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[EEEN INTRODUCTION

The limitations of analytical methods have led the engineers and scientists to evolve graphical and
numerical methods. As seen in § 1.8, the graphical methods, though simple, give results to a low degree of
accuracy. Numerical methods can, however, be derived which are more accurate. With the advent of high speed
digital computers and increasing demand for numerical answers to various problems, numerical techniques
have become indispensible tool in the hands of engineers.

Numerical methods are often, of a repetitive nature. These consist in repeated execution of the same
process where at each step the result of the preceding step is used. This is known as iteration process and is
repeated till the result is obtained to a desired degree of accuracy.

In this chapter, we shall discuss some numerical methods for the solution of algebraic and transcendental
equations and simultaneous linear and non-linear equations. We shall close the chapter by describing an itera-

tive method for the solution of eigen-value problem. For a detailed study of these topics, the reader should refer
to author’s book ‘Numerical Methods in Engineering & Science’.

m SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

To find the roots of an equation f (x) = 0, we start with aknown y,
approximate solution and apply any of the following methods :

(1) Bisection method. This method consists in locating the
root of the equation f (x) = 0 between @ and b. If f (x) is continuous
between a and b, and f(a) and f(b) are of opposite signs then there is
a root between a and b. For definiteness, let f (¢) be negative and £ (b)

be positive. Then the first approximation to the root isx, = % (a +b).

Y
b

S o e

If f(x,) = 0, then x, is a root of f (x) = 0. Otherwise, the root lies ol

H
between a and x, or x, and b according as f(x,) is positive or negative. o J *3
Then we bisect the interval as before and continue the process until ]

the root is found to desired accuracy. Fig. 28.1
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In the Fig. 28.1, f(x,) is +ve, so that the root lies between a and x,. Then the second approximation to the

rootis x, = %(a +x,). If f (x,) is — ve, the root lies between x, and x,. Then the third approximation to the root is
xy = 2(x; +x,) and so on.

Example 28.1. (@) Find a root of the equation x* - 4x - 9 = 0, using the bisection method correct to thre e
decimal places. (Mumbai,
(b) Using bisection method, find the negative root of the equation x* — 4x + 9 = 0. (J.N. 2 H., 290@;

Solution. (@)Let f(x) =x3—4x - 9
Since f(2) is —ve and f(3) is +ve, a root lies between 2 and 3
first approximate to the root is

=1l@+3)=25
2

Thus flx,)=(25P°-4(2.5)-9=-3375 ie, —ve
the root lies between x, and 3. Thus the second approximation to the root is

Xy = %(xl +3)=275

Then flx,) = (2.75)3 — 4(2.75) -9 = 0.7969 ie., +ve
the root lies between x, and x,. Thus the third approximation to the root is

Xy = %(J'c1 +x,) = 2.625

Then f(xy) = (2.625)° — 4(2.625) - 9 = — 1.4121 ie.,—ve
the root lies between x, and x,. Thus the fourth approximation to the root is

x, = %(x2 +x,) = 2.6875

Repeating this process, the successive approximations are

x, = 2.71875, xg = 2.70313, x, = 2.71094
xg = 2.70703, xg = 2.70508, %10 = 2.70605
x,, = 2.70654, x,, = 2.70642

Hence the root is 2.7064
(b) If ., B, ¥ are the roots of the given equation, then — ¢, — B, — y are the roots of (- x)? — 4(-x) + 9=0
the negative root of the given equation is the positive root of x® — 4x — 9 = 0 which we have found above to be
2.7064.

Hence the negative root for the given equation is — 2.7064.
Example 28.2. By using the bisection method, find an approximate root of the equation sin x = 1 !gi.vﬂp‘l'\
lies between x = 1 and x = 1.5 (measured in radians). Carry out compumtmns upto the 7th stage.

: |
(‘Wf’tzf.,,I i

Solution. Let f(x) = x sin x — 1. We know that 1" = 57.3".

Since f(A)=1xsin (1)—1 =sin (57.3°) — 1 = - 0.15849
and f(1.5)=1.5xsin (1.5 —1 = 1.5 x sin (85.95)° — 1 = 0.49625 ;
a root lies between 1 and 1.5.

first approximation to the root is x, = 1 (1 + 1.5) = 1.25.

Then f (x,) = (1.25) sin (1.25) ~ 1 = 1.25 sin (71 625°) — 1 =0.18627 and f (1) < 0.
a root lies between 1 and x, = 1.25.

Thus the second approximation to the root is x, = %(1 + 1.25) = 1.125.

Then f (x,) = 1.125 sin (1.125) — 1 = 1.125 sin (64.46)° — 1 = 0.01509 and f (1) < 0.
a root lies between 1 and x, = 1.125.

Thus the third approximation to the root is x5 = % (1+1.125) = 1.0625
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Then  f(x,) = 1.0625 sin (1.0625) — 1 = 1.0625 sin (60.88) -1 =-0.0718 <0
and f(xy) > 0, i.e. now the root lies between x, = 1.0625 and x, = 1.125.

fourth approximation to the root is x, = é (1.0625 + 1.125) = 1.09375

Then  f(x,) =—0.02836 <0 and f(x,) >0,
i.e., theroot lies hetween x, = 1.09375 and x, = 1.125.

fifth approximation to the root is x, = %(1.09375 +1.125) = 1.10937

Then  f(x;)=-0.00664 <0 and fl(x,)>0.
the root lies between x, = 1.10937 and x, = 1.125.
Thus the sixth approximation to the root is

= %(1.10937 +1.125) = 1.11719

Then  f(xy) =0.00421 > 0. But £ (x;) < 0.
the root lies between x, = 1.10937 and x; = 1.11719.

Thus the seventh approximation to the root is x, = — (1 10937 + 1.11719) = 1.11328

Hence the desired approximation to the root is 1.11328.

(2) Method of false position or Regula-falsi Y
method. This is the oldest method of finding the real
root of an equation f (x) = 0 and closely resembles the
bisection method. Here we choose two points x; and x,
such that f (x,) and f (x,) are of opposite signs i.e., the
graph of y = f (x) crosses the x-axis between these points
(Fig. 28.2). This indicates that a root lies between x, and
x, consequently f (x,) f (x,) < 0.

Equation of the chord joining the points Alx,,
flx )l and Blx,, f(x,)] is

Alxg, flg)l

X
—flxg) = Flxy) - flxy) (x —x,) (1) 0 x, P ! :1 .
X - % P Nl
The method consists in replacing the curve AB by Bix, [x)]
means of the chord AB and taking the point of Fig. 28.2 e
intersection of the chord with the x-axis as an
approximation to the root. So the abscissa of the point
where the chord cuts the x-axis (y = 0) is given by
g L —%
22 =%~ T~ flag) | 0 il

which is an approximation to the root.

Ifnow f(x,) and f(x,) are of opposite signs, then the root lies between x, and x,. So replacing x, by x, in (2),
we obtain the next approximation x,. (The root could as well lie between x, and x, and we would obtain x,
accordingly). This procedure is repeated till the root is found to desired accuracy. The iteration process based on
(1) 1s known as the method of false position.

Example 28.3. Find a real root of the equation x* ~ 2x — 5 = 0 by the method of false position mnmt to

three decimal places: (Manipal, 200&-)
Solution. Let flx)=23—-2x-5
so that f(2)=—1and f(3)=16 i.e., A rootlies between 2 and 3.
taking x, = 2, x; = 3, f (x,) = - 1, f(x;) = 16, in the method of false position, we get
. % - . ;
X, =Xy — mfhl)— F(xg) flx,) = ¥om = 2.0588 (D)

Now fx)=£(2.0588) = - 0.3908 i.c.. the root lies between 2.0588 and 3.



DOWNLOADED FROM www.CivilEnggForAll.com

taking x, = 2.0588, x, = 3, f(x;) = — 0.3908, f (x,) = 16, in (i), we get

0.9412
=2.0588 - 99412 ( (3908) = 20813
3 16.3908 . )

Repeating this process, the successive approximations are
x, = 20862, x, = 2.0915, x, = 2.0934, x, = 2.0941, x, = 2.0943 etc.
Hence the root is 2.094 correct to 3 de(;lmal places.

Example 28.4. Find the root of the equatwm cos x = xe* using the regzdcgjhlst method correct to
decimal places. a , : Lﬂhﬂpal

Solution. Let f(x)=cosx—xe*=0
So that fO)=1,f(1)=cos1-e=-2.17798
i.e., the root lies between 0 and 1.
taking x; = 0, x, = 1, f(xy) = 1 and f (x;) = — 2.17798 in the regula-falsi method, we get
i ) 1
0" Flay)— flag) | %' =0* 377708
Now f£(0.31467) = 0.51987
i.e., the root lies between 0.31467 and 1.
taking x, = 0.31467, x, = 1, f (x,) = 0.51987, f (x,) = - 2.17798 in (i), we get
0.68533
2.69785

X, =X, x 1 =0.31467 (2]

x4 = 0.31467 +

Now £(0.44673) = 0.20356
i.e., the root lies between 0.44673 and 1.
taking x;, = 0.44673, x, = 1, f (x,) = 0.20356, [ (x,) = — 2.17798 in (i), we get

0.65327
=0. = .2 = 0.49402
x, = 0.44673 + 238154 x 0.20356 = 0.4940

Repeating this process, the successive approximations are
x; = 0.50995, x,=051520, x,=0.51692
xg=0.51748, x,=051767, x,,=0.51775 etc.
Hence the root is 0.5177 correct to 4 decimal places.

x 0.51987 = 0.44673

Example 28.5. Find « real root of the equation x log,, x = 1.2 by regula-falsi methcﬂ correct to ﬁmr

decimal places. , (V.T.U, 2010 ; J.N.T.U., 2008 ; Kottayam, 2005)
Solutmn. Let [(x)=xlog,,x—1.2
so that f(1)=—ve, f(2)=—ve and f(3) = + ve.

a root lies between 2 and 3.
Taking x, = 2 and x, = 3, f (x,) = — 0.59794 and f (x,) = 0.23136, in the method of false position, we get

Xy =Xo— m f(x,) = 2.72102 ()
Now f(x,) = £(2.72102) = — 0.01709
i.e., the root lies between 2.72102 and 3.
taking x, = 2.72102, x, = 3, f (x,) = - 0.01709
and f(x,)=0.23136 in (i), we get
x,= 272102+ — 027898, 01709 = 2.74021
0.23136 + 0.01709

Repeating this process, the successive approximations are
x, = 2.74024, x; = 2.74063 etc.
Hence the root is 2.7406 correct to 4 decimal places.

_ Example 28.6. Use the metho;faffhlse potztwn, to find. the fourth root of 32 r:arraffto,tﬁng!
Solution. Let x = (32)VY* sothatx*-32=0

- P =
|

ALY B
A's
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Take f (x) = x* — 32. Then f(2) = — 16 and £ (3) = 49, i.e., a root lies between 2 and 3.
taking x, = 2, x, = 3, f (x,) = — 16, f (x,) = 49 in the method of false position, we get
Xy =y — ﬁ? fa)=2+ 10 =2.2462 )
Now f(x,) = f(2.2462) = — 6.5438 i.e. the root lies between 2.2462 and 3.
taking x,=2.2462,x, = 3, f(x,) = - 6.5438, f(x,) = 49
in (i), we get xXq = 2.2462 —;111t228 (— 6.5438) = 2.335
Now f (x;) = £(2.385) = — 2.2732 j.e. the root lies between 2.335 and 3.
taking x, = 2.335 and x, = 3, f (x,) = — 2.2732 and f (x,) = 49 in (i), we obtain
3-2.335
49 + 2.2732
Repeating this process, the successive approximations are x; = 2.3770, x; = 2.3779 etc.
Since x; = x; upto 3 decimal places, we take (32)"* = 2.378.
(3) Newton-Raphson method*. Let x, be an approximate root of the equation f (x) = 0. If x, =x, + h be
the exact root, then f (x,) = 0.
expanding f (x, + h) by Taylor’s series

x,=2.335- (—2.2732) = 2.3645

2
F o)+ Bf o) + o 7 (5) + e = O

Since h is small, neglecting 2 and higher powers of &, we get
fx) D
Fx)
a closer approximation to the root is given by
_ flx)
x] frme xD f’(xo) *
Similarly, starting with x,, a still better approximation x, is given by

fxg) +hf(xg)=0 or h=-

e S
Xy =2y — )
In general, x,, ,=x, — ;.c,((zn)) .(2)

which is known as the Newton-Raphson formula or Newton’s iteration formula.

W 1. Newton’s method is useful in cases of large values of f(x) i.e. when the graph of f(x) while crossing the x-axis
is nearly vertical.

- 4. Newton’s method has a second order of quadratic convergence. Suppose x,, differs from the root o by
a small quantity €, so thatx =e+ €, andx,  ,=a+¢, ..

- o fase,)
Then (2) becomes ¢t + €, , ; =0 +€, yi(CET)
1 2
fla)+e, o)+ € fPla)+..
/ Sk e ) B 21 :
ie., €, ,155, Flaie) s:: W £ T e @ [By Taylor’s expansion.]
_. _ &f() +%a,2, (o) + ... k. A
oy fla)+e,f o) + ... [ fle)=0]
. afie) .8 fo neglecting third and
Af (@) +e,f ()] 2 fllo)” higher powers of €,,.

This shows that the subsequent error at each step, is proportional to the square of the previous error and as such
the convergence is quadratic. ; (P.T.U., 2005)

(h5; §. Geometrical interpretation. Let x, be a point near the root o of the equation f(x) = 0 (Fig. 28.3). Then the
equation of the tangent at A, lx,, f(xg)l is y — f(xg) = f7 (x) (x — x,).

*See footnote p. 466. Named after the English mathematician Joseph Raphson (1648—1715) who suggested a method similar
to Newton’s method.
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flxg)
f’ (xo)
to the root o If A, is the point corresponding to x, on the curve, then the
tangent at A, will cut the x-axis of x, which is nearer to o and is,
therefore, a second approximation to the root. Repeating this process, we
approach to the root o quite rapidly. Hence the method consists in

It cuts the x-axis at x; =x, — which is a first approximation

replacing the part of the curve between the point A, and the x-axis by X
means of the tangent to the curve at A,.]
Fig. 28.3
Example 28.7. Find the positive root of x* — x = 10 correct to three decimal places, using Newton-Raphson
method. (J.N.T.U., 2008 ; Madras, 2006)
Solution. Let f(x)=x*—x-10
So that f(D)=—10=—-ve,f(2)=16-2-10=4 =+ ve
aroot of f(x) = 0 lies between 1 and 2. Let us take x, = 2
Also fx)=4x3-1
Newton-Raphson’s formula is
f(x,) ;
Xns1=%— fl(xﬂ) (l)
Putting n = 0, the first approximation x, is given by
f(xo) f(2) 4 4
mg— w2 LS g £ .9 % _j187m
15% 7 ) @) 4x2° 1 31
Putting n = 1 in (2), the second approximation is
_ flx) £(1.871)
X, =%, — ) 1.871 - a8
(1.871)" - (1.871) - 10 0.3835
=1.871 - =1.871 - = 1.856
4(1.871)° -1 25.199
Putting n = 2 in (), the third approximation is
1.856)" —(1.856) — 10
f(xg) 4(1.856)" -1
_ _ 0.010 _
= 1.856 24 574 1.856
Here x, = x,. Hence the desired is 1.856 correct to three decimal places.
Example 28.8. Find the Newton’s method, the real root of the equation 3x = cos x + 1.
(V.T.U., 2009 ; S.V.T.U., 2007)

Solution. Let f(x)=3x-cosx-1
f0)=—2=—ve, f(1) =3 -0.5403 — 1 = 1.4597 = + ve.
So a root of f (x) = 0 lies between 0 and 1. It is nearer to 1. Let us take x, = 0.6.

Also f(x)=3+sinx
Newton’s iteration formula gives
f(xn) 3x, —cosx, —1
Tne1 =% f(x,) =T T 3isin X,

=xnsmxn+cnsxn+1 @
3+sinx, ’

Putting n = 0, the first approximation x, is given by
. < %o sin %y +cos %y + 1 _ (0.6) sin (0.6) + cos (0.6) + 1
1= 3 + sin x, - 3 sin (0.6)
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_ 0.6x0.5729 + 0.82533 +1
3+0.5729
Putting n = 1 in (i), the second approximation is
% sin x; +cosx; +1  0.6071 sin (0.6071) + cos (0.6071) + 1

= T Zising 3+ sin (0.6071)

_ 0.6071x0.57049 + 0.8213 + 1
B 3 +0.57049

Hence the desired root is 0.6071 correct to four decimal places.

_ Example ample 28.9. Using Newton’s iterative method, find the real root "f X I‘j&&*ﬁ 1.2 correct to five decir
places. (V.T.U., 2005 ; Mumbai, 2004 ; Burdwan, 2003)

=0.6071

=0.6071 Clearly, x, = x,.

Solution. Let f(x)=xlog,,x — 1.2
f(1)=-12=—ve, f(2)=2log, 2— 1.2 = 0.59794 = — ve
and £(3)=3log,y3 - 1.2 = 1.4314 — 1.2 = 0.23136 = + ve
So a root of f (x) = 0 lies between 2 and 3. Let us take x, = 2

Also fx) =log,gx +x . 1 log,, e =log,,x + 0.43429
x

Newton's iteration formula gives
o —x o [®) 043429, +12 )
P17 e ) logy, x, +0.43429
Putting n = 0, the first approximation is
oo 043429 xx) +1.2  043429x2+12 086858 +12
17 log,y %, +0.43429  log,, 2 +0.43429  0.30103 + 0.43429
Similarly puttingn = 1, 2, 3, 4 in (i), we get
. - 043429x2.81+1.2
27 logy, 2.81 + 0.43429
_ 0.43429 x 2.741 + 1.2
" log,, 2.81+ 0.43429
_ 0.43429 x 2.74064 + 1.2 _ 5 n4065
log,, 2-74064 + 0.43429
_ 0.43429 x 2.74065 + 1.2
" logy 2.74065 + 0.43429

=2.81

=2.741

= 2.74064

X

= 2.74065

Clearly x, = x.
Hence the required root is 2.74065 correct to five decimal places.

[EEE] USEFUL DEDUCTIONS FROM THE NEWTON-RAPHSON FORMULA
(1) Iterative formula to find 1/N is x,,,=%,(2-Nx,)

(2) Iterative formula to find N is X

n+1

1
2 (x +Nix)
2 xn x"

(3) Iterative formula to find 1/ JN is « é-(::ur:,I + 1/Nx,)

n+l

(4) Iterative formula to find 4N is x

n+1

%[(k - 1)x,, + Nixk-1)]

Proofs. (1) Letx=1/N or 1/x-N=0
Taking f (x) = 1/x — N, we have f(x) = — x2
Then Newton’s formula gives

S [ % =X, — (L"x,,——zN) =x, + [%-N]xf:xn +x, —Nx2 =x,(2 — Nx,)
X, -xn_ X

X
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(2)Letx=JN or x2-N=0
Taking f (x) = x%2 — N, we have f”’ (x) =
Then Newton’s formula gives

. [x) xf—N_l .
B =%, P x, — o _E(x" +N/x)) (Madras, 2006)

1 2 1 _
(3)Letx= —=— or x*—--=—=0
JN N

Taking f (x) = x2 — 1/N, we have f’(x) = 2x
Then Newton’s formula gives

flx,) xf—uN_l[ 1 ]
T ey T T, A R,
WLletx=4N or 2*-N=0

Taking f (x) = x* — N, we have f’(x) = kx* -1

Then Newton’s formula gives

flx ) #-N 1

s — e i e o REVEL —_ _N
xn 15 %, f'(x" ) =X, kx;’:—l k [(k l)x.u + xk—] :| i

n

Example 28.10. Evaluate the following (correct to four decimal places) by Newton’s uermtmn meﬂmd

(iy1/31 @) 5 (Anna, 2007) sl ( J
Gii) 1114 (iv) 324 (Madras, 2003) @) _(30)'”5. p i) . :'H' ;-
Solution. () Taking N = 31, the above formula (1) becomes

Yns1™ x”(2 - 31)?")
Since an approximate value of 1/31 = 0.03, we take x, = 0.03
Then x, =x4(2 - 31x,) = 0.03 (2 - 31 x 0.03) = 0.0321

%, = x,(2 - 31x;) = 0.0321(2 — 31 x 0.0321) = 0.032257
Xy =%, (2 - 31x,) = 0.032257 (2 — 31 x 0.032257) = 0.03226
Since x, = x; upto 4 decimal places, we have 1/31 = 0.0323.

(it) Taking N = 5, the above formula (2), becomes x,, , ; = %(;u:,T +5/x,)
Since an approximate value of \/5 = 2, we take x,=2
Then x, = _2]:(x0 +5/x,) = %(2 +5/2) = 2.25

x, = %(xl + 5/x,) = 2.2361

Xy = % (x5 + 5/x,) = 2.2361
Since x,, = x, upto 4 decimal places, we have J5 =2.2361.
(zzt) Taking N = 14, the above formula (3), becomes x, , | = %[xn + (14x,)]

Since an approximate value of 1/J14 =1/ 16 = % = 0.25, we take x, = 0.25

Then x, = % [y + (14x)] = % [0.25 + (14 x 0.25)""] = 0.26785

% [x, + (14x))] = % [0.26785 + (14 x 0.26785)"1] = 0.2672618

= % lx, + (14x,)] = % [0.2672618 + (14 x 0.2672618)"] = 0.2672612

Since x, = x4 upto 4 decimal places, we take 1/V14 = 0.2673.
(iv) Taking N = 24 and k = 3, the above formula (4) becomes x

n+1

= 3 [2x, + 2i2)
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Since an approximate value of (24)'* = (27)' = 3, we take x, = 3.
Then  x,= % (2t + 24/x5) = 1(6 +24/9) = 2.88889

x,= %(le + 24/22) = % [(2 x 2.88889) + 24/(2.88889)2] = 2.88451

Xy = %(2::2 + 24/ xg s %- [2 x 2.88451 + 24/(2.88451)?] = 2.8845
Since x, = x, upto 4 decimal places, we take (24)' = 2.8845
(v) Taking N =30 and %k = — 5, the above formula (4) becomes

X1 = e (- 62, + 3049 = %26 - 30¢9)

n+

Since an approximate value of (30) -5 = (32)"% = 1/2, we take x, = 1/2

Then %= %0.6-30:8) = L (6 -30/29) = 0.50625
3y = 2 (6-305) = 299025 6. 30(0.50625)] = 0.506495
%= 22 (6-3015) = 0508495 (6 _ 30(0.506495)°] = 0.506496.

Since x,, = x, upto 4 decimal places, we take (30)- V* = 0.5065.

PROBLEMS 28.1
1. Find a root of the following equations, using the bisection method correct to three decimal places :
()x®-2x—-5=0 (P.T.U, 2005) (i) P —-22-1=0 J.N.T.U., 2009)

(iii) x® —x — 11 = 0 which lies between 2and 8  (iv) 2x% + x% — 20x + 12 = 0.
2. Using the bisection method, find a real root of the following equations correct to three decimal places :

(2) cos x = xe* (Mumbai, 2004) (1) x logy,x = 1.2 lying between 2 and 3
(iii) e* — x = 2 lying between 1 and 1.4 (iv) e*=4 sinx. -
3. Find a real root of the following equations correct to three decimal places by the method of false position :
@x+x-1=0 (i)x*-4x-9=0 (V.T.U,, 2007)
(#i)x®+x-1=0 nearx=1 (fv)ab—xt—a3—1=0. (Nagarjuna, 2001)
4. Using regula-falsi method, compute the real root of the following equations correct to three decimal places :
(D) xe*=2 (S.V.I.U., 2007) (i) cosx=3x—1 (fif) xtanx—1=0
(iv) 2 —logx =7 (J.N.T.U., 2006) (v) xe* = sin x. (P.T.U., 2006)

5. Find the fourth root of 12 correct to three decimal places using the method of false position.
6. Find by Newton’s method, a root of the following equations correct to 3 decimal places :

()x%—3x+ 1=0 (Bhopal, 2009) (@) —2c-5=0 (P.T.UL, 2005)
(i) x®~5x +8=0 (Mumbai, 2004)
(iv) 3x® — 922 + 8 = 0 lying between 1 and 2. (Madras, 2003)

7. Find a root of the following equations correct to three significant figures using Newton’s iterative method :
(i) % + x® — Tx® —x + 5 = 0 lying between 2 and 3 (Madras, 2003)

(i) 25— 522 + 3 = 0.
8. Find the negative root of the equation x3 — 21x + 3500 = 0 correct to two decimal places by Newton’s method. ;|
9. Using Newton-Raphson method, find a root of the following equations correct to the three decimal places : ‘g

W) xe*—2=0 (V.T.U, 2005) (ii) x2+4sinx =0 (Hazaribagh, 2009);
(iii) x tan x + 1 = 0 which is nearx = n (J.N.T.U, 2006 ; umu,zoasj;
(iv) & = x2 + cos 25x which is near x = 4.5. (V.T.U., 2007)

10. Find by Newton’s method, the root of the equations :

(i) cosx =xe* (JN.T.U, 2009 ; V.T.U, 2003) (ii) x log,,x =12.34 (Anna, 200@‘
(iE) 10F +x -4 =0 (iv) x + logyx = 8.376 (Rohtak, 2008)

11. Develop a recurrence formula for finding VN , using Newton-Raphson method and hence compute to three decimal
places

i) 13 (U.P.T.U, 2008) @) J10 W.NT.U,
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12. Find the cube root of 41, using Newton-Raphson method. (Madras, 2003)
13. Develop an algorithm using N-R method, to find the fourth root of a positive number N and hence find (32)"4.

(W.B.T.U., 2005)

14. Evaluate the following (correct to 3 decimal places) by using the Newton-Raphson method :
(i) V18 J.N.T.U., 2004) (i) 1415 (iii) (28)Y4.

