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Differentiation and Integration.
of Vectors

§ 1. Vector Function. We know that a scalar quantity posses-
ses only magnitude and has no concern with direction. A single
real number gives us a complete representation of a scalar quan-
tity. Thus a scalar quantity is nothing but a real number,

Let D be any subset of the set of all real numbers. If to
each element t of D, we associate by some rule a unique real
number f(¢), then this rule defines a scalar function of the scalar

variable r. Here f(¢) is a scalar quantity and thus fis a scalar
function.

In a similar manner we define a vector function.

Let D be any subset of the set of all real numbers. If to each
element t of D, we associate by some rule a unique vector f (t), then
this rule defines a vector function of the scalar variable t. Here £ (1)
is a vector quantity and thus f is a vector function.

We know that every vector can be uniquely expressed as a
linear combination of three fixed non-coplanar vectors. Therefore
wE may write

(=) i+f () j+f() K
where I, j, k denote a fixed right handed triad of three mutually
perpendicular non-coplanar unit vectors.

§ 2. Scalar Fields and Vector Fields. If to each point
P(x,y,z) of a.region R in space there corresponds a unique
scalar f (P), then fis called a scalar point function and we say
that a scalar field f has been defined in R,

Examples. (1) The temperature at any point within or on
the surface of earth at a certain time defines a scalar field.

(2) f(x,y, z)=x%y®—3:2? defines a scalar field.

If to each point P(x, y, z) of a region R in space there
corresponds a unique vector f (P), then f is called a vector point
function and we say that a vector field f has been defined in R.




2 Limit and Continuity of a Vector Function

Examples. (1) If the velocity at any point (x, y, z) of a parti-
cle moving in a curve is known at a certain time, then a vector
field is defined. |

(2) f(x,y, z2)=xy®i+3yz® j—2x? zk defines a vector field.

§ 3. Limit and Continuity of a vector function.

Definition 1. 4 vector function f (t) is said to tend to a limit ),

when t tends to t,, if for any given positive number s, however small,
there corresponds a positive number § such that

| ()= ] < e
whenever 0< |t—1t,] <.
If f (r) tends to a limit } as ¢ tends to fo, WE Write
lim
7, f(1)=I.

Definition 2. A vector function f(t) is said to be continuous
Jor a value t, of t if
(1) 1(t) is defined and
{ii) for any given positive number ¢, however small, there
corresponds a positive number § such that
| £()—1 (1) | < s
whenever | t—1, | < 8.
Further a vector function f (t) is said to be continuous if it is
continuous for every value of t for which it has been defined.
We shall give here (without proof) some important results
about the limits and continuity of a vector function.
Theorem 1. The necessary and sufficient condition for a vector
Junction £ (t) to be continuous at t=1, is that
lim
e f(t)="1 (t,).
Theorem 2. If f(t)=f, (D) itf; () j+fs )k, then f(t)is
continuous if and only if f, (1), f, (t), f5 (¢) are continuous.
Theorem 3. Let f (1)=f, (1) i+f, (1) i+, (D) k
and I=li+Lj+ k.

"Then the hecr.s.mr_}' and sufficient conditions that 4 Hm

[
li lim -
f;l (t ) I],l _::lﬁ {I)‘=I‘ and r—i'fu fa (fjﬂl'!‘

Thcoreu 4. Iff(t), g (¢) are vector functions of scalar variable
tand ¢ (1) f:r a scalar function of scalar van'abie t, then

(7) Il{r}:bgfr)]-— fim f( }i g{rl

f(1)=I

l—r Iy
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(ii) t”'" (f ()-g (¢ )]=[ - f(1) ] [ > g ]

t—>1, ]

. llm hm Ifm
aiy 7 woxemi=[ 7 tw |x[ 2 g 0
(iv) i [ (1) r(rn=[ in é (1) ]r i f(r) ]

=1,
) (o |=[,57 1 [

lim
=1,
§ 4. Derivative of a rectnr function with respect to a scalar.
[Banaras 61; Kolhapur 73]
Definition. Ler r=f(t) be a vector function of the scalar
variable t. We define r+38r=f (143t).
s Sr=f(t431)—f(1).
Consider the vector or _f (1+30)—f “)
ot 8t

lim 3  lim f(t+48t)—F (1) _. .
If 36037 =8¢0 3 exists, then the value of this limit,

lim

_whfr:h we shall denote by jr_? , is called the derivative of the vector

Sunction r with respect to the ccalar t. Symbolically
dr lim (r48r)—r lim f(t430)—f (1)

dt =8t-0 & 310 Y,

If j,: exists, then r is said to be differentiable. Since ;; isa
vector quantity, therefore g}is also a vector quantity,

Successive Derivatives. Ifr is a vector function of the scalar
variable ¢, then i—ls also in general a vector function of ¢. If d_r
is differentiable, then its derivative is denoted by %, and is called
the second derivative of r. Similarly the derivative of {f: 1s deno-

2
ted by d—: and is called the third derivative of r and so on.

dr d'r
dt’drr”
§ 5. Differentiation Formulae.

Theorem. If a, b and c are differentiable vector functions of a

scalar t and ¢ is a differentiable scalar function of the same variable
t, then

. are also represented by F, F....respectively.



4 Differentiation Formulae

da db
1. dr {l-l—b} dr"'dr

2. —_ Il'h}=.' H.-t+d *b [Cﬂlfﬂ“l 63]
db d‘xb

atar
[Agra 1967; Marathwada 74; Kolhapur 73]

4. Sm=¢ 1%,

o 2lave ][t o T ar e

6. d‘:{ax(nxn)}—ix(bx )+-x(3}xe )+ax{hxj§ )

[Rohilkhand 1978)
d lim {(a43a)+(b+3b)}—(a+b)
Proof. 1. o (a+b)= 31->0 57
_ lim 3a+3b lim (31 gtl)
=s5t—>0 " 3 —8t—»>0\3r T
lim 3a lim 8b da
=5t>03r T 8r>087 —ar Tdr
Thus the derivative of the sum of two vectors is equal to the sum
of their derivatives, as it is also in Scafar Calculus.

3. d {lxb)—lx

Stmﬂarly wWe can prove that —= (n —b)= t;a g‘:’
d __ Iim [a+an} (I}+3h]-—l-h
2, dr (a<h) T 3t—->0 3t
Ilm aeb+4a<3b+3aeb+35a-8b—a«h
= 310 31
. lIim a«3b+3a-b-+3a-3b
— 8t—=>0 -3t
lim 3b- 3a
=at—:~0{ st Tsr h+1'3h}
lim &b lim 3a lim 3a
=3t->0" 5t ar+ﬂBT'b+ 08 °*h
:ﬂ} d
-|- ; h+-a— 0, since 3b-zero vector as
3t—=>0
—a
ol TR

Note. We know that asb=be«a. Therefore while evaluating

%— (a=b), we should not bother about the order of the factors.
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3. %(axh}-—-. lim (a4 8a)x(b+3b)—axb

8t—=0 ot
lim axb+axsb+daxb4saxsb—axbh
= 3t—->0 &t
lim axﬁb+3nxh-}ﬁg_x_5h
= 8t—>0 St
lim Eb oa oa
=3r—:-ﬂ{ se tar X5 xab}
lim b lim 3da lim da _
=5t->0 2 X5 tor—>075r XP 5oy X0
db da da
= xdt +dt xb-f—d X 0, since §b—zero vector as §f—0

=aXx— +j: Xb40= axdb-i-dl b.

