossin 2sin cossin 2sin cossin 2sin cossin 2sin cossin 2sin cossin 2sin cos
1 1 1

sin 2sin cos
1 1 1n n nn n n1 1 1n n n1 1 1n n n1 1 11 1 1n n n1 1 1n n n1 1 1

2 22 2i i i2 22 22 2i i i2 2i i i2 22 22 2i i i2 2sin 2sin cossin 2sin cossin 2sin cossin 2sin cosk 2 2sin 2sin cos2 2sin 2sin cos2 22 2i i i2 2sin 2sin cosi i isin 2sin cos2 2sin 2sin cos2 2i i i2 2sin 2sin cos2 2k sin 2sin cossin 2sin cosi i i2 2i i i2 2sin 2sin cosi i isin 2sin cos2 2sin 2sin cos2 2i i i2 2sin 2sin cos2 2sin 2sin cos2 2i i i2 2sin 2sin cosi i isin 2sin cos2 2sin 2sin cos2 2i i i2 2sin 2sin cos2 2sin 2sin cossin 2sin cossin 2sin cos2 2i i i2 2sin 2sin cosi i isin 2sin cos2 2sin 2sin cos2 2i i i2 2sin 2sin cos2 2sin 2sin cossin 2sin cos
1 1 1

sin 2sin cossin 2sin cos
1 1 1

sin 2sin cos
1 1 1n n nn n n1 1 1n n n1 1 1n n n1 1 11 1 1n n n1 1 1n n n1 1 11 1 1

3 33 3i i i3 33 3i i i3 3i i i3 33 3i i i3 3sin 2sin cossin 2sin cosk 3 3sin 2sin cos3 3sin 2sin cos3 33 3i i i3 33 3sin 2sin cos3 3i i i3 3sin 2sin cos3 3k sin 2sin cossin 2sin cossin 2sin cossin 2sin cosi i i3 3i i i3 3sin 2sin cosi i isin 2sin cos3 3sin 2sin cos3 3i i i3 3sin 2sin cos3 3sin 2sin cossin 2sin cos3 3i i i3 33 3sin 2sin cos3 3i i i3 3sin 2sin cos3 3sin 2sin cossin 2sin cossin 2sin cos3 3i i i3 33 3sin 2sin cos3 3i i i3 3sin 2sin cos3 3sin 2sin cossin 2sin cos
1 1 1

sin 2sin cossin 2sin cos
1 1 1

sin 2sin cos
1 1 1n n nn n n1 1 1n n n1 1 1n n n1 1 11 1 1n n n1 1 1n n n1 1 11 1 1

sin 2sin cosni ni isin 2sin cosni ni isin 2sin cosk ni ni isin 2sin cosni ni isin 2sin cosni ni isin 2sin cossin 2sin cosni ni isin 2sin cosni ni isin 2sin cosni ni isin 2sin cosni ni isin 2sin cosni ni isin 2sin cossin 2sin cosk sin 2sin cossin 2sin cossin 2sin cossin 2sin cossin 2sin cosk sin 2sin cossin 2sin cossin 2sin cossin 2sin cossin 2sin cossin 2sin cossin 2sin cossin 2sin cossin 2sin cossin 2sin cossin 2sin cosk
n n n

sin 2sin cos
1 1 1n n n1 1 1n n n1 1 1

sin 2sin cos
1 1 1
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= 

2 cos sin
1 1

22 cos sin
1 1

32 cos sin
1 1

2 cos sin
1 1

i ik
n n
i ik

n n

ik
n n

i nk
n n

i ii ii ii i2 cos sini i2 cos sini i2 cos sin2 cos sini i2 cos sini i2 cos sink 2 cos sin2 cos sin2 cos sink 2 cos sin2 cos sin2 cos sin2 cos sinkk 2 cos sin2 cos sin2 cos sin
1 1

2 cos sin2 cos sink 2 cos sin2 cos sin
1 11 1n n1 1n n1 11 11 1n n1 1n nn nn nn n1 1n n1 1n n1 1n n1 11 1n n1 1n n1 1

2i i2i i2i ii ii i2i i22 cos sini i2 cos sini i2 cos sin2 cos sini i2 cos sini i2 cos sink 2 cos sin2 cos sin2 cos sink 2 cos sin2 cos sin2 cos sin2 cos sin2 cos sinkk 2 cos sin2 cos sin2 cos sin2 cos sin2 cos sin2 cos sink 2 cos sin2 cos sin
1 1n n1 1n n1 11 11 1n n1 1n nn nn nn n1 1n n1 1n n1 1n n1 11 1n n1 1n n1 1

3i 332 cos sini2 cos sini2 cos sink i2 cos sin2 cos sin2 cos sin2 cos sin2 cos sin2 cos sin2 cos sini2 cos sin2 cos sinkk 2 cos sin2 cos sin2 cos sin2 cos sin2 cos sin2 cos sink 2 cos sin
1 11 1n n1 11 1

2 cos sin
n nn n

2 cos sink
n n1 1n n1 11 1n n1 1n n1 1

2 cos sin
1 11 1n n1 1n n1 1n nn n1 1n n1 1

i ni ni ni n2 cos sini n2 cos sini n2 cos sin2 cos sini n2 cos sini n2 cos sink 2 cos sin2 cos sin2 cos sink 2 cos sin2 cos sin2 cos sin2 cos sin2 cos sinkk 2 cos sin2 cos sin2 cos sin2 cos sin2 cos sink 2 cos sin2 cos sin2 cos sink 2 cos sin2 cos sin
1 1n n1 1n n1 11 11 1n n1 1n nn nn nn n1 1n n1 1n n1 1n n1 11 1n n1 1n n1 1



= 

sin
1

2sin
1

2 cos 3sin1 1

sin
1

i
n

i
n

ik i
n n

ni
n

sin isinsin
1nn 11

2i2isin 2sin i
1nn 11

2 cos ik 3i2 cos2 cos2 cos ikk 2 cos2 cos
n

2 cosk
n

2 cos
11 sin 3sin isinsinsin

1nn 11

sin ninisinsinsin
n 1



= 2 cos
1 i

ik X
n
ik X2 cosk X2 cos ik Xik Xk X2 cosk X2 cosk Xk X2 cosk X2 cosk X2 cosk X2 cosk Xk Xk Xk X2 cosk X2 cosk X2 cosk X2 cosk X

n
2 cos ik X2 cosk X2 cos

n
2 cosk X2 cosk X2 cos

11
k X

Xi are eigen vectors of A for each i = 1, ..., n and k + 2 cos
1

i
n 1

 are corresponding eigen

values of A.

Problem 14: Let V be the space of all real valued continuous functions. Define

T : V  V by (Tf ) (x) = 
0

( )
x

f t dt
0

x
f t dt( )f t dt( )

Show that T has no eigen values.

Solution: Let c be an eigen value of T.
 0  f  V s.t.

Tf = cf
Tf (x) = cf (x)

0
( )

x
f t dt

0

x
f t dt( )f t dt( )  = cf (x)

f (x) = cf  (x)

y = dyc
dx

c  0 (as c = 0  y = 0  f (x) = 0  f = 0)
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dy dx
y c

dy dx

 log y = x
c

 + log a  y = aex/c

 y (0) = a
 f (x) = y = f (0) ex/c

 /
0

(0)
x t cf e dt

0

x
f e dt(0)f e dt(0)  = /

0
( ) ( ) (0)

x x cf t dt cf x cf ef t dt cf x cf e( ) ( ) (0)f t dt cf x cf e( ) ( ) (0)
0

x
f t dt cf x cf e( ) ( ) (0)f t dt cf x cf e( ) ( ) (0)

f (0)  0 (as f (0) = 0  a = 0  y = 0   f (x) = 0   f = 0)

f (0) /
0

xt cce
x/t c/t c/
0

/t c/t c/ce  = c f (0) ex /c

c(ex /c– 1) = cex /c

 ex /c– 1 = ex /c

 1 = 0, a contradiction
T has no eigen value.

Remark: Let D be the differential operator on V in the above problem.
Let c be any real number.
Define f : R R, s.t.,

f (x) = ecx

Then f  V and Df = cf.
So, every real number is an eigen value of D.
In the above problem, linear operator T on V has no eigen value whereas here every real

number is an eigen value of the linear operator D.

Minimal Polynomials

In order to determine a linear operator T, it is very useful to determine the class of polynomials
which annihilate T.

If T is a linear operator on the n - dimensional space V, then dim Hom (V, V) = n2

 any n2 + 1 vectors in Hom (V, V) are linearly dependent.
 I, T, T2, ..., Tn2 are linearly dependent.
  co, c1, c2, ..., cn2 F s.t.

coI + c1T + ... + 
2

2
n

n
c T  = 0 where some ci  0

i.e., T satisfies a polynomial p(x)  F [x], where

p(x) = co + c1x + ... + 
2

2
n

n
c T , p(x)  0 s.t. p(T) = 0

Among all such polynomials satisfied by T, choose a polynomial of least degree.

Definition: Let T be a linear operator on a finite dimensional space V over F. The minimal
polynomial for T is defined to be the unique polynomial p(x) 

 be a linear operator on a finite dimensional space 
 F [x] s.t.
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(i) p(x) is monic polynomial
(ii) p(T) = 0

(iii) No polynomial over F which annihilates T has smaller degree than p(x).
Note that p(x) is uniquely determined by (i).
We have similar definition for minimal polynomial for a square matrix A.

Theorem 3: Let T be a linear operator on an n-dimensional space V. The characteristic and
minimal polynomials for T have the same roots.

Proof: Let p(x) be the minimal polynomial for T. Let c be a root of p(x) i.e., p(c) = 0.
Then p(x) = (x – c) q(x) for some q(x)  F [x].
Since deg q(x) < deg p(x), q(T)  0

 v  V s.t. q(T) v  0, v  0
Let x = q(T) v  0
Then 0 = p(T) v

= (T – cI) q(T) v
= T(x) – cx

 T(x) = cx, x  0
 c is an eigen value of T.
Conversely, let c be an eigen value of T.
Then  0  v  V s.t. Tv = cv

p(T) v = p(c) v
Since p(T) = 0, p(c) v = 0, v  0

p(c) = 0
c is a root of minimal polynomial for T.

Example 5: Although minimal polynomial and characteristic polynomial have same roots, they
may not be same. For example, the characteristic polynomial of

A = 
5 – 6 – 6

–1 4 2
3 – 6 – 4

5 – 6 – 6
–1 4 2–1 4 2–1 4 2

3 – 6 – 4
 is (x – 1) (x – 2)2 while (A – I) (A – 2I) = 0  minimal polynomial

of A is (x – 1) (x – 2).
A natural question arises. When would these two polynomials be same? If eigen values of

linear operator T are all distinct, the characteristic polynomial of T is
f (x) = (x – c1) ... (x – cn). Since roots of minimal polynomial p(x) of T are same as of f (x)
and deg p(x)  deg f (x) = n

p(x) = (x – c1) ... (x – cn) = f (x)
There is that well known result in matrices called ‘‘Cayley Hamilton Theorem’’ which says

‘‘Every square matrix satisfies its characteristic polynomial’’. Since
characteristic polynomial of a linear operator T is same as characteristic polynomial of [T] .
w.r.t. any basis 
characteristic polynomial of a linear operator 

 of V, Cayley Hamilton Theorem is true for linear operators also i.e. if f (x)
is the characteristic polynomial of T, then f (T) = 0.

A simple consequence of the above is
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Theorem 4: The minimal polynomial of a linear operator T divides its
characteristic polynomial.

Proof: Let p(x), f (x) be the minimal and characteristic polynomials respectively of T.
Then f (x) = g(x) p(x) + q(x) where either q(x) = 0 or deg q(x) < deg p(x)
Let q(x)  0. Now 0 = f (T) = g(T) p(T) + q(T)
 q(T) = 0 (f (T)) = 0 (by Cayley Hamilton Theorem)

 q(x) is a non zero monic polynomial of degree less than deg p(x) and q(T) = 0, contra-
dicting p(x) is minimal. 

) is a non zero monic polynomial of degree less than deg 
q(x) = 0

 p(x) divides f (x).

Remarks (1): Let A = [T]  and p(x) = minimal polynomial of T. Then p(x) is also minimal
polynomial of A.

Proof: Now [T r]  = [T]  ... [T]  = Ar

[p(T)]  = p(A)
p(A) = 0 as p(T) = 0

Let q(x) = minimal polynomial of A.
Let p(x) = q(x) r(x) + s(x), where

s(x) = 0 or deg s(x) < deg q(x)
Now 0 = p(A) = q(A) r(A) + s(A)

 s(A) = 0
If s(x)  0, then A satisfies a non-zero polynomial of degree less than deg q(x), a contra-

diction.
 s(x) = 0. So, q(x) p(x)

Again [q(T)]  = q(A) = 0  q(T) = 0
Let q(x) = p(x) g(x) + h(x)
where h(x) = 0 or deg h(x) < deg p(x).

q(T) = p(T) g(T) + h(T)
 0 = h(T)

If h(x)  0, then T satisfies a non-zero polynomial of degree less than deg p(x), a contra-
diction.

h(x) = 0  p(x) q(x)
Hence p(x) = q(x) = minimal polynomial of A.
(2) Similar matrices have same minimal polynomial.

Proof: Let A, B be similar matrices
Then B = P–1AP
Let p(x) = minimal polynomial of A.

q(x) = minimal polynomial of B.
Now 0 = q(B) = q(P–1AP) = P–1q(A)P

q(A) = 0
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As before p(x) q(x)
Similarly, 0 = p(A) = p(PBP–1) = Pp(B)P–1

p(B) = 0
So, q(x) p(x)
Thus, p(x) = q(x).
However, the converse need not be true. Consider

Example 6: Let A = 
1 1 0
0 2 0
0 0 1

1 1 0
0 2 00 2 00 2 0
0 0 1

 and B = 
2 0 0
0 2 2
0 0 1

2 0 0
0 2 20 2 20 2 2
0 0 1

Then the minimal polynomial of A(and B) is (x –1) (x – 2)
Since Trace A = 4, Trace B = 5, A and B are not similar.

Problem 15: For two matrices A and B show that AB and BA need not have the same minimal
polynomial.

Solution: Let A = 
0 1
0 0
0 1
0 00 0

, B = 
1 0
0 0
1 0
0 00 0

Then AB = 
0 0
0 0
0 0
0 00 0

 and BA = 
0 1
0 0
0 1
0 00 0

.

AB = 0 = (BA)2

 Minimal polynomial of AB is x whereas the minimal polynomial of BA is x2.

Problem 16: Let A = 
B O
O C
B O
O CO C , where B and C are square matrices. Show that the minimal

polynomial p(x) of A is the l.c.m. of the minimal polynomials q(x) and r(x) of B and C.

Solution : Now p(A) = 
( )

( )
p B O

O p C
( )p B O( )p B O( )p B O( )p B O( )

( )O p C( )O p C( )( )O p C( )O p C( )
.

Since p(A) = 0, p(B) = 0 = p(C)
we find q(x) p(x), r(x) p(x)
Suppose q(x) f (x), r(x) f (x)

Then f (A) = 
( )

( )
f B O
O f C

f B O( )f B O( )f B O( )f B O( )
( )O f C( )O f C( )( )O f C( )O f C( )

Now q(x) f (x)  f (B) = 0
r(x) f (x)  f (C) = 0
f (A) = 0
p(x) f (x).

So, p(x) is the l.c.m. of q(x) and r(x).
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Problem 17: Let V be a F.D.V.S. Let T be a linear operator on V. Let T t :  V VV V  be the
transpose of T, defined by Tt( f ) = f T. Show that T and T t have the same minimal polynomial.

Solution: Let  = {v1, ..., vn} be a basis of V and 1 = {f1, ..., fn} be the dual basis of .
Let [T]  = A, [T t]

1
 = B

Then B = A t = transpose of A.
(See theorem 19, page 853)

Let p(x) = 
r

i
i

o
a x

r
i

ia xia xi  be the minimal polynomial of A (or T).

Let q(x) be the minimal polynomial of At (or T t).
Then 0 = p(A) = aoI + a1A + ... + ar A

r ...(i)
0 = aoI + a1 A t + ... + ar(A

t) r

(by taking transpose on both sides of (i)).
 0 = p(A t).

So, q(x) p(x).
Similarly, p(x) q(x).

p(x) = q(x).
The minimal polynomials of T and T t are same.

Problem 18: Let a, b, c be elements of a field F and

A = 
0 0
1 0
0 1

c
b
a

0 0 c
1 0 b1 0 b1 0 b
0 1 a

Prove that the characteristic polynomial of A is same as its minimal polynomial.

Solution: The characteristic polynomial of A is given by
f (x) = | xI – A |  = x3 – ax2 – bx – c

Let p(x) be its minimal polynomial.
Then deg p(x)  deg f (x) = 3.
If deg p(x) = 1, then p(x) = x – ,   F

O = p(A) = A – I = 
– 0

1 –
0 1 –

c
b

a

– 0 c– 0
1 – b1 – bb1 –
0 1 –0 1 –a0 1 –

which is not true as 1  0.
If deg p(x) = 2, then p(x) = x2 + x + ,  ,   F

 O = p(A) = A2 + A + I
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– – – – – – – – –
– – – – – – – – –
1 – – 0 – – 0 – –

– – – – – – – – –
– – – – – – – – –– – – – – – – – –
1 – – 0 – – 0 – –

 = 0

 1 = 0 which is not true.
So deg p(x) = 3 and hence p(x) = f (x).

Problem 19: Let T be a linear operator on a finite dimensional vector space V(F). Show that
T is invertible if and only if  the constant term of the minimal polynomial of T is not zero.

Solution: Let p(x) be the minimal polynomial of T.
Let T be invertible.
Suppose the constant term of p(x) is 0.
Then p(x) = 1x + ... + k x k

 p(o) = 0
 0 is a root of p(x).
 0 is an eigen value of T, a contradiction by cor. to theorem 1.

The constant term of p(x) is not zero.
Conversely: let p(x) = o + 1x + ... + k x

k, o  0.
Then p(o) = o  0
 0 is not a root of p(x)
 0 is not an eigen value of T
 T is invertible, by Cor. to theorem 1.

Problem 20: If T is a linear operator on a finite dimensional vector space V over F and T
is right invertible, show that T is invertible.

Solution: Let TU = I. If T is not invertible, then by above problem, the constant term of the
minimal polynomial p(x) of T is 0.

Let p(x) = 1x + ... + mx m.
Then 0 = p(T) = 1T + ... + mT m.
Let S = 1I + 2T + ... + mT m – 1.
Then S  0 as p(x) is of least degree satisfied by T.
Also ST = TS = 0.
Now 0 = (ST )U = S(TU ) = SI = S, a contradiction.
So, T is invertible.

Problem 21: Let V be the space of n × n matrices over F. Let A be n × n matrix in V. Define
T : V  V s.t. T (B) = AB for all B 

Let V be the space of n × n matrices over F. Let A be n × n matrix in V. Define
 V. Show that the minimal polynomial of T is the minimal

polynomial of A.

Solution : Let p(x) = x n + ... + n – 1 x + n
q(x) = xm + ... + m – 1 x + m
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be minimal polynomials of T and A respectively
Now 0 = p(T)I

= (T n + ... + nI)I
= A n + ... + nI  as T(I) = A  T r(I) = A r

= p(A).
A satisfies p(x).

Let p(x) = (x – c) q(x) + r(x), r(x) = 0 or deg r(x) < deg q(x), c is root of p(x).
Then 0 = p(A) = (A – cI) q(A) + r(A)

 r(A) = 0
If r(x)  0, then r(x) is non zero monic polynomial of degree less than deg q(x) s.t.

r(A) = 0, a contradiction.
r(x) = 0.
q(x) divides p(x)

Also 0 = q(A)B
= (Am + ... + mI)B
= AmB + ...+ mB
= T mB + ... + mB
= (T m + ... + mI)B
= q(T)B  for all B  V

 q(T) = 0
As before, p(x) divides q(x) and thus p(x) = q(x).

Diagonalizable Operators

Definition: A linear operator T on a finite dimensional vector space V is called
diagonalizable if 

 A linear operator 
 an ordered basis 

 on a finite dimensional vector space 
 = {v1, ..., vn} of V s.t. matrix of T w.r.t. 

 on a finite dimensional vector space 
 is a diagonal

matrix.

i.e., [T]  = 

1

2

0

0 n

c
c

c

1 0c1

2c2c

0 nc0 c


Equivalently A linear operator T on the finite dimensional vector space V is diagonalisable
if and only if 

Equivalently A linear operator T on the finite dimensional vector space V is diagonalisableEquivalently A linear operator T on the finite dimensional vector space V is diagonalisableEquivalently
 a basis 
 A linear operator T on the finite dimensional vector space V is diagonalisable

 of V consisting of eigen vectors of T.

Proof: Let T be diagonisable.
Then  a basis  = {v1, ..., vn} of V s.t.,

[T]  = 

1

2

0

0 n

c
c

c

1 0c1

2c2c

0 nc0 c
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i.e. T(vi) = civi for all i = 1, ..., n.
v1, ..., vn are eigen vectors of T.

Conversely, let  = {v1, ..., vn} be a basis of V s.t. each vi is an eigen vector of T.

Then [T]  = 
1 0

0 n

c

c

1 0c1

n0 nc
   is a diagonal matrix

T is diagonalizable.

Theorem 5: Let T be a linear operator on a finite dimensional vector space V(F). Let c1, c2,
...,  ck  F be distinct eigen values of T and let Wi be the eigen space
corresponding to eigen value ci , i = 1, 2, ..., k. Suppose 

 be the eigen space
1, ..., 

 be the eigen space
k are basis of

W1, ..., Wk respectively. Then 
corresponding to eigen value c

 = { 1, ..., k} is a basis of W = W1 + ... + Wk and
dim W = dim W1 + ... + dim Wk. Hence W = W1 

 is a basis of W = W
 ... 

 is a basis of W = W
 Wk.

Proof: We first show that whenever
x1 + ... + xk = 0, xi  wi ...(i)

then xi = 0  i.
Apply T, T2, ..., T k – 1 in (i) to get

c1x1 + ... + ck xk = 0
.. .

1

–1k
c x1 + ... + 

1

–1k
c xk = 0

(Note that T(xi) = cixi  T r(xi) = i
i

r
icc x )

11

–1 –1
1

1 1

k

kk k
k

xc c

x
c c

1 1
1x1x11 kc c1c c1 kc c1c c1 1x1x11x1x1

–1 –1k k–1 –1k k–1 –1 kkkxkxk–1 –1k k–1 –1k k–1 –1–1 –1k k–1 –1k k–1 –1 kkkxkxk
1 kc c1c c1

–1 –1k k–1 –1k k–1 –1
kc c1c c1

k



   = 0

C 
1

k

x

x

1x1x11x1x1

kkx
  = 0, where C = 

1

–1 –1
1

1 1

k

k k
k

c c

c c

1 1

1 kc c1c c1 kc c1c c1

–1 –1k k–1 –1k k–1 –1–1 –1k k–1 –1k k–1 –1–1 –1k k–1 –1k k–1 –1
1 kc c1c c1

–1 –1k k–1 –1k k–1 –1
kc c1c c1



 

 det C  0, as ci, ..., ck are distinct.

C–1 C 
1

k

x

x

1x1x11x1x1

kkx
  = 0
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1

k

x

x

1x1x11x1x1

kkx
  = 0  xi = 0  i

Hence our assertion follows.
Let now x  W. Then x = x1 + ... + xk, xi  Wi as W = W1 + ... + Wk
Also 1 = {v1, ..., vd1

} spans W1 (assuming dim Wk = dk)
In this way, since k = {v11, ..., vdk

} spans Wk

we find xk = 1v11  + ... + dk
 vdk

So,  x = 1v1 + ... + d1
vd1

 + ... + 1v1  + ... + dk
v dk

   = linear combination of v1, ..., vd1
, ..., v d1

, ... v
k

dk
 { 1, 2, ..., k} =  spans W.

Suppose (Suppose ( 1v1 + ... + d1
vd1

) + ... + () + ... + ( 1v1  + ... + dk
v dk

) = 0
 x1 + ... + xk = 0

where x1 = 1v1 + ... + d1
  vd1

 W1
. . . . . . . . . .
xk = 1v1  + ... + dk

v dk
  Wk

Then xi = 0 for all i (as shown above)
 1 = ... = d1

 = ... = 1 = ... = dk
 = 0

as each i is basis of Wi
  = { 1, ..., k} is linearly independent and so forms a basis of W.

Now dim W = o( 1) + ... + o( k)
i.e., dim W = dim W1 + ... + dim Wk

proving the theorem.
We now give conditions under which an operator T is diagonalisable.

Theorem 6: Let T be a linear operator on a finite dimensional vector space V(F). Then T is
diagonalisable if and only if dim V = dim W1 + ... + dim Wk.

Proof: Let T be diagonalisable. Then  a basis  of V such that each vector of  is an eigen
vector of T. Suppose first r1 vectors x1, ..., xr1

 W1, second r2 vectors belong to W2 and in
this way last rk vectors y1, ..., yrk

 belong to Wk.
as W1 + W2 + ... + Wk = W1 

k
 W2  ...  Wk

Then v = linear combination of x1, ..., xr1
 + ... + linear combination of y1, ..., yrk

.
v  W1 + ... + Wk

 V = W1 + ... + Wk
 dim V = dim (W1 + ... + dim Wk)

= dim W1 + ... + dim Wk
  (by above theorem)

Conversely, let dim V = dim W1 + ... + dim Wk = dim W
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dim W = dim V
 W = V

If i is a basis of Wi  i, by above theorem  = { 1, ..., k} is a basis of W = V
Since each i consists of eigen vectors only,  is a basis of V consisting of eigen vectors

only.
T is diagonalisable.

Theorem 7: Let T be a linear operator on a finite dimensional vector space V(F). Then T is
diagonalisable if and only if the characteristic polynomial f (x) of T is

f (x) = (x – c1)
d1 ... (x – ck)

dk,
where di = dim Wi
and d1 + ... + dk = dim V = n

Proof: Since T is diagonalisable,  an ordered basis  = {v1, ..., vn} s.t. [T]  = 1 0
0 n

c
c

1 0c1

0 nc0 c
 .

Suppose c1 appears d1 times, ..., ck appears dk times, then

[T]  = 

1

1

:

:
k

k

c O

c

c

O c

c O1c O11c O1c O1

::

1c11c

ckkc
:

kO ckO c



 characteristic polynomial for T is given by
f (x) = (x – c1)

d1 ... (x – ck)
dk, d1 + ... + dk = n

 [T – ciI]  has only di zeros on the diagonal for all i = 1, ..., k
 Rank [T – ciI] = n – di for all i = 1, ..., k (See Remark 9 on page 595)

 nullity (T – ciI) = di for all i = 1, ..., k
 dim Wi = di for all i = 1, ..., k. (Wi = Ker (T – ciI))

Conversely, since d1 + d2 + ... + dk = dim V
dim W1 + dim W2 + ... + dim Wk = dim V

By theorem 6 then T is diagonalisable.

Definition: Let T be a linear operator on a F.D.V.S. V. Let c  F be an eigen value of T. The
dimension of eigen space Wc is called the geometric multiplicity of c. Also the multiplicity of
c as a root of the characteristic polynomial of T is called the algebraic multiplicity of c.

If we denote the geometric multiplicity of c by G.M. and the algebraic multiplicity of c by
A.M. we can prove
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Theorem 8: G.M.  A.M.

Proof: Let dim Wc = g = G.M. and A.M. = m
Let {x1, x2, ... , xg} be a basis of Wc then it can be extended to a basis

 = {x1, x2, ..., xg, y1, ..., yn} of V.
Now  T(x1) = cx1 = cx1 + ox2 + ... + oxg + oy1 + ... + oyn

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .
T(xg) = cxg = ox1 + ... + oxg – 1 + cxg + oy1 + ... + oyn

Let  A = [T] , then A = 
–gcI

O B

–gcIgcIggg

O BO B
where Ig denotes g × g identity matrix and B is n × n matrix.
Let  f (x) be the characteristic polynomial of T (or A), then

f (x) = xI – A  = 
( – ) –

–
g

n

x c I

O xI B

( – ) –( – ) –g( – ) –( – ) –x c I( – ) –( – ) –g( – ) –x c I( – ) –g( – ) –g( – ) –g( – ) –g( – ) –

nO xI B–O xI B–nO xI BnO xI B

= (x – c)g x In – B
 algebraic multiplicity of c is at least g.
Hence G.M.  A.M.

Example 7: Let A = 
0 1 0
1 0 0
0 0 1

0 1 0
1 0 01 0 01 0 0
0 0 1

Then characteristic polynomial of A is (x + 1) (x – 1)2

Let c = 1, then eigen space Wc = <
1
1
0

1
111
0

, 
0
0
1

0
000
1

>

(See Problem 10)
Thus, geometric multiplicity of c is 2 and algebraic multiplicity of c is 2.

Theorem 9: Let T be a linear operator on a finite dimensional vector space V(F). Then T is
diagonalisable if and only if algebraic multiplicity of ci is same as geometric multiplicity of
ci 
diagonalisable if and only if algebraic multiplicity of c

 i.

Proof: Suppose T is diagonalisable.
By theorem 7, the characteristic polynomial f (x) of T is

f (x) = (x – c1)d1 ... (x – ck)
dk.

where di = dim Wi, d1 + ... + dk = n.
 algebraic multiplicity of ci = di = dim Wi = geometric multiplicity of ci  i.

Conversely, let f (x) be the characteristic polynomial of T. Let di be the algebraic multiplicity
of ci 

Conversely
 i.

Then f (x) = (x – c1)
d1 ... (x – ck)

dk,
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di = dim Wi  i by hypothesis
By theorem 7, T is diagonalisable.

Theorem 10: Let T be a linear operator on a finite dimensional vector space V(F). Let p(x)
be the minimal polynomial of T. Then T is diagonalisable if and only if

p(x) = (x – c1) ... (x – ck), where c1, c2, ..., ck  F are distinct.

Proof: Let p(x) = (x – c1) ... (x – ck)

Let fi (x) = ( )
( – )i

p x
x c

, i = 1, 2, ..., k.

Then g.c.d. ( f1, f2, ..., fR) =1
 g1, g2, ..., gk  F [x] such that

g1 f1 + ... + gk fk = 1
g1(T) f1(T) + ... + gk fk(T) = I

Let v  V
Then v = g1(T) f1(T)v + ... + gk(T) fk(T) (v)

f1(T)v = (T – c2I) ... (T – ckI)(v)
 (T – c1I) f1(T)(v) = (T – c1I)(T – c2I) ... (T – ckI)(v)

= p(T)(v)
= 0

 f1 (T)(v)  Ker (T – c1I) = W1
 g1(T) f1(T)(v)  W1
(as w1  W1 T(w1) = c1w1

 T r (w1) = cr
1w1  W1)

Similarly, gi (T) fi (T) (v)  Wi  i
v  W1 + ... + Wk

 V = W1 + ... + Wk
 dim V = dim W1 + ... + dim Wk (by theorem 5)
 T is diagonalisable.
Conversely, let T be diagonalisable then  a basis  = {v1, ..., vn} of V such that each vi

is an eigen vector of T.
Now (T – c1I ) ... (T – ckI) (vi) = 0  i
as each vi belongs to some eigen space.

Wj = Ker (T – cj I).
p(x) = (x – c1) ... (x – ck) is the minimal polynomial of T.

Theorem 11: Let T be a linear operator on an n-dimensional vector space V, and suppose that
T has n distinct characteristic values. Then T is diagonalisable.

Proof: Let c1, ..., cn be distinct eigen values of T and v1, ..., vn be corresponding eigen vectors
of T.

   T(vi) = ci vi for all i = 1, ..., n
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 (T – cI)vi = 0 for all i, vi  0
 0 vi  Ker (T – ciI)
 dim (Ker (T – ciI)  1
 dim Wi  1, where Wi = Ker (T – ci I) = eigen space of T
 dim W1 + ... + dim Wn  n = dim V
 dim (W1 + ... + Wn)  dim V
 dim (W1 + ... + Wn) = dim V as W1 + ... + Wn  V
 dim W1 + ... + dim Wn = dim V
 T is diagonalisable by Theorem 6.

However the converse of above theorem need not be true. Consider

Example 8: Let T be a linear operator on R3 such that matrix of T w.r.t. standard basis

of R3 is A = 
0 1 0
1 0 0
0 0 1

0 1 0
1 0 01 0 01 0 0
0 0 1

Then eigen values of A (or T) are 1, –1, –1.
(See problem 10) dim W1 = 2, dim W–1 = 1

 dim W1 + dim W –1 = 3 = dim R3

T is diagonalisable but eigen values of T are not distinct.

Theorem 12: Let T be a linear operator on a finite dimensional vector space V over F. Let
c1, ..., ck be distinct eigen values of T and v1, ..., vk be corresponding eigen vectors of T. Then
v1, ..., vk are linearly independent. (See problem 4).

Proof: Let 1 v1 + ... + kvk
 = 0

Then w1 + ... + wk = 0
where wi = i vi  Wi = eigen space of T w.r.t. ci

Since W1 + ... + Wk is direct sum, wi = 0  i

ivi = 0  i, vi  0
 i = 0  i

 v1, ..., vk are linearly independent.

Note: If T is diagonalisable operator, then  a basis  of V s.t. [T]  = diagonal matrix = A.
If  is any other basis of V, then 

 is diagonalisable operator, then 
 matrix P s.t. [T]  = P–1AP. We say that [T]  is similar

to diagonal matrix. So if T is diagonalisable, then matrix of T w.r.t. any basis is similar to a
diagonal matrix. This leads us to the following definition:

Let A be n × n matrix. We say A is diagonalisable if A is similar to a diagonal matrix, i.e.
A = P–1BP, B = diagonal matrix.

One may notice that we can have a non diagonal matrix which is similar to a

diagonal matrix. For instance, A = 
1 1
0 2
1 1
0 20 2

 has distinct eigen values 1 and 2 and so is similar

to a diagonal matrix although A itself is not a diagonal matrix.
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Remarks: (1) Let A = [T] . Suppose A is diagonalisable. Then T is diagonalisable.

Proof: Since A is diagonalisable,  matrix P s.t. A = P–1 BP, where B = diagonal matrix
(c1, ..., c1, ..., ck, ..., ck).

f (x) = characteristic polynomial of T
= (x – c1)

d1 ... (x – ck)
dk, where ci's are distinct and d1 + ... + dk = n = dim V.

Now B 

1
0

0

1
000

00


 = c1 

1
0

0

1
000

00


.

X1 = 

1
0

0

1
000

00


 = eigen vector of B w.r.t. eigen value c1 of B

So, A(P–1X1) = (P–1BP) (P–1X1)
= P–1 BX1
= P–1 c1X1

= c1(P–1X1)
P–1X1 = eigen vector of A w.r.t. eigen value c1 of A. Similarly,

X2 = 

0
1

0

0

0
111

000

00





 = eigen vector of B.

 P–1X2 = eigen vector of A.
In this way, X1, X2, ..., Xd1

 are eigen vectors of B.

 P–1X1, P–1X2, ..., P–1Xd1
 are eigen vectors of A w.r.t. eigen value c1.

Let
1

1

d

i 1

1d1d1

i 1
iP

–1Xi = 0, i  F

Then P–1 
1

1

d

i 1

1d1d1

i 1
i Xi = 0  

1

1

d

i 1

1d1d1

i 1
iXi = 0  1

1

0

0

d

11

d11d1d11d1d1

00

0





 = 0
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i = 0  i = 1, ..., d1

So, P–1X1, ..., P–1Xd1
 are L.I. vectors.

 dim WWc1
  d1, where Wc1

 = eigen space of A w.r.t. eigen value c1 of A.
So, dim Wc1

  d1, where Wc1
 = eigen space of T w.r.t. eigen value c1 of T.

Similarly, dim Wci
  di  i = 1, 2, ..., k.

Suppose dim Wci
 > di for some i. Let W = Wc1

 + ... + Wck.

Then dim W = 
1

k

i 1

k

i 1
dim Wci > d1 + ... + di + ... + dk = n.

  dim W > dim V, a contradiction.
So, dim Wci = di  i.
Hence T is diagonalisable by theorem 7.
(2) Let X1, ..., Xk be eigen vectors corresponding to eigen values c1, c2, ..., ck of an

n × n matrix A over F. Then {X1, ..., Xk} is a L.I. set.

Let X1 = 

11

1n

1111

1n




, ..., Xk = 

1k

nk

1k1k

nk




Then AXi = ci Xi
Let  = {e1, e2, ..., en} be a basis of some vector space V, then  a linear

transformation T : V  V, s.t.,
T(e1) = a11e1 + ... + an1en
. . . . . . . . .
T (en) = a1ne1 + ... + annen

where A = (aij).
Then A = [T]
Let v1 = 11e1 + ... + an1en

. . . . . . . . .
vk = 1ke1 + ... + anken

Then v1, ..., vk are eigen vectors of T s.t.,
T(vi) = civi, i = 1, 2, ..., k (See Remark 7, page 594)

 By theorem 12, {v1, v2 ..., vk} is L.I.
Let 1X1 + ... + k Xk = 0, i  F

Then 1 

11

1n

1111

1n




 + ... + k 

1k

nk

1k1k

nk




 = 0
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Thus 1 11 + ... + kk 1k = 0
. . . . . . . . .

1 n1 + ... + kk nk = 0
So 1( 11e1 + ... + an1en) + ... + k( 1ke1 + ... + ankek) = 0

 1v1 + 2v2 + ... + kvk = 0
 i = 0  i
 {X1, X2, ..., Xk} is a L.I. set.

Theorem 13: Let A be an n × n matrix. Then A is diagonalisable if and only if A has n linearly
independent eigen vectors.

Proof: Suppose A is diagonalisable, then  a non-singular matrix P s.t.,
P–1AP = D = diag (c1, c2, ..., cn)

or AP = PD
Let     P = [X1, X2, ..., Xn]
Then AP = [AX1, AX2, ..., AXn]

PD = [c1X1, c2X2, ..., cnXn]
Thus AXi = ciXi i = 1, 2, ..., n
Since P is invertible, Xis are L.I. eigen vectors. So Xi  0  i
Hence X1, X2, ..., Xn are eigen vectors of A.
Conversely, let X1, X2, ..., Xn be L. I. eigen vectors of A, corresponding to eigen values

c1, c2, ..., cn of A
Then AXi = ci Xi  i
Let   P = [X1, X2, ..., Xn]
Since Xi  are linearly independent, P is invertible
Thus AP = [AX1, AX2, ..., AXn]

= [c1X1, c2X2, ..., cnXn]
= PD, where D = diag (c1, c2, ..., cn).

i.e., A = PDP–1

Hence A is diagonalisable.

Problem 22: Show that A = 
0 1
0 0
0 1
0 00 0

 and B = 
1 0

0 1
0 0

1 01 0
0 10 10 10 10 10 1
0 0

 are not diagonalisable.

Solution: Since A is a triangular matrix, entries on diagonal are eigen values of A and thus 0
is the only eigen value of A.

If A is diagonalisable then A is similar to a diagonal matrix D.

A = P–1 1

2

0
0
c

c
1 0c1

20 c20 c
 P

 c1 = c2 = 0
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i.e., A = 0, a contradiction and so A is not diagonalisable.
Again,  will be the only eigen value of B and if B is diagonalisable then

B = P–1 
1

2

3

0 0
0 0
0 0

c
c

c

1 0 0c
0 0
1

20 020 02c0 0c0 00 020 020 0c0 0

330 0 c
 P

 c1 = c2 = c3 =  and so B = I, a contradiction.

Problem 23: Construct a diagonalisable 3 × 3 matrix A whose eigen values are

–2, –2, 6 and corresponding eigen vectors are 
1

–2
0

1
–2–2–2

0
, 

0
3
1

0
333
1

, 
2
1

–1

2
111

–1
.

Solution: Let D = 
–2 0 0
0 –2 0
0 0 6

–2 0 0
0 –2 00 –2 00 –2 0
0 0 6

, P = 
1 0 2

–2 3 1
0 1 –1

1 0 2
–2 3 1–2 3 1–2 3 1

0 1 –1

then A = P–1DP = 
–2 6 –6

0 3 –5
0 –3 1

–2 6 –6
0 3 –50 3 –50 3 –5
0 –3 1

.

Problem 24: Find A100 where A = 
1 2

3 4
1 21 2

3 43 4
.

Solution: 5 and –2 will be eigen values of A and so it is diagonalisable.

X1 = 
1
3
1
33

, X2 = 
–2

1
–2

11
 are corresponding eigen values

Let P = 
1 –2
3 1
1 –2
3 13 1

Then A = P–1 5 0
0 –2
5 0
0 –20 –2

P  A100 = P–1 
100

100

5 0

0 2

1005 01005 01005 0
1001000 21000 2

P

A100 = 
100

100

1 2 5 0 1 –21
–3 1 3 17 0 2

1001 2 5 0 1 –21001 2 5 0 1 –21001 2 5 0 1 –21001 2 5 0 1 –2
3 1–3 1 3 1–3 1 100 3 13 10 2100 3 10 2100 3 10 2

= 
100 100

100 100

1 2 5 –2.51
–3 17 3.2 2

100 1001 2 5 –2.5100 1001 2 5 –2.5100 1001 2 5 –2.51 2 5 –2.51 2 5 –2.51 2 5 –2.5
–3 1–3 1 100 100100 1003.2 2100 1003.2 2100 100100 1003.2 2100 1003.2 2100 1003.2 23.2 23.2 2

= 
100 100 100 100

100 100 100 100

5 6.2 –2.5 2.21
7 –3.5 3.2 6.5 2

100 100 100 1005 6.2 –2.5 2.2100 100 100 1005 6.2 –2.5 2.2100 100 100 100100 100 100 1005 6.2 –2.5 2.2100 100 100 1005 6.2 –2.5 2.2100 100 100 1005 6.2 –2.5 2.25 6.2 –2.5 2.25 6.2 –2.5 2.2
100 100 100 100100 100 100 100100 100 100 100–3.5 3.2 6.5 2100 100 100 100–3.5 3.2 6.5 2100 100 100 100–3.5 3.2 6.5 2100 100 100 100100 100 100 100100 100 100 100–3.5 3.2 6.5 2100 100 100 100100 100 100 100–3.5 3.2 6.5 2100 100 100 100–3.5 3.2 6.5 2100 100 100 100100 100 100 100100 100 100 100–3.5 3.2 6.5 2100 100 100 100
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Problem 25: If A = 
–2 6 –6

0 3 –5
0 –3 1

–2 6 –6
0 3 –50 3 –50 3 –5
0 –3 1

, find eigen values of A4 + A2 + 5A.

Solution: Eigen values of A are –2, –2, 6
Let f (x) = x4 + x2 + 5x. If c  F is an eigen value of A then f (c) is an eigen value of f (A).
Now f (–2) = (–2)4 + (–2)2 + 5(–2) = 10

f (6) = 64 + 62 + 5.6 = 1362
Thus eigen values of A3 + A2 + 5A are 10, 10, 1362.

Example 9: Let A = 
0 1 1
1 0 1
1 1 0

0 1 1
1 0 11 0 11 0 1
1 1 0

.

Then the characteristic polynomial of A is f (x) = (x + 1)2 (x – 2).

Also 
1 1
1 0
0 1

1 11 1
1 01 01 01 01 01 01 01 0
0 10 10 10 10 10 1

 is a basis of eigen space W–1 w.r.t. eigen value –1 and 
1
1
1

11
1111
11

 is a basis

of eigen space W2 w.r.t. eigen value 2.

P = 
1 1 1
1 1 0
1 0 1

1 1 1
1 1 01 1 01 1 01 1 01 1 01 1 0
1 0 11 0 1

  and P–1 = 
1 1 1

1 1 2 1
3

1 1 2

1 1 1
1 2 11 2 11 2 11 2 11 2 11 2 1
1 1 21 1 2

.

So, P–1A P = 
2 0 0
0 1 0
0 0 1

2 0 0
0 1 00 1 00 1 00 1 00 1 00 1 0
0 0 10 0 1

 .

This provides a method of diagonalising a matrix.
Problem 26: Let A be an n  n matrix over F such that its diagonal elements are ‘a’ and other
elements are ‘b’ where a and b are in F. Show that A is diagonalisable, if char F = 0 or char
F does not divide n.
Solution: Let f(x) be the characteristic polynomial of A.
Then f(x) = |xI  A|

= 

x a b b
b x a b

b
b b x a

x a b b
b x a b

b
b b x a

Apply C1  C1 + C2+ . . .+Cn
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= 

( 1)
( 1)

( 1)

x a n b b b
x a n b x a b

x a n b x a

( 1)x a n b b( 1)x a n b b( 1) b
( 1)x a n b x a( 1)x a n b x a( 1) b

( 1)x a n b( 1)x a n b( 1) x a

  = (x  a  (n  1)b)

1
1

1

b b
x a b

x a

b b
x a b

x a

Apply R2  R2  R1, R3  R3  R1, . . .Rn  Rn  R1

  =  (x  a  (n  1)b)

1
0 0

0

b b
x a b

x a b

b b
0 0x a b0 0x a b0 0

x a b

  = (x  (a + (n  1)b)) (x  (a  b))n 1

Let p(x) be the minimal polynomial of A.
Then p(x) = (x  (a + (n  1)b)) (x  (a  b))
Since p(x) is the product of linear factors in F[x], A is diagonalisable.

Problem 27: In above problem, find P such that PIn above problem, find P such that P 1AP is diagonal.

Solution: A = 

a b b
b a b

b b a

a b b
b a bb a bb a b

b b ab b a
  

Then A 

1 ( 1) 1
( 1)

( 1)

1 ( 1) 1

a n b
a n b

a n b

a n b

11 ( 1)1 ( 1)a n b1 ( 1)1 ( 1)a n b1 ( 1)a n b1 ( 1)
a n b

1 ( 1)1 ( 1)
( 1)a n b( 1)a n b( 1)a n ba n b( 1)a n b( 1)

( 1)
a n b

a n b( 1)a n b( 1)
a n b( 1)a n b( 1)a n b( 1)a n b( 1)a n b( 1)

( 1)( 1)a n b( 1)a n b( 1)

1 ( 1) 11 ( 1)a n b1 ( 1) 11 ( 1)1 ( 1)a n b1 ( 1)1 ( 1)a n b1 ( 1)a n b1 ( 1)1 ( 1)a n b1 ( 1)a n b1 ( 1)

 
  

So, 

1

1

1

11




is an eigen vector of A with respect to eigen value a + (n  1)b.
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Also

1 1
1 1

( )0 0 0

0 0 0

a b
a b

A a b

1 1a b1 1a b1 11 1a b1 1a b1 1
1 1a b1 1a b1 11 1a b1 1a b1 11 11 1a b1 1

0 0 00 0 0( )0 0 0( )0 0 0( )( )a b( )( )0 0 0( )a b( )0 0 0( )0 0 00 0 0( )0 0 0( )0 0 0( )( )a b( )( )0 0 0( )a b( )0 0 0( )

0 0 0
  

So, 

1
1

0

0

1
111

00

0


is an eigen vector of A with respect to eigen value a  b.

In this way, we get all n  1 eigen vectors of A with respect of eigen value a  b.

Therefore,

1 1 1 1
1 1 0 0

0 1 0
0

0
1 0 0 1

P

1 1 1 1
1 1 0 01 1 0 01 1 0 01 1 0 01 1 0 01 1 0 01 1 0 0

0 1 00 1 00 1 0
0

0 1 00 1 00 1 0
00

00
1 0 0 11 0 0 11 0 0 11 0 0 1




  
  



Such that 1

( 1) 0 0
0 0

0 0

a n b
a b

P AP

a b

1P AP1P AP1

( 1) 0 0a n b( 1) 0a n b( 1) 0a n b( 1) 0
0 0a b0 0a b0 0

( 1) 0( 1) 0
0 0a b0 0a b0 00 00 0a b0 00 00 0a b0 00 00 0a b0 00 00 0a b0 0

0 0 a b0 0 a ba ba b
 

= diag (a + (n  1)b, a  b,. . ., a  b).

Problem 28: Let A = 
6 –3 –2
4 –1 –2

10 –5 –3

6 –3 –2
4 –1 –24 –1 –24 –1 –2

10 –5 –3
.

Show that A is not similar over R to a diagonal matrix whereas A is similar over C to a
diagonal matrix.

Solution: Characteristic polynomial of A is (x – 2) (x2 + 1)
If A is similar to a diagonal matrix over R, then  matrix P s.t.
P–1AP = diag (a, b, c), a, b, c are real. Eigen values of P–1AP are eigen values of A = 2,

±i. But eigen values of diag (a, b, c) are a, b, c by (problem 11) where a, b, c are all real, a
contradiction.

 A is not similar over R to a diagonal matrix.
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Since eigen values of A are distinct, by Theorem 11, A is similar over C to a diagonal matrix.
Problem 29: Let V be the vector space of n × n matrices over F. Let A be a fixed
n × n matrix over F. Let T be the linear operator "left multiplication by A" on V. Show that
T and A have the same eigen values.

Solution: Let c be an eigen value of A.
Then  AX = cX for some 0  X (X = n × 1 matrix).
Now  T(XX t) = AXX t = cXX t (X t means transpose of X)
If  XX t = 0, then

1

n

x

x

1x1x

nnx
  [x1, ..., xn] = 0


1
2x  = 

2
2x  = ... = 2

n
x  = 0

 xi = 0 for all i  X = 0, a contradiction
XX t  0

So, c is also an eigen value of T.
Conversely, let c be an eigen value of T.
Then  0  B  V s.t. T(B) = cB

 AB = cB
 ABX = cBX for all column matrices X

If BX = 0 for all X, then B 

1
0

0

1
000

00


= 0

 1st column of B is zero.

Similarly, B 

1
0

0

1
000

00


 = 0  2nd column of B is zero.

In this way, all columns of B are zero.
BX  0 for some X
c is also an eigen value of A.

Thus T and A have same eigen values.

Problem 30: Let A and B be n × n matrices over F. Show that AB and BA have same char-
acteristic polynomial.

Solution: Let C = 
0
n

n

I A
I

nI AnI Ann

0 nInIn0 I
be 2n × 2n matrix over F.
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Then C–1 = 
0
n

n

I A
I

nI AnI AnI An

0 nInIn0 I

Let D = 
0
0

AB
B

0AB
0B 0B

be 2n × 2n matrix over F.

Then C–1DC = 
0 0
B BA
0 0
B BAB BA

 = E

Since D and E are similar matrices.
Characteristic polynomial of D and E are same

0n

n

xI
B xI BAnB xI BAnB xI BAn

 = 
0n

n

xI AB
B xI

xI AB
B xI

 xn | xIn – BA | = xn | xIn – AB |
 | xIn – BA | = | xIn – AB |
 charactersitic polynomial of BA = characteristic polynomial of AB.

Primary Decomposition Theorem

Theorem 14: Let T be a liner operator on a finite dimensional space V over F. Let p(x) be
the minimal polynomial for T s.t.

p(x) = p1(x)r1 ...... pk(x)rk

where the pi(x) are distinct irreducible monic polynomials over F and ri are +ve integers.
Let Wi be the null spaces of pi(T)ri, i = 1, . . ., k. Then

(i) V = W1  Wk
(ii) each Wi is invariant under T (i.e., T(Wi)  Wi  i)

(iii) if Ti is operator induced on Wi by T, then the minimal polynomial qi(x) for Ti is pi(x)ri.

Proof: Let fi(x) = 
( )
( ) ir

i

p x
p x

, i = 1, 2, ..., k

Then g.c.d. (f1(x), ..., fk(x)) = 1
 g1(x), ..., gk(x)  F [x] such that

g1(x) f1(x) + ... + gk(x) fk(x) = 1
 g1(T) f1(T) + ... + gk(T) fk(T) = I

Let v  V, then
v = g1(T) f1(T)(v) + ... + gk(T) fk(T)(v)

Now pi(T)ri f i(T) gi(T) = p(T) gi(T) = 0
gi(T) fi(T)(v) = fi(T)gi(T)(v)

 pi(T)ri
 
gi(T) fi(T)(v) = 0

 gi(T) fi(T)(v)  Ker pi(T)ri = Wi
 v  W1 + ... + Wk
 V = W1 + ... + Wk
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or that V = W1  ...  Wk
For let x1 + ... + xk = 0, xi  Wi
then x1 = – (x2 + ... + xk)

 f1(T) x1 = 0 as  i  1, f1(T) xi = 0
Now g.c.d. (f1(x), p1(x)r1) = 1
So  q1(x), r1(x)  F[x] such that

f1(x) q1(x) + p1(x)r1 r1(x) = 1
 I = q1(T) f1(T) + r1(T) p1(T)r1

 x1 = 0
Similarly xi = 0  i
This proves (i).
Let  xi  Wi = Ker pi(T)

ri

Then pi(T)ri (xi) = 0
 Tpi(T)ri (xi) = 0
 pi(T)ri (T(xi)) = 0
 T(xi)  Wi  i
 Wi is T-invariant  i

which proves (ii).
Again, since pi(T)ri (xi) = 0  xi  Wi

pi(T)ri = 0 on Wi

 pi(Ti)
ri = 0 as T restricted to Wi is Ti.

 qi(x) | pi(x)ri  qi(x) = pi(x)si, si  ri

Let f (x) = f i(x)pi(x)si

and let v  V then v = w1 + ... + wk,  wi  Wi
 f (T )(v) = fi(T) pi(T)siwi

  fi(T) wj = 0  j  i
 f (T)(v) = fi(T)qi(T)wi

= fi(T) qi(Ti) wi

= 0 as qi(Ti) = 0
 f (T) = 0

p(x) | f(x)
 pi(x)ri | pi(x)si

 ri  si
ri = si

So, qi(x) = pi(x)ri

which proves (iii).
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Cor.: If T is a linear operator on a finite dimensional space V over F and minimal polynomial
p(x) of T is a product of distinct linear factors, then T is diagonalisable.