IEEX3 APPROXIMATE SOLUTION OF EQUATIONS—HORNER’S METHOD

This is the best method of finding approximate values of both rational and irrational roots of a numerical
equation. Horner’s method consists in diminution of the root of an equation by successive digits occurring in the
roots.
If the root of an equation lies between @ and @ + 1, then the value of this root will be a . bed ..., where b, ¢,
d ... are digits in its decimal part. To obtain these, we proceed as follows :
(i) Diminish the roots of the given equation by a so that the root of the new equation is 0 . bed ...
(if) Then multiply the roots of the transformed equation by 10 so that the root of the new equation is
b.ed.

(iif) Now diminish the root by & and multiply the roots of the resulting equation by 10 so that the root is
O Y

(iv) Next diminish the root by ¢ and so on. By continuing this process, the root may be evaluated to any
desired degree of accuracy digit by digit. The method will be clear from the following example.

Example 28.11. Find by Horner’s method, the positive root of the equation x* + x* + x — 100 = 0 correct
to three decimal places.

Solution. Step I. Let fx)=x3+x2+x-100

By Descartes’ rule of signs, there is only one positive root. Also f(4) = — ve and f(5) = + ve, therefore, the
root lies between 4 and 5.

Step II. Diminish the roots of given equation by 4 so that the transformed equation is

¥+ 13x%2+57x—16=0 ..(2)

Its root lies between 0 and 1. (We draw a zig-zag line above the set of figures 13, 57,
— 16 which are the coefficients of the terms in (i) as shown below. Now multiply the roots of (i) by 10 for which
multiply the second term by 10, the third term by 100 and the fourth term by 1000 (i.e.attach one zero to the
second term, two zeros to the third term and three zeros to the fourth term). Then we get the equation

f,x) = 23 + 13022 + 5700x — 16000 = 0 )
1 1 1 ~100 (4.264
4 20 ¥ B4
5 21 ]7 — 16000
4 36 11928
9 5700 — 4072000
4 264 3788376
130 5964 — 283624000
2 268
132 623200
2 8196
134 631396
2 8232
1360 63962800
_ 6
1366
_6
1372
6

13780
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Its root lies between 0 and 10.
Clearly fi2)=—ve, f1(3) =+ ve
the root of (if) lies between 2 and 3 i.e., first figure after decimal is 2.
Step I11. Diminish the roots of fi(x) = 0 by 2 so that the next transformed equation is
x3 + 13622 + 6232x — 4072 =0 ..(itz)
Its root lies between 0 and 1. (We draw the second zig-zag line above the set of figures 136, 6232, — 4072).
Multiply the roots of (iiz), by 10, i.e. attach one zero to second term, two zeros to third term and three zeros to the
fourth term. Then the new equation is
fz(x) = x5 + 1360x2 + 623200x — 4072000 = 0
; coms & 4072000
Its root lies between 0 and 10, which is nearly = 623200 -
Hence second figure after decimal place is 6.
Step IV. Diminish the roots of f,(x) = 0 by 6, so that the transformed equation is
*% + 1378x2 + 639628x — 283624 = 0.
Its root lies between 0 and 1. (We draw the third zig-zag line above the set of figures 1378, 639628,
- 283624.) As before multiply its roots by 10, i.e.attach one zero to the second term, two zeros to the third term
and three zeros to the fourth term. Then the equation becomes
fox) = %3 + 13780x2 + 63962800x — 283624000 = 0

Its root lies between 0 and 10, which is nearly = % = 4. Thus the roots of f;(x) = 0 are to be

diminished by 4 i.e. the third figure after decimal place is 4. But there is no need to proceed further as the root
is required correct to three decimal places only. Hence the root is 4.264.

Obs. 1. After two steps of diminishing, we apply the principle of trial divisor in which we divide the last
coefficient by last but one coefficient to get the next integer by which the roots are to be diminished. These last two
coefficients should have oppuosite signs. _

Obs. 2. At any stage if the trial divisor suggests the next integer to be zero, then we should again multiply the roots
by 10 and write zero in decimal place of the root.

Example 28:12. Find the cube root of 30 correct t6 3 decimal places, using Horner's method: =

Solution. Step I. Let x = ¥30 e fx)=2*-30=0
Now f@B)=-=3(—ve), f(4)=34(+ve)
the root lies between 3 and 4.
Step I1. Diminish the roots of the given equation by 3 so that the transformed equation is
¥+9x2+27x-83=0 .AB)

Its roots lies between 0 and 1. (We draw a zig-zag line above the set of numbers 9, 27, — 3 which are the
coefficients of the terms in (¢)). Now multiply the roots of (i) by 10 for which attach one zero to the second term,
two zeros to the third term and three zeros to the fourth term. Then we get the equation

f1) = x3 + 9022 + 2700x — 3000 = 0 L)
Its roots lies between 0 and 10.
Clearly fill) =—ve, f(2)=+ve

the root of (i) lies between 1 and 2 i.e., first figure after decimal place is 1.
Step III. Diminish the roots of fi(x) = 0 by 1, so that the next transformed equation is
2 +93x% + 2883x - 209 =0 ...(itt)
Its root lies between 0 and 1. (We draw a second zig-zag line above the set of figures 93, 2883, — 209).
Multiply the roots of (iif) by 10 i.e., attach one zero to second term, two zeros to third term and three zeros to the
fourth term. Then the new equation is
folx) = x% + 930x2 + 288300x — 209000 = 0
Its root lies between 0 and 10, which is nearly
= 209000/288300 = 0.724 > 0 and < 1.

Hence second figure after decimal place is 0.
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1 0 0 -30 (3.107
3 9 21
3 9 - 30000
3 18 2791
6 2700 — 209000000
3 9
90 2791
1 92
91 28830000
1
92
1
9300

Step IV. Diminish the root of f,(x) = 0 by 0 and then multiply its roots by 10 so that

f3(x) = x3 + 9300x2 + 28830000x — 209000000 = 0.

Its root lies between 0 and 10, which is nearly = 209000000/28830000 = 7.2 > 7 and < 8. Thus the roots of
f3(x) = 0 are to be diminished by 7 i.e., the third figure after decimal is 7. Hence the required root is 3.107.

PROBLEMS 28.2

1. Find by Horner’s method, the root (correct to three decimal places) of the equation
(1) 2% — 38x + 1 = 0 which lies between 1 and 2

(i) x® +x~1=0 (Coimbatore, 1997) (#i) x3 —6x—18=0 , o
(iv) x® — 8x® + 2.5 = 0 which lies between 1 and 2. ' .(Madms, 2000 S)

2. Using Horner’s method, find the largest real root of x° — 4x + 2 = 0 correct to three decimal places. :

3. Show that the root of the equation x* + x3 — 4x® — 16 = 0 lies between 2 and 3. Find its value correct to two decimal
places by Horner’s method.

4. Find the negative root of the equation x® — 9x% + 18 = 0 correct to two decimal places by Horner’s method.

5. Find the cube root of 25 by Horner’s method correct to 8 decimal places.

- 'y

g+

XX SOLUTION OF LINEAR SIMULTANEOUS EQUATIONS

Simultaneous linear equations occur in various engineering problems. The student knows that a given
system of linear equations can be solved by Cramer’s rule or by Matrix method (§ 2.10). But these methods
become tedious for large systems. However, there exist other numerical methods of solution which are well-
suited for computing machines. We now explain some direct and iterative methods of solution.

[EEX3 DIRECT METHODS OF SOLUTION

(1) Gauss elimination method*. In this method, the unknowns are eliminated successively and the
system is reduced to an upper triangular system from which the unknowns are found by back substitution. The
method is quite general and is well-adapted for computer operations. Here we shall explain it by considering a
system of three equations for the sake of clarity.

Consider the equations

gx+by+cz=d
GoX + by + cpz = d, .(1)
ag% +byy + c;z = dy
Step 1. To eliminate x from second and third equations.
Assuming a, # 0, we eliminate x from the second equation by subtracting (a,/a,) times the first equation
from the second equation. Similarly we eliminate x from the third equation by eliminating (a3/a,) times the first
equation from the third equation. We thus, get the new system

*See footnote p. 37.
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-(2)

byy + ¢z =d,
by +czz=dy
Here the first equation is called the pivotal equation and a, is called the first pivot.
Step II. To eliminate y from third equation in (2).
Assuming b; # 0, we eliminate y from the third equation of (2), by subtracting (by/b)) times the second
equation from the third equation. We thus, get the new system

alx+b1y+clz=d1}

alx+b1y+clz=d1}

by +c,z=d, «A3)
cz=dg

Here the second equation is the pivotal equation and b; is the new pivot.

Step IIl. To evaluate the unknowns.

The values of x, v, z are found from the reduced system (3) by back substitution.

Solution. We have x+4y—z=-5 -1 -.(@)
X+y—6z=-12 -16 (73]
3x—y-z=4 5 {773]
Step I. Operate (if) — (i) and (iii) — 3(i) to eliminate x :
Chech sum
-3y—-56z=-17 -15 ...(iv)
—13y+2:=19 8 (v)

Step II. Operate (v) — % (iv) to eliminate y :

Check sum
% - % 73 ..(vi)
Step I11. By back-substitution, we get
From (vi) : 2= 1;_18 = 2.0845

: 7 5(148 81
From ¢ =___(_J=__=_ 1
(iv) y=3z-3Um 1 1.1408
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Feoin (i) Rt (_ﬂ)J,ﬁ:ﬁ:l.eug
TV TR T
Hence x=1.6479,y=—1.1408, z = 2.0845

Note. A useful check is provided by noting the sum of the coefficients and terms on the right, operating on those
numbers as on the equations and checking that the derived equations have the correct sum.

1 4 -1||=x -5
Otherwise: Wehave |1 1 -6 =|-12

3 -1 -1f|z 4
1 4 -1||= -5
Operate R, - R, and R,-3R,, |0 -3 -5 =[-7
0 -13 2||=z 19
13 1 4 -1|[x -5
OperabeRa——a—Rz, 0 -3 -5||yl=| -7
0 0 71/3||= 148/3

Thus, we have z = 148/71 = 2.0845,
3y=T-52=T7-104225=-3.4225 ie, y=-1.1408
and x=—5—-4y+z=—5+4(1.1408) + 2.0845 = 1.6479
Hence x = 1.6479, y = — 1.1408, 2z = 2.0845.

Example 28.14. Solve 10x— 7y + 32 + 5u =6, - 6x +8y—z-4u=53x+y+ 42+ 11lu =2, 5x - 9y - 2z + 4u

= 7 by Gauss elimination method. , (S.V.T.U., 2007)
Check sum

Solution. We have 10x—Ty +32+5u=6 17 (D)

—6x+8 —z—-4u=>5 2 .(if)

Sx+y+4z+11lu=2 21 (iiE)

5x -9y —2z+4u="17 5 ...(iv)

B 1. s elishnte s, aperets [(ii} . (1—3) (i)], [(iii) -2 (i)},[(iv) . i%(i)] :

Check sum
3.8y +08z—-u=8.6 12.2 (V)
3.1y +3.1z+95u=0.2 15.9 ..(vr)
—-b5.5y—-35z+15u=4 -3.5 ...(viD)
e . 3.1 . -5.5
Step II. To eliminate v, operate [(u;) - ﬁ(u)]’ [(uu) - [ 38 ) (u)] ;
2.4473684z + 10.315789u = — 6.8157895 ...(vitL)
—2.3421053z + 0.05263151: = 16.447368 ..(ix)

. —2.3421053) , ...
Step I1I. To eliminate z, operate [(zx) - [ ) ( )} :

2.4473684
9.9249319u = 9.9245977
Step IV. By back-substitution, we get
u=1l,z=—-T7,y=4andx=5.
(2) Gauss-Jordan method*. This is a modification of the Gauss elimination method. In this method,
elimination of unknowns is performed not in the equations below but in the equations above also, ultimately

reducing the system to a diagonal matrix form i.e., each equation involving only one unknown. From these
equations the unknowns x, y, z can be obtained readily.

Thus in this method, the labour of back-substitution for finding the unknowns is saved at the cost of
additional calculations.

*See footnote p. 37.
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Example 28.15. Apply Gauss-Jordan method to solve the equations

x+y+2=9;2x-3y+42=13;3x +4y + 5z = 40. (V.T.U., 2009 ; P.T.U., 2005)
Solution. We have xX+y+z=9 )
2x—-3y+42=13 -..(iM)
3x + 4y + 52 =40 ..(ii)
Step I. Operate (ii) — 2(f) and (iit) — 3(i) to eliminate x from (i) and (iii).
x+y+z=9 ..(iv)
-5y +2=-5 (V)
y+22=13 ...(vi)

Step II. Operate (iv) + % (v) and (vi) + % (v) to eliminate y from (iv) and (vi) :

x+ %z =8 ...(vii)
s (viii)
1—522 =12 e

Step III. Operate (vit) — 1?-2— (zx) and (viii) — g(ix) to eliminate z from (vii) and (viti) :

x=1
~Hy=-15
12
5 =12
Hence the solutionisx=1,y=3,z=5.

1 1 1|[=x 9 ]

Otherwise : Rewriting the equations as 2 -3 4||y[=]13
3 4 5[|z] |40]

1 1 1][x] 9]

Operate R, - 2R, R, - 3R, 0 -5 2(|y|=|-5
0 1 2f|z| |13]

1 1 1[ ] 9

Operate R, + 1 R,, 0 -5 2||ly|l=|-5
. 0 0 12/5[|z] | 12]

11 1« [ 9]

Operate - R,, 5R, 0 5 -2]||y|=| b
0 0 12|[z| |60]

1 1 1 1 1][x] [ 9]

Operate R, + = R,, — R 0 5 0||ly|=|15

2 63 1273

0 0 1f[z] | 5]

3 ' 1 1 1][x] [9]
Operate ERE 0 1 0||ly|=|3]
10 0 1f|z] |[5]

[1 0 o][x] [1]

Operate R, — R, — R, 0 1 0||y|=|3
|0 0 1)z |5

Hence,x=1,y=3,2=5.

Obs. Here the process of elimination of variables amounts to reducing the given coefficient metric to a diagonal
matrix by elementary row transformations only.
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Example 28.16. Solve the equations of example 28.14, by Gauss-Jordan method. P v.:. ra
Solution. We have 10x—Ty+3z+5u=6 (1)

—6x+8y—2z—-4u=>5 -..(it)
Sx+y+4z+1lu=2 ...(iii)
bx—9y—-2z+4u="17 ...(iv)
i -6
Step I. To eliminate x, operate | (i —[—](':|, _(_3_,) ML _(3) Dl
P 1 x, oper [ i) 10 |, | GiD) 10 @ | | Gv) 10 @
100x—Ty+3z+5u=6 (V)
3.8y +0.82 —u = 8.6 (vi)
3.1y +3.1z+95u=0.2 ...(vi)
—55y—-35z+15u=4 ...(viii)
Step IL. To eliminatey, operate | () — [‘—7) wi) |, | wii) - [3-1—] wd |, | wiin) - {258) wi| :
. ] 3.8 3 38 2 vLLL) — 38 UL -
10x + 4.4736842z + 3.1578947u = 21.842105 -..(ix)
38y +08z-u=86 Ax)
2.4473684z + 10.315789%u = — 6.8157895 ..(xi)
—2.3421053x + 0.0526315u = 16.447368 (i)
o .. 4.473684 ) .
Step III. To eliminate z, operate [(u) (—-—-———Z 4473684 (x;)] s
B 0.8 ) 5 . (— 2.3421053) 2 .
[(") (2.4473684 (x"’)] ’ [(x") 54473684 ) V|

10x — 15.698923u = 34.301075
3.8y —4.3720429u = 10.827957
2.4473684z + 10.31578%: = — 6.8157895
9.9247309u = 9.9245975
Step IV. From the last equation u = 1 nearly.
Substitution of z = 1 in the above three equations givesx =5,y =4,z2=-1.
(3) Factorization method*. This method is based on the fact that every matrix A can be expressed as
the product of a lower triangular matrix and an upper triangular matrix, provided all the principal minors of A
are non-singular, i.e., if A = [a;], then

a11¢0,|:‘zi g #0, z;; ::;; z #0, etc.
Q31 Q3 Qg3
Also such a factorization if it exists, is unique.
Now consider the equations
Qyy%y + QygXg + QygXg = by
g%y + Qyp%y + QygXy = by
@gy%; + Qga¥y + O3g%3 = by
which can be written as AX=B ..(1)
[“11 0 !Jﬁ [bl]
where A=|ay, ay ay|,X=|x,|andB= b,
G31 Gy O X3 by
Let A=LU, .(2)
[ 1 0 0} Uy Uy tﬂ
where L=|l,, 1 0|landU=|0 wu, uy
I Ip 1 0 0 ugy

*Another name given to this discomposition is Doolittle’s method.
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Then (1) becomes LUX=B ...(3)
Writing Ux=v, )
(3) becomes LV = B which is equivalent to the equations

vy =b 5l v Uy =by5 150, + 10, + vg = by
Solving these for v,, v,, v,, we know V. Then, (4) becomes
UpgXy ¥ UpgXy F UygXg = Uy 5 UggXy + UggXg =Ug ;5 Uggha = Uy,
from which x,, x, and x, can be found by back-substitution.
To compute the matrices L and U, we write (2) as

1 0 0|y uy g 4 G Oy
Ly 1 0f| 0 uyy uy|=|ay ayp oy
Ly Ly 0[] 0 0 gy Qgy Ogp Ugg

Multiplying the matrices on the left and equating corresponding elements from both sides, we obtain

@) wuy=ay, g = Qq9s Uyg =043
(@2) lyyuyy = agy or Ly = aylayy
gy = ag or Iy, = aglay,
Ggy
(@8) Lyt g + Ugy = G or lUge =0z~ 5 = ®1p
- Q9
logliys + Uge = Gggq or Ugg = Qgg — _'-111 Qg
i ” -1 Uz
(i) Lt g + lggli gy = agy or lyg= —|ag ——La,,
Ugg a3,

() gyt yg + Lggling + gy = @y Which gives u,,.
Thus we compute the elements of L and U in the following set order :
(i) First row of U, (i) First column of L,
(zit) Second row of U, (iv) Second column of L, (v) Third row of U.
This procedure can easily be generalised.
O, This method is superior to Gauss elimination method and is often used for the solution of linear systems and
grr ﬁnﬂintgm the inverse of a matrix. Among the direct methods, Factorization method is also preferred as the software

Example 28.17. Apply factorization method to solve the equations :

Bx+2+72=4;2x+3y+2=5;3x+4dy+z=7. (Madras, 2000 S)
1 0 Ofluy; wy g 3 217
Solution. Let (L,, 1 Off 0 wuyy wuy|= [2 3 ljl (i.e. A),
Iy Ly 1)] 0 0 ugy 3 41
so that
@uy=3,u=2, U =T7.
(@) lyyuyy = 2, ooy =203
lu, =3, vl =1
(2iE) Lyqitqo + ge = 3, S Uy = 5/3,
Lius+u,,=1, SoUyy=—11/3.
() Iggutyg + Lgotiny = 4, o lg, = 6/5.
(V) Lgyut g + Lggligg + ugg =1
2 Ugy =—8/5

1 0 0ff3 2 7
Thus A=12/3 1 0||0 5/3 -11/3
/5 1]|0

1 6/5 0 - 8/5
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1 0 0]y [4
Writing UX = V, the given system becomes [2/3 1 0|y, 5

1 6/5 1f|vg
Solving this system, we have v, = 4,

%vl+vz=5 or v2=%
v1+gu2+03=7 or u3=%
Hence the original system becomes
3 2 70| x 4
0 5/3 -11/3 =|7/3
0 0 -8/5 || = 1/5
; —4.8, 11 7. _8 _1
ie., 3x+2y+7z—4,3y 32_3, 53—5
By back-substitution, we have z = — 1/8, y = 9/8 and x = 7/8.
Example 28.18. Solve the equations of Example 28.14 by factorization method. i i
1 0 0 O||yy wy s Us 10, =7 3 &
. Iy 1 0 0|l 0 wyy upy uy|(_|-6 8 -1 -4 :
Solution. Let L L, 1 ollo o U Uy || 3 1 4 11 (i.e., A)
by Ly lg 1|0 0 O wuy 5 -9 -2 4

so that

@OR,of Uy =10, u,,=-T,u;3=8,u,,=5
@) CyofL:1l,,=-086,1l3,=03,1,,=05

()R, of U:u,,=38,u,,=08,u,,=—1

(iv) C, of L : 14, = 0.81579, 1, = — 1.44737
(V) Rg of U : ugq = 2.44737, uq, = 10.31579

(vi) Cgof L : 1,5 = —0.95699

(i) R, of U : u,, = 9.92474

Thus
1 0 0 0][10 -7 3 5
A= -0.6 1 0 0|0 38 0.8 -1
“| 0.3 081579 1 0|0 0 244737 10.31579
0.5 -144737 -0.95699 1]|0 O 0 9.92474
Writing UX = V, the given system becomes
1 0 0 ol[v ] [6
-06 1 0 0||vy| |5
0.3  0.81579 1 0|lvg |~ |2
0.5 —144737 -0.95699 1]|v,| |7
Solving this system, we get

v, =6,v,=8.6,v,=—6.81579, v, = 9.92474.
Hence the original system becomes

10 -7 3 5 x 6
0 38 0.8 ~1 yi_ 8.6
0 0 244737 10.31579(|z| |- 6.81579

0 0 0 9.92474 (| u 9.92474

Le., 10x—Ty+3z+5bu=6, 3.8y+0.82—u=8.6,
2.44737z + 10.31579%: = — 6.81579, u = 1.
By back-substitution, weget u=1,2=-7,y =4,x=5.
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The preceding methods of solving simultaneous linear equations are known as direct methods as they
yield exact solutions. On the other hand, an iterative method is that in which we start from an approximation to
the true solution and obtain better and better approximations from a computation cycle repeated as often as may
be necessary for achieving a desired accuracy.

Simple iteration methods can be devised for systems in which the coefficients of the leading diagonal are
large compared to others. We now explain three such methods :

(1) Jacobi’s iteration method*. Consider the equations

ax+by+cz=d;
ayx +byy +cz=d, (1)
2%+ by g2 =1

If a,, b,, ¢, are large as compared to other coefficients, then solving these for x, y, z respectively, the
system can be written in the form

y=ky ~bx - myz
z=ky — lyx — mgy
Let us start with the initial approximations x,, y,, 2, (each = 0) for the values of x, y, 2. Substituting these
on the right, we get the first approximations x, = k,, y, = &y, 2, = k.
Substituting these on the right-hand sides of (2), the second approximations are given by
X =k —Ly,-mz,
Yo = ky =L, —mgz,
2y = ky— L, —mgy,
This process is repeated till the difference between two consecutive approximations is negligible.

x=k -Ly-mz
(2)

*See footnote p. 215.



DOWNLOADED FROM www.CivilEnggForAll.com

NumericaL Sorution OF EQuATiOns 937

Example 28.19. Solve by Jacobi’s iteration method, the equations 10x +y -z =11.19, x + wy "F'g
—x +y + 10z = 35.61, correct to two decimal places. _

Solution. Rewriting the given equations as
x=-——(1119 y+2)yk—(2808 x=2z),2= 0(35.61+x—y)

We start from an approximatmn Xg=y,=2,=0.

s ; 11.19 28.08 35.61
First iteration x, = _T(—J_ =1.119,y, = T =2808,2, = S0 - 3.561
Second iteration X, = E (11.19 -y, +2,)=1.19

o= % (28.08 - x, — 2,) = 2.24
1 -
= 535,61+, ~y,) =339
Third iteration Xy = 116 (11.19 -y, + 2,) = 1.22
¥g= 11_0 (28.08 —x, — 2,) = 2.35
1 -
= E(35.61 +x,—y,) = 3.45
Fourth iteration X, = i (1119 -y, +2,)=1.23
V= _(28 03 -x;—2.) =234
z,= E (35.61 + x5 —y,) =345

Fifth iteration xg = % (1119 -y, +2,) = 1.23
s = 116 (28.08 —x,—2,) = 2.34

2, = 116(35.61 +x,-y,) =345
Hence x = 1.23, y = 2.34, z = 3.45.

Example 28.20. Solve, by Jacobi’s iteration method, the equations R
20x +y—22=17 ; 3x + 20y -2 =— 18 ; 2x — 3y + 20z = 25. ! (,Bhoptﬂ,m

Solution. We write the given equations in the form
=1 a7-
= 210 17 -y +22)
-t (18- (D)
=56 (-18-3x+ 2)
-1 95_
z2=55 (25 — 2x + 3y)

We start from an approximation x, =y, =2, =0.
Substituting these on the right sides of the equations (i), we get

%= 1L = 0855y, =— 55 =-09;2,= 20=125
Putting these values on the right of the equations (i), we obtain

%= 5 (17 —y; + 22,) = 1.02
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¥y = _216(_ 18 — 3x, + 2,) = — 0.965

z,= % (25 — 2x, + 3y,) = 1.1515

Substituting these values in the right sides of the equations (i), we have

xg= 1 (17—y, + 22,) = 1.0134
20
yg= 21_0 (- 18 — 3x, + 2,) = — 0.9954

2y = % (25 — 2x, + 3y,) = 1.0032
Substituting these values, we get
2, = L (17 -y, + 22,) = 1.0009
20
¥,= L (-18-3x, + 2, = - 1.0018
20
z,= 2_10 (25 — 2x4 + 3y,) = 0.9993
Putting these values, we have

g = % (17 -y, + 22,) = 1.0000
ys = %(— 18 — 3x, + 2,) = — 1.0002

2, = % (25 — 2x, + 3y,) = 0.9996
Again substituting these values, we get
Xg= % (17 -y, + 2z¢) = 1.0000

Ve = % (- 18 — 3x, + z;) = — 1.0000

zg= % (25 — 2x + 3y,) = 1.0000

The values in the 5th and 6th iterations being practically the same, we can stop.