Note. We know that cross product. of two vectors is not

commutative because axXb=—bxa. Therefore while evaluating
d

= (axb), we must maintain the order of the factors a and b,

a _ lim (443¢) (I+Bﬂ)—¢l
4. dt (#J 3t—0 of

lim dJat¢3a+3datddéa—da lim $pda-dgda+348a
-0 ar ~8t—>0 3t

lim En qb
=3!‘->U { ¢ B_t ﬂ+ }

lim da Ilm B_qé lim §¢
=5t—>0 ? 5t Tot=03r *T 55035

=¢ """".|-:::15 a+ 'ﬁ 0, since 3a—zero vector as §¢1—0
da d¢ da d¢

=¢gita 210=%# 5+ »

Note. ¢a is the multiplication of a vector by a scalar. In the

case of such multiplication we usually write the scalar in the first
position and the vector infthe second position.

> dr[ ]"_{ -bxo)}

-=a-- (bx u}-{—-—-[h Xe)

de db

[by rule (2)]
=n-(bxﬁ+ﬁxc)+3‘--{b><c)

[by rule (3)]



6 Derivative of a Function of a Function

_—_-n-(bxdc)+a-(j:’x:)+§§-{hxc}

.=[nb ] [ chy : abe]
[dfhc]-[-[:—-c_lq_[ah ]

Note. Here [a b c] is the scalar triple product of three vectors

a, band c. Therefore while evaluating g? [a b ¢] we must main-

tain the cyclic order of each factor.

d d vid
6. FE{ax{bxn}}=-xztbxe)+£xlhxc} [by rule (3)]
=ax(3bxc+h}:d )+?x(bxa}
=nx(j—'—'><c)+ax bx_)-;-dfx{hXc)

d x{bx:}+nx(3-:~:c)+nx (bxj:)

§ 6 Derivative of a function of a function.

Suppose r is a differentiable vector function of a scalar varia-

ble s and s is a differentiable scalar function of annther _scalar
variable . Then r is a function of .

An increment 3¢ in f produces an increment 3r in r and an
increment s in 8. When 37—0, r—0 and 35— 0.
| dr lim 38r lim [8s 3r
Webave e yiat i 5rs0 (a‘r‘a‘:)
lim ﬁs)( lim Br) ds dr

“\8t>0 5t J\s5t—>035)=dr ds°
. dr drds .
Note. W -
ote e can also write i But it should be clear

dr . .
that Ei!l: IS a vector quantity and j{ is a scalar quantity. Thus

P ‘

:f:f d_: is nothing but the multiplication of the vector % by the
ds

scalar —-

dt

§ 7. Derivative of a constant vector.

A vector issaid to be constant only if both its magnitude

and direction are fixed. If either of these changes then the vector
will change and thus it will not be constant.
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Let r be a constant vector function of the scalar var:able ¢.
Let r=c, where c is a constant vector. Then r--3r=Cc.

J. 8r=0 (zero vector).

. or 0

v i

) lim Erﬂ___ lim =0

v =038 =0

dr

, —==0 (zero vector
L ] df u ( }

Thus the derivative of a constant vector is equal to the null
vector.

§ 8. Derivative of a vector function in terms of its components.
Let r be a vector function of the scalar variable ¢.
Let r=xi+)yj+zk where the components x, y, z are scalar
functions of the scalar variable ¢ and i, j, k are fixed unit vectors.
We have r+3r=(x+38x) i+(y+38y) j+(z+32) k.
Er={r+3r}—r=8x i+3y j+8z k.
or

SSt gl—H‘“‘— +*"'

., lim 3 lim [dx. &y

5080 a: o{ g Mg }
a'r d.x

L d‘r i+

T.'m.s in nrder to d:fferenriale a I-'Eﬂﬂl" we should dgﬂ"er:ntmm its
components.

Note. [If r=xi+ yj+2k, then sometimes we also write it as
r=(x, y, z). In this notation
dr (dx dy dz\ d ([d%x d*y d°
E"(dr dt’ di ) ' dri2T (dt" de®* di®

Alternative Method.

We have r=xi+ yj+zk, where i, j, k ar¢ constant vm:tun aud
so their derivatives will be zero.

d d d
Now %-_—i (xit+yj+zk)=7 (xi)+— 0D+ (2k)

dj dz . . _dk
dx“‘" I"‘d:i” ata g

) and so on.

=£’Fi+ j+ﬂ, k, mnneg% etc. vanish.

§ 9. Snme impnrtnnt results.
Theorem 1. The necessary and sufficient condition for the



Some Important Results

veclor function a(t) to be constant is that %—:=0.

Proof. The condition is necessary. Let a(¢) be a constant
vector function of the scalar variable . Then a(z+3¢t)=a(r). We
da lim a(t43t)—a(t) lim 0
have Ir=st-0"" o =35t—>0 51

Therefore the condition is necessary.

=0.

The condition is sufficient. Let §:=0. Then to prove that a

is a constant vector. Let a(f)=a,(t) i+ ay(f) j+as(t) k. Then

da da, dﬂ, . da,
dt=ar ‘Tar 7tar &
da dag dﬂg
Therefore HE=0 gwes, dr +_ =0

Equating to zero the cuefﬁclents of i, j and k, we get
da, dﬂ, da,
dt  'dt  dt

Hence a;, a3, a; are constant scalars i.e. they are independent

of t. Therefore a(¢) is a constant vector function.

Theorem 2. If a is a differentiable vector function of the scalar
variable t and if | a |=a, then

=0.

, . EE—— Y
() {ﬂ'} =2a - 355 and (ii) as , =d .
Pmnf. (i) We have a?=a.a=(a) (a) cos 0=a2.
erefore dr dr dr
da da
(ii) We have (n’} dt (a- a} d +ae E=2n'd2'
Also }:_E (a%)= T (a’} 2:1 dr
da da da d’ﬂ
oo ZI'EEZEIH or ae = a

Theorem 3. If a has constant length ( fixed magnitude), then a

and j—. are perpendiculnr provided jr #0,

Proof. Let | a|=a=constant. Then a-a=a?=constant.
g;{a-a]=0. or j:-:-;-n-j' =()

da da
or h-ﬁ—ﬂ or e ==n
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Thus the scalar product of two vectors a and i?r IS Zero.

Therefore a is perpendicular to %2 provided ‘; is not null

da
ai 2

Thus the derivative of a vector of constant length is perpendi-
cular to the vector provided the vector itself is not constant,

Theorem 4. The necessary and sufficient condition for the
da

vector a(t) to have constant magnitude is ae« dr =0.

[Agra 1970, 75; Allahabad 80; Kanpur 75, 78; Sambalpur 74]

Proof. Let a be a wvector function of the scalar variable f.
Let | a! =a=constant. Then a-a=a%=constant.

vector i.e. provided

. d da da
.a 5,? {I H)—U or Hlar-f--‘?i;-ﬂ_ﬂ
da Jda
or ﬁa-?r=0 or ae. -37:0.
Therefore the condition is necessary.
Condition is sufficient. If a. %? =0, then
da da
Bt gy
d
or 7 (aea)=0
or a-a=constant
or a’=constant
or a®=constant
or | a | =constant,

Theorem 5. If a is a differentiable vector function of the scalar
variable t, then

4 (B g
dt ( dr)_* di® - [Agra 1967]
d da\ da da d’a
Proof. We have E(axﬁ})=ﬁxﬁ}+"x3?=
=0+nx%, since the cross product of two equal

da .
vectors P 18 Zero

=ax -d-lr_..
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Theorem 6. The necessary and sufficient condition jor the
vector a (1) to have constant direction is
da

IXE =0.