Proof: Let p(x) = (x – c1) ... (x – cr), where ci are distinct roots of p(x) in F. By primary
decomposition theorem

V = W1  ...  Wr, where each Wi = Null space of (T – ciI)
v  Wi (T – ciI)v = 0

 T(v) = civ
every non zero vector in Wi is an eigen vector of T corresponding to eigen value ci of

T. If 
every non zero vector in 
i is a basis of Wi, then {

i is an eigen vector of 
i, ..., 
 is an eigen vector of 

r} is a basis of V. 
 corresponding to eigen value 

i consists of eigen vectors of
T  {

i

1, ..., r} =  consists of eigen vectors of T and is a basis of V  T is a diagonalisable.

Problem 31: Let T and S be linear operators on V(F), each having all its eigen values in F
such that TS = ST.

Show that they have a common eigen vector.

Solution: Let c be an eigen value of T. Let Wc = {v  V T(v) = cv} be the eigen space w.r.t.
eigen value c.

Let v  Wc.
Then T(S(v)) = (TS)(v)

= (ST)(v)
= S(T(v))
= S(cv)
= cS(v)

S(v)  Wc  v  Wc  S : Wc  Wc.
S is a linear operator on Wc.

Let  F be an eigen value of S as linear operator on Wc.
 w  Wc such that

S(w) = w, w  0
w Wc  T(w) = cw

w is a common eigen vector of T and S.

Problem 32: Let N be 2 × 2 complex matrix such that N2 = 0. Prove that either N = 0 or N is

similar over C to 
0 0
1 0
0 0
1 01 0

.

Solution: Let T : V  V be a linear operator such that
[T]  = N,  = {v1, v2} is a basis of V.

Now 0 = N 2 = N . N = [T]  [T]  = [T 2]
 T 2 = 0.

Suppose N  0, i.e., T  0.
Let  be an eigen value of T.
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Then there exists 0  v  V s.t.
T(v) = v

 T 2(v) = (T(v)) = 2v
 0 = 2v
 2 = 0 as v  0
  = 0
 0 is the only eigen value of T.

Let Wo be the eigen space of T w.r.t. eigen value 0.
Then Wo = {x  VV T(x) = 0} = Ker T
Since 0  v  Wo, Wo  {0}
So, dim Wo = 1 or 2.
If dim Wo = 2, then dim Wo = dim V
 Wo = V  Ker T = V  T = 0, which is not true.
Therefore, dim Wo = 1.
Let Wo = < w2 >
There exists a subspace W  of V s.t.

V = W   Wo
Since dim V = 2, dim Wo = 1, dim W  = 1.
Let W  = < w1 >
Then {w1, w2} is a basis of V.
Let T(w1) = 1w1 + 2w2

T(w2) = 0w1 + 0w2  as w2  Ker T.
But T2 = 0  0 = T 2 (w1)

= 1T(w1) + 2T(w2)
= 1T(w1)
= 1( 1w1 + 2w2)

= 
1
2
1
2 w1 + 1 2w2

 1 = 0 ( 2  0 as 2 = 0  w1  Ker T
 w1  Wo  W  = {0}
 w1 = 0 which is not true).

So, T(w1) = 2w2.
Now { –1

2 w1, w2} =  is also a basis of V
as a –1

2 w1 + bw2 = 0
  a –1

2 = 0, b = 0
 a = 0 = b.
 { –1

2 w1, w2} =  is a L.I. set
  is a basis of V as dim V = 2
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Therefore, T ( –1
2 w1) = –1

2 T (w1)
= –1

2 2w2 = w2

= 0 –1
2 w1 + 1w2

 [T]  = 
0 0
1 0
0 0
1 01 0

Also [T]  = N

 N is similar to 
0 0
1 0
0 0
1 01 0

 over C.

Problem 33: Show that if A is a 2 × 2 matrix over C then A is similar to a matrix of the type
0

0
a

b
0a

0 b0 b
 or 

0
1
a

a
0a

1 a1 a
 over C.

Solution: Let f (x) be the characteristic polynomial of A. If the roots of f (x) are distinct, then
A is diagonalisable.

So, A = P–1BP, B = 
0

0
a

b
0a

0 b0 b
 a, b  C.

 A is similar over C to 
0

0
a

b
0a

0 b0 b

If the roots of f (x) are same, let f (x) = (x – )2

Then 0 = f (A) = (A – I)2

Let N = A – I

By above problem either N = 0 or N is similar over  C  to  
0 0
1 0
0 0
1 01 0

.

If N = 0, then A = I = 
0

0
00

00

 A is similar over C to 
0

0
00

00

If N = Q–1 0 0
1 0
0 0
1 01 0

Q

Then A – I = Q–1 0 0
1 0
0 0
1 01 0

Q

 A = 
0

0
00

00
 + Q–1 0 0

1 0
0 0
1 01 0

Q

= Q–1 0 0 0
0 1 0

0 0 00 0 00 0 00 0 00 0 0
0 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 0

Q
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= Q–1 0
1

00
11

Q

 A is similar over C to the matrix of the type 
0

1
00

11
.

Problem 34: Give an example to show that AB is diagonalisable and BA is not diagonalisable,
where A and B are n × n matrices over F.

Solution: Let A = 
0 1
0 0
0 1
0 00 0

, B = 
1 0
0 0
1 0
0 00 0

Then AB = 
0 0
0 0
0 0
0 00 0

So, AB is a diagonal matrix. AB is a diagonalisable matrix.

Now BA = 
0 1
0 0
0 1
0 00 0

 and (BA)2 = 0

 minimal polynomial of BA is x2.
So, the minimal polynomial of BA is not product of distinct linear factors.

BA is not diagonalisable.

Problem 35: If T is an idempotent linear operator (i.e., T2 = T) then show that 0 or 1 are only
eigen values of T and T is diagonalisable.

Solution: Let     f (x) = x (x – 1) = x2 – x
then f (T) = T2 – T = 0
If p(x) is the minimal polynomial of T, then p(x) f (x).

p(x) = x or x – 1 or x(x – 1)
The eigen values of T are the roots of the minimal polynomial of T.

 0 or 1 are only eigen values of T.
In each case p(x) = x or x – 1 or x(x – 1),
p(x) is product of distinct linear factors. So, T is diagonalisable.

Problem 36: Give an example of a linear operator T having eigen values 0 and 1 but T is
not idempotent.

Solution: Let T be a linear operator on V where dim V = 3 such that matrix of T w.r.t. a basis
of V is

A = 
0 1 1
0 1 1
0 0 1

0 1 1
0 1 10 1 10 1 1
0 0 1

Then eigen values of A (or T) are entries on the diagonal as A is a triangular matrix.
 eigen values of T are 0, 1, 1.



628 A Course in Abstract Algebra

But A2 = 
0 1 1
0 1 1
0 0 1

0 1 1
0 1 10 1 10 1 1
0 0 1

 
0 1 1
0 1 1
0 0 1

0 1 1
0 1 10 1 10 1 1
0 0 1

= 
0 1 2
0 1 2
0 0 1

0 1 2
0 1 20 1 20 1 2
0 0 1

  A

A is not idempotent.
So, T is not idempotent.

Exercises
1. Find the characteristic polynomial for identity and zero operator on

n-dimensional space.
2. Give an example of a 2 × 2 matrix A such that A and transpose of A do not have same

eigen values.

A = 
1 1
0 2
1 1
0 20 2

3. Show that A is nilpotent if and only if all eigen values of A are zero.
4. Show that any nilpotent matrix has trace zero.
5. Let A, B be n × n matrices over a field F. Prove that if (I – AB) is invertible then I

– BA is invertible and (I – BA)–1 = I + B(I – AB)–1A.
6. Find the eigen values and bases for the eigen spaces of the matrix

A = 
2 1 0
0 1 –1
0 2 4

2 1 0
0 1 –10 1 –10 1 –1
0 2 4

Is A diagonalisable

2, 3 
1
0
0

1
000
0

, 
1
1

–2

1
111

–2
7. Find eigen values, eigen vectors and eigen spaces of the matrix

A = 
–2 6 –6

0 3 –5
0 –3 1

–2 6 –6
0 3 –50 3 –50 3 –5
0 –3 1

Show A is diagonalisable

–2, –2, 6, 
1
0
0

1
000
0

, 
0
1
1

é ù
ê ú
ê ú
ê ú
ê ú
ë û

, 
6
5

–3

6
555

–3
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Eigen space corresponding to eigen value –2 is spanned by 
1
0
0

1
000
0

, 
0
1
1

0
111
1

and corresponding to eigen value 6 is spanned by 
6
5

–3

6
555

–3
.

8. Let A = 
a b
c d
a b
c dc d

 and  = (a – d)2 + 4bd. Show that

(i) If  > 0 then A is diagonalisable.
(ii) If  < 0 then A is not diagonalisable and

(iii) If  = 0 then A many or may not be diagonalisable.
9. Find the characteristic roots and characteristic vectors for the matrix

A = 
2 2 1
1 3 1
1 2 2

2 2 1
1 3 11 3 11 3 1
1 2 2

.

[1, 1, 5]
10. Let T be a linear operator on a vector space V(F). If q(x)  F [x] be such that q(T)

= 0 then is every root of q(x) in F a characteristic root of T? Justify.
11. Let A be an n × n matrix with characteristic polynomial

f (x) = (x – c1)
d1 ... (x – ck)

dk.
Show that trace A = c1d1 + c2d2 + ... + ckdk.

12. Let  be an eigen value of n × n matrix A. Prove that
(i) transpose of A has the same eigen value as that of A

(ii) kA has eigen value kk  for any scalar k
(iii) Ar(r is a positive integer) has the eigen value r

(iv) If A is invertible, A–1 has the eigen value 1 .

(v) the matrix A + kI has the eigen value  + k.

13. For the matrix A = 
1 2 0
2 1 –6
2 –2 3

1 2 0
2 1 –62 1 –62 1 –6
2 –2 3

 find P such that P–1AP is a diagonal matrix.

1 1 –1
2 1 2

–1 0 1

1 1 –1
2 1 22 1 22 1 2

–1 0 1
.
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14. For the matrix 
1 1 2

–1 2 1
0 1 3

1 1 2
–1 2 1–1 2 1–1 2 1
0 1 3

 find P such that P–1AP is a diagonal matrix.

1 1 1
2 –1 0

–1 1 1

1 1 1
2 –1 02 –1 02 –1 0

–1 1 1
.

15. Let T be a linear operator on a F.D.V.S.V. Suppose T is diagonalisable. Show that
T = Ker T  ImT

16. Show that the eigen values of A = 

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

0 1 0 0
0 0 1 00 0 1 00 0 1 0
0 0 0 10 0 0 1
1 0 0 01 0 0 0

 are the fourth roots of unity.

17. Let T be a linear operator on V such that T is diagonalisable. Show that
(T – 

 be a linear operator on 
I)n(v) = 0, v 
 be a linear operator on 

 V, 
 be a linear operator on 

 F  (T – I )(v) = 0.
18. Let T be a linear operator on V s.t., T m = I. Let char F = 0. Suppose T has all eigen

values in F. Show that T is diagonalisable.
[Hint: If g.c.d. (f, ff ) = 1, then roots of f are simple.]

Invariant Subspaces

Definition: Let T be a linear operator on a vector space V. If W is a subspace of V s.t. T(W)
 W, we say W is invariant under T or is T-invariant.

Example 10: Since T(0) = 0 and T(V) = V, both zero subspace and V are invariant subspaces
of V.

Example 11: Let v  Ker T then T(v) = 0  Ker T  Ker T is invariant subspace of V. Also
w 
Example 11:

 ImT  w = T(v)  Tw = T(Tv), Tv  V  Tw  ImT.
ImT is an invariant subspace of V.

Example 12: Let f (t) be any polynomial. Let v  Ker (f (T)) then f (T) v = 0
Since f (t) . t = t f (t)

f (T)T = Tf (T)
Thus, f(T) Tv = Tf (T) v = 0

 Tv  Ker f (T)
 Ker f (T) is invariant under T.

Problem 37: Let T be a linear operator on R2, the matrix of which in the standard ordered
basis is

A = 
1 –1
2 2
1 –1
2 22 2
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Prove that the only subspaces of R 2 invariant under T are R 2 and zero subspaces.

Solution: Characteristic polynomial of A (or T) is 
–1 1

–2 – 2
x

x
 = x2 – 3x + 4, whose roots

are not real. Thus eigen values of A (or T) do not exist in R. If W is an invariant subspace of
R 2 s.t. W 
are not real. Thus eigen values of 

 0, R then dim W = 1. Let W be spanned by v. Then Tv 
 is an invariant subspace of

 W  Tv = 
 is an invariant subspace of

v, v 
 is an invariant subspace of

 0
  is an eigen value of T (   R), a contradiction. Hence O and R 2 are only invariant
subspaces of R 2.

Theorem 15: Let W be an invariant subspace of linear operator T on V. Then T has a matrix

representation 
0
A B

C
A B
0 C0 C

, where A is matrix of restriction Tw of T on W..

Proof: Let {w1, ..., wr} be a basis of W. Let  = {w1, ..., wr, v1, ..., vs} be a basis of V, obtained
by extending basis of W.

Since T(w)  W for all w  W, we define Tw : W  W by Tw(x) = T(x) for all x  W.
Then Tw is operator in W.
Tw(w1) = T(w1) = a11w1 + ... + ar1wr
............................
Tw(wr) = T(wr) = a1rw1 + ... + arrwr

T(v1) = b11w1 + ... + br1wr + c11v1 + ... + cs1vs
......................
T(vs) = b1sw1 + ... + brswr + c1sv1 + ... + cssvs

Thus matrix of T w.r.t. basis  is 

11 1 11 1

1 1

11 1

1

0 0

0 0

r s

r rr r rs

s

s ss

a a b b

a a b b
c c

c c

11 1 11 1r s11 1 11 1r s11 1 11 1a a b b11 1 11 1a a b b11 1 11 111 1 11 1r s11 1 11 1a a b b11 1 11 1r s11 1 11 111 1 11 1r s11 1 11 1r s11 1 11 1

a a b b1 1a a b b1 1

0 0
r rr r rs1 1r rr r rs1 1r rr r rs1 1r rr r rs1 1a a b b1 1a a b b1 1r rr r rsa a b br rr r rs1 1r rr r rs1 1a a b b1 1r rr r rs1 1

11 10 0 sc c11 1c c11 10 0 c c

0 0 s ss1s ss1c c1c c1s ssc cs ss1s ss1c c1s ss10 0

 
     

 
 

     
 

= 
0
A B

C
A B
0 C0 C

 where A = (aij), B = (bij), C = (cij)

are of order r × r,  r × s, s × s respectively
Clearly, A is matrix of Tw w.r.t. {w1, ..., wr} = basis of W. Tw is called restriction of T on

W.
We now show that the matrix C obtained in theorem 15 is the matrix of some linear operator

on V
W

 induced by T.

Define T : V
W

  V
W

 s.t.,

T (W + v) = W + T(v), v  V
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Then T  is well defined as W + v = W + v
 v – v  W
 T(v – v )  W
 T(v) – T(v ) W
 W + T(v) = W + T(v )

Since T is linear transformation, so is T . Let {w1, ..., wr} be a basis of W.
Then it can be extended to form a basis of V. Let {w1, ..., wr, v1, ..., vs} be a basis of V.

Then {W + v1, ..., W + vs} is a basis of V
W

.

Now T (W + v1) = W + T(v1)
= W + b11w1 + ... + br1wr + c11v1 + ... + cs1vs
= W + c11v1 + ... + cs1vs
...................

T (W + vs) = W + T(vs) = W + b1sw1 + ... + brswr + c1sw1 + ... + cssvs.
= W + c1sv1 + ... + cssvs (as in theorem 15)

 matrix of T  w.r.t. basis {W + v1, ..., W + vs} of V
W

 is

11 1

1

s

s ss

c c

c c

11 1sc c11c c1111 1s

1s ssc c1c c1sc cs ssc cssc c

 
   
   

 

 = C

A special situation where B = 0 in theorem is obtained when V is a direct sum of two
invariant subspaces under T.

Problem 38: If W and U are invariant subspaces of a linear operator on a F.D.V.S. V over

F and V = U  W, then a basis  of V such that the matrix of T w.r.t.  is 
0

0
A

C
0A

0 C0 C
, wheree

A is the matrix of Tw on W and C is the matrix of Tu on U.
Solution: Let {w1, ..., wr} be a basis of W and {u1, ..., us} be a basis of U. Then
{w1, ..., wr, u1, ..., us} is a basis of W 

} be a basis of 
 U = V.

Now Tw(w1) = T(w1) = a11w1 + ... + ar1
wr

Tw(w2) = T(w2) = a12w1 + ... + ar2
w2

.........................
Tw(wr) = T(wr) = a1rw1 + ... + arrwr

as T(wi) W for all i = 1, ..., r
Similarly, Tu(u1) = T(u1) = c11u1 + ... + cs1us

Tu(u2) = T(u2) = c12u1 + ... + cs2us
...........................
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Tu(us) = T(us) = c1su1 + ... + cssus
as T(uj)  U for all j = 1, ..., s
So matrix of T w.r.t.  = {w1, ..., wr, u1, ..., ur} of V is given by

11 1

1

11 1

1

0 0

0 0
0 0

0 0

r

r rr

s

s ss

a a

a a
c c

c c

11 1 0 0ra a11 1a a11 111 1r

0 0a a1a a1

0 0
r rr1r rr1 0 0r rr1r rr1a a1a a1r rra ar rr1r rr1a a1r rr1

11 10 0 sc c11 1c c11 10 0 c c

0 0 s ss1s ss1c c1c c1s ssc cs ss1s ss1c c1s ss10 0

 
     

 
 

     
 

 = 
0

0
A

C
0A

0 C0 C

where A = (aij), C = (cij) are r × r and s × s matrices respectively. Clearly A is the matrix of
Tw on W and C is the matrix of Tu on U.

Problem 39: Let V be the vector space of all polynomials in x over F, of degree  5. Let T:
V  V be defined by T(1) = x2 + x4, T(x) = x + 1, T(x2) = 1, T(x3) = x3 + x2 + 1,
T(x4) = x4, T(x5) = 0. If W is the linear span of {1, x2, x4},

(a) Show that W is invariant under T.
(b) Find the matrix of Tw in a suitable basis of W.

(c) Find the matrix of T  in a suitable basis of 
V
W .

(d) Find the matrix of T in a suitable basis of V.

Solution (a): Let w  W. Then w = a + bx2 + cx4 where a, b, c  F.
T(w) = a . T(1) + bt(x2) + cT(x4)

= a(x2 + x4) + b + cx4

= b + ax2 + (a + c) x4

 W for all w  W
 W is invariant under T.

(b): Notice that {1, x2, x4} is linearly independent set over F and so forms a basis of W, and
it can be extended to form a basis, namely {1, x2, x4, x, x3, x5} of V.

Now Tw(1) = T(1) = x2 + x4 = 0 . 1 + 1 . x2 + 1 . x4

Tw (x2) = T(x2) = 1 = 1 . 1 + 0 . x2 + 0 . x4

Tw(x4) = T(x4) = x4 = 0 . 1 + x2 + 1 . x4

 matrix of Tw w.r.t. basis {1, x2, x4} of W is given by A = 
0 1 0
1 0 0
1 0 1

0 1 0
1 0 01 0 01 0 0
1 0 1

.

(c): Now {W + x, W + x3, W + x5} is basis of 
V
W .

T (W + x) = W + T(x) = W + x + 1
= W + x = 1 . (W + x) + 0(W + x3) + 0(W + x5)
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T (W + x3) = W + T(x3)
= W + x3 + x2 + 1
= W + x3

= 0(W + x) + 1(W + x3) + 0(W + x5)
T (W + x5) = W + T(x5)

= W + 0 = W = zero of 
V
W

= 0(W + x) + 0(W + x3) + 0(W + x5)

 matrix of T  w.r.t. basis {W + x, W + x3, W + x5} of 
V
W  is given by

C = 
1 0 0
0 1 0
0 0 0

1 0 0
0 1 00 1 00 1 0
0 0 0

(d): T(x) = x + 1 = 1 . 1 + 0 . x2 + 0 . x4 + 1 . x + 0 . x3 + 0 . x5

T(x3) = x3 + x2 + 1 = 1 . 1 + 1 . x2 + 0 . x4 + 0 . x + 1 . x3 + 0 . x5

T(x5) = 0 = 0 . 1 + 0 . x2 + 0 . x4 + 0 . x + 0 . x3 + 0 . x5

 matrix of T w.r.t. basis {1, x2, x4, x, x3, x5} of V is given by

0 1 0 1 1 0
1 0 0 0 1 0
1 0 1 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

0 1 0 1 1 0
1 0 0 0 1 01 0 0 0 1 01 0 0 0 1 0
1 0 1 0 0 01 0 1 0 0 0

0 0 0 1 0 00 0 0 1 0 0
0 0 0 0 1 00 0 0 0 1 0
0 0 0 0 0 00 0 0 0 0 0





      




=
0
A B

C
A B
0 C0 C

, where B = 
1 1 0
0 1 0
0 0 0

1 1 0
0 1 00 1 00 1 0
0 0 0

.

Problem 40: Let T be a linear operator on a F.D.V.S. V over F. Let W be an invariant subspace
of T. Show that the characteristic polynomial pT (x) of T is given by

pT (x) = ( )
wTp x ˆ ( )

wTp x , wheree ( )
wTp x , ˆ ( )

wTp x  are the characteristic polynomials of Tw

and T w respectively..

Solution: Characteristic polynomial pT(x) of T is given by

–
0
A B

xI
C

A B
– xIxI

0 C0
xI

C

= 
–
0 –

A xI B
C xI

A xI B–A xI B–
0 –C xI0 –C xI0 –0 –C xI0 –C xI0 –

 
Here matrix of on

ˆmatrix of on

wA T W
VC T
W

Here matrix of onHere matrix of onA T WHere matrix of onA T WHere matrix of onHere matrix of onwHere matrix of onA T WHere matrix of onwHere matrix of onHere matrix of onA T WHere matrix of onHere matrix of onHere matrix of onA T WHere matrix of on
V

Here matrix of onwA T WHere matrix of onA T WHere matrix of onA T WHere matrix of onA T WHere matrix of onwA T WwHere matrix of onwHere matrix of onA T WHere matrix of onwHere matrix of onA T WHere matrix of onA T WHere matrix of onA T WHere matrix of onA T WHere matrix of on

ˆ Vˆ Vˆmatrix of on Vmatrix of onC Tmatrix of onC Tmatrix of onC Tmatrix of onC Tmatrix of on
WW

matrix of onC Tmatrix of onC Tmatrix of onC TC Tmatrix of onC Tmatrix of on
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= – –A xI C xI
= (characteristic polynomial of Tw)

× (characteristic polynomial of T )
= pTw

(x) ˆ ( )Tp w .

A natural question arises "what is the minimal polynomial for T in terms of minimal poly-
nomial for Tw"? As we saw in above problem that the characteristic polynomial of Tw divides
the characteristic polynomial of T, we have a similar result about minimal polynomial of T. We
prove

Problem 41: Let T be a linear operator on a finite dimensional vector space V. Let W be a
T-invariant subspace of V. Suppose that v1, v2,. . .,vk are eigen vectors of T corresponding to
distinct eigen values. Prove that if v1 + v2. . .+vk 

k are eigen vectors of T corresponding tok are eigen vectors of T corresponding tok
W. then vi 

 are eigen vectors of T corresponding to
Wi  for all i.

Solution: We prove the result by induction on k. For k = 1, the result is clearly true. Assume
that the result is true for k 

We prove the result by induction on 
 1, k > 1.

Let v1 + v2. . .+vk W
Then T(v1) + T(v2)+. . .+T(vk) W as T(W) W

1v1 + 2v2+. . .+ kvk W
Also kv1 + kv2+. . .+ kvk W

( 1 k)v1 + ( 2 k)v2+. . .+( kk 1 k)vkk 1 W
By induction hypothesis,

( i k)vi Wi for all i, = 1, 2, . . ., k  1
vi Wi for all i, = 1, 2, . . ., k
vk Wi

So, the result is true for k also.
Hence by induction the result is true for all integers k > 0.
Problem 42: Prove that if T is a diagonalisable linear operator on a finite dimensional vector
space V and W is a non-zero T-invariant subspace of V, then Tw is also diagonalisable.
Solution: Since T is a diagonalisable, there exists an ordered basis  = {v1, v2,. . .,vk} of V
such that each vi is an eigen vector of T. Let T(vi) = 

 is a diagonalisable, there exists an ordered basis 
ivi.

Let V = {w1, w2,. . .,wm} be a basis of W.
Let 1, 2,. . ., k be distinct eigen values of T.
Let W1, W2,. . .,Wk be the corresponding eigen spaces.
Then V = W1 W2 . . . Wk
Let  1 = {x1,. . .,xr1

}, . . ., k = {y1,. . .,yrk
} be basis of  W1,. . .,Wk respectively.

Then  w1 = ( 1x1+. . .+ r1
xr1

)+. . .+( 1y1+. . .+ rk
yrk

) = z1+. . .+zk,
where z1 = 1x1+. . .+ r1

xr1
. . . .
zk = 1y1+. . .+ rk

yrk
Now  z1+. . .+zk W and each zi is an eigen vector of T.
By previous problem, zi W for all i = 1, 2,. . .,k.
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In this way, let
Wm = u1+. . .+uk, where each ui is an eigen vector of T. w.r.t. distinct eigen values of T.

 {z1, z2,. . .,zk,. . .,u1,. . .,uk} span W.
 Some subset of it is a basis of W consisting of eigen vector of Tw.
 Tw is also diagonalisable.

Theorem 16: The minimal polynomial of Tw divides the minimal polynomial for T, where W
is an invariant subspace of V and T is a linear operator on V.

Proof: Let p(x) be the minimal polynomial for T.
Let p(x) = 0 + 1x + ... + n – 1x n – 1 + xn

Since T(w) = Tw(w) for all w  W
T2(w) = T(Tw(w))

= Tw(Tw(w)) as Tw(w) W
In this way T r(w) = T r

w (w) for all w  W
p(Tw) (w) = p(T) (w) for all w  W

= 0 as p(T) = 0 for all w  W
p(Tw) = 0

Let q(x) be the minimal polynomial for Tw. Then p(x) = q(x) r(x) + h(x)
where h(x) = 0 or deg h(x) < deg q(x).

0 = p(Tw) = q(Tw) r(Tw) + h(Tw)
h(Tw) = 0

If h(x)  0, then h(x) is non zero polynomial satisfied by Tw of degree less than
deg q(x), a contradiction as q(x) is minimal.

h(x) = 0  q(x) divides p(x).

Definition: A linear operator T on a F.D.V.S. V(F) is said to be triangulable or triangularizable
over F if there exists an ordered basis 

) is said to be 
 of V such that [T]  is

triangular.

Theorem 17: Let T be a linear operator on a F.D.V.S. V(F). Then T is triangulable if and
only if the characteristic polynomial for T is a product (not necessarily distinct) of linear
factors on F[x]. (Equivalently, T is triangulable if and only if the eigen values of T are all
in F).

Proof: Let the characteristic polynomial of T be product of linear factors in F [x].
Let c1, c2, ..., cn be eigen values of T in F.
We use induction on n.
If n = 1, then the result is obvious as 1 × 1 matrix is always triangular.
Let n > 1. Assume that the result is true for all vector spaces over F of dimension less than n.
Let dim V = n. Let v1 be an eigen vector of T w.r.t. c1, then T(v1) = c1v1
Let W = < v1 >.
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Then W is T-invariant subspace of V. Consider V
W

. dim V
W

 = n – 1

Then T  : V
W

 V
w

 s.t.,

T (W + v) = W + T(v)

is well defined linear operator on V
W

. Let f (x) be the characteristic polynomial for T and g(x)

be the characteristic polynomial for T . Then g(x) divides f(x) by problem 40.
So, g(x) is also product of linear factors in F[x].

By induction hypothesis  a basis  = {W + v2, ..., W + vn} of V
W

 such that

T̂̂TT  = 

22 2

0
:
0 0

n

nn

a a

a

22 2na a22a a22

0
22 2n

00
::
0 0 nna0 0 a

 





, aij  F

T (W + vj) = a2j (W + v2) + ... + anj(W + vn)
 W + T(vj) = a2 j(W + v2) + ... + anj(W + vn)

= W + a2 j v2 + ... + an jvn
 T(vj) = a2 jv2 + ... + anj vn + a1j v1 ,   a1j  F

Now  = {v1, v2, ..., vn} is a basis of V

11 12 1

22 2[ ]

0 0

n

n

nn

a a a
a a

T

a

11 12 1na a a11 12 1a a a11 12 111 12 1n

22 2na a22 2a a22 222 2a a22 2a a22 2

0 0 nna0 0 a


  

, where a11 = c1

which is triangular matrix and so T is triangulable. So, result follows by induction.
Conversely, if T is triangulable then  a basis  of V such that [T]  = A is triangular and

eigen values of T are diagonal entries in A.
 Characteristic polynomial for A or T is product of linear factors in F[x].

Remark: We thus realise that T is triangulable if and only if minimal polynomial for T is
product of linear factors in F[x].

Cor.: If A is n × n matrix over the field of complex numbers, then A is triangulable.

Proof: By fundamental theorem of algebra (i.e. Every polynomial over the field C  of complex
numbers has all roots in C ), the minimal polynomial p(x) of A has the form p(x) = (x – c1)

r1

... (x – ck) 
rk, where ci C. By above theorem A is triangulable.

Problem 43: Let T be a linear operator on a finite dimensional vector space V(F). Suppose
all eigen values of T are in F. Show that every non zero. T-invariant subspace of V contains
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an eigen vector of T.

Solution: Let W be a non zero T-invariant subspace of V. Then the restriction Tw of T on W
is a linear operator on W. Since the characteristic polynomial of Tw divides the characteristic
polynomial of T, eigen values of Tw also belong to F. Let c 

. Since the characteristic polynomial of 
 F be an eigen value of Tw. Thenpolynomial of 

 0 
polynomial of 

 x 
polynomial of 

 W such that Tw(x) = cx  T(x) = cx  x is also an eigen vector of T.

Problem 44: Let T be a linear operator on V. If every subspace of V is invariant under T, show
that T is a scalar multiple of the identity operator.

Solution: Let 0  v V. Let W be a subspace of V spanned by V. Since W is invariant under
T, v  W   T(v)  W   T(v) = 

 be a subspace of 
v. w 

 spanned by 
 W   w = av    T(w) = aT(v) =

a v = av = w. Let v  W, v  V. Then, v, v  are linearly independent. Let W
(

W  be the subspace
spanned by v . Since WW  is invariant under T, T(v

 are linearly independent. Let 
) 

 are linearly independent. Let 
 W

 are linearly independent. Let 
W .

T(v ) = v . Let V  be the subspace spanned by v  – v . Then as before
T(v – v ) = 

) = 
(v – v )
 T(v) – T(v ) = v – v  v – v  = v – v
 (  – )v = (  – )v    =  =  as v, v  are linearly independent
 T(v ) = (v ).

 for all v  V, T(v) = v
 T = I.

Problem 45:  Let T be a linear operator on R3 which is represented in the standard ordered

basis by the matrix 
2 0 0
1 2 0
0 0 3

2 0 0
1 2 01 2 01 2 0
0 0 3

Let W = Ker (T  2I). Prove that W has no complementary T-invariant subspace.

Solution: Now w W implies that (T  2I) (w) = 0

So, T(w) = 2w. Let w = (x, y, z)

Then
2 0 0
1 2 0 2
0 0 3

x x
y y
z z

2 0 0 x x
1 2 0 21 2 0 21 2 0 2y y1 2 0 2y y1 2 0 2y y1 2 0 21 2 0 2y y1 2 0 2y y1 2 0 2y y1 2 0 21 2 0 2y y1 2 0 2y y1 2 0 2

z z0 0 3 z z

Therefore, x + 2y = 2y, 3z = 2z.
So, x = 0 = z and w = (0, y, 0)
Therefore, W = <(0, 1, 0)> = < 2>
Suppose V = W  W ,  T(W ) W
Let T  = T  2I. Let v N(T ) R(T )
Therefore, T (v) = 0, v = T (y) = (T  2I)(w + w ), w W, w  W

= (T  2I)(w ) WW
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Also T (v) = 0 means that v N(T ) = W
So, v W WW  = {0}.
Therefore, v = 0 means that N(T ) R(T ) = {0}
Now (T  2I)( 1) = T( 1)  2 1 = 2 1 + 2  2 1 = 2  W = N(T )
Also (T  2I)( 1) = T ( 1) R(T )
By above, (T  2I)( 1)  N(T ) R(TT ) = {0}
So, 2 = 0, a contradiction.
Thus, W has no complementary T-invariant subspace.

Problem 46:  Let T  be a linear operator on a finite dimensional vector space V. Prove that
there exists an integer k > 0 such that

V = R(Tk)  N(Tk)

Solution: Now V R(T)  R(T2) . . ., is a descending chain of subspaces of V.

Since V is finite dimensional, there exists an integer k > 0  such that R(Tk) = N(Tk+1)
Since dim V = dim R(T k) +  dim N(T k)

         = dim R(T k+1)  + dim N(Tk+1)
dim N(T k)  = dim N(Tk+1)

So, N(T k) = N(T k+1) = . . .
Now x  R(T k)  N(T k)

 T k(x) = 0, x = T k(v)
 T 2k(v) = 0  v  N(T 2k) = N(T k)
 T k(v) = 0  x = 0

So R(T k) N(T k) = {0}.

Problem 47:  Let T be a linear operator on a finite dimensional vector space and let R be
the range of T. Prove that R has a complementary T-invariant subspace if and only if R is
independent of the null space of T.

Solution: Suppose that R has a complementary T-invariant subspace W.

Therefore, V = R W, T(w) W.
Let x  R  N.
Then x = T(y), T(x) = 0
Now y  V means that y = r + w, r  R, w W
So, x = T(y) = T(r) + T(w) = T(r) + w , w  = T(w)  W
Therefore, w  = x  T(r)  R.
So, w   R W = {0} means that

w  = 0 and therefore, x = T(r), r  R.
In this way, x = Tk(r1)  R(Tk)
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Also x  N(T) means that x  N(Tk)
Therefore, x  R(Tk) N(Tk) = {0}
So, x = 0 which means that R N = {0}.
Thus, R is independent of N.
Conversely, Let R be independent of N.
Then R N = {0}
Since dim (N + R) = dim N + dim R  dim (R N),

                  = dim N + dim R = dim V
Therefore, V = R  N
But T(N) N
Thus, R has a complementary T-invariant subspace N.

Problem 48:  If T is a linear operator on a finite dimensional vector space V and R, N are
independent subspaces of V, then prove that N is the unique T-invairant subspace complemen-
tary to R.

Solution: By above problem, V = R  N, T(N) N
Suppose V = R  W, T(W) W
We show that W = N
Now dim N = dim W.
Let w  W.
Therefore  T(w)  R  W = {0}
which means that T(w) = 0.
So, w  N.
Therefore, W N and dim W = dim N.
Hence W = N.

Problem 49:  Let T be a linear operator on a finite dimensional vector space over the field
of complex numbers. Prove that T is diagonalisable, if and only if T is annihilated by some
polynomial over C which has distinct roots.

Solution: Suppose T is a diagonalisable. Let p(x) be the minimal polynomial for T. By theorem
10, p(x) has distinct roots and p(T) = 0.

Conversely, let q(x) be a polynomial over C s.t. q(T) = 0 and roots of q(x) are distinct.
p(x) divides q(x)

and thus roots of p(x) are distinct.
By theorem 10 then T is diagonalisable.

Problem 50: If  A is nilpotent, show that A is similar to a triangular matrix whose entries on
the diagonal are all zero.

Solution: A is nilpotent  Am = 0  the minimal polynomial p(x) of A is x r, r  m. So, 0 is
only eigen value of A. Since 0  F, by theorem 17, A is similar to a triangular matrix B.

A = P–1BP
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Since eigen value of A is only 0, eigen value of B is only 0 and these are diagonal entries
on B.

Cyclic Subspaces

Let T be a linear operator on a vector space V. Let 0  v  V.
The subspace W spanned by {v, T(v), T2(v), . . .} is called the T-cyclic subspace of V

generated by v. It is denoted by W = Z(v, T). If W = V = Z(v, T), then v is called a cyclic vector
for T.

Let w  W. Then w = iT
i(v) + jT

j(v)+. . .+ kT
k(v)

T(w) = iT
i+1(v) + jT

j+1(v)+. . .+ kT
k+1(v)  W.

So, W is a T-invariant subspace of V.
Let W  be a T-invariant subspace of V containing v  V.
We show that W  W .
Since T(W ) W  and v W , T(v)  W . So, T r(v)  W  for all integers r > 0.
Let w  W. Then w = iT

i(v) + jT
j(v)+. . .+ kT

k(v)
w  W  as T r(v)  W  for all integers r > 0.

So, WW W
Thus, T-cyclic subspace generated by v is the smallest T-invariant subspace of V containing

v.
Problem 51: Let T: R4  R4 be the linear operator defined by T(a, b, c, d) = (a + b, b  c,
a + c, a + d). Find an ordered basis for the T-cyclic subspace generated by 1 = (1, 0, 0,0).
Solution: Now T( 1) = (1, 0, 1, 1), T 2( 1) = (1, 1, 2, 2), T 3( 1) = (0, 3, 3, 3)

 = 3T( 1) + 3T 2( 1)
W = T-cyclic subspace generated by 1

= < 1, T( 1), T 2( 1)>
= <(1, 0, 0, 0), (1, 0, 1, 1), (1, 1, 2, 2)>

Since these 3 vectors (1, 0, 0, 0), (1, 0, 1, 1), (1, 1, 2, 2) are linearly independent,
{(1, 0, 0, 0), (1, 0, 1, 1), (1, 1, 2, 2)} is an ordered basis for W.
Problem 52: Let T be a linear operator on a two-dimensional vector space V. Prove that either
V is a T-cyclic subspace of itself or T = cI for some scalar c.
Solution: If every non-zero vector in V is an eigen vector of T, then T = cI for some scalar c
(See Problem 2 on page 589).

Let 0 v V be not an eigen vector of T.
Let W = <v>. Let T(v) = v . Then v   W as v is not an eigen vector of T.
Let W  = <v >.
Then W W  = {0} and V = W  W .
Let u V.
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Then u = cv + dv .
(dT + cI)(v) = dT(v) + cv = dv  + cv = u.
u = dT(v) + cv  Z(v, T).

So V  Z(v, T) V.
V = Z(v, T). Thus V is a T-cyclic subspaces of itself.

Problem 53: Let T be a linear operator on V. Let v be a non zero vector in V and W = Z(v, T).
Let w  V. Then prove that w  W if and only if w = g(T)v (for some polynomial g(x)). If
dim W = m, show that W = <v, T(v), . . .,T m-1(v)>.
Solution: Let w  W. Then w = iT

i(v) + jT
j(v)+. . .+ kT

k(v).
Then w = ( iT

i + jT
j+. . .+ kT

k) (v) = g(T )v, where g(x) = ix
i + jx

j+. . .+ kx
k

Conversely, let w = g(T )v, g(x) =  0 + 1x+. . .+ rx
r

Then w = ( 0I+ 1T+. . .+ rT
r)(v)

= 0v + 1T(v)+. . .+ rT
r(v)   z(v, T) = W

w  W.
Let dim W = m.
Then any m + 1 vectors in W are linearly dependent.
Now, v, T(v), . . ., Tm(v) are in W = Z(v, T).

there exist scalars 0, 1,. . ., m

such that 0v 1T(v)+. . .+ mT m(v) = 0,  some i  0
If m  0, then Tm(v) is a linear combination of vectors v, T(v), . . .,T m-1(v).

w in W means that w is a linear combination of vectors v, T(v), . . .,T m-1(v).
If m = 0, then 0v + 1T(v)+. . .+ m 1T

m 1(v) = 0,  some i  0
Again w in W is a linear combination of vectors v, T(v), . . .,Tm 1(v).
So, W = <v, T(v),. . .,Tm 1(v)>

By above problem, if W = Z(v, T), then any vector w in W can be written as w =g(T)v, for some
polynomial g(x) such that either g(x) = 0 or deg g(x) < dim W.
Problem 54: Let T be a linear operator on R3 which is represented in the standard orderd basis

by the matrix 
2 0 0
0 2 0
0 0 1

2 0 0
0 2 00 2 00 2 0
0 0 10 0 1

. Prove that T has no cyclic vector. What is Z(v, T), v = (1, 1, 3)?.

Solution: Suppose (a, b, c) is a cyclic vector.
Then R3 = Z((a, b, c), T)
By definition of T, T( 1) = 2 1, T( 2) = 2 2, T( 3) = 3

T(a, b, c) = a2 1 + b2 2  c 3

= (2a, 2b, c)
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T2(a, b, c) = (22a, 22b, c)
Now (0, 1, 0) = g(T)(a, b, c)

= ( 2T
2 + 1T + 0I)(a, b, c)

= ( 22
2a + 12a + 0a, 2.2

2b + 12b + 0b,. . .)
a(22

2 + 2 1 + 0) = 0
b(22

2 + 2 1 + 0) = 1
So, a = 0

(1, 0, 0) = ( 2T
2 + 1T + 0I)(0, b, c)

= 2T
2(0, b, c) + 1T(0, b, c) + 0(0, b, c)

= (0, , ) a contradiction.
Thus, T has no cyclic vector.
Now Z((1, 1, 3), T) = W

= {g(T) (1, 1, 3) | g(x)  R[x], deg g(x) < 3}
= {( 2T

2 + 1T + 0I)(1, 1, 3) | i  R}
= { 2(4, 4, 3) + 1(2, 2, 3) + 0(1, 1, 3) | i  R}
= {(4 2 + 2 1 + 0, 4 2  2 1 0, 3 2  3 1 + 3 0) | i  R}
= <(4, 4, 3), (2, 2, 3), (1, 1, 3)>

But (4, 4, 3) = 1(2, 2, 3) + 2(1, 1, 3)
W = <(2, 2, 3), (1, 1, 3)>

Also {(2, 2, 3), (1, 1, 3)} is a linearly independent set
dim W = 2.

Problem 55: Prove that if T2 has a cyclic vector, then T also has a cyclic vector. Is the converse
true?
Solution: Let V = Z(v, T2).

Then u  V means that u = 0v + 2T
2(v) +. . .+ 2mT2m(v)  Z(v, T)

V Z(v, T) V
So, V = Z(v, T).
Thus v is also a cyclic vector of T.
The converse need not be true.
For, let T be the linear operator on R2 defined by T( 1) = 2, T( 2) = 0.
Then T2( 1) = 0 = T2( 2). So, T2 = 0

z(v, T2) = {0}  R2 for any v in V.
So, T2 has no cyclic vector.
Let (a, b) R2
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Then, (a, b) = a 1 + b 2

= (a + bT)( 1)
Thus R2 = z( 1, T)
So, T has a cyclic vector 1.

Problem 56: Let T be the linear operator on R2 which is represented in the standard basis by the

matrix 0 0
1 0
0 0
1 01 0

. Show that (0, 1) is not a cyclic vector for T..

Solution: By definition T( 1) = 2, T( 2) = 0.
If (0, 1) is a cyclic vector for T,
then (1, 0) = g(T) (0, 1)

= (a + bT) (0, 1)
= (a + bT) ( 2)
= a 2 = (0, a), a contradiction.

So, (0, 1) is not a cyclic vector for T.
Theorem 18: If V is T-cyclic subspace of dimension n then the characteristic polynomial for T
is same as the minimal polynomial for T.
Proof: Let V = Z(v, T). dim V = n.

Then  = {v, T(v), . . .,Tn 1(v)} spans V.
Since dim V = n,  is a basis for V.
Let g(x) = a0 + a1x+. . .+akx

k be such that
deg g(x) = k < n. Then ak  0

g(T)v = (a0I + a1T+. . .+akT
k) (v)

= a0v + a1T(v)+. . .+akT
k(v)

 0 (as g(T)v = 0 means that ak = 0, a contradiction)
g(T)  0

T does not satisfy any polynomial of degree less than n.
But T satisfies its characteristic polynomial.

 Minimial polynomial for T is same as the characteristic polynomial for T.
Problem 57: Using above result, show that the characteristic polynomial for the differential
operator D on the vector space V of all polynomials over R of degree less than 3 is equal to the
minimal polynomial for T.

Solution:  = {1, x, x2} is a basis of V and [D]  = 
0 1 0
0 0 2 .
0 0 0

A
0 1 0
0 0 2 .0 0 2 .A0 0 2 .A0 0 2 .0 0 2 .A0 0 2 .A0 0 2 .0 0 2 .0 0 2 .0 0 2 .0 0 2 .A0 0 2 .0 0 2 .0 0 2 .A0 0 2 .
0 0 00 0 0

 The characteristic

polynomial for D is |xI A| = x3.
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Now V = Z(x2, T) as  0 + 1x + 2x
2 = ( 2 + 1

2
1 T + 0

2
0 T2)(x2)

By above theorem, the minimial polynomial for T is also x3.
One important application of cyclic subspaces is a well known result [Cayley-Hamilton

theorem] that we have already stated earlier on page 602.
Theorem 19: Let T be a linear operator on a finite dimensional vector space V. Let f(x) be the
characteristic polynomial for T. Then f(T) = 0.
Proof: Let 0  v V. Let W be the T-cyclic subspace generated by v. Let dim W = k.

Let  = {v, T(v),. . .,Tkk 1(v)} be a basis of W.
Then there exist scalars 0, 1, . . ., k such that

0v + 1T(v)+. . .+ kT
k(v) = 0, some  i  0

If k = 0, then i = 0 for all i. So,  k  0
1 1 1 1

0 1 1( ) ( ) ( ) 0k k
k k k kv T v T v T v( ) ( ) 0k k( ) ( ) 0k k( ) ( ) 00 1 ( )k k0 1k k0 10 1k k0 10 1k k0 10 1k k0 1 k kv T vv T v0 1v T v0 1 ( )v T v( )0 1k k0 1v T v0 1k k0 10 1k k0 1v T v0 1k k0 1 T v T v( ) ( ) 0T v T v( ) ( ) 0( ) ( ) 0k k( ) ( ) 0T v T v( ) ( ) 0k k( ) ( ) 01 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 1 1( )1 1 1 1( )1 1 1 1k k1 1 1 1k k1 1 1 1( ) ( ) 0k k( ) ( ) 0k kk k0 1k k0 10 1k k0 1 k kv T vv T vv T v1 1 1 1v T v1 1 1 11 1 1 1v T v1 1 1 11 1 1 1v T v1 1 1 1

0 1v T v0 1 ( )v T v( )1 1 1 1( )1 1 1 1v T v1 1 1 1( )1 1 1 1
k kv T vk kk kv T vk k0 1k k0 1v T v0 1k k0 10 1k k0 1v T v0 1k k0 1 T v T v1 1 1 1T v T v1 1 1 1( ) ( ) 0T v T v( ) ( ) 0k kT v T vk k1 1 1 1k k1 1 1 1T v T v1 1 1 1k k1 1 1 1( ) ( ) 0k k( ) ( ) 0T v T v( ) ( ) 0k k( ) ( ) 01 T v T v1 1 1 11 1 1 1

1 T v T v1 1 1 1T v T v1 1 1 1
a0v + a1T(v)+. . .+ akk 1T

kk 1(v) + Tk(v) = 0
Now Tw(v) = T(v) = 0v + 1T(v)+. . .+0Tkk 1(v)

Tw(T(v)) = T2(v) = 0v + 0T(v)+1T2(v)+. . .+0Tkk 1(v)
. . .
 Tw(Tkk 1(v)) = Tk(v) = a0v a1v T(v)+. . .+(-akk 1)T

kk 1(v)
The matrix of Tw with respect to basis  is

0

1

1

0 0 0
1 0 0

[ ]

0 0 1

W

k

a
a

T A

a

0 0 0 0a
1 0 0

0

a1 0 01 0 0 1a1a
[ ]W[ ]W[ ]T A[ ]T A[ ][ ]W[ ]T A[ ]W[ ]T A[ ][ ]T A[ ][ ][ ][ ]T A[ ]

0 0 1 110 0 1 ka 1ka 1




    


Then the characteristic polynomial of Tw is
g(x) = a0 + a1x+ . . .+akk 1x

kk 1 + xk

(Use induction on k and expanding the determinant |xI  A| along the first row to get g(x))
Then g(T)(v) =  a0v + a1T(v)+ . . .+akk 1T

kk 1(v) + Tk(v) = 0
Since the characteristic polynomial g(x) of Tw divides the characteristic polynomial f(x) of T,

  f(x) = g(x)h(x) = h(x)g(x)
 f(T)v = h(T)g(T)v = 0 for all v  0 in V.

Also f(T)0 = 0
  f(T) = 0

Cor: Let A be an n n matrix over F and let f(x) be the characteristic polynomial for A. Then
f(A) = 0 = zero matrix.
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Proof: Let T be the linear operator on F n such the matrix of T with respect to the standard
ordered basis  of F n is A.

So,    A = [T] .
Let f(x) = a0 + a1x+ . . .+an 1x

n 1 + xn

Then O = f(T) = a0I + a1T+ . . .+an 1T
n 1 + T n

O = [a0I + a1T+ . . .+an 1T
n 1 + T n]

= a0[I]  + a1[T] + . . .+an 1[T
n 1]  + [T n]

= a0I + a1A + . . .+an 1A
n 1 + An

= f(A)
Note: The matrix [TW] in above theorem is also called the companion matrix of the polynomial
g(x) =  a0 + a1x+ . . .+akk 1x

kk 1 + xk.
Definition: Let T be a linear operator on a finite dimensional vector space V(F). Let 0  v be in
V.

Let W = Z(v, T), dim W = m.
Let  = {v, T(v), . . .,Tm 1(v)} be a basis for W.
Then Tm(v) is in W as W is T-invariant.

Tm(v) can be uniquely expressed as
Tm(v) = c0v + c1T(v)+ . . .+cm 1T

m 1(v)
or ( c0)v + ( c1)T(v)+ . . .+( cm 1)T

m 1(v) + Tm(v) = 0.
or a0v + a1T(v)+ . . .+am 1T

m 1(v) + Tm(v) = 0.
Then ai's are uniquely determined for each non zero vector v in V.
Let fv(x) = a0 + a1x+ . . .+am 1x

m 1 + xm

Then fv(T)v = 0
fv(x) is called the T-annihilator of v or the T-annihilator of Z(v, T).
We observe the following:
(i) Let T be a linear operator on V. Let 0  v be in V. Then the T-annihilator of v is uniquely

determined.
(ii) The degree of the T-annihilator of v = dimension of Z(v, T)
(iii) If W = Z(v, T), then the T-annihilator of v is the characteristic polynomial of Tw.
(iv) The minimial polynomial of Tw is same as the T-annihilator of v for if
p(x) = a0 + a1x+ . . .+akk 1x

kk 1 + xk be the minimal polynomial for Tw , k < m = dim W.
Then 0 = p(Tw) means that

1
1 1 0k k

o w k w wa I a T a T T v 0k k
o w k w w1 1o w k w w1 1a I a T a T T va I a T a T T va I a T a T T vk ka I a T a T T vk k
o w k w wa I a T a T T vo w k w w1 1o w k w w1 1a I a T a T T v1 1o w k w w1 1

k k1k k1a I a T a T T vk ka I a T a T T vk k1k k1a I a T a T T v1k k1
o w k w wa I a T a T T vo w k w wo w k w w1 1o w k w w1 1a I a T a T T vk ka I a T a T T vk k
o w k w wa I a T a T T vo w k w w1 1o w k w w1 1a I a T a T T v1 1o w k w w1 1

So,  a0v + a1T(v)+ . . .+akk 1T
kk 1(v) + Tk(v) = 0, k < m means that 1 = 0, a contradiction,

k = m
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Thus, degree of the minimial polynomial of T
w
 = dimension of W = degree of the characterstic

polynomial of T
w
.

Hence the minimal polynomial of T
w

= The characteristic polynomial of T
w

= The T-annihilator of v.

Problem 58: If T: R3 
� R3 is represented by

with respect to the standard basis, find the T-annihilator of �
1
 = (1, 0, 0).

Solution: T(�
1
) = �

2
, T(�

2
) = �

3
, T(�

3
) = 0.