Hence the solutionis x=1,y=-1,z=1.

(2) Gauss-Seidel iteration method*. This is a modification of the Jacobi’s iteration method. As before,
we start with initial approximations x, y, 2, (each = 0) for x, y, z respectively. Substituting y = y, z = z; in the
first of the equations (2) on page 837, we get

x, =k,
Then putting x = x,, z = z; in the second of the equations (2) on page 837, we have
Y1 =ky—lx, —myz,
Next substituting x = x;, y = y, in the third of the equations (2) on page 837, we obtain
zy=ky—lgx, —myy,
and so on, i.e., as soon as new approximation for an unknown is found, it is immediately used in the next step.
This process of iteration is continued till convergency to the desired degree of accuracy is obtained.

Obs 1. Since the most recent approximation of the unknowns are used while proceeding to the next step, the
convergence in the Gauss-Seidel method is faster than in Jacobi’s method.

Obs 2. Gauss-Sedial method converges if in each equation, the absolute value of the largest coefficient is greater
than the sum of the absolute values of the remaining coefficients.

*See footnote p. 37. After Philipp Ludwig Von Seidel (1821-1896) who also suggested a similar method.
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Example 28.21. Apply Gauss-Seidel iteration method to solve the equations of Ex. 28.20.
(V.T.U., 2011 ; Rohtak, 2005 ; Madras, 2003)
Solution. We write the given equation in the form
x= L7y +2)5y= 55 18-3v+2)i2= L @520+ 3) D)

We start from the approximation x; =y, =z, = 0. Substituting y = y,, z = 2, in the right side of the first of
equations (i), we get

x, = % (17 -y, + 22) = 0.8500

Putting x = x,, z = 2, in the second of the equations (i), we have
¥, = %(- 18 - 8%, +2,) = — 1.0275

Putting x = x,, y = ¥, in the last of the equations (i), we obtain
z, = % (25— 2x, + 3y,) = 1.0109

For the second iteration, we have

1 -
%= o (17, + 22,) = 1.0025
¥y = 21_0(- 18 — 3x, +2,) = — 0.9998

2y = 21_0 (25 — 2x, + 3y,) = 0.9998
For the third iteration, we get

Xg= & (17 -y, + 22,) = 1.0000
20
yy= % (— 18 — 3x, + 2,) = — 1.0000

2= % (25 — 3x, + 2y,) = 1.0000

The values in the 2nd and 3rd iterations being practically the same, we can stop.
Hence the solutionisx=1,y=-1,z=1.

Example 28.22. Solve the equations :
10x; ~ 2y~ %y~ 2, = 3

- 2%, + 10x,~x3—x,= 15

2= xp 100, — 0= 27

—x,~x3— 2%, + 10x, =-9

by Gauss-Seidal iteration method. (Bhopal, 2009 ; J.N.T.U., 2004)
Solution. Rewriting the given equations as

%, =0.3+0.2¢, + 0.1x; + 0.1x, ()]

%, =15+ 0.2¢; + 0.1x; + 0.1x, -(it)

xy= 2.7+ 0.1x; + 0.1x, + 0.2x, ..(ii)

x,=—0.9+0.1x, + 0.1x, + 0.2x, ...(@v)

First iteration

Putting x, = 0, x, = 0, x, = 0 in (i), we get x; = 0.3

Putting x, = 0.3, x; = 0, x, = 0 in (ii), we obtain x, = 1.56

Putting x; = 0.3, x, = 1.56, x, = 0 in (iii), we obtain x; = 2.886
Putting x, = 0.3, x, = 1.56, x, = 2.886 in (iv), we get x, = — 0.1368
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Second iteration
Putting x, = 1.56, xg = 2.886, x, = — 0.1368 in (i), we obtain
x, = 0.8869
Putting x, = 0.8869, x, = 2.886, x, = — 0.1368 in (ii), we obtain
x, = 1.9523
Putting x, = 0.8869, x, = 1.9523, x, = — 0.1368 in (iii), we have
x, = 2.9566
Putting x, = 0.8869, x, = 1.9523, x, = 2.9566 in (iv), we get
x, = —0.0248.

Third iteration
Putting x, = 1.9523, x, = 2.9566, x, = — 0.0248 in (i), we obtain

x, = 0.9836

Putting x, = 0.9836, x; = 2.9566, x, = — 0.0248 in (if), we obtain
x, = 1.9899

Putting x, = 0.9836, x, = 1.9899, x, = — 0.0248 in (iii), we get
x5 = 2.9924

Putting x, = 0.9836, x, = 1.9899, x, = 2.9924 in (iv), we get
x, = —0.0042.

Fourth iteration. Proceeding as above
x, = 0.9968, x, = 1.9982, x, = 2.9987, x, = — 0.0008.
Fifth iteration is
x, =0.9994, x, = 1.9997, x, = 2.9997, x, = — 0.0001.
Sixth iteration is
x, = 0.9999, x, = 1.9999, x, = 2.9999, x, = — 0.0001.
Hence the solution isx; = 1, x, = 2, x5 = 3, x, = 0.
(3) Relaxation method*. Consider the equations
ax+bytez=d;a,x+byy+cyz=d,;a3x+byy +cg2 =d,
We define the residuals R, Ry, R, by the relations
R.=d,-ax-by-cz;R =d,—a,x-b,y—c,z; R, =d3—azx-byy—c;2 (1)
To start with we assume x =y = z = 0 and calculate the initial residuals. Then the residuals are reduced
step by step by giving increments to the variables. For this purpose, we construct the following operation table :

=)

R, ! 5E, Ii,l.' ru 'm-;,:‘ )
fe=1 =B 8 ~a, 3y L9
&=1 st & S

We note from the equations (1) that if x is increased by 1 (keepingy and z constant), R, R and R, decrease
by a,, @,, a, respectively. This is shown in the above table alongwith the effects on the residuals when y and z are
given unit increments. (The table is the transpose of the coefficient matrix).

At each step, the numerically largest residual is reduced to almost zero. To reduce a particular residual,
the value of the corresponding variable is changed ; e.g., to reduce R, by p, x should be increased by pla,.

When all the residuals have been reduced to almost zero, the increments in x, y, z are added separately to
give the desired solution.

Obs. As a check, the computed values of x, y, z are substituted in (1) and the residuals are calculated. If these
residuals are not all negligible, then there is some mistake and the entire process should be rechecked.

Example 28.23. Solve, by Relaxation method, the equations : "
9x -2y +2=50,x+5y-32=18 - 2x + 2y + 72 = 19. (Madras, 2000 S)

*This method was originally developed by R.V. Southwell in 1935, for application to structural engineering problems.
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Solution. The residuals are given by
R, =50-9x+2y—-2;R =18-x-5y+32;R, =19+2x-2y -7z
The operations table is

The relaxation table is

)
..(i)
..(iid)
..(iv)
o)
...(vi)
...(viL)
...(viii)
_(ix)
%)

Iéx = 6.13, oy = 4.31, Tz = 3.23

Thus x=6.13,y=4.31,z = 3.23.

[Explanation. In (i), the largest residual is 50. To reduce it, we give an increment dx = 5 and the resulting residuals
are shown in (ii). Of these R, = 29 is the largest and we given an increment 8z = 4 to get the results in (iii). In (vi), R, =—4
is the (numerically) largest and we give an increment &y = — 4/5 =— 0.8 to obtain the results in (vii). Similarly the other steps
have been carried out.]

i o

"..I M '"f‘l hj '- F a Wi : ¥
Solution. The residuals are given by

R, =205- 10x+2y+3z;R-y= 154 + 2x — 10y + 22 ; R, =120 + 2x + y — 10z.
The operations table is

The relaxation table is :

Thx = 32, Ty = 26, Xz = 21.
Hence x=32,y=26,z=21.
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SOLUTION OF NON-LINEAR SIMULTANEOUS EQUATIONS—NEWTON-RAPHSON METHOD

Consider the equations
flx,¥)=0,8x,y)=0 (1)
If an initial approximation (x,, y,) to a solution has been found by graphical method or otherwise, then a
better approximation (x,, ¥,) can be obtained as follows :
Letx, =x, + h,y, =y, + &, so that f (x, + h, y, + k) = 0, glxy + h, v, + k) = 0 .(2)
Expanding each of the functions in (2) by Taylor’s series to first degree terms, we get approximately

fo+h2f—+k—-—0

E 9, .(3)
g,‘,+haxo+ka]-=0
ki =G50, of i
SRS fD f(xo yl‘l) a”o_(ax]%'s?n o

Solving the equations (3) for i and k, we get a new approximation to the root as
X =xg+h,y, =y, +k
This process is repeated till we get the values to the desired accuracy.

Solntmn An initial appmmmal:mn to the solutlon is obtained from a rough graph of the given equations,
asx,=3.5andy,=—-18.

We have f=x?+y-1land g=y%+x -7 sothat
..a...f_= -Qf_z @.—. g:
= G 1 and 2= "G

Then Newton-Raphson’s equations (3) above will be
Th + k =0.55, h — 8.6k = 0.26
Solving these, we get A = 0.0855, k = — 0.0485
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the better approximation to the root is
%, =%y + h =3.5855,y, =y, +k=—1.8485
Repeating the above process, replacing (x, y,) by (x,, ¥,), we obtain x, = 3.5844, y, = — 1.8482.

PROBLEMS 28.5

Solve the equations x% + y =5 ;3% + x = 8.

Solve the non-linear equations x = 2(y + 1), ¥ = 3xy — 7 correct to three decimals. _

Use Newton-Raphson method to solve the equations x = x? + y?, ¥ = x? — 32 correct to two decimals, starting with the
approximation (0.8, 0.4).

Solve the non-linear equations x?—y2 = 4, 2% + y% = 16 numerically with x, = y, = 2.828 using N.R. method. Carry out
two iterations. (V.T.U., MCA, 2007)
Solve the equations 2x? + 3xy + y? =3 ; 4x? + 2xy + y% = 30. Correct to three decimal places, usmchwton-Raphson
method, given that x, = - 3, and y, = 2. Y

L S T

IEEE] DETERMINATION OF EIGEN VALUES BY ITERATION

In § 2.14, we came across equations of the type

(agy = M)x; + aypxy + @133 =0

Qo %y + (a9 — A)xy + A% =0 ..(1)
gy Xy + GgoXy +(agq — A)xg =0
which in matrix form, may be written as [A—-AIl X =0 or AX=AX (2)

where A = [a;] and X is the column matrix [x,].
Equation (1) will have a non-trivial solution if the coefficient matrix vanishes e.g.,

G —h oy g
Gy Gy —h Gy =0
=3 Uz Qg3 — A

This gives a cubic in A whose roots are eigen values of (2) and corresponding to each eigen value, we have
a non-zero solution X = [x,, x,, x,] which is called an eigen vector. Such an equation can ordinarily be solved
easily.

In some applications, it is required to compute the numerically largest eigen value and the corresponding
eigen vector. In such cases, the following iterative method is more convenient which is also well-suited for
computing machines.

If X, X,, X; be the eigen vectors corresponding to the eigen values A, A,, A,, then an arbitrary column
vector can be written as X = 2. X + kX, + kX,

Then AX=h AX + R AX, + RAX, =k A X, + R AKX, + kA X,
Similarly AZX = B \IX, + R A2X, + ko AZX,
and AX =k M X, + ko AsX, + kohgXy

If | A, | > | A, | > | A5 |, then the contribution of the term k,A{X to the sum on the right increases with
r and therefore, every time we multiply a column vector by A, it becomes nearer to the eigen vector X,. Then we
make the largest component of the resulting column vector unity to avoid the factor ;.

Thus we start with e column vector X which is as near the solution as possible and evaluate AX which is
written as AV XD after normalisation. This gives the first approximation AV to the eigen value and X to eigen
vector. Similarly we evaluate AX'? = A2 X2 which gives the second approximation. We repeat this process till
(X" — X~ 1] becomes negligible. Then A" will be the largest eigen value of (1) and X', the corresponding eigen
vector.

This iterative procedure for finding the dominant eigen value of a matrix is known as Rayleigh’s power
method.™

*After the English mathematician and physicist John William Strut known as Lord Rayleigh (1842-1919) who made
important contributions to the theory of waves, elasticity and hydrodynamics. He was professor at Cambridge and London.
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Example 28.26. Determine the largest eigen value and the corresponding eigen vector of the matrices
ustng the power method :

o 2 -1 0
(_i)A=[ ] pi A oy (V.T.U., 2007)
g 0 -1 2

Solution. (i) Let the initial approximation to the eigen vector corresponding to the largest eigen value of

1
AbeX= [0]

5 4|1 5 1
= = s e )
Then AX = [1 2] [O] = |:1:| =6 [0‘2] = Axt
So the first approximation to the eigen value is A’ = 5 and the corresponding eigen vector is X'V = [012} .
5 4| 1 5.8 1
AXD = = = =2 x12
e [1 2] [0.2] [1.4} Ad [0.241] L

Thus the second approximation to the eigen-value is A?) = 5.8 and the corresponding eigen-vector is X'? =

1 .
[0.241} » repeating the above process, we get

[5 4] 1 ] [ 1
2) - - — 2(3) ¥13)
g sl N 17070 e _0.248} AN
5 4] 1 ] [ 1 }
3) = = - 24) x14)
AX®) = 1 2]|0.249) = 5.994 0.250 A X1
(5 4] 1 ] 1
4 _ = — 3(5) X15)
AXP=17 5](0.250] =599 _0.25] =hRX
5 4 1 1
5) - = 2(6) X16)
AXB=1y 3 70_25] =g [0_25] =ROX
Clearly A% = A®® and X® = X6 upto 3 decimal places. Hence the largest eigen-value is 6 and the corre-
’ : ; 1
sponding eigen vector is [0-25] .
(ii) Let the initial approximation to the required eigen vector be X = [1, 0, 0]".
2 -1 0ff1 2 1
Then AX=(-1 2 -1||0|=|-1[=2|-05| =2AD XD,
0 -1 2||0 0 0

So the first approximation to the eigen value is A'"”) = 2 and the corresponding eigen vector
XV =[1,-0.5,0].

2 -1 0 2.5 1
Hence AXW=|-1 2 -1||-05|=|-2|=25|-08|=A2X®3,
0

0 -1 2 0.5 0.2
Repeating the above process, we get

1 0.87

AX® =28 -1 | =A®X®); AXD =343 -1|=29DX"®
0.43 0.54

0.80 0.76 0.74
AX9D=341| -1|=ABX®; AXO)=341| -1|=A9X@;AXO =341 -1| =ATXD

0.61 0.65 0.67

Clearly A® = A" and X® = X'D approximately.
Hence the largest eigen value is 3.41 and the corresponding eigen vector is [0.74, — 1, 0.67]".
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PROBLEMS 28.6¢ [

[

[EEETH OBJECTIVE TYPE OF QUESTIONS

PROBLEMS 28.7
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FINITE DIFFERENCES

Suppose we are given the following values of y = f (x) for a set of values of x :
X : .'.I‘.'O xl x2 ase xn.
LI S TR O

Then the process of finding the values of y corresponding to any value of x = x; between x, and x,, is called
interpolation. Thus interpolation is the technique of estimating the value of a function for any intermediate value
of the independent variable while the process of computing the value of the function outside the given range is
called extrapolation. The study of the interpolation is based on the concept of differences of a function which we
proceed to discuss. For a detailed study, the reader should refer to author’s book ‘Numerical Methods in
Engineering and Science’.

Suppose that the function y = f (x) is tabulated for the equally spaced values x = x, x, + k, %, + 2h, ...,
%y + nh giving y =y, ¥, ¥9 »---» ¥,,- To determine the values of f (x) or f(x) for some intermediate values of x, the
following three types of differences are found useful :

(1) Forward differences. The differences y, — yo, ¥, — ¥ -» ¥, — ¥, _; When denoted by Ay, Ay,, ...,
Ay, _, respectively are called the first forward differences where A is the forward difference operator. Thus the
first forward differences are Ay, =y, , ; —¥,.

Similarly, the second forward differences are defined by

&%r = Ayar'+1 - Ayr

In general, Afy =APly | — APy
defines the pth forward differences.

These differences are systematically set out as follows in what is called a Forward Difference Table.

In a difference table, x is called the argument and y the function or the entry y,, the first entry is called the
leading term and Ay, A%, A%y, etc. are called the leading differences.
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(2) Backward differences. The differences y, —v,, ¥, —¥, ..., ¥,, =¥, _, Wwhen denoted by Vy,, Vy,, ..., Vy,
respectively, are called the first backward differences where V is the backward difference operator. Similarly we
define higher order backward differences. Thus we have

Vyr= Ye=rop szr = Vy, = vyr—'l’
V3y, =V% —VZy _, etc.

The differences are exhibited in the following :

Backward Difference Table

(3) Central differences. Sometimes it is convenient to employ another system of differences known as
central differences. In this system, the central difference operator 8 is defined by the relations :
Yi=Wp= 6')'1;3’ Yo=N1 = a.'ya.rgs T e e &yn..yg
Similarly, higher order central differences are defined as
Eyapz - sym = 5%’1, 83’5;2 - &3’3;2 = ﬁzy_g, Eeer)
8%y, — 8%, = 8%,,, and so on.
These differences are shown in the following :
Central Difference Table
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We see from this table that the central differences on the same horizontal line have the same suffix. Also

the differences of odd order are known only for half values of the suffix and those of even order for only integral
values of the suffix.

It is often required to find the mean of adjacent values in the same column of differences. We denote this
mean by p. Thus

n8y, = 3@y + 8yap), 18%y,, = 5 (8%, + 8%,) ete.

Solution. ({) Atanlx l;an‘1 (x +h)—tantx

=tall—1 x+h-x =tan‘1 h
{1+(x+h)x 1+hx+x°
(ii) Ale* log 2x) = e* * " log 2(x + h) — ¢* log 2x
=e* " log 2(x + h) —e* " log 2x + ¢** " log 2x — & log 2x

—ex+hlog X

b + (et —e%) log 2x

h h h
=e* [e 10g(1+;) + (e —I)Iogzx]

e A( 2 ) (x+h)’ x*  (x+h) cos 2x — x* cos 2x + h)
iit) Lcossz cos 2x+h) cosZx cos 2(x + h) cos 2x

_ [(x + h)? — x°] cos 2x + x°[cos 2x — cos 2(x + h)]
N cos 2(x + h) cos 2x

(2hx + h?) cos 2x + 2 sin (k) sin (2x + h)
cos 2x + h) cos 2x

(iv) AZ cos 2x = Alcos 2 (x + h) — cos 2x}

=Acos2(x+h)—Acos 2x

= [cos 2(x + 2h) — cos 2 (x + )] — [cos 2 (x + h) — cos 2x]

=_2sin (2x + 3h) sin h + 2 sin (2x + k) sin A
—2sin h [sin (2x + 3h) — sin (2x + A)]
—2sin & [2 cos (2x + 2h) sin h] = — 4 sin? & cos (2x + 2h).

nn

Solution. (i) A? (M] = 4&F { bx+12 } = A% {._.?_ +i._}

Y +5x+86 (x+2)(x+3) x+2 x+3

{( ] (x+3)}=A{2[%_x12]+3[$_x13]}

{(x+2)(x+3)]r {x+3)(x+4)}
1

1 1
{(x+3)(x+4) (x+2)(x+3)} {(x+4)(x+5] (x+3)(x+4)}
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» 4 " 6 . 2 (5x + 16)
(x+2)(x+3)(x+4) (x+3)(x+4)(x+5) (x+2D(x+3)(x+4)(x+5)
(i) Aab®) = a Ab®) = a(b* *1 - b%) = ab*(b — 1)

A(ab®) = Alaab™ = ad — 1) A(bY)
=alb-1) (b1 -p¥) =alb - 1)2 - b~
(ii1) Ae¥=gf+1l_g¥ = (e —1)e*
AZe* = AlAe®) = Al(e — 1) e¥]
=(e-1DA=(-1)(e—1Det=(e—1)¢e
Similarly ASe*=(e—1Pe", Ale*=(e—1)*¢%, ... and A'e*=(e—1)'¢e*

EEE] DIFFERENCES OF A POLYNOMIAL

The nth differences of a polynomial of the nth degree are constant and all higher order differences are zero.
Let the polynomial of the nth degree in x, be
f@)=ax"+bx""1yex"=24 .+ k(x+h)+1
A (@) =fx+h)-f(x)
=allx+h)y —x" 1 +bl(x + hy 1 =2~ 4 ... + kh
=anhx" 1+ 62" 2+cx" "3+ ..+ Ex+ (1)
where &', ¢, ..., I’ are new constant coefficients.

Thus the first differences of a polynomial of the nth degree is a polynomial of degree
(n-1).

Similarly A2 f(x) = Alf (x + h) = f ()] = Af (x + h) — Af (x)
=anhllx +hY' "1 —x""N+b' [(x+ A 2-x"-q + .. + 'R
=ann—1) %" 24+ 0" 3+ c"x" 4+ 4+ E”, by (1)]

the second differences represent a polynomial of degree (n — 2).
Continuing this process, for the nth differences we get a polynomial of degree zero i.e.
Afx)=an(n—1)(n—-2)...1.h"=an ! h" .{(2)
which is a constant. Hence the (n + 1)th and higher differences of a polynomial of nth degree will be zero.
Obs. The converse of this theorem is also true i.e. if the nth differences of a function tabulated at equaily spamd‘

intervels are constant, the function is a polynomial of degree n. This fact is important in numerical analysis as it enables
us to approximate a function by a polynomial of nth degree, if its nth order differences become nearly constant. 1

Example 29.3. Bvaluate A%(1 - ax) (1~ bx?) (1 -cx%) (1 - dach)]. A WS
Solution. AY[(1 — ax) (1 —bx2) (1 —ex3)(1 —dxH)] = A¥abed 0 + (V2% + () aB + ... + 1]
= abed AV (x19) [ A (x") =0 forn < 10]
=abed (10 ). [by (2) above]

EEEER (1) FACTORIAL NOTATION
A product of the form x(x - 1) (x - 2)... (x — r + 1) is denoted by |x]" and is called a factorial.

In particular [x] = x, [x]2 = x(x — 1)
[x]? = x(x — 1) (x — 2), ete.
In general x"=x(x—-1)(x-2)...(x—n+1)

In case, the interval of differencing is A, then

[x]" = x(x — ) (x — 2h)..(x — n - 1h)
which is called a Factorial polynomial or function.
Tte factorial notation is of special utility in the theory of finite differences. It helps in finding the successive
differences of a polynomial directly by simple rule of differentiation.
The result of differencing [x]" is analogous to that of differentiating x'.
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(2) To express a polynomial in the factorial notation

(i) arrange the coefficients of the powers of x in descending order, replacing missing powers by zeros ;
(ii) using detached coefficients divide by x, x — 1, x — 2, etc. successively.

Obs. Every polynomial of degree n can be expressed as a factorial polynomial of the same degree and vice versa.

manq)le 29.4. Express y = 2 — 3x% + 3x — 10 in a factorial notation and hence show that A%y = 12. “'
(Bhopal, 2007 ; P.T.U., qud

b

Solution. First method : Let y = A[x]® + Blx]? + Clx] + D.

Then

x3 x2 x

1 2 -3 3 -10=D
— 2 -1

2 2 -1 2=C
— 4

3 2 3=B

2=A

Hence ¥ =2IxPP + 3lx]% + 2[x] - 10
: Ay =2 x 3[x]? + 3 x 2[x] + 2
Ay =6x2[x] +6
A%y = 12, which shows that the third differences of y are constant, as they should be.
Obs. The coefficient of the highest power of x remains unchanged while transforming a polynomial to fuctorial
notation.
Second method (Direct method) :
Let y=2x"-3x2+3x-10
=2x(x-1)(x-2)+Bx(x-1)+Cx + D

Putting x=0,-10=D
Putting x=1,2-3+3-10=C+D

) C=-8-D=-8+10=2
Puttmg x=2,16-12+6-10=2B+2C + D

—1_ - = — (= =
B_E( 2C-D) 2( 4 +10)=3.

Hence y=2x(x—1)(x—2) + 3x(x — 1) + 2x — 10 = 2[x]® + 3[x]? + 2[x] -
s Ay = 2 x 3[x]? + 3 x 2[x] + 2, A%y = 6 x 2[x] + 6, A%y = 12.

Example 29.5. Find the missing values in the following table : f . :
%z 45 50 55 60 65 | ‘ Ps
y: 3.0 — 2.0 — —-24 (Bhopal, 2007 ; V.T.U., 2@ 4

Solution. The difference table is as follows :

x y Ay A%y Ay
45 Yo=3

i 3
50 Y 5-2y,

2-y, 3y, +y3-9
65 Yo =2 Yy tys—4

¥3—2 36—y, -3y,
60 Y5 —24 -y, -0.4 -2y,

65 ¥,=—24
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As only three entries y, y,, y, are given, the function y can be represented by a second degree polynomial.
5 Aly,=0 and A%, =0
Le., 3y, +y3=9; ¥+ 3y;=8.6
Solving these, we get y, = 2.925, y, = 0.225.
Otherwise : As only three entries y, = 3, y, = 2,y, = — 2.4 are given, the function y can be represented by
a second degree polynomial.

& Ay, =0 and Ay, =0
ie., (E-1¥y,=0 and (E-1Py, =0
ie., (E3-3E?+3E-1)y,=0 and (E3—3E2+3E—1b;1=0
ie., Y3—3¥,+ 3y, —¥,=0 :

Yy — 3y +3y,—y,=0
Le., ¥3+3y;=9;3y,+y,=3.6

Solving these, we get y, = 2.925, y, = 0.225.