[Agra 1970; Sambalpur 74; Allahabad 80; Kolhapur 73]
Proof. Let a be vector function of the scalar variable r. Let
A be a unit vector in the direction of a. If @ be the magnitude

of a, then a=daA.
5;—:=a @-p‘;‘: A.
Hence uxd =[nA)><( j?-]—jﬂ )=a’ij:‘+n ‘;‘: AXA
=a=A><d— ['v AXA=0] )

The condition is necessary. Suppose a has a constant d:rec-
tion. Then A is a constant vector because it has constant dlractmn

as well as constant magnitude. Therefore g—i—t‘=ﬂ.

. From (1), we get ax%%:-am x 0=0.

Therefore the condition is necessary.
The condition is sufficient.

Suppase that axﬁ 0.

dt
dA
Then form (1), we get a®A X E_ﬂ
dA
or A -—=-l]
% r(2)
Since A is of constant length, th-:r:f‘nrn
dA
Aar =0 | (3)

From (2) and (3), we gctjé-ﬂ
Hence A is a constant vector i.e. the direction of a is.cons-
tant,

§ 10. Curves in space.

A curve in a three dimensional Euclidean space may be regar-
ded as the intersection of two surfaces represented by two equa-
tions of the form F, (x, y, z)=0, F, (x, y, z)=0.

It can be easily seen that the parametric equations of the form

x=f; (1), y=5 (1), z=14 (1),
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where x, y, z are scalar functions of the scalar ¢, also represents a
curve in threefdimensional space. Here (x, y, z) are coordinates
of a current point of the curve. The scalar variable f may range
over a set of valuesa < t < b.

In vector notation an equation of the form r=f (¢), represents
a curve in three"dimensional space if r is the position vector of a
current point on the curve. As f changes, r will give position
vectors of different points on the curve. The vector f (7) can be
expressed as fi (@) i+fo (1) j+1s (1) k.

Also if (x, y, z) are the coordinates of a current point on the
curve whose position vector is r, then r=xi+yj+zkx

Therefore the single vector equation r=f (7)
ie. xi+yj+zk=f, () i+fa (¢) j+f () K
is equivalent to the three parametric equations

x=f, (1), y=/2 (t), z=15 (1).

The vector equation r=a cos ti+b sin tj+ 0k
represents an ellipse, as for different values of ¢, the end point of
r describes an ellipse.

Similarly r=at? i+2at j+0k is the vector equation of a
parabola.

d’r
Geometrical siguoificance uf

Let r=f (1) be the vector equatinﬂ of a curve in space. Let

r and r+3r be the position
vectors of two neighbouring
points P and Q on this curve.
Thus we have

—
OP=r=f (t)
_P
- and 00=r+3r=f (¢t+8r).
- - =
.2 PO=0Q—-0FP
=(r-or)—r
=Jr.
Thus 3- is a vector parallel to the chord PQ.
As O0- P i.e. as 3t—(, chord PQ—rtangént at Pto the curve.
13102—?—? is a vector parallel to the tangent at P to

the curve r=f (¢).
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Unit tangent vector to a curve, [Allahabad 1979]
Suppose in place of the scalar parameter ¢, we take the para-
meter as s where s denotes the arc length measured along the

curve from any convenient fixed point C on the curve. Thus arc
CP=3s and arc CQ=s+3s.

In this case g will be a vector along the tangent at P to the

curve and in the direction of s increasing. Also we have

de | lim |3r |___ lim |8r| lim chord PQ_,
ds | 8s—>0|3s | Q—>Parc PQ — QP arc PQ -

dr . ; - ; ;
Thus 7, 1sa unit vector along the tangent at P in the direc-

tion of s increasing. We denote it by t.
§ 11. Velocity and Acceleration. If the scalar variable t be
the time and r be the position vector of a moving particle P with

respect to the origin O, then 3r is the displacement of the particle
in time §¢.

The vector E% is the average velocity of the particle during
the interval 5¢. If v represents the velocity vector of the particle
lim dr dr
at P, then ¥

=503 —dt

Since:% is a vector along the tangent at P to the curve in
which the particle is moving, therefore the direction of velocity is

along the tangent.

If 3v be the change in the velocity v during the time &8¢, then

%} is the average acceleration during that interval. If a represents

~ the acceleration of the particle at time ¢, then

aw I SV _dv._ d (& )22

3t—>03t dt T dt \dt de®
SOLVED EXAMPLES

Ex. 1. If r=(t+1) i+(*+t+1) j+ @2+ 240+ 1) Kk, find

‘-f—r- and ﬂr
dt de?’
Solation. Since i, j, k are constant vectors, theretore
di o= _dk
at dt = dt’
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. dr d .. d s
S r=ar (t+l}‘:+ o (r=+r+1}1-!_—3;-(t=-[‘-r'+r+l] k

=i+(2r41) j+(3724+2t+1) k.
dir d |[dr )_ﬂ d

v i Byass
Again, =1 \ 7 1 [2r+l]]+5(3t +2t+1) k

=0+42j+(67+2) k=2j+(6/+2) k.
Ex. 2 If r-—.ffn ¢ |-I-cns t j+1t k, find

dE
(l‘) dI » {ﬁ) dﬁ' (I") ] (iv) ffff:! [Agra 78]

Solation. Since i, j, k are constant vectors, therefore j_r' 0
etc, Therefnre

(i dr = {sm t) i+ - (cos 1) j+-(r)k—cusr|—sm t j+k.

d® d d

(ii) dr:"dr (d: )_dr (cos t) |—~—-(sm r)1+

= —s8in ¢ i—cos 7 j4+0=—sin ¢ i—cos 7 j.

(iii) ﬂ [=¢{{cns 14 (—sin 1)24-(1)2]=4/2

. a"r
(iv) 71 |= VI(—sin 1)*+(—cos £)*]=1.
Ex. 3. If r=(cos nt) i+(sin nt) j, where n is a constant and t
dr
varies, show that rx — 7 =nk. (Utkal 1973]
Solution. We have |
d d
—d—;- —--‘—f (cos nt) |+— (sin nt) j=—n sin nt i+ n cos nt j.

rxg::-=(cns nt i+sin nt j) X (—n sin at i+n cos nt j)

= —n COS nt sin nt i Xi+n cos® nt ixj
—n sin? nt jXi-+n cos nt sin nt jx§
=n cos? nt k+n sin? nt k
[ dXi=0, jxj=0,ixj=k, jxi=—k]
=n (cos® nt+sin? nt) k=nk.
Ex.4. If a,b are constant vectors, w is a constant, and r is a
vector function of the scalar variable t given by
r=cos wt a-tsin wt b,
show that
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(i) dr,+m’r =0, and (ii) rxd—'l—maxh

[Madras 1983]
Solution. Since a, b are constant vectors, therefore
d_g B
' odt

(i) g-zf (cos wt) a4 ‘-:i (sin wt) b

= —w 8in w! a4w cos wt b.
Sl o conwt a=dbslnwrh
S gp=—w' cos wf a—e' sin wr

= —w? (cos wf a-+sin wt b)=—w?r.
L I =0
- df= (A .
(ii) rxj: =(cos wf-a+8in wf b) X (—w sin w! a4 w cos wt b)
= c08% wf aXb—w sin? wf bxa [** axa=0, bxb=0]

=w CO8? wt aXb+wsin*wtaxb
=w (cos? wt+sin® wt) aXb=waXbh.