W = Z(�
1
, T)

= {�
2
T2(�

1
) + �

1
T(�

1
) + �

0
�

1
| �

i 
�R}

= {�
0
�

1
 + �

1
�

2
 + �

2
�

3
| �

i 
�R}

= R3

The characteristic polynomial of T
w
 = T |W

= The characteristic polynomial of T

= x3

� The T-annihilator of  �
1 
is x3

Problem 59: Let T be the linear operator on R3 such that its matrix with respect to the standard

basis is 

Determine the T-annihilator of (1, 1, 0)

Solution: W = Z((1, 1, 0), T)

= {(�
2
T2 + �

1
T +��

0
 )(1, 1, 0) | �

i
� R}

= {(�
2
T2 + �

1
T +��

0
 )(�

1
 + �

2
) | �

i
� R}

= <�
1
 + �

2
>.

Here T(�
1
) = �

1

T(�
2
) = �

2

T(�
3
) = ��

3

dim W = 1

Let v = (1, 1, 0) = �
1
 + �

2

Then {v} is a basis of W.
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Tw(v) = T(v) = v
 [Tw] = I

The characteristic polynomial of Tw is (x  1)2

The T-annihilator of Tw is (x  1)2

Problem 60: Let T be a linear operator on an n-dimensional vector space V. Suppose that T is
diagonalisable.
(a) If T has a cyclic vector, show that T has n distinct eigen values.
(b) If T has n distinct eigen values and {v1, v2,. . .,vn} is a basis of eigen vectors of T,
show that v = v1 + v2 +. . .+vn is a cyclic vector of T.
Solution: (a) Since T has a cyclic vector.

V = Z(v, T) for some v in V.
f(x) = The characteristic polynomial of T.
= The minimal polynomial of T = p(x)

Since T is diagonalisable, p(x) is product of distinct linear factors.
Since deg f(x) = n, deg p(x) = n.
T has n distinct eigen values.
(b) Let T(v1) = c1v1, T(v2) = c2v2,. . .,T(vn) = cnvn

where ci’s are distinct eigen values of T.
Let v = v1 + v2 +. . .+vn

Let S = {v1 + v2 +. . .+vn,  c1v1 + . . .+cnvn,. . . 1 1
1 1 . . .n n

n nc v c v1 1n n1 1n n1 1c v c v1 1c v c v1 1
n nc v c vn n. . . n nc v c v. . .c v c v. . . n nc v c vn n

1 1n n1 1n n1 1c v c vn nc v c vn n }then S is a linearly
independent set as c1, c2,. . .cn are distinct.

S forms a basis of V.
In fact S = {v, T(v), . . .,Tn 1(v)}
Let u  V
Then u = a0v + a1T(v)+ . . .+an 1T

n 1(v)
= (a0 + a1T+ . . .+an 1T

n 1)(v)
= g(T)v, g(x) = a0 + a1x+. . .+an 1x

n 1

v is a cyclic vector of T.

Problem 61: Let T be a linear operator on a finite dimensional vector space V. Show that T has
a cyclic vector if and only if there exists an ordered basis  for V such that [T]  is the companion
matrix of the minimal polynomial for T.
Solution: Suppose T has a cyclic vector v.

Then V = Z(v, T)
Let dim V = n
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Then v, T(v), . . .,Tn(v) are linearly dependent vectors and as before there exist scalars
a0, a1,. . .,an 1 on such that

a0v + a1T(v)+. . .+an 1T
n 1(v) + T n(v) = 0

Let u  V. Then u = g(T)v, g(x) = 0 or deg g(x) < n
= ( 0 + 1T+. . .+ kT

k)(v)
 = {v, T(v),. . .,Tn 1v} spans V and so forms a basis of V. Then

0

1

2

1

0 0 0
1 0 0
0 1 0

0 0 1 n

a
a
aT

a

0 0 0 0a
1 0 0

0

a1 0 01 0 0 1a1a
0 1 00 1 0 2a2

0 0 1 110 0 1 na 1na 1





   


is companion matrix of T-annihilator
a0 + a1x+. . .+an 1x

n 1 + xn of v
= minimial polynomial for T.

Conversely, let there exist an ordered basis  = {v1, v2,. . .vn} for V such that [T]  is the
companion matrix of the minimal polynomial for T. Then v1 is clearly a cyclic vector for T.

Projections

We recall, by a projection E of a vector space V, we mean a linear operator on V s.t.,
E2 = E.

Let now E be a projection on V, then E : V  V.
We show V = R  N, where R = range of E and

N = Null space of E = Ker E.
Let v  V be any element, then

E2 = E
 E2(v) = E(v)
 E(v – E(v)) = 0
 v – E(v)  Ker E = N

Thus v = E(v) + (v – E(v))  R + N
i.e., V = R + N
Again, let x  R  N then x  R and x  N

x  R  y  V s.t., E(y) = x
x  N E(x) = 0

So E2(y) = E E(y) = E(x) = 0
 E(y) = 0  x = 0  R  N = {0}

Hence V = R  N.
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Suppose now V = A  B, where A, B are subspaces of V.
Define E : V  V, s.t.,

E(v) = a
where v  V  v = a + b (uniquely) a  A, b B

Then E is easily seen to be a linear operator
Also E2(v) = EE(v) = E(a) = E(a + 0) = a = E(v)  v  V
shows that E2 = E and thus E is a projection.
We claim A = range of E and B = Ker E

v  Ker E  E(v) = 0 E(a + b) = 0 where v = a + b
 a = 0  v = a + b = b  B

Again b  B  b = 0 + b   E(b) = E(0 + b) = 0  b  Ker E
So B = Ker E
It is easy to see that A = range of E.
We thus notice that when there is projection E on V, then V is direct sum of range E and

Ker E and conversely, if V is direct sum of two subspaces then there exists a projection E on
V such that these subspaces are range and Ker of E.

If V = R  N corresponding to a projection E, we say E is projection on R along N (R =
range E, N = Ker E).

Suppose again that V = A  B and let's define
F : V  V s.t.,
F(v) = b where v  V is s.t. v = a + b

then as before we can check that F is a projection on V and A = Ker F, B = Range F.
Hence if E was projection on A along B, then F is projection on B along A. Is there a direct

relation between E and F?
Consider (E + F) (v) = E (v) + F (v) = a + b = v,

= I (v)  v
and thus E + F = I
or that E = I – F
We can sum up and say that E is a projection iff I – E is a projection and if E is a projection

on R along N then I – E is a projection on N along R.
We give another ‘proof’ of this result in problem 43.
Let us now consider the general result through

Theorem 20: If V = W1  ...  Wk, then  k linear operators E1, ..., Ek on V s.t.
(i) Each Ei is a projection

(ii) EiEj = 0 for all i  j
(iii) I = E1 + ... + Ek
(iv) the range of Ei is Wi

and conversely.
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Proof: Let v  V be any element then
v = x1 + x2 + ... + xk,  xi  Wi being uniquely determined

Define           Ei : V  V, s.t.,
Ei(x1 + ... + xk) = xi for all i

Then Ei is linear operator s.t.,
E2

i (x1 + ... + xk) = Ei(xi) = xi = Ei(x1 + ... + xk)
 E2

i = Ei for all i
This proves (i).
Let i  j. Then EiEj(x1 + ... + xk) = Ei(xj) = 0

EiEj = 0 for all i  j.
This proves (ii).
Let v  V. Then v = x1 + ... + xk, xi  Wi

(E1 + ... + Ek)v = E1v + ... + Ekv
= x1 + ... + xk
= v = I(v)

E1 + ... + Ek = I
This proves (iii).
By definition of Ei, range of Ei is Wi which proves (iv).
Conversely, let v  V.  By (iii) I = E1 + ... + Ek

 v = I(v) = E1(v) + ... + Ek(v) = x1 + ... + xk, xi  Wi (xi = Eiv)
V = W1 + ... + Wk

Let v = y1 + ... + yk, yi  Wi = Range of Ei
 yi = Ei(zi)

Ej(v) = Ej(y1) + ... + Ej(yk)
= Ej E1(z1) + ... + EjEk(zk)

= E2
j (zj) = Ej(zj) = yj

xj = yj for all j = 1, ..., k
each v  V can be uniquely written as sum of elements of W1, ..., Wk.

Hence, V = W1  ...  Wk.

Problem 62: Prove that if E is the projection on R along N, then I–E is the projection on N
along R.

Solution: Let x R then x = Ey, y  V
 (I – E) x = x – Ex = Ey – Ey = 0
 x  null space of I – E

Also x  N  Ex = 0
 (I – E) x = x for all x  N
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v  V  v = r + n, r  R, n  N
 (I – E) v = (I – E) r + (I – E) n

= 0 + n = n
 Range space of I – E is N

Also (I – E)2 = I + E2 – 2E = I – E
I – E is the projection on N along R.

Problem 63: Let V(F) be a vector space. Let E1 be a projection on R1 along N1 and E2 be
a projection on R2 along N2. Assuming that 1 + 1 

 be a projection on R
 0 in F, show that

(i) E1 + E2 is projection iff  E1E2 = E2E1 = 0.
(ii) E1 + E2 is a projection on R1  R2 along N1  N2.

Solution: We have V = R1  N1 and V = R2  N2
Let E1 + E2 be a projection. Then (E1 + E2)

2 = E1 + E2

 E 2
1 + E 2

2 + E1E2 + E2E1 = E1 + E2
 E1E2 + E2E1 = 0 (i)
 E1E1E2 + E1E2E1 = 0  E1E2 = – E1E2E1

and E1E2E1 + E2E1E1 = 0  E2E1 = – E1E2E1
Thus E1E2 = E2E1 and so (i) gives

(1 + 1) E1E2 = 0  E1E2 = 0
Hence E1E2 = E2E1 = 0
Conversely, E1E2 = E2E1 = 0 gives

E1E2 + E2E1 = 0
 E 2

1 + E2
2 + E1E2 + E2E1 = E1 + E2

 (E1 + E2)
2 = E1 + E2.

(ii) We have to show that Range of E1 + E2 is R1  R2 and Ker (E1 + E2) =
N1 

(
 N2.

Let x  Ker (E1 + E2)  (E1 + E2)x = 0
 E1x + E2 x = 0  E1E1(x) + E1E2(x) = 0
 E1(x) + E1E2(x) = 0
 E1(x) = 0 as E1E2(x) = 0

Similarly we get                       E2(x) = 0
Hence x  Ker E1 = N1, x  Ker E2 = N2
and so x  N1  N2  Ker (E1 + E2)  N1  N2
Again, y  N1  N2 y  N1 & y  N2

 E1(y) = 0, E2(y) = 0
 (E1 + E2)y = 0  y  Ker (E1 + E2)

So N1  N2  Ker (E1  E2)
or that           Ker (E1 + E2) = N1  N2
We leave the rest of the proof for the reader as an exercise.
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Theorem 21: Any projection E on a vector space V is diagonalisable.

Proof: Suppose {v1, v2, ..., vk} is a basis of range space R of E  and {vk + 1, ..., vn} is a basis
of null space N of E.

Then {v1, v2, ..., vk, vk + 1, ..., vn} is a basis of R  N = V
Now E(v1) = E(r1 + n1) r1  R, n1  N

 E2(v1) = E(v1) = E(r1 + n1) = E(r1) + E(n1) = E(r1)
 E(v1) = E(r1)
 E(v1 – r1) = 0  v1 – r1  Ker E = N

Also v1  R, r1  R  v1 – r1  R
and thus v1 – r1  R  N = {0}

 v1 = r1
Again n1 = v1 – r1 = 0
Thus E(v1) = v1. Similarly E(vi) = vi  i = 1, 2, ..., k
Also E(vj) = 0  j = k + 1, ..., n.

Showing matrix of E w.r.t. this basis is 
0

0 0
I 0I
0 00 0

which is clearly a diagonal matrix.
Hence the result follows.

Problem 64: If diagonal operator has eigen values 0 and 1 only then show that it is a pro-
jection.
Solution: Since T is diagonal operator,  a basis  = {v1, ..., vn} of V s.t.
[T]  = diagonal. Since eigen values of T are 0 and 1, let first m entries in diagonal be 1 and
others be 0.

Let v  V. Then v = 1v1 + ... + mvm + m + 1vm + 1 + ... + nvn
T2(v) = T(Tv)

= T( 1v1 + ... + mvm) as Tvi = vi for all i, 1  i  m
Tvj = 0 for all j > m

= T( 1v1 + ... + mvm + m + 1vm + 1 + ... + nvn)
= T(v) for all v  V

T 2 = T
Hence T is a projection.

Theorem 22: Let T be a linear operator on the space V and V = W1  ...  Wk. Define Ei(v)
= Ei(x1 + ... + xk) = xi 

Let T be a linear operator on the space V and V = W
 Wi. Then each Ei is a projection on V s.t. EiEj = 0 for all i 

 Define E
 j and

I = E1 + ... + Ek. Also then each Wi is invariant under T iff TEi = EiT for all i = 1, 2, ...,
k.

Proof: Let TEi = EiT
Let xi  Wi. Then by def., Ei(xi) = xi
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T(xi) = T(Ei xi)
= Ei(Txi)

 T(xi)  Range of Ei = Wi
Wi is invariant under T for all i = 1, ..., k

Conversely, let Wi be invariant under T. Then v  V
 I (v) = (E1 + ... + Ek) (v)
 v = E1(v) + ... + Ek(v)
 T(v) = TE1(v) + ... + TEk(v)

Since Ei(v)  Wi and Wi is T- invariant  T(Ei (v))  Wi.
So, Ej[T(Ei(v)] = T(Ei(v)) if j = i

= 0 if j  i
Ej(T(v)) = T(Ej(v))  v  V

 EjT = TEj  j.

Definition: Let V be a vector space and E1, E2, ..., Ek be a collection of projections on V, then
this collection is called orthogonal collection if Ei Ej = 0 

 be a collection of projections on 
 i 

 be a collection of projections on 
 j. Consider the space R2. Define

E1 : R2  R2, s.t., and E2 : R2  R2, s.t.,
E1(a, b) = (a, 0) E2(a, b) = (0, b)

then clearly E1, E2 are projections and
E1E2(a, b) = E1(0, b) = (0, 0)
E2E1(a, b) = E2(a, 0) = (0, 0)

Shows E1E2 = E2E1 and thus E1, E2 is an orthogonal set of projections.
The above theorem could be restated as
Let T be a linear operator on the space V and let V = W1  W2  ...  Wk be determined

by orthogonal projections E1, E2, ..., Ek on V. Then each Wi is T-invariant if and only if EiT
= TEi, i = 1, 2, ..., k.

Theorem 23: Let T be a linear operator on a F.D.V.S.  V. If T is diagonalisable and
c1, ..., ck are distinct eigen values of T, then 

Let T be a linear operator on a F.D.V.S.  V. If T is diagonalisable and
 linear operators E1, ..., Ek on V s.t.

(i) T = c1E1 + ... + ck Ek
(ii) I = E1 + ... + Ek

(iii) Ei Ej = 0 for all i  j
(iv) E 2

i = Ei
(v) Range of Ei is the eigen space of T associated with eigen value ci of T.

Conversely, if  distinct scalars c1, ..., ck and k non-zero linear operators E1, ..., Ek sat-
isfying (i), (ii), (iii) then T is diagonalisable, c1, ..., ck are eigen values of T and (iv) and (v)
are also satisfied.

Proof: Let T be diagonalisable and c1, ..., ck be distinct eigen values of T. Let Wi be eigen spaces
of T corresponding to eigen values ci.
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    Then dim V = dim W1 + ... + dim Wk
and V = W1 + ... + Wk
Hence V = W1  ...  Wk
As in theorm 20, let E1, ..., Ek be the projections associated with this decomposition. Then

(ii) to (v) are satisfied. Let v 
k
 V

Then I(v) = v = (E1 + ... + Ek)v
= E1(v) + ... + Ek(v)

 T(v) = TE1(v) + ... + TEk (v)
= c1E1(v) + ... + ck Ek(v) as Ei (v)  Range of Ei = Wi
= (c1E1 + ... + ck Ek)v

 T = c1E1 + ... + ck Ek
This proves (i).
Conversely, suppose T along with distinct scalars ci and non-zero operators Ei satisfy (i),

(ii) and (iii). Also T = c1E1 + ... + ck Ek
Then TEi = ci Ei for all i

 (T – ci I) Ei = 0 for all i
Since Ei  0  vi  V s.t. Ei (vi)  0

(T – ciI) (Ei(vi)) = 0 for all i
 T(Ei(vi)) = ci(Ei(vi)), Ei(vi))  0 for all i

 ci is an eigen value of T for all i, (Ei vi is an eigen vector).
If c is any scalar, then

(T – cI) = (c1E1 + ... + ck Ek) – c(E1 + ... + Ek)
= (c1 – c)E1 + ... + (ck – c)Ek

If c is an eigen value of T, then  0  v  V s.t.
Tv = cv  (T – cI)v = 0
(c1 – c) Ej E1(v) + ... + (ck – c) Ej Ek(v) = 0

 (cj – c) Ej(v) = 0 for all j = 1, ..., k
If Ej(v) = 0 for all j, then I = E1 + ... + Ek

 v = I(v) = E1(v) + ... + Ek(v) = 0
Ej(v)  0 for some j
cj = c for some j

c1, ..., ck are only eigen values of T.
Let Wi = range of Ei, i = 1, ..., k.
By (ii) I = E1 + ... + Ek

 v = Iv = E1v + ... + Ekv  W1 + ... + Wk for all v  V
 V = W1 + ... + Wk

As in theorem 22, V = W1  ...  Wk
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dim V = dim W1 + ... + dim Wk
 T is diagonalisable if Wi = eigen space of T corresponding to ci.
Let x  eigen space of T. Then T(x) = cix, 1  i  k

 (c1E1 + ... + ck Ek)x = ciI(x) = ci(E1 + ... + Ek)x
 c1E1(x) + ... + ck Ek(x) = ciE1(x) + ... + ciEk(x)
 (c1 – ci) E1(x) + ... + (ck – ci) Ek(x) = 0
 (cj – ci) Ej(x) = 0 for all j = 1, ..., k

as Ej (x)  Range of Ej = Wj
and W1, ..., Wk are independent.
we get Ej(x) = 0, j  i as cj – ci  0 for all j  i
Since I = E1 + ... + Ek,

x = E1(x) + ... + Ek(x) = Ei(x)
 x  Range of Ei = Wi

 eigen space corresponding to ci is contained in Wi.
Also 0  x  Wi  x = Ei(yi)  0
But (T – ci I)Ei = 0

 TEi(yi) = ci Ei(yi)
 T(x) = cix  x  eigen space corresponding to ci

Wi = eigen space corresponding to ci.
Using above theorem, we give another proof of theorem 10 i.e. suppose T is a linear operator

with minimal polynomial p(x) = (x – c1) ... (x – ck) s.t. c1, ..., ck 
 suppose 

 F are distinct. To show
T is diagonalisable.

Proof: Let pj(x) = 
i ji ji ji j

( – )
( – )

i

j i

x c
c c

, j = 1, ..., k

Then pj(ci) = ij
Let V = space of all polynomials over F of degree less than k.
Then p1, ..., pk  V and are linearly independent as 1p1 + ... + k pk = 0

 1p1(ci) + ... + k pk(ci) = 0
 i = 0 for all i

Since dim V = k, {p1, ..., pk} is a basis of V.
Now 1  V  1 = 1p1 + ... + k pk
Put x = ci on both sides to get

1 = i for all i
 1 = p1 + ... + pk ...(i)

x  V  x = 1p1 + ... + k pk
Put x = ci
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Then ci = i for all i
 x = c1p1 + ... + ck pk ...(ii)

Let pj(T) = Ej
Put x = T in (i) and (ii) above to get

I = p1(T) + ... + pk(T) = E1 + ... + Ek
T = c1E1 + ... ckEk

Since p(x) divides pi(x)pj(x) for all i  j
pi(T)pj(T) = p(T)q(T) for all i  j

 EiEj = 0 for all i  j
If Ej = 0 for some j, then pj(T) = 0 and
degree of pj(x) < deg p(x), a contradiction

Ej  0 for all j = 1, ..., k
T is diagonalisable.

Problem 65: Let E be a projection of V and let T be a linear operator on V. Prove that the
range of E is invariant under T if and only if ETE = TE. Prove that both the range and null
space of E are invariant under T if and only if ET = TE.

Solution: Let R = range of E
N = null space of E

Then V = R  N
We have shown before that I – E is also a projection. x  N   Ex = 0 

(I – E)x = x  x  range of I – E.  Range of E = R, Range of (I – E) = N.
Also E(I – E) = E – E2 = E – E = 0. Suppose R is invariant under T then  T(EV)  EV

 T(I – E)V = T(V – EV)  V – EV = (I – E)V  N = (I – E)V is invariant under T.
 By Theorem 22, TE = ET

 ETE = E2T = ET = TE.
Conversely, suppose ETE = TE
Let E(v)  R = range of E
Then E (TE(v))  R as T : V V, E : V  V

 TE(v) R since ETE = TE
 R is invariant under T.

Further, if both R and N are invariant under T, then by Theorem 22, TE = ET.
Conversely, suppose TE = ET  ETE = TE
From above then, R is invariant under T.
Also n  N  E(n) = 0  (ET)(n) = (TE)(n)

= T(E(n))
= T(0) = 0

E(T(n)) = 0 for all n  N
 T(n)  null space of E for all n  N
 N is invariant under T.



658 A Course in Abstract Algebra

Problem 66: Let V = R2 and T be the linear operator on V whose matrix relative to standard

ordered basis is 
0
a b

a
a b
0 a0 a

 for some non-zero a, b  R. Show that

(i) W1 the subspace generated by (1, 0) is T-invariant
(ii) W2 the subspace generated by (0, 1) is not T-invariant

(iii)  no T-invariant subspace W of R2 s.t., R2 = W1  W.

Solution: We have W1 = {(x, 0) | x  R}
T(W1) = {a(x, 0) | x  R}  W1

and thus W1 is invariant under T.
Suppose now W is T-invariant subspace of R2 s.t., R2 = W1 W. Since dim W1 = 1, dim

W must also be 1.
Define E : R2  R2, s.t.,

E(x, y) = (x, 0)
then E is a projection of R2 onto W1.
By problem 46, we should have TE = ET.
But TE(1, 1) = T(1, 0) = (a, 0)

ET(1, 1) = E(a + b, a) = (a + b, 0)
Showing that ET  TE and thus there does not exist any T-invariant subspace W s.t.,

R2 = W1 
Showing that 

 W. We leave part (ii) for the reader to try.

Using projections, we give another proof of the
Primary Decomposition Theorem: Let T be a linear operator on a finite dimensional vector
space V. Let p(x) be the minimal polynomial for T such that 1

1( ) ( ) ... ( ) krr
kp x p x p x  where pi(x)

are distinct irreducible monic polynomials over F and ri’s are positive integers. Let Wi be
the null space of pi(T)ri, i =1, 2,....,k. Then (i) V = W1 . . . Wk  (ii) T(Wi)  Wi for all
i = 1, 2, . . . ,k. (iii) If Ti is operator induced on Wi by T, then the minimial polynomial for Ti is
pi(x)ri.

Proof: Let
( )

( ) ,
( ) ii r

i

p x
f x

p x
  i = 1, 2, . . .,k

Then g.c.d. fi(x),. . ., fk(x)) = 1.
Therefore, there exist g1(x),. . .,gk(x) in F[x] such that

f1(x)g1(x)+. . .+fk(x)gk(x) = 1
So, f1(T)g1(T)+. . .+fk(T)gk(T) = I
Let Ei = fi(T)gi(T)
Then E1+. . .+Ek = I
Also, fi(x) fj(x) = p(x)q(x) for all i  j
Therefore, fi(T) fj(T) = p(T)q(T) = 0 q(T) = 0 for all i  j
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So, fi(T) gi(T) fj(T)gj(T) = 0 for all i  j
which means that   EiEj = 0 for all  i  j
Now I = E1+. . .+Ek and EiEj = 0 for all  i  j gives that Ei

2 = Ei for all i.  So, each Ei is a
projection on V.

Let v be in Range Ei. Then v = Ei(v ) gives that Ei(v) = v.
So, pi(T)ri(v) = pi(T)riEi(v) = pi(T)rifi(T)gi(T)v = p(T)gi(T)v = 0.
Therefore, v is in the null space of pi(T)ri. So, v is in Wi which means that Range Ei Wi.
Let v be in Wi. Then for all j  i, pi(x)ri divides fj(x).
So, fj(x) = pi(x)ri q(x)
Therefore, fj(T)v = pi(T)riq(T)v = q(T) pi(T)ri v = 0
which gives  fj(T)gj(T)v = gj(T)fj(T)v = 0 for all j  i
So, Ej(v) = 0 for all j  i
Now I = E1+. . .+Ek gives v = I(v) = E1(v)+. . .+Ek(v) = Ei(v)
Therefore, v is in Range Ei

So, Wi = Range Ei

By Theorem 20, V = W1  . . . Wk. This proves (i).
Since TEi = T fi(T)gi(T) = fi(T)gi(T)T = EiT for all i, each Wi is invariant under T. This proves

(ii). The proof of (iii) is smae as given earlier.
The advantage of the above proof is that we have shown that each projection Ei on V is a

polynomial in T. This we shall use in the next theorem.

Theorem 24: Let T be a linear operator on the F.D.V.S. V(F). Suppose that the minimal
polynomial for T decomposes over F into a product of linear polynomials. Then 

. Suppose that the minimal
 a

diagonalisable operator D on V and a nilpotent operator N on V s.t. (i) T = D + N
(ii) DN = ND. Further, D and N are uniquely determined such that T = D+ N  and DN = ND.

Proof: Let p(x) = (x – c1)r1 ... (x – ck)
rk be the minimal polynomial for T where

c1, ..., ck are distinct scalars in F.
By Primary decomposition theorem, V = W1  ...  Wk, where Wi = null space of (T – ciI)

ri.
Let E1, ..., Ek be the corresponding projections. Then Wi = range of Ei.

Let D = c1E1 + ... + ck Ek
By theorem 21, D is diagonalisable.
Since I = E1 + ... + Ek

T = TE1 + ... + TEk, D = c1E1 + ... + ck Ek
Let N = T – D = (T – c1I)E1 + ... + (T – ckI)Ek
Then N2 = (T – c1I)

2E1 + ... + (T – ckI)
2 Ek as TEi = EiT  i

and in general that N r = (T – c1I)
rE1 + ... + (T – ckI)

r Ek

Since (x – ci)
ri is the minimal polynomial of T on Wi, (T – ciI)

ri = 0 on Wi for all i.
 (T – ciI)

r = 0 on Wi for all r  ri
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N r = 0 for all r  ri for each i
N is nilpotent operator.
T = D + N, D is diagonalisable and N, nilpotent operator.

Now DT = (c1E1 + ... + ck Ek) (TE1 + ... + TEk)
= c1TE1 + ... + ckTEk

as Wis are invariant under T  TEi = EiT for all i
= T(c1E1) + ... + (ck Ek)
= (TE1) (c1E1) + ... + (TEk) (ck Ek)
= (TE1 + ... + TEk) (c1E1 + ... + ckEk)
= TD

  D(D + N)= (D + N)D
 DN = ND.

To show uniqueness, suppose T = D  + N , where D  is diagonalisable and N  is nilpotent and
D
To show uniqueness, suppose 

N
To show uniqueness, suppose 

 = N
To show uniqueness, suppose 

D
To show uniqueness, suppose 

.
Then D T = D (D  + N ) = D D  + D NN

= D D  + N D  = (D + N D
= TD

So D  commutes with T.
Since D = C1 E1 + . . .+CkEk and each Ei is a polynomial in T, D is a polynomial in T.
So D D = DD
Thus D, D  are simultaneously diagonalisable.
So, D  D  is also a diagonalisable linear operator.
Now D  D  = NN  N and NNNN  = (T  D)(T  D ) = (T  D )(T  D) = NN N
So, NN   N is also a nilpotent operator.
Therefore, D  D  is both diagonalisable and nilpotent operator.
Thus D  D  = 0 = NN   N   D = D  and N = NN .

Problem 67: Let T be the linear operator on R3 which represented by the matrix
3 1 1
2 2 1
2 2 0

3 1 13 1 1
2 2 12 2 12 2 12 2 12 2 12 2 1
2 2 0

in the standard ordered bases. Show that there exists a diagonal operator D and a nilpotent
operator N such that T = D + N and DN = ND. Find the matrices of D and N.
Solution: The characteristic polynomial of T

= (x  1) (x  2)2

= The minimimal polynomial of T.
The eigen values of T are 1, 2, 2.
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By Theorem 24, there exists a diagnonal operator D and a nilpotent operator N such that
T = D + N and DN = ND
Here c1 = 1, c2 = 2

D = E1 + 2E2

Now (x2  4x + 4)  (x  3) (x  1) = 1
E1 = T2  4T + 4I,  E2 = T2  4T  3I

D = T2 + 4T 2I  = 
1 1 0
0 2 0
2 2 2

1 1 0
0 2 00 2 00 2 0
2 2 22 2 2

N = T  D  = 
2 0 1
2 0 1
4 0 2

2 0 12 0 1
2 0 12 0 12 0 12 0 12 0 12 0 1
4 0 24 0 2

Then N2 = 0. So, N is nilpotent.

and DN = 
4 0 2
4 0 2
8 0 4

4 0 24 0 2
4 0 24 0 24 0 24 0 24 0 24 0 2
8 0 48 0 4

= ND

The characteristic polynomial of D is  (x  1) (x  2)2

The minimal polynomial of D is  (x  1) (x  2) which is product of distinct linear factors. So,
D is diagonalisable.

Problem 68: Let V be the space of all polynomials of degree  n over a field F. Let T be the
differential operator on V. Using theorem 24, show that T is nilpotent.

Solution: Let  = {1, x,. . .,xn} be an ordered basis for V.

Then [T]  = 

0 1 0 0
0 0 2 0

0 0 0 0
n

0 1 0 0
0 0 2 00 0 2 00 0 2 0

nn
0 0 0 0

   
  

The characteristic polynomials for T is xn+1 which is also the minimal polynomial for T. By
Theorem 24, there exists a diagonal operator D and a nilpotent operator N

such that T = D + N
Since 0 is the only eigen value of T and D = c1E1+. . .+cn+1 En+1 = 0

T = N
So, T is nilpotent
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Problem 69: Show that a non zero linear operator on a finite dimensional vector space can
not be both diagonal and nilpotent.

Solution: Let T be a non zero linear operator on a finite dimensional vector space V. If T is
nilpotent then T r = 0 for some integer r > 0. The minimal polynomial for T would be x3, s  r.
If T is also diagonalisable, then the minimal polynomial would be a product of distinct linear
factors. So, it would be x which means that T = 0, a contradiction. Thus T cannot be both
diagonal and nilpotent.

Let T and S be linear operators on a finite dimensional vector space V. If there exists a basis
 for V such that [T]  and [S]  are diagonal matrices, then T and S are called simultaneously

diagonalisable. Equivalently, if there exists a bsis 
 are diagonal matrices, then 

 = {v1, v2,. . .,vn} for V such that each vi is
an eigen vector of both T and S, then T and S are called simultaneously diagonalisable.

Theorem 25: Let S and T be diagonalisable operators on a finite dimensional vector space
V such ST = TS. Then T and S are simultaneously diagonalisable.

Proof: Let  be an eigen value of T.
Let W = {v V |T(v) = v}
Let v W
Then T(Sv) = (TS)(v)

 = (ST)(v)
 = S(T(v))
 = S( v)
 = Sv

Sv W for all v W
W is S-invariant.

Since S is diagonalisable, S | W is diagonalisable.
Let 1, 2,. . . k be distinct eigen values of T.
Let W1, W2,. . .,Wk be the corresponding eigen spaces.
Since T is diagonalisable V = W1  W2   . . . Wk

Now S | W1 = SW1is diagonalisable, and so there exists a basis 1 = {x1, x2,. . .xr} of W1 such
that each xi is an eigen vector of SW1. Now SW1(xi) = S(xi) as xi 

1
W1. So, each xi is an eigen

vector of S.
In this way, there exist basis 1, 2, ..., k of W1, W2,...,Wk respectively, such that i consists

of eigen vector of S.
Let = 1  2 . . .  k. Then  is a basis of V.
Also xi i  Wi means that xi is also an eigen vector of T.
In this way, consists of eigen vectors of S and T.
Thus, T and S are simultaneously diagonalisable.

Cor: Let S and T be linear operators on a finite dimensional vector space V such that both S and
T are diagonalisable and ST = TS. Then S + T is also diagonalisable.
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Proof: By above theorem S and T are simulataneously diagonalisable. So, there exists an
ordered basis of  of V such that [T]  and [S]  are both diagonal matrices.

[S + T]  = [S]  + [T]  is a diagonal matrix.
Hence S + T is also diagoanlisable.

Problem 70: Let T be a linear operator on a finite dimensional vector space V such that
Rank T = 1. Show that T is either diagonalisable or nilpotent.

Solution: Since Rank T = 1, dim Ker T = n  1
Where  n = dim V
Let {x1, x2,. . . ,xn 1} be a basis of Ker T
Let {x1, x2,. . . ,xn 1, xn} =  be a basis of V

Then  

1

2

1

0 0 0
0 0 0

[ ]

0 0 0
n

c
c

T
c

c

10 0 0 c
0 0 0

1

20 0 0 c20 0 0 c

nc 1c
0 0 0 c

   
  

If c  0, the characteristic polynomial of T is xn 1(x  c) and the minimal polynomial of T would
be x(x C)

So, T is diagonalisable
If c = 0, then the characteristic polynomial for T is xn and the minimal polynomial of T would

be xr, 1  r  n.
So, T is nilpotent.

Problem 71: Let T be a linear operator on a finite dimensional vector space V. Suppose T
commutes with every diagonalisable operator on V. Prove that T is scalar multiple of I.

Solution: Let D = 11

1 0 0

O E
1 0 0

11E11E11EO EEO



Then D is diagonalisable
Let [T]  = (aij) = A
Then AD = DA means that 1st row and 1st column of A is zero except a11.
Let D = E22. Then D is diagonalisable.
So, AD = DA means that 2nd row and 2nd column of A is zero except a22.

In this way, 
11 0

0 nn

a
A

a

11 0a11

nn0 nna
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Let D = E11 + E21+. . .+En1

Then the characteristic polynomial of D is xn 1(x  1) and the minimal polynomial of D is
x(x 

Then the characteristic polynomial of 
 1)

AD = DA means that
a22 = a33 =. . .=ann = a11= c (say)

0

0
A cI

0
cIcIcIcI

0


Hence,  T = cI.

Exercises
1. Let V be the vector space of all polynomials of degree  6 over F. Let W be the

subspace of V spanned by {1, x2, x4, x6}. Let D be the differential operator on V.

(i.e. D (f (x)) = ( ))
d f x
dx

. Show that W is not invariant under D.

2. In exercise 1, show that W is invariant under D2 where D2 ( f (x)) = 
2

2 ( )d f x
dx

.

Let T = D2. Find
(i) the matrix of Tw in a suitable basis of W.

(ii) the matrix of T̂  in a suitable basis of 
V
W

(iii) the matrix of T in a suitable basis of V.

(i) A = 

0 2 0 0
0 0 12 0
0 0 0 30
0 0 0 0

0 2 0 0
0 0 12 00 0 12 00 0 12 0
0 0 0 300 0 0 30
0 0 0 00 0 0 0

(ii) C = 
0 6 0
0 0 20
0 0 0

0 6 0
0 0 200 0 200 0 20
0 0 0

(iii) 
0

0
A

C
0A

0 C0 C

3. Let V be the vector space of all polynomials over the field of real numbers R. Let W
be the subspace of V spanned by {1, x, x2}. Let T be the linear operator on V defined
by T (f (x)) = x f (x). Show that W is not invariant under T.

4. Let T be a linear operator on a vector space V over F. If W1, ..., Wk are T-invariant

subspaces of V, prove that 
1

k

i
i

W
1

k

i
i

WiWi
1

 and 
1

k

i
i

W
1

  are T-invariant subspaces of V.

5. Let c be a characteristic value of T and W be the space of characteristic  vectors
associated with the characteristic value c. What is the restriction operator Tw ?

(Tw = cI)
6. Let T be a linear operator on a finite dimensional vector space V. Prove that T is

diagonalisable if and only if V is a direct sum of one dimensional T-invariant subspaces.



12. Eigen Values and Eigen Vectors 665

7. Let T be a linear operator on a finite dimensional vector space V and let W be a
T-invariant subspace of V.
(i) Show that if  is an eigen value of Tw, then  is an eigen value of T.

(ii) Show that the eigen space of Tw corresponding to eigen value  of Tw is
WW  

) Show that the eigen space of 
 W, where WW  denotes the eigen space of T corresponding to .

(iii) Prove that if T is diagonalisable, then so is Tw.
(Hint: T is diagonalisable  V = W1 + ... + Wk where Wi denotes eigen space cor-
responding to eigen value i of T. Use (ii)).

8. Let W be a proper T-invariant subspace of V, where T is a linear operator on a finite
dimensional vector space V.

Let  : V  
V
W

 s.t.,

(v) = W + v be a linear transformation. Show that T = T̂  where T̂  is a linear

operator on 
V
W

 defined by T̂ (W + v) = W + T (v).

Further, if T is diagonalisable, show that T̂  is also diagonalisable.
(Hint: T is diagonalisable   a basis {x1, ..., xn} of V consisting of eigen vectors
of T. Also T = T̂   { x1, ..., xn} are eigen vectors of T̂  
{W + x1, ..., W + xn} are eigen vectors of T̂ . If {W + v1, ..., W + vr} is a basis of
V
W

, then it can be replaced by {W + x1, ..., W + xr} such that it forms a basis of 
V
W

consisting of eigen vectors of 
V
W

).

9. Let T be a linear operator on a finite dimensional vector space and suppose that
V = W1 

 be a linear operator on a finite dimensional vector space and suppose that
 ... 

 be a linear operator on a finite dimensional vector space and suppose that
 Wk, where Wi is a T-invariant subspace of V for each

i = 1, ..., k. If f (t) denotes the characteristic polynomial of T and fi(t) denotes the
characteristic polynomial of Twi

 (1 
) denotes the characteristic polynomial of 

 i 
) denotes the characteristic polynomial of 

 k), then show that
f (t) = f1(t) . f 2(t) ... fk (t)

(Hint: Use induction on k).
10. If E1, E2 are projections onto independent subspaces, show that E1 + E2 is also a

projection.
11. Let T be a linear operator on a finite dimensional vector space V. Let R be the range

of T and let N be the null space of T. Prove that R and N are independent if and only
if V = R  N.
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If T be a linear operator on a vector space V(F) and there exists a non-zero v V,
s.t., T(v) = cv for some c in F, then v is called an eigen vector or characteristic
vector of T and c is called an eigen value or characteristic value or characteristic
root of T.
Let T be a linear operator on a F.D.V.S. V(F). The minimal polynomial for T is
defined to be the unique polynomial p(x) F[x], s.t., p(x) is monic, p(T) = 0 and no
polynomial over F which annihilates T has smaller degree than p(x).
If T be a linear operator on an n-dimensional space V, then the characteristic and
minimal polynomials for T have same roots.
The minimal polynomial of a linear operator T divides its characteristic polynomial.
A linear operator T on a finite-dimensional vector space V is called diagonalizable
if there exists an ordered basis  of V such that matrix of T w.r.t.  is a diagonal
matrix. Equivalently, T is diagonalizable iff there exists basis of V consisting of
eigen vectors of T.
If T is a linear operator on an n-dimensional vector space V and it has n distinct
characteristic values, then T is diagonalizable. The converse does not hold.
If T is a linear operator on a F.D.V.S. V(F), then T is diagonalizable iff algebraic
multiplicity of ci( F)equals the geometric multiplicity of ci for all i.
If  W is a subspace of  V and T is a linear operator on V, s.t., T(W) W, we say W
is invariant under T or is T-invarient.
Primary decomposition theorem and projections have been discussed in the
later part of the chapter. If a linear operator T has a minimal polynomial as a
product of linear polynomials then T = D + N, DN = ND, where D is diagonalizable
operator and N is a nil operator.

A Quick Look at what's been done
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Definition: Let K be a field and suppose F is a subfield of K, then K is called an extension of F.
Suppose S is a non empty subset of K. Let F(S) denote the smallest subfield of K which

contains both F and S. (In fact F(S) would be the intersection of all subfields of K that contain
F and S). The following theorem is then an easy consequence.

Theorem 1: If S, T are non empty subsets of a field K and K is an extension of a field F then
F(S T) = F(S) (T) (where, of course, if F(S) = E, then by F(S)(T) we mean E(T)).

Proof: F(S  T) is the smallest subfield of K containing S  T, F
i.e., S, T, F  F(S  T)

 F(S)  F(S T), T  F(S  T)
 F(S)(T)  F(S  T)

Again, F, S, T  F(S)(T)
 F, SS  T  F(S) (T)
 F(S T)  F(S)(T)

or that F(S T) = F(S)(T)

Cor.: F(S  T) = F(T  S) = F(S)(T) follows clearly as S  T = T  S.

Note: If S is a finite subset {a1, a2, ..., an} of K we write F(S) = F(a1, a2, ..., an).
The order in which ai appear is immaterial in view of the above corollary as

F(a1, a2 ,...., an) = F({a1}{a2, a3, ...., an})
= F({a2, a3, ....., an} {a1})
= F(a2, a3, ....., an, a1)

Fields

13

Introduction
In earlier chapters we defined a field, a subfield and proved a few results regarding these.
We now come back to fields and study them in some more details. Fields play an important
role in algebra with applications to Number Theory, theory of equations and geometry. In
this chapter we plan to study different extensions of a field, the presence of roots of a
polynomial in an extension and splitting fields.
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Also then, F(a)(b) = F(a, b) = F(b, a) = F(b)(a)
Again, if K = F(a), K is called simple extension of F and we say K is obtained by adjoining

the element a to F.

Problem 1: Let Q be the field of rationals then show that Q ( 2 3),  = Q ( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)( 2 3) .

Solution: By definition

2, 3  Q ( 2, 3)

 2 32 32 32 32 3   Q ( 2, 3) (closure)

 Q ( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)   Q ( 2, 3)

Now 2 32 32 32 32 3  Q ( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)

 2( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)  Q ( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)

 2 + 3 + 2 2 3  Q ( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)

Also 5  Q ( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)

 5 + 2 2 3  – 5 = 2 2 3  Q ( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)

Again, 2  Q ( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)

2 × 1
2

2 3  = 2 3   Q ( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)

 ( 2 3) 2 3( 2 3) 2 3( 2 3) 2 3( 2 3) 2 3( 2 3) 2 3( 2 3) 2 3  = 2 3 3 22 3 3 22 3 3 22 3 3 22 3 3 2   Q ( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)( 2 3) ...(1)

Also 2 32 32 32 32 32 3 Q ( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)

 2( 2 3)2( 2 3)2( 2 3)2( 2 3)2( 2 3)2( 2 3)  Q ( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)

 2 2 2 32 2 2 32 2 2 32 2 2 32 2 2 3   Q ( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)

 (2 3 3 2)(2 3 3 2)(2 3 3 2)(2 3 3 2)(2 3 3 2)(2 3 3 2)  – (2 2 2 3)(2 2 2 3)(2 2 2 3)(2 2 2 3)(2 2 2 3)(2 2 2 3) Q ( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)  by using (1)

 2   Q ( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)

Again, 2 32 32 32 32 32 3   Q ( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)   3( 2 3)3( 2 3)3( 2 3)3( 2 3)3( 2 3)3( 2 3)   Q ( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)
and using (1) we get

(3 2 3 3) (2 3 3 2)(3 2 3 3) (2 3 3 2)(3 2 3 3) (2 3 3 2)(3 2 3 3) (2 3 3 2)(3 2 3 3) (2 3 3 2)(3 2 3 3) (2 3 3 2)(3 2 3 3) (2 3 3 2)(3 2 3 3) (2 3 3 2)(3 2 3 3) (2 3 3 2)(3 2 3 3) (2 3 3 2)(3 2 3 3) (2 3 3 2)(3 2 3 3) (2 3 3 2)(3 2 3 3) (2 3 3 2)(3 2 3 3) (2 3 3 2)   Q ( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)

i.e., 3  Q ( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)

Hence   2, 3   Q ( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)   Q ( 2, 3)   Q ( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)

or that   Q ( 2, 3)  = Q ( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)( 2 3).
If K is an extension of F, then we know that K can be regarded as a vector space over F.

In that case dimension of K over F is called degree of K over F and we denote it by [K : F].
Our next theorem is about the degree of extension fields. If [K : F] is finite, we say K is finite
extension of F.
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Theorem 2: Let K be a finite extension of F and L, a finite extension of K. Then L is a finite
extension of F and

[L : F] = [L : K] [K : F].

Proof: Let [L : K] = m, [K : F] = n
Let {a1, ...., am} be a basis of L over K and {b1, ...., bn} be a basis of K over F.
We show that {aibj | 1  i  m, 1  j n} is a basis of L over F.

ai  L, bj  K  bj  L. aibj  L for all i, j

Let
1 11 11 1

m n

ij i j
i j

a b  = 0, ij  F

Then
1 1

( )
1 1

( )( )
1 1

( )
m n

ij j i
i j

b a  = 0,
111

n

ij j
j

b   K

Since {a1, ...., am} are linearly independent over K,

111

n

ij j
j

b  = 0 for all i = 1, ...., m

Also b1, ...., bn are linearly independent over F.

ij = 0 for all i = 1, ...., m j = 1, ...., n
 {aibj | 1  i  m, 1  j  n} is a linearly independent subset of L over F. Let

a  L. Since {a1, ..., am} is a basis of L over K, a = 1a1 + ... + mam, i  K and {b1,..., bn}
is a basis of K over F

 i = i1b1 + ... + inbn, ij  F

a = 
111

m

i i
i

a  = 1 1
1
( ... )

1
1 1( ... )1 1( ... )1 1( ... )

1
1 1( ... )1 1( ... )1 1

m

i in n i
i

b b a

= 
1 11 11 1

m n

ij i j
i j

a b , ij  F

 {aibj | 1  i  m, 1  j  n} spans L over F and so forms a basis of L over F.
[L : F] = mn = [L : K] [K : F]

Remark: If [L : K] is infinite, then [L : F] is also infinite because [L : F] = r  every subset
of L having r + 1 elements is linearly dependent over F. Since [L : K] is infinite,

 a1, ..., ar + 1 
having 

 L which are linearly independent over K. Now 1  K and 1 is linearly independent
over F as 1  0. As in Theorem 2, a1.1, a2.1, ... ar + 1.1 are linearly independent over F. We
find a1, ..., ar + 1  L are linearly independent over F, a contradiction.

 [L : F] is infinite. Similarly, [K : F] is infinite.

Cor. 1: If L is a finite extension of F and K is a subfield of L which contains F, then
[K : F] divides [L : F].

Proof: By remark above [K : F] is finite as [L : F] = finite. Also [L : K] is finite.
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By Theorem 2, [L : F] = [L : K] [K : F]
[K : F] divides [L : F]

Cor. 2: If K is an extension of F, then K = F if and only if [K : F] = 1.

Proof: If K = F, then [K : F] = [K : K] = 1
If [K : F] = 1, let {a} be a basis of K over F.

1  K  1 = a,   F,   0 as 1  0
 a = –1  F

Let b  K  b = a,   F, a  F
 b  F  K  F  K = F.

Cor. 3: If L is an extension of F and [L : F] is a prime number p, then there is no field K s.t.,
F  K  L.

Proof: Suppose  a field K s.t., F  K  L.
Then p = [L : F] = [L : K] [K : F] by Theorem 2

 [L : K] = 1 or [K : F] = 1
 K = L or K = F by Cor. 2

a contradiction.
Hence the result.
Trivially then, if K is an extension of F of prime degree then for every a  K,

F(a) = F or F(a) = K.

Problem 2: Let D be an integral domain. Let F be a field s.t., F  D. Suppose unity 1 of F
is also unity of D. Then D can be regarded as a vector space over F. Show that D is a field
if [D : F] = finite.

Solution: Let [D : F] = r. Let {a1, ..., ar} be a basis of D over F.
Let 0  a  D. We show that a is invertible. Consider {aa1, ..., aar}.
Let 1(aa1) + ... + r(aar) = 0, i  F.
Then a( 1a1 + ... + rar) = 0

 1a1 + ... + rar = 0, as a  0 and D is an integral domain.
 i = 0 for all i = 1, ..., r as {a1, ..., ar} is linearly independent over F.
 {aa1, ..., aar} is linearly independent over F.

But [D : F] = r  {aa1, ..., aar} is a basis of D over F.
1  D  1 = 1aa1 + ... + raar, i  F

= a( 1a1 + ... rar)
= ab,  b = 1a1 + ... + rar  D

 a is invertible.
 D is a field.
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Algebraic Extensions

Suppose K is an extension of F and a  K.
Let F[a] = {f (a) | f (x) = a0 + a1x + ... + anx

n  F[x]}, ai  F
then as f (a) = a0 + a1a + ... + ana

n  K, we find F[a]  K
One can show that F[a] is an integral domain.
Let E be its field of quotients. Then E is the smallest field containing F[a]. We show

F[a]  F(a)  E.
Now x = 0 + 1.x + 0.x2 + ... F[x] and so

a = 0 + 1.a + 0.a2 + ... F[a]
i.e., a  F[a]  E
Again if   F be any element then

 =  + 0x + 0x2 + ...  F[x]
gives   F[a] or that F  F[a]  E
Hence F(a) E, as F(a) is the smallest field containing F and a.
If f (a)  F [a] be any member where

f (a) = 0 + 1a + ... + nan, i  F
then as a  F(a), i  F  F(a), we find f (a)  F(a)
Hence F[a]  F(a) and so

F[a]  F (a)  E
But E is the smallest field containing F [a].

E  F (a). Hence F(a) = E.
So, we have explicitly determined the field F(a). It is the field of quotients of F[a].

We write, F(a) = ( ) ( ) 0, ( ), ( ) [ ]
( )

f a g a f x g x F x
g a

( )f a( )f a( ) ( ) 0, ( ), ( ) [ ]
( )

g a f x g x F x( ) 0, ( ), ( ) [ ]g a f x g x F x( ) 0, ( ), ( ) [ ]
( )g a( )
( )f a( )f a( ) ( ) 0, ( ), ( ) [ ]g a f x g x F x( ) 0, ( ), ( ) [ ]g a f x g x F x( ) 0, ( ), ( ) [ ]g a f x g x F x( ) 0, ( ), ( ) [ ]g a f x g x F x( ) 0, ( ), ( ) [ ]( ) 0, ( ), ( ) [ ]g a f x g x F x( ) 0, ( ), ( ) [ ]

g a( )g a( )( )g a( )g a( )

In general, one can show that

F (a1, ..., an) = 11
1

11

( , ..., ) [ ]( , ..., )
| ( , ..., ) 0,

( , ..., ) [ ]( , ..., )
nn

n
nn

f x x F xf a a
g a a

g x x F xg a a
( , ..., ) [ ]( , ..., ) ( , ..., ) [ ]f x x F x( , ..., ) [ ]f x x F x( , ..., ) [ ]f x x F x( , ..., ) [ ]1( , ..., ) [ ]1f x x F x1( , ..., ) [ ]1f a a( , ..., )f a a( , ..., )1( , ..., )1f a a1( , ..., )1 ( , ..., ) [ ]f x x F x( , ..., ) [ ]f x x F x1

1| ( , ..., ) 0,
( , ..., ) [ ]( , ..., )

n
n| ( , ..., ) 0,n| ( , ..., ) 0,g a a1g a a1| ( , ..., ) 0,g a a| ( , ..., ) 0,1| ( , ..., ) 0,1g a a1| ( , ..., ) 0,1 g x x F x( , ..., ) [ ]g x x F x( , ..., ) [ ]( , ..., )g a a( , ..., )

1( , ..., ) [ ]nf x x F x( , ..., ) [ ]f x x F x( , ..., ) [ ]f x x F x1f x x F x1( , ..., ) [ ]f x x F x( , ..., ) [ ]1( , ..., ) [ ]1f x x F x1( , ..., ) [ ]1 nf x x F xn( , ..., ) [ ]n( , ..., ) [ ]f x x F x( , ..., ) [ ]n( , ..., ) [ ]f x x F x( , ..., ) [ ]f x x F x( , ..., ) [ ]1( , ..., )
| ( , ..., ) 0,n( , ..., )n( , ..., )f a a1f a a1( , ..., )f a a( , ..., )1( , ..., )1f a a1( , ..., )1 | ( , ..., ) 0,g a a| ( , ..., ) 0,| ( , ..., ) 0,

g x x F x
| ( , ..., ) 0,

f x x F x
g x x F x( , ..., ) [ ]g x x F x( , ..., ) [ ]( , ..., ) [ ]( , ..., ) [ ]g x x F x( , ..., ) [ ]g a a( , ..., )g a a( , ..., )( , ..., )g a a( , ..., )g a a( , ..., )

A natural question arises. When is F[a] = F(a)? To answer this, we first define what is an
algebraic element. Let K be an extension of F. a 

)? To answer this, we first define what is an
 K is said to be algebraic over F if 

)? To answer this, we first define what is an
 non-

zero polynomial f (x) 
algebraic element. Let 

 F[x] s.t., f (a) = 0. Otherwise, it is called transcendental element. For

example, 2 R = real field, is algebraic over Q = rational field as 2  satisfies non-zero
polynomial f (x) = x2 – 2 

= real field, is algebraic over 
 Q[x]. However, 

= real field, is algebraic over 
, e  R are not algebraic over Q. An extension

K of F is called an algebraic extension if every a K is algebraic over F.
If for some a  K, a is not algebraic over F, then K is called transcendental extension of

F. For example, R is transcendental extension of Q. We shall see in the following theorem that
finite extensions are algebraic. So, C = the field of complex numbers is algebraic over R as
[C : R] = 2, {1, i} being a basis of C over R.
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We sometimes use the notation K/F to express the fact that K is an extension of F. Similarly,
K/F is algebraic would mean K is an algebraic extension of F.