Example 29.6. Assuming that the following values of y belong to a polynomial of degree 4, compute the
next three values :

x5 0 1 2 3 4 5 6 7

y: d -1 1 -1 1 — — —

Solution. We construct the following difference table from the given data :

x ¥ Ay A%y Ny Aty
0 ¥o=1
-2
1 yi=—1 4
2 -8
2 Yp=1 -4 16
-2 8
3 ya=-1 4 16
2 Asyzs
4 yy=1 A%y, 16
Ay4 4'-'\2313.
5 Vs Ay, 16
Ays A%,
6 Ye A%y,
Ay
7 ¥q

Since the values of y belong to a polynomial of degree 4, the fourth differences must be constant. But
Aty = 16.
The other fourth order differences must also be 16. Thus
Ay, = 16 = A%y, — A%y,
Le., Ay, =A%y +Aly, =8+16=24
A%y, = A%y, + Ay, = 4 + 24 = 28
Ay, =y, + A%y, =2 + 26 =30
and Ve =¥, +Ay,=1+30=31
Similarly starting with A%y, = 16, we get
Ay, = 40, A%y, = 68, Ay, = 98, y, = 129.
Starting with A%y, = 16, we obtain
Ady, = 56, A2y, = 124, Ay, = 222, y, = 351.
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PROBLEMS 29.1

[EEX] (1) OTHER DIFFERENCE OPERATORS

We have already introduced the operators A, V and 8. Besides these, there are the operators E and p,
which we define below :

(i) Shift operator E is the operation of increasing the argument x by h so that
Ef(x)=f(x +h), E*f (x) = f (x + 2h), B3 f (x) = f (x + 3h) etc.
The inverse operator E! is defined by E-1 fix) = filx - h)
Ify, is the function f (x), then Ey_=y, ;. EY, =y, ., E", =y, 1
where n may be any real number.
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(i) Averaging operator L is defined by the equation py, = %(yx whe Y n)

Obs. In the difference calculus, A and E are regarded as the fundamental operators and V, 8, | can be expressed in

terms of these.
(2) Relations between the operators. We shall now establish the following identities :

DHA=E-1 @) V=1-E-1
(fii) 5=EV2 -E-12 (wyp= %(EW+E'1’2)
(U)ﬂ:EV:VE=EEm (Ui)E=ehD.

PP‘OOf:S. @ Ayx=yx +h Y= ny_yx ={E - l)yx‘
This shows that the operators A and E are connected by the symbolic relation
A=E-1 or E=1+A

(i) vyx=yx_yx—h=yx_E—1yx=(l_E_1)yx
V=1-E! or E=(1-V)!
(iiz) 8-y:w:=3’:¢+M‘2_-'yx—.’m'z=‘E“lm-‘y:u:'_'E_L’myas=(Elm_E_l‘l'z)y:l:
d=ER_E12
(i) W= $ 00 nn+ Veoyn) = JEPy, + E- V) = LBV 4+ E- )y,
% p=1(E2+E-12),
@) ‘EVyx=E(yx'—yx—h)=ny_ny—h=yx+k—yx=Ayx o~ EV=A
Also Vny=Vyx+h=yx+h-yx=Ayx o VE=A
aEugyx=8yx+h!2=yx+m+h.¢2-yx+m-w=yx+h_yx_=Ayx
SEV2 =
Hence A=EV =VE = 3E'2,
(vi) Ef(x)=f(x+h)
2
=)+ R + A @) + [By Taylor’s series]
2 22 33
Cf@ D@+ D2 @y = (14 a0+ B D o p)
21 [ 21 T 31 ]
=2 E =P
Cﬂl‘.l. E=1+A=e"5.
-1 =1y Lz 1,3
a, D= h log (1 +A) = h(A 2A +3A ) (Burdwan, 2003)

Note. A table showing the symbolic relations between the various operators is given below for ready reference. To prove
such relations between the operators, always express each operator in terms of the fundamental operator E.

(3) Relations between the various operators
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Example 29.7. Prove that
{Az\ x Eex . - 3 L - Ee - 2
gi= L«—E—J e . OEL the interval of differencing being h. (Bhopal, 2009)
e

2
Solution. Since {%} =A% E-1e¥ = A% = A%e" el = g hAZex

RES. = e hn2% . € _ phBor —o-h grh_ox.

A%e*
Example 29.8. Prove with the usual notations, that
(i) AD = log (1 + A) = - log (1 - V) = sinh™ (ud) (Rohtak, 2005)
(@) B2+ E-12) (1 + N"2=2+ A (Bhopal, 2009 ; U.P.T.U., 2009)
(i) A= 18 + 81 +87/2) () Ay, = Viy,.
Solution. (i) We know thate’?=E=1+A . hD=1log(1+A)
Also hD =logE=—log(E-Y)=—-log(1-V) [+ BE-1=1-V]

We have proved that n= %(E“2+E*1’2) and §=EVZ_E-12
po=LEV+E- ) (EV-E-"=LE-E-)=1 (ehP — ¢~ 'P) = ginh (hD)

ie hD = sinh™! (ud).
Hence hD =1log (1 + A) =—log (1 — V) = sinh™! (ud)
@) (EV+E-)1+A)2=(EZ+E-")EZ=E+1=1+A+1=2+A,

(iii) 182 + 81 +8%/4)
= LBV _E-12¢ 4 (B2 _E-12) |1 +(E"* - E"V2)/4)

=lE+E-1-2)+(EVZ-E-1?) J(E+E™ +2)/4]

=1E+E'-2)+ J(EV2-E-'®)(EV+E-1?)
=l(E+E-'-2)+(E-E"N=1(2E-2)=E-1=A

(iv) Ay, = (E - 1)%, [+ A=E-1]
=(E®-B8E*+3E-1)y,=y:— 3y, +3y;—-¥, (D
V3y5={1—E*1)3y5 [ A=1-E-]
=(1-8E'+8E-2-E-3)y, =y,-3y,+3y;-, ..(2)

From (1) and (2), A%y, =V3y,.

TO FIND ONE OR MORE MISSING TERMS

When one or more values of y = f (x) corresponding to the equidistant values of x are missing, we can find
these using any of the following two methods :

First method : We assume the missing term or terms as ¢, b etc. and form the difference table. Assuming
the last difference as zero, we solve these equations for a, b. These give the missing term/terms.

Second method : If n entries of y are given, f (x) can be represented by a(n — 1)th degree polynomial i.e., A"y
=0. Since A =E — 1, therefore (E — 1)" y = 0. Now expanding (E — 1)" and substituting the given values, we obtain
the missing term/terms.

Example 29.9. Find the missing term in the table : iy
% s 2 3 4 5 6 4|
' = 45.0 49.2 54.1 67.4 (U.P.T.U., 2008)
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Solution. Let the missing term be a. Then the difference table is as follows :

x ¥ Ay A%y A%y Ady
2 45.0 (= y,)
42
3 49.2 (=y,) 0.7
49.9 a—59.7
4 54.1(=y,) 240.2 - 4a
a—54.1 180.5 - 3a
5 al =y,)
674 —a
6 67.4 (=,)

We know that Ay =0 ie, 240.2-4a=0.

Hence a = 60.05.

Otherwise: As only four entries y,, ¥;, ¥, ¥5 are given, therefore y = f (x) can be represented by a third
degree polynomial.

Ay = mnqt.ant or Ay=0 ie, (E-1)=0

ie., E'—4E*+6E*-4E +1)=0 or y,—4y,+6y,—4y, +y,=0

Let the missing entry y, be a so that

67.4 —4a + 6(54.1) —4(49.2) + 45 =0 or — 4a = - 240.2
Hence a =60.05.

Example 29.10. Find the missing values in the following data :

xe 45 50 55 60 65
¥: 3.0 2.0 -24 (Bhopal, 2007)
Solution. Let the missing value be a, b. Then the difference table is as follows :
o Y Ay Azy Aay
45 3(=yp)
a-3
59 a(=y,) 5-2a
2-a 3a+b-9
56 2=y, bra—4
b-2 3.6-a—36
% b(=yg) ~0.4-2b
-24-0
65 -24(=y,)

As only three entries y,, ¥,, ¥, are given, y can be represented by a second degree polynomial having third
differences as zero.

5 A%y, =0and Ay, =0
i.e;, 3a+b=9,a+3b=3.6
Solving these, we get @ = 2.925, b + 0.0225.
Otherwise. As only three entries y, = 3, ¥, = 2, y, = — 2.4 are given, y can be represented by a second
degree polynomlal having third differences as zero.
Ay,=0 and A%, =0

ie., (E - 1)3y0—0and(E—1)3y =0

ie., (E3-3E*+3E-1)y,=0;(E3-3E2+3E-1).y,=0
or Yg—=3Ya+ 3y, —¥,=0;y,-3y3+3y,-y,=0

or Y3 +3y,=9;3y,+y,=3.6

Solving three, we get y, = 2.925, y, = 0.225.
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Mplezﬁ.ll.lfym =8,5,=67y,=11y,=18 y,,= 27 findy, (Mumbai, 2005)
Solution. Taking y,, as u,, we are required to find y, i.e., u_,,. Then the difference table is

x u Au A%y
X g Y=l 4=3
3
X3 Yp=u_z=6 2
5 0
X 5 Yp=U_o=11 2
7 0
Xy Yig=u, =18 2
9
X Y4 =Ug =27
Then Y= o=E-"Mu =1-V)0y
10 9 10.9.8
1-10V + —— V2P - —— V3 +
[ 1.2.3 ) “o

=uy— 10Vu, + 45V2u0 —120V3y,
=27-10x9+45x2-120 x 0 = 27.

Example 29.12. If y, is a polynomial for which fifth difference is constant and y, + y,=— 7845, y,+ yg=

Solution. Starting with y, instead of y,, we note that A%y, = 0 [ A%, is constant.
ie., (E—1)°y, =(E®—6E® + 15E* — 20E® + 156E? —6E + 1)y, =0

¥;—6yg + 16y, — 20y, + 15y, -6y, +y, =0
or (v, +y,) =6 +y,) + 15(y; + y5) — 20y, =0
ie. Vo= 21_0 [ +37) — 6072 +3g) + 1505 + ¥5)]

= Eld [ 784 — 6(686) + 15(1088)] = 571.

Example 29.18. Prove the following identities :

2
@) upx + ux® +ugd + .. 1+[ﬁ] Au, +[1x )A’*‘u,
e uj_x uzx qu 2 2 .‘l:? 3
(u)uo+—1—-!-+ 57 o7 T uo-i-xAun+—A +—Aua+
Solution. (/) LH.S. = xu, + x°Eu, + x3E2u1 +..=x(1+xE +x°E? + ..) u, [
g, 1 u,, taking sum of infinite G.P.
1-xE
1
= [ E=1+A
J'3[1—.1.c(1+m] : :
1 x xA Y x xA  x2A°
= Yy = 1~ 1 + + Uy
1-x—xA l1-x 1-x 1-x 1-x (1-2x%
x x° ¥ .
= + A ...=R.H.S
1-x 2 @2 T a-aF
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LHS. =u,+

@
S Euo

Ezmn = Buy + ...

i

3!

_xaEa
3!

+...}uo=é”x uo__=e_"“ +A) U

+£+x262+x3’ﬁ3+ .u
1! 2! T

42 3

2—!A2uﬁ + x_ Asun + ‘l =RHS.




DOWNLOADED FROM www.CivilEnggForAll.com

958 HicHer Encineering MaTHEMATICS

11. Find the missing values in the following table :

X5 0 1 2 3 4 5 6 ,

y: 5 11 22 40 140 (V.T.U., 2006)
12, M= uyy==3,u35,=-1, uye =13 find ug. (Mumbai, 2004)
13. Evaluate y, from the following data (stating the assumptions you make) : s

Yo+ = 19243, ¥, +y, = 1.9590, v, + ¢ = 1.9823, y, + ¥, = 1.9956. (Mumbat, 2003)
14. Using the method of separation of symbols, prove that
(@) ug + Uy + U+ e+ 0, =" IC U + PO, NP A Frrle. - A
(u) Ve =J’n v ‘Clqvn i W _"0252}!“_ 2 T rageh + (= DA —.ryﬂ —{n -z

16. Using the method of finite differences, sum the following series :
(i) 2.5+ 5.8 +8.11 + 11.14 + ... to n terms.
(i) 1.2.3 + 234 + 345 + ... to n terms.

2,2
16. Prove that iy + ux + r..zz,:r2 Y o A IAHD? s 2 “g
1-2 (@-x @A<x)

Hence sum the series 1.2 + 2.3x + 3.4x2 + ...... o,

EEX NEWTON’S INTERPOLATION FORMULAE*

We now derive two important interpolation formulae by means of the forward and backward differences of
a function. These formulae are often employed in engineering and scientific problems.

(1) Newton’s forward interpolation formula. Let the function y = f (x) take the values y,, v, ¥o, ---
corresponding to the values x, x, + &, x, + 24, ... of x. Suppose it is required to evaluate f(x) for x = x, + ph, where
p is any real number.

For any real number p, we have defined E such that

EP f(x) = f(x + ph)

¥, =Fflxy+ph)=EF flxg) =(1+A)Py, I E=1+A]
[ — 1) - -
= il + pA+ p(;;' b A%+ pp ;)l(p 2 A3 +...}y0 [Using Binomial theorem]
Z -1) -1(p-2)
Le., ¥p=Yo + Py, + P(_I;'_ A%y, + p{me— Adyo + ... ...(1)

It is called Newton’s forward interpolation formula as (1) contains y; and the forward differences ofy,.

Obs. This formula is used for interpolating ihe naiues of y near the beginning of a set of tabulated values and
extrapoluling values of y a little backward (i.e. to the left) of y,

(2) Newton’s backward interpolation formula. Let the function y = f (x) take the values y,, y;, ¥5, ---
corresponding to the values x, x, + k., x, + 2h, ... of x. Suppose it is required to evaluate f (x) for x = x, + ph, where
p is any real number. Then we have

y,=f@&, +ph)=E f(x,)=(1-V)Py, [+ E-'=1-V]
1
- [1 +pV + p(}; T )V2 + Pp+ ;)T(p wl V2 4+ ] ¥, |Using Binomial theorem]
+1 +2
Le, Y=Yy +PVy, + ﬁ%?—ll Vi, + f(*p—;,(i-—) V3y, + ... -(2)

It is called Newton’s backward interpolation formula as (2) contains y, and backward differences of y,.
Obs. This formula is used for interpolating the values of y near the end of a set of tabulated values and also for
extrapolating values of y a little ahead (to the right) of v, .

Example 29.14. The table gives the distances in nautical miles of the visible horizon for the given heights
in feet above the earth’s surface :

x = height . 100 150 200 250 300 360 400
y =distance :  10.63 13.03 15.04 16.81 18.42 19.90 21.27
Find the values of y when (i) x = 218 ft (Madras, 2003 S) (ii) 410 ft. (V.T.U., 2002)

*See foot note p.466.
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Solution. The difference table is as under :

x ¥ A A2 A A

100 10.63
2.40

150 13.03 -0.39
2.01 0.15

200 15.04 -0.24 -0.07
1.77 0.08

250 16.81 -0.16 -0.05
1.61 0.03

300 18.42 ~NJXS -0.01
1.48 0.02

350 19.90 -0.11
1.37

400 21.27

(i) If we take x,, = 200, then y, = 15.04, Ay, = 1.77, A2y0 =—0.16, A3y, = 0.03 etc.
x—xp 18

=— =0.36
h 50

Using Newton’s forward interpolation formula, we get
pp-1) pPp-1D(p-2) .,
=% A%y, 123 Ayg + ...

- 0.36(- 0.64) (- 1.64)
f(218) = 15.04 + 0.36(1.77) + -@(zoﬂ(— 0.16) + : 6 L -(0.03) + ...

=15.04 + 0.637 + 0.018 + 0.001 + ... = 15.696 i.e., 15.7 nautical miles
(fi) Since x = 410 is near the end of the table, we use Newton’s backward interpolation formula.

-x 10

taking x, =400, p= = = =02

Using the line of backward differences
¥, =21.27, Vy, = 1.37, V% =—-0.11, V3 _=0.02 etc.
newton’s backward formula gives
pp+1)
Y410 = Ya00 *PVYa0 + T35 V%400 +
0.2(1.2)
2

Example 29.15. From the following table, estimate the number of students who obtained marks between
40 and 45 : Rl
Marks : 30—40 40—50 50—60 60—70 70—80 .
No. of Students : 31 42 51 35 81
(V.T.U., 2011 S ; S.V.T.U., 2007 ; Madras, 2006)

Sincex=218and h =50, .. p=

Yo18 = Yo +PAYy +

pp+1)(p+2)
1.2.3.

V400 + -

= 21.27 + 0.2(1.37) + (- 0.11) + ... = 21.53 nautical miles.

Solution. First we prepare the cumulative frequency table, as follows :

Marks less than (x) : 40 50 60 70 80
No. of Students (y,) : 31 73 124 159 190
Now the difference table is
x y by, A%y Ay, Ay,
40 3
42
50 73 9
51 -25
60 124 —16 37
35 12
70 159 -4
31

80 190
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We shall find y , i.e. number of students with marks less than 45.

—x 5
Taking x, = 40, x = 45, we have p = hx" =15 =05 [+ h=10]

using Newton’s forward interpolation formula, we get

pp-1) pp-1(p-2)
Vs =Yao t P+ — 5 A%y, + T A3y, +
- 0.5(0.5) (- 1. 5(-0.5) (- 1.5) (- 2.5
=31+0_5x42+w,‘ +Wx(_25)+9 ( )(24 ) ( )x

= 47.87, on simplification.
the number of students with marks less than 45 is 47.87 i.e., 48.

But the number of students with marks less than 40 is 31.
Hence the number of students getting marks between 40 and 45 = 48 — 31 = 17.

Example 29.16. Find the cubic polynomial which takes the following values :
£ 0 1 2 3
f& : 1 2 i 10

Hence or otherwise evaluate f (4). (Bhopal, 2009 ; Rohtak, 2005 ; W.B.T.U., 2005)

Solution. The difference table is

x f) Af (x) 82f (x) A3 (x)
0 1
1
1 2 -2
| 12
2 1 10
9
3 10
. [ h=1]

We take x, = 0 and p = i-il——zx

using Newton’s forward interpolation formula, we get
1 -1(x-2
F@=F O+ Zaf©+ 2D o)+ 220D papq)

=1+x1)+ x(x L gy, Bo—Dix~8 1;(" =2 19)

=203 - Ta? + 6x + 1, which is the required polynomial.
X=X =1 [... h=1]

To compute fi4), we takex = 3,x =4 sothatp =

Using Newton’s backward interpolation formula we get

Dip+2
£(4)=F(3) + pVF(3) + p{p D 2p3) + &t—é}(‘g—ﬂ-v“fﬂ%)

=10+9+ 10+ 12+41.
which is the same value as that obtained by substituting x = 4 in the cubic polynomial above.

- Obs. The above example shows that if a tabulated function is ¢ polynomial, then inte Ty
give the same values. paal rpolatio

Example 29.17.In the table below, the values of y are cousecutfve terms of a series of &;hkch %

ﬁtil tenn. Find the first and tenth terms of the series : k"
YT "e 4 5 6 e 9 |
y: 48 = 84 14.5 23.6 36.2 52.8 739 ~ (Anna, 20
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Solution. The difference table is

x y Ay Ay &%y Ay

3 4.8
3.6

4 8.4 2.5
6.1 0.5

5 14.5 3.0 0
9.1 0.5

6 23.6 3.5 0
12.6 0.5

7 36.2 4.0 0
16.6 0.5

8 52.8 45
211

9 73.9

To find the first term, use Newton’s forward interpolation formula withx, =3,x=1,A=1and p =- 2. We
have
(-2 (-2)(=3) (-2)(-3)(-4)

3’(1)=4.8+—_—1—x3.6+ ——ﬁmx2.-5+ 1323

To obtain the tenth term, use Newton’s backward interpolation formula withx, =9,x=10,A=1andp=1.
This gives

x0.5=3.1

1.2 1.2.3

¥10)=789+ L x 2114 22 145, 1OG 5 100,
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[EEEMl CENTRAL DIFFERENCE INTERPOLATION FORMULAE

In the preceding section, we derived Newton’s forward and backward interpolation formulae which are
applicable for interpolation near the beginning and end of tabulated values. Now we shall develop central differ-
ence formulae which are best suited for interpolation near the middle of the table.

If x takes the values x, — 2k, x, — k, g, X, + h, %, + 2h and the corresponding values of y = flx) are y_,,y_,,
Yo ¥1» Vo> then we can write the difference table in the two notations as follows :

x y 1st diff. 2nd diff. 3rd diff. 4th diff.
xg—2h Yoo
Ay (= 8y g5
x—h Yy Ay , (=8 )
Ay (= 8y 1) Ny o (=8 )
Xy Yo 132:9_1 (623’0) Aﬁ'.g (= 543"0)
Ayg (= 8y, Ay (=8,
xo+h % Ay (= &%)
AJ’ 1 (= 8.?3;2)
Xo+ 2h ¥,

(1) Gauss’s forward interpolation formula. The Newton’s forward interpolation formula is

pp—-1) pp-1D(p-2)
V=Yt PAY T 1 5 AW+ 193 At A1)
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Finite DIFFERENCES AND INTERFOLATION

We have A%y, - A%y =A%y
Le., A%y =A% |+ A%y -(2)
Similarly Ay, =A%y +AYy .(3)
Ay, = Ay | + A% etc. ..(4)

Also Ny 8% ,=Aby ,

Le., Ny =Ny ,+AYy ,

Similarly Aty =A%y ,+ A% ,etc. ...A5)

Substituting for A%y, A%, A"yo . from (2), (3), (4) ... in (1), we get

Plp- pp—1(p-2)
y;J=J’|)+PAJ’0+ 1.2 (ﬁ% 1-|—A 1)+W(A33’_1+A4y_1}
pp-1)(p-2)(p-3)
i 1.2.3.4 (Aiy_l"' d"’y_l}+

L VPP o

Hence y,=y,+pAy, + 31

(p+1)p(p 1(p-2) ”

11 A%y, + ... [Using (5)]
which is called Gauss’s forward interpolation formula.
Cor. In the central differences notation, this formula will be
pip-1 (p+1) p(p-1) (p+Dpp-D(p-2)
Vo=Yo+PWip+ o Tyt T g1 Syt 41 Byg + .

Obs. 1. It employs odd differences just below the central line and even difference on the central line as shown below:

Ay, A" Yoo Central line

\/\/\/\

A" Ya A’y. 2 Y3
Obs. 2. This formula is used to mt.erpnlate. the values of y for p (0 < p < 1) measured forwardly from the origin.

(2) Gauss’s backward interpolation formula. The Newton’s forward interpolation formula is
pP(p-1 o _ PP-D(@-2)

¥, =Y+ DAY, + T Myo+ =71 53 Adyp + ... (1)

We have Ay, — Dy y =A%
ie., Ay = Ay, + A%y, silZ)
Similarly Ay, =A%y |+ Ay | ..(3)
Ay, =A%y | + Aty | ete. ...(4)

Also _'yl—Aayz-J!!;_jq,r2
ie., Ny =Ny, + Ay, ..(B)
Similarly A“yfl = Ay , + Ay , etc. ...(6)

Substituting for Ay, A%, A%y, ... from (2), (3), (4) in (1), we get

-1 pp-1)(p-2)
¥, =¥+ P(&y_y + A%y ) + -B(l—pz—) A%y, +A% D+ T 1.3 @Yy, +AY )

pip-1D(p-2)(p-3)
B 1.2.3.4 (AYy_, + 8% )+ ...

(p+Dp o (p+Dplp-1) 5 (p+DLpp-D(p-2) 4
12 AYatr o Avat 1.2.3.4 AYa
N pp-D(p-2)(p-3)

1.2.3.4

= Yo + PAV; +

Asy_l Fosa
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(p+1p (p+1) -1
=yo+pAy_1+ 1.2 Azyﬁl & L‘%é.(;;)(Aay_z'i‘Ady_z)

(p+Dp(p-1(p-2)

* 1.2.3.4 (A%y_,+ A% ,)+ ... [Using (5)and (6)]
(P+1)P (p+Dp(p-1) (p+2)(p+1) p(p-1)
Hence Yp Yo+ PAY ; + A%y + == Ay o+ a0 Ay, +

which is called Gauss’s backward interpola.uon formula.
Cor. In the central differences notation, this formula will be

(p+1)p 82y, + (p+1) plp—1) By + (p+2(p+Dpp-1 By +
[ 3! -1z 41 0

Y=Yt P ot T o7

(3) Stirling’s formula.* Gauss’s forward interpolation formula is

(p—1) (p+1) p(p-1) (p+D) p(p-1)(p-2)
yp =%, +pAyo P p AEy_ :;Il(p Aay_] + 4l A‘y_z +... .1
Gauss’s backward interpolat:lon formula is
+1) (p+1) p(p-1) (p+2)(p+Dp(p-1
yp = yﬂ +pAy_] p p 23’_ 3 I Aay_z + p 4 ! A4y—2 ey e (2)
Taking the mean of (1) and (2), we obtain
2 -1 (A, +8%,) P
Y=Y+ P (Ayo 2&”‘1] % A%y L+ % x 1 3 2J + a0 Aty o+ .. -.(3)

which is called Stirling’s formula.
Cor. In the central differences notation, (3) takes the form
2 (p* + 1 % (p*-1%
Yy =90+phby+ B8+ et p udy, + ——p P Blyp + .. )

for %(Ayo +hy )= %(&)’m +8&y_ ) = Hdy,

1
5% + 8%y = %(533’»2*' Fly_yp) = H8%, ete

(4) Bessel’s formula.*™ Gauss’s forward interpolation formula is

1 (p+1 -1) 1 -1D(p-2
p(p )Azy:. P );;(p A“w_,+(p+ )p(;;! )(p )My_g_" e

¥=3g +pAy, +

ENumed after the Scotish mathematicians James Stirling (1692-1770).
*#See footnote p. 550.
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We have A%y, — A%y =A%y,
ie., A%y =A%, — A3y, (2
Similarly Aly , = Aty | — Ay, etc. .3
Now (1) can be written as
p(p-1(1 2 1,2 p(p —1)
Yp=Yo + P+ T(EA Yatgh ya)+ Ay,

+ P (P’ -1 (p-2) 4 1
+ B P (Gt gy, ) 4

1 Pf s
—m@f%*lmgr )Ayl*’%p(p.l)(‘ﬁﬂ?o Ay )+ =37 Aay—l

< -D(p-2 .
;P(P—i)l(l’_zl Ay, + %p L 4;(” ) Aty 8% )+ ... [Using(2),(3)etc]

2 2
plp-1) Ay, +A% p(p-1) (p+l 1
=Y +Pht o1 - 2 e XT3 T 2) A

p(p “D(p-2 Aly,+A'y,
41 : 2

(p-1) A’y +A%, (p-U2)p(p-1)
Hence y,=y,+phy,+ P ‘;! ; 12 0 4P 31 Ay,

(p+1)P(};' 1)(p-2) A:V-z;M- Fo n(4)

which is known as the Bessel’s formula.
Cor. In the centrel differences notation, (4) becomes

(p-1 (p-12p(p-1 (p+Dp(p-D(p-2)
¥, =¥o+ POy + E o1 Moy, + H“—st &y + 41 8%y + o -(5)
for %(A"’y_l + A%y) = y8%y, . % (Aly_, + Aty ) = udly,, etc.