Ex. 5. If r=(sinh t) a4(cosh t) b, where a and b are constant

vectors, then show that ‘f-r=n

dr?
Solution. Since a, b are constant vectors, therefore
da_u gh
*dt
. dr d
o I dr (sinb #) n—l—d (cosht) b

=(cnsh f) a+4(sinh ¢) b,
e’ g-:={ainh t) a+(cosh ¢) b=r.
"Ex.6. Ifr=acosti+asintj+attanak, find

’._ dr| [‘i’_ d’r dr

dr X dr? dt.’ dt? df“]' [Agra 1977]
Solutjon. We have

dr

B sinfit+acost j4atan a k

d*r L -

3= —acos ti—a sin tj, [ :%w—ﬂ]

r : :
=asinti—acost
dr® !
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. dr d¥ i i k
v« df Xdrt=| —asint acost atana
—acosi! —asint 0
-—t:la sin 7 tan « i —a? cos 7 tan aj+4a%.
j: X 378 ;=,\/(a‘ sin? 7 tan? a4-a* cos? 7 tan? nr.-{-ﬂ')

=a? secC a.
dr d’r d° dr dr\ d°r
Also | 7 G dr']=(&? Xdrt) ° ar
=(a® sin f tan « i—a® cos ¢ tan a j+a®k)e(a sin 7i—a cos { j)

=a® sin? 7 tan « i«i4a® cos? 7 tan a jej [ i«j=0 etc.]
=a®ten « (Sin? r+cos? t) [ Qci=1=]+j]
=ga° tan «o.
dv
Ex. 7. lf——“wxu,ar— =w X v, show that

I (axXv)=wX(uxv)
[Meerut 1975; Kanpur 77)
Solation. We have

d ‘“XT)—‘-ﬁ: xv-[-uxd =(wWXu)Xv+4+uX(wxv)

dr dt
=(veWw) 0—(ven) W+ (V) W—(Uew) ¥
=(vew) u—(uew) v [ wev=veu]
=(wev) u—(weu) v=w X (a X V).
Ex. 8. If R be a unit vector in the direction of r, prove that
th—i-l—lz—-—l- rxd_l: where r=| r |
da r? dt’ :
[Kanpur 1979; Agra 74]
Solutiou. We have r=rR; so that R=

r
dR_l dr l_d_{'_r
dt — r dt r? dt

[ ]

dR 1 1 dr 1 dr
Hence Rxar.-:-;- rx(—r- i~ g " )
ot rxdr- 1o rxr
3 dt r® di
1 dr
=y TX 40 [ rxr—0]

Ex.9. Ifrisa vector function of ascalart and a is a cons-
tant vector, m a constant, differentiate the following with respect
tofi—
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. i dr 5 dr
(i) rea, (ii) rxa, (i) rxa—. [u-) Lo
dr \?2 rxa
(v) r’+ , (vi) m(‘;.;). (vii) ,+ ,. (Vi) —-.
Solution. (i) Let R=r-a. [Note r-a is a scalar]
dR dr da
Th H?zt,ﬁ -II+!' —
dr .
= -a+r-l]| [ =0, as a is constant ]
dr dr
o ki’ e
(ii) Let R=rXxa.
dR dr da
Then E—_g: Xa<r xdf N
-_._l,‘_f_ xXa-+r x 0 [.,' }ﬁ=0]
dr dr
=~ At = ~dr ~
(iii) Let R= rxj—r
dR dr dr d’r
Then, Zp=gi ¥ TH gn .
d’r dr
=0+r Xz [ ar *ar ="
—rxr
dr*
(iv) Let R-r-jr—r-
dR dr dr d’r [dr d°r
Then T3 a T an=(ar) ta
(v) Let R=r'+l%.
dR d ,, , df1
= (r“H- ( : ) where r= | r |
s B Eﬂi
"dt T dr
dr \?
(vi) Let R=m(a-)
dR_ d(dr\?
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fffﬁ;:_:af}i (r+a)+{jr (r,_:_a—,)} (r+a)

[Note that r?4a? is a scalar]

I (45 ‘-"'—!)—{ e {r*+a“)}(r+a}

=ria\dr Tar (r2+a?)’dr
2m.‘:ﬂ-
— 1 ﬂ __r_"F__ (r_[_a
S(rFanar (Bfayr
da _ d it d ,
[ ~ 3?=“-E"=2"'a;'m“““]

rxa

(viii) Let R= g

' dR 1 d d |
Then (?-E-'_—_“I‘_Ta ;ﬁ (rxﬂ}{'{ﬁ(m)} (rxa)
[Note that r-a is a scalar quantity]

=_l_ (.‘.fl:xn.!_r:,(da)_ { ! d (r-n]} {r ‘“:E}

el dt (rea)? dr

ar < a
~ ~{@an (e g oo

dr dar

i [ - Moo
= -—-l:ﬂ—‘}:_, (rxa). [ ! ar— |

Ex. 10. Ifr is a vector function of a scalar t, r its module, and
a, b are constant vectors, differentiate the following with respect to
t:
T ar o s . 3
(i) r r+a>{-f-ﬁ , (ff) r®c+ (aer) b, (iii) ror, (iv) (ar4rh)=,

Solution. (i) Let R=r? r+n><g—::.

dR d . d dr |
Then PR - (r r}-l—:ﬁ {a:{drj-
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dr dr da dr d°r
— g - P i A e
¥ dt i a'r"'dr :":ﬁl’r'"“”'<

dr?
d 2
=3r? ;Er r+r“j—;+nxd—f [ “_=ﬂ]

dr?
(ii) Let R=r%r+(a-r) b.

dR d . [d db

Then 'dT=EE (r r)-l'{a'f {I'I')} h+(I~lr] E
., dr gdr (da dr -~ db
wir e aﬁ(a"“‘a) . [ :ﬁ""*"]
. dr | .dr (_dr  da

(iii) Let R=rnr,

dR (d . dr _, dr dr
Then E—=(d—,r r ) I+r“-ﬁ=(ﬂr“ 1 EE) r+r"‘EE.
(iv) Let R=(ar+rb)*. Then
dR d d dr
3}-—2 (ﬂr+rb)'ﬁ (ar+ rb) [Not: - r3=2r-ﬁ]
F. da dr dr db
hzi(ﬂr'l'rh]"(a r+a 3?-1?_! b+r E)

_ de dr .. da_ db_
—2{nr+rb)-( HEF-I-EF b ) [ ; -d—r--ﬂ, d 0]

Fx.11. Find

. d dr d7 . d* de dunr7)
[l] E‘E r::‘?l 'd_-ri ¥ [li} df:[r, EE’ Ef_l]’

S dr d°r
an g [ x(Gxa) |

Soletion. (i) Let' R=| r, g, j’ur—:] Then R is the scalar triple
dr dr .
product of ihree vectors r, o and 7R Therefore using the rule

for finding the derivative of a scalar triple product, we have

dR rdrdrdﬂr] [rd__'_rd_’_r] ﬁdﬂ}
ar —|laraas )]t " ar e )T " ar as

- dr d%),. . . 1
=_r, 7L l?f—ﬁ],,lslimr.te scalar triple products having two

equal vectors vanish.
’ - dr d'r ; 3
(ii) Let R-—[r. Z EF"] Then as in part (i)

dR [, de d'r
dt | 'dt’de )
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Differentiating again, we get
d*R [dr dr d&7 [ d¥r d_'r] - dr d'r
dr? — i dt’ dt’di® + g an *dr’ drt

r dir d7 [ dr dr

=L"amas T " a )
l &
(iii) Let R=rXx (jr j—,) Then R is the vector triple pro-

duct of three vectors. Therefore using the rule for finding the
derivative of a vector triple product, we have

dR dr [dr d¥u dr d* dr dr
dt —dt (dr dﬂ}'l' B d:’ydrﬂ}'l' x( dr’)
dr (de d¥ dr d*
~drt”~ (::"r xdfﬂ)—er(m xdr')
d*r d°r
di2” dr?
Ex. 12. If a=sin g i+cos § j+ 0k, b=cos §i—sin 0 j—3k and

d -.-:
c=2i+3j— 3k, ﬁnddﬂ {ax{bx:}} at E=—2. 'Rohilkband 1979]
Soiution. We have

since =(), being vector product of two equal vectors.

bxe=| i i k |=(3sin +49) i+(3 cos 8—6) j
r cos§ —sing —2 +(3 cos 0+ 2 sin 8) k.
2 3 —3
aX(bxe)=| i i k
| sin @ cos # é

| 3sinf+9 3cosdg—6 3cosfi2sing
=(3 cos? §+2 sin g cos 8—38 cos §--66) i-+(30 sin 8496
—2 sin 8 cos §—2 sin? g) j+(—6 sin §—9 cos 9) k.

d
8 {ax{hxa)}

=(—6 cos 4 sin §+2 cos? §—2 sin? §—3 cos 8430 sin §+6) i
+(3 sin 94360 cos 6+9—3 cos? 643 sin® §—4 sin 9 cos §) j
+(—6 cos 9+9 sin ) k.