Theorem 3: A finite extension is algebraic.

Proof: Let K be a finite extension of F. Let [K : F] = n. Let a K. Then
1, a , ..., an are linearly dependent over F. Thus 0, 1, .. ., n F s.t.,

0.1 + 1a + ... + 
are linearly dependent over 

na
n = 0 for some 

are linearly dependent over 
i 

are linearly dependent over 
 0.

Let f (x) = 0 + 1x + ... + nxn. Then f (x) is non-zero polynomial in F [x] as some
i  0. Also f (a) = 

1

0 + 1a + ... + na
n = 0

a is algebraic over F.
K is algebraic over F.

Note: Converse of Theorem 3 is not true. We shall give an example later to prove this.

Cor.: a  K is algebraic over F if [F(a) : F] = finite.

Proof: By theorem 3, F(a) is algebraic over F.
a F(a) is algebraic over F.

Converse of the above corollary is also true. But we’ll prove it after the next theorem.

Theorem 4: Let a K be algebraic over F. Then
(i)  a unique monic irreducible polynomial p(x) F[x] s.t., p(a) = 0

(ii) non-zero polynomial q(x) F[x] s.t., q(a) = 0, then p(x) divides q(x),
(iii) F (a) = F [a].

Proof: (i) Since a is algebraic over F,  a non-zero polynomial f (x)  F[x], s.t.,
f (a) = 0.

Let t(x) be the non-zero polynomial of smallest degree over F s.t., t(a) = 0 and suppose
t(x) = a0 + a1x + ... + anx

n, ai  F
If t(x) is not monic [By monic polynomial, we mean a polynomial in which coefficient of

highest degree term is 1], then let
p(x) = an

–1a0 + an
–1a1x + ... + xn = an

–1t(x)
Now deg p(x) = n = deg t(x) and p(a) = 0 and p(x) is a monic polynomial. Thus  a monic

polynomial p(x) of least degree s.t., p(a) = 0.
Suppose p(x) = p1(x)p2(x), where p1 and p2 are polynomials with lesser degree than deg p.
Then 0 = p(a) = p1(a)p2(a)
 p1(a) = 0 or p2(a) = 0 [as F[a] is an Integral Domain]
But that would lead to a contradiction as p(x) is such polynomial with least degree.
Hence p(x) is irreducible polynomial.
To show uniqueness of p(x), suppose q(x) is any irreducible monic polynomial over F s.t.,

q(a) = 0. Since F[x] is a Euclidean domain, 
) is any irreducible monic polynomial over 

 h(x) and r(x) s.t., q(x) = p(x)h(x) + r(x)
where either r(x) = 0 or deg r < deg p
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Now 0 = q(a) = p(a)h(a) + r(a)
 r(a) = 0 as p(a) = 0

Since p(x) is of least degree s.t., p(a) = 0, we find deg r < deg p is not possible. Hence
r(x) = 0

i.e., q(x) = p(x)h(x) ...(1)
Since q(x) is irreducible, h(x) must be a constant polynomial, say h(x) = c
Then q(x) = cp(x)
Since q(x) is monic, coefficient of highest degree term in L.H.S. is 1 and therefore it is 1

on R.H.S. also
R.H.S. being cp(x) = can

–1a0 + can
–1a1x + ... + cxn gives c = 1

Hence q(x) = p(x), proving the uniqueness of p(x)
(ii) Follows by (1)

(iii) Define a mapping  : F[x]  F[a], s.t.,
( f (x)) = f (a)

then  is onto homomorphism (verify!)
By fundamental theorem then

F[a]  [ ]
Ker
F x

Since F[a] is an integral domain, so would be [ ]
Ker 
F x  which implies Ker  is a prime ideal.

Since a is algebraic over K,  a non-zero polynomial f (x)  F[x] s.t. f (a) = 0.
 ( f (x)) = f (a) = 0
 f (x)  Ker  Ker   (0)

i.e., Ker is a non-zero prime ideal of F[x] which being a Euclidean domain is a PID.
Thus Ker  is a maximal ideal. (See Problem 3 on Page 329)

 [ ]
Ker 
F x  is a field.

 F [a] is a field.
But F(a) is the smallest field containing F and a and thus F(a)  F[a]
Also F[a]  F(a)
Hence F(a) = F[a].
Note F(a) is field of quotients of F[a] and when F[a] is itself a field, F[a] = F(a).

Note: p(x) determined in Theorem 4 is denoted by p(x) = Irr(F, a). It is the unique monic
irreducible polynomial over F satisfied by a. Since p(x) is of least degree s.t. p(a) = 0, p(x)
is called the minimal polynomial for a.

where F(x) = 
0

( ) [ ],
( ) g

f x g K xf
g x

( )f x( )f x( ) [ ][ ]g K x[ ][ ][ ]g K x[ ][ ][ ]g K x[ ], g K xf g K x( )f x( )f x( ) f( )f x( )f x( ) g K xf g K x[ ]g K x[ ]g K x[ ]g K x[ ][ ]g K x[ ]g K x[ ]
( ) gg x( )g x( ) 0

[ ],
( )

g K x[ ]g K x[ ]f
( )g x( ) 0

g K x[ ]g K x[ ]
g x( )g x( )( )g x( )g x( )

.

Remark: If a K is transcendental over F then F(x)  F(a).

Proof: Define  : F(x)  F(a) s.t.,
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( )
( )

f x
g x

( )f x( )f x( )( )f x( )f x( )
( )g x( )g x( )( )g x( )g x( )

 = ( )
( )

f a
g a

,

Then  is well defined onto homomorphism.

Also ( )
( )

f x
g x

( )f x( )f x( )( )f x( )f x( )
( )g x( )g x( )( )g x( )g x( )

 = 0


( )
( )

f a
g a

= 0

 f (a) = 0
 f (x) = 0, for otherwise a would be algebraic over F.


( )
( )

f x
g x

 = 0

  is 1–1.
Hence F(x)  F(a).

Cor. 1: Let a  K be algebraic over F. Then [F(a) : F] = finite = deg Irr (F, a) and so F(a)
is an algebraic extension of F.

Proof: Let p(x) = Irr (F, a). Let n = deg p(x).
We show that 1, a, a2, ..., an–1 form a basis of F(a) over F.
Let 0  f (a)  F[a] = F(a). Then f (x)  F[x].
Now for f (x), p(x)  F[x], q(x), r(x)  F[x] s.t., f (x) = p(x)q(x) + r(x) where either

r(x) = 0 or deg r < deg p.
But r(x) = 0  f (x) = p(x)q(x)

 f (a) = p(a)q(a) = 0 as p(a) = 0
which is not possible as f (a)  0
Thus r(x)  0. Hence deg r < deg p.
Suppose r(x) = 0 + 1x + ... + n–1xn–1, i F, where some i could be zero.
Again as f (a) = p(a) q(a) + r(a) and p(a) = 0
we find f (a) = r(a)
Thus f (a) = 0 + 1a + 2a2 + ... + n–1a

n–1

i.e., {1, a, a2, ..., an–1} spans F[a] = F(a) over F.
We show these are L.I.
Suppose these are L.D., then i, not all zero, s.t.,

0+ 1a + 2a
2 + ... + n–1an–1 = 0

 t(x) = 0 + 1x + ... + n–1xn–1 is non zero polynomial (some i  0) with t(a) = 0.
A contradiction to the fact that p(x) is such polynomial with least degree. Hence

1, a, ..., an–1 are L.I. and thus form a basis of F(a).
Hence [F(a) : F] = n.
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Remark: Using cor. to theorem  3  we conclude a  K is algebraic over F iff
[F(a) : F] = finite.

Definition: An element a  K is said to be algebraic of degree n over F if it satisfies a
polynomial of degree n over F and does not satisfy any polynomial of lesser degree (than n).

Thus a is algebraic of degree n over F if deg Irr (F, a) = n. Also in that case,
[F(a) : F] = n and {1, a, a2, ..., an–1} is a basis of F(a) over F.

Cor. 2: If a1, ..., an  K are algebraic over F then F(a1, ..., an) is finite extension of F and
so is algebraic over F.

Proof: We prove the result by induction on n . If n = 1, result follows from
Cor. 1. Assume it to be true for naturals less than n. Let a1, ..., an  K be algebraic
over F. Now an is algebraic over F   an is algebraic over F (a1, ..., an–1) as
F F(a1, a2, ..., an–1).

 By Cor. 1, [F(a1, ..., an–1) (an) : F(a1, ..., an–1)] is finite. By induction hypothesis,
[F(a1, ..., an–1) : F] is finite.

 [F(a1, ..., an) : F] = [F(a1, ..., an) : F(a1, ..., an–1)] [F(a1, ..., an–1) : F] = finite
  result is true for n also.

By induction, result is true for all n  1.

Cor. 3: If a, b  K are algebraic over F, then a ± b, ab, ab–1 (if b  0) are algebraic over F.
In other words, the elements of K which are algebraic over F form a subfield of K (and this
subfield is called the algebraic closure of F over K).

Proof: By Cor. 2, F(a, b) is algebraic over F.
  a ± b, ab, ab–1  F(a, b) are algebraic over F.

Remarks (1): If K is an extension field of a field F and S  K, then

F(S) = 
1

1
1

1
1

, [ , ..., ]
( , ..., )

( , ..., ) 0,
( , ..., )

, ...,

, [ , ..., ]1, [ , ..., ]1, [ , ..., ], [ , ..., ]
( , ..., )1( , ..., )1

1, [ , ..., ]1, [ , ..., ]1, [ , ..., ]
( , ..., )

, [ , ..., ]
( , ..., ) 0,1( , ..., ) 0,1( , ..., )

1( , ..., )1( , ..., )1 ( , ..., ) 0,( , ..., ) 0,( , ..., ) 0,
1

1
( , ..., )1( , ..., )1 , ...,

1( , ..., ) 0,1( , ..., ) 0,1( , ..., )
( , ..., ) 0,

( , ..., )

n
n

n
n

n

f g F x x
f u u

g u u n
g u u

u u S
N

Proof: Let L denote the R.H.S. We first show that L is a subfield of K.

Let 1

1

( , ..., )
( , ..., )

m

m

f u u
g u u

L, 1 1

1 1

( , ..., )
( , ..., )

n

n

f v v
g v v

L

Let Y = 1 1 1

1 1 1

( , ..., ) ( , ..., )
( , ..., ) ( , ..., )

m n

m n

f u u f v v
g u u g v v( , ..., ) ( , ..., )

m n1 1m n1 1( , ..., ) ( , ..., )f u u f v v( , ..., ) ( , ..., )1 1( , ..., ) ( , ..., )1 1f u u f v v1 1( , ..., ) ( , ..., )1 1m nf u u f v vm n1 1m n1 1f u u f v v1 1m n1 1( , ..., ) ( , ..., )m n( , ..., ) ( , ..., )f u u f v v( , ..., ) ( , ..., )m n( , ..., ) ( , ..., )1 1( , ..., ) ( , ..., )1 1m n1 1( , ..., ) ( , ..., )1 1f u u f v v1 1( , ..., ) ( , ..., )1 1m n1 1( , ..., ) ( , ..., )1 1

= 1 1 1 1 1 1

1 1 1

( , ..., ) ( , ..., ) ( , ..., ) ( , ..., )
( , ..., ) ( , ..., )

m n n n

m n

f u u g v v f v v g u u
g u u g v v

m n n n1 1 1 1 1m n n n1 1 1 1 1( , ..., ) ( , ..., ) ( , ..., ) ( , ..., )f u u g v v f v v g u u( , ..., ) ( , ..., ) ( , ..., ) ( , ..., )1 1 1 1 1( , ..., ) ( , ..., ) ( , ..., ) ( , ..., )1 1 1 1 1f u u g v v f v v g u u1 1 1 1 1( , ..., ) ( , ..., ) ( , ..., ) ( , ..., )1 1 1 1 11 1 1 1 1m n n n1 1 1 1 1f u u g v v f v v g u u1 1 1 1 1m n n n1 1 1 1 11 1 1 1 1( , ..., ) ( , ..., ) ( , ..., ) ( , ..., )1 1 1 1 1m n n n1 1 1 1 1( , ..., ) ( , ..., ) ( , ..., ) ( , ..., )1 1 1 1 1f u u g v v f v v g u u1 1 1 1 1( , ..., ) ( , ..., ) ( , ..., ) ( , ..., )1 1 1 1 1m n n n1 1 1 1 1( , ..., ) ( , ..., ) ( , ..., ) ( , ..., )1 1 1 1 1

Define h(x1, ..., xm + n)
= f (x1, ..., xm) g1 (xm + 1, ..., xm + n) – g(x1, ..., xm) f1(xm + 1, ..., xm + n)

r (x1, ..., xm + n) = g(x1, ..., xm) g1(xm+1, ..., xm + n)
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Then Y = 1 1

1 1

( , ..., , , ..., )
( , ..., , , ..., )

m n

m n

h u u v v
r u u v v

 L

Suppose 1 1

1 1

( , ..., )
( , ..., )

n

n

f v v
g v v

 0

Let Z = 1 1 1

1 1 1

( , ..., ) ( , ..., )
·

( , ..., ) ( , ..., )
m n

m n

f u u g v v
g u u f v v

Define h1(x1, ..., xm + n) = f (x1, ..., xm) g1(xm + 1, ..., xm + n);
r1 (x1, ..., xm + n) = g(x1, ..., xm) f1(xm + 1,..., xm + n).

Then Z = 1 1 1

1 1 1

( , ..., , , ..., )
( , ..., , , ..., )

m n

m n

h u u v v
r u u v v

 L

So, L is subfield of K.
Let u1  S. Define f (x) = x, g(x) = 1.
Then f (u1) = u1, g(u1) = 1

 1

1

( )
( )

f u
g u

 L  1
1
u   L  u1  L

So, S  L.
Let   F. Define f (x) = , g(x) = 1.
Let u  S. Then f (u) = , g(u) = 1.

Now ( )
( )

f u
g u

 L 
1

 =   L.

So, F  L.
But F(S) is the smallest field containing F and S, F(S)  L.

Let Y  L. Then Y = 1

1

( ,..., )
( ,..., )

n

n

f u u
g u u

, ui  S.

Since ui  S and coefficients in f, g belong to F, f (u1, ...,  un)  F(S) and
g(u1, ..., un)  F(S).

So, Y  F(S).
then L  F(S).
Hence F(S) = L.
(2) If K is an extension field of F, and K is generated  by algebraic elements (i.e.,

K = F(S), where S  K is a set of algebraic elements over K), then K is an algebraic extension
of F.

Proof: Let C  K, then C = 1

1

( , ..., )
( , ..., )

n

n

f u u
g u u

, ui  S.

where f (x1, ..., xn), g(x1, ..., xn)  F[x1,..., xn].
Clearly C  F(u1, ..., un). But u1, ..., un are algebraic over F  F(u1, ..., un) is an algebraic

extension of F  C is algebraic over F.
Hence K/F is algebraic.
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Theorem 5: If L is an algebraic extension of K and K, an algebraic extension of F, then L
is an algebraic extension of F.

Proof: Let a  L. Since L is algebraic over K, a is algebraic over K.
 0  f (x)  K[x] s.t., f (a) = 0. Let f (x) = 0 + 1x + ... + nxn, i  K.

Since K is algebraic over F, each i  K is algebraic over F. By Cor. 2 Theorem 4,
[F( 0, 1, ..., n) : F] = finite.

Let M = F( 0, 1, ..., n)
Then [M : F] is finite and so M is algebraic over F. Clearly, each i  M. Thus,

f (x)  M[x].
i.e., a is algebraic over M.
By Cor. 1, M(a) is finite extension of M.
 [M(a) : F] = [M(a) : M] [M : F] = finite.
 M(a) is algebraic over F.
 a  M(a) is algebraic over F.
Since a is an arbitrary element of L, L is an algebraic extension of F.

Definition: A complex number is said to be an algebraic number if it is algebraic over the field
of rational numbers.

An algebraic number is said to be an algebraic integer if it satisfies an equation of the form
xn + 1x

n–1 + ... + n where 1, ..., n are integers (i.e. a monic polynomial over integers).

Problem 3: If a is any algebraic number, prove that  a +ve integer n such that na is an
algebraic integer.

Solution: Since a is an algebraic number, a is algebraic over the field of rationals. Thus  a
non-zero monic polynomial f (x)  Q[x] s.t., f (a) = 0, where Q = field of rationals.

Let f (x) = xm + 1x
m–1 + ... + m–1x + m, i Q

Let i = i

i

p
q

 where pi, qi are integers, qi > 0

am + 1

1

p
q

am–1 + ... + 1

1

m m

m m

p pa
q q

m m1m m1p p1p p1m mp pm m1m m1p p1m m1 am mam m

m m1m m1q q1q q1m mq qm m1m m1q q1m m1

m mp pm mp pm m  = 0

Let n = q1... qm. Then n is a +ve integer
and nam + p1q2...qmam–1 + ... + pmq1 ... qm–1 = 0
 nmam + p1q2 ... qmam–1nm–1 + ... +  pmq1 ... qm–1nm–1 = 0
 na satisfies the polynomial

xm + p1q2 ... qmxm–1 + ... + pmq1 ... qm–1nm–1 = 0
where coefficients are integers.

na is an algebraic integer.

Problem 4: If the rational number r is also an algebraic integer, prove that r must be an
ordinary integer.
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Solution: Let r = p
q

, where q > 0, (p, q) = 1

Since r is an algebraic integer
rm + 1r

m–1 + ... + m–1r + m = 0

is are integers.
1

1 1

m m

m m
p p
q q

1

11m m1m m1
p p  + ... + m–1

p
q

 + m = 0

pm + q × an integer = 0
 q divides pm. But (p, q) = 1.

q | 1 q = 1  r = p = integer.

Problem 5: Prove that sin mº is an algebraic number for every integer m.

Solution: Now e mi/180 = cos sin
180 180

m mi sinm msinm msinsin
180 180

i sinm msinm msinim mim m

/180 180( )/180 180( )/180 180( )/180 180mie = cos m  + i sin m  = ±1
e mi/180 is a root of x180 = ±1
e mi/180 is an algebraic number for all integers m.

 cos
180
m  + i sin

180
m  is an algebraic number..

Also cos sin
180 180
m mi sinm msinm msinsin
180 180

i sinm msinm msinim mim m  is algebraic number (by putting m as –m).

 2 cos
180
m  is algebraic number for all integers m.

 cos
180
m  is algebraic number for all integers m.

 cos mº is algebraic number for all integers m.

Also cos
180
m  and cos

180
m  + i sin

180
m  is algebraic number  i sin

180
m  is algebraic number

 sin
180
m  is algebraic number as i is also algebraic number  sin mº is algebraic number..

Problem 6: Find a basis of Q ( 3, 5)  over Q.

Solution: We have

[Q ( 3, 5)  : Q] = [Q ( 3) ( 5) : Q]

= [Q ( 3) ( 5)  : Q ( 3)] [Q 3  : Q]

= [L ( 5)  : L] [Q ( 3)  : Q] where L = Q ( 3)

= deg Irr (L, 5)  × deg Irr (Q, 3 )
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= deg (x2 – 5) × deg (x2 – 3)
= 2 × 2 = 4.

Thus basis has 4 elements.
Also if [(F(a) : F)] = n then 1, a, a2, ..., an–1 is basis of F(a) over F, and thus

Basis of L ( 5)  over L is {1, 5}

Basis of Q ( 3)  over Q is {1, 3}

Thus basis of [L ( 5)  : L] [Q ( 3)  : Q] = [(Q ( 3, 5)  : Q]

is 1.1, 1. 3 , 1. 5 , 3 5  [see theorem 2]

i.e. 1, 3, 5, 15 .

Problem 7: Find the minimal polynomial for 2 32 32 32 32 32 3  and use it to show that Q ( 2, 3)  =

Q ( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)( 2 3) . Find a basis for Q( 2, 3) .

Solution: Now 2( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)( 2 3) = 5 + 2 6 ;
4( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)( 2 3) = 49 + 20 6 .

So, 4( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)( 2 3) – 10 2( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)  + 1 = 0

Therefore, a = 2 32 32 32 32 32 3  satisfies
f (x) = x4 – 10x2 + 1 over Q.
Let p(x) = Irr(Q, a)

Then 2 32 32 32 32 32 3, 2 32 32 32 32 3, 2 32 32 32 32 32 3  are also roots of p(x). So, degree of p(x) is at least
4. But f (a) = 0 and f (x)  Q[x]

 p(x) divides f (x)
 p(x) = f (x).

So, f (x) is the minimal polynomial for 2 32 32 32 32 32 3.

Therefore, [Q ( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)( 2 3)  : Q] = 4.

Also, [Q 2  : Q] = deg Irr (Q, 2 )
= deg (x2 – 2) = 2.

Now, Q  Q( 2 )  Q( 2 , 3 ).

Consider g(x) = x2 – 3 Q( 2 ) [x].

Then g( 3 ) = 0

deg Irr (Q( 2 ), 3 )  deg g(x) = 2

 [(Q( 2 , 3 ) : Q]  2.

So, [Q( 2 , 3 ) : Q]  4.

Clearly, Q  Q( 2  + 3 )  Q( 2 , 3 ).
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[Q( 2 , 3 )] : Q] = [Q( 2 , 3 ) : Q( 2  + 3 )]

× [Q( 2  + 3 ) : Q]

 [Q( 2 , 3 )] : Q( 2  + 3 )] = 1

 Q( 2 , 3 ) = Q( 2  + 3 )

Since [Q( 2  + 3 ) : Q] = 4

{1, 2  + 3 , ( 2  + 3 )2, ( 2  + 3 )3} is a basis for Q( 2  + 3 ) =
Q( 2 , 3 ) over Q.

Problem 8: Let F(x) be the field of rational functions in an indeterminate x. Show that every
element of F (x) which is not in F is transcendental over F.

Solution: Let 0  ( ), , ( , ) 1.f fF x F f g
g g

( ), , ( , ) 1.f fF x F f g( ), , ( , ) 1.F x F f g( ), , ( , ) 1.( ), , ( , ) 1.F x F f g( ), , ( , ) 1.f fF x F f gf f( ), , ( , ) 1.f f( ), , ( , ) 1.F x F f g( ), , ( , ) 1.f f( ), , ( , ) 1.

Suppose f
g

 is not transcendental over F.

Then f
g

 is algebraic over F.

So F
f
g
ff
gg

= F
f
g
ff
gg

.

Consider g
f

 F
f
g
ff
gg

 = F
f
g
ff
gg

.

(Note 0  f
g

  F
f
g
ff
gg

 and F
f
g
ff
gg

 is a field, g
f

  F f
g
ff
gg

 = F 
f
g
ff
gg

)

Therefore, g
f

= 0 + 1 
f
g
ff
gg

 + ..... + n

n
f
g

n
ff
gg

, i  F.

So, gn + 1 = ( 0gn + 1 fgn – 1 + ..... an f n)  f.
Since (f, g) = 1,  f | gn + 1  f | g  f = unit

 g = unit  f
g

 = unit  F, a contradiction.

So, f
g

 is transcendental over F.

Problem 9: Let K be an extension of F and let a K. Then F[a] can be regarded as a vector
space over F. If the dimension of F[a] over F is finite, show that F[a] = F(a).

Solution: Let 0 c F[a]. Define
T : F[a]  F[a] s.t.,
T(b) = bc
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Then T is a linear transformation.
Let b  Ker T. Then T(b) = 0  bc = 0  b = 0 as c  0 and F[a] is an integeral domain.
Thus Ker T = {0} forcing T to be 1–1.
Since F[a] is a FDVS over F, T is also onto.
Now 1  F[a]    b  F[a] st., T(b) = 1

  bc = 1 or that c is invertible.
So F[a] is a field containing F and a. But F(a) is the smallest field containing F & a and

so F(a)  F[a], However F[a]  F(a) giving F[a] = F(a).

Problem 10: Let K be an extension of F. Show that K/F is algebraic if and only if every ring
R, such that F  R  K is a field.

Solution: Let K/F be algebraic and let R be a ring s.t., F  R  K.
Since R  K, R will be commutative and also unity of K will be unity of R as

F  R  K.
Let 0 a R, then a K  a–1 K
K/F algebraic a is algebraic over F.

  0  f (x)  F(x) s.t., f (a) = 0
Let  f (x) = 0 + 1x + ..... + nxn, i F
Then 0 + 1a + 2a

2 + ...... + na
n = 0 with some i  0. Suppose o  0

Then 0a
–1 = – ( 1 + 2a + ... + na

n+1)  R
  a–1  R as 0

–1  F  R
So, every non zero element is invertible in R.

Conversely, let a  K. Let R = F[a], then R is a ring s.t., F  R  K. By hypothesis R is
a field.
Suppose a  0, then a–1 R = F[a]
Thus a–1 = 0 + 1a + ... + na

n, i  F
Let f (x) = 0 + 1x + ... + nx

n  F[x]
Now 1 = 0a + 1a

2 + ... + na
n+1

gives 0a + 1a
2 + ... + na

n+1 – 1 = 0
showing that a satisfies x f (x) – 1  F[x].
Clearly x f (x) – 1 is a non zero polynomial.
Hence, a is algebraic over F and so K/F is algebraic.

Exercises
1. If a, b  K are algebraic over F of degrees m and n respectively and if m and n are

relatively prime, prove that F(a, b) is of degree mn over F.
2. If a  K is algebraic over F of odd degree, show that F (a) = F(a2).
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3. Show that degree of 2 32 32 32 32 32 3  over Q is 4 and degree of 32 532 52 52 52 532 53  over Q is 6.
4. If a is an algebraic integer and m is an ordinary integer, prove

(i) a + m is an algebraic integer.
(ii) ma is an algebraic integer.

5. Prove that sum and product of two algebraic integers is an algebraic integer.

6. Find a basis of Q ( 2, 3)  over Q. [1, 2, 3, 6 ]
7. Let K be an extension of F. Suppose E1, E2 are contained in K and are extensions of

F. If [E1 : F] and [E2 : F] are primes, show that either E1  E2 = F or E1 = E2.
8. If K is an extension of F, c  K, a, b  F, a  0 then show that F(c) = F(ac + b).
9. Suppose that a field F has finite number of elements q. Show that

(i) q = pn for some prime p and integer n.
(ii) aq = a for all a  F.

(iii) If b  K is algebraic over F, then bqm = b for some m > 0.
10. Let K be a finite extension of F. Suppose if F1 and F2 are any two subfields of K s.t.,

F  F1 and F  F2 then either F1  F2 or F2  F1. Show that K will be a simple
extension of F.

Roots of Polynomials

Let F be a field and f (x)  F[x]. We ask ourselves whether there exists an extension K of F
containing a root (Definition on page 448) of f (x)? What is the degree of such an extension?
How many roots of f (x) can the extension K of F have? The answers to the above queries
are provided by the following results.
Theorem 6: (Remainder theorem). If p(x)  F[x] and K is an extension of F, then
for any element a  K, p(x) = (x –  a) q(x) + p(a) where q(x)  K[x] and
deg q(x) = deg p(x) – 1.

Proof: Now p(x) F[x]  p(x) K[x]. Also a  K  x – a  K[x]. By the division algorithm
for polynomials in K[x],

p(x) = (x – a) q(x) + r(x) where q(x)  K[x] and r(x)  K[x] s.t., r(x) = 0 or
deg r(x) < deg (x – a) = 1. Thus r(x) is a constant. Let r(x) = c K.

Now p(x) = (x – a) q(x) + c
 p(a) = c
 p(x) = (x – a) q(x) + p(a) (where p(a) could be zero).

Clearly deg q(x) = deg p(x) – 1

Cor.: If a  K is a root of p(x)  F[x] where F  K, then (x – a) | p(x) in K[x] and conversely.

Proof: By above theorem,
p(x) = (x – a) q(x) + r, r  K

 0 = p(a) = r
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 p(x) = (x – a) q(x)
(x – a) | p(x) in K[x] as q(x)  K[x].
Conversely, if (x – a) | p(x) in K[x] then p(x) = g(x) (x – a) for some g(x)  K[x]. Thus

p(a) = (a – a) g(a) = 0 and so a is a root of p(x).

Definition: An element a  K is called a root of p(x)  F[x] of multiplicity m if
(x – a)m | p(x) and (x – a)m + 1  p(x) in K[x].

If a is a root of p(x) of multiplicity 1 then it is called a simple root of p(x). It is called a
multiple root otherwise (when m > 1).

Remark: If a is a root (of multiplicity m) of p(x) then (x – a)m | p(x) 
p(x) = (x – a)m g(x), for some g(x).

Now if a is also a root of g(x) then (x – a) | g(x)
         g(x)= (x – a) h(x)
         p(x) = (x – a)m + 1h(x)  (x – a)m + 1 | p(x), a contradiction.
Thus g(a) 0.
Indeed, if a is a simple root of p(x), then p(x) = (x – a) g(x) where g(a)  0.

Theorem 7: A polynomial of degree n over a field can have at most n roots in any extension
field. A root of multiplicity m to be counted m times.

Proof: Let p(x)  F[x], degree p(x) = n. We prove the result by induction on n. Let K be an
extension of F. Let n = 1. Then p(x) is of the form ax + b, a, b  F, a  0. Then p( ) = 0
  = –ba–1. So, p(x) has unique root –ba–1 

) is of the form 
 F. Therefore K also has only one root of p(x).

So, result is true for n = 1. Assume it to be true for naturals less than n. Let deg p(x) = n. If
p(x) has no root in K, then result is true. Let  be a root of p(x) in K. Let  be of multiplicity
m. Then by definition, (x – )m | p(x).

p(x) = (x – )m q(x). Since (x – )m + 1  p(x), (x – )  q(x). So  is not a root of
q(x). If 

) = (
 
) = (

 
) = (

 is a root of p(x) in K, then 0 = (
p
 – 

), (
)m q( )  q(

). So 
) = 0   is a root of

q(x). So, any root of p(x) different from  in K is also a root of q(x). But deg q(x) = n – m
< n. By induction hypothesis K has at most n – m roots of q(x). So, K has at most (n – m)
+ m = n roots of p(x). Therefore, result is true for n. By induction result is true for all n  1.

Remark: It must be noted that above theorem may not hold if we consider a polynomial over
a ring which is not a field.

For example, f (x) = x2 + 1 has at least 6 roots namely ±i, ±j, ±k in the ring of real quaternions
which is not a field.

We now show that a non-constant polynomial over a field has a root in some field extension.

Theorem 8: Let p(x) be a non constant irreducible polynomial of degree n in F[x]. Then there
exists an extension K of F s.t., [K : F] = n and K has a root of p(x).

Proof: Since p(x) is irreducible polynomial in F[x] it will be an irreducible element (See Remark

on page 450) and thus the ideal M = < p(x) > is maximal ideal of F[x] and [ ]F x
M

 will be a field.
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Take K = [ ]F x
M

.

Define  : F  K, s.t.,
( ) =  + M

Then  is easily seen to be a homomorphism.
Again,   Ker  ( ) = 0 + M

  + M = M    M = < p(x) >
and so  = p(x)q(x) for some q(x)  F[x]
Since p is irreducible (with deg  1) and   F is either zero or a constant polynomial, we

observe that the above relation holds only when  = 0
i.e., Ker  = {0} or that  is 1–1.
Hence F (F).
Define now  : F[x]  K, s.t.,

(f (x)) = f (x) + M [ ]F xK
M
[ ]F x[ ]F x[ ]F x[ ]F x[ ]K [ ][ ]F x[ ]K [ ]F x[ ]F x[ ]

M
K

MM
Then  is the natural (onto) homomorphism.
Again as ( ) =  + M = ( )   F, we notice  is restriction of  over F.
Now x = 0 + 1 . x + 0 . x2 + ...  F[x]
Let a = (x) = x + M = x + <p(x)>, x  F[x] ...(1)
We claim, a is a root of p(x) in K.
Suppose p(x) = 0 + 1x + 2x

2 + ... + nx
n, i  F

Then (p(x)) = ( 0 + 1x + 2x
2 + ... + nx

n)
= ( 0) + ( 1) (x) + ( 2) (x2)
  + ... + ( n) (xn)

Also (p(x)) = p(x) + M = p(x) + <p(x)> = M = Zero of K
Thus Zero of K = ( 0) + ( 1) (x) + ... + ( n) (xn)

= ( 0) + ( 1) (x) + ... + ( n) (xn)
Since F (F), F is isomorphic to a subfield of K and we can think of K as containing F

by identifying  F with ( ) and vice versa.
We thus get

Zero of K = 0 + 1 (x) + 2 (x2) + ... + n( (xn))
= 0 + 1a + 2a

2 + ... + na
n from (1)

= p(a)
Hence a is a root of p(x) in K.
We show now {1 + M, x + M, x2 + M..., xn–1 + M} forms a basis of K over F.
Let 0(1 + M) + 1(x + M) + ... + n–1(xn–1 + M) = M (Zero of K)
As above then i = ( i) = i + M and thus
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( 0 + M) (1 + M) + ( 1 + M) (x + M) + ... + ( n–1 + M) (xn–1 + M) = M
or ( 0 + 1x + 2x

2 + ... + n–1xn–1) + M = M
or q(x) + M = M where q(x) = 0 + 1x + ... + n–1xn–1

or q(x)  M = <p(x)>
 q(x) = p(x)h(x)
 deg q = deg p + deg h
 deg q  deg p

or that n – 1  n, which leads us to a contradiction, unless q(x) = 0
i.e., i = 0 i
and hence 1 + M, x + M, ..., xn–1 + M are linearly independent.
Let now f (x) + M  K be any member.
Since f (x), p(x)  F[x], t(x), r(x) s.t.,

f (x) = p(x)t(x) + r(x), where either r(x) = 0
or deg r(x) < deg p(x)

 f + M = (pt + r) + M = (p + M) (t + M) + (r + M)
= M(t + M) + (r + M) = M + (r + M) = r + M

Suppose r(x) = r0 + r1x + r2x
2 + ... + rn–1xn–1 where, of course, some or all ri could be zero

as either r(x) = 0 or deg r(x) < deg p(x)
Thus f + M = r + M = (r0 + r1x + ... + rn–1xn–1) + M

= (r0 + M) + (r1x + M) + ... + (rn–1xn–1 + M)
= (r0 + M) (1 + M) + (r1 + M) (x + M) + ... + (rn–1 + M) (xn–1 + M)
= r0(1 + M) + r1(x + M) + ... + rn–1(xn–1 + M)

[because of F (F)]
or that 1 + M, x + M, ..., xn–1 + M span K
Hence [K : F] = n.

Cor.: If f (x)  F[x] is of degree n, then there is a finite extension K of F in which f (x) has
a root. Also, [K : F] 

] is of degree 
 deg f (x).

Proof: If f (x) is irreducible polynomial then result follows by above theorem. If not then let
f (x) = p(x) q(x), where p(x) is irreducible. By above theorem  an extension K of F in which
p(x) has a root.

 p( ) = 0 for some   K. So, f ( ) = p( ) q( ) = 0   is a root of f (x). Also
[K : F] = deg p(x) 

) = 0 for some 
 deg f (x).

Remark: The construction of an extension of K in which a given polynomial f has a root is
not, in general, unique. Let f = x4 – 4 over Q. Then f = (x2 – 2) (x2 + 2) and  two non-
isomorphic extensions Q ( 2)  and Q ( 2 )i  containing a root of f.

For if,  is an isomorphism from Q ( 2)  to Q ( 2 )i , then (1) = 1  (a) = a for all a

 Q. So 2( ( 2))( ( 2))( ( 2))( ( 2))( ( 2))( ( 2))  = 2( 2)  = (2) = 2
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 ( 2)  is a zero of x2 – 2

 ( 2)  = ± 2

 Im  = Q( 2 )

 Q ( 2 )i  = Q ( 2)

 2i  Q ( 2)

 2i  is a real number, which is not true.

Therefore, Q ( 2)  and Q ( 2 )i  are non-isomorphic.
In the next result we determine the degree of extension which contains all roots of a given

polynomial.

Theorem 9: Let f (x)  F[x] be of degree n  1. Then  an extension K of F s.t.
[K : F]  n! and K has n roots of f (x).

Proof: We prove the result by induction on n. If n = 1, then f (x) = x + ,   0,
,   F has only one root –

We prove the result by induction on 
–1 

We prove the result by induction on 
 F. Thus K = F and [K : F] = 1 = n. So, result is true

for n = 1. Assume it to be true for naturals less than n. Let deg f (x) = n > 1. Then by above
cor.  an extension L of F containing a root  of f (x) and [L : F]  n. Let f (x) = (x – )q(x),
deg q(x) = n – 1, q(x)  L[x]. By induction hypothesis 

) and [
 an extension K of L containing all

n – 1 roots of q(x) and [K : L]  (n – 1)!
[K : F] = [K : L][L : F]  n (n – 1)! = n!

Also   L    K  K has all n roots of f (x). (The n – 1 roots of q(x) are also roots
of f (x)). So, result is true for n. By induction, result is true for all n  1.

In the next section, we shall study the smallest field containing all roots of f (x). This field
will be called a splitting field of f (x).

We now give an example of an algebraic extension which is not a finite extension.

Example 1: Let K be the field of complex numbers and F, the field of rationals.
Let Ka be the set of all elements of K which are algebraic over F.
Then Ka is a subfield of K and F  Ka. By def., Ka is an algebraic extension of F. Suppose

[Ka : F] = n.
Let f (x) = xn + 1 – 3  F[x]
By Eisenstein criterion, f (x) is irreducible over Q = F. Let  be a root of f (x) in K. Then

 is algebraic over F = Q. So,  Ka.
Since [F( ) : F] = deg Irr (F, ) = deg f (x) = n + 1,

[Ka : F] = [Ka : F( )] [F( ) : F] = [Ka : F( )] (n + 1)
n = [Ka : F( )] (n + 1), which is not possible.

Hence [Ka : F] is not finite.

Splitting Fields

Let K be an extension of a field F and suppose f (x)  F[x] can be expressed as product of
linear factors in K[x].
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i.e., f (x) = c(x – a1) (x – a2) ... (x – an), c  F, ai  K then we say that f (x) splits up
in K[x] (or splits over K) and K is called a splitting field of f (x) over F. Further K is called
minimal splitting field of f (x) over F if f (x) can be expressed as product of linear factors in
K[x] and it cannot be so factored over any proper subfield of K. Thus in above case
F(a1, a2, ..., an) is minimal splitting field of f (x) over F.

We will show that splitting fields always exist and the minimal splitting fields are unique upto
isomorphism, i.e. if  more than one minimal splitting field then these are isomorphic. Sometimes
(when there is no chance of confusion) the word minimal is dropped and we simply talk of
splitting fields.

Note: If f  k[x] splits in k[x], then k is the only minimal splitting field of f over k. For, let
f = c(x – a1) (x – a2) ... (x – an), ai  k. If f splits in any extension K of k then the roots of
f in K will also be a1, a2, ..., an. So, k(a1, a2, ..., an) = k is the only minimal splitting field of
f over k.

Splitting field of a polynomial over a field depends on both the polynomial as well as the field
and that is why it is essential to mention splitting field of f (x) over F. Take for instance,
f (x) = x2 + 1  Q[x], then as x2 + 1 = (x + i) (x – i), we find splitting field of f (x) over Q
will be Q(i). However if f (x) = x2 + 1 is taken as a polynomial over R then its splitting field
over R is R(i) = C the field of complex numbers.

Theorem 10: Let k be a field and f (x), a non zero polynomial in k[x]. Then there exists a
splitting field of f over k. Further if deg f = n, then any minimal splitting field E of f over
k satisfies [E : k]  n!

Proof: We prove the result by induction on deg f = n.
Let n = 1. Then f = x + , ,   k.

= (x + –1).
So, f splits in k[x].
Assume that the result is true for all polynomials of degree < n. Let deg f = n.

If f = gh, g, h  k[x], then deg g, h < n. By induction hypothesis,  an extension K of k s.t.,
g splits in K[x]. Now h 

], then deg 
 k[x] 

g
 K[x]. Again, by induction hypothesis  an extension E of K

s.t. h splits in E[x]. So, both g and h split in E[x]. Thus f splits in E[x] where E K  k.
If f is irreducible, then  an extension K of k s.t., f ( ) = 0 for some  K.

Now f (x) = (x – ) g(x), g(x)  K[x].
Since deg g < n, by induction hypothesis  an extension E of K s.t., g(x) splits in E[x]. So

f (x) splits in E[x] as (x – )  K[x]  E[x]. By induction, the result follows.
For the second part, note that if  is a zero of f, then

[k( ) : k] = deg Irr (k, )
 deg f = n.

Let f = 0(x – 1) ... (x – n), i  E.
Then, E = k( 1, ..., n).
Now, [k( 1) : k]  n

[k( 1, 2) : k( 1)] = deg Irr (k( 1), 2)
 n – 1 as f (x) = 0(x – 1) (x – 2)...(x – n)
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 f (x) = (x – 1) g(x)
where g(x) = 0(x – 2)...(x – n)  k( 1)[x]
In this way, [k( 1, 2, ..., r) : k( 1, 2, ..., r–1)]  n – (r – 1)
Thus [E : k] = [k( 1, 2, ..., n) : k]

= [k( 1, 2, ..., n) : k( 1, 2, ..., n–1)] ... [k( 1) : k]
 (n – (n + 1)) ... (n – 1)n = n!

which proves the second part.

Definition: Let E and L be two extensions of a field k. An isomorphism f : E  L is called
a k-isomorphism if f (a) = a a k and in that case we say E and L are k-isomorphic.
Similarly we talk of k-homomorphism or k-automorphism.

Theorem 11: Let k1, k2 be two fields. Suppose  : k1  k2 is an isomorphism and
f1  k1 [x] is irreducible over k1. Then

( f1(x)) = (a0 + a1x + ... + anx
n) = (a0) + (a1)x + ... + (an)x

n is irreducible over k2.
Proof: Suppose (f1(x)) = g2h2, g2, h2 k2[x].
Let g2 = bo + b1x + ... + brx

r

h2 = co + c1x + ... + csx
s, bi, cj  k2.

Since  is onto, given bi  k2  bi  k1 s.t., (b i) = bi

Therefore, g2 = (bo) + ... + (b r)x
r

Similarly h2 = (c o) + ... + (c s)x
s.

So, g2 = (b o + b 1x + ... + b rx
r) = (gg 2)

h2 = (co + c 1x + ... + c sx
s) = (h2),

where gg 2 and h 2  k1[x].
Thus ( f1(x)) = (gg 2) (h 2) = (gg 2h 2).
So, f1 = gg 2h 2, contradicting the fact that f1 is irreducible over k1.
Hence ( f1(x)) is irreducible over k2.

Theorem 12: Suppose  : k1  k2 is an isomorphism from a field k1 to a field k2.
Let 1 be a zero of an irreducible polynomial f1(x) over k1 and 2 be a zero of the

corresponding polynomial f2(x) = ( f1(x)) over k2. Then there exists a unique isomorphism 
from k1( 1) to k2( 2) s.t., 

2
( 1) = 2 and ( ) =   k1.

Proof: Now 1 : k1[x]  k2[ 1]
with 1(g1(x)) = g1( 1)

is an onto homomorphism s.t., Ker 1 = < f1 >.

So, 1 : 1

1

[ ]k x
f1f1f1

  k2[ 1] is an isomorphism, where

1(< f1 > + g1(x)) = (g1(x)) = g1( 1).
Here 1(< f1 > + x) = 1.
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Similarly  an isomorphism

2 : 2

2

[ ]k x
f2f2f2

  k2[ 2] s.t.,

2(< f2 > + g2(x)) = g2( 2).
Here 2(< f2 > + x) = 2.

Also 3 : 
1 2

1 2

[ ] [ ]k x k x
f f

1 21 2[ ] [ ]1 2[ ] [ ]k x k x[ ] [ ]1 2[ ] [ ]1 2k x k x1 2[ ] [ ]1 2

1 2f f1 2f f1 2f f
 s.t.,

3(< f1 > + g1) = < f2 > + (g1),
is well defined and is an isomorphism.
If < f1 > + g1 = < f1 > + gg 1,
then g1 – gg 1  < f1 >

 g1 – gg 1 = 0 or deg(g1 – gg 1)  deg f1,
But deg g1 < deg f1, deg gg 1 < deg f1

 deg(g1 – g1 ) < deg f1

 g1 – gg 1 = 0
 (g1 – gg 1) = 0  < f2 >
 (g1) – (gg 1)  < f2 >
 < f2 > + (g1) = < f2 > + (gg 1)
 3 is well defined.

Here, 3(< f1 > + x) = < f2 > + x, as (1) = 1.

Hence, 1
–1 : k1[ 1]  1

1

[ ]k x
f1f1f1

3 : 1 2

1 2

[ ] [ ]k x k x
f f

1 21 2[ ] [ ]1 2[ ] [ ]k x k x[ ] [ ]1 2[ ] [ ]1 2k x k x1 2[ ] [ ]1 2

1 2f f1 2f f1 2f f
, 2 : 

2

2

[ ]k x
f2f2f2

  k2[ 2]

are isomorphisms.
So,  = 2 3 1

–1 is an isomorphism.
In fact, : k1[ 1]  k2[ 2]
and ( 1) = 2 3 1

–1( 1)
= 2 3 (< f1 > + x)
= 2(< f2 > + x)
= 2

( ) = 2 3 1
–1( )

= 2 3(< f1 > + )
= 2(< f2 >) + ( )
= ( ) k1

If  : k1[ 1] k2[ 2] is another isomorphism s.t., ( 1) = 2, ( ) = ( )
  k1,
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Then (ao + a1 1 + ... + an 1
n)

= (ao) + (a1) ( 1) + ... + (an) ( 1
n), ai  k,

= (ao) + (a1) 2 + ... + (an) 2
n.

= (ao) + (a1) ( 1) + ... + (an) ( 1
n)

= (ao + a1 1 + ... + n 1
n)

i.e. = 
and thus  is uniquely determined.

Cor.: Let k be a field and f (x)  k[x] be irreducible over k. Let ,  be roots of f (x). Then
there exists a k-isomorphism  from k( ) to k( ) s.t., ( ) =  and  is uniquely determined.

Follows by taking k1 = k2 = k and  = I in the theorem.

Remark: The above result need not hold if f (x) is not irreducible over k. For instance, if f (x)
= (x2 – 2) (x2 + 2), then 2  and 2 i  are roots of f (x) Q[x] and Q ( 2) , Q ( 2 )i  are not
isomorphic. See remark after theorem 8.

Theorem 13: Let kLet k  be a field isomorphic to k, f be a field isomorphic to k, f  the polynomial over k the polynomial over k  corresponding to f
over k. If E, Eover k. If E, E  are minimal splitting fields of f over k and f  over k over k  respectively, then the
given isomorphism between k and kgiven isomorphism between k and k  can be extended to an isomorphism between E and E can be extended to an isomorphism between E and E .

Proof: Let  : k  kk  be an isomorphism. Let [E : k] = n. We prove the result by induction
on n.

Let n = 1. Then E = k.
Let f = 0(x – 1)...(x – m), i  E, 0  k.
Since E = k, i  k.
Therefore, f = ( f ) = ( 0) (x – ( 1) ... (x – ( m)) splits in kk [x].
So, EE = kk
Then,  is an extension of  and the result is true in this case.
Let n > 1. Let f = p1p2...pr, where each pi is irreducible over k. Since [E : k] > 1, some

pi has degree greater than 1, say p1.
Now f = ( f ) = (p1)... (pr)

= p 1...p r , (pi) = p i  kk [x].
Let  be a zero of p1 in E and , any zero of p 1 in EE . Then by previous result,  an

isomorphism  : k(
p1

)  k ( ) s.t., 
, any zero of 

(b) = 
1

(b) 
. Then by previous result, 

 b 
. Then by previous result, 

 k, 
. Then by previous result, 

(
. Then by previous result, 

) = 
. Then by previous result, 

. Now
p1 = Irr (k, ) and deg p1 > 1  [k( ) : k] = deg p1 > 1.

So, [E : k] = [E : k( )] [k( ) : k]
> [E : k( )].

Now, a minimal splitting field of f over k( ) is k( ) (Zeros of f in E) = E.
Also, a minimal splitting field of ff  over kk ( ) is kk ( ) (Zeros of ff  in EE ) = EE .
By induction hypothesis (Since [E : k( )] < [E : k]),  an isomorphism.

 : E  EE s.t.
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(a) = (a)  a  k( ).
Also (b) = (b)  b  k.

= (b) b  k.
Therefore,  is an extension of . So, the result is true in this case. By induction the result

is true for all n  1.

Cor.: If E and EE  are minimal splitting fields of f over k, then E and EE  are k-isomorphic.

Proof: Take k  = k,  = identity map I in above result. Then  an isomorphism
 : E  EE  s.t., (a) = (a) = I(a) = a,  a  k.

Problem 11: Describe the splitting field of x3 – 2 over Q, the field of rationals.

Solution: Let f (x) = x3 – 2
Then by Eisenstein’s criterion, f (x) is irreducible over Q. Since f (x) is of odd degree, it

has a real root, say a.
Then x3 – 2 = (x – a) (x2 + ax + a2)

= (x – a) (x – a ) (x – a 2)

where = 1 3
2

i1 31 31 31 3

So, splitting field of f (x) over Q is
K = Q(a, a , a 2)

= Q(a, )
w satisfies g(x) = x2 + x + 1, g(x) is irreducible over reals and so over Q(a).
Now [K : Q] = [Q(a, ) : Q(a)] [Q(a) : Q]

= [F( ) : F] [Q(a) : Q] where F = Q(a)
= deg Irr (F, ) × deg Irr (Q, a)
= deg g(x) × deg f (x)
= 2 × 3 = 6.

Problem 12: Let F be a field of characteristic p. Let b be a root of
f (x) = xp – x –a F[x]. Show that splitting field of f (x) over F is F(b).

Solution: Since b is a root of f (x),
bp – b = a  K

Also (b + 1)p – (b + 1) = bp + 1 – b – 1 = a
 b + 1 is a root of f (x)

Similarly b + 2, ..., b + (p – 1) are roots of f (x),
f (x) = (x – b) (x – b – 1) ...... (x – b – p + 1)

 Splitting field of f (x) over F
= F (b, b + 1, ..., b + (p – 1)) = F (b).

Problem 13: Let f (x) = x4 + x2 + 1  Q[x]. Show that the splitting field of f (x) over Q is
Q( ) and [Q( ) : Q] = 2.
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Solution: We have
4 + 2 + 1 =  + 2 + 1 = 0

and ( 2)4 + ( 2)2 + 1 = 8 + 4 + 1 = 2 +  + 1 = 0
 , 2 are roots of f (x) = x4 + x2 + 1
Also, –Also, – , – 2 are roots of f (x)
So, f (x) = (x – ) (x + ) (x – 2) (x + 2)
and splitting field of x4 + x2 + 1 over Q is

Q ( , – , 2, – 2) = Q( )
where [Q( ) : Q] = deg Irr (Q, )

= deg (x2 + x + 1) = 2.

Problem 14: Show that the splitting field of x4 + 1 over Q is Q( 2 , i) whose degree over Q
is 4.

Solution: Roots of x4 + 1 are given by
x = (–1)¼

= (cos (2r + 1)  + i sin (2r + 1) )¼

r = 0, 1, 2, 3
= , 3, 5, 7

where = cos sin
4 4

isinsin
4 4

isini

 splitting field K of x4 + 1 over Q is
K = Q( , 3, 5, 7) = Q( )

[K : Q] = [Q( ) : Q]
= deg Irr(Q, )
= deg (x4 + 1) = 4.

Notice, f (x) = x4 + 1 gives f (x + 1) = (x + 1)4 + 1 = x4 + 4x3 + 6x2 + 4x + 2
which is irreducible by Eisenstein’s criterion and thus f (x) is irreducible over Q.

Problem 15: Find necessary and sufficient conditions on a and b so that the splitting field
of irreducible cubic x3 + ax + b has degree 3 over Q.