(5) Everett’s formula. Gauss’s forward interpolation formula is
1 +1 -1 +1 Dip-2
p(p ) A2+ (p+1) p(p—1) - (p+Dplp-D(p=2)

¥, =% +pAy0 41 y_g

( 9 Npp-D(p-2)
p+ )<p+)5P‘P Do Myt )

3!

We eliminate the odd difference in (1) by using the relations
Ao =¥1— Yo Aa.)’.] = Azyo =% Az.}'_p 553’_2 = '343’_1 = Aéy_g etc.

Then (1) becomes
( (p+D p(p-1)
J',,=J’0+P()’1—yo)+ P P Azy T p—spi'_p—— (Azyg““‘szy_l)
(p+1) p( —1)( -2) p+2(p+Dpp-D(p-2)
L2 pi! BBy o TN 5p!p =B iy, Wy
pp-1(p-2) (p+Dpp-1)

=U-Pyg+pyi="" 31— Avat™ 31 A%
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S o - L S
== ==

p+)pp-D(p-2)(p-3) (
== 5! Aﬁ’_2 + 5! A“y_l — e

To change the terms with negative sign, putting p = 1 — g, we obtain

qlg* -1%) qlg® -1%)(¢* - 2%) pp? -1%)
Yp=@o+ g AW+ 51 Ay y+ o tpy + — 37 A%,

p® -1y (p*-2%
+ B 5!p Aty  +...

p+2)(p+D)p(p-D(p-2)

This is known as Everett’s formula.

CHOICE OF AN INTERPOLATION FORMULA

The coefficients in the central difference formulae are smaller and converge faster than those in Newton’s
formulae. After a few terms, the coefficients in the Stirling’s formula decrease more rapidly than those of the
Bessel’s formula and the coefficients of Bessel’s formula decrease more rapidly than those of Newton’s formula.
As much, whenever possible, central difference formulae should be used in preference to Newton’s formulae.

The right choice of an interpolation formula however, depends on the position of the interpolated value in
the given data.

The following rules will be found useful :

1. To find a tabulated value near the beginning of the table, use Newton’s forward formula.

2. To find a value near the end of the table, use Newton’s backward formula.

3. To find an interpolated value near the centre of the table, use either Stirling’s or Bessel’s or Everett’s
formula.

If interpolation is required for p lying between —1/4 and 1/4, prefer Stirling’s formula.
If interpolation is desired for p lying between 1/4 and 3/4, use Bessel’s or Everett’s formula.

s

[ :I' 3 P 3
Solution. Taking x, = 25, h = 5, we have to find the value of f (x) for x = 22.
x—xy 22-25
h 5
The difference table is as follows :

=-06

Le., for p=
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e | [oc7]
Gauss forward formula is
¥ =Yg+ PAyg + p(pg—?n by, + W Ay,
P OB DPD) jay Ly ) (p-D -2 (0 + 285,
S I i (—0.6)(;10.6—1) gy 0.6+1)(—;)E6)(—0.6—1) -
5 (-06-1)(-0.6) (4-!0.6— 1)(-06-2) 37
, C06+1)(-06)(- 0.65—!1) (-06-2)(-06+2)

=332+ 24.6-9.12 + 1.56392 - 0.5241
Hence [(22) = 347.983.

1974 - 1969 _

10 0.5.

Solution. Taking x, = 1969, & = 10, the population of the town is to be found for p =
The central difference table is

Gauss’s backward formula is

(p+1)p 2
Yp=Yo P+ o AVat

(p+1)p(p—1}Asy +(p+1){p+1)p(p—1)A4_

31 -2 4 r-4

+(jz:u+2)0[p+1);:*|(p-I}i(p—2) A5

+ 4B (BY(5) o | (25)(1.5)(=.5)
6 24

Y3 S ATV

=7

(2.5)(1.5) (.5) (-.5) (- 1.5)
+ =5 (-10)

=27 + 3.5 + 1.875 — 0.1875 + 0.2743 — 0.1172 = 32.345 thousands approx.

ie., ¥5 =27 +(0.5)(7) + (5)

(1.5)(.5)
2
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_—15. we have the following central difference

Solution. Taking the origin at 8° = 15°, h=5°and p = 5

table :

At 6 = 16°, - 16;15 =0.2
Stirling’s formula is
. P My +hy 2, PP D Ny, +Ay, P -1,
o T T _’”— CYR 2 BT gt

Yo = 0.2679 + (0.2) (0'0916 : 0'0961) + “’ff (0.0045) + ...

= 0.2679 + 0.01877 + 0.00009 + ... = 0.28676
Hence tan 16° = 0.28676.

Atx=12.2, p = 0.2. (As p lies between — 1/4 and 1/4, the use of Stirling’s formula will be quite suitable.)
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| Finre DiFferences ano InTespoLarion [ 969 ]
Stirling’s formula is

; 3 3 2
ML +N ., p pp’-1) AY .+, Pt -1)
Yp=%t %'T+ﬁAzy-1+ 3! 2 Y AY g+

When p = 0.2, we have

0.03728 + 0.03421 i
Yop = 031788 + 0.2 [ 2 : ) + “":) (- 0.00307)
(0.2)[(0.2)% — 11 { 0.00058 — 0.00045)  (0.2)° [(0.2)* — 1]

=0.31788 + 0.00715 — 0.00006 — 0.000002 + 0.0000002 = 0.32497.

Solution. Taking the origin at x, = 24, & = 4, we have p = %(x—%).
The central difference table is

Atx=256,p =(25—24)/4 = 1/4. (As p lies between 1/4 and 3/4, the use of Bessel’s formula will yield accurate
esult.)
Bessel’s formula is

~1) Ay, +A%, (p-12)p(p-1
yp=yn+pAyn+p(Z! y‘2 LI 3f E )A3yﬂ1+... (1)

When p = 0.25, we have
-8

y,=3162 + 0.25 x 382 + 0.25{—20.?5) [74—;66) " (—0.25).0.(?;25 (—0.75)

= 3162 + 95.5 — 6 — 5625 — 0.0625 = 3250.875 approx.

. c 2 ¥ g : s il o !
Solution. Taking the origin at x, = 27, h = 1, we have p =x — 27
The central difference table is
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B  HoenEnaneenne Mamemancs
Atx = 27.5, p = 0.5 (As p lies between 1/4 and 3/4, the use of Bessel’s formula will yield accurate result)
Bessel’s formula is

1
—1 A%y, + A%y, (p_E)-P(p_D
p=r0+ o+ 2 )'k = yOJ+ s A%

(p+D) pp-1(p-2)(A'y, + Ay,
+ 4! 2 S

When p =0.5, we have

(0.5) (0.5 —1) ( 0.009 + 0.010
¥, =8.704 - 2 ( 2 ] +0
(0.5 +1)(0.5) (0.5 — 1) (0.5 — 2) [— 0.001 — o.oo4]
% 24 2

=3.704 - 0.11875 - 0.00006 = 3.585
Hence f(27.5) = 3.585.

Solution. Taking the origin at x, = 330 and & = 10, we have p = %~ 520

The central difference table is

10

To evaluate log 337.5 i.e. for x = 337.5,p = @—%3@ =0.75
(As p > 0.5 and = 0.75, Everett’s formula will be quite suitable)

Everett’s formula is

a(¢” -1%) g’ -1*)(¢* - 2°) pp’ ~1%)
Vo=@t g A+ B AYy o+ ..+ py, + 3T A%,

2 _12)(p? — 92
LS TUE YN

0.25 (0.(;625 -1 x (= 0.00039) + 0.25(0.0625 1—22) (0.0625 — 4)

 (~0.00008) + 0.75 x 2.53148 + > 0028 _1)
L

= 0.62963 + 0.00002 — 0.0000002 + 1.89861 + 0.00002 + 0.0000001 = 2.52828 nearly.

=0.25 x 2.51851 +

x (— 0.00038)
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INTERPOLATION WITH UNEQUAL INTERVALS

The various interpolation formulae derived so far possess the disadvantages of being applicable only to
equally spaced values of the argument. It is, therefore, desirable to develop interpolation formulae for unequally
spaced values of x. Now we shall study two such formulae :

() Lagrange’s interpolation formula
(it) Newton’s general interpolation formula with divided differences.

LAGRANGE’S INTERPOLATION FORMULA

If y = f (x) takes the value y, ¥, ..., ¥, corresponding to x = x, x,, ..., %,,, then
. e-x)a-x)..(x-x,) (x — xg) (x — %) ... (x — x,,)
AN (g — 23) (x5 — %) ... (29 — x,) Yo (2 = x) (x) —x5) .. (%) —x,) %
(x—xg)(x—x) .. (x—x, _;)
T =2 Gy ) Gy %) O
This is known as Lagrange’s interpolation formula for unequal intervals.

(1)
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Proof. Lety = f(x) be a function which takes the values (x;, y,), (x, y,), ---, (,, ¥,). Since there are n + 1 pairs
of values of x and y, we can represent f(x) by a polynomial in x of degree n. Let this polynomial be of the form
y=f@) =ayx—x) (x —x5) ... (x —x,) + a,(x —x) (x —%,) ... (x —x,)
+ax—x) (x—x) (x—x) ... (x—x) + ... + @, (x—x) (x—x) ... (x—x, ;) ..(2)
Putting x = x5, y = y,, in (2), we get
Yo = aqlxg — %) (x5 = xp)...(xg — )
ay =y/lxg —2,) (g = x5)-..(xg = x,)]
Similarly putting x = x,,y = y, in (2), we have a, = yollley —xp) () — x5)...(x; — x,)]
Proceeding the same way, we find a,, a,...q,
Substituting the values of @, a,,..., , in (2), we get (1).

b 8 ' . s "'tl.'.a

Solution. (z) Here x%=5x2,=7,2,=11,%,=13,x, =17
and ¥o =150, y, = 392, y, = 1452, y, = 2366, y, = 5202.

Putting x = 9 and substituting the above values in Lagrange’s formula, we get
©O-70-11)O-13)(9-17) « 150 + (9-5)(9-11)(9-13)(9-17) ”
6-7(6-11)(5-13)(5-17) (7-5)(7-11)(7-13)(7-17)

©-50-70-13)(9-17) % 1452 + 9-509-70-11)(9-17
11-511-7(11-13)11-17) (13-5)(13-7(13-11)(13-17)

(9-5)(9-7)(9-11)(9-13) x 5202 = 90 3136 3872 2366 578 _ g 1

392

)=

x 2366

+

A7-5)17-7)7 -11) A7 — 13) 3% 15 3 3 5

Solution. Here x%=0,x,x,=2,x,=5
and Y0=2,9,=3,y,=12,y, = 147
Lagrange’s formula is
= (r—x) (= x).(x - x5) o (x — x5) (x — x5)..(x — x5) 5
(xg —2,) (g —%5)(xg — %) ~ 0 (31 — %) (g — %)y —25) 7
(2 —x5) (2 — %, )..(x —x5) % (x — xg) (x = x5)..(x — x5)
(o = %) (g — )y — %) 72" Ty — ) (g — 5). (g — 75)
(x-1)(x-2)(x—5) (x - 0)(x —2)(x - 5)
= 0-D0-20-5 2* a-oa-2a-5 >
(x-0GE-1D&-5 1, E-0G-1DE-2)
2-0E@-1)(2-5 BG-006G-15-2

(147)
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Hence f) =23 +x%—x+2
' fB)=27+9-3+2=235.

oy G AR AT VI AY gt $) g
Solution. Here x, = 0,x, = 1,x, = 3,x, = 6 and y, = 18, y, = 10, y, = - 18, y, = 90
Since the values of x are unequally spaced, we use the Lagrange’s formula :

_ (x—x) (= xp) (% — x3) (x — xp) (x — %) (x — x3)
= ; Yo+ ¥
(2 — xy) (3 — %) (g — 2x5) (x; = x5) (x; — x) (¢ — x5)
(x — x5) (x — 2;) (x — x5) o mx) - x) (x - xp)
(xz—xo)(xz—x,)(xz—xa)yz (g —29) (25 — %) (55 — 5) °°
x—1)(x—-3)(x—6 (x —0) (x — 3) (x - 6)
= §0—1;E0—2;:o-s; 8+ GToa-sa-e
(x-0)(x—1)(x—86) 18)+ (x-0)(x—1)(x—-3)
(3-0)(8-1)(3-6) (6-0)(6-1)(6-3)
= (=2 + 10x2 — 27x + 18) + (x® — 922 + 18x) + (x% — Tx? + 6x) + (x® — 4x? + 3x)
ie., y=2¢3-10x% + 18

(90)

Thus the slope of the curve at (x = 2) = (%)

x=2

= (6x® - 20x), _,=—16.

. P . E ; :
Solution. Let us evaluatey =32 +x + 1forx=1,x=2and x = 3
These values are

Lagrange’s formula is
_ -x)x-x) (x — x5) (x — x,) (x —xp) (x — x;)
Y ) o —x) 0 Gy — ) (o — ) 1 Gy ) (i — ) 02
_(x-D(x-2) (x—1)(x - 3) x-1Dx—-2)
= v ene-9 P e ne-n Y
Substituting the above values, we get
@-2@-3) . @-Dx-3) _ x-D-2)
209 ene-9 P e ne-2 Y
=25x-2)(x-3)-15(x-1)(x—3)+ 155 (x—1) (x — 2)
3 +x+1 _25(x-2)(x-3)-15(x-1)(x-3)+15.5(x—-1)(x - 2)
(x-1)(x-2)(x-3) (x ~ 1) (x—2)(x - 3)
2.5 15 +15.5

Thus

x—-1 x-2 x-3°
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B Hown B Maenics.

S -ttty (b)) —ty)
G-t 50 —6) Y )l —6)E ~E)

E—t) @t —t)@t-t;) (t—t,) @t —t,) (t —t5)

Tl 1) -ty — 1) 2 g —tg) (6 — ) (t — 1) 3
tE=BE- (o H-DE-b , K-DE-3)

_-D@E-3)(t-4)

CDEDEH T meacD @@ D DA
ie, = —(— 5¢3 4 38:2 105t + 252)

- Distance moved s = _[: vdt = l J: (- 5¢° + 38t% — 105¢ + 252) dt [ v= %]
_af st sef 105, N
“12l77 3 2 ;
1 2432 x
= E( 320 + 3 840 + 1008) =549

Also acceleration = % - %( _15¢2 + T6¢ — 105 + 0)

Hence acceleration at (£ = 4) = E (- 15(16) + 76(4) — 105) = — 3.4.

[EEEE} DIVIDED DIFFERENCES

The Lagrange's formula has the drawback that if another interpolation value were inserted, then the
interpolation coefficients are required to be recalculated. The labour of recomputing the interpolation
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coefficients is saved by using Newton’s general interpolation formula which employs what are called ‘divided
differences’. Before deriving this formula, we shall first define these differences.
If (xg, ¥¢), (1, ¥1), (x5, ¥5), ... be given points, then the first divided difference for the arguments, x, x, is

| : . Yi Mo
defined by the relation [x;, x,] = —"1 %, ¢

Similarly [x,, x)] = 2271 and [x,, z] = 2292 etc.
xz _xl .1’.'3 _12
[, — 291 —[xg,2,1

The second divided difference for x, x, x, is defined as [x, x,, x,] = e
2 "%

The third divided difference for x, x,, x5, %5 is defined as
[x), %9, %q] =[x, 2y, %]
X3 — Xg

and so on.

[xg0 13 %oy %3] =

NEWTON’S DIVIDED DIFFERENCE FORMULA

Let ¥, ¥y, - » ¥, be the values of y = flx) corresponding to the arguments x, x,, ..., x,. Then from the
definition of divided differences, we have

lx, % = Y=o
so that ¥ =y, + (x—x)) bx, x,) (1)
“tgam. [x’ xo: xll = [x' " xo ]“ [x_ﬂ < x‘_l ]
x-x
which gives [x, xl = [, 2] + (x — ) + (x = x) [, %, %]
Substituting this value of [x, x,] in (1), we get
¥ =¥+ (@ —xp) Iy, )] + (x —x) (x — x,) [x, x5, %] -(2)

[x, xo:xll _[xus Xy, xz]
which gives [x, Xy Il,] = [I“, Xy, le + (x, xz) Ix, Xy Xy 172]
Substituting this value of [x, x,, x,] in (2), we obtain
Y=y + (& —2xp) [xg, 2,1 + (@ —xp) (¢ —x)) [xg, %), x,) + (x — %) (2 —x,) (x —x5) [, %, %, %]

Also lx, x4, %), 5] =
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Proceeding in this manner, we get
¥ =F &) =y, + (x—xp) [xg, )] + (x —xp) (x —x,) [xg, x,, %]
+ (x = xp) (x — %)) (x — %) [, %, %, 23] + ...
+ (X —xp) (x —x7) ... (x —x,) [x, 2, Xy, -o0r X, .(3)
which is called Newton’s general interpolation formula with divided differences.

-

Taking x = 9 in the Newton’s divided difference formula, we obtain
f(9)=150+(9-5)x121+(9-5)(9-7)x24+(9-5)(9-7D(9-11)x 1
=150 + 484 + 192 — 16 = 810.
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Applying Newton's divided difference formula
f @) =F(xg) + (x — xp) [xg, 23] + (x — x) (x —x)) [, 27, %] + ...
=1245 + (x + 4) (—404) + (x + 4) (x + 1) (94)
+x+DE+DE-0(14)+(x+4)(x+ Dx(x—2)(3)
=8x% — 5x3 + 622 — 14x + 5.

rEREN INVERSE INTERPOLATION

So far, given a set of values of x and y, we have been finding the values of y corresponding to a certain
value of x. On the other hand, the process of estimating the value of x for a value of y (which is not in the table)
is called the inverse interpolation.

Lagrange’s formula is merely a relation between two variables either of which may be taken as the
independent variable. Therefore, on inter-changing x and y in the Lagrange’s formula, we obtain

(y - y])(y — Y )-..(_y —y,‘) e (¥ —.yo) (y —yzl...(y = -yﬂ)
(yo — 31 (¥ — ¥2)---(0 — ¥,) @ (O =) (0 = ¥e) 3y — 3,)

(y=y) W =-3n)y-y,-1) %
(.’}.‘n _yo) (yn —.y], )°-“(yn _yn"-].) i

x= 2

-(1)

which is used for inverse interpolation.

Solution. Here xo = 1.2, X, = 2.1, x2 = 2.8, Xz = 4.1, X, = 4-.9, X5 = 6.2
and Yo=42,y,=68,y,=98,y,= 13.4,y,=15.5,y,= 19.6
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Taking y = 12, the above formula (1) gives
(12-6.8)(12-9.8) (12 -13.4) (12 -15.5) (12 - 19.6)
(4.2-6.8)(4.2-9.8)(4.2 -13.4) (4.2 —15.5) (4.2 —19.6)
(12 -4.2)(12-9.8)(12-13.4) (12 -15.5) (12 - 19.6)
+ (6.8-4.2)(68-9.8)(68_13.4)(6.8—_15.5) (6.8 -19.6) ~
(12-4.2)(12-6.8)(12-13.4) (12 -15.5)(12-196) ¢
(9.8-4.2)(9.8-6.8)(9.8-13.4)(9.8-15.5)(9.8 -19.6)
(12-4.2)(12-6.8) (12 —9.8) (12 — 15.5) (12 — 19.6) < 4
(13.4 -4.2)(13.4 -6.8)(13.4 - 9.8)(13.4 -15.5)(13.4 -19.6) =
(12-4.2)(12-6.8)(12 -9.8) (12 -13.4) (12 - 19.6) < 4.9
(15.5-4.2)(15.5-6.8)(15.5-9.8)(15.5 -13.4)(15.5 -19.6)
. (12-4.2)(12-6.8) (12 -9.8) (12 —13.4) (12 - 15.5) < 6.2
(19.6 — 4.2) (19.6 — 6.8) (19.6 — 9.8) (19.6 - 13.4) (19.6 -15.5) =~
=0.022 —0.234 + 1.252 + 3.419 — 0.964 + 0.055 = 3.55.

21

+

Example 29.33. Apply Lagrange’s formule inversely to obtain a root of the equation f (x) = 0, given that
[(30) =-30, f(34) =- 13, f (38) = 3, and f(42) = 18. (V.T.U., 2009 S)

Solution. Here xy=30,x;, =34,x,=38,x,=42
and Yo=—30,y,=-13,y,=8,y,=18
It is required to find x corresponding toy = f(x) = 0.
Taking y =0, the Lagrange’s formula gives,
=3y -3)(y-y;) (Y =¥) (¥ —¥:) (¥ —¥3)
Xg + X
(J’ﬂ_yl)(yo_yg)(yo—ys) (y, _yn)(y"yg)(yl_}'3)
(y = 50) (¥ — 3) (¥ — 53) (v =3y =) (¥ — %)
Xq+ X3
(g —50) vy — 3) (y3 — ¥3) (73— ¥0) (03 —n) (33 — 35)
13(- 3)(—18) 30(—3)(-18) 30(13) (- 18) 30(13) (- 3)
= et s 2 S ] Vi ilbmdon oo ot S AP
CInea 48 ~ X e * 2t :3as i) <ot BEDas) <
=-0.782 + 6.532 + 33.682 — 2.202 = 37.23
Hence the desired root of f (x) = 0 is 37.23.

PROBLEMS 29.7

1. Apply Lagrange’s method to find the value of x when f(x) = 15 from the given data :

a4 5 6 g 11

filx) ¢ 12 13 14 16 (Madras, 2000)
2. Obtain the value of ¢ when A = 85 from the following table, using Lagrange’s method :

NS 24 5 8 14

A 94.8 87.9 81.3 68.7

[EEET] OBIJECTIVE TYPE OF QUESTIONS

PROBLEMS 29.8

Select the correct answer or fill up the blanks in the following problems :
1. Newton’s backward interpolation formula is ......
2. Bessel's formula is most appropriate when p lies between
(a) — 0.25 and 0.25 (b) 0.25 and 0.75 (e) 0.75 and 1.00.
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NUMERICAL DIFFERENTIATION

It is the process of calculating the value of the derivative of a function at some assigned value of x from the
given set of values (x;, ¥,). To compute dy/dx, we first replace the latter as many times as we desire. The choice of
the interpolation formula to be used, will depend on the assigned value of x at which dy/dx, is desired.

If the values of x are equi-spaced and dy/dx, is required near the beginning of the table, we employ
Newton’s forward formula. If it is required near the end of the table, we use Newton’s backward formula. For
values near the middle of the table, dy/dx, is calculated by means of Stirling’s or Bessel’s formula. If the values
of x are not equi-spaced, we use Newton’s divided difference formula to represent the function.