Putting 6=x=/2, we get the required derivative

=(4+3x) i+ 15j+ k.

Ex. 13. Show that if a,b.c are constant vectors, then
r=a t*+b t+c¢ is the path of a particle moving with corstant acce-
leration. [ Delbi 1962]

Solution. The velocity of the particle= 3--2m+h

The acceleration of the partiele~%-2a
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Thus the point whose path is r=a 1?+b ¢+ ¢ is moving with
constant acceleration.

Ex. 14. A particle moves along the curve x=4 cos t, y=14 sin t,
z=6¢. Find the velocity and acceleraticn at time t==0 and t=1x.
Find also the magnitudes of the velocity and acceleration at any time

t. [Kanpur 1980]

Solution. Letr be the position vector of the particle at
time r.

Then r=x i+y j+zk==4 cos ti+4 sin t j+6¢t k. If v is the
velocity of the particle at tin.e ¢ and a its accelcration at that time

then vzg;-—-—d» sin t i+4 cos ¢ j4 6k,

l=$=-4 costi—4sintj.
Magnitude of the velocity at time f=]| v |
=4/(16 sin? 1416 cos® 14236)=4/(52)=24/(13).
Magnitude of the acceleration
=| a [=4/(16 cos® 416 sin® t)=4,

At t=0, v=4j4+6k, a=—4i.

At t=4x, v=—4i+6k, a=—4j.

Ex. 15. A particle moves along the curve x=13-L1, y= il
z=2t+5 where t is the time. Find the components of its velocity an
acceleration at t=1 in the direction i+ j+ 3k. '

[Agra 1979, Rohilkhand 81)
-Solution. Ifr is the position vector of any point (x, y, z)on
the given curve, then

r=xi+yj+zk=(t341) i+ j4 (2t+5) k.
Velmity=v=g=313 i4+20j+2k=3i+2j+2k at r=1.
d’r d (dr g
— | I —_ ~ f= .
= (df) 6t i+2j=6i+2j at =1
Now the unit vector in the given direction i-j+ 3k
_I+Hj4+3k 443k
i3k T (1)
the component of velocity in the given direction
b Cit2i+H2k)-(i+j4+3K) 11 FIY -
b= RAUBARE
and the component of aczeleration in the given direction
= 01 F2)+j+3k) 8
V(11) Ay

Acceleration=a—

=b, say.

——

—
g
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Ex. 16. A particle moves so that its position vector is given by
r=cos wt i+ sin wt j where « is a constant; show that (i) the velo-
city of the particle is perpendicular to r, (ii) the acceleration is
directed towards the origin ang has magritude proportional to the

L] & - i dr ]
distance from the origin, (iii) r X o isa constant vecior.
: ; : dr ; _
Solution. (i) Velocity Vo N wl! i4+w cos wl j.

We have re

ﬁ: =(c0s wt i+sin wt j)o(—w sin wf i-+w cos wi j)

= — w COS w! Sin wl+4 w sin w! cos wi=A0.
Therefore the velocity is perpendicular to r.
(ii) Acceleration of the particle

=a=:-f,—:;= —w? cos w! i —w? sin wf j

= —w? (cos wt i+sin wf j)=— w?r.

.. acceleration is a vector opposite to the direction ofr ie.
acceleration is directed towards the origin. Also magnitude of

acceleration= | a | = | —w"r | =w’ which is proportional to r
i.e. the distance of the particle from the origin.

(iii) rxg={cns wl i+sin wf PX(—w sin w! i+w cos wt j)
=w cos” wt iXj—wsin? wt jXi [ iXi=0,jxj=0]
=w cos” w! k+w sin®? w! k [ iIXj=k=—jXxi]
=w (cos* w!+sin® w! ) k=wk, a constant vector,

Ex. 17. Find the unit tangent vector to any pﬂiﬂf on the curvé'!

X==a cos t, y=a sin t, z=>bt.

Solution. If r is the position vector of any point (x, ¥, z) on
the given curve, then

r=xi+yj+zk=a cos ( i+a sin ¢ j+ bt k.
dr . :
The vector :?; 1§ also the tangent at the point (x, y, z) to the

given curve,

We have j—:. =—asintifacos tj+bk.

j—:!= V(@ sin® t+4a® cos? 14b%)=+/(a%+b?).
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Hence the unit tangent vector t
__ dr/dt —a sin t i+a cos tj+bk
= ldrjdiy V(a*+ b

=-\f{a’l-}-b'} (—a sin t i+ a cos ¢ j+ bk).

Exercises

1. [fr is the position vector of a moving point and ris the
modulus of r, show that

r-i-dr- =T f—
dt dt’

Interpret the relations r-:%-'o and rxjir=0.
[Sambalpur 1974]
2. Ifris a unit vector, then prove that

[ex e || &
| “at: I” Vde ¥ [Rajasthan 1974]
1 dr
—— l H ’—-—- R ——
3 Ifr=t |+( 21 5;!) j» show that TX k.

[Utkal 1973]
4. I[fr=en a4e b, where a, b are constant vectors, show

that o n*r=0
dr? R [Agra 1976)
§. If r=a sin wi+b cos mr+% sin wf, prove that
d*r 2¢
‘ﬁ-i+aﬁr= o 08 wt,
where a, b, ¢ are constant vectors and w is a constant scalar.
[Marathwada 1974)
6. Show that r=aem™t4be™t is the soluticn of the differential
. d?r dr
equation g (m--n) ar +mn r=0,
Hence solve the equation
dfr dr
F—;;——Zr—ﬂ, where
dr
=‘ d — =] f Iﬁ{].
TS e [Kanpur 1977]

Aps, r=1} (e*+42et) i+ 4 (e¥—e™t) ).
7. A particle moves alongthe curve x=e-t, y=2 cos 31,
z=2sin 3¢. Determine the velocity and acceleration at any time

{ and their magnitudes at (=0,
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Ans, [v] =41(37); 1 a] =+/(325).
8. If A=512i4t j—r‘ k and B=sin 7 i—cos t j, find

@ 2 (AB; ® 4 AxB; © 7 (AA)

Ans. (a) (5¢*—1){cos r+lla‘ sin f;
(b) (3 sin t—3t2cos t) i—(t®cos 14-5t*sin 1) j
+(5t3sin t—117 cos t—sin 1) k.
(c) 100#342¢-4-61°.
9. Prove the fnlluwing :
d d* d-a
[“ ad’ "] iy T
db da dﬂh d*a
(b) dr[ “a@t -—:-:h] XdrTdn
§ 12. Integration of Vector Functions.