Solution: Let f (x) = x3 + ax + b  Q[x]
Let K be the splitting field of f (x) over Q. Let f (x) = (x – 1) (x – 2) (x – 3)
Then K = Q( 1, 2, 3)
Now 1 + 2 + 3 = 0, 1 2 + 2 3 + 3 1 = a

1 2 3 = –b
Let D = [( 1 – 2) ( 2 – 3) ( 3 – 1)]

2

Then D = –4a3 – 27b2 (Prove it!)
Now Q( D , 3)  K
as 1, 2, 3  K  1 – 2, 2 – 3, 3 – 1  K
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 ( 1 – 2) ( 2 – 3) ( 3 – 1)  K

 D  K. Also 3  K

 Q( D , 3)  K

Now D = ( 1 – 2) [ 3( 1 + 2) – 2
3
2
3  – 1 2]  Q( D , 3)

Since 1 2 = –
3

b

3
  Q( D , 3)

and 1 + 2 = – 3  Q( D , 3)

1 – 2  Q( D , 3)  1, 2  Q( D , 3)

K  Q( D , 3)

Suppose D  Q. Then K = Q( 3)
[K : Q] = [Q( 3) : Q]

= deg Irr (Q, 3)
= deg f (x) = 3

Conversely, let [K : Q] = 3

Let D  Q

Then Q  Q( D )  Q( D , 3) = K

But D  satisfies x2 – D  Q[x]

[Q( D ) : Q] = 2 as x2 – D is irreducible over Q.

[K : Q] = [K : Q( D )][Q( D ) : Q]

3 = [K : Q( D )] = 2, a contradiction

 D  Q
Hence a necessary and sufficient condition for the splitting field of irreducible cubic

x3 + ax + b over Q to have degree 3 is D   Q.

Problem 16: Find the degree of a minimal splitting field of x6 + 1 over Q.

Solution: Let f (x) = x6 + 1
Then the roots of f (x) are

3
2 2

i
2 2

i , 3
2 2

i3
2 2

i , 3
2 2

i3
2 2

i , 3
2 2

i
2 2

i , i, –i.

Let E be a minimal splitting field of f (x) over Q. Then

E = Q( 3, i)

and [E : Q] = [Q( 3, i) : Q]

= [Q( 3, i) : Q( 3)] [Q( 3) : Q]
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= deg Irr (Q( 3), i) × deg Irr (Q, 3)

 2 × 2 as deg Irr (Q, 3) = deg x2 – 3 = 2

and i satisfies x2 + 1 over Q( 3).

So, [Q( 3 , i) : Q( 3)] = 1 or  2.

If [Q( 3, i) : Q( 3)] = 1, then

Q( 3) = Q( 3, i) which is not true as i does not belong to Q( 3), the subfield of real
numbers.

Therefore, [Q( 3, i) : Q( 3)] = 2
Thus, [E : Q] = 4.

Problem 17: Find the degree of a minimal splitting of x4 + 2 over Q.

Solution: Let f (x) = x4 + 2.
The roots of f (x) are

2¼ 1
2 2

i1 ii1 i
2 22 22 22 22 22 22 22 22 22 22 2

, 2¼ 1
2 2

ii1 i1 i
2 22 22 22 22 22 22 22 22 22 22 22 2

, 2¼ 1
2 2

ii1 i1 i
2 22 22 22 22 22 22 22 22 2

, 2¼ 1
2 2

i1 ii1 i
2 22 22 22 22 22 22 22 22 2

If E is a minimal splitting field of f (x) over Q, then

E = Q(2¼, i), as (2¼)2 = 2 .

Now [E : Q] = [Q(2¼, i) : Q(2¼)] [Q(2¼) : Q]
= [Q(2¼, i) : Q(2¼)] deg Irr (Q, 2¼)
= [Q(2¼, i) : Q(2¼)] deg (x4 – 2)

 deg (x2 + 1) × deg (x4 – 2) = 8
[E : Q] = 4 or 8

If [E : Q] = 4, then [Q(2¼, i) : Q(2¼)] = 1
 Q(2¼, i) = Q(2¼)  R, the field of reals
  i  R which is not true
Hence [E : Q] = 8.

Problem 18: Show that there is an irreducible polynomial of degree 2 over the field
Fp = {0, 1, 2, ..., p – 1} mod p, where p is a prime.

Hence construct a field with p2 elements.

Solution: Define  : Fp  Fp, s.t.,
(a) = a2 (p  2)

Then (a) = (–a)   is not 1-1 as a  – a in Fp.
Thus is not onto as Fp is finite.
So,  b  Fp s.t., b  a2  a  Fp

Then f (x) = x2 – b  Fp[x] is irreducible over Fp and degree of f (x) is 2.
Let  be a root of f (x). Then
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f (x) = Irr (Fp, )
and [Fp( ) : Fp)] = deg f (x) = 2
i.e., o(Fp(

p
)) = p2.

Suppose now p = 2. Then g(x) = x2 + x + 1 is irreducible over F2. If  is root of g(x) then
[F2( ) : F2] = deg Irr (F2, )

= deg g(x) = 2.
i.e. o(F2( )) = 22.
(See also theorem 67 on page 756).

Problem 19: Show that a minimal splitting field over k for a polynomial of degree n is generated
over k by any of n – 1 of its zeros.

Solution: Let f (x)  k[x], deg f (x) = n.
Let f (x) = anx

n + an – 1xn – 1 + ... + a1x + ao, ai  k
Let E = k( 1, ..., n) be a minimal splitting field of f over k.

Now, ii = – 1n

n

a
a

1   k  k( 1, 2, ..., n) = E.

Therefore, 1 + 2 + ... + n  E and i  E.
Let E = k( 1, ..., i – 1, i + 1, ..., n)

Now i = – 1n

n

a
a

1  – ( 1 + .. + i–1 + i+1 + ... + n)

 E
 E  E . But E   E.
Therefore, E = EE , which is generated  by n – 1 zeros of f (x) over k.

Exercises
1. Find the degree of splitting field of x5 – 3x3 + x2 – 3 over Q. [4]
2. Find the splitting field of xp – 1 over Q, p being a prime number.
3. Find the splitting fields and their degrees of the following polynomials over Q.

(i) x6 + 1 (ii) x4 – 2 (iii) x5 – 1

(i) Q( 3, i), 4 (ii) Q(2¼, i), 8 (iii) Q(e2 i/5), 4
4. If E is an extension of F and f (x)  F[x] and if  is an automorphism of E leaving

every element of F fixed, prove that  must take a root of f (x) lying in E into a root
of f (x) in E.

5. Prove that F 3( 2)  where F is the field of rationals, has no automorphisms other than
the identity automorphism.

6. Using exercise (4), prove that if the complex number  is a root of the polynomial p(x)
having real coefficients, then , the complex conjugate of , is also a root of p(x).
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7. If F is the field of real numbers, prove that if  is an automorphism of F then  leaves
every element of F fixed.

8. Find the degree of a minimal splitting field of x6 + 1 over F2 the field
{0, 1} mod 2.
(Hint: x6 + 1 = (x + 1)2 (x2 + x + 1)2

= (x + 1)2 (x + )2 (x + 2)2

Let E be a minimal splitting field of x6 + 1 over F2.
Then E = F2( )
amd [E : F2] = deg Irr (F2, ) = x2 + x + 1 = 2

9. Find the degree of minimal splitting field of x6 + 1 over F3 = {0, 1, 2} mod 3. [2]
10. Find the degree of minimal splitting field of x3 + x2 + 1 over F2 = {0, 1} mod 2. [3]

[Hint: Roots will be , 2, 1 +  + 2].

If F is a subfield of a field K, then K is called an extension of F. If S is a non-
empty subset of K, then F(S) is used to denote the smallest subfield of K
containing F and S.
An extension K of F is called an algebraic extension if every a K is algebraic
over F(i.e., there exists a non-zero polynomial f(x) 

algebraic extension
F[x], s.t., f(a) = 0). A finite

extension is algebraic. Converse is not true.
A complex number is said to be algebraic number if it is algebraic over the field
of rationals, and it is called an algebraic integer if it satisfies a monic
polynomial over integers.
Remainder theorem says that if K is an extension of F and p(x) F[x] then for
any a K , p(x)= (x – a)q(x) + p(a) where q(x) K[x] and degq(x) = deg p(x) – 1.
If K is an extension of F, then a K is a root of p(x) F[x] iff (x– a) | p(x) in
K[x].
A polynomial of degree n over a field can have at most n roots in any extension
field. A root of multiplicity m to be counted m times.
If p(x) is a non constant irreducible polynomial of degree n in F[x] then there
exists an extension K of F, s.t., [K : F] = n and K has a root of p(x).
If f(x) F[x] is of degree n  1 then there exists an extension K of F, s.t.,
[K : F]  n! and K has n roots of f(x).
Suppose K is an extension of F and f(x) F[x]. We say that f(x) splits in K if it
can be expressed as a product of linear factors in K[x] and then K is called a
splitting field of f(x)  over F if f(x) splits in K(but in no proper subfield of K).
Splitting field of a polynomial over a field always exists and is unique up to
isomorphism.

A Quick Look at what's been done
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Prime Subfields

Definition: Let F be a field. The intersection of all subfields of F is the smallest subfield of
F and is called the prime subfield of F.

Example 1: Let F = Zp = {0, 1, 2, ..., p – 1} mod p, p being prime. Suppose P is the prime
subfield of F. Since 1 

p = {0, 1, 2, ..., 
 P, 2, 3, ..., p – 1 

 – 1} mod 
 P. Therefore, P = F.

Example 2: Let Q be the field of rationals.

Let m
n

Q, m > 0, n > 0, m, n  Z. Then

m = 1 + 1 ... + 1 (m times)
n = 1 + 1 + ... + 1 (n times)

 m, n  P, the prime subfield of Q (as 1 P). So, m mP P
n n
m mm mP PP Pm mP Pm mm mP Pm mP Pm m . Therefore,

Q  P. Thus, P = Q.
In both the above examples, the prime subfield of the field turns out to be the field itself.

But that is not always the case. Consider

Example 3: Let P1 and P2 be the prime subfields of two fields F1 and F2 respectively where
F1 
Example 3:

 F2.
Now P1  F1  F2  P1  F2.
But P2 is the smallest subfield of F2, so, P2  P1  F1  P2  F1.

More on Fields

14

Introduction
We continue our discussion on fields in this chapter and take up separable extensions,
normal extensions, algebraically closed fields and algebraic closures. We’ll study
automorphisms of field extensions including Artin’s theorem. All these results will lead us to
the study of Galois extension and the fundamental theorem of Galois theory. Towards the
end of the chapter we take up roots of unity, finite fields and construction by ruler and
compass.
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Again, P1 is the smallest subfield of F1. So, P1  P2.
Thus, P1 = P2.
Since, Q  R and Q is the prime subfield of Q, it follows from above that Q is the prime

subfield of R.
We now tackle the problem in general to determine the prime subfield of any field F. We

write char F to denote the characteristic of F.

Theorem 1: Let P be the prime subfield of a field F. Then either P  Q or 
( )

P
p( )
Z ,   for

some prime p, Z being the ring of integers.

Proof: Define  : Z  P  F s.t.,
(n) = ne, where e denotes the unity of F

(of course, unity is denoted by 1, but here Z also has unity 1. So, we denote unity of F by e).
Then  is homomorphism. (verify !)

Case 1: Char F = 0
Let n  Ker . Then (n) = 0  ne = 0  n = 0 as e  0.
So, Ker  = {0}   is one-one and so Z (Z)  P.
Since Z is an integral domain, so will be (Z).
Let Q  be the quotient field of (Z). Since Q is the quotient field of Z, Q  Q .
Also Q  is the smallest field containing (Z). But (Z)  P. Therefore,

Q   P F.
Again P is the smallest subfield of F  P  Q   P = Q .
Since Q   Q, we get P  Q.

Case 2: Char F  0. Let char F = p, p being prime.
Let n  Ker . Then (n) = 0  ne = 0  p | n as e  0
 n  (p)  Ker  (p).
Also, m  (p)  m = pr  (m) = (pr) = (pr)e = (pe) (re) = 0
 m  Ker  (p)  Ker 
So, Ker  = (p).
But (p) is a maximal ideal of Z

 
Ker

Z  = 
( )p
Z  = field

 Z)  
Ker

Z  is a field.

Now, (Z)  P  F and P is the smallest subfield of F, P (Z). So (Z) = P

Thus
( )

P
p( )
Z .

Remarks: (i) Let F1, F2 be fields such that F1  F2. Then F1, F2 have the same prime subfield P.
If char F2 = 0, then P  Q. So, char F1 = 0.
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If char F2 = p, then 
( )

P
p( )
Z . So, char F1 = p.

In any case, char F1 = char F2.

(ii) If F is a finite field, then char F = p, for some prime p.
For let, char F = 0. Let P denote the prime subfield of F. Then P  Q  P is infinite  F

is infinite, a contradiction. Therefore, char F = p, for some prime P.

(iii) Char Q = 0. For let char Q = p, then the prime subfield Q of Q is isomorphic to 
( )p
Z ,

which is not true as Q is infinite while 
( )p
Z  is finite. So, char Q = 0.

Example 4: We now give an example of an infinite field which has finite characteristic p.
Let F = {0, 1, 2, ..., p – 1} mod p.
Let P be the prime subfield of F.

Then P = 
( )

F
p( )
Z . So, char F = p.

Now F[x] is an infinite integral domain. Let F(x) denote the quotient field of F[x]. Clearly,
F  F[x] 

[ ] is an infinite integral domain. Let 
 F(x). So, char F = char F(x)  char F(x) = p. Thus, F(x) is an example of an

infiite field with finite characteristic p.

Problem 1: Let char F = p. Then
(a + b)pn

 = apn
 + bpn

for all n  1, a, b  F.

Solution: Let n = 1. Then

(a + b)p = 
1

1
.

r

p
p r p r p

c
r

a p a b b
1

1

p
a p a b b .r p r pr p r pa p a b br p r pa p a b br p r pr p r pa p a b br p r pa p a b br p r p

p 1

r
1

p

rca p a b b
r

a p a b b
rca p a b bc

Since p | pcr
, for all r, 1  r  p – 1. (See example on page 357)

We find pcr
 ar

 b
p – r = 0

Therefore, (a + b)p = ap + bp.
So the result is true for  n = 1.
Assume that the result is true for n = m.
Now (a + b)p m + 1 = [(a + b) p] pm

= (a p + b p) pm

= (a p) pm
 + (b p) pm

by induction hypothesis
= a pm + 1

 + b pm + 1

Therefore, the result is true for n = m + 1. By induction, the result is true for all n  1.

Problem 2: Every automorphism of a field F leaves the prime subfield P of F, elementwise
fixed.

Solution: Let  be an automorphism of F.
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Let K = {a  F | (a) = a}
Then K is a subfield of F (Prove!)
Since P is the smallest subfield of F, P  K. Let b  P. Then b  K  (b) = b   fixes

each element of P.

Separable Extensions

This section deals with those polynomials which have simple roots and the fields generated by
these simple roots.

Recall, a root  of f (x)  K[x] is called simple if x –  divides f (x) and (x – )2 does not
divide f (x). Similarly, a root 

[
 of f (x) 
] is called simple if 

 K[x] is said to be a root with multiplicity m, if
(x – )m divides f (x) but (x – )m + 1 does not divide f (x).
Let f (x) = a0 + a1x + ... + anx

n  K[x].
Define ff (x) = a1 + 2a2 + ... + nanx

n–1  K[x].
Then ff (x) or ff is called the derivative of f.
If f, g  K[x], then it can be easily proved that

(i) ( f ± g)  = ff  ± gg
(ii) ( fg)  = ff g + fgfg

(iii) (af )  = a f , a  K
(iv) x  = 1.

It can be easily checked that  is a simple root of f (x)  K[x] iff f ( )  0. In other words,
 is not a simple root of f 

It can be easily checked that 
 K[x] iff f

 is a simple root of 
f (

 is a simple root of 
) = 0.

Theorem 2: Suppose all roots of f (x) K[x] in a minimal spitting field of f over K are simple.
Then the roots of f in any minimal splitting field of f over K are simple.

Proof: Let f (x) = 0(x – 1) ... (x – n), i  E.
where E = K( 1, ..., n) is a minimal splitting field of f over K.
Suppose each i is a simple root of f.
Let EE  be another minimal splitting field of f over K.
Then EE  = K( 1, ..., n) where is are roots of f.
Then there exists a K-isomorphism : E  EE .
Since i is a root of f, ( i) is also a root of f in EE .
Therefore { ( 1), ..., ( n)} = { 1, ..., n}.
Since  is 1-1 and is are distinct roots of f, ( i)s are all distinct. So is are all distinct.
Thus, the roots of f in EE  are also simple roots.

Note: By the above arguments, we can also prove that if there is a root of multiplicity m in
a minimal splitting field of f over K, then every minimal splitting field of f over K will have a
root of f of multiplicity m.

Theorem 3: Let F be an extension of K. Let f, g  K[x]. Then the g.c.d. of f and g regarded
as polynomials in K[x] is same as that of f and g regarded as polynomials in F[x], upto
associates.
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Proof: Let d be the g.c.d. of f, g  K[x] and d1 be the g.c.d. of f, g  F[x].
Now d | f, d | g in K[x]  d | f, d | g in F[x]

 d | d1 in F[x]  d1 = du, u  F[x].
Also, d = f f1 + gg1, f, f1  K[x].
Since d1| f, d1 | g, d1 | f f1, d1| gg1.
Therefore, d1 | ff1 + gg1 = d in F[x].

 d = d1v v  F[x].
So, d = duv  uv = 1  u, v are units in F  d, d1 are associates. Thus d and d1 are

same upto associates.

Theorem 4: Let F be an extension of K.Then f and g are relatively prime regarded as elements
of K[x] iff f and g are relatively prime regarded as elements of F[x].

Proof: Suppose f and g are relatively prime regarded as elements of F[x].
Then (f, g) = g.c.d. of f, g  F[x] is a unit d  F.
Let (f, g) = g.c.d. of f, g  K[x] be d1
Then d and d1 are associates
 d = ud1, u = unit in  F
 d1 = u–1 d = unit in F
Since d1  K, d1 is a unit in K.
The converse follows similarly.

Theorem 5: Let F be an extension of K. Let f (x)  K[x], F. Then f can be written as
f = (x – )2g + (x – 

Let F be an extension of K. Let f
) f

Let F be an extension of K. Let f
(

Let F be an extension of K. Let f
) + f (

Let F be an extension of K. Let f
) for some g F[x].

Proof: Now (x – )  F[x].
Let f = (x – )2g + h, g, h  F[x]
and h = (x – )g1 + h1, g, h1  F
So, f ( ) = h( ) = h1 (deg h < 2)
Also, ff  = 2 (x – )g + (x – )2 gg  + h
and h' = g1

 ff ( ) = h ( ) = g1.
Theorem, f = (x – )2g + (x – ) f ( ) + f ( ).

Theorem 6: Let f K[x]. Then the roots of f are simple iff f and f  are relatively prime.

Proof: Suppose the roots of f are simple. Let ( f, ff ) = d.
If d is a non-constant polynomial in K[x], then d has a root  in some extension F of K.
Now f = d f1, f  = dg1, f1, g1  K[x]

 f ( ) = d( ) f1( ), f ( ) = d( ) g1( )
 f ( ) = 0 = ff ( ).

Using above result, we get
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f = (x – )2 g + (x – ) ff ( ) + f ( )
= (x – )2g

 is not a simple root of f, a contradiction.
So, d = constant  K.
Since f  0, d is a non zero element in K.
Therefore, d is a unit  f, f  are relatively prime.
Conversely, let f and ff  be relatively prime. Then ( f, f ) = d = unit in K.
Let  be a root of ff  such that  is not a simple root of f. Let  F  K.
Then f ( ) = 0 = ff ( )

 x –  divides f and ff  in F[x]  K[x]
 x –  divides d

But d  K  deg d = 0 (d  0).
and x –  divides d

 deg (x – )  deg d = 0, a contradiction.
So all roots of f are simple.

Definition: A polynomial is said to be separable if all its roots are simple.
In view of the above theorem, the following result follows.

Theorem 7: A polynomial f (x)  F[x] is separable iff f and f  are relatively prime.

Cor. 1: If f (x) F[x] is irreducible over F such that f   0, then f is separable.

Proof: Let g.c.d. ( f, f ) = d then deg d  deg f  < deg f.
Since f is irreducible over F and d is a factor of f such that deg d < deg f, we find d is

(non zero) constant and thus a unit. So, f and f  are relatively prime. By above theorem, f is
separable.

Cor. 2: Let f (x)  F[x] be irreducible over F. If characteristic of F is zero, then f is separable.
(In other words, an irreducible polynomial over a field of characteristic zero is separable).

Proof: Let f = a0 + a1x + ... + anxn  F[x].
Then f  = a1 + 2a2 + ... + nanx

n–1.
If f  = 0, then rar = 0 for all r = 1, 2, ..., n. Since char F = 0, ar = 0 for all

r = 1, 2, ..., n  f = a0, a contradiction as F is irreducible (deg f  1).
Thus,  f   0. By Cor. 1, f is separable.

Theorem 8: Let F be a field of characteristic p. Then for any polynomial f(x)  F[x],
f  = 0 iff f (x) = g(xp) for some polynomial g(x) 

Let F be a field of characteristic p. Then for any polynomial f(x) 
 F[x].

Proof: Let f(x) = a0 + a1x + ... + anx
n and ff  = 0.

Then rar = 0  r = 1, 2, ..., n.
 ar = 0 or p divides r as char F = p.
Thus, f = a0 + apxp + ... + aspx

sp

= g(xp), where g(x) = a0 + apx + ... + aspx
s  F[x].
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Conversely, let f = g(xp), where
g(x) = b0 + b1x + ... + bnx

n  F[x]
Then f = b0 + b1x

p + ... + bn xnp

 f  = pb1x
p–1 + ... + npbnx

np–1 = 0 as pa = 0  a  F.

Theorem 9: Let f(x)  F[x] be irreducible over F. Then all its roots have the same multiplicity.

Proof: (i) Let char F = 0. Then by cor. 2 to theorem 7 f is separable. So, all roots of f are
simple.
(ii) Let char F = p. If ff   0, then by cor. 1 to theorem 7 f is separable. So, all roots of f
are simple.
If f  = 0, then f (x) = g(xp), for some g  F[x].
Since f is irreducible over F, so is g over F.
If gg   0, then g is separable over F. Let  be a root of f.
Then 0 = f( ) = g( p)  g(x) = Irr (F, p).
Now, g(x) = (x – p) h(x), h( p)  0 as p is a simple root of g(x).
So, f (x) = g(xp) = (xp – p) h(xp)

= (x – )p h1(x)
[h1(x) = h(xp)  h1( ) = h( p)  0]

 x – appears exactly p times in f (x).
This is true for all roots of f (x).
If gg  = 0, then g(x) = q(xp), q  F[x]
 f (x) = q(xp2).
Proceeding in this way, since, deg f is finite, after finite number of steps we get f(x) = r(xpe

),
r
Proceeding in this way, since, deg
r  
Proceeding in this way, since, deg

 0. Then r is separable over F and every root of f appears exactly pe times.
Hence all roots of f have same multiplicity pe (e  0).

Aliter: Let  be a root of f of multiplicity m.
Then f (x) = (x – )m g(x), g( )  0 g(x) K[x], K = k( )
Let  the another root of f. Then  an F-isomorphism

 : F( )  F( ) s.t.,
( ) = 

Now f = ( f) = (x – )m (g(x))
Let g(x) = a0 + a1x + ... + anx

n, ai K
Then (g(x)) = (a0) + (a1) x + ... + (an) xn

  (g( )) = (a0) + (a1)  + ... + (an) 
n

= (a0) + (a1) ( ) + ... + (an) ( n)
= (a0 + a1 1 + ... + an

n)
= (g( ))  0 as g( )  0

  is a root of f of multiplicity m, showing that all roots of f have same multiplicity.
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Cor.: If f Fp[x] is irreducible over Fp and f is not separable, then p divides n, where n = deg
f. (Fp deotes the field {0, 1, 2, ..., p – 1} mod p).

Proof: By above theorem, all roots of f have same multiplicity pe, e > 0 as f is not separable.
So, deg f = rpe

 p divides n = deg f. (Note, char Fp = p).

Theorem 10: Let xp – a  F[x], where p = char F. Then either xp – a is irreducible over F
or xp – a is a p-th power of a linear polynomial in F.

Proof: Let f (x) = xp – a.
If b is a root of f (x), then f (b) = 0  a = bp.

 f (x) = xp – bp = (x – b)p.
If b  F, then f (x) is p-th power of linear polynomial x – b  F[x].
Suppose b  F. Let p(x) be a monic irreducible factor of f (x) in F[x].
Since p(x) divides f (x), p(x) = (x – b)m for some m, 1  m  p.
So, p(b) = 0. Thus, p(x) = Irr (F, b).
If q(x) is another monic irreducible factor of f (x) in F[x], then

q(x) = Irr (F, b) = p(x).
So, f (x) = (p(x))r.
Since deg f = p, p = rm.
If r > 1, then m = 1  p(x) = x – b F[x]  b  F, a contradiction.
So, r = 1  f (x) = p(x) is irreducible over F.

Example 5: We saw earlier that any polynomial over a field of characteristic zero is separable.
However, this need not be true over a field of characteristic p. We give an example of an
irreducible polynomial which does not have distinct roots.

Let K = F2(t), F2 = {0, 1} mod 2 and t is an indeterminate over F2. Let
f (x) = x2 – t K[x].

If f is reducible over K, then there would be an element a  K s.t., f (a) = 0.

 t = a2. But a  K  a = ( )
( )

g t
h t

.

So, t = 
2

2
( ( ))
( ( ))
g t
h t

  deg (g(t))2 = deg t(h(t))2.

 2 deg g(t) = deg t + 2 deg h(t) = 1 + 2 deg h(t), which is not true.
So, f is irreducible over K.
If  is a root of f, then ff ( ) = 0 (as char K = 2 = char F2)   is not a simple root of f.
So, f = (x – )2.
Thus, f is an irreducible polynomial having no simple roots.

Definition: Let F be an algebraic extension of K. Then a  F is called separable over K if Irr
(K, a) is separable.
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Thus, a  F is separable over K iff a is a simple root of Irr (K, a). Further, if each
a F is separable over K, then F is called a separable extension of K. (We write
F/K is separable).

In the example above, x2 – t = Irr (K, ) and  is not a simple root of x2 – t.
If F is a minimal splitting field of f = x2 – t over K, containing  then F/K is algebraic and

 F is not separable over K.
So, F = K( ) is not separable over F.
However, if char K = 0 then every algebraic extension of K is separable by cor.2. to theorem

7.

Theorem 11: Let char K = p. Then every algebraic extension of K is separable iff K = Kp.

Proof: Suppose every algebraic extension of K is separable. Let a  K. Let
f (x) = xp – a  and b  be a zero of f (x). Then 0 = f (b) = bp – a    a  = bp 
f (x) = xp – bp = (x – b)p. If b  K then f (x) is irreducible over K.

So, xp – a = Irr(K, b).
But f (x) = xp – a
 f (x) = px p – 1

 f (b) = 0 as char K = p
 b is not a simple root of f (x)
 K(b)/K is not separable, contradicting the given fact that every algebraic extension of K

is separable.
So, b  K and a = bp  Kp  K  Kp.
However, Kp  K. So K = Kp (Note, Kp = {ap | a  K}).
Conversely, let K = Kp. Let F/K be algebraic.
Let   F, f (x) = Irr (K, ). If f is not separable, then f  = 0. So, f = g(xp) for some g

 K[x].
Let g = a0 + a1x + ... + anx

n, ai  K.
Then f = g(x p) = a0 + a1x

p + ... + anx
np

Since K = Kp, ai = bi
p, bi  K.

So, f = b0
p + b1

p xp + ... + bn
p xnp

= (b0 + b1x + ... + bnx
n)p, bi K

contradicting that f is irreducible over K.
Thus f is separable   is separable.
Since  is  an arbitrary element of F, F/K is separable.

Definition: A field K is called perfect field if every algebraic extension of K is separable.
A field of characteristic zero is perfect by cor. 2 to theorem 7. So, Q, R, C, are perfect

fields.

Theorem 12: Let char K = p. Then the following are equivalent:
(i) K is perfect.
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(ii) K = Kp

(iii) Every element in K is a p-th power of some element in K.
(iv)  : K  K such that (a) = ap is an automorphism.

Proof: (i)  (ii) follows by theorem 11
(ii)  (iii) obvious

(iii)  (iv): Since char K = p,  is clearly a homomorphism and is 1-1.
Also, b  K  b = ap, a  K by (iii).
 b = (a)   is onto. So,  is an automorphism.

(iv)  (i): Now (K) = { (a) | a  K}
= {a p | a  K}
= Kp.

Since  is onto, K = Kp.
By theorem 11 then K is perfect.

Theorem 13: Let F  K  L be a tower of fields. Suppose L/F is separable. Then L/K is
separable.

Proof: Let a  L, p(x) = Irr (K, a)
q(x) = Irr(F, a)

Then q(x)  K[x] and q(a) = 0.
So, p(x) divides q(x) in K[x]
 q(x) = p(x) r(x), r(x)  K[x]
 q (x) = p (x) r(x) + p(x) rr (x)
 q (a) = p (a) r(a).
Since L/F is separable, a is separable over F.
So a is a simple root of q(x)  q (a)  0
 p (a)  0  a is a simple root of p(x)
 a is separable over K
 L/K is separable.

Cor.: Every finite extension of a perfect field is perfect.

Proof: Let F be a perfect field. Let K/F be finite extension. Then K/F is algebraic. Let L/K
be algebraic. Then L/F is algebraic. Since F is perfect, L/F is separable. From above, L/K is
separable. So, K is perfect.

Problem 3: Let F be a perfect field. Show that the set of elements fixed under all automorphisms
of F is a perfect subfield.

Solution: Let char F = p, K = {a  F | (a) = a   G}, where G is the group  of all
automorphisms of F. Then K is subfield of F.

Define  : F  F s.t.,
( ) = p
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Then  is a homomorphism. Since F is perfect,  is onto. So, G.
Let  K. Then ( ) = G

 ( ) =  p =   Kp  K  Kp.
 K = Kp  K is perfect.

Problem 4: Let K/F be a finite extension and suppose K is perfect then show that F is perfect.

Solution: Let char F = p, then char K = p.
Let [K : F] = n and { 1, 2, ..., n} be a basis of K over F.
Since K is perfect, K = Kp. We show F = F p.
Now F p  F  K. So we show that
[K : Fp] = [K : F] which would give F = F p.
Let S = { 1

p, 2
p, ..., n

p}  K p = K
If a1

p
1
p + a2

p
2
p + ... + an

p
n
p = 0, ai F

then (a1 1+ a2 2 + ... + an n)
p = 0

 a1 1 + a2 2 + ... + an n = 0
 ai = 0  i
 S is L.I. set in K (over F p)
Let b K, then b = a p, a  K as K = K p

Now a  K  a = b1 1 + b2 2 + ... + bn n, bi F
 b = ap = b1

p 1
p + b2

p 
2
p + ... + bn

p 
n
p

 S spans K over Fp

Hence S is a basis of K over Fp

 [K : Fp] = o(S) = n = [K : F]
 F = Fp or that F is perfect.

Normal Extensions

As seen earlier if f (x)  K[x] is irreducible over K, then  an extension E of K containing a
root of f(x). In this section we consider those extensions of K which contain all roots of f(x)
and study properties of such extensions.

Definition: Let E be an extension of K. E is called normal extension  of K if
(i) E/K is algebraic (ii) E  p(x) = Irr (K, ) splits in E[x] or E.

Example 6: A quadratic extension is a normal extension.
Let E be a quadratic extension of K. Then [E : K] = 2.
Since E/K is finite, E/K is algebraic.
Let E, p(x) = Irr (K, ).
Now K  K( ) E. Since 2 = [E : K] = [E : K( )] [K( ) : K].
Either [E : K( )] = 1 or [K( ) : K] = 1.
If [K( ) : K] = 1, then K( ) = K  K  p(x) = x –  splits in K[x]  E[x].
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If [E : K( )] = 1, then E = K( ).
So, 2 = [E : K] = [K( ) : K] = deg Irr (K, ) = deg p(x).
Now  is a root of p(x)  x –  divides p(x) in E[x].
 p(x) = (x – ) q(x), q(x)  E[x].
Since deg p(x) = 2, deg q(x) = 1. So q(x) = (x – ), E.
Therefore, p(x) = (x – ) (x – ) splits in E[x].
Thus, E/K is normal.

Example 7: Let f (x) = x3 – 2  Q[x]. Let  be the real root of f (x). Consider
Q(
Example 7:

)/Q. We show that Q( )/Q is not normal.
Now f (x) is irreducible over Q by Eisenstein's criterion (take p = 2). So, f (x) = Irr (Q, ).

Since  is algebraic over Q(being root of f (x)  Q[x]), Q( )/Q is algebraic.
If f (x) splits in Q( ), then Q( ) contains a minimal splitting field E of f (x) over Q.
So, Q  E  Q( ).
But [E : Q] = 6 and [Q( ) : Q] = deg Irr (Q, ) = deg f(x) = 3.
Since 3 = [Q( ) : Q]  [E : Q] = 6, we get a contradiction.
So, Q( )/Q is not normal.
Similarly, Q( w)/Q and Q( w2)/Q are not normal extensions.

Remark: We have seen in above example that an extension of degree 3 need not be normal.
We can, however, have a normal extension of degree 3. Consider
f (x) = x3 + x2 + 1  F2[x], where F2 = {0, 1} mod 2. Let  be a root of f (x). Then 2, 1
+  + 2 are also roots of f (x). So F2(

2
) is a minimal splitting field of f (x) over F2. Thus F2( )/

F2 is normal and [F2( ) : F2] = deg Irr (F2, 
) is a minimal splitting field of 

) = deg f (x) = 3.

Theorem 14: Let F  K  E be a tower of fields. If E/F is normal, then so is E/K.

Proof: Since E/F is normal, E/F is algebraic. So, E/K is algebraic.
Let E, p(x) = Irr (K, ) , q(x) = Irr(F, ). Then q(x)  F[x]  K[x]  q(x)  K[x]

and q( ) = 0.
So, p(x) divides q(x) in K[x].
Since E/F is normal and E, q(x) splits in E[x].
So, p(x) splits in E[x]. Thus, E/K is normal.

Remark: In above theorem K/F need not be normal. Consider f (x) = x3 – 2  Q[x]. Let 
R be a root of f (x). Then Q( )/Q is not normal by example 7. However, Q(

[
, w)/Q is

normal by theorem 15 and Q  Q(
)/

) 
 is not normal by example 7. However, 

 Q(
 is not normal by example 7. However, 

, w). Notice Q(
 is not normal by example 7. However, 

, w) is a minimal splitting field
of f (x) over Q.

Theorem 15: A minimal splitting field of a non-constant polynomial f (x) K[x] over K is
normal extension of K.

Proof: Let E be a minimal splitting field of f (x) over K. Then E/K is algebraic and finite. Let
f (x) = 0(x – 

 be a minimal splitting field of 
1) ... (x – 

 be a minimal splitting field of 
n), 

 be a minimal splitting field of 
i 

 be a minimal splitting field of 
 E.

Then E = K( 1, 2, ..., n)
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Let E, p(x) = Irr (K, )  K[x]  E[x].
Then p(x) splits in some extension of E.
Let be a root of p(x) in some extension of E. We show that E.
Now ,  are roots of p(x)   a K-isomorphism : K( )  K( ) s.t., ( ) = .
Then, a minimal splitting field of f over K( ) is K( ) ( 1, 2, ...., n)

= K( 1, 2, ..., n) ( )
= E( )
= E as E

Also,  a minimal splitting field of ( f ) = f over K( ) is
K( ) ( 1, 2, ..., n)
= K( 1, 2, ..., n) ( )
= E( ).

So, an isomorphism : E  E( ) s.t., (a) = (a)  a K( )
 ( ) = ( ) = .
Now K  K( )  E  E( )
 [E : K( )] = [ (E) : (K( )]

= [E( ) : (K( )]
= [E( ) : K( )]

So, [E( ) : K] = [E( ) : K( )] [K( ) : K]
= [E : K( )] deg p(x)
= [E : K( )] [K( ) : K]
= [E : K].

Since E  E( ) and E, E( ) as vector spaces over K have same dimension,
E = E( ). So, 

(
E. Thus, p(x) splits in E. This proves E/K is normal.

Theorem 16: A finite normal extension is a minimal splitting field of some
polynomial.

Proof: Let E/K be a finite normal extension.
E/K is finite  E = K( 1, 2, ..., n).
Let pi(x) = Irr (K, i). Since i  E and E/K is normal, each pi(x) splits in E.
Let f = p1p2 ... pn  K[x].
Then, a minimal splitting field of f over K is
K( 1, 2, ..., n, roots of pis in E) = E.
So, E is a minimal splitting field of f over K.

Cor.: Let K  E1  E, K  E2  E be towers of fields s.t., E1/K, E2/K are finite normal
extensions. Then E1E2, the smallest subfield of E containing E1  E2 is finite normal extension
of K.

Proof: Since E1/K is finite, E1 = K( 1, ..., n).
So, E1E2 = K( 1, ..., n)E2
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= E2( 1, ..., n), as K E2  KE2 = E2
Thus [E1E2: E2] = [E2( 1, ..., n) : E2]

= [E2( 1, ..., n) : E2( 1, ..., n – 1)] ...... [E2( 1) : E2]
 [K( 1, ..., n) : K( 1, ..., n – 1)] ...... [K( 1) : K]

= [K( 1, ..., n) : K]
= [E1 : K].

Therefore, [E1 E2 : K] = [E1E2 : E2] [E2 : K]
[E1 K] [E2 : K] = finite

 [E1E2 : K] = finite.
Now E1/K is finite normal  E1 is a minimal splitting field of f1 over K
Also, E2/K is finite normal  E2 is a minimal splitting field of f2 over K
Let f = f1 f2, E1 = K(a1, ..., ar), E2 = K(b1, ..., bs). Then, a minimal splitting field of f over

K is K(a1, ..., ar, b1, ..., bs)
= E1(b1, ..., bs)
= E1K(b1, ..., bs) as E1K = E1
= E1E2.

Thus, E1E2/K is finite normal extension.
(Note, we have also shown above that E1/K, E2/K are finite  E1E2/K is finite).

Example 8: We now give an example to show that a normal extension of a normal extension
need not be a normal extension.

Consider the tower of fields Q  Q( 2 ) Q(21/4).

Now [Q( 2 ) : Q] = deg Irr (Q, 2 ) = deg(x2 – 2) = 2

and [Q(21/4) : Q(21/2)] = deg Irr(Q( 2 ), 21/4) = deg (x2 – 2 ) = 2

So, Q( 2 )/Q, Q(21/4)/Q( 2 ) are normal.

If Q(21/4)/Q is normal, then f (x) = Irr(Q, 21/4) = x4 – 2 must split in Q(21/4).
So, Q(21/4) contains a minimal splitting field E of f (x).
But [E : Q] = 8 and Q  E  Q(21/4)   [Q(21/4) : Q] = 4  [E : Q] = 8,

a contradiction.
Therefore, Q(21/4)/Q is not normal, proving our assertion.

Theorem 17: Let K  F  E be a tower of fields s.t., E/K is finite normal. Then any K-
homomorphism of F into E can be extended to K-automorphism of E.

Proof: Since E/K is finite, E = K( 1, 2, ..., n). Also E/K is finite normal  E is a minimal
splitting field of some f(x)  K[x] over K. Let 

n). Also 
 be a K-homomorphism of F into E. Then 

is a K-isomorphism from F onto 
] over 

(F) = FF . f = p1p2 ... pn, where pi = Irr (K, i) splits in E.
So, a minimal splitting field of f over F is
F( 1, 2, ..., n, roots of f in E)
= E(roots of f in E) = E
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(E = K( 1, 2, ..., n)  F( 1, 2, ..., n)  E  E = F( 1, 2, ..., n))
Also, a minimal splitting field of ( f(x)) = f over FF  is
FF ( 1, 2, ..., n, roots of f in E)

= E(roots of f (x) in E)
= E

[E = K( 1, 2, ..., n)  F( 1, 2, ..., n)
 F ( 1, 2, ..., n)

F( 1, 2, ..., n) = E
 E = F '( 1, 2, ..., n)]

Therefore,  an isomorphism  : E  E s.t., (a) = (a)  a  F   ( ) =
( ) = 

 an isomorphism 
K  

 an isomorphism 
 is a K-automorphism of E extending 

(
. This proves the result.

Normal Closure: Let E/K be a finite extension. Then E = K( 1, 2, ..., n). Let
pi = Irr(K, i) and f = p1p2 ... pn  K[x].
Then E  the minimal splitting field of f over K is
K( 1, ..., n, root of f in some extension of E)
= E(roots of f in some extension of E)
 E  EE  and EE /K is finite normal
(as a minimal splitting field of f over K is finite normal extension of K)
Suppose K  E  F s.t., F/K is finite normal.
We show that E ' can be embedded in F.

i  E  F  i  F  i. Also F/K is normal.
So, pi(x) splits in F[x]  i  f splits in F[x]
 F contains a minimal splitting field E1 of f over K.
 E1  F. But E  is also a minimal splitting field of f over K.
Therefore, E   E1  F  EE  can be embedded in F.
Thus, EE  is the least finite normal extension of K s.t., K  E  EE .
EE  is called the normal closure of E/K.

Example 9: Let f (x) = x3 – 2
= (x – ) (x – w) (x – w2)

We find the normal closure of Q( )/Q.
Now [Q( ) : Q] = deg f (x) = 3.
where f = Irr (Q, ).
Then, a minimal splitting field of f over Q is Q( , w, w2) = Q( , w).
So, Q( w)/Q is the normal closure of Q.

Algebraically closed fields and algebraic closure

In this section, we give a characterization of normal extensions. Also, we show that given a
tower of fields k 
In this section, we give a characterization of normal extensions. Also, we show that given a

 F 
In this section, we give a characterization of normal extensions. Also, we show that given a

 K such that K/k is normal, any k-homomorphism of F into K can be
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extended to a k-automorphism of K. We have already seen this result when K/k is finite normal.
We also show that given a field k, there is an algebraic extension k  of k such that k  has no
algebraic extension other that k  itself. k  is called an algebraic closuree of k. We define the
product of two subfields of a field and show that the product and the intersection of two
normal extensions of k is again a normal extension of k.

Let S be a set of polynomials over k. Suppose each f  S splits in a field E containing k.
Then E is called a splitting field of S over k and k(zeros of f 

 splits in a field 
 S in E) is called a minimal

splitting field of S over k. For a finite set S, it is very easy to show the existence of a minimal
splitting field of S over k. For, let

S = { f1, f2, ..., fn | fi  k[x]}.
Let E1 be a minimal splitting field of f1 over k, E2 be a minimal splitting field of f2 over E1

and so on, En be a minimal splitting field of fn over En–1. Then
E1  E2  ...  En and each fi splits in Ei 

 be a minimal splitting field of 
 En  S splits in En. So, k(zeros of fi in En) is

a minimal splitting field of S over k. It is also a minimal splitting field of f = f1 f2 ... fn over
k .

Definition: A field k is called algebraically closed if every polynomial f over k splits in k.
By fundamental theorem of algebra, every polynomial over C, the field of complex numbers

splits in C. So, C is an algebraically closed field. However, R the field of reals is not algebraiclly
closed as x2 + 1 

 is an algebraically closed field. However, 
 R[x] does not split in R. We have the following characteriszations of

algebraically closed fields.

Theorem 18: A field k is algebrically closed iff every irreducible polynomial over k has degree
one.

Proof: Suppose k is algebraically closed.
Let f be an irreducible polynomial over k. Since k is algebrically closed, f splits in k.
So, f = f1 f2 ... fn where each fi is linear over k.
Since f is irreducible over k, f = f1  f is linear over k  deg f = 1.
Conversely, let g  k[x].
Then g = g1g2 ... gm, where each gi is irreducible over k.
By hypothesis, deg gi = 1  gi is linear over k for each i
 g is a product of linear factors over k  g splits in k.
So, k  is algebraically closed.

Theorem 19: A field k is algebraically closed iff every algebraic extension of k is k itself.

Proof: Let k be algebraically closed. Let K/k be algebraic.
Let K, p(x) = Irr (k, ).

By above theorem deg p(x) = 1  p(x) = x –  k[x]   k  K = k.
Conversely, let f  k[x]. Let K be a minimal splitting field of f over k.
Then K/k is algebraic. By hypothesis, K = k.
So, f (x) splits in k[x]  k is algebraically closed.
Summarising the last two results, we have the following
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Theorem 20: Let k be a field. Then following are equivalent
(i) k is algebraically closed.

(ii) Every irreducible polynomial over k has degree one.
(iii) Every algebraic extension over k is k itself.

Theorem 21: A finite field is not algebraically closed.

Proof: Let k be the finite field {a1, a2, ..., an}
Let f = 1 + (x – a1) (x – a2) ... (x – an)  k[x].
Since f (ai)  0 for all i, we find f does not split in k.
Hence k is not algebraically closed.

Definition: Let k be a field. An extension E of k is called algebraic closure of k if
(i) E/k is algebraic.

(ii) E is algebraically closed.
The following result  is now an immediate consequence of theorem 19.

Theorem 22: Let E be an algebraic extension of k. Then E is algebraically closed iff E has
no algeraic extension other than E itself.

Example 10: Since [C : R] = 2, C/R is algebraic. Also, C is algebraically closed, So, C is an
algebraic closure of R. However, C is not an algebraic closure of Q as C/Q is not algebraic
(
algebraic closure of 

 
algebraic closure of 

 C is not algebraic over Q).

Theorem 23: Let K/k be algebraic. Let k  denote an algebraic closure of K. Then k  is an
algebraic closure of k such that

k  K  k .

Proof: Since k  is an algebraic closure of K, k /K is algebraic. Also, K/k is algebraic. So,
k /k is algebraic. But k  is algebraically closed. Thus k  is also an algebraic closure of k.

Theorem 24: Let K be an algebraically closed field such that K is an extension of k. Let F
= {a  K|a is algebraic over k}.

Then F is an algebraic closure of k.

Proof: We know that
k  F  K is a tower of fields.
Also, by definition of F, F/k is algebraic.
Let f  F[x]. Then f  K[x]. Since K is algebraically closed, f splits in K.
Let f = (x – 1) ... (x – n), i  K.
Since i is algebraic over F, F( i)/F is algebraic for all i.
Also F/k is algebraic. So, F( i)/k is algebraic for all i.
 i  K is algebraic over k
 i F
 f splits in F
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 F is algebraically closed
 F is an algebraic closure of k.
From above theorem it follows that F = {a C | a is algebraic over Q}is an algebraic

closure of Q.
We now show the existence of a minimal splitting field of a set of polynomials over k.

Theorem 25: Let S be a set of polynomials over k. Then there is a minimal splitting field of
S over k.

Proof: Suppose S = {fi | fi  k[x], i  I}.
Let A = {i1, i2, ..., in} be a finite subset of I.
Put fA = fi1 fi2 ... fin

  k[x].
Let EA be a minimal splitting field of fA over k.
Suppose B  A. Then fB divides fA. So, fB splits in EA.
Let FB = k(zeros of fB in EA).
Then FB is a minimal splitting field of fB over k. So, FB  EB. But FB  EA. Therefore, we

can regard EB  EA. So, we have B  A  EB  EA.

Let E = A
A

E . Let a, b  E. Then a  EA, b  EB for some finite sets A, B I.

Let C = A  B. Then A, B  C.
So, EA, EB  EC  a, b  EC
 a  b, ab, ab–1, (if b  0) are in EC  E
 E is a field.
Therefore, for each fi  S, fi splits in EA, where A = {i}.
 each fi  S splits in E.
 E is a splitting field of S over k.
 k(zero of fi in E) is a minimal splitting field of S over k.
Using Zorn's lemma or otherwise one can prove the following result. We, however, omit

the proof.

Theorem 26: Any two minimal splitting fields of a set of polynomials over k are isomorphic.
We can now show the existence of an algebraic closure of a field k.

Theorem 27: Let S be the set of all polynomials over k. Then a minimal splitting field of S
over k is an algebraic closure of k.

Proof: Let F be a minimal splitting field of S. Since F is generated by zeros of
f  S, F is generated by algebraic elements over k. So, F/k is algebraic.

Let f = a0 + a1x + ... + anxn  F[x].
Let E = k(a0, a1, ..., an)  F.
Then f E[x]. Let EE  be a minimal splitting field of f over E.
Let f = (x – 1) ... (x – n), i  E .
Then EE  = E( 1, ..., n).
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Since each i is algebraic over E, EE /E is algebraic. Also, each ai  F is algebraic over k
 E/k is algebraic. So, E

 is algebraic over 
E /k is algebraic.

Let gi = Irr(k, i)
Let g = g1g2 ... gn  k[x]
Now gi = (x – i)fi, fi EE [x].
Therefore, g = (x – 1) .... (x – n)f1 ... fn

= (x – 1) ... (x – n) –1 f1 ... fn

= f ff f , ff  = –1 f1 ... fn  EE [x]
Let g = cix

i, ff  = bix
i, f = aix

i

where ci  k, bi  EE , ai  F.
Now cr = 

i
  ai br – i

Let aj be the first non zero coefficient in f(x).
Therefore, cj = ajb0  b0 = aj

–1 cj  F.
Suppose b0, b1, ..., br  F.
Then cj + r + 1 = aj + r + 1 b0 + aj + r b1 + aj + 1br + ajbr + 1

 br + 1 = aj
 –1 (cj + r + 1 – aj +  r + 1b0 ... – aj+i br)  F

By induction, each bi  F  ff   F[x].
By hypothesis, g  k[x]  g splits in F.
Let g = (x – 1) ... (x – m) i  F
Suppose f  F[x] splits in some extension FF  of F.
Let f = d(x – d1) ... (x – dn), di  F '  F.
Now ff   F[x]  F [x]  f  splits in some extension F  of F '.
Let ff  = e(x – e1) ... (x – er), ei  F  F   F
So, g = ffff  g(di) = 0 for all i

 di – j = 0 for some j depending on i
 di = bj  F
 di  F for all i
 f splits in F.

Thus, F is algebraically closed.
Hence F is an algebraic closure of k.
Converse of above theorem is also true.

Theorem 28: Let F be an algebraic closure of k. Then F is a minimal splitting field of the
set S of all polynomials over k.

Proof: Now F is an algebraic closure of k
 F is algebraically closed
 each f  S splits in F.
Let FF  = k(zeros of f  S in F)  F.
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Let  FF . Then  is algebraic over k as F/k is algebraic. Let p(x) = Irr(k, )
Then  is a zero of p(x) S in F.
So, F   F  F.
Therefore, F  = F  F is a minimal splitting field of FF  of the set of all polynomials over

k. The following is then immediate.

Theorem 29: Any two algebraic closures of a field are isomorphic.

Proof: Let k be a field and F1, F2 be algebraic closures of k. Then F1, F2 are minimal splitting
fields of the set of all polynomials over k. So, F1, F2 are isomorphic by theorem 26.

Theorem 30: Algebraic closure of a countable field is countable.

Proof: Let k be a countable field. For each integer n  1, there is a countable set of polynomials
of degree n over k. Thus, the set S of all polynomials over k is countable.
Let S = {f1, f2, ..., fn, ...}. Let E0 = k, and E1 be a minimal splitting field of f1 over E0 = k.
In this way, let Ei be a minimal splitting field of fi over Ei – 1. Then En – 1 

 be a minimal splitting field of f
 En for all n.

So, E =
n

En is a field  each fi splits in E

 E is a splitting field of S over k.
Let F = k(zeros of fi in E)  E.
Then k  F  E is a tower of fields and F is a minimal splitting field of S over k. So, F

is an algebraic closure of k  F is algebraically closed  F is not finite. Since E is countable,
F is also countable. Thus, any algebraic closure F

 is algebraically closed 
F  of k being isomorphic to F is also countable.

Lemma: Let E be an algebraic extension of k and let E  E be a k-homomorphism. Then
 is a k-automorphism.

Proof: Let E, p(x) = Irr (k, ).
Let  = 1, 2, ..., r be zeros of p(x) lying in E.
Let E  = k( 1, 2, ..., r)  E.
Then E /k is finite.
Let p(x) = (x – i) qi(x), qi(x)  k( i)[x].
Since (a) = a for all a k, (p(x)) = p(x).
Therefore, p(x) = (p(x)) = (x – ( i)) (qi(x))
 ( i) is a zero of p(x) for all i.
But E  E  ( i)  E for all i.
So, ( i) is a zero of p(x) in E for all i.
 ( i)  EE  for all i.
 : EE   EE  is k-homomorphism.
Also EE /k is finite. Since  is also 1-1, : EE EE  must be onto (See below).
Therefore, EE  = (EE )   = ( ), for some EE   E
  : E  E is onto   is a k-automorphism of E.
That : E  EE  is onto follows from the result
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‘‘If V is a finite dimensional vector space over F and T : V  V is a linear transformaion,
then T is 1-1 iff T is onto’’. Here 

 is a finite dimensional vector space over 
: E

 is a finite dimensional vector space over 
E  

 is a finite dimensional vector space over 
 E

 is a finite dimensional vector space over 
E  is a k-homomorphism  is a linear transformation

as (a ) = (a) ( ) = a ( ) for all a  k, 
-homomorphism 

E
-homomorphism 

E . Also E
-homomorphism 

E  as a vector space over k is finite
dimensional.