FORMULAE FOR DERIVATIVES

Consider the function y = f(x) which is tabulated for the values x; ( =x, + ih),i=0, 1,2, ... n.
(1) Derivatives using forward difference formula. Newton’s forward interpolation formula (p. 958) is

p(;;'—l) A%y, + p(p-1)(p-2) K8

Y =yo+pdyo+ 31 o

Differentiating both sides w.r.t. p, we have

dy 2p-1 3p> -6p+2
dp ~0t T Mo T A%
) (x — xg) dp _1
S = t ——=—
ince p , therefore i
dy dy dp 1 2p-1 o  8p>-6p+2
Now —=——=— |y + A +——A
dx dp dx R| 0T o 31 Yo
3 2
- 295 —
¥ 4p ISP .+ 2}5’ 6&4y0+___j| -"(1)
4
At x = x,, p = 0. Hence putting p =0,
dy 1 ) 1.3 1 .4 1 . 1 ¢
L =2 Ay —= A%y += APy, — = Ay, + = APy, — = ASy, +---
[dx]xu h[ Vo 2 Yo 3 Yo 4 Yo 5 Yo P Yo (2)

980
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- Numerica DiFFeReNTIATION & INTEGRATION 981
Again differentiating (1) w.r.t. x, we get
d’y_d (dy)dp
dx®> dp\dp)dx
_1l2 . 6p—6 5 12p>-36p+22 , 1
z[zrﬁw g NPT g Ay
Putting p = 0, we obtain
d*y T T TR (e
T A A A A A (3
[dxg] h2l: N-Bht b Nty 3)
o d*y 1143 3 At
Similarly Ex? h3 yo—* Yo+ ...(4)
Otherwise:Weknowthat1+A=E:e"D
hD:log(lm):A—%Ahla"L%A4+.._
1 (R (D R ]
or D= —(A-=A"+=-A" —— A" +---
h[ 2 3 4
2 -
and D2=L[A—-1—A2+1A3—lé.“+---] —L[Az—A3+—l—1A4+---:|
n? 2 3 4 h? 12
and D3=i|iA3_§A4+..,j|
h? 2
Now applying the above identities to y,, we get
o dyJ 1 1 9 1 3 1 4 1 5 1 6 ]
Leé, == | == Ay =AY+ =AYy ——A + =AYy ——= Ay +-
Dy,, (dx%hl:yﬂ2y03yﬂ4yﬂ5y06yo
d%y 1[2 3 11 5 & 137 ¢ ]
ZE ARy A+ —— Aty AP 2 ARy
[dleo gL TN S g0 Vigg © Y0
d®y 1 AZ 3A4
and ] h3 Jo—E Yot
xp

which are the same as (2), (3) and (4) respectively.
(2) Derivatives using backward difference formula. Newton’s backward interpolation formula

P +1 p +1) p+ 2
Y=Yy, + pvy;; t _—(p' ) V2J'n t (p——'( )Va

Differentiating both sides w.r.t. p, we get

n

2
d_y=vyn+2p+1v2 wviiyn.,....
dp 2! 31
. x—x dp 1
S = , therefore —=—-
nce p h e D h
dy dy dp 1 2p+1 _o 3p® +6p+2 3
= . T __ |V A% = Y .
How dr do de B| % g O 3! Ya wd5l)

Atx =x,, p = 0. Hence putting p = 0, we get
1

dy 1 1 9 1 3
| ==|Vy, +=V°y, +=V°y, +—
(R), =3 | watg Pt Vo

Again differentiating (5) w.r.t. x, we have
2 2
d’y _d (dx) dp L[Vg L8P 65 6p° +18p+11 V4yn+---]

V"y,t +—;—V5yn+%vﬁyn+~-] ...(6)

&2 dp dx K2 3! ” 12
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m HiGHER ENGINEERING MATHEMATICS
Putting p = 0, we obtain
d? 1 11 5 137
[Ex%} = [ Vo + V3, +I§V‘yn +EVSJ'.= 180 ==V, + ] e
- d’y 3 4
Similarly, F h3 Vy, + V Yn + ..(8)

Otherwise : We know that 1-V=E"!=¢ P

—hD =1log (1 - V)——[ +%v2+%v3+ lv‘+m]

or D=

h2
Similarly D V3+§V“+--}
3 hs 2
Applying these identities to y,, we get
. dy 1 1 2 1 3 1 4 1 5 1 6 ]
LE., | ==|Vy, +=V3" + =V =V =V =Vy, +--
Dy, (dxlﬂ h[yn GV 4oV 4 Vi + eV + 2 Vo,

d> 5 137 ,
(F] =73 [szn +\73yJrl +EV4_;Vn Vsyn +——Vﬁyn +J

6 180
day 1 V3 3 V4
and F h3 Yo+ 2 Yn +

which are the same as (6), (7) and (8).
(3) Derivatives using central difference formulae. Stirling’s formula (p. 964) is

3_’}‘_ 3
J’p=3’o+ £[M¥i]+£_2_ A2y +p(p2—12)[A 1+Ay_2]+p2(p2_12) ;
1! =

2 2! 1 3! 2 41 Y-2*
Differentiating both sides w.r.t. p., we get

d_y_[Ayg+Ay_1} 2P62 +3P2—1(Aay-1+53y_2]+4P3—2p
dp =%

2 2! 3! 2 a1 Aty gt
Sincep=*"% . 9_1
h dx h
Ay + A 2 _1(A%y _ +A%y_ 2p° —
Now dy _dy dp_ Wo + Ay _ +pA2y_1+3p 1187Y 1 -2 w22 Bty b
dx dp dx h 2 6 2 12

At x = x5, p = 0. Hence putting p = 0, we get

[@] _1(M0+dya 18%a+8%., 1 8% 5485
dc), k| 2 6 2 30 2

. d%y 1[.s 1 1
i Y I — At — if
Similarly [dxz L' i [ Ya—is ) 90 ¥Y_3 ] (10)

-(9)

Obs. We can similarly use any other interpolation formula for computing the derivatives.
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Example 30.1. Given that . Ny
x: 1.0 1.1 1.2 i3 Lg% Vvl 1.6: 4 4 A
y: 7.989 8.403 8.781 9.129 9.45]1 9.750 1 1166215 %l ) Pl
iy QY d?y : Iy MOt
find == and o o ()x=1.1 (szvia‘!oas,iﬁrmzoo.a S)
A . i 'y,"ﬂ . Iy <J. .
P (Rohtak, 2006; J.N.T.U., 2004 )
Solution. (a) The difference table is :
x y A A2 AP A A8 A8
1.0 7.989
0.414
1.1 8.403 - 0.036
0.378 0.006
1.2 8.781 -0.030 - 0.002
0.348 0.004 0.001
1.3 9.129 -0.026 -0.001 0.002
0.322 0.003 0.003
1.4 9.451 —0.023 0.002
0.299 0.005
1.5 9.750 —-0.018
0.281
1.6 10.031
We have
dy 1 1 2 1 3 1 4 1 2 1 6 ]
—_ =—| Ayg ——A +—=A —— A +—A —— A 4o [
( dxlo W [ Yo ~5 AN+ g AV~ AV + A% — = A% -.(£)
d? 1., 11 5
and [dx—glq, = W I:f—\dyo = ASJ’O + 12 Ay, - 8 AﬁJ’o S ] ..(ig)

Here h = 0.1, x, = 1.1, Ay, = 0.378, A%y, = — 0.03 etc.
Substituting these values in (i) and (if), we get
dy

(—) -1 [0.378 -1 0.03)+L0.004)- L -0.001)+1L (0.003)} - 3.952
gk B 2 3 i 5

2
dy| _ % {— 0.03 — (0.004) + i (-0.001) - g (0.003)} =-3.74
dac? L, (0.1 12 6

(b) We use the above difference table and the backward difference operator V instead of A.

dy 1 j j 14 10 16 ] :
| ==(Vy, +=V7y, +=V°y + =V +=V%y +=V°y, +.--
[dIJI" h [ yn 9 yn 3 yn, 4 yn 5 yn 6 yn ...(I)
d?y 1 [ - g Ty 5w 137 s ]
— | ==|Vy, +V’y, —V%y +-V’y +—V° +... ii
and [(11'2 Jx h2 Yn Yn 12 Yn 6 Yn 180 Yn ...(I’,l)
Here h =0.1,x, = 1.6, Vy, =0.281, szn = - 0.018 etc.
Putting these values in (i) and (ii), we get
dy 1 1 1 1 1 1
— =—10.281 + — (- 0.018) + — (0.005) + — (0.002) + — (0.003) + — (0.002) | = 2.75
[dx]m 0.1[ +2( ) 3( ) 4( ) 5( ) 6( )]
d%y 1 11 5 137
—_— = —-0.018 + 0. —(0.002) + — (0.00: ——(0.002
(dleﬁ (0.1)2[ 018 + 005+12(0 )+6( 3)+180( )]

=—0.715.
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Example 302. The following data gives the velocity of a pm'twle for 20 secands J mﬁ‘mﬁ?fﬁl of b'
seconds. Find the initial acceleration using the entire data : " x
Time t (sec) : 0 5 10 15 ~_2o ' !
Velocity v (m/sec) : 0 3 14 69 228 (Anna, s&oé,
Solution. The difference table is :
t v Av A Ay Ay
0 0
3
5 3 8
11 36
10 14 44 24
55 60
15 69 104
159
20 228

An initial acceleration (i.e.

(@).-
dt Jo

dv 1 1 1 1 1
ok =—[3-=(8)+=(36)——(24)| == (83-4+12-6)=1
(dtlo 5[ 2()+3( ) 4( ):I 5( ¥ )

Hence the initial acceleration is 1 m/sec?.

~ Example 30.3. A slider in a machine moves along a fixed straight rod. Its mm xcm. @bn&f‘the rod
given below for various values of the time t seconds. Find the velocity of the slider and &ﬁ accﬂwﬁbnw. en.
t = (.3 seconds.

t= 0 0.1 0.2 0.3 0.4 0.5 0.6 oF | e T
x= 30.13  31.62 3287 3364 3395 3381 3324 (mﬂv;uzaoa}_

Solution. The difference table is :

) at ¢t = 0 is required, we use Newton’s forward formula :

&

|

1 T 1
[AUO —EAEUO +§ Agv‘] —Z A4UD +"'J

[N
[}

t x A A2 A3 A AP AE
0 30.13
1.49
0.1 31.62 -0.24
1.25 —0.24
0.2 32.87 —0.48 0.26
0.77 0.02 -0.27
0.3 33.64 —0.46 -0.01 0.29
0.31 0.01 0.02
0.4 33.95 - 045 0.01
-0.14 0.02
0.5 33.81 —-0.43
-0.57
0.6 33.24

As the derivatives are required near the middle of the table, we use Stirling’s formulae :

[dx] Avg+Ax_ ;) 1A%, +4%x, p A%y + A°x_g B
dt), h 2 6 2 30 2 e e
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L DIFFERENTIATION & INTEGRATION 985
d%x 1 1 1 ..
[?J = h_2 |:A2x_1 —_ E Aéx_ 2 + % Asx_:; % :I ...(ll)
()

Here h = 0.1, ¢, = 0.3, Ax, = 0.31, Ax_, = 0.77, A%x_, = — 0.46 etc.
Putting these values in () and (ii), we get

(g) _ 1 0.31+o.77ﬁ1(0.01+o.oz)+l(o.02—o.27J___. .
dt Jos 0.1 2 6 2 30 2 e

2
d’x =L2 [- 0.46 — - (= 0.01) + L (0.29) ] =-45.6
dt* ), (0.1) 12 90

Hence the required velocity is 5.33 cm/sec and acceleration is — 45.6 cm/sec?.

Example 30.4. Using Bessel’s formula, find f’ (7.5) from the following table : . {10
aady 3 gl Ti47 7.48 7.49 7.50 7.51 7.52 7.53 Y L
flx): 0193 0195 0198 0201 0203 0206  0.208 (J.N.T.U., 2006)
Solution. Taking x, = 7.50, 2 = 0.1, we have p = = ;xu e ; 3150
The difference table is :
x 2 Y, A a2 a3 A i A8
747 -3 0.193
0.002
748 -2 0.195 0.001
0.003 -0.001
7.49 -1 0.198 0.000 0.000
0.003 —0.001 0.003
7.50 0 0.201 =0.001 0.003 =0.01
0.002 0.002 =0.007
7.51 1 0.203 0.001 =0.004
0.003 - 0.002
7.52 2 0.206 —0.001
0.002
7.53 3 0.208

Bessel’s formula (p. 550) is

P(p-1) Ay, +A%, (
2! 2 3!

Yp =Yo + POy, +

1
X (p+1)p(p—1)(p—2)_ﬂ‘y_2 A%y, +[p—-2-)(p+1)p(p—1)(p—2)

4! 2 5! A7
(p+2p(p+Dpp-D(p-2) (p-3) A%_5+A%., ,
+ g + .(E)
6! 2
: _x-x% . dp_1 ., dy dy dp_1dy
Since p= rom i dx“handdx dp de b dp
Differentiating (i) w.r.t. p and putting p = 0, we get
dy 1 dy] 1[ 1 2 2 1 3 1 4 4
= === =—|Ayg —= (A + A +—A —(A A
(dxl_5 h(dP}p=o 7 Yo h( Y1 Yo) 12 J’-1+24f Yoo +A%y_y)
1 .5

1 ..8 6
By e Tl
120472 540 A3 y‘z)}
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[@) b ki [0.002 _ 1 (0,001 +0.001) + L (0.002)"
dx )5 0.01 1 12

1 1 -1
— (- 0.004 + 0.003) - —— (- 0.007) —— (0.010+ 0
75 +O008 - 155 ¢ '310° )}
['-' Aﬁ Y _9oF 0]
=0.2 + 0 + 0.01666 — 0.00583 + 0.00416 = 0.223.
Example 30.5. Find f'(0) from the following data :

G A 3 5 11 2 34
flx) -13 23 899 17315 35606

Solution. As the values of x are not equi-spaced, we shall use Newton’s divided difference formula. The
divided difference table is

x fx) Ist div. diff. 2nd div. diff. 3rd div. diff. 4th div. diff.
3 ~13
18
5 23 16
146 0.998
11 899 39.96 0.0002
1025 1.003
27 17315 69.04
2613
34 35606

Fifth difference being zero, Newton’s divided difference formula is
fG) = flag) + (x — xp) oy — ) + (x —x) (x — ) fxg, %, %)
+(x = xy) (x —x7) (x — x5) flxg, x4, %o, Xg) + (X —2p) (x —2,)
X (x — x,) (x — x5) [ (%, %, X Xy X))
Differentiating it w.r.t. x, we get
&) ={flxy, x,) + (2% — x5 — x;) fx, x4, %,)

+ [8x2 — 2x(x) + %, + X)) + (X%, + X %o + X% X flxg, Xy, X9 X5)

+ [423 = 3x(xy + 20) + x5 + 2) + 2¢ (%, + 22, + XXy + XX + XXy + XX,)

— XX Xy + X XpXg + XXXy + XXy Xgl Flxg, Xy, Xg, X3, X,)
Putting x, =3,x ,=5,x,=11,x ;= 27 and x = 10, we obtain

f(x)=18 + 12 x 16 + 23 x 0.998 — 426 x 0.0002 = 232.869.

[ECEN MAXIMA AND MINIMA OF A TABULATED FUNCTION

Newton’s forward interpolation formula is

(p-1) p(p—-1)(p-2)
Y =y +Pply, + B-%!—— Ay, + = Ay, + ..

Differentiating it w.r.t. p, we get

dy 2p-1,,  3p°—6p+2
d_p = Ayo + T fal Yo + T A3y0 Y D
For maxima or minima, dy/dp = 0. Hence equating the right hand side of (1) to zero and retaining only

upto third differences, we obtain

+ 201 Ay,

2_
0 L3P°-6p+2 0 o
2 6

Yo =

Ay

ie., (% A3y0) P+ (Apyo—A3yU)p + (Ayo _%523/0 +% A%,ﬂ) =0
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ie.,

Substituting the values of Ay,, A%y, Ay, from the difference table, we solve this quadratic for p. Then the
corresponding values of x = x,, + ph at which y is maximum or minimum.

Solution. The difference table is :

% y Ay A%y Ay Aty APy
-2
—-2.25
=4 -0.25 25
0.26 -3
0 0 -05 6
-0.25 3 0
1 -0.25 2.5 6
0.25 9 0
2 2 11.5 6
13.75 15
3 15.75 26.5
40.25
4 56

Taking x, = 0, we have y, = 0, Ay, = — 0.25, A%y, = 2.5, A%, =9, A%y = 6.
Newton’s forward difference formula for the first derivative gives

dy 1 2p-1 3p> -6p+2 4p® -18p* +22p-6
_y=_[%_ p-1,z,  30°-6p+2 5 4p°-18p°+22p-6 0

dc h 2! 3! 4!

2x-1
2

-] ]

-0.26 +

(2.5) + %(3::2 —6x+2)(9) + %(4:;2 ~18x% + 22x — 6) (6)]

—

~0.25 +25x—1.25+4522 - 9x + 3+ 23 - 4.5x® + 5.5x — 1.5] =x% —x

For y to be maximum or minimum, % =0ie,x3-x=0

x=0,1,-1
d*y .

Now ZF -32 _1=—veforx=0
da?

=+veforx=1
=+veforx=-1

-1
% A‘-Bro +..,50)=0
Thus y is maximum for x = 0, and maximum value =y (0) = 0.

Also y is minimum for x = 1 and minimum value =y (0) = — 0.25.

Since ¥ =Yg+ x4y, +

e =

PROBLEMS 30.1
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17, Find the maximum and minimum values of y from the following table :

X : 0 1 2 3 4 5 Yt
flx) 0 0.25 0 2.25 16 56.25 T
18. Find the value of x for which f{x) is minimum, using the table . ]
% 1 9 10 11 12 13 14 ' 14"
flx): 1330 1340 1320 1250 1120 930 9
Also find the maximum value of f{x) ? i i { '7;

[EEEJ NUMERICAL INTEGRATION

The process of evaluating a definite integral from a set of tabulated values of the integrand f(x) is called
numerical integration. This process when applied to a function of a single variable, is known as quadrature.

The problem of numerical integration, like that of numerical differentiation, is solved by representing f(x)
by an interpolation formula and then integrating it between the given limits. In this way, we can derive quadra-
ture formula for approximate integration of a function defined by a set of numerical values only.

NEWTON-COTES QUADRATURE FORMULA

b ¥
Let Tk j Fx) dx

where f(x) takes the values y, ¥, ¥,, ... ¥, for x = x4, x,, y=flx)
X5, ... X,. (Fig. 30.1)

Let us divide the interval (a, b) into n sub-in-
tervals of width h so that xy=a, x; =x, + h, x, = x, + o s 9
2h, ...x, = x5+ nh =b. Then

x, +nh n
I= Lﬂ frdn=h In f(:t'ﬁ+rh)dr, 0 Xy xg+h x5+ 2h xg+nh X

putting x = x,, + rh, dx = hdr Fig. 30.1
n rir—1) rir—-1D(@r-2)
=hfo[y°”‘°y°+ 21 TR

P r(r—l)(i:l—'Q)(r—B) A‘,J’O+1'"(1r—l)(r—?5,'}’(1"—3)(1r'—4)ﬂ‘Ey'j

" ,-(,-_1)(1-—2)(;—'3)(1"—4)("_5) A%y, +---]dr

Azyo +

[By Newton’s forward interpolation formula]
Integrating term by, we obtain

' 2n — 2 .4
[ ] s+ 3t + 220D g o HEE |

12 24
4 3 2 4 5 3 2 5
+ n__§E_+11n —83n Ayn+ n__2n4+ﬂ_5.l+12n é.!&
5 2 3 4! 6 4 3 5!
6 5 3 =y 2 6
+ i_@__l.]_'zn‘t _@.‘. 2I4n —60n ﬂ‘l‘"' ...(A)
7 6 4 3 6!

This is known as Newton-Cotes quadrature formula. From this general formula, we deduce the following
important quadrature rules by takingn =1, 2, 3 ...

IELX] TRAPEZOIDAL RULE

Putting » = 1 in (4) § 30.5 and taking the curve through (x,, ¥,) and (x,, y,) as a straight line i.e. a
polynomial of first order so that differences of order higher than first become zero, we get
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+h 1 h
rﬂ f(x)dx=h(y0+—Ay0)=f()‘g +3,)
%o 2 2
. sn 1 h
Similarly r" **;(x)dx=h(y1+—z_\y1)=—(y,+y2)
X 2 2

X+ nh h
j.xo +(n —l)kf(x) o= 2 @(“— v* )
" Adding these n integrals, we obtain

xg+nh h
j F@) de =2 100 +3,) + 205 +95 % w43, )]
X

This is known as the trapezium rule.

Obs. The area of each strip (trapezium) is found separately. Then the area under the curve and the ordinates at x,
and x, + nk is approximately equal to the areas of the trapeziums.

Vvl SIMPSON’S ONE-THIRD RULE

Putting n = 2 in (A) above and taking the curve through (x,, y,), (x,, y,) and (x,, y,) as a parabola i.e., a
polynomial of second order so that differences of order higher than second vanish, we get

xo+ 2h 1 9 h
Lo f(x)dx =2h (3, +AJ’0+EA J’o)g Go+ 4y, +y)

. Xg+ nh - h
Similarly, Lﬂ gy [V dx= 3 o+ dy+y) -

g+ nh h i
L“mHmf(:ns)dasz—?:(yn_2 +4y, _,+,), n being even.

Adding all these integrals, we have (when n is even)
xg +nh h
Ln f(x)dx = 3 [Go+2,) + 4@ +¥) + e+ ¥, )+ 20 +Y, 4+ e+, )]
This is known as the Simpson’s one-third rule or simply Simpson’s rule and is most commonly used.
Obs. While applying Simpson’s 1/3rd rule, the given interval must be divided into even number of equal subinter-
vals, since we find the area of two strips at a time.

SIMPSON’S THREE-EIGHTH RULE

Putting n = 3 in (A) above and taking the curve through (x;, y,): i =0, 1, 2, 3 as a polynomial of third order
so that differences above the third order vanish, we get

+3h
Jlxo f(x)dx=3h (yo +EAyﬂ +E azyu + 1A3y0)
% 2 4 8

3h
= Fb’0+33’1+33’2 +¥5)
Similarly,
nh
[ e d =2 (v, + 3y, + By, + v and 5o on.

xg +3h

Adding all such expressions from x, to x, + nh, where n is a multiple of 3, we obtain
x, +nh 3 h
j Y f(x)dx=—8—[(yo+yn) 300, + Yo H Y Vst kY, )20+ Yo+ e+ Y, Sl
]
which is known as Simpson’s three-eighth rule.

Obs. While applying Simpson's 3/8th rule, the number of sub-intervals should be taken as multiple of 3. il



DOWNLOADED FROM www.CivilEnggForAll.com

BOOLE’S RULE

Putting n = 4 in (A) above and neglecting all differences above the fourth, we obtain

1 + 4h 2
j f(x)dx=4h| y, + 24y, Enzyo +—A3y° +—7 A‘yu)
% 3 3 90

2h
1—5-(73:0 + 32y, + 12y, + 32y, + Tyg)

Similarly

L , [ -—-(7y4 + 32y, + 12y, + 32y, + Ty,) and so on.
Adding all these integrals from x, to x, + nh, where n is a multiple of 4, we get

I: @) dxu%‘ (Tyo + 32y, + 12y, + 82y, + 14y, + 32y, + 12y, + 32y, + 14y, +.
This is known as Boole’s rule.

WEDDLE’S RULE

Putting n = 6 in (A) above and neglecting all differences above the sixth, we obtain

123 11 1 41
dx = 3 9 A2y 4 443 Ky + == 8P 4= —— A8 J
fx) (yo+ Ayo+ Yo Yo+ gp AN tggdFte 1A%

j-xn +6h
If we replace :‘E A%y, by 10 Aﬁyo, the error made will be negligible.
xg +6h 3h
j;' f(x)dx=ﬁ(vo+5y1+3/2+5y3+.)'4+5.)’5+ys)
Similarly

X +
‘[’fo 6h f( )dx__uﬂ+5y7+y3+63’9"‘3’10"‘53’114-3/12)811(180011

Adding all these integrals from x, to x, + nh, where n is a multiple of 6, we get
xg +nh 3h
I f(x)dx=ﬁ(3’o+5&’1+3'g+69’3+3’4+53’5+2.')'g+53'7+3'3+--)

X0

This is known as Weddle’s rule.

Solution. Divide the interval (0, 6) into six parts each of width A = 1. The values of f(x) = : : 5 are given
x

below :
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(i) By Trapezoidal rule,

6 1 h
Io 1+ %2 :E[@0+y6)+ 2001 + Yo + Y5+ ¥, + Y5

1
=3 [(1+ 0.027) + 2(0.5 + 0.2 + 0.1 + 0.0588 + 0.0385)] = 1.4108.
(ii) By Simpson’s 1/3 rule,

6 1 h
Io 1+ 22 =§[U0+y6)+4(yl +¥3+¥5) + 205 +3,)]

1
= é" [(1+0.027) + 4(0.5 + 0.1 + 0.0385) + 2(0.2 + 0.0588)] = 1.3662.
(iif) By Simpson’s 3/8 rule,

6 1 3h
=— [y, +3g) + 30y +¥o+ ¥, +3:) + 2y,]
jﬂ T ol 3 (yu Yg (Vl Yot ¥st)s 23?3

3
=38 (1 +0.027) + 3(0.5 + 0.2 + 0.0588 + 0.0385) + 2(0.1)] = 1.3571.
(iv) By Weddle’s rule,

1 3h
j: 1+ x° =Eb’o+5yl+y2+6y3+y45y5+y6]

=0.3[1 + 5(0.5) + 0.2 + 6(0.1) + 0.0588 + 5(0.0385) + 0.027] = 1.3735.

Also, ¢ =|tan™? = 1.4056
i 5 =feant o

1+x

Obs. This shows that the value of the integral found by Weddle’s rule is the nearest to the actual value followed by
its value given by Simpson’s 1/3rd.

217 V ’
Example 30.8. Use the Trapezoidal 1 ie to estimate the integral L e dx taking 10 intervals.

(UP.T.U., 2008)
Solution. Lety = ¢, h =0.2 and n = 10.
The values of x and y are as follows :
z: 0] o2 04 | o8 08 | 10 5 N PR T i 18 2.0
y: lwms 11735 = 14333 18964 | 2.1782  4.2206 @ 7.0993 129353}255337 54.5981
Yo ¥4 Ys Vg Y7 Yo i) ¥ Y10

By Trapezmda] rule, we have
1 h
jﬂ e"‘dx=E [0 + 7100 + 200, + Yo + Y3 + ¥y + Y5 + Vg + Vg + s + V)]
0.2
. [(1+ 54.5981) + 2(1.0408 + 1.1735 + 1.4333 + 1.8964

+2.178 + 4.2206 + 7.0993 + 12.9358 + 25.5337)]

2
Hence _[0 e~ dx = 17.0621.

8] g
Example 30.9. Use Simpson's 1/3rd rule to find J: e’ dx by taking seven o:dinates. :
' (V.T.U., 2011 ; Bhopal, 2009)

Solution. Divide the interval (0, 0.6) into six parts each of width 4 = 0.1. The values of y = f(x) = ¢* are
given below :
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By Simpson’s 1/3rd rule, we have
6 s h
_[: =20+ 99) + 40 + 75 + Yy + 205 +3,)

0.1
=3 [(1 +0.6977) + 4(0.99 + 0.9139 + 0.7788 + 2(0.9608 + 0.8521)]

0
%1- [1.6977 + 10.7308 + 3.6258] = —— (16.0543) = 0.5351.