We shall define integration as the reverse process of differentia-
tion. Let f () and F (¢) be two vector functions of the scalar ¢

such that i F (¢)=f1 (¢).

X b.

dt
Then F (¢) is calied the indefinire integral ot f(t) with respect
to ¢ and symbolically we write [ f (¢) di=F (¢). (1)

The function f (¢) to be integrated is called the integrand.
If ¢ is any arbitrary constant vector independent of ¢, then

a‘%{F {t}+c}=f o).

This is equivalent to | f(¢) dft=F (t)+c. vee(2)

From (2) it is obvious that the integral F (¢) of f (1) is indefi-
nite to the extent of an additive arbitrary constant ¢. Therefore
F (¢) is called the indefinite integral of f (). The constant vector

¢ is called the constant of integration. It can be determined if we
are given some initial conditions.

If E]i' (t)=f (1) for all tin the interval [a, b], then thc defi-

nite m-regrai between the limits /=a and t=b can in such case be

written
b v+ d
L f(r) dr=L {d_: F {r;} dt

=[F {t)+c]: —F (b)—F (a).}
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Theorem. If f(¢)=f, (1) i+f, (1) j+/s (1) Kk, then
JE@)di=i§ fy (1) di+jf £, (1) di+Kk § £, (1) du.

d
Proof. Let - F ()=f (¢). sl

Then [ f(¢) dr=F (1). o
Let F(t)=F (1) i+F, (1) j+ F4 (1) k.
Then from (1), we have

d : .
7 FL () i+F () 5+ F5 () Ky=1 (1)

d . d d
or {3? F; [U} H‘{E Fy {”} j+{E;F: “J}k
=fi () i+f (1) j+Ss (1) k.
Equating the coefficients nt’i I k, we get
d
a7  (1)= fl(”’a’ Fy, (1)= .ﬂf”: F: (1)=fy (1),

Fy(t)={ fi(t) dt, F, (1)={ £, (1) dt, Fa (t)=[ f5 (t) dt.
F{r):“ 5 (§) dr} i-l-{j Ja (1) dr}j+ﬂ fi () dr} k

So from (2), we get
JE@) di=i § f, (1) dt+j [ fy (1) dt+K [ £, (1) dr.

Note. From this theorem we conclude that the definition of
the integral of a vector function implies the definition of integrals
of three scalar functions which are the components of that vector
function. Thus in order to integrate a vector function we should
integrate its compone:ts,

§ 13. Some Standard Results,

We have already obtained some standard results for differen-
tiation. With the help of these results we can obtain some

standard results for integration.

1. We have ‘—5— {r-s]-—ﬂ s+r.d
d

Therefore “g *STre F ) di=res+c,

where ¢ is the constant of iulegralmn. It should be noted that ¢ is
here a scalar quautity since the integrand is also scalar.

2. We have = {r"]=2r-{f£_

di
Here the constant of integration ¢ is a scalar quantity.

Theretore E(Zr-q—-) di=r’+c,
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dt

Therefore we have

dr d°r dr\?
].( 2 EE -Eﬁ) df“—"-(E) -+c.

Here the constant of integration{c is a scalar quaatity.
dr\* dr dr
Also ( ) -

d (dre\? _dr du
3. We hﬂ'ﬁ"ﬂ - (EE‘) == (E-d—'ﬁ.

dt)] =dt “dt’
dr\ dr dr d®r d®r

d
4. Wch = S, —— =F X ——,
¢ have (rxdf) d:xd.r r::«::ﬂ,IE rxdﬁ

dt

Here the constant of integration ¢ is a vector quantity since

&)

; d*r . :
the integrand r X - is also a vector quantity.

dr®
5. Ifaisa constant vector, we have
f-f—( Xr ~@xr+axﬂ-* ar
I = 2%gr
Therefore Hax%) dt=axr+ec.

Hence the constant of integration ¢ isja vector quantity.

‘ ] = * B L
6. Itr=[r |andr isa unit vector in the direction of r then

d _..‘f_(_l_ )__‘._‘_f.f_ A ar

Ef?': J_dr r “rdt rra ™
. 1 dv 1 dr a
Therefore ](-}'— Eﬁ_—h-‘;ﬁ‘ E'F‘ r ) df=f+ﬂ.

7. If ¢ is a constant scalar and r a vector function of a scalar

{, then obviously !cr df==fjl‘ dt.
8. Ifrand s are two vector functions of the scalar ¢, then
obviously !{H—s} df“——'Srdr -f--j s di.
SOLVED EXAMPLES
kx. L. Iff (r)=(t—1% i+21% j—3K, find
(i) Sf (1) dt and (ii) E f(z) dr.
Solution. (ij J Q@) di=[ {(t—1?) i+ 23 i—3k} di
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=i S(r —1%) dt+j 82:= dt+k ]-—3&':

oY ol ¢t
=j (? )—I—J ( 2 —)+k (—3)+c,
where ¢ is an arbitrary constant vector

I. Il
=(5- .3) i+ j—3rk+c.

(ii) ]"; f(t) dr=r (t—1%) i--21° j—3K} dt
2 ! 2 2
=i E (t—12) dr+ji 213 dt—k‘ 3dt
(2 it R &
2 21— ]=_ 403 13K,
[ ]*[ ] ['1 g ey

Ex. 2. Find the value of r satisfying the equation d—‘—r=a

drt 2
where a is a constant vector. Also it is given that when t=0, r=0
and § [Agra 1978]
Solution. Integrating the equation f,=a we get
g—m+b ‘where b is an arbitrary constant vector.
But it is given that when =0 5——=u
s, u=0atb or b=u
dr
B a-F=fl+ll.
Integrating again with respect to £, we get
r=41? a4 tu+4-c, where c is constant.
But when =0, r=0.
s 0=04+04+¢ or ¢=0.
L r=it*ad
Ex. 3. Find the value of r satisfying the equation g—:=ra+b.
where a and b are constant vectors. [Agra 1979]
Solution. Integrating the equation :ff“i=m+h we get
dr

a:«}ri a-+tb-+¢, where ¢ is constaant,
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Again integrating, we get

r=¢4t>a+4312 b4t ¢4 d, where d is constant.
2
Ex. 4. Integraie ‘if: —nr

dr?
Solution. We have t:!—m!'= — n’r.
dr? (1)
Forming the scalar product of each side of (1) with the vector
2 -j—:-, we get 2 5{.3:.;= —-Zn’r-er.
Now integrating we get

dr\? ,
s —_— Bl
r) = —n®r®4c, where ¢ is constant.

d’r
Ex. 5. Integrate ax &}—:=b, where a and b are constant vectors.

d dr d*r
[ T B ssil i i
Solution. We have = {a}c dr} axX 75
4
T'herefore integrating ax‘%::h, we get

dr ;
ax 7 =tb+c¢, where ¢ is constant.

Again integrating, we get
axXr=41*b-tc+d, where d is constant.
Ex. 6. Ifr(t)=>5t* i+t j—1® K, prove that

2 dr . .
L (rx&ﬁ,) dt= —14i+75j—15k.

[Kanpur 1976, 78; Agra 80]

. ) d*r o dr
Selution. We have ‘ (r X Hﬁ) dt=rx 5 +¢.

{2 d*r dar ]2
L (rK‘F) dr=[r:~:a 1

Let us now find rxg—;. We have j—:_—_lox i4+j—3r2 k.

rxg{-={5ﬁ 142 j— 0 k)X (10¢ i+j—3¢* k)

i j k '
=‘ 52 [ —1? |\=—=273 i4-51% j— 51 k.