We now give two characterisations of normal extensions. These are very useful in finding
whether the given extension is normal or not.

Theorem 31: Let K be an algebraic extension of k. Let k  denote an algebraic closure of
k such that k  K  k . Then K/k is normal iff every k-homomorphism of K into k  is a
k-automorphism of K.

Proof: Let K/k be normal. Let  : K  k  be a k-homomorphism. Let a K. Since K/k is
algebraic, a is algebraic over k. Let p(x) = Irr (k, ). Let (a) = b. Since (p(x)) = p(x), b
is a zero of p(x) in k   K.
Since K/k is normal, p(x) splits in K[x]. So, b  K.
Therefore,  : K  K is k-homomorphism.
By above lemma, is a k-automorphism of K.
Conversely, let K and p(x) = Irr(k, ).
Since k  is an algebraic closure of k, p(x) splits in k [x].
Let  be a zero of p(x) in k .
Then there exists a k-isomorphism : k( )  k( ) such that ( ) = .
Since k, k( )  k. So,  is a k-homomorphism from k( ) into k .

Thus  can be extended to k-homomorphism : K  K .
By hypothesis,  is a k-automorphism of K.
So, (K) = K. Also (a) = (a) for all a  k( ). In particular ( ) = ( ) = .
Since  K, ( ) (K) = K   K.
Therefore, p(x) splits in K[x].
Hence K/k is normal.

Theorem 32: Let K be an algebraic extension of k. Then K/k is normal iff K is a minimal
splitting field over k of a set of polynomials in k[x].

Proof: Let K/k be normal. Let K. Let ff (x) = Irr (k, ). Then ff (x) splits in K[x] for all
K. Let S = {ff | K}. Let F = k(zeros of ff  in K, 

). Then 
K).

Then F is a minimal splitting field of S over k.
Clearly, F  K. Also K   is a zero of ff  F. So, F = K. Thus K is a minimal

splitting field of S over k.
Conversely, let K be a minimal splitting field of a set S of polynomials over k. Let k  be an

algebraic closure of k such that  k  K  k .
Let : K  k  be a k-homomorphism.
Let a  K be a zero of some f  k[x] in S.
Then (a) is also a zero of f as  is a k-homomorphism.
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As f splits in K[x], we can write f = (x – 1) ... (x – n), i  K, k.
Since ( i) is a zero of f for all i, ( i) k , { 1, ..., n} = { ( 1), ..., ( n)} as k  can't

have more than n zeros of f. So, ( i) 
i
 K for all i.

Let T = {zeros of f in K, f  S}.Then  : T T. Also : T  T is 1-1 as
: K  k  is 1-1.
Let b (K). Then b = (c), c K.

Now c  K  c = 1

1

( , ..., )
( , ..., )

n

n

f
g

1( , ..., )1( , ..., )1 n( , ..., )n( , ..., )

1( , ..., )1( , ..., )1 n( , ..., )n( , ..., )
, i  T.

Then b = 1

1

( ( ), ..., ( ))
( ( ), ..., ( ))

n

n

f
g

1( ( ), ..., ( ))1( ( ), ..., ( ))1 n( ( ), ..., ( ))n( ( ), ..., ( ))

1( ( ), ..., ( ))1( ( ), ..., ( ))1 n( ( ), ..., ( ))n( ( ), ..., ( ))
 = 1

1

( , ..., )
( , ..., )

n

n

f
g

1( , ..., )1( , ..., )1 n( , ..., )n( , ..., )

1( , ..., )1( , ..., )1 n( , ..., )n( , ..., )
, i T

So, b  K  (K)  K. Also d  K  d = 1 1

1 1

( , ..., )
( , ..., )

mf
g m

1 1( , ..., )1 1( , ..., )1 1 m( , ..., )m( , ..., )

1 1( , ..., )g m1 1g m1 1( , ..., )g m( , ..., )1 1( , ..., )1 1g m1 1( , ..., )1 1
,

i  T  d = 1 1

1 1

( ( ),..., ( ))
( ( ),..., ( ))

m

m

f u u
g u u

1 1( ( ),..., ( ))m( ( ),..., ( ))m( ( ),..., ( ))f u u1 1f u u1 1( ( ),..., ( ))f u u( ( ),..., ( ))1 1( ( ),..., ( ))1 1f u u1 1( ( ),..., ( ))1 1

1 1( ( ),..., ( ))m( ( ),..., ( ))m( ( ),..., ( ))g u u1 1g u u1 1( ( ),..., ( ))g u u( ( ),..., ( ))1 1( ( ),..., ( ))1 1g u u1 1( ( ),..., ( ))1 1
, ui  T

 d = 1 1

1 1

( ( , ..., ))
( ( , ..., ))

m

m

f u u
g u u

1 1( ( , ..., ))f u u1 1f u u1 1( ( , ..., ))f u u( ( , ..., ))1 1( ( , ..., ))1 1f u u1 1( ( , ..., ))1 1

1 1( ( , ..., ))g u u1 1g u u1 1( ( , ..., ))g u u( ( , ..., ))1 1( ( , ..., ))1 1g u u1 1( ( , ..., ))1 1
 = 1 1

1 1

( , ..., )
( , ..., )

m

m

f u u
g u u

( , ..., )f u u1 1f u u1 1( , ..., )f u u( , ..., )1 1( , ..., )1 1f u u1 1( , ..., )1 1f u u1 1f u u1 11 1 m1 1( , ..., )m( , ..., )m( , ..., )f u u1 1f u u1 1( , ..., )f u u( , ..., )1 1( , ..., )1 1f u u1 1( , ..., )1 11 11 1f u u1 1f u u1 1

1 1( , ..., )m( , ..., )m( , ..., )g u u1 1g u u1 1( , ..., )g u u( , ..., )1 1( , ..., )1 1g u u1 1( , ..., )1 1( , ..., )g u u( , ..., )g u u( , ..., )
, ui T

 d (K)  K  (K)  (K) = K.
So, : K  K is onto Thus, is a k-automorphism of K. By previous result,

K/k is normal.
Summarising, the last two theorems we get

Theorem 33: Let K be an algebraic extension of k. Then following are equivalent:
(i) K/k is normal.

(ii) Every k-homomorphism of K into k  is a k-automorphism of K where k  is an algebraic
closure of k.

(iii) K is a minimal splitting field of a set of polynomials over k.

Theorem 34: Let F/k be algebraic. If every finite extension of k admis a k-homomorphism
into F, then F is an algebraic closure of k.

Proof: Let f = a0 + a1x + ... + anx
n  k[x]. Let E be a minimal splitting field of f over k. Then

E/k is finite.
By hypothesis, there is a k-homomorphism : E  F.
Let f = (x – 1) ... (x – n), i  E.
Then f = f = (x – ( 1)) ... (x – ( n))
 f splits in F
 every polynomial over k splits in F.
Let F  be a minimal splitting field of the set of all polynomials over k.
Then F  = k(zero of f  k[x] in F)  F
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Also,  F   is algerbraic over k.
Let p(x) = Irr(k, ). Then F is a zero of p(x)  k[x]
 F   F  F   F = F .
So, F is an algebraic closure of k.

Theorem 35: Let K/k be an algebraic extension. Let k  be an algebraic closure of k such that
k  K  k . Let F be an algebraically closed field such that k  F. Then any k-homomorphism
from K into F can be extended to a k-homomorphism from k  into F.

Proof: Let  : K  F be a k-homomorphism.

Let S = 
is a subfield of and

( , )
: is a homomorphism extending σ

E k K E
E g

g E F
is a subfield of andE k K Eis a subfield of andk K Eis a subfield of andk K E

( , )( , )( , )E g( , )( , )( , )( , )E g( , )( , )E g( , )
is a subfield of and

( , )
E k K Eis a subfield of andk K Eis a subfield of andk K E

: is a homomorphism extending σg E F: is a homomorphism extendingg E F: is a homomorphism extending: is a homomorphism extending σ
( , )

: is a homomorphism extending
( , )E g( , )E g( , )

g E F: is a homomorphism extendingg E F: is a homomorphism extending: is a homomorphism extending: is a homomorphism extendingg E F: is a homomorphism extending: is a homomorphism extending: is a homomorphism extendingg E F: is a homomorphism extending
( , )E g( , )E g( , ) .

Define a relation  on S as follows:
(E1, g1)  (E2, g2) if E1  E2 and g2 is an extension of g1 to E2.
Then  is a partial order on S.

Let {(Ei, gi)}i be a chain in S. Let E = 
ii

Ei and define g : E  F such that g( ) = gi( )
if  Ei.

Then (E, g)  S and is an upper bound of the chain {(Ei, gi)}.
By Zorn's lemma S has a maximal element, say (E0, g0).
We show that E0 = k . Suppose E0  k .
Then we can find a  k  such that a E0. Since k /k algebraic, a is algebraic over k.
Let f = Irr (k, a). Now k  E0  f  E0[x]. Since F is algebraically closed, g0( f )  F[x]

splits in F[x].
Let b be a zero of g0( f ) in F. Then there exists an isomorphism  : E0(a)  EE0(b) extending

g0, where EE0 = g0(E0).
But b  F, EE0  F  EE0(b)  F. So, : E0(a)  F is a homomorphism extending g0.
Therefore, (E0, g0)  (E0(a), ) and E0  E0(a)  (E0, g0)  (E0(a), ).This contradicts

the maximality of (E0, g0).
So, E0 = k . Therefore, g0 : k   F is a homomorphism extending .

Cor: Let K/k be algebraic such that k  K  k . Then any k-homomorphism of K into k  can
be extended to a k-homomorphism of k  into k .

Proof: Take F = k  in above theorem.
Cor.: Any two algebraic closures of a field k are k-isomorphic.
Proof: Let K1, K2 be algebraic closures of k.

Now k  K1, K2. Let  : k  K1 be the inclusion map i.e., ( ) =  for all k.
By taking K = k , k = K2, F = k1, in above theorem,  can be extended to a

k-homomorphism  : K2 K1.
As K2 (K2) and K2 is algebraically closed we find (K2) is algebraically closed.
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Also k  K2  (K2) can be regarded as an extension of k.
So, we have k (K2)  K1.
Since K1/k is algebraic, K1// (K2) is also algebraic.
But (K2) is algebraically closed  (K2) has no algebraic extension other than itself  K1

= (K2) 
2

 is onto   is a k-isomorphism.
Hence, K1, K2 are k-isomorphic.

Note: This result was proved earlier also.
We now prove the result on normal extensions stated in the beginning of this section.

Theorem 36: Let k, E, K be fields such that k  E  K and K/k is normal. Then any k-
homomorphism 

Let k, E, K be fields such that k 
 : E 

Let k, E, K be fields such that k 
 K can be extended to a k-automorphism of K.

Proof: Since K/k is normal, K is minimal splitting field a set of polynomials over k. Let k
denote an algebraic closure of k.

Then k  is a minimal splitting field of the set of all polynomials over k.
So K can be regarded as a subfield of k .
Now  : E  K is a k-homomorphism.
Thus  : E  k  is a k-homomorphism.
Since K/k is algebraic, so is E/k. Now k E k , E/k is algebraic.
By previous theorem,  can be extended to a k-homomorphism  : k   k . Therefore, 

: K k  is also a k-homomorphism.
Again, K/k is normal   is a k-automorphism of K.
This proves the result.

Product of Fields: Let M, N be extensions of a field k such that M, N are contained in a field
L. Then MN is defined as the smallest subfield of L containing M and N.

Let M[N] = {a1b1 + ... + anbn | ai  M, bi  N}.
n = finite

Then M[N] is an integral domain. Let K be field of quotients of M[N]. Clearly,
M  M[N], N 

] is an integral domain. Let 
 M[N].

So, M, N  M[N]  K.
But MN is the smallest field containing M, N, MN  K.

Also,
1

n

i i
i

a b
1

n

i i
i

a bi ia bi i
1

M[N], for all ai  M, bi  N


1

, as
n

i i i i
i

i i

a b MN a M a MN

b N b MN
1

, as i ia b MN a M a MN, asa b MN a M a MN, as i ia b MN a M a MNi i

i ib N b MNi ib N b MNi i

n

i ia b MN a M a MNi ia b MN a M a MNi i
1
a b MN a M a MN

 M[N]  MN.
But K is the smallest field containing M[N]  K  MN
 K = MN
 MN is a quotient field of M[N].
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Lemma: Let K1, K2 be extensions of a field k contained in a field K and let  be a
k-homomorphism of K in some field L. Then

(K1K2) = (K1) (K2).
Proof:

Let  = 1 1
1 2

1 1

...
...

n n

n n

a b a b K K
a b a b

... n na b a b...a b a b... n na b a bn n
1 2K K1 2K K1 2

1 1 ... n na b a b1 1a b a b1 1 ...a b a b... n na b a bn n
K K

where ai, ai   K1, bi, bi   K2

Then ( ) = 1 1
1 2

1 1

( ) ( ) ... ( ) ( )
( ) ( )

( ) ( ) ... ( ) ( )
n n

n n

a b a b
K K

a b a b
1 1( ) ( ) ... ( ) ( )1 1( ) ( ) ... ( ) ( )1 1 n n( ) ( ) ... ( ) ( )n n( ) ( ) ... ( ) ( )( ) ( ) ... ( ) ( )a b a b( ) ( ) ... ( ) ( )1 1( ) ( ) ... ( ) ( )1 1a b a b1 1( ) ( ) ... ( ) ( )1 1( ) ( ) ... ( ) ( )n n( ) ( ) ... ( ) ( )a b a b( ) ( ) ... ( ) ( )n n( ) ( ) ... ( ) ( )

1 2( ) ( )1 2( ) ( )1 2( ) ( )K K( ) ( )1 2( ) ( )1 2K K1 2( ) ( )1 2( ) ( ) ... ( ) ( )a b a b( ) ( ) ... ( ) ( )1 1( ) ( ) ... ( ) ( )1 1a b a b1 1( ) ( ) ... ( ) ( )1 1( ) ( ) ... ( ) ( )n n( ) ( ) ... ( ) ( )a b a b( ) ( ) ... ( ) ( )n n( ) ( ) ... ( ) ( )1 1( ) ( ) ... ( ) ( )1 1( ) ( ) ... ( ) ( )1 1 n n( ) ( ) ... ( ) ( )n n( ) ( ) ... ( ) ( )

 (K1K2)  (K1) (K2)
Let (K1) (K2).

Then  = 1 1

1 1

( ) ( ) ... ( ) ( )
( ) ( ) ... ( ) ( )

r r

r r

c d c d
c d c d

1 1( ) ( ) ... ( ) ( )1 1( ) ( ) ... ( ) ( )1 1 r r( ) ( ) ... ( ) ( )r r( ) ( ) ... ( ) ( )c d c d( ) ( ) ... ( ) ( )c d c d( ) ( ) ... ( ) ( )1 1( ) ( ) ... ( ) ( )1 1c d c d1 1( ) ( ) ... ( ) ( )1 1( ) ( ) ... ( ) ( )r r( ) ( ) ... ( ) ( )c d c d( ) ( ) ... ( ) ( )r r( ) ( ) ... ( ) ( )

1 1( ) ( ) ... ( ) ( )1 1( ) ( ) ... ( ) ( )1 1 r r( ) ( ) ... ( ) ( )r r( ) ( ) ... ( ) ( )c d c d( ) ( ) ... ( ) ( )c d c d( ) ( ) ... ( ) ( )1 1( ) ( ) ... ( ) ( )1 1c d c d1 1( ) ( ) ... ( ) ( )1 1( ) ( ) ... ( ) ( )r r( ) ( ) ... ( ) ( )c d c d( ) ( ) ... ( ) ( )r r( ) ( ) ... ( ) ( )

  = ( ), where = 1 1
1 2

1 1

...
....

r r

r r

c d c d
K K

c d c d
... r rc d c d...c d c d... r rc d c dr r

1 2K K1 2K K1 2c d c d1 1c d c d1 1 ....c d c d.... r rc d c dr r1 1 .... r r
K K

 (K1K2)
 (K1) (K2) (K1K2)
 (K1K2) = (K1) (K2).

Theorem 37: If E, F are normal extensions of k, then EF and E  F are normal over k.

Proof: (i) Let k  denote an algebraic closure of k. Let  be a k-homomorphism from EF into
k  such that k  EF k .

Now (EF) = (E) (F) by above lemma.
Since E, F  EF,  is also k-homomorphism from E into k  and F into k . Also E, F are

normal over k  : E  E and : F  F are k-automorphisms
 (E) = E, (F) = F
 (EF) = EF
Now  : EF  k  is also a k-homomorphism from EF into EF. But (EF) = EF
 : EF  EF is onto.
So,  : EF  EF is a k-automorphism.
 EF/k is normal.

(ii) Let  be a k-homorphism from E F into k  such that k  E  F  k . Then can
be extended to k -homomorphism  : k   k .

Since E/k is normal, E is a minimal splitting field of a set of polynomials over k. However,
k  is a minimal splitting field of the set of all polynomials over k. So, E can be regarded as a
subfield of k . Therefore, k  E  k . Similarly k  F  k .

Let | E = 1, | F = 2.
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Now 1 : E  k , 2 : F  k  are k-homomorphisms. Since E/k, F/k are normal, 1 and
2 are k-automorphism of E and F respectively. So, 1(E) = E, 2(F)  = F. Now E  F 

E, F  k .
Thus, (E  F) = (E) (F)

= 1(E) 2(F)
= E  F.

But | E  F = 
 (E  F) = E  F
 is a k-automorphism of E  F.
 E  F/k is normal.

Automorphisms of Field extensions

The purpose of this section is to find conditions under which a finite extension F/K is separable
in terms of k-automorphisms of F. We first show that the number of
k-automorphisms of F is at most n = [F : K]. We then show that the upper bound n is achieved
iff F/K is both normal and separable.

Definition: Let 1, 2, ..., n be homomorphisms from a field E into a field EE . Then, is are
called linearly independent over E

 be homomorphisms from a field 
E  if 

 be homomorphisms from a field 
1

 be homomorphisms from a field 
1 + ... + 

 be homomorphisms from a field 
n

 be homomorphisms from a field 
n = 0,  i = 0  i where i 

i
 EE .

Note, i i : E  EE  s.t., ( i i) (a) = i( i(a))  a  E.
In the following result, we show that any family of homomorphisms from a field into another

field is linearly independent.

Theorem 38: (Dedekind). Let ( i)i be a family of distinct homomorphism from a field E into
a field E'. Then {
Theorem 38: (Dedekind).

i}i is linearly independent over E'.

Proof: Suppose { i}i is not linearly independent over EE . Then  finite subset of { i}i which
is not linearly independent over E

 is not linearly independent over 
E . (i.e., it is linearly dependent over E

 finite subset of {
E .). Let  {

 finite subset of {
1, 

i

2, ..., r}
be a minimal linearly dependent subset of {

, it is linearly dependent over 
i}i over E

, it is linearly dependent over 
E .

So,  1, 2, ..., r  EE  s.t.,

1 1 + ... + rr r = 0 and some i  0.
 ( 1 1 + ... + rr r) (a) = 0  a  E
 1 1(a) + ... + rr r(a) = 0 a  E

Suppose 1  0.
Now 1(a) = (– 1

–1
2) 2(a) + ... + (– 1

–1
r) r(a) a  E

1(a) = 2 2(a) + ... + rr r(a), i = – 1
–1 i  EE , a  E (i)

So, 1(ab) = 2 2(ab) + ... + rr r(ab)  a, b  E
 1(a) 1(b) = 2 2(a) 2(b) + ... + rr r(a) r(b) a, b  E  (ii)

Consider (ii) – 1(b) (i).
Then 0 = 2 2(a) ( 2(b) – 1(b)) + ... + rr r(a) ( r(b) – 1(b))
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  = 1
2

( ( ) ( )) ( )
r

i i ib b a1( ( ) ( )) ( )1( ( ) ( )) ( )1i i( ( ) ( )) ( )i i( ( ) ( )) ( )i( ( ) ( )) ( )i( ( ) ( )) ( )( ( ) ( )) ( )b b a( ( ) ( )) ( )1( ( ) ( )) ( )1b b a1( ( ) ( )) ( )1( ( ) ( )) ( )i( ( ) ( )) ( )b b a( ( ) ( )) ( )i( ( ) ( )) ( )
2

r
( ( ) ( )) ( )i i( ( ) ( )) ( )i i( ( ) ( )) ( ) a  E

 0 = 1
2

( ( ) ( ))
r

i i ib b1( ( ) ( ))1( ( ) ( ))1i i( ( ) ( ))i i( ( ) ( )) i( ( ) ( ))b b( ( ) ( ))1( ( ) ( ))1b b1( ( ) ( ))1
2

r
( ( ) ( ))i i( ( ) ( ))i i( ( ) ( ))

 i( i(b) – 1(b)) = 0  i = 2, 3, ..., r,  b  E
as { 1, 2, ..., r} is a minimal linearly dependent subset of { i}i.
Since i  1  i  1, ci  E s.t., i(ci)  1(ci).
Now i( i(ci) – 1(ci) = 0  i = 2, 3, ...,

 i = 0 i = 2, 3, ..., r.
So, 1(a) = 0  a  E, by (i)

 (1) = 0
 1 = 0, which is not true.
Thus { i}i is a linearly independent set over EE .

Theorem 39: Let E, E' be extensions of K. Let [E : K] = n. Then, there are at most n K-
homomorphisms from E into E'.

Proof: Let {u1, u2, ..., un} be a basis of E/K. Let 0, 1, ..., n be n + 1 distinct
 K-homomorphisms from E into E

} be a basis of 
E .

Consider the system of equations
0

( )
n

i j i
i

u x
0

( )i j i( )i j i( )( )u x( )( )i j i( )u x( )i j i( )
n

i j i
0

( )i j i( )i j i( )( )u x( )( )i j i( )u x( )i j i( )  = 0, j = 1, 2, ..., n.

Then, we have n equation in n + 1 unknowns xis  EE . Since the number of equations is
less than number of unknowns, the above system of equations has a non zero solution, say
c0, c1, ..., cn 
less than number of unknowns, the above system of equations has a non zero solution, say

 E
less than number of unknowns, the above system of equations has a non zero solution, say

E  where some ci 
less than number of unknowns, the above system of equations has a non zero solution, say

 0.
Let a  E. Since {u1, u2, ..., un} spans E/K, a = 1u1 + ... + nun, i  K

Thus 
0

( )
n

i i
i

a c
0

( )i i( )i i( )( )a c( )( )i i( )a c( )i i( )
n

0
( )i i( )i i( )( )a c( )( )i i( )a c( )i i( ) = i j j i

i j
u ci j j iu ci j j iu ci j j ii j j ii j j ii j j ii j j iu ci j j iu ci j j i

= ( ) ( ))i j i j i
i j

u ci j i j i( ) ( ))( ) ( ))i j i j i( ) ( ))( ) ( ))u c( ) ( ))( ) ( ))i j i j i( ) ( ))u c( ) ( ))i j i j i( ) ( ))i j i j ii j i j i

= ( ))j i j i
i j

u c( ))j i j i( ))j i j i( ))( ))u c( ))( ))j i j i( ))u c( ))j i j i( ))j i j ij i j i

= ( ))j i j i
j i

u c( ))j i j i( ))j i j i( ))( ))u c( ))( ))j i j i( ))u c( ))j i j i( ))j i j ij i j i( ))j i j ij i j i( ))j i j i( ))

= 0 as ( )i j i
i

u c( )i j i( )i j i( )( )u c( )( )i j i( )u c( )i j i( )i j i( )i j i( )i j i( )  = 0


0

( )
n

i i
i

c a
0

( )i ic a( )c a( )i ic ai i
n

i ic ai ic ai ii ic ai ic ai i  = 0 a  E


0

n
i i

i
c

0
i i

n
i ici i  = 0  ci = 0 i by above theorem.
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But some ci  0. So, we get a contradiction. Thus, there are at most n
K-homomorphisms from E into E

 0. So, we get a contradiction. Thus, there are at most 
E .

Cor.: There are at most n K-automorphisms of E, where n = [E : K].

Proof: Take EE  = E in above theorem. By automorphism of E, we mean isomorphism of E
into E. Now any K-homomorphism from E into E is a linear transformation from E into E as
vector space over K. Also, any homomorphism from E into E is 1-1 and so onto as [E : K]
= finite. By above theorem, there are at most n K-automorphisms of E where n = [E : K].

Example 11: Define  : C  C s.t.,
(z) = z , where z  = conjugate of z

Then  is R-homomorphism and   I. So, , I are two distinct R-homomorphisms of C
into C. But [C : R] = 2  there are at most two R-automorphismss of C. Also, any R-
homomorphism of C into C is an R-automorphism of C. So, 

-automorphismss of 
, I are only R-automorphisms

of C. Note, C/R is normal as [C : R] = 2 and C/R is separable as char R = 0  R is perfect
 every algebraic extension of R is separable.

Example 12: Let  be the real cube root of f (x) = x3 – 2. Let F = Q( )  R. Let  be a Q-
automorphism of F.

Since  is a root of f (x) in R, ( ) is a root of ( f (x)) = f (x) in R.
So, ( ) = . But [Q( ) : Q] = deg Irr (Q, ) = deg f (x) = 3 and {1, , 2} is a basis

of Q( )/Q.
 Q( ) = {a0 + a1  + a2

2 | ai  Q}.
Since (ai) = ai and ( ) = ,  fixes every element of Q( ).
So,  = I  Identity map is the only Q-automorphism of F = Q( ).
Note Q( )/Q is separable as char Q = 0  Q is perfect  every algebraic extension of

Q is separable.
As seen before Q( )/Q is not normal.
Thus, we notice that if E/K is separable but not normal, then one may not get the  full quota

(i.e., [E : K]) of K-automorphisms of E.

Example 13: Let char K = p and F = K(t). Then xp – t is irreducible over F.
Let  be a root of f(x) in some extension of F.
Now f (x) = xp – t is irreducible over F  [F( ) : F] = p.
 {1, , ..., p–1} is a basis of F( )/F.

So, F( ) = 
1

0
{ | }

p
i

i i
i

a a F
1

0
{ | }i i{ | }i i{ | }{ | }a a F{ | }{ | }i i{ | }a a F{ | }i i{ | }{ | }

p

i i{ | }i i{ | }
i

{ | }a a F{ | }{ | }i i{ | }a a F{ | }i i{ | }
1

0
{ | }i{ | }i{ | }i i{ | }i i{ | }{ | }a a F{ | }{ | }i{ | }a a F{ | }i{ | }{ | }i i{ | }a a F{ | }i i{ | }.

If  is F-automorphism of F( ), then ( ) is a root of f (x) = ( f (x)) in F( ).
But  is the only root of f (x) in any extension of F.
 ( ) =   fixes every element of F( ).
  is the identity map.
Thus, identity map is the only F-automorphism of F( ).
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Since  is not a simple root of f (x), is not separable over F.
Therefore, if E/K is not sparable then one may not get [E : K], K-automorphisms of E.
The above two examples clearly demonstrate that in order that an extension E/K has [E : K],
K-automomorphisms of E, E/K should be both normal and separable. In the first example, we
saw that we do get [E : K], K-automorphisms of E when E/K is both normal and separable.
We would like to prove this in general.
Theorem 40: Let K  L  F  E be a tower of fields. Suppose E/K is finite normal. If r is
the number of K-homorphisms from L into E and s the number of L-homomorphisms from F
into E, then the number of K-homomorphisms from F into E is rs.
Proof: Let 1, ..., r be the K-homomorphisms of L into E and 1, 2, ..., s be the
L-homomorphisms from F into E. Since E/K is finite normal, each i can be extended to
K-automorphisms ii  of E.

We show that { ii j | 1  i  r, 1  j  s} is the set of distinct K-homomorphisms from
F into E.

Suppose ii j = pp q. Then ii j(a) = pp  q(a), a  F

 ii i(l) = pp q(l)  l  L

 ii(l) = pp (l) l  L
 i = p  i = p  j = q  j = q.

Let  be any K-homomorphisms from F into E. Then | L is a K-homomorphisms from
L into E.

 | L  = i for some i.

Then 1
ii

1  is K-homomorphisms from F into E.

So, i
–1 (l) = i

–1
i(l) = i

–1 ( )i l( )i ( )l( )  = l  l L

 1
ii

1  is L-homomorphism from F into E

 i
–1  = j for some j   = i ji j

Thus, ii j are the only K-homomorphisms from F into E and so, there are exactly rs K-
homomorphisms from F into E.

Theorem 41: Let K  E  E' be a tower of fields. Suppose E'/K is finite normal. Then E/
K is separable if and only if the number of K-homomorphisms from E into E' is
[E : K].

Proof: Suppose E/K is separable. We prove the result by induction on n = [E : K].
If n = 1, then E = K and I : E E  s.t., I(a) = a is K-homomorphisms from E into EE .
So, the result is true for n = 1.
Let n > 1. Assume that the result is true for all integers < n.
Let a  E, a  K.
Now K  K(a)  E  E  and E /K is finite normal  E /K(a) is finite normal.
Also, [E : K] = [E : K(a)] [K(a) : K] and [K(a) : K] > 1
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 [E : K(a)] < [E : K] = n.
Since E/K is separable E/K(a) is also separable.
By induction hypothesis (applied to tower of fields K(a)  E  E ), the number of
K(a)-homomorphisms from E into E
By induction hypothesis (applied to tower of fields 

E  is [E : K(a)].
Let p(x) = Irr(K, a). Since a  E, a is separable over K. So, all roots of p(x) are simple.
Let deg p(x) = r. Since EE /K is normal, p(x) splits in E  as a  E  EE .
Let a = a1, a2, ..., ar be distinct roots of p(x) in EE . Then  K-isomorphisms

i : K(a)  K(ai) s.t., i(a) = ai i = 1, 2, ..., r. i’s, ai’ s being distinct.
Since ai  E , i’s are r K-homomorphisms from K(a) into EE .
Also as [K(a) : K] = deg Irr (K, a) = deg p(x) = r, these ii s are only
K-homomorphisms from E(a) into EE .
By previous theorem these are excatly [E : K(a)] [K(a) : K] = [E : K],
K-homomorphisms from E into E
By previous theorem these are excatly [

.
So, the result is true in this case. By induction the result is true for all n 1.
Conversely, let there be n = [E : K] K-homomorphisms from E into EE . Let a E.
Now, the number m of K-homomorphisms from K(a) into E  is at most r =
[K(a) : K].

Let  m < r. Let s be the number of K(a)-homomorphisms from E into E . Then

s  [E : K(a)] = [ : ] =
[ ( ) : ]

E K n
K a K r

.

By above theorem, the number of K-automorphisms from E into E  is

ms nr
r
nr  = n, a contradiction. So, m = r. That is, the number of K-homomorphisms from K(a)

into E  is [K(a) : K] = deg Irr (K, a).
Let p(x) = Irr (K, a), deg p(x) = r.
Since EE /K is normal, p(x) splits in E  as a  E  EE .
Let a = a1, a2, ..., at be distinct roots or p(x) in EE .
Then, for each i  K-isomorphisms i : K(a)  K(ai) s.t., i(a) = ai.
Since ai  EE , K(ai)  E . So, i : K(a)  E  is K-homomorphism.
Again as ais are distinct, is are also distinct K-homomorphisms from K(a) into EE .
If  is a K-homomorphisms from K(a) into EE , then a is a root of p(x) in E
 (a) is a root of (p(x)) = p(x) in EE
 (a) = ai for some i  (a) = i(a) for some i   = i for some i.
So, 1, 2, ..., t are the only K-homomorphisms from K(a) into E
 t = [K(a) : K] = deg p(x) = r.
 all roots of p(x) are distinct and so simple.
 a is separable over K. Thus, E/K is separable.

Cor. 1: Let E/K be finite normal. Then E/K is separable if and only if the number of
K-automorphisms of E is [E : K] = n.
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Proof: Since E/K is finite, a K-homomorphism of E is K-automorphism of E and conversely.
The result then follows by above theorem.

Cor. 2: Let K  E  E  be a tower of fields s.t., E/K and E /E are finite separable. Then
E /K is also finite separable.

Proof: Let [E : K] = r, [E  : E] = s. Since E/K, E E /E are finite so is E /K.
Thus  an extension F of K s.t., F/K is finite normal and K  E  E   F.
By above theorem since E/K is separable, there are r K-homomorphisms from E into F.
Now F/K is normal  F/E is also normal.
As E /E is separable, there are s E-homomorphisms from E  into F.
Therefore, there are rs K-homomorphisms from E ' into F. But rs = [E  : K].
By above theorem then E /K is finite seperable.

Cor.3: Let E be an extension of K. Let a1, a2, ..., an  E be separable over K. Then K(a1, a2,
..., an)/K is separable.

Proof: We prove the result by induction on n. Since a1, a2, ..., an are separable over K, a1,
a2, ..., an are algebraic over K. So, K(a1, a2, ..., an)/K is finite. Let EE /K be finite normal
extension s.t., K 

 are algebraic over 
K(a1, ..., an)  EE . Let n = 1. Let p(x) = Irr (K, a1), deg p(x) = r. Then 

r K-homomorphisms from K(a1) into E ' as seen in above theorem. But r = [K(a1) : K]. By
above theorem, K(a1)/K is separable. So, the result is true for n = 1. Let n > 1. Assume that
the result is true for all integers < n. By induction hypothesis, K(a1, ..., an)/K is finite separable.
Also, an is separable over K and
K  K(a1, ..., an–1)  K(a1, ..., an)   an is separable over K(a1, ..., an–1) 
K(a1, ..., an) | K(a1, ..., an) is finite separable.. By above corollary, K(a1, ..., an)/K is separable.
By induction the result is true  n  1.

Cor. 4: Let F K E be a tower of fields s.t., E/K and K/F are separable. Then
E/F is also separable.

Proof: Let a  E.
Let p(x) = Irr (K, a)

= b0 + b1x + ... + brx
r, bi  K

Let K  = F(b0, b1, ..., br)  K
bi  K  bi is separable over F

 K /F is separable by above Cor.
Since p(x) is irreducible over K, it is also irreducible over K .
So, p(x) = Irr (K , a)
Now K   K  E and a  E is separable over K  p (a)  0  a is separable over

K   K (a)/K  is separable and finite. Also, K
 is separable over 

/F is finite separable.
So, K (a)/F is finite separable.
 a is separable over F.
Thus, E/F is separable.
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Theorem 42: Let K  E  E' be a tower of fields s.t., E'/K is finite normal. Then following
are equivalent:

(a) There are exactly n = [E : K] K-homomorphisms from E into E K-homomorphisms from E into E .
(b) E/K is separable.
(c) E/K is generated by separable elements.

Proof: (a)  (b) follows from previous theorem

(b)  (c) [E : K] = n  E = K(a1, ..., an). Since ai  E, ai is separable over K. So, E is
generated by separable elements over K.

(c)  (b). Let E = K(S), where S  E is a set of separable elements over K. Let a  E,

then a = 1

1

( , ..., )
( , ..., )

n

n

f u u
g u u

, f, g  K[x1, ..., xn], ui  S. So, a  K(u1, u2, ..., un). Since u1, u2,

..., un are separable over K, K(u1, u2, ..., un)/K is separable. Therefore, a is separable over K.
Thus, E/K is separable. This proves (b).

Theorem 43 (Artin’s): Let E be a field, G the group of automorphisms of E and suppose K
is the set of elements of E fixed by G. Then K is a subfield of E, called the fixed field of G.
E/K is finite if and only if G is finite. In that case, [E : K] = o(G).

Proof: K = {a  E | (a) = a G}
0, 1  K  K .

Let a, b   K. Then (a   b) = (a) (b) = a  b    a  b   K. Also
(ab) = (a) (b) = ab    ab  

) = 
 K. If b 

(
 0, then (ab–1) = (a) (b)–1 =

ab–1 
) = 

ab–1
) 

K. So, K is a subfield of E.
Clearly, G is a group of K-automorphism of E. If E/K is finite, then the number of

K-automorphisms of E is at most [E : K]. So, G is finite. Suppose o(G) = r. Let u0, u1, ...,
ur 

-automorphisms of 
 E be linearly independent over K. Consider the r equations (in r + 1 unknowns xjs in E)

0
( ) 0

r

j j
j

u x
0

( ) 0j j( ) 0j j( ) 0( ) 0u x( ) 0( ) 0j j( ) 0u x( ) 0j j( ) 0
r

j j
0

( ) 0j j( ) 0j j( ) 0( ) 0u x( ) 0( ) 0j j( ) 0u x( ) 0j j( ) 0 for all G

Since the number of equations is less than the number of unknowns, the system of equations
has a non-zero solution.

Let (a0, a1, ..., as, 0, 0, ..., 0) be a non zero solution of least length s + 1
(ai  0 i = 0, 1, ..., s)

Then (u0)a0 = – (u1)a1 + ... + – (us)as
 (u0) = (u1)b1 + ... + (us)bs for all G ...(i)
Take  = I. Then u0 = u1b1 + ... + usbs
If bi  K for all i, then
(– 1)u0 + b1u1 + ... + bsus = 0, contradicting that u0, u1, ..., us linearly independent over K.
So, some bi  K. Let b1  K.
Then G s.t., (b1)  b1.
Replace  by –1  in (i) to get
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–1 (u0) = 
1

( )
r

j j
j

u b
1

( )j j( )j j( )( )u b( )( )j j( )u b( )j j( )( )( )u b( )
r

1
for all G

 ( –1 (u0)) = (u0) = 
1

( ) ( )
r

j j
j

u b
1

( ) ( )j j( ) ( )j j( ) ( )( ) ( )u b( ) ( )( ) ( )j j( ) ( )u b( ) ( )j j( ) ( )
r

j j
j 1

( ) ( )j j( ) ( )j j( ) ( )( ) ( )u b( ) ( )( ) ( )j j( ) ( )u b( ) ( )j j( ) ( ) for all G ...(ii)

Then (ii) – (i) gives

1
( ) ( ( )

r

j j j
j

u b b
1

( ) ( ( )j j j( ) ( ( )j j j( ) ( ( )( ) ( ( )u b b( ) ( ( )( ) ( ( )j j j( ) ( ( )u b b( ) ( ( )j j j( ) ( ( )
r

j j j
1

( ) ( ( )j j j( ) ( ( )j j j( ) ( ( )( ) ( ( )u b b( ) ( ( )( ) ( ( )j j j( ) ( ( )u b b( ) ( ( )j j j( ) ( ( )  = 0, for all G


1

( )
r

j j
j

u c
1

( )j j( )j j( )( )u c( )( )j j( )u c( )j j( )
r

j j
1

( )j j( )j j( )( )u c( )( )j j( )u c( )j j( ) = 0, for all G, where cj = (bj) – bj

Since c1 = (b1) – b1  0.
We have a non zero solution (0, c1, ..., cs, 0, ..., 0) of length less than s + 1, a contradiction.
Therefore, r + 1 elements in E are not linearly independenent over K
 [E : K]  r  E/K is finite.
So, [E : K]  o(G). But o(G)  [E : K]  o(G) = [E : K].

Problem 5: Let E be a field with n distinct automorphisms and suppose K is the fixed field
of the set of automorphisms. Show that [E : K] 

Let E be a field with n distinct automorphisms and suppose K is the fixed field
 n.

Solution: Let 1, 2, ..., n be distinct automorphisms of E. Let G be the group generated by
1, 2, ..., n. Then o(G) 

n be distinct automorphisms of 
 n. If F is the fixed field of G,

then K  F  E. By Artin's theorem, [E : F] = o(G)  n.
So, [E : K]  [E : F]  n.

Problem 6: Find the fixed field F of K(x) under the automorphisms x  1 – x,

x 1
x

. Show that the degree is 6. Verify that 
2 3

2 2
( 1)

( )
x x

x x

2 3( 1)2 3( 1)2 3( 1)x x( 1)
2 2( )2 2( )2 2( )x x( )

 lies in F and use this to find an

equation for x over F.

Solution: Let (x) = 1 – x, (x) = 1
x

. Then , , , , , I are six distinct automorphisms

of E = K(x). Let FF  be the fixed field of these 6 automorphisms of E. So, F  FF   E. By
previous problem, [E : F

 be the fixed field of these 6 automorphisms of
F ] 

 be the fixed field of these 6 automorphisms of
 6  [E : F] 

 be the fixed field of these 6 automorphisms of
 6.

Let g(x) =
2 3

2 2
( 1)

( )
x x

x x

2 3( 1)2 3( 1)2 3( 1)x x( 1)
2 2( )2 2( )2 2( )x x( )

Then (g(x)) = g(x), (g(x)) = g(x)
 g(x)  F
Let L = K(g(x))  F  E
Then [E : L] = [E : F] [F : L]  6.
Now L(x) = K(x) = E.
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Also, (x2 – x + 1)3 – g(x) x2(x – 1)2 = 0
 x is a root of a polynomial of degree 6 with coefficients in L

 [L(x) : L]  6
 [E : L]  6  [E : L] = 6

So, [E : F] [F : L] = 6  [E : F]
 [F : L]  1
 F = L = K(g(x))

 (x2 – x + 1)3 – g(x)x2(x – 1)2 = 0 is an equation for x over F.

Problem 7: If  is an automorphisms of the field of real numbers R, show that  leaves every
element of R fixed.

Solution: Since (1) = 1, (n) = n for any positive integer n.
Also, (0) = 0, (– n) = – (n) = – n and (m–1) = (m)–1 = m–1 for all non zero integers

m.
Thus, (nm–1) = (n) (m)–1 = nm–1.
Let r  R and r > 0. Then r = s2, s  R.
So, (r) = (s)2 > 0.
Also, r > t  r – t > 0  (r – t) > 0  (r) > (t).
Let r  R and let p < r < q, where p, q  Q.
Then (p) = p < (r) < (q) = q.
Thus, given any rational numbers p, q such that p < r < q, both r and (r) are in the interval

between p and q.
So, (r) = r for all r  R. Hence, identity is the only automorphism of R.

Theorem 44: Let K/F be a finite separable extension. Then K = F (a) for some a K.

Proof: Since K/F is finite, K = F(a1, ..., an) for some a1, ..., an  K. It is enough to prove
the theorem for n = 2.

Let K = F( , ). Then ,  are separable over F.
Case 1: Let F be an infinite field.

Let p(x) = Irr (F, )
q(x) = Irr (F, )

Let  = 1, ..., n,  = 1, ..., m be the roots of p(x), q(x) respectively in a splitting fields

of p(x) and q(x). Since K is finite, there exists a K such that a  0 and 
i

j
a i

j
 for

1  i  n, 2  j  m.

Since ,  are separable over F, is and js are distinct roots of p(x), q(x)
respectively.

Let  = a  + . We show that F(( ) = F( , ). Clearly F(( )  F( ).
Define g(x) = p(  – ax).
Then g( ) = p(  – a ) = p( ) = 0.
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Also, g( j) = p(  – a j)  0 for all j = 2, ..., m.
(For, p(  – a j) = 0   – a j – i = 0 for some i

 a  +  – a j – i = 0

 a = i

j

i

j
, a contradiction

Now  is a root of g(x) and q(x) and no j ( j  1) is a root of g(x)   is the only common
root of g(x) and q(x). Let f (x) = Irr (F(

) and no 
( ), 

 ( j
).

Since g(x)  F( ) [x] and g( ) = 0, f (x) divides g(x). Similarly f (x) divides q(x)
So, f (x) divides g.c.d. of g(x) and q(x).
 f (x) divides x –   f (x) = x – 
Since f (x)  F(( )[x],  F(F( )
Also,  =  – a F(( )

 F( , )  F(( ).
Thus, F(( ) = F( , ).

Case 2: K is finite. We shall prove later that K* = K – {0} is a cyclic group. If
K* = <a>, then K = F(a).

Note: An extension K/F a called a simple extension if K = F(a) for some a K. In the above
theorem, we have shown that a finite separable extension is a simple extension. a is called a
primitive element of K over F if K = F(a).

Problem 8: Find a primitive element for Q(i, 21/2) over Q.

Solution: Since char Q = 0, Q is perferct. So, Q(i, 21/2)/Q is separable. Therefore, primitive
element of Q(i, 21/2) over Q exists.

Let p(x) = Irr (Q, 21/2) = x2 – 2 = (x – 21/2) (x + 21/2)
q(x) = Irr (Q, i) = x2 + 1 = (x – i) (x + i).

Consider

1 1
2 22 2
( )i i

2 22 22 22 22 2

( )i i( )i i( )
 = 

1
22

i

22  = –21/2i.

Take a = 1.
Then  = a  +  = i + 21/2.
By above theorem Q(i, 21/2) = Q( ) = Q(i + 21/2).

Problem 9: Find a primitive element for Q ( 2, 3)  over Q.

Solution: Here  = 2 ,  = 3

p(x) = Irr (Q, 2 ) = x2 – 2 = (x – 2 ) (x + 2 )

q(x) = Irr (Q, 3) = x2 – 3 = (x – 3) (x + 3)

Consider 2 2
3 ( 3)

2 22 22 22 2
3 ( 3)3 ( 3)3 ( 3)3 ( 3)3 ( 3)

 = 
2

3
2

.
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Take a = 1.

Then  = a  +  = 3 23 23 23 23 2 .

So, Q( 2 , 3) = Q( ) = Q( 2 + 3).

Problem 10: Let E/K be normal. Show that an element of E, of degree r over K has at most
r congugates over K with equality iff it is separable.

Solution: Let p(x) = Irr (K, ). Then deg p(x) = r.
Now K  K( )  E. Suppose , 1, 2, ..., r are distinct conjugates of , over K.
Then  r K-automorphisms 1, 2, ..., r of E s.t., i( ) = i i.
Each i is a K-homomorphism from K( ) into E.
But [K( ) : K] = deg p(x) = r  there are at most r K-homomorphisms from K( ) into E.
But we have r + 1 K-homomorphisms, I, 1, ..., r from K( ) into E, which is a contra-

diction.
Thus, there are at most r conjugates of  over K.
Suppose E is separable over K.
Then  is a simple root of p(x).
 each root of p(x) is simple.
Let  = 1, 2, ..., r be distinct roots of p(x).
Then  K-isomorphisms i : K( )  K( i) s.t., i( ) = i i = 1, 2, ..., r.

1, 2, ..., r are distinct maps.
Since [K( ) : K] = deg p(x) = r, is are only K-homomorphisms from K( ) into E.
If  is a K-automorphism of E s.t., ( ) = i, then  is also a K-homomorphism of K( )

into E.
 = i on K( ). So, there are only r K-automorphisms of E transforming  into i.

Thus, there are exactly r conjugates of  over K.
Conversely, let  = 1, 2, ..., r be r conjugates of  over K. Then, there are exactly r

K-automorphisms of E transforming  into 
 conjugates of 

i. These are also K-homomorphisms from K(
. Then, there are exactly 

)
into E. So, there are only r K-homomorphisms of K( ) into E.

Thus, K( )/K is separable   is separable over K.

Galois Extensions

Definition: An extension E of F is called a Galois extension if (i) E/F is finite
(ii) F is the fixed field of a group of automorphisms of E.

We first find a necessary and sufficient condition for a finite extension to be Galois.

Theorem 45: Let E/F be a finite extension. Then E/F is a Galois extension if and only if it
is both normal and seperable.

Proof: Let E/F be a Galois extension.Then F is the fixed field of a group G of automorphisms
of E. By Artin's theorem, since E/F is finite, G is also finite.

Let G = { 1 = I, 2, ..., n}.
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Let a  E. Let i(a) = ai, i = 1, 2, ..., n.
Suppose a1 = a, a2,..., ar are distinct elements of {a1, a2, ..., an}.
Let S = {a1, a2, ..., ar}. Then S  E.
Now j(ai) = j i(a) = k(a) = ak  S.
So, j : S  S for all j = 1, 2, ..., n. Since j : E  E is 1-1, so is j : S  S. Also, S

is finite  j : S  S is onto. Therefore, j is a permutation of S for all j.
Let f (x) = (x – a1) ... (x – ar)

= xr + 1xr – 1 + ... + rx
r

Now t( f (x)) = (x – t(a1)) ... (x – t(ar))
= (x – a1) ... (x – ar) = f (x) for all t.

So, xr + t( 1)x
r – 1 + ... + t( r) = xr + 1x

r – 1 + ... + r
 t( i) = i for all t and i
 i belongs to the fixed field of G
 i  F, for all i
 f (x)  F [x].

Let g(x) be a monic irreducible factor of f (x) in F[x].
Let ai be a zero of g(x) in E. Now aj = j(a) = j i

–1(ai) = t(ai). So, ai is a zero of g(x)
in E.

 t(ai) is a zero of t(g(x)) = g(x) in E
 aj is a zero of g(x) in E for all j

 g(x) = f (x)
 f (x) = Irr (F, a).

Since a is a simple zero of f (x), a is separable over F. So, E/F is separable. Also, f (x) splits
in E[x].

 E/F is normal.
Conversely, let G be the group of all F-automorphisms of E. Let F  be the fixed field of G.
Then F  F   E and o(G) = [E : F].
Since E/F is finite, So is E/F .
Also, E/F is seperable normal  E/F  is separable, normal.
Therefore, there are exactly n = [E : F] F-automorphisms of E.

 o(G) = n  [E : F ] = n  [F  : F] = 1  F  = F.
 F is the fixed field of G  E/F is Galois.

Cor. 1: Let E/F be finite extension. Then E/F is Galois if and only if F is the fixed field of
the group of all F-automorphisms of E.

Proof: Let E/F be Galois. Then from above E/F is finite, normal, separable. Again by converse
part of the above result, F is the fixed field of the group of all F-automorphisms of E. Converse,
follows by definition.

Cor. 2: Let char k = 0. Then k is contained in some Galois extension of k.
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Proof: Let f (x) be a non constant polynomial in k[x]. Let E be a minimal splitting field of f (x)
over k. Then E/K is finite normal. Since char k = 0, k is perfect  E/K is separable. So, E/
K is Galois.

Note: When E/F is Galois, the group of all F-automorphisms of E is denoted by Gal(E/F) or
G(E/F) called the Galois group of E/F.

Theorem 46: Let E/F be a finite extension. Then E/F is contained in a Galois extension if
and only if it is separable.

Proof: Let E/F be a contained in a Galois extension E /F. Then F  E  E .
Now E /F is Galois  E /F is separable  E/F  is separable.
Conversely, let E/F be separable. Since E/F is finite, E = F( 1, 2, ..., n).
Let pi = Irr(F, i), i  E

i  E  i is separable over F
 i is a simple zero of pi, for all i
 each zero of pi in a splitting field is simple

Let f = 
1

n

i
i

p
1

n

i
i

p
1

. Then f k[x]  E[x], and f splits in some extension of E.

Let L be a minimal splitting field of f (x) over F.
Then L = F (zeros of f in an extension of E)

= F ( 1, 2, ..., n, zeros of f other than is in an extension of E)
= E (zeros of f other than is in an extension of E)

 F  E  L
Also, L is generated by separable elements over F (as each zero of f in an extension of E

is simple and is a zero of an irreducible polynomial of pi 
 (as each zero of 

 F[x]) 
f

L/F is separable 
E/F is contained in a separable extension L/F.

Theorem 47: Let E/k be Galois and F be any extension of k. Then EF/F is Galois and G(EF/F)
is isomorphic to a subgroup of G(E/k).

Proof: Since E/k is Galois, E/k is finite normal. So, E is a minimal splitting field of some
polynomial f (x)  k[x].

Let f (x) = (x – 1) (x – 2) ... (x – n), i  E, k.
Then E = k( 1, 2, ..., n).
Also, E/k is separable  each i is separable over k. Now k  F  EF and i is separable

over k  i is separable over F.
Again, E = k( 1, 2, ..., n).
 EF = FE = Fk( 1, 2, ..., n) = F( 1, 2, ..., n) as k  F
 EF is a minimal splitting field of f(x) over F
 EF/F is finite normal
Also, EF is generated by separable elements over F  EF/F is separable.
So, EF/F is Galois.
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Let G(EF/F).
Let f =  f1 f2 ...fr where each fi is monic irreducible polynomial in k[x].
So, each i is a zero of some fj  k[x].
Since i is separable over k, i is a simple zero.
Let S = { 1, 2, ..., n}. Then i is a zero of f in E  EF
 ( i) is a zero of (f) = f in EF  ( i)  S.
So, { ( 1), ( 2), ..., ( n)} = { 1, 2, ..., n}
 (E) = k( ( 1), ( 2), ..., ( n)) = k( 1, 2, ..., n) = E
  restricted to E belongs to G(E/k)
Define  : G(EF | F)  G(E/k) s.t.,

( ) = | E
Then  is a homomorphism.
Also  is 1-1 as | E = I   ( i) = i for all i  (a) = a for all a  EF as EF = F( 1,

2, ..., n) and  fixes each element of F   = I on EF.
So, G(EF/F) (G(EF/F))  G(E/F).

Cor.: If E/k is Galois and F, an extension of k, then [EF : F] divides [E : k].