Solution. Lety =sinx-log,x +e*and 2 =0.2,n = 6.
The values of y are as given below :

By Simpson’s —3—t]1 rule, we have

s ydx= [(v., +¥6) + 2(y5) + 3y, + ¥, + ¥, +¥5)]
= %(0.2) [7.7336 + 2(3.1660) + 3 (13.3247)] = 4.053

1.4 :
Hence .[02 (sin x - log, x + ") dx = 4.053.

Seluition. Tf s km be the distanics covered in £ liti), then % =i

e h .
4 =I0 vdt.:—-[X+4.0+2E],bySlmpsnn’srule
=0

Hence h = 2,v,=0, v, = 10, v, = 18, v, = 25 etc.

X=v,+v,,=0+0=0
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m HicHER ENGINEERING MATHEMA

O=v1+v3+vs+07+vg=10+25+32+11+2=80
E=u2+u4+06+vs=18+29+20+5=72

20
Hence the required distance = | s -2 (0+4%x80+2x172)

=0

= 309.33 km.
Example 30.12. The velocity v of a particle at distance s from a point on its linear path is given by
the following table :

s(m): 0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
v (m/sec) : 16 19 21 22 20 17 13 11 9
Estimate the time taken by the particle to traverse the distance of 20 metres, using Boole’s rule.

) (U.P.T.U. 2007)
Solution. If ¢ sec be the time taken to traverse a distance s (m) then % =v

dt 1

or —=— =y (say),

ds v

s=20 20

=| yds
0

then ¢

s=0
Here h=25andn=8
Also Yo = i:)’l =is3’2 =l,y3 =is3’4 :i’ys Zl,ys =i:3’7 =i’ ¥s -2
16 19 4 22 20 17 13 11 9
by Boole’s Rules, we have
s=20 20 oh
= Io yds = T [Tyo + 32y, + 12y, + 32y, + 14y, + 32y, + 12y, + 32y, + 14y,]

_ 225) [-;(i} +32 [i) 112 [i] +32 (iJ + 14(i) +32 (l]
a5 | '\16 19 21 22 20 17

+ 12(%) + 32(%) +14 (%)]

- %(12.11776) =1.35

t

s=0

Hence the required time = 1.35 sec.

Example 30.13. A solid of revolution is formed by rotating about the x-axis, the area between the x-a
the lines x = 0 and x = 1 and a curve through the points with the following co-ordinates

R 0.00 0.25 0.50 0.75 1.00
y.: 1.0000 0.9896 0.9589  0.9089  0.8415 ‘
Estimate the volume of the solid formed using Simpson’s rule. (Raipur, 2(

Solution. Here h = 0.25, y, = 1, ¥, = 0.9896, y, = 0.9589, etc.
Required volume of the solid generated

1 h
= _Lﬂyz dx=ft-§I(y§ + ¥+ 407 + y2) + 2531

=0.25 g [{1 + (0.8415)%) + 4{(0.9896)? + (0.9089)?} + 2(0.0589)]

« GAbRA 116 [1.7081 + 7.2216 + 1.839] = 0.2618 (10.7687) = 2.8192.
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B INTRODUCTION

Difference calculus also forms the basis of Difference equations. These equations arise in all situations in
which sequential relation exists at various discrete values of the independent variable. The need to work with
discrete functions arises because there are physical phenomena which are inherently of a discrete nature. In
control engineering, it often happens that the input is in the form of discrete pulses of short duration. The radar
tracking devices receive such discrete pulses from the target which is being tracked. As such differences equations
arise in the study of electrical networks, in the theory of probability, in statistical problems and many other fields.

Just as the subject of Differential equations grew out Differential calculus to become one of the most
powerful instruments in the hands of a practical mathematician when dealing with continuous processes in
nature, so the subject of Difference equations is forcing its way to the fore for the treatment of discrete processes.
Thus the difference equations may be thought of as the discrete counterparts of the differential equations.

DEFINITION

(1) A difference equation is a relation between the differences of an unknown function at one or more
general values of the argument.

Thus AY sy Yoy=2 ..(1)  and Aoy ¥ D=1 (2)
are difference equations.

An alternative way of writing a difference equation is as under :

Since Ay, , 1) = ¥, + 2~ ¥(n + 1) therefore (1) may be written as

) Y2 Y+ + Y= 2 2:(8)
Also since, Agym =Y~ D+ Y - 1) therefore (2) takes the form :
Yo~ Ym+Vn-n=1 ...(4)

Quite often, difference equations are met under the name of recurrence relations.

(2) Order of a difference equation is the difference between the largest and the smallest arguments
occuring in the difference equation divided by the unit of increment.

Thus (3) above is the second order, for

largest argument — smallest argument _ (n +2)—n
unit of increment 1

il gl ihind ovetior, Bor ('”2);1('"” -3

=2

998
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DirFERENCE EQUATIONS m

Obs. While finding the order of a difference equation, it must always be expressed in a form free of As, for the highest
power of A does not give order of the difference equation.
(3) Solution of a difference equation is an expression for y,, which satisfies the given difference equation.
The general solution of a difference equation is that in which the number of arbitrary constants is equal to
the order of the difference equation.
A particular solution or particular integral is that solution which is obtained from the general solution
by giving particular values to the constants.

[EEX]] FORMATION OF DIFFERENCE EQUATIONS

The following examples illustrate the way in which difference equations arise and are formed.

Example 81.1. Form the difference equation corresponding to the family of curves

y = ax + ba? w ()
Solution. We have Ay = aAlx) + bAG%) =a (x + 1 —x) + bl(x + 1)2 —x2]
=a+b2x+1) (i)
and A2y = 2b|(x + 1) —x] = 2b D

To eliminate a and b, we have from (iii), b = %A"’y

and form (i), & = Ay — b (2¢ + 1) = Ay — %Azy (2¢ + 1)
Substituting these values of ¢ and b in (i), we get

y= [Ay —-%—A2y (2x +1):|x + %A“’y .7

or (2 +x) A%y — 22 Ay +2y =0
This is the desired difference equation which may equally well be written in terms of E as
or Z+x)y,, ,— (2% +4x)y,  ,+(x®+3x+2)y =0.

Example 81.2. From y, = A2" + B(- 3), derive a difference equation by eliminating the constants.

Solution. We have ¥, =A2"+B(-3),y,,,=2A.2" - 3B(- 3
and Yp oo =4A.2" + 9B(- 3)".
Eliminating A and B, we get
y, 1 1
Yn+1 2 -3 =0 or y11+2+yn+1—6yn=0
yn+2 4 9

which is the desired difference equation.

PROBLEMS 31.1

1. Write the difference equation ﬂsy: + Ay + Ay + ¥, = 0 in the subscript notation.

2. Assuming 19'% =Yg+ V12 # Y22 A e +%,2", ..., find the difference equations satisfied by y, .
3. Form a difference equation by eliminating arbitrary constant from u, = a2"*+1. (Anna, 2008)
4. Find the difference equation satisfied by
@Dy=ak+b  (Tiruchirapalli, 2001) (i) y = ax?® — bx.
5. Derive the difference equations in each of the following cases :
(i) y,=A3"+B.5" (i) y, = (A + Bx) 2*. (Madras, 2001)

6. Form the difference equations generated by
(i) y, =ax +b2* @)y, = a2 + b(-2)" (iif) y, = a2* + b3* + c.
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m HicHER ENGINEERING MATHEMATICS
LINEAR DIFFERENCE EQUATIONS

(1) Def. A linear difference equation is that in which y
are not multiplied together.

A linear difference equation with constant coefficient is of the form
yn+r+a1yn+r-—l+a2yn+r—2+'“+aryn=ﬂn) (1)
where a,, a,, ... a, are constants.
Now we shall deal with linear difference equations with constant coefficients only. Their properties are
analogous to those of linear differential equations with constant co-efficients.
(2) Elementary properties. If u (n), u,(n), ..., 1 (n) be r independent solution of the equation
Yoirt @ Vpsr_ 1t +0y,=0 ..(2)
then its complete solution is U = ¢u,(n) + ... + cu (n)
where ¢y, ¢,, ..., ¢, are arbitrary constants.

IfV, isa partlcular solution of (1), then the complete solution of (1)isy, = U, + V,. The part U,, is called
the complementary function (C.F.) and the part V, is called the parhcular mtegml (P.L) of (1.

Thus the complete solution (C.S.) of (1) isy, = C.F. + P.L

.o etc. occur to the first degree only and

ner Y

[EEE RULES FOR FINDING THE COMPLEMENTARY FUNCTION

(i.e., rules to solve a linear difference equation with constant coefficients having right hand side zero).
(1) To begin with, consider the first order linear equation y, , , — Ay, = 0, where A is a constant.

Y : "
Rewriting it as ; 1 0, we have A (i—ﬁ) = 0, which gives y, /A" = ¢, a constant.

1
n+ 7\.”

Thus the solution of (E- 1)y, =0isy, =c.A™
(2) Now consider the second order linear equation y, , ,+ay, , , + by, = 0 which in symbolic form is
(E? + aE + b)y, =0 (1)
Its symbolic co-efficient equated to zeroi.e., E2 + aE +b =0
is called the auxiliary equation. Let its roots be A, A,
Case 1. If these roots are real and distinct, then (1) is to equivalent to
(E-A)(E-N)y,=0 ..(2)
(E-A)(E-ML)y,=0 ...(3)
If y, satisfies the subsidiary equation (E — A,)y, = 0, then it will also satisfy (3).
Similarly, if y, satisfies the subsidiary equation (E —,)y, = 0, then it will also satisfy (2).
it follows that we can derive two independent solutions of (1), by solving the two subsidiary equations
(E-\)y,=0 and (E-A)y, =0
Their solutions are respectively,y, =c,(A,)* and y, =c,(A,)"
where ¢, and ¢, are arbitrary constants.
Thus the general solution of (1) is y, = ¢,(A,)" + c,(A,)"
Case 1L If the roots are real and equal (i.e., A, = A,), then (2) becomes

(E -2y, =0 ...(4)
Let ¥, =)z,
where z_ is a new dependent variable. Then (4) takes the form
(}’l)n+ zzn +2 2‘1’1()"1)"‘J +lzn +1 + )‘? * (ll)ﬂ zl’l =0
or Z,,0-22,,,+2,=0 ie, A%z =0

z, =¢,+c,n,wherec,c, are arblt.rarv constants.
Thus the solution of ( 1) becomes y, = (¢, + c,n)(A))".
Case IIL. If the roots are imaginary, (i.e. A, = o + i, A, = o — iP) then the solution of (1) is
¥, =cy(o+ B + eyl — iﬁ)“ [Put .= r cos @ and B = r sin 6]
=r" [e,(cos n® + i sin nB) + ¢, (cos nO — i sin no)|
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=r"[A, cos n® + A, sin nél

where A, A, are arbitrary constants are r = Jio? +p?), 6 = tan~! (B/o).
(3) In general, to solve the equation y, , .+ay, ., ,+..+a,y, =0wherea’s are constants :
(i) Write the equation in the symbolic form (E" + a,E"~ ' + ... + a,)y, = 0.
(ii) Write down the auxiliary equation i.e., E" + a,E" 1 ... + a, = 0 and solve it for E.
(zif) Write the solution as follows :

Solution. Given equation in symbolic form is (E® — 2E% — 5E + 6)u, = 0
itsamn'liaryequationisE"—?E’—sE+6= 0
or (E-1)E +2(E-3) = ~ E=1,-2,3
Thus the complete solution is u, = cl(l)" + ey~ 2)" + c3(3)"

Solutmn- Given dﬂferenoe equatlon in symbohc form is (E* - 2E + 1 u, = 0.
its auxiliary equation is E2—2E + 1 =0
or (E-1)2=0. L % 6 |
Thus the reqmred solution is u, -(cl+c2n)(1)" Le,u —cl+cgn

Solution. This is a second order difference equation iny, , ; which in symbolic form is
(E?2-2E coso+ 1)y, =0
The auxiliary equation is E2—2E coso.+ 1 =0

E= 2cosai-\f(4coszu-4)

=cosatisina

4
Thus the solution is y,_,=(1)"""Ilc, cos (n — Do + ¢y sin (n — 1)al
or ¥, =€, €08 no + ¢, sin no.

Solution. In this sequence, each numher beyond the semnd is the sum of its two previous number. Ify,
be the nth number theny, =y, _,+y, _,forn>2.

il J’Ma‘yn+1—-y,,=0(forn>0)
o (E? —E - 1)y, = 0 is the difference equation.

lts AE.is  E?-E—1=0whichgivesE= =(1% ).

2 n
1+2J§] +c2[1_2‘/§] ,forn>0

Thus the solutionis  y, = cl[
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1+5 1-V5
c-l[ 2 J-&-cz[ 2 -]=0 ()
Whenn =2,y,=0
. .
-- € 1+2Jg] +%[1_2J§] =0 i)
Solving (z) and (ii), we get
5-J6 _5++6
¢ = 10 and-c-z——i'ﬂ—-
Hence the complete solution is
_5-v5(1+6) 5+J6(1-VBY
2”10 | 2 2 2 )

nd 0

Consider the equationy, , +ay,,, ,+..+a,y, =fn)
which in symbolic form is §(E)y, = f(n)

where OE)=E +a,E1+ .. +a,

Then the particular integral is given by P.L = E:"(!E_) fin)

Case I. When f(n) = a”

PIL a,putE=a

_ 1
o(E)
a”, provided ¢(a) # 0

¢(a)
If ¢(a) = 0, then for the equation

(l) (B —a_)yn =a", PL= a®=na"-1

1
E—-a

(1)
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<
(i) (E —a)’y, =a", PL = = _la)z a" = n(n2 i ) G2
Gy (E—a)fyi=dh, PL=—L _gnaM0-1n=-2 .4
(E -a)® 3!

and so on.
Example 31.7. Solvey, ,o— 4y, .1+ 3y,= 5"

Solution. Given equation in symbolic form is (E? — 4E + 3)y, = 5"
The auxiliary equation is E2 —4E + 3 =0

or (E—-1XE-3)=0. ~ E=1,3
: CF.=c,(1)" +¢c,(8)" =¢; +¢c,. 3"
and PL=—1_ 5 [Put £ = 5]
E°—4FE+3
== ; no— }_ n
“%%-45+3° 8"
Thus the complete solution is Y, =€ +¢y. 3"+ 58
Example 31.8. Solve u,, , ,—4u, , ; + 4u, =2

Solution. Given equation in symbolic form is (E% — 4E + 4)u, = 2".
The auxiliary equationis E2-4E +4=0. -~ E=2,2
C.F. =(c; + c,n)2"
Pl = ! n= i —1)
(E-2°% 2!
Hence the complete solutionis iz, = (c, + c,n) 2" + n(n - 1) 2"~ 8,
Case II. When fln) = sin kn.

ikn ~ikn
1 . 1 e —€ 1 1 n 1 n
-I- . —— = - —_—— ——— —_— —
PL= 5@ o kn ¢(E)[ % ] 2 [¢(E)“ WB" ]

where a = ¢ and b = e~ .
Now proceed as in case L.

.22-2=p(n-1)2"-3

ikn —ikn
) __}_ N 1 e +e
@YWhenfim ~estin El= gaenshn ¢(E)[ J

1 Y
= 2[¢(E)a +¢(E)b ] as before

Now proceed as in case 1.

Example 31.9. Solvey, ,,-2cos .y,  ,+73, = cos on. (Nagpur, 2008)

Solution. Given equation in symbolic form is (E? — 2 cos .. E + 1)y, = cos on.
The auxiliary equation is E2 —2cos o. . E +1=0.

E= 2cos ot \I(Ah:os.2 o—4)
N 2
C.F.= (1) [e, cos an + ¢, sin on] i.e., ¢, cos o7 + ¢, Sin on
1

Pl = 3 cos on
E°-2Ecoso+1

_ 1 &9 4 ¢ tam
E?_E@E™ +e)+1 2

=cos o tisino
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= l_ 1 & 4 1 o fon

2 | (E - NE —e ™) (E - e“NE - ')
[Put E = ¢i¥| [PutE =e¢ ™

4l 4 1 gon, 1 £
2H(E—em)'em—e'm B " ¥

& i P gw, 1 el 1 [n.eidn-1_ 5 g~ icin-1]
disino | g _ E—-¢® 4isin a

_n |V ™V psin(rn-Da

" 2sina 2i ~ 2sino

Hence the complete solution is

nsin(n—-1) o

=¢, COS O + C, SIn oL + :
=6 2 2sin o

1 . 2
o(E) o1+ 4)
(1) Expand [¢ (1 + A)]~! in ascending powers of A by the Binomial theorem as far as the term in A”.
(2) Expand n” in the factorial form (p. 950) and operate on it with each term of the expansion.

(Madras, 1999)

n?

Case IIL. When fln) = n”. Pli=

Example 31.10. Solvey, ,,- 4y, =n’+n—- 1.

Solution. Given equation is (E* - 4)y, =n®+n—1.

The auxiliary equation is E> —4=0, .. E=%2
: C.F.=c,(2)" +c,(- 2.
PL=— 1 (m2+n-1D=—1  [r-D+2n-1.
E? -4 1+A)° -4
1 1 2. A2\
= (n2+2n]-1)=—=[1-|2Aa+5 ([n]2 + 2[n] - 1}
A +2A-8 3[ {3 3)]
oL (202 (2048 ) | 2 2 - 1)
3 33 3773
e Ll 24T 2 _=_l{2 _142 Z}
= 3{1+3A+95 +...}[In] + 2[n] - 1} 3 [n]° + 2n) 1+3(2{n]+2)+9x2
1f,. 2 10 171 n® 7. 17
=g gl g=-F g e
n? 7. 17

Hence the complete solution is y, = ¢,2" + c,(— 2)" - 3 9" 97
Case IV. When fln) = a" F(n), F(n), being a polynomial of finite degree in n.

PI = — L Fir) =ab Fla)

1
o(E) ¢(aE)
Now F(n) being a polynomial in n, proceed as in case III.
Example 31.11. Solvey, ., -2y, ,,+¥,=n%. 2" (Nagpur, 2008)
Solution. Given equation is (E? - 2E + 1)y, =n?. 2"
Its CF.=c¢,+cyn

I = 2n.n2=2n_1.__n2=2n,_1___.n2
(E-1) (2E - 1) (1 +24)°
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[DisiceBabmions .
=2"(1+2A) 2n(n—-1)+n=2"(1-4A+ 12A%2 - ..) ([n]? + [n])
=27 {[n)? + [n] - 4(2[n] + 1) + 12 x 2)
= 2" ({n]2- T7In] + 20) = 2" (n% — 8n + 20)
Hence the complete solution isy, = ¢, + c,n + 2" (n? — 8n + 20).

SIMULTANEOUS DIFFERENCE EQUATIONS WITH CONSTANT COEFFICIENTS

The method used for solving simultaneous differential equations with constant coefficients also applies to
simultaneous difference equations with constants coefficients. The following example illustrates the technique.

Solution. Given equation in symbolic form, are
(E-3)u +v,=x 8]
3u, + (E -5, = 4 (i)
Operating the first equation with E — 5 and subtracting the second from it, we get
[(E —5) (E - 3)—3lu, = (E - 5)x — 4*
or (E?-8E +12)u, =1 - 4x — 4*

Its solutionis 1w, =¢, 2 +c, 6~ =x -2+ i)
Substituting the value of u_from (iii) in (i), we get
bo=e Folo - -t et (i)
Taking u, = 2, v, = 0, in (iii) and (iv), we obtain
64 74
2, + 6cy= 55, 20, ~ 18¢, = op
when ¢, =1.38,¢,=-0.0167
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Hence u,=133.2"-0.0167.6* - 0.8x — 0.76 + 4*~ J
u, = 1.33.2*-0.05.6"— 0.6x — 1.36 — 4*~ L

PROBLEMS 31.4

Solve the following simultaneous difference equations :
L You1-2.=2x+1),2z, -y, =—2(x+1).
R e 2"'n+1=0' 2,172, ~%,=2%
3 u, +n=3u +2 ,v .,—n=u, +2u,given u;=0,v,=3.

4 u g to+tw=lLu+v tw=x,u+u W  ,=2x

x x+1

APPLICATION TO DEFLECTION OF A LOADED STRING

Consider a light string of length [ stretched tightly between A and B. Let the forces P, be acting at its
equispaced points x, (i = 1, 2, ..., n — 1) and perpendicular to AB resulting in small transverse displacements y; at
these points (Fig. 31.1). Assuming the angle 6, made by the portion between x; and «, , , with the horizontal, to be
small, we have

sin 6, =tan 6, =6, and cos 6, = 1

Y P; 0.

3
P2
Py
L}
lda
5 ko
A x X
(xq) (x,)

Fig. 31.1

If T be the tension of the string at x;, then T cos 8, =T
i.e., the tension may be taken as uniform.
Taking x; ,  — x; = h, we have
Yi,1—y;=htan 6. = he; (1)
¥;—Y;i_1=htan6,_,=h8,_, ~(2)
Also resolving the forces in equilibrium at (x;, y;) L to AB, we get
Tsin®,-Tsin®,_,+P,=0ie T(6;,-6,_,))+P,=0 ..(3)
Eliminating 6, and 6, _, from (1), (2) and (3), we obtain
3’;‘+1_2y;’+3’£-1=_%& ..(4)
which is a difference equation and its solution gives the displacements y,. To obtain the arbitrary constants in
the solution, we take y, =y, = 0 as the boundary conditions, since the ends A and B of the string are fixed.

WS

=

=

Example 31.13. A light string stretched between two fixed nails 120 cm apart, carries 11 loads of weight
5 gm each at equal intervals and the resulting tension is 500 gm weight. Show that the sag at the mid-point is
1.8 cm.

Solution. Taking A = 10 cm, P, = 5 gm and 7' = 500 gm wt.,
the above equation (4) becomes y, , , — 2y, +y, _,=-1/10
Le., yi+2_2yi+]+y£=_ﬁ
ItsAE.is(E-12=0ie E=1,1. . CF. =c +cg
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_ 1 1) 1 1 L= _1. -
i P'I'"'(Eq)?( 10)" e’ "1 z 2l

Thus the C.S.is ¥, = ¢, +Cyi + % (i -i?)

Since ¥=0, - ¢;=0
11
and Y12=0, & cg=_—.
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Numerical Solution of
Ordinary Differential Equations

| &5
| ‘]" :

| Ba{éhimh'mamod. 1. Simultaneéus first ordsr differantlal eﬁhaﬁeas.__ﬂa.semd omr quations. |
' ‘13. Boundary value problems. 14. Finite-difference method. 15. Objective Type of Questions.

——— —— ——— —— — — —— — —— — —— ——— ———— o e e

INTRODUCTION

The methods of solution so far presented are applicable to a limited class of differential equations. Fre-
quently differential equations appearing in physical problems do not belong to any of these familiar types and
one is obliged to resort to numerical methods. These methods are of even greater importance when we realise
that computing machines are now available which reduce numerical work considerably.

A number of numerical methods are available for the solution of first order differential equations of the
form :

dy Y
_gx_ = f(xl y)y glveny(xo) =y0 ...(1)

These methods yield solutions either as a power series in x from which the values of y can be found by
direct substitution, or as a set of values of x and y. The methods of Picard and Taylor series belong to the former
class of solutions whereas those of Euler, Runge-Kutta, Milne, Adams-Bashforth etc. belong to the latter class.
In these later methods, the values of y are calculated in short steps for equal intervals of x and are therefore,
termed as step-by-step methods.

Euler and Runge-Kutta methods are used for computing y over a limited range of x-values whereas Milne
and Adams-Bashforth methods may be applied for findingy over a wider range of x-values. These later methods
require starting values which are found by Picard’s or Taylor series or Runge-Kutta methods.

The initial condition in (1) is specified at the point x,. Such problems in which all the initial conditions are
given at the initial point only are called initial value problems. But there are problems involving second and
higher order differential equations in which the conditions may be given at two or more points. These are known
as boundary value problems. In this chapter, we shall first explain methods for solving initial value problems
and then give a method of solving boundary value problems.

PICARD’S METHOD*
Consider the first order equation dy/dx = f(x, y) (1)

* Called after the French mathematician Emile Picard (1856—1941) who was professor in Paris since 1881 and is famous for
his researches in the theory of functions.

1008
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It is required to find that particular solution of (1) which assumes the value y, when x = x,. Integrating (1)
between limits, we get

I;: dy = I:} flx,y)dx or y=y,+ L: f(x,y) dx 2]

This is an integral equation equivalent to (1), for it contains the unknown y under the integral sign.
As a first approximation y, to the solution, we puty =y, in f(x, y) and integrate (2), giving

Y1=Yo+ J: f(x,yy) dx

For a second approximation y,, we puty =y,in f(x, y) and integrate (2), giving

x
Yo=Y + _Lo f(x, 3) dx

X
Similarly, a third approximation is y, =y, + Lﬂ f(x, ;) dx.

Continuing this process, a sequence of functions of x, i.e,, y,, ¥,, ¥5 ... is obtained each giving a better
approximation of the desired solution than the preceding one.

Obws. Picard’s method is of considerable theoretical value, but can be applied only to a limited class of equations in
which the successive integrations can be performed easily. The method can be extended to simultaneous equations and
equations of higher order (See § 32.11 and 32.12).

Example 32.1. Using Picard’s process of successive approximation, obtain a solution upto the fifth
approximation of the equation dy /dx = y + x, such that y = 1 when x = 0. Check your answer by finding the exact
particular solution.

Solution. (@) We havey =1+ j: (y + x) dx.