10¢ l — 312
. : d‘.!r' 1 D4 3 13 K .
Eol L (r;{a—ﬂ) d‘t-[ 2t% i4-51% j— 51 k]:

2 2 2
=[—-—2r=] i+[5.¢"] j—[Sr’] k= — 14i4- /5] — 15k,
1 1

1
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Ex. 7. Given that
r(t)=2i—j+ 2k, when t=2
=4i— 2j+ 3k, when t==3,
‘ - 7 i Y
show that L ( r'rﬁJ dt=10.
[Kanpur 1980; Rohilkhand 80; Agra 76]
Solution. We have ‘( r-jr—t) dt=1%r*4-c.

4 dl- 3
), (=) =],
When 1=3, r=4i—2j43k.
when =3, r’=(4i—2j+3k)-(4i—2j+3k)=16+4-+9=29.
When t=2, r=2i—j+2k.
When t=2, r*=44-14+4=9,

S: ( r'g) dt=} [29—9]=10.

Ex. 8. The acceleration of a particle at any timet = 0is
given by

a.-;%:l? cos 2t i—2 sin 2t {4161 k.

If the velocity v and displacement r are zero at t=0, find v and
r at any time. [Kerala 1974)

Solution. We have g:-=12 cos 2¢ i— 8 sin 2t j4- 161 k.

Integrating, we get
V=i S {2 cos 2t dt+} X—E sin 2t dt+k Slﬁr dt

ot v=6sin 2ti+4 cos 2t j4-8t*k+-c.
When t=(), v=0.
0=0i44j4-0k+c
or c=—4j.

v=g{f=6 sin 2t i+4(4 cos 2t —4) j+8¢%k.
Integrating, we gel
=i {6 sia 20 dr 43 5(4 cos 26—4) dr-+k | 812 dr

= —3 cos 2t i+(2 sin 2t—4¢) j+5¢° k-+d, where dis constant,

When =0, r=0.
o 0=--3i4Cj+0k+d. ;o d=3i,
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r=—3 cos 21 i+(2 sin 2f — 4¢) j-}- 83 k + 3i
=(3—3 cos 2¢) i+(2 sin 2r —4r) j+ 213k,
Exercises

1. Evaluat:r (e* i4-e~% j4-tk) dt.
Li]

Ans. (e -1)i—3 (e2—1) j+3k.
2, Iff(t)=ti+(r2—21) J+(324-33) K, find

1
f (1) dt.
L ¢ [Agra 1977)
Ans, i -3j+7k.
3. Ifr=ti—r+4(1—] ) k and s=2¢2 i-l-6/k, evaluate

(i) rr-sdr, (i1) ]r}csd.f.

CAms. (i) 12, (ii) __245._.;?';4“? k.
4. Solve the equation i;:a where a isa Uﬂﬂﬁ[illﬂl veetor;
given that r=0 fand % ==0 when r=0. Ans. r-=37%.
5. Find the value of r satisfying the equation
“:T‘:=6ri—24r‘-’j-|—4 sin 1k,

given that r=2i+j and Z—i = —i—3k at 1=0.
ADs. r=(3—/—2) i4+(1--21% j4-(7--4 sin /) k.
6. The acceleration of a part:cale at any time / 1s
e’ 1+e*t j+ k. Find v, given that v=i+j at =0,
[Agra 1973]
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Gradient, Divergence and Curl

§ 1. Partial Derivatives of Vectors. Suppose r is a vector
depending on more than one scalar variable. Let r=fix, y, z)i.e.
let r be a function of three scalar variables x, y and z. The partial
derivative of r with respect to x is defined as

or Im f(x+3x, y, 2)—1M(x, y, 2)

ox = 3x—>0 ) aXx -
if this limit exists. Thus ©r/dx is nothing but the ordinary deri-
vative of r with respect to x provided the other variables y and z
are regarded as constants, Similarly we may define the partial

derivatives ox and a-ll
d}’ H.;

Higher partial derivatives can also be defined as in Scalar
Calculus. Thus, for example,

or 2 Br) a'r_E (Br ) a_’!'_a_(ﬁi)
é‘fﬁ'a}(ax 'ay2 oy \oy J'oz2 8z \oz )

dr o (Br o' 0 (Br )

ax oy ax\dy |’ oy ex oy \ox
If ¥ has continuous partial derivatives of the second order at
2 2
least, then, e = . i.e. the order of differentiation is imma-
dx dy oy ox
terial. If r=f(x, y, z), the total differential dr of r is given by
cr or or
dl'=a—" dx-l-ﬁ— dy-I—é'E- dz

§ 2. The Vector Differential Operator Del. (V). The vector

differential operator 7 (read as del or. nabla) is defined as

d d 0 K J
?_axi }"r-?- ]+—- k—-i +] E_r+

and opr: ates distributively.
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The vector operator Y7 can generally be treated to behave as
an ordinary v&ctor It possesses properties like ordinary vectors.

The symbols— —B— : can be treated as its components along

ox' 9y’ 9z
i, §, k.

§ 3. Gradient of a scalar Field. Definition. Let f(x, y, 2)
be defined and differentiable at each point (x, y, z) in a certain region
of srace (i.e., defines a differentiable scalar field). Then the gradient
of f, written as 7 for grﬂd f, is deﬁned as

0
vr=(Gis it k) 2L i L Lk
[Kerala 1975, Allahabad 79]

It should be noted that 7 fis a vector whose three successive
of of g
ox ' oy’ i 9z
field defines a vector field. If fis a scalar point function, then VJ f
is a vector point function,

components are Thus the gradient of a scalar

§ 4. Formulas involving gradient.

Theorem 1. Gradient of the sum of two scalar point functions.
If f and g are two scalar point functions, then

grad ( f+g)=grad f+grad g
or V (f+e)="f+Veg.
d

Proof. We have ¥/ {‘f-g-g):(i g—'l'i ;..) ( f4-2)

—: ( f+g}+1— (f+g}+k {f+g)

f S HE +k3f

: af
= E:&""' 5 K

(o))
g

z
3 0
=(' ax 1%y ay az)f+(lax+i E)
=V f+4+ Vg=grad f4grad g.
Similarly, we can prove that 7 ( f—g)=Vf-V g.

Theorem 2. Gradient of a constant, The necessary and suffi-
cient condition for a scalar point function to be constant is that

V/f=0.
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Solved Examples

= —12i—9j—16k.
Ex. 3. Ifr=|r | where r=xi+yj+zk, prove that

() ¥ fin=f" (r) Vr, (ii) vr==—:_- r, [Rohilkhand 1981]

(iii) V f(r)xr=0, (iv) V¥ (IT)=—-:;, - [Kanpur 1976]

() V log|r|=z.

(vi) 7 rm=nro?r,
[ Kanpur 1970; Rohilkhand 76; B.H.U. 70]

Solution. If r=xi+yj+zk, then r=| r |=+/(x24)3+4-2%).
r’=xi4y=*4-2%

O v rn=(ig+g+ks) /O

=i 0 0+ & S +R S A0

=i () SIS ) RS ) ;
=10 (i L Gk g ) =f ()9

or
w =i —
(i1) e have Vr= 1 +] Ely+k 37"
’, - ax L] L a‘: r
s ar ¥y ar z
Similarly ] and e

X . . . ik i .
Virm— 1+—;- H——;. —~;~ (Xi+yj+2k)=— r=r.
(1ii) We have as in part (i), Vf(r)=f"(r) Vr.
But as in part (i1) r=—:_— r.

v fir)=f"(r) % ¥

'i?f{f]xr={f'[r)-!r— r }xr={—: f‘(r}} (rxr)

=0, since r Xr=0.
1 .0 1y, .0 1 | 0 1
(iv) We have V ( )-—l 5% (—)-I—j 5 (T)+k_ 2 (—'-_—)
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33 Directional Derivative of a Scalar Point Function

be a neighbouring point on this surface. Then the position vector
of Q=r+dr=(x+4+3x) i+(y+38y) j+(z+38z) k.