Proof: By above theorem, EF/F is Galois
 [EF : F] = o(G(EF/F))
Also, [E : k] = o(G(E/k))
But (G(EF/F))  G(E/F)
 o( (G(EF/F)) divides o(G(E/F))
 o(G(EF/F)) divides o(G(E/F))
 [EF : F] divides [E : k].

Remark: The above corollary need not be true if E/k is not Galois. For example, let k = Q,
let  be the real cube root of 2. Then 

 is not Galois. For example, let 
, 

 is not Galois. For example, let 
w, 

 is not Galois. For example, let 
w2 are roots of

f (x) = x3 – 2 in C.
Let E = Q( w), F = Q( ).
Then EF = Q( w) Q( ) = Q( , w) = Q( , 3i )

= F( 3i )
So, [EF : F] = [F( 3i) : F] = 2
while [E : k] = [Q ( w) : Q] = deg Irr (Q, w)

= deg f (x) = 3.

Theorem 48: (The fundamental theorem of Galois Theory). Let E/k be Galois. Let G =
G(E/k) be the group of all k-automorphisms of E. Then

(i) There is one-one correspondence between the sets
A = {F | F = field, k  F E} and B = {H | H  G} which is an order inverting
bijection.
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(ii) F A is the fixed field of the subgroup H B corresponding to F and
H B is the group of H*-automorphisms of E, where H* is the fixed field of H.

(iii) If H is the subgroup of B corresponding to the field F in A, then
o(H) = [E : F] and [G : H] = [F : k].

(iv) If H1, H2 B corresponding to F1, F2 A respectively, then F1, F2 are conjugate
under an automorphism 

 corresponding to F
 G if and only if 

 respectively, then F
–1 H1

 respectively, then F
 = H2.

(v) If H B corresponds to F A , then F/k is normal if and only if H is normal subgroup

of G and in that case, G(F/k)  G
H

.

Proof: Define  : A  B s.t.,
(F) = F*

where F* = { G | (x) = x for all x F}. Then F* B.
Similarly, define  : B A  s.t.,

(H) = H*
where H* = {x  E | (x) = x for all H}
Then H*  A is the fixed field of H.
Let F1, F2  A such that F1  F2.
Let  F2*. Then (x) = x for all x  F2
 (x) = x for all x F1 as F1  F2
 F1*   F2*  F1*  (F2) (F1)   is an order inverting map.
Similarly,  is an order inverting map.
Let H  B.  Then H  (x) = x for all x  H*  H**  H  H**.
Also x  F(F A )  (x) = x for all  F*
 x belongs to the fixed field of F*
 x  F**  F  F** for all F  A.
Let F  A and F* = H. Then H** = F***.
Now H  H**  F*  F*** for all F A.
Also, F  F**  (F**) (F)  F***  F* for all F  A. So, F* = F***. Similarly,

H* = H*** for all H 
(
 B.

Now  is 1-1 onto if and only if   = Identity and  = Identity if and only if H = H**
for all H 

 is 1-1 onto if and only if  
B and F = F** for all F 

 = Identity and 
 A.

Let H  B. Then H* = F is the fixed field of H.
By Artin's theorem o(H) = [E : F].
Also, o(H**) = [E : H***] = [E : H*] = [E : F].
So, o(H) = o(H**). But H  H**. Therefore, H = H**.
Let F  A. Then k  F  E.
Now E/k is Galois  E/F is Galois  F is the fixed field of the group H of all F-automorphisms

of E.
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 H  G  H  B.
Now H* = fixed field of H = F  H*** = F**  H* = F**  F = F** for all F  A.
Thus,  is 1-1 onto.
This proves (i).

(ii) Let F  A. Let (F) = H. Then F* = H  F** = H*  F = H*  F is the fixed
field of H.

Let  H  B. Then there exists F  A such that (F) = H  H = F*.
Let H. Then F*  (x) = x for all x  F   is an F-automorphism of E.
Conversely, let  be an F-automorphism of E.
Then (x) = x for all x  F  F* = H.
So, H is the group of all F = H*-automorphisms of E.

(iii) By Artin's theorem
o(H) = [E : H*] = [E : F]

[G : H] = ( )
( )

o G
o H

 = [ : ]
[ : ]

E k
E F

 = [F : k].

(iv) Suppose F1, F2  A are conjugate under G. Then (F1) = F2.
Let y  F2. Then y = (z), z  F1. Therefore, –1(y) = z.

 –1(y) = (z), for all H1
 –1(y) = (z) = (z), for all  H1
 –1(y) = y, for all H1, y  F2
 –1  H2, for all  H1
 H1

–1  H2
Let a  F1. Then (a) = b  F2

 (a) = (b), for all  H2
 (a) = b,  for all  H2
 –1 (a) = –1(b) = a, for all  H2, a  F1
 –1  H1, for all H2
 –1H2  H1
 H2 H1

–1

So, H2 = H1
–1.

Conversely, let H2 = H1
–1 for G.

Let y F2. Now –1  H2, for all H2
 –1(y) = y
 –1(y) = –1(y) = z
 (z) = z, for all H1
 z  F1
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 y = (z)  (F1)
 F2 (F1)

Let x  F1. Now –1  H1, for all H2

 –1 (x) = x
 (x) = (x) = x
 (x ) = x , for all  H2
 x   F2
 (x)  F2
 (F1)  F2.

So, (F1) = F2  F2 are conjugate under .

(v) Suppose F/k is normal. Since E/k is finite, so is F/k. Therefore, F/k is finite normal
 F is a minimal splitting field of some f  k[x].

Let f = (x – 1) ... (x – n), i  E, k.
Then F = k( 1, 2, ..., n).
Let G. Then is a k-autmorphism of E  (f) = f.
 f = (x – ( 1)) ... (x – ( n))
 ( 1), ..., ( n) are zeros of f in E
 { 1, 2, ..., n} = { ( 1), ..., ( n)}.
So, (F) = k( ( 1), ..., ( n))

= k( 1, ..., n) = F for all G.
By (iv), –1HH  = H for all G
 H is a normal subgroup of G.
Conversely, let H = F* be normal subgroup of G. Then –1 HH =  for allConversely, 

G.
 (F) = F by (iv) for all  G
Let  F, p(x) = Irr (k, ).
Since E/k is normal and E, we find p(x) splits in E.
Let  be a zero of p(x) in E.
Then ,  are zeros of p(x) in E.
 there is an isomorphism  : k( )  k( ) s.t.,

( ) = , (a) = a for all a  k.
Since E, k( )  E. So  is a k-homomorphisms from k( ) to E.
Since E/K is finite normal,  can be extended to k-automorphism  of E. So, G.
Now ( ) = ( ) =  and ( ) (F) = F  F.
Thus, p(x) splits in F  F/K is normal.
Let H be a normal subgroup of G. Then the corresponding field F is normal over k from

above. Since E/k is Galois, so is F/k. Let N = Gal(F/k)
Define  : G  N s.t.,
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( ) = ¯, where ¯ is the restriction of  on F.
(Since H  G, –1HH  = H  (F) = F)
Let , G.
Then ¯¯( ) = ( ) ( ), F

= ( )), ( )  F
= ¯( ( ))
= ¯(¯( ))
= (¯ ¯) ( ), for all F

 ¯¯ = ¯ ¯
 ( ) = ( ) ( )
  is a homomorphism
Let  N. Then  can be extended to k-automorphism  of E   G

 ( ) = ¯ = . So,  is onto. Now  Ker   
-automorphism 

(
-automorphism 

) = Identity of N ¯ = Identity on
F 

( ) = 
¯(

) = 
) = , for all  F.

The result now follows by using fundamental theorem of homomorphism.

Example 14: (i) Let E be a minimal splitting field of f(x) = x3 – 2 over Q. Let  be the real
cube root of 2.

Then E = Q( , w, w2) = Q( 3  i) = Q( , w) = Q( , w)
Also, [E : Q] = 6. Since char Q = 0, E/Q is separable (as Q is perfect  every algebraic

extension of Q is separable.)
Also, E is a minimal splitting field of f (x) over Q  E/Q is finite normal.
So, E/Q is Galois.
Let G = G(E/Q) be the group of all Q-automorphisms of E.
Then Q is the fixed field of G. By Artin's theorem o(G) = [E : Q] = 6.
Since , w are roots of f (x), there exists Q-isomorphism

0 : Q( )  Q( w) s.t.,

0( ) = w
Let g(x) = x2 + x + 1, then g(x) is irreducible over Q( )  R and 0(g(x)) = g(x) is irreducible

over Q(
(

w)
Since w, w are roots of g(x), there exists an isomorphism

 : Q( , w) = E  Q( w, w) = E s.t.,
(w) = w
( ) = 0( ) = w
(a) = 0(a) = a  a  Q

Thus  is Q-automorphism of E,   I.
Also w, w2 are roots of g(x) which is irreducible over Q( ) and  Q( ) isomorphism

 : Q( , w) = E 
g(

 Q(
) which is irreducible over 

, w2) = E s.t.,
(w) = w2, ( ) = 

and so  is Q-automorphism of E, , I
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Now 2( ) = w2, 2(w) = w
( ) ( ) = w, ( ) (w2) = w2

( 2 ) ( ) = w2, ( 2 ) (w2) = w2.
Since o(G) = 6, G = {I,  , 2, , , 2 }
Also ( ) ( ) = ( w) = w2, 
So G is a non abelian group of order 6 and so G  S3.
Denote w by 1, w2 by 2 and w3 by 3 and we get

= (12), T = (13), 2T = (23),  =  (123), 2 = (132)
Write = 2,  = 3, T = 4, 

2 = 5 and  2 T = 6
Then G = {I, 2, 3, 4, 5, 6}
Subgroups of G are:
H1 = {I, 2}, H2 = {I, 4}, H3 = {I, 6}, H4 = {I, 3, 5}, H5 = G, H6 = {I}.
Let F1 = H1*, the fixed field of H1.
Now H1 fixes   Q  Q( )  F1  E.
But [Q( ) : Q] = 3, [E : F1] = [E : H1*] = o(H1) = 2 and [E : Q] = 6  F1 = Q( ).
Let F2 = H2*, the fixed field of H2.
Then F2 = Q( w2) and F3, the fixed field of H3 is Q( )
Let F4 = H4*, the fixed field of H4. Now H4 fixes 3i  Q  Q( 3i )  F4  E. Since

[E : F4] = 3. [Q( 3 i ) : Q] = 2, [E : Q] = 6, F4 = Q( 3 i ).
Clearly, F5 = fixed field of G = Q and F6 = fixed field of H6 = E.
 So, we have 6 intermediate fields between Q and E corresponding to 6 subgroups of G.
Since H1, H2, H3 are not normal, F1/Q, F2/Q, F3/Q are also nor normal. Also H4,  H5, H6

are normal subgroup of G, and thus F4/Q, F5/Q, F6/Q are normal subgroups of G.

(ii) Let E be a minimal splitting field of f (x) = x4 + 1 over Q.

Then , 3, 5, 7 are roots of f (x), where  = π πcos sin
4 4

iπ πcos sinπ πcos sinπ π
4 4

cos sinicos sinπ πcos sinπ πiπ πcos sinπ π

and E = Q( ) = Q( 3) = Q( 5) = Q( 7)
Then [E : Q] = [Q( ) : Q] = deg Irr (Q, ) = deg f (x) = 4.
Char Q = 0  E/Q is separable.
Also E is a minimal splitting field of f (x) over Q implies E/Q is normal.
Hence E/Q is Galois.
Let G = G(E/Q) be the Galois group of E/Q.
By Artin's theorem, o(G) = [E : Q] = 4
Since  and 3 are roots of an irreducible polynomial f (x) over Q, there exists

Q-automorphism

3 : Q( ) = E  Q( 3) = E, s.t.,

3( ) = 3
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Similarly, there exists Q-automorphisms

5 : Q( ) = E  Q( 5) = E s.t.,

5 ( ) = 5

7 : Q( ) = E  Q( 7) = E s.t,

7( ) = 7

So G = {I, 3, 5, 7}
Also

3
2 = 

5
2 = 

7
2 = I

Thus G is an abelian non cyclic group of order 4 and so it is the Klein's four group.
Subgroups of G are H1 = {I, 3}, H2 = {I, 5}, H3 = {I, 7}, H4 = G, H5 = {I}.

Now G  ( 2 )2 = (2) = 2   ( ( 2 ))2 = 2 = 0  ( 2 ) is a zero of

x2 + 2 in E  C  ( 2 ) = 2 . Similarly (i) = i.

So, 3( ) = 3  3
1σ
2 2

i1 ii1 i
2 22 22 22 22 22 22 22 22 2

 = 1
2 2

i1
2 22 2

i

 3( 2 ) = – 2 , 3(i) = – i

 3( 2 i) = 2 i

 H1 fixes 2 i
Let F1 = H1

*, the fixed field of H1

Then Q  Q( 2 i)  F1  E

But [Q( 2 i) : Q] = 2, [E : F1] = 2, [E : Q] = 4

So, F1 = Q( 2 i)

Also, 5( ) = 5  5
1σ
2 2

i1 ii1 i
2 22 22 22 22 22 22 22 22 2

 = 1
2 2

i1
2 22 2

i .

5( 2 ) = – 2  and 5(i) = i  H2 fixes i.
Let F2 = H2*, the fixed field of H2.
Then Q  Q(i)  F2  E and [E : F2] = 2, [Q(i) : Q] = 2, [E : Q] = 4  F2 = Q(i).

Now 7( ) = 7  5
1σ
2 2

i1 ii1 i
2 22 22 22 22 22 22 22 22 2

 = 1
2 2

i
2 22 2

i   5( 2 ) = 2    H3 fixes 2 .  Let

F3 = H3*, the fixed field of H3.

Then Q  Q( 2 )  F3  E and [E : F3] = 2, [Q( 2 ) : Q] = 2, [E : Q] = 4  F3 = Q( 2 ).
Clearly F4 = fixed field of H4 (= G) is Q and F5 = fixed field of H5 = E.
So, F1, F2, F3, F4, F5 are intermediate fields lying between Q and E.
Since F1, F2, F3 are quadratic extensions of Q, F1/Q, F2/Q, F3/Q are normal. Also F4/Q,

F5/Q are normal. But G being abelian, all subgroup of G are normal subgroups of G.
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Roots of Unity

Definition: Let E be a minimal splitting field of f (x) = xn – 1 over k. Then the roots of f (x)
in E are called nth roots of unity. E is called the associated cyclotomic field.
Theorem 49: The nth roots of unity form a cyclic group under multiplication, whose order is
a divisor of n.
Proof: Let G = {  E | n = 1}  E* = E – (0). Then 1  G  G .
Let ,  G. Then n = 1 = n. Now E* is abelian group under multiplication.
So, ( –1)n = n( n)–1 = –1  –1  G  G is a subgroup of E*.
So, G is a finite abelian group.
Let G be an element of maximum order m in G.
So, o( ) divides m for all G  m = 1 for all G.
Let n = mq + r, 0  r  m. Let r  0.
Now 1 = n =  mq r = r  r = 1, r < m, r > 0, contradicting o( ) = m.
So, r = 0. Thus, m divides n.
Now 1, , 2, ..., m–1 are distinct elements of G  o(G)  m.
Since E has at most n roots of g(x) = xm–1 over k, o(G) m.
So, o(G) = m and G = {1, , ..., m–1}.
 G is a cyclic group generated by  such that o(G) = o( ) = m divides n.

Note: Let k be a field and n, a positive integer. Suppose char k = 0 or char k = p such that
(p, n) = 1. Then all nth roots of unity over k are simple and so distinct.

Proof: Let f (x) = xn – 1  k[x]
Then f (x) = nxn – 1

Let  be a zero of f(x) in  a splitting field of f over k.
If ff ( ) = 0, then n n – 1 = 0. If char k = 0, then n = 0 or   = 0, none of which is true.

If char k = p, (p, n) = 1, then  = 0 or p divides n, none of which is true. So, f ( )  0 
roots of f are simple.

Throughout this section, we assume that char k = 0 or char k = p, (p, n) = 1. Then, o(G)
= n, where G = { E | n = 1}, E a minimal splitting field of f over k. Also G is cyclic.
A generator of G is called primitive nth root of unity. Since the number of generators of G is

(n), the number of primitive nth roots of unity is 
primitive nth root of unity

(n). Since G is cyclic, let G = <
. Since the number of generators of 

>. Then
, 2, ..., n – 1, n = 1 are distinct roots of f (x) in E. So, E = k( , 2, ..., n – 1) = k( ),

the cyclotomic field over k.

The polynomial n(x) = 
1
0( )

( α )

i

i

i n
n

x
i n

0( )i0( )i0( ) n

α )iα )iα )(x
i n

= 
1
( , ) 1

( α )i
i n

i n

x
i n

( , ) 1
i n

α )iα )iα )(x
i n

is called nth cyclotomic polynomial

over k Then d(x) = 
0( )
1

( α )
i

i

d
i n

x
0( )i0( )i0( ) d0( )

i n
0( ) d

α )iα )iα )(x
i

α ) = 
1
( , ) 1

( α )i
i n

i d

x
i n

( , ) 1
i n

α )iα )iα )(x
i n

is dth cyclotomic polynomial over k.

Theorem 50: xn – 1 = 
|
Φ ( )d

d n
xΦ ( )dΦ ( )dΦ ( )

d n|d n|



14. More on Fields 743

Proof: xn – 1 = 
1

( )i

i n
x

i n
( )i( )i( )( )( )x( )

i n
( ) , where G = < >.

Now d | n  n = kd  o( k) = d.

So, xn – 1 = 
| ( )

( )
k

k

d n o d
x

( )ko d( )o d( )ko dk( )k( )o d( )k( )

( )k( )k( )( )
d n|d n|

( )x( )
k

( )

= 
|

( )d
d n

x( )( )x( )
d n|d n|

( )d .

Now 1(x) = x –1  by taking n = 1.
Let n = prime p. Then xp – 1 = 1(x) p(x) as p, 1 are only divisors of p.

So, p(x) = 
1

1
( )

px
x
1

1( )( )x( )
 = 1

1

px
x

1
1

 = 1 + x + ... + xp–1

Therefore, p2(x) = 
2

1

1
( ) ( )

p

p

x
x x

1

1( ) ( )( ) ( )p( ) ( )p( ) ( )( ) ( )x x( ) ( )( ) ( )p( ) ( )x x( ) ( )p( ) ( )

= 
2

1
1

p

p
x
x

1
1

 = 1 + xp + ... + xp(p – 1)

Thus, 2(x) = 1 + x, 3(x) = 1 + x + x2

4(x) = 1 + x2

6(x) = 
6

1 2 3

1
( ) ( ) ( )

x
x x x

1

1 2 3( ) ( ) ( )1 2 3( ) ( ) ( )1 2 3( ) ( ) ( )x x x( ) ( ) ( )1 2 3( ) ( ) ( )1 2 3x x x1 2 3( ) ( ) ( )1 2 3

= 
6

2
1

( 1) ( 1) ( 1)
x

x x x x
1

2( 1) ( 1) ( 1)2( 1) ( 1) ( 1)2( 1) ( 1) ( 1)x x x x( 1) ( 1) ( 1)
= x2 – x + 1.

Theorem 51: For any prime p and a positive integer m,

pm(x) = 1 + xpm – 1 + ... + x(p – 1)pm – 1

Proof:

 Now pm(x) = 
11

1
( ) ( ) ... ( )

m

m

p

p p

x
x x x( ) ( ) ... ( )1( ) ( ) ... ( )1( ) ( ) ... ( )x x x( ) ( ) ... ( )1( ) ( ) ... ( )1x x x1( ) ( ) ... ( )1

1

1( ) ( ) ... ( )( ) ( ) ... ( )m( ) ( ) ... ( )p( ) ( ) ... ( )p( ) ( ) ... ( )p( ) ( ) ... ( )p( ) ( ) ... ( )( ) ( ) ... ( )x x x( ) ( ) ... ( )( ) ( ) ... ( )m( ) ( ) ... ( )x x x( ) ( ) ... ( )m( ) ( ) ... ( )( ) ( ) ... ( )p( ) ( ) ... ( )x x x( ) ( ) ... ( )p( ) ( ) ... ( )( ) ( ) ... ( )( ) ( ) ... ( )x x x( ) ( ) ... ( )

= 1

1

m

m

p

p

x

x

1

1
 = 

1 1( 1)1 ...
m mp p px x

1 1m m1 1m m1 1( 1)m m( 1)1 1( 1)1 1m m1 1( 1)1 1p p p( 1)p p p( 1)m mp p pm m( 1)m m( 1)p p p( 1)m m( 1)p p p( 1)p p p( 1)1 1m m1 1m m1 1( 1)m m( 1)1 1( 1)1 1m m1 1( 1)1 1p p p( 1)p p p( 1)m mp p pm m( 1)m m( 1)p p p( 1)m m( 1)1 ...
m mp p p( 1)p p p( 1)1 ...p p p1 ...
m mp p pm m

x x1 ...x x1 ...p p px xp p p1 ...p p p1 ...x x1 ...p p p1 ...
m m1 1m m1 1( 1)m m( 1)1 1( 1)1 1m m1 1( 1)1 1p p p( 1)p p p( 1)1 ...p p p1 ...
m mp p pm m( 1)m m( 1)p p p( 1)m m( 1) .

Möbius function: The map  : N  {0, 1, – 1} such that (1) = 1, (n) = 0 if p2

divides n  for some prime p  and (p1p2 ... pr) = (– 1)r, where p1, p2, ... , pr are
distinct primes is called the Möbius function. Clearly, (12) = 0, (15) = 1,distinct primes is called the Möbius function. Clearly, 

(3) = – 1.
The following result is known as Möbius inversion formula.



744 A Course in Abstract Algebra

If f, g : N  R (where N denotes the set of natural numbers and R, the set of real numbers),
then

f (n) = 
|

( )
d n

g d( )
d n|d n|

g d( )g d( )   g(n) = 
|

( )μ( ).n
d

d n
f d( )

d n|d n|
f d( )f d( )

Theorem 52: n(x) = ( )

|
( 1)

n
dd

d n
x ( )( )n( )n( )d( )d( )( 1) ( )( 1)d( 1)d( 1)

d n|d n|
( 1)x( 1)( 1)  = ( )

|
( 1)

n
d d

d n
x ( )d( )d( )( 1) ( )( 1)

n
( 1)d( 1)

d n|d n|
( 1)x( 1)( 1) .

Proof: Now xn – 1 = 
|

( )d
d n

x( )( )x( )
d n|d n|

d ( )

 log (xn – 1) = 
|

log ( )d
d n

xlog ( )dlog ( )dlog ( )log ( )xlog ( )log ( )
d n|d n|

log ( )

Let f (x) = log xn – 1
g(d) = log d(x).

Then f (x) = 
|

( )
d n

g d( )
d n|d n|

g d( )g d( ).

By Möbius inversion formula

log n(x) = 
|

log( 1)d

d n

nx
d
nlog( 1) nn
ddd

log( 1)
d n|d n|

log( 1)xlog( 1) .

= ( )

|
log( 1)

n
dd

d n
x ( )( )n( )n( )d( )d( )log( 1) ( )log( 1)

d n|d n|
log( 1)xlog( 1)

= 
( )

|
log ( 1)

n
dd

d n
x

( )( )n( )n( )d( )d( )
log ( 1)

( )
log ( 1)dlog ( 1)dlog ( 1)

d n|d n|
log ( 1)xlog ( 1)

 n(x) = 
( )

|
( 1)

n
dd

d n
x

( )( )n( )n( )d( )d( )
( 1)

( )
( 1)d( 1)d( 1)

d n|d n|
( 1)x( 1)

Theorem 53: 
|

( )
d n

u d( )
d n|d n|

u d( )u d( )  = 0, for n > 1.

Proof: Let n = p1
1p2

2 ... pr
r where pis are distinct primes.

Thus,
|

( )
d n

u d( )
d n|d n|

u d( )u d( ) = (1) + (p1) + ... + (pr) + (p1p2) + ... +

(pr–1pr) + ... + (p1p2 ... pr)
= 1 + rc1

(–1)2 + ... + rcr
(–1)r

= (1 + (–1))r = 0.

Problem 11: Show that ( )

|
( 1)

n
d

d n
x ( )( )n( )n( )d( )d( )( 1) ( )( 1)

d n|d n|
( 1)x( 1)( 1)  = 1, n > 1.

Solution: Let P denote L.H.S.

Then log P = ( )

|
log ( 1)

n
d

d n
x ( )( )n( )n( )d( )d( )log ( 1) ( )log ( 1)

d n|d n|
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= 
|

(log ( 1)) ( )n
d

d n
x(log ( 1)) ( )(log ( 1)) ( )n(log ( 1)) ( )n(log ( 1)) ( )d(log ( 1)) ( )d(log ( 1)) ( )(log ( 1)) ( )

d n|d n|

= log (x – 1) 
|

( )n
d

d n
( )d

d n|d n|
( )( )n( )n( )d( )d( )

= log (x – 1) 
|

( )
d n

d( )
d n|d n|

( )d( )d( )

= 0  P = 1.

Problem 12: Prove that n(1) = ( )

|

n
d

d n
d ( )( )n( )n( )d( )d( )d

d n|d n|
d ( )( )n( )n( )d( )d( ), n > 1. Deduce that n(1) = 0, p or 1 according

as n is 1, p  (p, a prime) or divisible by at least two primes.

Solution: n(x) = ( )

|
( 1)

n
dd

d n
x ( )( )n( )n( )d( )d( )( 1) ( )( 1)d( 1)d( 1)

d n|d n|
( 1)x( 1)( 1)

= ( ) ( )1

| |
( 1) ( ... 1)

n n
d dd

d n d n
x x x ( )( )n n( )n n( )d d( )d d( )n n

( 1) ( ... 1)d d( 1) ( ... 1)d d( 1) ( ... 1)( 1) ( ... 1)x x x( 1) ( ... 1)( 1) ( ... 1)d d( 1) ( ... 1)x x x( 1) ( ... 1)d d( 1) ( ... 1) ( )( 1) ( ... 1)
n n( )n n( )d d( )d d( )( 1) ( ... 1)d d( 1) ( ... 1)( 1) ( ... 1)d d( 1) ( ... 1)x x x( 1) ( ... 1)d d( 1) ( ... 1)( 1) ( ... 1)x x x( 1) ( ... 1)( 1) ( ... 1)d d( 1) ( ... 1)x x x( 1) ( ... 1)d d( 1) ( ... 1)1( 1) ( ... 1)1( 1) ( ... 1)1n n1n n1( 1) ( ... 1)d d( 1) ( ... 1)1( 1) ( ... 1)1d d1( 1) ( ... 1)1( 1) ( ... 1)d d( 1) ( ... 1)x x x( 1) ( ... 1)d d( 1) ( ... 1)

| |
( 1) ( ... 1)

d n| |d n| |d n| |d n| |
( 1) ( ... 1)x x x( 1) ( ... 1)( )n n( )n n( )n n
( 1) ( ... 1)( 1) ( ... 1)( 1) ( ... 1)x x x( 1) ( ... 1)( 1) ( ... 1)d d( 1) ( ... 1)x x x( 1) ( ... 1)d d( 1) ( ... 1)( )( )( 1) ( ... 1)( )( 1) ( ... 1)( )n n( )n n( )( 1) ( ... 1)d d( 1) ( ... 1)( )( 1) ( ... 1)( )d d( )( 1) ( ... 1)( ) d( 1) ( ... 1)d( 1) ( ... 1)

n ndn n
( 1) ( ... 1)d d( 1) ( ... 1)d( 1) ( ... 1)d d( 1) ( ... 1)( 1) ( ... 1)x x x( 1) ( ... 1)( 1) ( ... 1)d d( 1) ( ... 1)x x x( 1) ( ... 1)d d( 1) ( ... 1)( 1) ( ... 1)x x x( 1) ( ... 1)( 1) ( ... 1)d d( 1) ( ... 1)x x x( 1) ( ... 1)d d( 1) ( ... 1)( 1) ( ... 1)

n n
( 1) ( ... 1)d d( 1) ( ... 1)( 1) ( ... 1)d d( 1) ( ... 1)x x x( 1) ( ... 1)d d( 1) ( ... 1)

= ( )1

|
( ... 1)

n
dd

d n
x x ( )( )n( )n( )d( )d( )1( ... 1)1( ... 1)1( ... 1)x x( ... 1)( ... 1)( ... 1)x x( ... 1) ( )( ... 1)( ... 1)x x( ... 1)( ... 1)d( ... 1)d( ... 1)

d n|d n|
( ... 1)x x( ... 1)( ... 1)( ... 1)x x( ... 1)  by above problem

So, n(1) = ( )

|

n
d

d n
d ( )( )n( )n( )d( )d( )d

d n|d n|
d ( )( )n( )n( )d( )d( ) , when n > 1.

(Note  n(1) = 
( )

|
( ) dn

d
d n

( )d( )d( )( )( )( )n( )d( )d( )
d n|d n|

 as d | n  | )n n
d

when n = 1, n(1) = 0.
when n = p , n(1) = (p ) (1) (p – 1) (p)

= 1
p

p 1  = p

when n = p1
1p2

2

Then n(1) = ( p1
1 – 1p2

2)– 1 (p1
1p2

2 – 1)– 1

   × (p1
1 – 1p2

2 – 1)1 × (p1
1p2

2)1

= 1
Let n = pkp1

1p2
2 ... pr

r where p, pis are distinct primes and r  2.Then n = pkm, where
m = p1

1p2

p
2 ... pr

2
r.

So, mpk(1) = 
( )

| k

dk

d mp

mp
d

( )d( )d( )kmp
( )( )d( )

mpmpmp
dddk

mpmpmpmp
ddd

= 
( )

|

dk

d mp

mp
d

( )d( )d( )kmp
( )( )d( )

mpmpmp
dddd mp|d mp|

mpmpmpmp
ddd
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= 
( ) ( )1

| |

d dk k

d m d m

mp mp
d d

( ) ( )d d( )d d( ) ( )d d( )d dk kmp mpk kmp mpk k( ) ( )d d( )d d( ) ( )d d( )k k( )k k( )d dk kd d( )d d( )k k( )d d( ) 11d d1d d1mp mpmp mpmp mp
d d| |d m| |d m| || |d m| |d m| |d d| |d d| |d md dd m| |d m| |d d| |d m| |d d| |d m| |d m| |

k kmp mpk kmp mpk kk kmp mpmp mpmp mp
d d| |d d| |d d| |d md dd m| |d m| |d d| |d m| |d d

 as (p) = – 1

= ( )

|

d

d m
p ( )d( )d( )

d m|d m|
p ( )d( )d( )  = 1

(as P = ( )

|

d

d m
p ( )d( )d( )

d m|d m|
p ( )d( )d( )   log P = ( )

|
(log ) d

d m
p ( )d( )d( )(log )

d m|d m|
 = log p 

|
( )

d m
d( )

d m|d m|
( )d( )d( )  = 0)

(Note: We have used the fact that (mn) = (m) (n) whenever (m, n) = 1).

Theorem 54: a  Fp is primitive nth root of unity if and only if p 1(mod n).

Proof: Suppose a  Fp is a primitive nth root of unity. Now 0  a  Fp 
ap – 1 = 1  o(a) | p – 1  n | p – 1  p 

 is a primitive 
 1 (mod n)

Conversely, let p  1 (mod n). Let Fp
* = < >. Then o( ) = p – 1 = nm

 o( m) = ( )
( ( ), )

o
o m

( )
( ( ), )( ( ), )o m( ( ), )

 = 
( , )

nm
nm m

 = nm
m

 = n

 m is a primitive nth root in Fp.

Problem 13: Let p, q be distinct primes. Show that xq – 1 splits into linear factors over Fp if
and only if p 

Let p, q be distinct primes. Show that x
 1(mod q).

Solution: Suppose xq – 1 splits into linear factors over Fp.
Let 1   be a zero of xq – 1 in Fp.
Then q = 1  o( ) divides q  o( ) = q as 1   is a primitive qth root  of unity

in Fp  p  1(mod q).
Conversely, let p  1 (mod q). Then Fp contains a primitive qth root  of unity.   Fp

and o(
Conversely

) = q. Since q is prime, 
). Then 

, 
). Then 

2, ...
p contains a primitive 

q – 1 each have order q and are in Fp.
Let f (x) = xq – 1
Then  f (x) = (x – 1) (x – ) ... (x – q – 1) splits into linear factors in Fp.

Theorem 55: The coefficients of n(x) over Q are integers for all n  1.

Proof: We prove the result by induction on n. Let n = 1.
Then n(x) = 1(x) = x – 1  Z[x]. Assume that the result is true for all positive integers

m < n.
Then d(x)  Z[x], for all d | n.

Let f (x) =
|

( ) [ ]d
d n
d n

x x
|d n|d n|

d n

( ) [ ]( ) [ ]x x( ) [ ]
d n|d n|

( ) [ ]d Z

Then xn – 1 = n(x) f (x).
Since f (x) is monic, by division algorithm, xn – 1 = h(x) f (x) + r(x),

h(x), r(x) 
f
 Z[x] and r(x) = 0 or deg r(x) < deg f (x), h(x), r(x) are uniquely determined.

But xn – 1 = n(x) f (x), n(x)  Q[x] and h(x), r(x)  Z[x]  Q[x] are uniquely determined
 n(x) = h(x) 

n(
 Z[x], r(x) = 0.
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So, the result is true for n also.
By induction the result is true for all integers n  1.

Theorem 56: Let n(x) be nth cyclotomic polynomial over Q. Then n(x) is irreducible over Q.

Proof: Since Z is a UFD and n(x)  Z[x] is monic, n(x) is primitive.

n(x) is irreducible over Z if and only if n(x) is irreducible over Q, the quotient  field of
Z.

We show that n(x)  Z[x] is irreducible over Z.
Let h be an irreducible factor of n(x) in Z[x].
Let n(x) = f (x) h(x), f, h  Z[x], deg h  1.
Since n(x) is monic, so are f, h.
Let  be a root of h in C and let p be a prime such that (p, n) = 1.
We show that p is also a root of h in C.
Since h( ) = 0, n( ) = 0. So,  is a primitive nth root of unity.

 o( ) = n  o( p) = ( )
( , )
o
p n
( )  = n  p is also a primitive nth root of unity

 n(
p) = 0  f ( p)  = 0 or h( p) = 0. Suppose h( p)  0. Then f( p) = 0    is

a root of f(xp).
Now h is irreducible over Z  h is irreducible over Q as h is primitive.
Also h( ) = 0. So, h = Irr (Q, ). Since  is also a root of f (xp) over Q, h(x) divides f (xp)

in Q.
Let f (xp) = h(x) k(x), k(x)  Q[x]. By division algorithm
f (xp) = h(x) k1(x) + r1(x), where r1(x) = 0 or deg r1(x) < deg h(x), k1, r1  Z[x]. So, h,

r1 
f (f (f

 Q[x]. But in Q[x], the quotient and remainder obtained by dividing f (xp) with h(x) are
uniquely determined. So, k(x) = k1(x) 

], the quotient and remainder obtained by dividing 
Z[x].

Now  : Z[x]  Zp[x] s.t.,

( aix
i) = ai x

i, where  ai = pqi + ai, ai  Z,  0  ai < p
(i.e., (g(x)) = g (x))

is a ring homorphism.
So, ( f (xp)) = (h(x)) (k(x))
 f (xp) = h (x) k (x)

Since char Zp = p, f (xp) = ( f (x))p

 h (x) divides ( f (x))p

 some irreducible factor h 1 of h  divides ( ( ))pf x

 h1 divides f (x) in Zp[x]

 f , h have common factor h1 in Zp[x]
Now xn – 1 = n(x) r(x), r(x)  Z[x]

= f(x) h(x) r(x)
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 xn – 1  = f (x) h (x) r (x)

 xn – 1 has a multiple root as f  , h have h1 as common factor..
Since char Zp = p and (p, n) = 1, xn – 1  has distinct roots.
So, we get a contradiction.
So, h( p) = 0. Thus, whenver h( ) = 0 and (p, n) = 1, p a prime, then h( p) = 0.
Now n(x) = 

( , ) 1
1

( )r

r n
r n

x
( , ) 1( , ) 1( , ) 1r n( , ) 1

r n
( , ) 1

( )r( )r( )
( , ) 1

( )( )x( )
( , ) 1

, o( ) = n.

Let (r, n) = 1, r > 1, r = p1
k1 p2

k2 ... ps
ks, where pis are distinct primes. Since

(r, n) = 1, (pi, n) = 1 for all i.
Therefore, pi is a root of h for all i.
 pi

ki is a root of h for all i.
 r is a root of h.
Therefore, n(x) divides h(x).
But h(x) already divides n(x).
Thus, n(x) = h(x) is irreducible over Q.

Theorem 57: Q( )/Q is Galois, where  is a primitive nth root of unity over Q.

Proof: Now Q( ) is a minimal splitting field of f(x) = xn – 1 over Q
 Q( )/Q is finite normal.
Also, char Q = 0  Q is perfect  Q( )/Q is separable.
So, Q( )/Q is Galois.

Theorem 58: Let 1, 2, ... , n be n distinct roots of unity over Q in C. Then
n(x) = (x – 1) (x – 

1

2) ... (x – 
n

n) 
 be n distinct roots of unity over 

 Q[x].

Proof: Let  be a primitive nth root of unity over Q. By above theorem, Q( )/Q is Galois 
Q is the fixed field of G, the group of all Q-automorphisms of Q(

. By above theorem, 
). Let 

(
G. Then o( ( ))

= o( )  ( ) is also a primitive nth root of unity in C.
So, ( n(x)) = (x – ( 1)) .. . (x – ( n)). But C already has n roots of

f (x) = xn – 1 
( )) = (

Q[x].
 { ( 1), ..., ( n)} = { 1, 2, ..., n}
 ( n(x)) = (x – 1) ... (x – n) = n(x)

Let n(x) = xn + a1 xn – 1 + ... + an, ai  C
Then n(x) = ( n(x))

= xn + (a1) xn – 1 + ... + (an)
 (ai) = ai for all i, G
 ai belongs to the fixed field of G
 ai  Q, for all i
 n(x)  Q[x].
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Theorem 59: Let Un = {a  Z | 1 a  n, (a, n) = 1}. Then Un is a group under multiplication
modulo n. If G is the Galois group of Q(

, (
)/Q, then G Un.

Proof: By Artin's theorem,
o(G) = [Q( ) : Q] = deg Irr (Q, )

= deg n(x)
= (n)

Let  G. Then ( ) is a primitive nth root of unity in C  ( ) = i, for some i, (i, n)
= 1

Define  : G  Un s.t.,
( ) = i.

Let , G. Let ( ) = i, ( ) = j
Then ( ) ( ) = ( ( )) = ( j) = ( ( )) j = ioj

So, ( ) = ioj = ( )o ( ).
Thus,  is a homomorphism.
Let ( ) = Identity = 1.
Then ( ) =   = I   is 1-1.
So, G (G) Un.
But o(G) (n)  0( (G)) = (n) = o(Un).
 (o( (G)) = o(Un)  (G) = Un  G  Un.

Note: If Vn denotes the units of 
nn
Z , then Vn forms a group under multiplication and

Vn  Un.

Proof: 
nn
Z  = {< n > + 1, < n > + 2, ..., < n > + n}.

Let < n > + a be a unit in 
nn
Z .

Then (< n > + a) (< n > + b) = < n > + 1, 1  b  n
 < n > + ab = < n > + 1
 1 – ab  < n >  1 – ab = nm

Let (a, n) = d > 1. Let p  be a prime dividing d . Then p  | d  | a  p | a  
p | ab. Also p | n  p | nm  p | ab + nm = 1, not ture.

 (a, n) = 1  a  Un.
Define f : Vn  Un s.t.,

f (< n > + a) = a
Then f is 1-1 homomorphism.
Also, a  Un  (a, n) = 1
 ar + ns = 1 for some integers r, s

 (< n > + a) (< n > + r) = < n > + 1
Let r = nq + t, 0 t n
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So, < n > + r = < n > + t.
If t = 0, then < n > + t = < n > + n.

So, < n > + r 
nn
Z . Therefore, < n > + a is a unit in 

nn
Z .

 < n > + a  Vn and (< n > + a) = a   is onto.
So, Vn  Un.

Problem 14: If  is a primitive nth root of unity over k, then k( )/k is Galois.

Solution: Let f (x) = xn – 1  k[x]. Let g(x) = Irr (k, ).
Now f (x) splits in k( ) and f ( ) = 0  g(x) | f (x) in k[ ].
But zeros of f (x) are simple in k[ ].
  is a simple zero.
  is separable over k.
 k( )/k is separable
Also k( )/k is a minimal splitting field of f(x) over k, k( )/k is finite normal
 k( )/k is Galois.

Problem 15: Let n(x) = (x – 1) (x – 2) ... (x – n), where 1, 2, ..., n are nth roots
of unity over k. Show that 

(
n(x) 

1) (
 P[x], where P is the prime subfield of k.

Solution: We prove the result by induction on n. Let n = 1.
Then n(x) = 1(x) = x – 1  P[x] as 1  P.
Assume that the result is true for all integers m < n.

Then d(x)  P[x] for d < n. Let f (x) = 
|

( )d
d n

x( )( )x( )
d n|d n|

d ( ) P[x].

Then xn – 1 = n(x) f (x)
Since xn – 1, f (x)  P[x], by division algorithm

xn – 1 = h(x) f (x) + r(x), h(x), r(x)  P[x]
and are uniquely determined such that r(x) = 0 or deg r(x) < deg f (x).

Now xn – 1 = n(x) f (x), where n(x) k( )[x] and xn – 1  P[x]  k( )[x]
(Here  is a primitive nth root of unity over k), f (x)  P[x]  k( )[x].

So, h(x) = n(x)  P[x]  the result is true for n also. By induction the result is true for
all integers n  1.

Problem 16: Determine the Galois group of Cyclotomic extension Q( )/Q, where  is a primitive
12th root of unity over Q. Also, find the intermediate fields between Q and Q(

 is a primitive
).

Solution: Let G denote the Galois group of Q( )/Q.
Since  is a primitive 12th root of unity, o( ) = 12.
Also, o(G) = (12) = 4 and G = { 1 = I, 5, 7, 11}, where 5( ) = 5,

7 ( ) = (
(
)7, 

) = 
11( ) = 

(12) = 4 and 
11. (As in Example 14(ii))

Also, 5
2( ) = 5 5( ) = 25 =   5

2 = I.
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Similarly, 7
2 = I = 11

2.
 G is non cyclic group of order 4 i.e., G is Klein's 4-group.
Let H1 = {I, 5}, H2 = {I, 7}, H3 = {I, 11}, H4 = {I}, H5 = G.
Then these are the only subgroups of G.
Now 5(

3) = ( 5( ))3 = 15 = 3

 5 fixes 3

 H1 fixes 3

If F1 is the fixed field of H1, then
Q  Q( 3)  F1  Q( )

But [Q( 3) : Q] = [Q(i) : Q],  = 
2
12

i

e
i

= deg Irr (Q, i)
= deg (x2 + 1) = 2

Also, by Artin's theorem
2 = o(H1) = [Q( ) : F1] and [Q( ) : Q] = o(G) = 4  F1 = Q( 3)
If F2 is the fixed field of H2, then 7(

4) = 28 = 4  4  F2.

But 4 = 
2
3

i

e
i

 = 1 3
2 2

i1 31 31 31 31 3
2 2
1 3

 Q( 4) = Q( 3i )

So, Q  Q( 4) = Q( 3i )  F2  Q( )

and [Q( 3i ) : Q] = deg Irr (Q, 3i)
= deg (x2 + 3) = 2

Also [Q( ) : F2] = 2 by Artin's theorem

 F2 = Q( 4) = Q( 3i )

Now 11( ) = 11  11 cos sin
6 6

icos sincos sincos sincos sincos sincos sincos sincos sincos sincos sinicos sincos sincos sinicos sincos sincos sinicos sin
6 6

cos sin
6 6

cos sin
6 6

cos sinicos sin = 11 11cos sin
6 6

i11 11cos sin11 11cos sin11 11cos sin
6 6

cos sinicos sin11 11cos sin11 11cos sin11 11cos sinicos sin11 11cos sin11 11i11 11cos sin11 11

 11
3 1

2 2
i3 1

11
3 13 1 iii

2 22 22 2
 = 3 1

2 2
i3 1

2 2
i

But 11(i) = 11( 3) = 33 = 9 = – i

So, 11
1 1( 3)
2 2

i11
1 11 11 11 1( 3)( 3)( 3)( 3)( 3)1 1( 3)1 11 1( 3)1 1
2 2112 211( 3)
2 2

( 3)( 3)
2 2

( 3) i = 8 3 1
2 2

i3 1
2 2

i

 11 ( 3) = 3   H3 fixes 3

Thus, if F3 is the fixed field of H3, then F3  = Q( 3)
Also, F4 = Q( ) = the fixed field of H4.

F5 = Q = the fixed field of H5.
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Finite Fields

A field having finite number of elements is called a finite field or a Galois field.

Theorem 60: If F is a finite field, then o(F) = pn for some prime p and an integer n  1.

Proof: Let P be the prime subfield of F.

Since F is finite, so is P. Therefore, P
pp
Z  for some prime p.

But 
pp
Z   {0, 1, 2, ..., p – 1} mod p = Fp  P  Fp.

Since P  F, we can regard Fp  F. Now F is a vector space over Fp. Since F is finite,
[F : Fp] = n = finite.

Let {u1, ..., un} be a basis of F/Fp.
Then F = { 1u1 + ... + nun | i 

p
 Fp}.

Now each i can be chosen in p ways and iui = iui  i = i, therefore o(F) = pn.

Remark: We had proved this result earlier under rings also (see page 331).

Theorem 61: Let p be a prime and n  1 be an integer. Then there exists a field with pn

elements.

Proof: Let f (x) = xq – x  Fp[x], q = pn. Let F be a minimal splitting field of f (x) over Fp.
Then F = Fp (zeros of f in F).
Let S = {zeros of f in F}.
Now f  = qxq – 1 – 1 = – 1 as char F = p  q – 1 = pn – 1 = – 1.
Therefore, ( f, f ) = 1
 all zeros of f in F are simple and so distinct.
So, o(S) = q.
Now 0  S  S .
Also a, b  Fq  aq = a, bq = b  (a ± b)q = aq ± bq = a b,

(ab)q = aqbq = ab, (ab – 1)q = aqb – q = ab – 1

 a ± b, ab, ab–1 (if b  0)  S.
Thus, S is a subfield of F.
Let a  Fp. Then ap – 1 = 1  ap = a  apn

 = a  aq = a.
 a is a zero of f in F  a  S  Fp  S.
So S is a field containing Fp and S.
But F is the smallest field containing Fp and S.
 F  S. Also S F. So, S = F  o(F) = o(S) = q.
We now prove the following results from group theory.

Lemma 1: Let G be an abelian group under multiplication. Let a, b  G be such that
o(a) = m, o(b) = n and (m, n) = 1. Then o(ab) = mn
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Proof: See Problem 36 on page 94.
Lemma 2: Let G be an abelian group under multiplication. Let a, b  G be such that o(a)
= m, o(b) = n. Then there exists c 

Let G be an abelian group under multiplication. Let a, b 
 G such o(c)  = l.c.m. of m and n.

Proof: Let (m, n) > 1.
Let m = p1

1 ... pr
r

n = p1
1 ... pr

r

where p1, ..., pr are distinct  primes and i, i are non negative integers.

Let l = p1
1 ... ps

s 1
1

s
sp s 1

1
s  ... pr

r

where i i for i = 1, ..., s and j j for j = s + 1, ..., r.
Then l is the l.c.m of m and n.

Let x = aps + 1 s + 1 ... pr
r, y = bp1 1 ... ps

s

Then o(x) = p1
1 ... ps s

o(y) = 1
1

s
sp s 1

1
s  ... pr

r

and (o(x)), o(y)) = 1.
By Lemma 1,

o(xy) = l.c.m. of m and n

= p1
1 ... ps

s 1
1

s
sp s 1

1
s  ... pr

r.

Lemma 3: With the hypothesis of lemma 2, if n m, then the l.c.m. l of m and n is greater
than m.

Proof: Now m | l  m l. If m = l, then n | l  n | m, a contradiction. So l > m.

Lemma 4: Let G be a finite abelian group under multiplication. Let  G be of maximum
order. Then o(

Let G be a finite abelian group under multiplication. Let 
) | o(

Let G be a finite abelian group under multiplication. Let 
) for all 

Let G be a finite abelian group under multiplication. Let 
G.

Proof: Let o( ) = m, o( ) = n.
Suppose n m. By lemma 3, l = l.c.m. of m, n > m. By lemma 2, there is
G such that o( ) = l > m contradicting G is of maximum order. So, n | m   o( ) | o( )

for all G.

Theorem 62: Let F be a finite field. Then F*, the set of non zero elements of F forms a cyclic
group under multiplication in F.

Proof: Now F* is an abelian group under multiplication.
Let  F* be an element of maximum order m.
Then by lemma 4, o( ) | m for all  F*.
So, m = o( )r  m = o( )r = 1 for all F*.
 satisfies xm – 1 over F.
Since F can't have more than m zeros of xm – 1, o(F*)  m.
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But  F* and o( ) = m  1, , 2, ..., m – 1 are distinct elements of F*
 o(F*)  m  o(F*) = m = o( )  F* = < >.
The generators of F* are called primitive elements of F.

Theorem 63: Let F be a finite field of order pn. Then F is a minimal splitting field of xpn

– x over Fp.

Proof: We can regard F as an extension of Fp. Let q = pn.
Now F* = < >, o( ) = o(F*) = q – 1. Also q – 1 = 1.  q = .
 elements of F are zeros of f (x) = xq – x over Fp.
So, f (x) splits in F.
Therefore, f (x) = x(x – ) ... (x – q – 1)
 Minimal splitting field of f over Fp is Fp( , 2, ..., m – 1, 1, 0) = Fp(F) = F.

Theorem 64: Any two finite fields with the same number of elements pn are
Fp-isomorphic.

Proof: Let F1, F2 be finite fields such that o(F1) = pn = o(F2). Then, by above theorem F1,
F2 are minimal splitting fields of f (x) = xpn – x over Fp  F1, F2 are Fp-isomorphic.

The above theorem shows that there is unique field of order q = pn upto an isomorphism.
It is denoted by GF(pn) or GF(q) or Fq.

Problem 17: Show that xm – 1 divides xn – 1 over a field F if and only if m divides n.

Solution: Let n = km + r, 0  r < m.

The xn – 1 = xr
1

0

k
im

i
x

k 1

i 0i 0

k 1
imximimx

i 0
 (xm – 1) + (xr – 1).

Therefore, xm – 1 divides xn – 1 if and only if xr – 1 = 0.
Also xr – 1 = 0 if and only if r = 0.
So xm – 1 divides xn – 1 if and only if m divides n.

Problem 18: Show that xpm–x divides xpn–x if m divides n.

Solution: Let n = mu.
Then pn – 1 = pmu –1

= (pm)u – 1
= (pm – 1) (integer)

 pm – 1 divides pn – 1
By above problem

xpm – 1 – 1 divides xpn – 1 – 1
 xpm – x divides xpm – x.

Theorem 65: Let F be a field with pn elements. Then F has a subfield k with pm elements if
and only if m divides n.
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Proof: Suppose k is a subfield of F. Then k can be regarded as an extension of Fp such  that
[k : Fp] = m. Similarly, F can be  regarded as an extension of Fp such that  [F : Fp] = n. Now
[F : Fp] = [F : k] [k : Fp]  m divides n.

Conversely , let F be a field such that o(F) = pn. Suppose m divides n .
Now F is a minimal splitting field of xpn – x over Fp.

Let f (x) = xpn – x and g(x) = xpm – x.
Since m divides n, by above problem g(x) divides f (x).
Consider F  = {zeros of g(x) in F}.
Then F  is a subfield of F.
Since g(x) has pm distinct zeros, F  is a subfield of F with pm elements.
If k is another subfield of F such that o(k) = pm, then o(k) = o(F ) = pm.
 k, F  are Fp-isomorphic.
Thus, there is exactly one subfield of F (up to isomorphism) with pm elements.

Problem 19: Determine the algebraic closure of Fp.

Solution: We know m! divides n! for all positive integers m < n. By above theorem Fpm! is
a subfield of Fpn!. Thus, there is an ascending chain of subfields

Fp  Fp2!  Fp3!  ...
and

Fp  = 
n

Fpn! is a field such that Fpn  Fpn!  Fp  for any positive integer n.

Let S be the set of all polynomials over Fp. Let f  S.
Then the minimal splitting field of f over Fp is a finite field Fpn.
So, each f  S splits in Fp .
Thus, the minimal splitting field of S over Fp is
Fp (zeros of f  S in Fp )  Fp .
Also, a Fp   a  Fpn for some n  a is zero of xpn – x over Fp.

Now f = xpn – x S  a is zero of f  S in Fp
 Fp  Fp (zeros of f  S in Fp )
 Minimal splitting field of S over Fp is Fp
 Fp  is the algebraic closure of Fp.

Theorem 66: Every finite extension of a finite field is Galois.

Proof: Let K be a finite extension of a finite field k. Then K is also a finite field. So, char k
= char K = p, for some prime p. Let o(k) = pm, o(K) = pn.

Now K  is a minimal splitting field of xpn – x over Fp  K/Fp is finite normal.
Also Fp is finite  Fp is perfect  every algebraic extension of Fp is separable  K/Fp

is separable  K/Fp is Galois. Now, Fp 
 every algebraic extension of 

 k 
 every algebraic extension of 

 K and K/Fp is Galois 
 is separable 

K/k is Galois.

Cor.: Fq/Fp is Galois, q = pn.
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Theorem 67: Let F be a finite field. Then there exists an irreducible polynomial of any given
degree n over k.

Proof: Let o(F) = pm, p being a prime.
Let q = pnm and let f (x) = xq – x
Then Fq is the minimal splitting field of f (x) over Fp.
Since m/nm, Fpm = F can be imbedded in Fq.
Now Fp  F = Fpm  Fpmn = E.
Then [E : F] = n.
Let E* be the multiplicative group of non zero elements of E and let E* = < >
Then E = F( ) as F  E, E
So, n = [E : F] = [F( ) : F] = deg Irr (F, )
 Irr (F, ) is an irreducible polynomial of degree n over F.

Theorem 68: Let G be the group of Fp-automorphisms of Fq. Then G is a cyclic group gen-
erated by Frobenius map of order n, where q = pn.

Proof: Let  : Fq  Fq s.t.,
(b) = bp.

Then  is called Frobenius map.
Since char Fp = char Fq = p,  is a homomorphism.
Also  is 1-1.
Since Fq is finite,  is onto.
If b  Fp, then bp = b  (b) = b for all b  Fp.
So,  is an Fp-automorphism of Fq  G.
By Artin's theorem, o(G) = [Fq : Fp] as Fp is the fixed field of G.
 o(G) = n. We show that o(

q
) = n.

Let r = I, let Fq* = < a >.
Then aq – 1 = 1  aq = a  apn = a.
Now r = I  r(a) = a  apr = a  apr – 1 = 1.
 o(a) | pr – 1  q – 1 | r – 1  pn – 1 | pr – 1  pn – 1  pr – 1  n r.
Also n(b) = bpn = b for all b  Fq 

n = I.
So, o( ) = n  G = < >.

Problem 20: Prove that every element in a finite field can be written as the sum of two squares.

Solution: Let F be a finite field such that o(F) = pn.

Case 1: p = 2. Define  : F  F s.t.,
(b) = b2

Then (b1 + b2) = (b1 + b2)
2 = b1

2 + b2 
2= (b1) + (b2)

(b1b2) = (b1b2)
2 = b1

2 b2
2 = (b1) (b2)
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  is a homomorphisms.
Also,  is 1-1. Since F is finite,  is onto.
Let a  F. Then there is b  F such that (b) = a  a = b2 = b2 + 02 = sum of two squares

in F.

Case 2: p  2. Let a  F. Let X = {a – x2 | x  F}.
Then a – x1

2 = a – x2
2, x1, x2 F  x1

2 = x2
2  x1 = – x2 if x1  x2

 o(X) = 1 1
2

np 1 1  = 1
2

np 1 .

Let Y = {y2 | y  F}. Then o(Y) = 1
2

np 1 .

Since X, Y  F and o(F) = pn, X  Y .
So, a – x2 = y2 for some x, y  F  a = x2 + y2 = sum of two squares in F.

Problem 21: Show that for any integer a and prime p, ap  a (mod p).

Solution: Let a = pq + r, 0  r  p.
Then a  r (mod p)
Now 0  r  p  r  Fp

 ro ro ... o r = r
p times

 rp – pu = r
 rp  r (mod p)
 rp  a (mod p)

So, a  r (mod p)
 ap  rp (mod p)
 ap  a (mod p)

(The above result is known as Fermat's theorem)

Problem 22: Show that every irreducible polynomial f (x)  Fp[x] is a divisor of
xpn – x for some n.

Solution: Let deg f (x) = d and  be a zero of f (x) in an extension of Fp. Then, [Fp( ) : Fp]
= deg Irr (Fp, 

Let deg 
) = deg f (x) = d.

So, o(Fp( )) = pd. Then  Fp( )  pd =   is zero of xpd – x Fp[x]  f (x)
divides xpd – x.

Problem 23: Show that xpn – x is the product of monic irreducible polynomials in Fp[x] of
degree d, d dividing n.

Solution: Let f (x) = xq – x, q = pn. Let p(x) be a monic irreducible factor of f (x) over Fp.
Let  be a zero of p(x) in F, where F is a minimal splitting field of f (x) over Fp. Then
F = Fq and p(x) = Irr (Fp, )

Now Fp  Fp(
p

)  Fq
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and n = [Fq : Fp] = [Fq : Fp( )] [Fp( ) : Fp]
= [Fq : Fp( )] deg Irr (Fp

p
)

= [Fq : Fp( )] deg p(x)
 deg p(x) divides n.
 any monic irreducible polynomial dividing xpn – x is of degree dividing n.

Problem 24: Show that xp – x – a (a  0) is irreducible over Fp.

Solution: Let f (x) = xp – x – a
Let  be a zero of f (x) in some extension of Fp. Then f ( ) = 0
Consider f (  + 1) = (  + 1)p – (  + 1) – a

= ap –  – a = f ( ) = 0
f (  + 2) = (  + 2)p – (  + 2) – a

= (  + 1)p – (  + 1) – a
= f (  + 1) = 0

In this way, ,  + 1,  + 2, ...,  + (p – 1) are all zeros of f (x).
Also f (x) = pxp – 1 – 1 = – 1  0  f ( ) = –1  0 for  = ,  + 1, ...,  + (p – 1)
 ,  + 1, ...,  + (p – 1) are distinct zeros of f (x)
Now Fp( ) is a minimal splitting field of f (x) over Fp.
Also [Fp( ) : Fp] = deg Irr(Fp, )  p as  satisfies f (x) of degree p.
Since Fp is finite, so is Fp( ).
Also char Fp( ) = p   o(Fp( )) = pm   [Fp( ) : Fp] = m = deg Irr (Fp, ) =

deg g(x)  p.
Now pm = . But p =  + a  p2 = (  + a)p = p + ap =  + 2a as a  Fp  

ap = a.
In this way, pm =  + ma    =  + ma   ma = 0   p divides m as a  0

 p 
In this way, 

 m.
So, p = m  deg g(x) = p. Also g(x) divides f (x) and deg g(x) = deg f (x).
 g(x) = f (x)  f (x) is irreducible over Fp.

Problem 25: Contruct a field of order 9.

Solution: Let F9 be the field of order 9. Let F3 = {0, 1, 2} mod 3. Then
[F9 : F3] = 2. Let f (x) = x9 – x. Then F9 is a minimal splitting field of f (x) over F3. Let p(x)
be an irreducible factor of f (x) over F3. Let  be a zero of p(x) in F9. Then  is a zero of
f (x). If  F3, then p(x) = x –  deg p(x) = 1. If  F3, then F3  F3( )  F9  
[F9 : F3] = 2 = [F9 : F3( )] [F3( ) : F3].

Since F3, [F3( ) : F3]  1
 [F3( ) : F3] = 2

But [F3( ) : F3] = deg Irr (F3, )
= deg p(x)

Thus deg p(x) = 2.
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Hence any irreducible factor of f (x) over F3 has degree 1 or 2.
Now x9 – x = x(x8 – 1)

= x(x4 – 1) (x4 + 1)
= x(x – 1) (x + 1) (x2 + 1) (x2 – x – 1) (x2 + x – 1)

Note, x2 + 1, x2 – x – 1, x2 + x – 1 are irreducible over F3 as none of 0, 1, 2 are zeros of
these factors.

Let p(x) = x2 + 1. Let  be a zero of p(x).
Then {1, } is a basis of F9 = F3( ) over F3.
So, F9 = {a + b a, b  F3}

= {0, 1, 2, ,  + 1,  + 2, 2 , 2  + 1, 2  + 2}.
Let u =  + 1. Then u2 = 2 , u4 = – 1, u8 = 1. So, o(u) = 8  F9* = < u >.
Therefore, F9 = {0, 1 = u8, 2 = u4,  = u6,  + 1 = u,  + 2 = u7, 2  = u2,

2  + 1 = u3, 2  + 2 = u5}
Now multiplication is defined by element ui in F9. We wish to define addition in F9 with the

help of ui.
If un + 1  0, let un + 1 = uz(n).
Define ua + ub = uz(a – b) + b if ua – b + 1  0 where a  b

= 0 if ua – b + 1 = 0
Let's find

u7 + u1

Now u6 + 1 =  + 1 = u1  0. So, z(6) = 1. Therefore, u7 + u1 = uZ(6) + 1 = u2

Also, u6 + u2 = 0 as u4 + 1 = – 1 + 1 = 0. In this way addition is defined in terms of ui.
Let a = ui. Then write log a = i. If b = u j, then ab = ui j, where  denotes the addition

modulo 9.
So, log ab = i  j = log a  log b.
Such a logarithm is known as Zech logarithm.

Ruler and Compass Constructions

The word “ruler” means straight edge. Greeks used only two instruments, the ruler and the
compass. They could perform many geometrical constructions with these. However, some of
the constructions which they thought were constructible but could not perform were : Duplication
of the cube, Trisection of the angle, Squaring the circle. They found these constructions very
difficult. Indeed, we shall prove in this section that these constructions are impossible.

Let P0 be a subset of R2 having at least two points with integer co-ordinates. We say a point
in R2 is constructible at one step from P0 if (i) it is the intersection of two lines of P0 (By a
line of P0 we mean the line joining two points of P0).

or (ii) it is the intersection of two circles of P0 (By a circle of P0 we mean a circle with
centre from P0 and passing through a point of P0)

or (iii) it is the intersection of a line and a circle of P0.
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A point r  R2 is said to be constructible from P0 if  a finite sequence of points
r1, r2, ..., rn = r s.t., each ri is constructible at one step from P0  {r1, ..., ri – 1}. In fact, this
is called ruler and compass construction. For example, let P0 = {p1, p2} be a set of two points
in R2. Let l be the line joining two points p1 and p2. Let c1 be the circle with centre p1 and
passing through p2 and c2 be the circle with centre p2 and passing through p1. Then l is a line
of P0 and c1, c2 are circles of P0. Let r1 and r2 be the points of intersection of c1 and c2 and
c3 be the intersection of l and line r1r2. Then r3, the middle point of line joining p1, p2 is
constructible from P0.

Remark: Since P0 has at least 2 points with integer co-ordinates, (0, 0) and (1, 0) can be taken
as two points in P0. From now onward instead of writing constructible from P0 we shall write
it as constructible. Similarly line or circle of P0, we shall write as constructible line or circle.

Problem 26: Show that (a, b) is constructible for all integers a and b.

Solution: Since (0, 0) and (1, 0) are constructible, line x-axis is also constructible. Also circle
with centre (1, 0) and passing through (0, 0) is constructible and meets
x-axis at (2, 0). So (2, 0) is constructible. In this way (a, 0) is constructible for all integers
a. Circles (x – 1)2 + y2 = 4 and (x + 1)2 + y2 = 4 are constructible as these have centres

(1, 0), (–1, 0) and pass through (–1, 0) (1, 0) respectively.  Their intersection (0, 3) is
also constructible and so line y-axis is constructible. So, circle x2 + y2 = 1 meets y-axis at (0,
1). Thus (0, 1) is constructible.  In this way (0, b) is constructible for all integers b. Line y
= x is constructible being the intersection of circles (x – 1)2 + y2 = 1 and x2 + (y – 1)2 = 1.
Also (a, a) is constructible being the intersection of line y = x and circle (x – a)2 + y2 = a2 for
all integers a.

Thus line x = a joining (a, 0) and (a, a) is constructible. Also y = b joining (0, b) and
(b, b) is constructible.

 (a, b) = Intersection of lines x = a and y = b is constructible for all integers
a and b.

Definition: A real number c is said to be constructible if the point (c, 0) is constructible.

Problem 27: If real number a is constructible, show that (a, 0), (a, a) and (0, a) are also
constructible.

Solution: (a, 0) is constructible follows from the definition. Consider the circle
C : (x – a)2 + y2 = a2. It is constructible as its centre is (a, 0) and passes through
(0, 0) which are constructible points. Also line L  y = x joining (0, 0) and (1, 1) is constructible.

 (a, a) = L  C is constructible.
Line y = –x passing through (0, 0), (1, –1) and circle x2 + y2 = 2a2 with centre (0, 0) and

passing through (a, a) are constructible.
 (–a, a), their point of intersection is constructible. So, line y = a joining (a, a) and

(–a, a) is constructible.  (a, 0) = (y = a)  (x = 0) is constructible.

Problem 28: If real numbers a and b are constructible, show that (a, b) is constructible.

Solution: By above theorem (a, 0) and (a, a) are constructible  line x = a joining them is
constructible. Also (0, b) and (b, b) are constructible. Thus line y = b joining them is constructible.
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So, (a, b) = (x = a)  (y = b) is constructible.
Problem 29: If a, b are constructible numbers, show that a ± b, ab, ab–1 (b  0) are constructible.
Solution: Circle (x – a)2 + y2 = b2 with centre (a, 0) are passing through (a, b) is constructible.
Also y = 0 is constructible  (a ± b, 0), the intersection of above line and circle are constructible.

 a ± b are constructible numbers.
Since b, 1 are constructible numbers, so is b – 1. Thus (a, b – 1) and (0, b) are constructible

points (Problem 22). So, the line ay = – x + ab joining them is constructible.
 (ab, 0) = (y = 0)  (ay = –x + ab) is constructible.

ab is constructible number. Also line joining (0, a) and (a, a(1 – b)),
bx = a – y is constructible.

 (a/b, 0) = (y = 0)  (bx = a – y) is constructible.
a/b is constructible number.

It follows from above problem that the set of rational numbers forms a set of constructible
numbers. Also, the set of constructible numbers forms a subfield of real numbers that contains
the rationals.

Remark: Since rational numbers are constructible numbers, (a, b) is constructible point for
all rationals a and b. So, we can take

P0 {(a, b)|a = rational, b = rational}.

Problem 30: If a > 0 is constructible, show that a  is constructible.

Solution: Since a is constructible, so is 1
2

aa .

1 , 0
2

a1 a , 01 , 0, 0a
2

, 0
2

 is a constructible point. Then the circle 
21

2
ax

221 2a1 axx 1
22

x
2

 + y2 = 
21

2
a 221 2a1 a

22
 passes

through (0, 0) and has centre 1 , 0
2

a1 a , 01 , 0, 0a
2

, 0
2

.

 It is constructible circle.

Consider its intersection with the constructible line x = 1. The intersection point is (1, a ).

So (1, a ) is constructible. Consider the circle (x – 1)2 + (y – a )2 = a + 1 with constructible

centre (1, a ) and passing through (0, 0). So, it is constructible. Its intersection with x = 0,

gives (0, 2 a ) as a constructible point. Then the circle with centre (0, 0) and passing through

(0, 2 a ) will meet x-axis at (2 a , 0). So (2 a , 0) is a

constructible point, i.e., 2 a  is a constructible number..

Hence a  is a constructible number..

Aliter: Consider a semicircle with diameter AB = a + 1.
Let C be a point on AB s.t., AC = a. Draw a perpendicular
from C and let it meet the semicircle at D. Join A and D.,
and B and D. The triangles ADC and DBC are similar. The
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angle ADB is right angle.

So.
DC AB
AC DC
DC AB
AC DC

 (DC)2 = (AC)(CB)

Since AC = a, CB = 1, (DC)2 = a

Hence a  = DC is constructible .
Problem 31: If P is a constructible point, not on a constructible line l, then show that line
through P perpendicular to l is constructible.

Solution: Let Q be a constructible point on l. Let C be the constructible circle with centre P
and passing through Q. If C meets l at Q only, then l is tangent at Q to C and so PQ  l, is
constructible. If C meets l at Q and R, then circles with centres Q and R and passing through
R and Q respectively, are constructible. The line of intersection of these circles is also
constructible. But this line passes through P and perpendicular to l.

Theorem 69: The real number c is constructible if and only if  real numbers v1, ..., vn s.t.,
Q = F0  F1 = Q(v1)  F2 = F1 (v2)  ...  Fn = Fn – 1(vn) = Q (v1, ..., vn), 2

1v   Q,
2
iv   Q(v1, ..., vi – 1) for all i and c  Fn.

Proof: Suppose c is constructible number then (c, 0) is a constructible point. Also  a finite
sequence of points r1, ..., rn = (c, 0) s.t., each ri is constructible at one step from
P0  {r1, ..., ri – 1}. Consider r1. Then r1 is constructible at one step from P0. r1 is the intersection
of two lines or two circles or a line and a circle constructible from P0. Suppose r1 is the
intersection of line L given by dx + ey + f = 0 where d, e, f Q and circle given by
x2 + y2 + ax + by + c = 0 where a, b, c  Q. It can be proved that r1 = (x1, y1) where
x1, y1  Q(v1) where v1  Q, u1  0. Let u1 = 2

1v . Then 2
1v   Q and x1, y1  Q(v1). In this

way, we shall get
Q  Q(v1)  Q(v1, v2)  ...  Q(v1, ..., vn)

s.t. 2
iv  Q(v1, ..., vi – 1) for all i

and rn = (c, 0) where c  Q(v1, ..., vn)
Conversely, let L be the field of all constructible numbers. We saw just before the theorem

that Q  L. We show that Fi  L for all i. It is true for i = 0 as F0 = Q. Suppose Fr  L.
We show Fr + 1  L. Now Fr + 1 = Fr(vr + 1). If Fr + 1 = Fr, then Fr + 1  L.

Let Fr + 1  Fr. Since 2
1rv2
1   Q(v1, ..., vr) = Fr  L. 2

1rv2
1  is constructible. Thus by above

problem 2
1rv2
1  = vr + 1 is constructible and so vr + 1  L.

 Fr(vr + 1) = Fr + 1  L.
So our assertion is true for r + 1. By induction Fi  L for all i  0. In particular Fn  L

 c  L  c is constructible.

Cor. 1: If c is a constructible number, then c lies in some extension of the rationals of degree
a power of 2.
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Proof: Since 2
iv � Q(v1, ..., vi – 1) = Fi – 1 by above theorem

vi satisfies x2 – 
2
iv � Fi – 1[x] for all i

Thus [Fi : Fi – 1] = [Fi – 1 (vi) : Fi – 1]

= deg Irr (Fi – 1, vi) � 2

� [Fn : Q] = [Fn : Fn – 1] ... [Fi : Fi – 1] ... [F1 : Q]

= 2r, r � n.

Cor. 2: If the real number c satisfies an irreducible polynomial over Q of degree k and k is

not a power of 2, then c is not constructible.

Proof: We are given [Q(c) : Q] = k. Let c be constructible. Now Q � Q(c) � Fn

and [Fn : Q] = [Fn : Q(c)][Q(c) : Q]

By Cor. 1, [Fn : Q] = 2r

� [Q(c) : Q] = power of 2

� k = power of 2, a contradiction.

� c is not constructible.

By above results we notice that if c is a constructible number then F = Q(c) is an extension

of Q such that [F:Q] is a power of 2. Since c is constructible, F = Q(c) is a subfield of all

constructible numbers.

However, the converse of above result need not be true. For example, there is a real root

c of the irreducible polynomial x4
� 4x + 2 which is not constructible but [Q(c) : Q] = 22.

Again, a partial converse to the above result can be proved as

Theorem 70: Let E be a subfield of the real numbers containing a field F of constructible

numbers such that E/F is normal and [E:F] = 2n. Then every element in E is constructible.

Proof: We prove the result by induction on n. Let n = 1. Then [E : F] = 2. Let c ��E such

that c � F. Then F � F(c) ��E. Since c � F and [E : F] = 2, E = F(c).

Therefore, [F(c) : F] = [E : F] = 2 = deg Irr(F, c). Let p(x) = Irr(F, c). Then, p(x) ��F[x]

and p(x) = x2 � (c + d)x + cd.  So,  c + d ��F, cd ��F implies c(c + d) � F. So, c2 +

cd ��F and cd ��F implies c2 ��F. We can take c > 0. Since c2 is constructible, so,

is c = 2c . Therefore, E = F(c) is constructible. The result is true for n = 1. Assume that

the result is true for all positive integers less than n(n > 1). Let G be the group of F-automorphisms

of E. Then, o(G) = [E : F] = 2n. Let H be a subgroup of G such that o(H) = 2n�1. Let H*

denote the fixed field of H, i.e., H* = {x ��E |�(x)} = x �	�� ��H}. Then by fundamental

theorem of Galois theory (Theorem 48 on page 735), [G : H] = [H*: F] = 2. So, H* is a normal

extension of F. By above, every element in H* is constructible. Since E/F is normal and

F ��H* ��E, E/H* is normal and [E : H*] = o(H) = 2n�1. So, by induction  hypothesis every

element in E is constructible. By induction, the result then follows:

Definition: An angle is said to be constructible if its vertex and arms are constructible.

Problem 32: Show that 60º is constructible.

Solution: Take the vertex at O(0, 0) and take one arm as the x-axis.
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Since 3 is constructible, 3  will be constructible and,

therefore, A(1, 3) is constructible. Join O and A and
we get line OA as constructible line. Then  =

XOAXOA  = 60º as

A is constructible, x-axis is constructible, therefore, line AP,
(through A and  to x-axis) is constructible.

Now OP = 1, PA = 3 , OA  = 3 13 1  = 2

cos = 1
2

 or that  = 60º is constructible.

Problem 33: Show that an angle  is constructible if and only
if sin is constructible.

Solution: Let angle be constructible. Then OA and OB are
constructible. Draw perpendicular from B on OA. Let it meet OA
in C. Then OC is constructible. Also BC and OB are constructible

imply BC
OB

 = sin  is constructible.

Conversly, let sin
BC
OB
BC
OB
BC
OB

 be constructible. Then OC and OB

are constructible  imply angle  is constructible.
(Similarly, 
are constructible  imply angle are constructible  imply angle are constructible  imply angle 

is constructible if and only if cos  is constructible).
Problem 34: Let angles  and be constructible. Show that m + n  is also constructible for
all integers m and n.

Solution: Since the set of constructible numbers form a subfield of real numbers. m and n
are constructible numbers. So, m + n is also constructible.

Problem 35: Let  = 2
m

 and = 2
n

 be constructible numbers where m and n are coprime.

Show that  = 2
nx

 is also constructible .

Solution: Since m and n are coprime integers, there exist integers x and y such that

mx + ny = 1. So,  = m x + n y = 2 x
n

x  + 2 y
m

y = x + y.

By above problem,  is also constructible.

Problem 36: Show that it is impossible to trisect 60º by ruler and compass.
Solution: Suppose angle 60º can be trisected by ruler and compass. Then ( , ) is constructible
where ( , ) is the point of intersection of constructible circle with centre (0, 0) and passing
through (1, 0) and arm of angle 20º which is constructible. So ( , 0) the point of intersection
of x-axis and perpendicular from (
through (1, 0) and arm of angle 20º which is constructible. So (

, 
through (1, 0) and arm of angle 20º which is constructible. So (

) is  also constructible. So, 
, 0) the point of intersection

 = cos 20º is constructible.

A

2

1(0, 0)
O

P
x

3
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Now cos 3 = 4 cos3  – 3 cos
Put = 20º, to get

1
2

= 4 cos3 20º – 3 cos 20º = 4 3 – 3

 satisfies f (x) = 8x3 – 6x – 1  Q[x].
By Eisenstein criterion f (x + 2) is irreducible over Q (by taking p = 3) and so, f (x) is

irreducible over Q.
   satisfies an irreducible polynomial over Q of degree 3 which is not a power of 2. By

Cor. 2 above, 
 satisfies an irreducible polynomial over 

 is not constructible, a contradiction.
Hence, it is impossible to trisect 60º by ruler and compass.

Problem 37: Show that it is impossible to duplicate the cube by ruler and compass.

Solution: Suppose cube is of unit length. Volume of this cube is 1. If we could construct a
cube of volume 2, then we could construct a point ( , 0), a vertex of cube s.t.,cube of volume 2, then we could construct a point (

3 = 2, where one side of the cube is the join of points (0, 0) and (
, 0), a vertex of cube s.t.,

, 0). But 
, 0), a vertex of cube s.t.,

3 = 2  
, 0), a vertex of cube s.t.,

satisfies x3 – 2  Q[x].
Let f (x) = x3 – 2. We have seen before that f (x) is irreducible over Q. Since degree of f (x)

is not a power of 2,  is not constructible. So, it is impossible to duplicate cube by ruler and
compass.

Problem 38: Show that regular pentagon is constructible.

Solution: It would be possible to construct a pentagon if we can construct

 = 2 cos 2
5

 = 2 cos 72º = 2 sin 18º.

Since sin 18º = 1 5
4

1 51 51 51 5  which is constructible, (See Problem 29) we find it is possible to

construct a regular pentagon.

Construction of the regular n-gon
In the following few results, we discuss the construction of the regular n-sided polygon,
n  3 (also called the regular n-gon)

Problem 39: Use the fact that 3 22 2 28cos 4cos 4cos 1 0
7 7 7

2 2 23 22 2 23 28cos 4cos 4cos 1 03 28cos 4cos 4cos 1 03 23 22 2 23 28cos 4cos 4cos 1 03 22 2 23 28cos 4cos 4cos 1 08cos 4cos 4cos 1 08cos 4cos 4cos 1 0
7 7 7

2 2 23 22 2 23 28cos 4cos 4cos 1 03 28cos 4cos 4cos 1 03 22 2 28cos 4cos 4cos 1 02 2 23 22 2 23 28cos 4cos 4cos 1 03 22 2 23 2 to show that a regular

seven sided polygon is not constructible.

Solution: We first show that 3 22 2 28cos 4cos 4cos 1 0
7 7 7

2 2 23 22 2 23 28cos 4cos 4cos 1 03 28cos 4cos 4cos 1 03 23 22 2 23 28cos 4cos 4cos 1 03 22 2 23 28cos 4cos 4cos 1 08cos 4cos 4cos 1 08cos 4cos 4cos 1 0
7 7 7

2 2 23 22 2 23 28cos 4cos 4cos 1 03 28cos 4cos 4cos 1 03 22 2 28cos 4cos 4cos 1 02 2 23 22 2 23 28cos 4cos 4cos 1 03 22 2 23 2
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Let
2
7

2
7

2

Now 2 cos  = cosi  + e ii

Also the roots of y7 = 1 are given by eriri , 0  r  6.
For r = 1, eii  is a root of y6 + y5 + y4 + y3 + y2 + y + 1 = 0
Therefore, (cos 6  + i sin 6 ) + (cos 5  + i sin 5 ) + (cos 4  + i sin 4 ) +

(cos 3  + i sin 3 ) + (cos 2  + i sin 2 ) + (cos  + i sin ) + 1 = 0.

Now cos 6  = 
12cos

7  = cos 
22
7

222 2
7

2
7

2
7 = cos 

2
7 = cos 

cos 5  = 
10cos

7  = cos 
42
7

442 4
7

2
7

2
7 = cos 

4
7 = cos 2

cos 4  = 
8cos
7  = cos 

62
7

662 6
7

2
7

2
7 = cos 

6
7 = cos 3

Similarly, sin 6  = sin , sin 5  = sin 2 , sin 4  = sin 3
So, 2 cos 3  + 2 cos 2  + cos  + 1 = 0
or 2(4 cos3   3 cos ) + 2(2 cos2   1) + 2cos + 1 = 0
or 3cos3   4 cos2   4 cos   1 = 0
Therefore, 2 cos  satisfies f(x) = x3 + x2  2x  1 over Q which is irreducible over Q.
So, [Q(2 cos ) : Q] = deg f(x) = 3  2k.
Therefore, 2 cos  is not construcible
or cos  is not constructible

or
2
7

2
7

2
 is not constructible.

Hence, regular seven sided polygon (septagon) is not constructible.
Problem 40: Suppose that a regular p-gon is constructible, where p is a prime. Show that p is

a Fermat prime (A prime number of the form 22 1
n

2 1  is called a Fermat prime).

Solution: Let 
2 2cos sini
p p

2 2cos sin2 2cos sin2 22 2cos sincos sin2 2cos sin2 2cos sinicos sin2 2cos sin2 2cos sin2 2cos sinicos sin  be a p-th root of unity. Suppose a regular p-gon is

constructible. Then 
2
p is constructible and so cos 

2
p  and sin 

2
p are constructible numbers.

So,
2 22cos ,sin : 2r
p p

2cos ,sin : 22 22cos ,sin : 22 22cos ,sin : 22 2 r2cos ,sin : 2r2cos ,sin : 22cos ,sin : 22cos ,sin : 22 22cos ,sin : 22 22cos ,sin : 22cos ,sin : 2r2cos ,sin : 22cos ,sin : 22cos ,sin : 22cos ,sin : 22cos ,sin : 22cos ,sin : 22cos ,sin : 22cos ,sin : 2
p pp p

2cos ,sin : 2
p p

Q Q  for some integer s  0.
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Therefore, Q Q

as Q Q

Let F Q

Then [F(i) : F]  = deg Irr (F, i)

  = deg x2 + 1 = 2 F ��R

Also, Q(
) ��Q

So, Q ��Q(
) ��Q implies [Q(
) : Q] = 2r,

for some integer r � s + 1.

Since 
 is a root of xp�1 + xp�2 +. . .+ x + 1 , which is irreducible over Q, [Q(
) : Q] = p � 1.

So, p � 1 = 2r implies  p = 2r + 1 .

By Exercise 10 on page 43, r is a power of 2. This proves the result.

(Note: By above problem, regular 7-gon is not constructible.)

Problem 41: If the regular n-gon is constructible and n = qr, show that the regular q-gon is also

constructible.

Solution: Since the regular n-gon is constructible, 
2

n
is constructible.

So,
2

qr
 is constructible.

Therefore, r
qr q

 is constructible, (as product of two constructible numbers is

constructible).

Hence, the regular q-gon is constructible.

Problem 42: If the regular n-gon is constructible, show that n = 2k p1p2...pr, where pi's are

distinct Fermat's prime.

Solution: Let n = 2k.m, m is an odd integer.

If m = 1, then we have nothing to prove.

Let m > 1 be an odd integer.

Suppose p2 divides m for some odd prime p.
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Then p2 divides m. By Problem 41, since regular n-gon is constructible, the regular p2-gon

is also constructible. So, 2
2
p is constructible.

Therefore, cos 2
2
p and sin 2

2
p are constructible numbers.

Let  = cos 2
2
p + i sin 2

2
p

Then
2 2

2 2
cos ,sin : 2s

p p
2 2 sscos ,sin : 2cos ,sin : 2
2 2

cos ,sin : 2
2 2

cos ,sin : 2
2 2

cos ,sin : 2cos ,sin : 2scos ,sin : 2cos ,sin : 2cos ,sin : 2cos ,sin : 2cos ,sin : 2cos ,sin : 2cos ,sin : 22 2cos ,sin : 22 2cos ,sin : 22 2p pp p2 2p p
Q Q for some integer s  0

So, 1
2 2

2 2
cos ,sin , : 2si

p p
12 2 sscos ,sin , : 2cos ,sin , : 2

2 2
cos ,sin , : 2

2 2
cos ,sin , : 2

2 2
cos ,sin , : 2icos ,sin , : 2cos ,sin , : 2cos ,sin , : 2scos ,sin , : 2cos ,sin , : 2cos ,sin , : 2cos ,sin , : 2icos ,sin , : 2cos ,sin , : 2cos ,sin , : 2cos ,sin , : 2cos ,sin , : 2cos ,sin , : 2icos ,sin , : 2cos ,sin , : 2cos ,sin , : 2icos ,sin , : 22 2cos ,sin , : 22 2cos ,sin , : 22 2cos ,sin , : 2icos ,sin , : 2

p pp p2 2p p
Q Q  (See Problem 40)

Also
2 2

2 2( ) cos , sin , i
p p
2 2( ) cos , sin ,2 2( ) cos , sin ,2 22 2( ) cos , sin ,2 2( ) cos , sin ,2 2 i( ) cos , sin ,( ) cos , sin ,( ) cos , sin ,( ) cos , sin ,( ) cos , sin , i( ) cos , sin ,( ) cos , sin ,( ) cos , sin , i( ) cos , sin , i( ) cos , sin ,( ) cos , sin ,
p p2 2( ) cos , sin ,2 2( ) cos , sin ,2 2 i
p p

( ) cos , sin ,Q Q  implies [Q( ) : Q] = 2r

for some integer r  0.
But [Q( ) : Q] = deg Irr (Q, ) = deg f(x) = p(p  1) by exercises 5 and 10.
So,  p(p  1) = 2r, a contradiction as p is an odd prime.
Therefore, n = 2k p1 p2...pr where pi's are distinct primes. By Problem 41, the regular pi-gon

is constructible for all i. By Problem 40, pi's are Fermat primes. This proves the result.
(Note: By above problem the regular 14-gon is not constructible as 7 is not a Fermat prime.)
(The converse of the above problem is also true. See problem 43).

Theorem 71: Let 1 2
1 2 . . . ,r

rn p p p1 2n p p p1 2n p p p1 2 r
1 2n p p p1 2n p p p1 2

1 2n p p p1 2n p p p1 2 where pi's are distinct primes and i's are positive

integers. Show that the regular n-gon is constructible if and only if the regular i
ip i -gon is

constructible for all i.

Proof: Suppose the regular n-gon is constructible.

Then
2
n  is constructible.

So,
2

i
i

n
np i n  is also constructible.

This means that 
2

i
ip i is constructible for all i. So, the regular i

ip i -gon is constructible for all i.

Conversely, let i
ip i -gon be constructible for all i. Then the angle 

2
i

ip i  is constructible for all i.

(By problem 35 on page 764) the angle 
1 2

1 2

2 2
. . . . r

r np p p1 2p p p1 2p p p1 2 r

2 22 2
is constructible as pi's are

distinct primes. So, the regular n-gon is constructible.
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Theorem 72: Show that the regular n-gon is constructible if and only if (n) = 2k for some
integer k  0.

Proof: Let 
2 2cos sin .i
n n

2 2cos sin .2 2cos sin .2 22 2cos sin .cos sin .2 2cos sin .2 2cos sin .icos sin .2 2cos sin .2 2cos sin .2 2cos sin .icos sin .

Then  is a primitive nth root of unity (i.e., n = 1 and m = 1 for some positive integer m
implies m 

 is a primitive 
 n).

Suppose the regular n-gon is constructible.

Then 
2
n is constructible. so, 

2cos
n

cos  is constructible.

Now 1 22 cos ( )
n

22 cos ( )2 cos ( )22 cos ( )21 2 cos ( )Q

Clearly, Q Q( ) Q( ).

Also
2

2 22 2 2cos cos 2cos .
n n n

22 2 22 2 222 2 222 2 22
cos 2cos .cos 2cos .cos 2cos .2 2 22 22 2 22 22 2cos 2cos .2 2cos 2cos .2 22 2 2cos 2cos .2 2 22 22 2 22 2cos 2cos .2 22 2 22 22 2 22 2 22 2 2cos 2 2 2

n n nn n n
coscos

2 2sin
n

2sin

So, 2 22cos 1 0
n

2 22cos 1 02cos 1 022cos 1 022cos 1 0 implies  satisfies

2 2( ) 2cos 1 ( )[ ]f x x x x
n

2( ) 2cos 1 ( )[ ]( ) 2cos 1 ( )[ ]x x( ) 2cos 1 ( )[ ]2( ) 2cos 1 ( )[ ]2( ) 2cos 1 ( )[ ]2f x x( ) 2cos 1 ( )[ ]f x x( ) 2cos 1 ( )[ ]22( ) 2cos 1 ( )[ ]2( ) 2cos 1 ( )[ ]2( ) 2cos 1 ( )[ ]x x( ) 2cos 1 ( )[ ]( ) 2cos 1 ( )[ ]( ) 2cos 1 ( )[ ]x x( ) 2cos 1 ( )[ ]
nn

( ) 2cos 1 ( )[ ]( ) 2cos 1 ( )[ ]( ) 2cos 1 ( )[ ]x x( ) 2cos 1 ( )[ ]( ) 2cos 1 ( )[ ]( ) 2cos 1 ( )[ ]( ) 2cos 1 ( )[ ]x x( ) 2cos 1 ( )[ ]( ) 2cos 1 ( )[ ]( ) 2cos 1 ( )[ ]x x( ) 2cos 1 ( )[ ]Q

i.e., f( ) = 0
Therefore, [Q( ) : Q( )] = [F( ) : F] = deg lrr(F, )  2
where F = Q( ) and F( ) = Q( )
Let n(x) be the nth cyclotomic polynomial.

Then 1
( , ) 1

( ) ( )i
n i n

i n

x x
i n

( , ) 1
1

( ) ( )i( ) ( )i( ) ( )n ( ) ( )x x( ) ( )( ) ( )
i n

( ) ( )x x( ) ( )

So, deg n(x) = (n)
Also n(x) is irreducible over Q (See Theorem 56, page 747).
Therefore [Q( ) : Q] = deg Irr(Q, )

= deg n(x)
= (n)

Since  is constructible, [Q( ) : Q] = 2k.
So, [Q( ) : Q] = 2r implies (n) = 2r.
Conversely,  let  (n) = 2k.
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Then  [Q( ) : Q] = (n) = 2k.
So, [Q( ) : Q] =2r  r  k
Now Q( )/Q is a Galois extension of degree 2k and  Q( )/Q is a minimial splitting field of

f(x) = xn 1 over Q. The roots of f(x) are distinct as f (x) = nxn
is a minimial splitting field of

1  0. If  is a Q-
automorphism of Q( ), then  is completely known by its effect on . If ( ) = j,
i 
automorphism of 

 j 
automorphism of 

 n, denote  by 
), then 

y. If G = G(Q(
 is completely known by its effect on 

)/Q) is the Galois group of  Q(
 is completely known by its effect on 

)/Q then G is abelian
as ii j( ) = i( j) = ij = jj i ( ).

Since, Q( )/Q is Galois, so is Q( )/Q( ). Let H be the Galois group of  Q( )/Q( ) i.e., H
is the group of Q( )-automorphisms of Q(

). Let 
). So, H is a subgroup of G. Since G is abelian H

is normal in G. Therefore, the fixed field Q( ) of H is normal extension of Q by the fundamental
theorem of Galois theory. Since Q( ) RR and Q( )/Q is normal such that [Q( ) : Q] = 2r,

 is constructible. So, 
2
n  is constructible implies

2
n is constructible. Therefore, the regular

n-gon is constructible.

Problem 43: Let n = 2k p1 p2. . .pr where pi's are distinct Fermat's primes and k  0 is an
integer. Show that regular n-gon is constructible. [This is the converse of problem 42]

Solution: Let n = 2k p1 p2. . .pr  where 22 1
ni

ip 22 122 12ni2 1i2 1 is a prime.

Then (n) = 2kk 1 (p1) (p2). . . (pr) if  k > 0
= 2kk 1(p1  1)(p2  1). . .(pr  1)

= 
1 21 2 2 22 2 2 . . . 2 2

n n nrk m2 2 2 . . . 2 2k m1 2 2 2k m1 2 2 22 2 2 . . . 2 2k m2 2 2 . . . 2 21 2 2 22 2 2 . . . 2 21 2 2 2k m1 2 2 22 2 2 . . . 2 21 2 2 22 2 2 . . . 2 2k m2 2 2 . . . 2 2k m2 2 2 . . . 2 2

Also, (n) = (p1) (p2). . . (pr) if k = 0
= (p1  1)(p2  1). . .(pr  1)

= 
1 22 2 22 2 . . . 2 2

n n nr u2 2 . . . 2 2u

By above Theorem, the regular n-gon is constructible.

Exercises
1. Show that it is not possible to construct a square with area equal to the area of a circle

of radius 1.
2. Prove that it is possible to trisect 72º.
3. Prove that the regular hexagon is constructible.
4. Prove that the regular 9-gon is not constructible.

5. Show that 2 2
2 2cos sini
p p
2 22 2cos sin2 2cos sin2 2cos sin2 2cos sin2 2cos sin2 22 2cos sin2 2cos sin2 2cos sinicos sincos sincos sincos sincos sincos sincos sinicos sincos sincos sincos sinicos sincos sincos sinicos sin
p p2 2cos sin2 2cos sin2 2p p2 2cos sin2 2cos sin2 2cos sinicos sin2 2cos sin2 2i2 2cos sin2 2  is a root of f(x) = 1 + xp + x2p + . . .+x(p 1)p

6. Prove that the regular 15-gon is constructible.
7. Prove that cos 2  is constructible if and only if cos  is constructible.
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8. Prove that sin  is constructible if and only if cos  is constructible.

9. Use the fact that 2 2 24cos 2cos 1 0
5 5

2 24cos 2cos 1 02 24cos 2cos 1 02 24cos 2cos 1 04cos 2cos 1 0
5 5

2 24cos 2cos 1 02 24cos 2cos 1 02 2
 to show that a regular pentagon is

constructible. (Hint: cos4  = cos , cos 3  = cos2 ).
10. Show that f(x) = 1 + xp + x2p + . . .+x(p 1)p is irreducible over Q. (Take x p = y).
11. Show that 17-gon is constructible.
12. Can the cube be quadrupled?

The intersection P of all subfields of a field F is the smallest subfield of F and is
called the prime subfield of F and either P  Qor P  Z/(p) for some prime p.
A polynomial f(x)is said to be separable if all its roots are simple. Equivalently, a
polynomial f(x) is separable iff f and f

separable
 are relatively prime.

If char K = p, then every algebraic extension of K is separable iff K = Kp.
A field K is called perfect field if every algebraic extension of K is separable. A
field of characteristic zero is perfect, so Q, R, C are perfect.
An extension E of K is called normal extension of K if E/K is algebraic and
a E p(x) = Irr(K, ) splits in E[x] or E. A quadratic extension is normal.
A finite normal extension is a minimal splitting field of some polynomial and
conversely.
A field k is called algebraically closed if every polynomial f over k splits in k.
If k is a field, then the following are equivalent :(i) k is algebraically closed,. (ii)
Every irreducible polynomial over k has degree one,. (iii) Every algebraic
extension over k is k itself.
A minimal splitting field of a set of polynomials over k is an algebraic closure of k.
Artin’s theorem: Let G be the group of automorphisms of a field E and suppose
K is the set of elements of E fixed by G. Then K is a subfield of E (called the
fixed field of G) and E/K is finite iff G is finite and [E :K] = o(G).
An extension E of F is called a Galois extension if E/F is finite and F is the
fixed field of a group of automorphisms of E.
Let E/F be a finite extension, then E/F is a Galois extension iff it is both normal
and separable.
The fundamental theorem of Galois theory is stated and proved. It gives us
the number of fields between F and E where E/F is Galois and also tells us
which of these intermediate fields are normal extensions.
Let E be a minimal splitting field of f(x) = xn – 1 over k. The roots of f(x) in E
are called nth roots of unity, and E is called associated cyclotomic field.
Q( )/Q is Galois where  is a primitive nth root of unity.
A field of order pm is a subfield of a field of order pn iff m divides n.
The last portion of the chapter discusses the construction by ruler and compass.

A Quick Look at what's been done





Abelian groups, 45, 252
Addition modulo, 48
Algebraic

closure, 711
element, 671
extension, 671
integer, 677
multiplicity, 610
number, 677

Alternating group, 148
Angle, trisection of, 764
Artin’s theorem, 728
Artinian ring, 469
Annihilator, 572
Ascending central series, 304
Associates, 397
Automorphism, 116

inner, 169
outer, 182
of field extensions, 722

Basis, 500
dual, 568
ordered, 500
orthonormal, 526
standard, 500

Basis representation theorem, 26
Bessel’s inequality, 528
Bijection, 8
Binary composition, 13

operation, 13
relation, 4

Boolean ring, 319
Burnside’s formula, 282

Cancellation laws, 51
Canonical homomorphism, 117
Cartesial product, 4
Cauchy Schwarz inequality, 522
Cauchy’s theorem, 194, 279
Cayley Hamilton theorem, 602
Cayley’s theorem, 143,156

Centralizer, 65
Centre of

a group, 65
a ring, 325

Characteristic
of a ring, 329
polynomial, 592
subgroup, 176
value, 588
vector, 588

Chinese Remainder theorem,
40, 247, 381

Circle group, 143
Class

conjugate, 182
equivalence, 6

Class equation, 185
Co-domain, 7
Comaximal ideals, 379
Composition series, 285
Closure, 13, 45
Commutative

binary composition, 13
groups, 45
rings, 313

Commutator, 163
Complement,

of a set, 2
of a subspace, 514

Composite number, 36
Composition of maps, 9
Congruences, 37
Conjugate

classes, 182
elements, 182

Constructible
number, 760
point, 760

Construction with ruler & compass, 759
Content, 444
Co-prime, 30, 409
Correspondence, 7

Index
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Coset,
double, 212
left, 70
right, 68
space, 282

Cycle, 18
Cycles of a permutation, 18
Cyclic groups, 78

generators of, 78
Cyclic permutation, 17

subgroups, 81
subspace, 641

Cyclotomic field, 742
polynomial, 742

Dedikind theorem, 722
Degree of

a polynomial, 417
a symmetric group, 15

De-Morgan’s laws, 3
Derived group, 163
Diagonalisable linear operator, 607
Dihedral group, 136
Dimension, 503
Direct products, 237

external, 237
internal, 238

Divisibility, 25
Division algorithm, 25
Division ring, 317
Divisor, greatest

common (g.c.d.), 29, 396, 433
Domain

Euclidean, 399
intergral, 316
of a map, 7
principal ideal, 401
unique factorization, 436

Double coset, 212
Double dual, 568
Dual basis, 568
Dual space, 567
Duplicating the cube, 765
Eigen

value, 588
vector, 588
space, 590

Eisenstein’s criterion, 458
Elements

algebraic, 671
conjugate, 182

order of, 78
irreducible, 410
prime, 410
separable, 704

Empty set, 1
Endomorphism, 116
Epimorphism, 115
Equality of

maps, 9
sets, 1

Equivalence
classes, 6
relation, 5

Euclidean
algorithm, 25, 399
domain, 399
ring, 399
space, 519
valuation, 399

Euler’s phi function, 88
theorem, 89

Even permutation, 22
Extension

algebraic, 671
degree of, 668
field, 667
Galois, 732
normal, 707
ring, 368
separable, 700
simple, 668
transcendental, 671

External direct product, 237

Factor group, 107
Factorization domain, 396
Faithful action, 270
Fermat’s theorem, 90
Field (s), 317, 667

extension, 667
of quotients, 375
perfect, 705
product of, 720
splitting, 686

Finite abelian groups, 252
Finite characteristic, 329
Finite dimensional vector space, 494
Finite extension, 668
Functions,

one-one, 7
onto, 7
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Functional, 540
Fundamental theorem of

finite abelian groups, 256
Galois theory, 735
group homomorphism, 122
ring homomorphism, 356
vector space homomorphism, 485

Galois extensions, 732
Galois group, 734
Gauss lemma, 445
Gaussian integers, 314
Generators of

groups, 78
subgroups, 160

Geometric multiplicity, 610
Gram-Schmidt

orthogonalisation process, 526
Greatest common divisor, 29, 396, 433

(g.c.d.),
Group(s), 45

abelian, 45
actions, 266
alternating, 148
automorphism of, 116,168
centre of, 65
centraliser of subset of, 65, 71
class equation of, 185
commutative, 45
cyclic, 78
dihedral, 136
factor, 107
Heisenberg, 187, 251
homomorphism, 115
isomorphism of, 115
nilpotent, 303
normaliser of, 65, 71
of automorphism, 168
order of, 46
permutations, 143
quaternion, 47
quotient, 107
residues, 48
semi, 54
simple, 99
solvable, 294
symmetric, 15, 91

Highest common factor, 396
Hilbert Basis Theorem, 468
Homomorphism, 115, 356, 485

kernel of, 119, 358

Homomorphic image, 116

Ideal(s), 339
comaximal, 379
left, 339
maximal, 381
prime, 387
principal, 401
product of, 346
right, 339
semi prime, 394
sum of, 341

Idempotent, 334
Identity

elements, 45
mapping, 8

Index Theorem, 157
Inner product spaces, 518
Integral domain, 316
Invariants, 257
Invariant subgroup, 99
Invariant subspaces, 630
Inverse, 11, 45
Irreducible element, 410

polynomial, 447
Isomorphism, 115

Jordan Holder Theorem, 287

Kernel of action, 269
Kernel of homomorphism, 119, 358
Klein’s four group, 154

Lagrange’s theorem, 69
Leading coefficient of

a polynomial, 416
Least common multiple (l.c.m.), 32, 397
Left coset, 70
Length of a cycle, 17
Linear combination, 492

diophantine equation, 34
functional, 540
operator, 540
span, 492
transformations, 485, 536

Linearly dependent, (L.D.), 495
independent (L.I.), 495

Map, see mapping
Mapping, 7

bijective, 7
co-domain of, 7
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composition of, 9
domain of, 7
equality of, 9
identity, 8
injective, 7
invertible, 11
one-one, 7
onto, 7
pre-image of element under, 7
range of, 7
surjective, 7

Matrix of L.T., 553
Maximal ideal, 381
Maximal normal subgroup, 283
Minimal polynomial, 601
Mobius inversion formula, 743
Monic polynomial, 672
Monomorphism, 115
Multiplication modulo, 49

Natural homomorphism, 117, 490
Nilpotent element, 334
Nilpotent groups, 303
Noetherian rings, 466
Non-Singular linear

transformations, 547
Norm of a vector, 522
Normal closure, 711

extension, 707
series, 283
subgroup, 99

Normaliser, 65, 71
Nullity of a L.T., 537
Null set, 1
Null space, 1

Odd permutation, 21
One-one map, 7

onto map, 7
Orbit, 17, 155, 270
Orbit-stabiliser theorem, 156, 272
Order of,

element, 78
group, 46
permutation, 146

Ordered basis, 500
Ordered pair, 3
Orthogonality, 525
Orthonormal,

basis, 526
set, 525

Outer automorphism, 182
Over-ring, 368

Partial order, 5
Partition of

a set, 7
an integer, 197

Perfect field, 705
group, 310

Permutations, 14
cyclic, 17
disjoint, 20
even, 22
odd, 22
orbit of, 17, 155
similar, 196

p-groups, 205
Polynomials, 416

content of, 444
degree of, 417
irreducible, 447
minimal, 601
monic, 672
primitive, 444
rings, 416

Primary decomposition theorem, 622
Prime

element, 410
ideal, 387
number, 35
subfield, 697

Primitive element, 668
polynomial, 444

Principal ideal domain (PID), 401
Product of

fields, 720
groups, 237
rings, 337

Projections, 649
Proper subset, 2

Quaternion group, 47
Quotient

group, 107
map, 490
ring, 354
space, 482

Rank, 537
Relation, 4

antisymmetric, 5
conjugacy, 182
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equivalence, 5
partial order, 5
reflexive, 5
symmetric, 5
transitive, 5

Relatively prime elements, 30, 409
Remainder theorem, 682
Right coset, 68
Ring(s), 312

Artinian, 469
boolean, 319
centre of, 325
characteristic of, 329
division, 317
embedding of, 368
of endomorphisms, 369
commutative, 313
imbedding of, 368
Noetherian, 466
of Gaussian integers, 314, 403
polynomial, 416
product of, 337
quotient, 354
simple, 348
with unity, 313

Root(s),
multiple, 683
of polynomials, 682
of unity, 742
simple, 683

Ruler & Compass construction, 759

Scalars, 473
Self conjugate subgroup, 99
Separable element, 704

extensions, 700
polynomials, 702

Sets, 1
complement of, 2
difference of, 2
empty, 1
equal, 1
finite, 1
intersection of, 2
null, 1
proper subset of, 2
subset of, 2
union of, 2
void, 1

Simple extension, 668
root, 683

Solvable groups, 294
series, 294

Space,
coset, 282
dual, 567
eigen, 590
quotient, 482
vector, 473

Splitting fields, 686
Stabaliser, 155, 270
Subgroup(s), 62

costes of, 68
generated by subset, 160
index of, 70
internal direct product, 238
invariant, 99
normal, 99
proper, 62
self conjugate, 99
sylow p-subgroups, 210
trivial, 62
union of, 67

Subnormal series, 285
Subring, 322
Subset, 2
Subspace, 475
Sum direct,

of subspaces, 479
Sylow p-subgroups, 210
Sylow theorems, 210
Sylvester law of nullity, 537
Symmetric

difference, 13
group, 15, 51
relation, 4

Totient function, 88
Transcendental extension, 671
Transitive action, 275
Transpose of L.T., 581
Transposition, 17
Trisecting an angle, 764

Unique factorisation domain (UFD), 436
Unit, 317
Unitary space, 519
Unity, 313
Upper central series, 304

Vector space(s), 473
basis of, 500
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dimension of, 503
liner transformations of, 485, 536
quotient space of, 482
scalars multiplication, 473
vectors, 473
standard basis of, 500

Well ordering principle, 43
Wilson theorem, 219

Zech logarithm, 759
Zero divisor, 316
Zero polynomial, 416
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