—
PO=(r+dr) —r=06r=38x i+3dy j+dz k.
As OQ—P, the line PQ tends to tangent at P to the level sur-

face. Therefore dr=dxi+dyj+dzk lies in the tangent plane to the
surface at P.

From the differential calculus, we have

ar=2L ax f ay+ 2L d

0z,

Since f (x, y, z)::cnnstant, therefore df=0.

S,V fedr=0 so that 7 fis a vector perpendicular to dr and
therefore to thesingent plane at P to the surface

f(x,y, 2)=c.

Hence ¥/ f is a vector normal to the surface f (x, y, z)=c.

Thus if f(x, y, z) is a scalar field defined over a region R,
then V/f at any point (x, y, z) is a vector in the direction of nor-
mal at that point to the level surface f (x, ¥, z)=c passing through
that point

§ 6. Directional Derivative of a scalar point function.

[Agra 1972; Kolhapur 73; Bombay 70)
Definition. Let f(x, y, z) define a scalar field in-a region R

and let P be any point in this region. Suppose Q is a point in this
region in the neighbourhood of P in the direction of a given unit

kl __..|. f) o(dxi+dyj+dzk =/ fedr.

#
vecior a.

lim Q) —fP) .. .

Then O P PO if it
derivative of f at P in the direction of a.

Interpretation of directional derivative. Let P be the point

(x,¥,z) and let Q be the point (x+3x, y+38y, z+38z). Suppose
PQO=3s. Then és1s a small element at P in the direction of

a. If 3f=f(x+3x, y+3y, z+82)—f (, ¥, 2)=F(Q)—f (P), then
8f

~represents the average rate of change of f per unit distance in
as

exists, is called the directional

the direction of a. Now the directional derivative of f at P in the
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42 Solved Examples

Normal at P. Let R=X i+ Y j+ Zk be the position vector of
any current point Q (X, Y, Z) on the normal at P to the surface.

—
The vector POQ=R--r=(X—x) i+ (Y—y) j+(Z—2) k lies along the
normal at P to the surface. Therefore it is parallel to the vector
v/
(R—r)x Vf=0 .(2)
is the vector equation of the normal at P to the given surface.

Cartesian form. The vectors

(X—x) i+(Y—y) j+(Z—2) k and E?f=g-£ iy of af
will be parallel if
: - o iy of
(X=x)i4+(Y—y) i+(Z2—2) li=.ﬂ( .H- k)

where p is some scalar.
Equating the coefficients of i, j, k, we get

E*f of of

X— X=p j —y= pay Z__z=pa'5;'
X -.x__}"-uy__Z’_—-E
. TR
ox ey 0z

are the equations of the normal at P.
SOLVED EXAMPLES

Ex. 1. Find a unit normal vector to the level surface
x%y+-2xz=4 at the"point (2, —2, 3).
Solation. The equation of the ievel surface is
f(x, y, z)=xy+2xz=4.
The vector grad fis along the normal to the surface at the
point (x, ¥, 2).
We have grad f=V (x*y+42x2)=(2xy+2z) i+x? j+2x k.
. at the point (2, —2, 3), grad f=—2i+4j+4k.
.. —2i+4j+4k is a vector along the normal to the given
surface at the point (2, —2, 3). |
Hence a unit normal vector to the surface at this point
—2i+4j+<k —2i+4j+4k S
=] ~ai+4ji+4k Vi +i6F.= B
The vector — (—3i +§j+3k) ie., 3i—%j—2k is also a unit
normal vector to the given surface at the point (2, —2, 3).
Ex. 2. Find the directional derivatives of a scalar point func-
tion f in the direction of coordinate axes,
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Solution. The grad f at any point (x, y, z) is the vector

- '%{r”’&l

The directional derivative of f in the direction of i
== d #l-._ —'{ f f ) '“'l‘
grafl( '+By P sl
Similarl}r the directional derivatives of f in the directions of }

af
and k are — By aud 5y

Ex. 3. Find the directional derivative of f (x, y, z)=xyz+4xZ’

at the point (1, —2, —1) in the direction of the vector 2i—j—2Kk.
[Allahabad 1978]

Solution. We have f (x, y, z)=x%*yz+44xz%.
grad f=(2xyz+42%) i+x%z j+(x?y+8x2) k
=8i— )10k at the point (1, —-2, —1).

If a be the unit vector in the direction of the vector 2i - j—2k,

. . 2i-j—2k . 2 i—l J__i K
vV(d+144) 3 3 3
Therefore the required directional derivative is
16 1 20 37

ﬁ—gradf-a-—-{ﬂl—]ﬂlﬂk} {ﬂl—h—ﬂk)*—— +3+3 =3

Since this is positive, f is increasing in this direction.

Ex. 4. Find the directional derivative of
f(x, p, 2)=x*—2y*+42*
at the point (1, 1, —1) in the direction of 2i+j k [Agra 1979]

Apns. 8/4/6.

Ex. 5. Find the directional derivative of the function
f=x2—y?42z* at the point P (1, 2, 3) in the direction of the line
PQ where Q is the point (5, 0, 4). [Agra 1980]

of O ’

- of .
Solution. Here grad f=_ |+§; +é}_

=2xi—-2y j+4:z k-21 ~4j+ 12k at the point (1, 2, 3).

then

>
Also PQ=position vector of Q --position vector of P
=(5i+0j+4k) - (i+2j+3k)=4i -2j+k.

.+

If a be the unit vector in the direction of the vector PQ,
~ 4i—-2j+k 4!—2]-|-k
then =5 To+a+ 1)~ v@I)
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the required directional derivative

IR 4i—2j+k

=(grad f)-a=(2i—4j+ 12k)-{—-,v,{2’—,";—
28 28

4

Ex. 6. [In what -direction from the point (1, 1, —1) is the
directional derivative of f=x3—2y*+4z® a maximum ? Also Jfind the
value of this maximum directional derivative.

Solution. We have grad f=2xi—4yj+8zk
=2i—4j— 8k at the point (1, 1, —1).
The directional derivative of f is a maximum in the direction
of grad f=2i—4j—8k.
The maximum value of this directional derivative
=| grad f |=| 2i—4j—8k |=+/(4+16464)=+/(84)=2+/(21).

Ex. 7. For the function f=y[(x*+y*), find the value of the
directional derivative making an angle 30° with the positive x-axis at
the point (0, 1).

] af ] af L]
tion. W = |-
Solution e have grad f- % i+ 5y
—2xy ., x3-yp2 ; :
=[xi+_}'f',ll' l-+{1‘+i‘,l* J=—] at the point (0, 1).

If & is a unit vector along the line which makes an angle 30°
with the positive x-axis, then

A=cos 30° i+sin 30° j=’1;3 i+,

~.  the required directional derivative is

N : 1
) =grad fetﬁ(%il-(l‘g—s i+—2- i)= e
Ex. sﬂ.:_' H}ﬁﬂf i.!'...ﬂlﬂ grealest rate ﬂf increase ﬂfur_-xyzE'QI the
poirit (1, 0,3)2: | [Agra 1968]

Solution. We have Vu=yz® i+xz? j42xyz k.
., -at the point (I, 0, 3), we have

Vu=0i+9 j+0 k=9 j. |
The greatest rate of increase of u it the point (1, 0, 3)

==thr.-'_=_ﬁmaximum value of gg at the point (1, 0, 3}

| Vu |, at'the'point (1, 0, 3) |
| 93 |=Y.
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