First approximation. Puty = 1, iny + x, giving
n=1+ [ Q40 de=1+x+a%2

Second approximation. Puty = 1 +x + x%2 in y + x, giving
y,=14+ I: AQ+2x+2%/2) dx=1+x+2x2 + x%6.

Third approximation. Puty = 1+ x + x2+ 2%/6 in y + x, giving

& gl .3 £
y3=1+I A+2x+x° +x°/6) dx=1+x+x2+ —+—.
0 3 24
Fourth approximation. Puty =y, in y + x, giving
5 3 4 3 .4 5
y4=1+I 1+2x 422+ 4% ldx=14x+22+ 2+ 2 ¢ %
0 3 24 3 12 120

Fifth approximation. Puty =y, in y + x, giving

. 3 4 5 3 4 5 6

X X X X X x X X
=1+ 142 +0? +—t—t—— | de=1+x+2%+ —+ 2+ +—
Ys Io[ 3 12 120} Tr¥ ¥ 3712 60 720 @

(b) Given equation :

% —y =xis a Leibnitz’s linear in x.
Its I.F. being e~ %, the solution is
ye ¥ = J-xef" dx +c=—xe *— j(— e )de+e=—xe*—e*+c [Integrate by parts]
y=ce*—x—1.
Sincey=1,whenx=0, .. c¢=2.

Thus the desired particular solution isy = 2e*—x — 1 ...(#)
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3 2 Iz Id
Or using the series: e*=1+x+ g+§+z o0,
3 4 5 6
we get W e oy A SO M . iii)
Be ¥ 3 12 60 360

Comparing (i) and (iiz), it is clear that (i) approximates to the exact particular solution (ii) upto the term
in a5,

Obs. At x = 1, the fourth approximation y, = 8.433 and the fifth approximation y, = 3.434 whereas exact value is 8.44.

Example 32.2. Find the value of y for x = 0.1 by Picard’s method, given that

CAEET L0 NS (P.T.U., 2002)
dx y+x

% —-x
s ax

Solution. We havey =1 + I
0 y+x

First approximation. Put y = 1 in the integrand, giving

y=1+ [ 12 gr=14 J:[—1+ : }dx

0 1+x 1+x

=1+ [-x+2log(1+ 2] =1-x+2log(1+x) 05
Second approximation. Puty = 1 —x + 2 log (1 + x) in the integrand, giving

*1—-x+2log(l+x)—x x 2x
=7 de=1+ j P ., S
dg= e Iu 1-x+2log(1+x)+x Io [ 1+21og(1+x)]

which is very difficult to integrate.
Hence we use the first approximation and taking x = 0.1 in (i) we obtain
y(0.1)=1-(.1)+ 2log 1.1 = 0.9828.

[EEZE] TAYLOR’S SERIES METHOD*

Consider the first order equation dy/dx = flx, y) (1)
Differentiating (1), we have
d’y of of dy .
B s L8.s " = + 2 = ...(2}
dx? o Ay dx Y=g+hl
Differentiating this successively, we can get y™, y" etc. Putting x = x, and y = 0, the values of (y°),, ("),
(y"), can be obtained. Hence the Taylor’s series

(x — x)*

3
y(x) =y, + (x - %) (y’)o " T (}’")(, % (x — xq)

31 Qg+ e -.(3)
gives the values of y for every value of x for which (3) converges.

On finding the value y, for x = x, from (3), ¥’, " can be evaluated at x = x, by means of (1), (2) etc. Then y can
be expanded about x = x,. In this way, the solution can be extended beyond the range of convergence of series (3).

Example 32.3. Find by Taylor's series method the value of y at x = 0.1 and x = to five places. r
decimals from dyldx = x*y — 1, y(0) = 1. (V.T.U.,, 2009, <htak, 200

Solutiﬂn. Here (’y)u —] I’y' =x2y — 1. U’)U = — 1
Differentiating successively and substituting, we get

y" = 2xy + 2%, 6" =0
Y= 2y + 4y’ + x%°, 0" =2
ViU = By" + Bay” + 2%y, ("), = - 6 etc.

*See footnote p. 145.
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Putting these values in the Taylor’s series,
2 3 4
() =y, + 1°(0) + Z-3"(0) + Z=y"(0) + Z-(0) +
S 21 3! Iy

2 3 4 x3 x4

we have y)=1+x(—1) + %(0)+ %(2)1— %(—ﬁ)+...=1—x+ 37 + ..

Hence y(0.1) = 0.90033 and y(0.2) = 0.80227.

Example 32.4. Employ Taylor’s method to obtain approximate value of y at x = 0.2 for the differential
equation dyldx = 2y + 3¢%, y(0) = 0. Compare the numerical solution obtained with the exact solution.

(V.I.U, 2009 ; P.T.U., 2003)

Solution. (¢) We have y’ = 2y + 3¢* 3(0) = 2y(0) + 3e° = 3.
Differentiating successively and substituting x = 0, ¥ = 0, we get

¥ =2y + 3e, y(0)=2y(0)+3=9

yn.r = 2yn + Sex, y.m(o) = 2yw(0) +3=21

iU = 29" 4 3e*, y(0) = 2y™(0) + 3 = 45 etc.
Putting these values in the Taylor’s series, we have

%2 x° £
- » i BN Rl sl 7
y(x) = y(0) + xy’(0) + T (0) + T4 (0) + 217 (0) + ...
=0+3x+ -9-x2+ E_7c3-s- ﬁx“+.._=33c+ g;n:2+ 113+ E:vc4+...
2 6 24 2 2 8
Hence (0.2) = 3(0.2) + 4.5(0.2% + 3.5(0.2) + 1.875(0.4)* + ... = 0.811¢ ...(1)
d St s <
(b) Now ay — 2y = 3¢" is a Leibnitz’s linear in x.
Its L.F. being e~ %, the solution is
ye ¥z I3e" e ¥dx+c=-8e +c or y=-—3e"+ce*

Sincey =0 whenx=0, .. c=3.
Thus the exact solution is y = 3(eZ —e*)
When x = 0.2,y = 3 (%% — %) = 0.8112 .G(30)

Comparing (i) and (i7), it is clear that (i) approximates to the exact value upto 3 decimal places.

Example 32.5. Solve by Taylor’s series method the equation % = log (xy) for y(1.1) and y(1.2), given
y(1) = 2. (Hazaribagh, 2009)

Solution. We havey’ =logx +logy; y(1)=1log2
Differentiating w.r.t. x and substituting x =1,y = 2, we get

Y= —1w+ly';y"(1)=1+ -1-10g2
x ¥ 2

1 .1 1 1 1 1
Mo =Yy =y D=1+ =[1+=1lo 2)—-—(10 2)?
y nyy y[leJ’J' 2( 23‘ 1 B
Substituting these values in the Taylor’s series about x = 1, we have
(x - D (x-1°

yx)=31) + (x - Dy Q)+ = 21 ¥ (1) + Y Y1) + ...

=2+(x-1log2+ —;—(:ac—l)2 (1+%log2] + %(x—l)'s [—%+ilog2—~i(]og2)2:{

¥(1.1)=2+(0.1) log 2 +

2 3
(O';) (1 + % log 2) 00 {_ e . i (og 2)2] =2.036

2 4
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2 3
y(1.2) =2 +(0.2) log 2 + (0'22) [1 + % log 2) + (0'? [— % + i log 2 — % (log 2)2} = 2.081.

PROBLEMS 32.1

Using Picard’s method, solve dy/dx = — xy with x, = 0, y, = 1 upto third approximation. (Mumbai, 2005)
Employ Picard’s method to obtain, correct to four places of decimal, solution of the differential equation dy/dx = x?
+y2 forx = 0.4, given that y = 0 when x = 0. (J.N.T.U., 2009)
3. Obtain Picard’s second approximate solution of the initial value problem : y* = /(3% + 1), y(0) = 0.

(Marathwada, 2008)

1

4. Find an approximate value of y when x = C.1, if dy/dx =x —y%2 and y = 1 at x = 0, using
(a) Picard’s method (b) Taylor’s series. (V.T.UL, 2010 ; Madras, 2006)

5. Solve y"=x +y given y(1) = 0. Find y(1.1) and y(1.2) by Taylor’s method. Compare the result with its exact value.
(J.N.T.U., 2008 ; Anna, 2005)

6. Evaluate y(0.1) correct to six places of decimals by Taylor's series method if y(x) satisfies
¥y =xy+1,30)=1.
7. Solvey’ =3x + y2, y(0) = 1 using Taylor’s series method and computer y(0.1). (Mumbai, 2007)
8. Using Taylor series method, find ¥(0.1) correct to 3-decimal places given that
dyldx =e* —y2, y(0) = 1.

[EEX EULER’S METHOD*

Consider the equation % =flx,y) (1 Y} Q True value of y
given that y(x,) = y,. Its curve of solution through /,'}; E}Error
P(x,, y,) is shown dotted in Fig. 32.1. Now we have to & R —
find the ordinate of any other point @ on this curve. = R va];l:e of y
Let us divide LM into n sub-intervals each of p, .-1P "
width & at L, L,, ... so that 4 is quite small. In the . oE
interval LL,, we approximate the curve by the P . A E,
tangent at P. If the ordinate through L, meets this o
tangent in P(x, + h, y,), then Yo
y=LP,=LP+R,P, 0 2 L L 7 X
=y,+ PR, tan9=y0+h(-dl] xg xg+h xg+2h xg+ nh
dx )p Fig. 32.1

=Yt h ﬂx.(]’ Yo)
Let P,@, be the curve of solution of (1) through P, and let its tangent at P, meet the ordinate through L,
in Py(x, + 2h, y,). Then
Yo=Y +hf(xg+h,y1) w2}
Repeating this process n times, we finally reach an approximation MP, of M@ given by

Y. =¥, 1 +hf,+ n- lh,yn_l)
This is Euler’s method of finding an approximate solution of (1).
Obs. In Euler’s method, we approximate the curve of solution by the tangent in each interval, i.e. o7 = =eue o of

short lines. Unless % is small, the error is bound to be quite significant. This sequence of lines may also deviai. ans=lder
ably from the curve of solution. Hence there is a modification of this method which is given in the next section.

Example 32.6. Using Euler’s method, find an approximate value of y corresponding to x = 1, given thut
dyldx =x+yandy=1whenx=0. (Mumbai, 2005 ; Rohiak, 2003)

*See footnote p. 302.
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Solution. We take n = 10 and k = 0.1 which is sufficiently small. The various calculations are arranged as
follows :

. A ’ﬂ'a" W 5 E‘ ’ ‘.. » "'s & tl..

Solution. We divide the interval (0, 0.1) into five steps i.e. we take n = 5 and & = 0.02. The various
calculations are arranged as follows :

Hence the required approximate value of y = 1.0928.

MODIFIED EULER’S METHOD
In the Euler’s method, the curve of solution in the interval LL, is approximated by the tangent at P
(Fig. 32.1) such that at P,, we have
Y1=Yo + b flxg, ) wl)
Then the slope of the curve of solution through P, [i.e. (dy/dx)p = f(x, + I, y,)] is computed and the
tangent at P, to P,Q, is drawn meeting the ordinate through L, in P,(x, + 2k, y,).

Now we find a better approximation y,¥ of y(x, + k) by taking the slope of the curve as the mean of the
slopes of the tangents at P and P, i.e.

7O =y, + % (g yg) + Fy + 1y 3] -(2)

As the slope of the tangent at P, is not known, we take y, as found in (1) by Euler’s method and insert it on
R.H.S. of (2) to obtain the first modified value y,". The equation (1) is therefore, called the predictor while (2)
serves as the corrector of y .
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Again the corrector is applied and we find a still better value y,® corresponding to L, as

y1(2)‘= Yot % If(xo, 3’0) + f(xo +h, 3"1(1))]
We repeat this step, till two consecutive values of v agree. This is then taken as the starting point for the
next interval L,L,.
Once y, is obtained to desired degree of accuracy, y corresponding to L, is found from the predictor
Yo =¥ +hf (xg + B, y,)
and a better approximation y,Vis obtained from the corrector

h
-yQ('l) = "é‘ [f(xg + h.,;}'l) + f(xo + 2}"2'3’2)]-

We repeat this step until ¥, becomes stationary. Then we proceed to calculate y, as above and so on.
This is the modified Euler’s method which is a predictor-corrector method.

Hence y(0.3) = 1.4004 approximately.
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Solution. We havey’ =y +e*=flx, ) ;x =0,y =0and h =0.2
The various calculations are arranged as under :
To calculate y(0.2) :

Since the last two values of y are equal, we take ¥(0.2) = 0.2468.
To calculate y(0.4).

Since the last two value of y are equal, we take y(0.4) = 0.6031.
Hence y(0.2) = 0.2468 and ¥(0.4) = 0.6031 approximately.
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x x+ | Jy| =¥ Mean slepe Old y + .2 (mean slope) = new y
0.4 1.6350 - 1.5258 + 0.2 (1.635) = 1.8523
06 06+ |/A8520)|=19610 (1635 +1961)=1798 15253 + 0.2 (1.798) = 1.8849
06 - 06+ |\](1.8849) | = 1.9729 %(1.635 + 1.9729) = 1.8040 1.5253 + 0.2 (1.804) = 1.8861
’
0.6 06+ | J{l.8861)| =1.9734 -;—(1.635 + 1.9734) = 1.8042 1.5253 + 0.2 (1.8042) = 1.8861

Hence y(0.6) = 1.8861 approximately.

PROBLEMS 32.2

1. Apply Euler’s method to solve y" =x + y, ¥(0) = 0, choosing the step length = 0.2. (Carry out 6 steps).

(Kottayam, 2005)
2. Using simple Euler’s method solve for y at x = 0.1 from dy/dx = x + y + xy, y(0) = 1, taking step size i = 0.025.
3. Using Euler’s method, find the approximate value of y when dy/dx = 22 + y? and y(0) = 1 in five steps (i.e. h = 0.2).

(Mumbai, 2006)
4. Solve y' = 1 -y, y(0) = 0 by modified Euler’s method and obtain y at x = 0.1, 0.2, 0.3. (Anna, 2005)
5. Giveny’ =x + sin y, ¥(0) = 1. Compute ¥(0.2) and y(0.4) with 4 = 0.2 using Euler’s modified method.
(.N.T.U., 2007)
6. Given that dy/dx = 2% + y and y(0) = 1. Find an approximate value of y(0.1) taking & = 0.05 by modified Euler’s
method. (V.T.U., 2010)
7. Given %-—-% with boundary conditions y = 1 when x = 0, find approximately y for x = 0.1, by Euler’s modified
y4x
method (5 steps). (V.T.U., 2007)
8. Given thatdy/dx =2+ [(xy) andy =1 when x = 1. Find approximate value of y at x = 2 in steps of 0.2, using Euler’s
modified method. (Anna, 2004)
[EEX3 RUNGE’S METHOD*
Consider the differential equation, AT
D _ e, y), yx) ® i
— x, ) X = TS
a5 Y ¥\Xg) =Y
Clearly the slope of the curve through P(x,, y,) is o
f(xg y,) (Fig. 32.2). <
Integrate both sides of (1) from (x,, y,) to (x, + A, B i
¥+ k), we have
yo + R xg+h
[ ay= """ fex 9 dx (2) Yo
Yo g
To evaluate the integral on the right, we take N as
the mid-point of LM and find the values of f(x, y) (i.e. 0 L N M X
dyldx) at the points x,, x, + h/2, x, + h. For this purpose, we X | h -]
first determine the values of y at these points. Fig. 32.2

Let the ordinate through N cut the curve PQ in S

and the tangent PT in 8,. The value of y is given by the point S,.

¥,=NS=LP+HS, =y, +PH tan 8

* Called after the German mathematician Carl Runge (1856-1927) who was professor at Gottingen.
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h h
=Y+ 2 (dyldx)p =y, + 5 15,50, (3)

Also ¥y =MT=LP + RT =y, + PR tan 6 = y+ hf (x,, y,).

Now the value of Yo at x, + h is given by the point 7" where the line through P drawn with slope at
T(x, + h, y;) meets MQ.

Slope at T =tan ®' = f(x, + h, y;) = flx, + h, y, + hf (x;, ¥)l
=MR + RT =y, + PT tan 0" =y, + hflx, + h, y, + hf (xy, y,)1 ..(4)
Thus the value of f(x,y) at P = f(x,, y,),
the value of f(x,y) at S = f(x, + h/2,y,)
and the value of f(x, y) at @ = f(x, + h, y)
where y; and Yq are given by (3) and (4).
Hence from (2), we obtain

xg +h
k= L“ " Fa, ) de= ah' [fp+ 4fs + f) [By Simpsons’ rule (p. 1106)]
{1

= g[f(xu, Vo) + 4 Geg + 12, 5g) + Fxg + b, 3] (5)

which gives a sufficiently accurate value of £ and also of y =y, + &.
The repeated application of (5) gives the values of y for equispaced points.
Working rule to solve (1) by Runge’s method :
Calculate successively
ky = hf (g, o)
ky=hf (% +1h, 30 +1hy)
k' =hf(xy+ h,y,+ k;)
and ky=hf(xy+h,y,+ k)
Finally compute, k= Eli-(kl + 4k, + ky).
(Note that k is the weighted mean of k, k,and k)

Example 32.12. Apply Runge’s method to find an approximate value of y when x = 0.2, given that dy dx
=x+yandy=1whenx=0.

Solution. Here we have x, = 0,y,=1, h = 0.2, f(x,, y,) =

ky = hf(x,, o) = 0.2 (1) =0.200
ky=hf (xg +Lh, 5y + 1k ) =0.2(0.1,1.1)  =0.240
B = hf(x,+ h, v+ k) = 0.2 (0.2, 1.2) =0.280
and ko =hf(x,+ h, yo+ k) = 0.2 £(0.1, 1.28) =0.296
k= §(ky+ 4k, + ky)
= £(0.200 + 0.960 + 0.296) =0.2426

Hence the required approximate value of y is 1.2426.

RUNGE-KUTTA METHOD*

The Taylor’s series method of solving differential equations numerically is restricted by the labour
involved in finding the higher order derivatives. However there is a class of methods known as Runge-Kutta
methods which do not require the calculations of higher order derivatives. These methods agree with Taylor's
series solution upto the terms in k", where r differs from method to method and is called the order of that method.
Euler’s method, Modified Euler’s method and Runge’s method are the Runge-Kutta methods of the first, second
and third order respectively.

* See footnote p. 1017. Named after Wilkelm Kutta (1867—1944).
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The fourth-order Runge-Kutta method is most commonly used and is often referred to as ‘Runge-Kutta
method’ only.

Working rule for finding the increment k of y corresponding to an increment h of x by Runge-Kutta
method from

%3_' =flx, ), ¥(x,) = y, s as follows :
X
Calculate successively
ky = hf (% ¥o)
k, = hf(xo +Lh, ¥, +%k1)
ky = hf (%o +5hy 3y + 3ks)
and ky=hf(x,+h,y,+k)
Finally compute k= %(ﬂe1 + 2k, + 2k, + k)
which gives the required approximate value y; =y, + k.
(Note that k is the weighted mean of k,, ky, kyand k,)

Obs. One of the advantages of these methods is that the operation is identical whether the differential equation is
linear or non-linear.

Example 32.13. Apply Runge-Kulta fourth order method, to find an approximate value of y when x = 0.2,
given that dy/dx =x +yandy = 1 when x = 0. (V.T.U.,, 2009 ; P.T.U., 2007 ; S.V.T.U., 2007)

Solution. Here x,=0,5,=1,h=02, f(x,,y,)=1

ky=hf(g,y)=02x1 = 0.2000
ky=hf(xg+3h,y, +1k) =0.2x£(0.1,1.1) =0.2400
ky=hf (xg +3h, 35 +Lky) =0.2 x £(0.1, 1.12) = 0.2440
and ky=hfeg+ b,y + k) =02 x£(0.2,1.244)  =0.2888
k= Lk, + 2k, + 2k, + k)
= £(0.2000 + 0.4800 + 0.4880 + 0.2888) = 1 x (1.4568) = 0.2468.
Hence the required approximate value of y is 1.2428.

: dy y2—a? _
Example 32.14. Using Runge-Kutta method of fourth erder, solve TRy = ‘i‘g‘:‘;‘z‘ with y(0)=1atx=0.2,
0.4. (UP.T.U, 2010 ; JN.T.U., 2009 ; V.T.U., 2008)
32— %2
Solution. We have f(x,y) = 5 -~
¥ +x
To find ¥(0.2) :
Herex,=0,y,=1,h=0.2
k,=hf(x,y,) =0.2f(0,1) = 0.2000
ky = hf [xo + %h, o + %ki] =0.2£(0.1,1.1) = 0.19672
ky = hf [xu 3 %h, Yo +%sz =0.2£(0.1,1.09836)  =0.1967
Ry = hf @y + b, vy + ky) = 0.2 £(0.2, 1.1967) =0.1891
k= —é-(kl + 2k2 +2ks+ k)= % [0.2 + 2(0.19672) + 2(0.1967) + 0.1891]

= 0.19599
Hence ¥(0.2) =y, + k= 1.196.
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To find y(0.4) :
Here x,=02,y,=1196,h =02
=h f(x,, ¥y =0.1891
k,= hf (x, + %h, i+ %}.ﬁ) = 0.2/(0.3, 1.2906) =0.1795
ky= hf{x, & %h, o+ %k,z) = 0.2 £(0.3, 1.2858) =0.1793
k, = hf(x, + b, y, + k) = 0.2 £(0.4, 1.3753) = 0.1688

ks %(k1+2k2+2k3+k4)

1
=% [0.1891 + 2(0.1795) + 2(0.1793) + 0.1688] =0.1792
Hence ¥(0.4) =y, + £ =1.196 + 0.1792 = 1.3752.

Example 32.15. Apply Runge-Kutta method to find an approximate value of y for x = 0.2 in steps of 0.1,
if dy/dx = x + y2, given that y = 1, where x = 0. (V.T.U., 2009 ; Osmania, 2007 ; Madras, 2000)

Solution. Here we take : = 0.1 and carry out the calculations in two steps.
Step[.xo-o Yo=1,h=0.1

k, = hf(xy, y,) = 0.1 £(0, 1) = 0.1000

ko= hf (xo + 1k, yo + 1 k) = 0.1£(0.05, 1.1) =0.1152

kg = hf (xo +3h, yo + $k;) =0.1£(0.05, 1.1152) =0.1168

ky = hfCcy+ b, y,+ ky) = 0.1 £(0.1, 1.1168) =0.1347

k= L(ky +2ky + 2k, + k)

= 1(0.1000 + 0.2304 + 0.2336 + 0.1347) =0.1165
giving ¥(0.1) =y, + k = 1.1165.

StepII.xl-xﬂ-i-h 0.1,y,=1.1165, h = 0.1

k, = hf(x,,y,) = 0.1£(0.1, 1.1165) =0.1347

ky=hf (2, + 1R, 3, + 1ky) = 0.1£(0.15, 1.1838) =0.1551

ky=hf (x, + 1R, 3 +1k,) = 0.1(0.15, 1.194) =0.1576

k,=hf e+ h, y,+ kg) = 0.1 £(0.2, 1.1576) =0.1823
& k= £k, + 2k, + 2k, + k) =0.1571
Hence ¥(0.2) =y, + k= 1.2736.
Example 32.16. Using Runge Kutta method of fourth order, solve for y atx = 1.2, 1.4 from d— 2? 5,

I x” F xe*
given x,= 1, Yo=0. (Mumbai, 2008)
2xy +e*
Solution. We have f(x,y)= ——
X" +xe
To find ¥(1.2) :
Here xﬂ=1,y0=0,h=02
= h e,y =02 2 - 0.1462
1+e
h k 2(1+0.1)(0 + 0.073) + ' *0!
k,=h, 11=02 = 0.1402
2 f(x°+2 ol 2) { 1+0.12 +(1+0.1)e "0
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h kz] 2(1+0.1)(0 + 0.07) + &**
ko=hf|xg+=,% +-=2| =0.2 =0.1399
g f(“ 2’07 {(1+0.1)2+(1+0.1)el'1

2(1.2)(0.1399) + ¢'2
(1.2)2 + (1.2) &2

R, = hfGey+ b, yy+ kg) = 0.2 { } =0.1348

1 1
and k= A (ky + 2k + 2k, + k) = 6 [0.1462 + 0.2804 + 0.2798 + 0.1348]

= 0.1402.
Hence ¥(1.2) =y, + k2 =0+ 0.1402 = 0.1402.
To find y(1.4) :
Here x, =1.2,y, =0.1402, h = 0.2
ky = hf(x,,5,) =0.2f(1.2,0) = 0.1348
ko= hf (e, + h/2, 3, + k,/2) = 0.2 (1.3, 0.2076) = 0.1303
kg = hf(x, + hi2, v, + k,/2) = 0.2 (1.3, 0.2053) = 0.1301
k, = hf(x, + h,y, + k) = 0.2 f(1.3, 0.2703) = 0.1260

k= % (By + 2Ry + 2k, + k) = % [0.1348 + 0.2606 + 0.2602 + 0.1260] = 0.1303
Hence ¥(1.4) =y, + k = 0.1402 + 0.1303 = 0.2705.

PROBLEMS 32.3

1. Use Runge’s method to approximate y when x = 1.1, given that y = 1.2 when x = 1 and dy/dx = 3x + y%
2. Using Runge-Kutta method of order 4, find y(0.2) given that dy/dx = 3x + -;ﬁy, y(0) = 1, taking h = 0.1.
(V.T.U., 2004)

3. Using Runge-Kutta method of order 4, compute ¥(.2) and (.4) from 10% =% +y2 v (0) = 1, taking h = 0.1.

(Rohtak, 2003 ; Bhopal, 2002)

4. Use Runge-Kutta method to find y when x = 1.2 in steps of 0.1, given that :
dyldx = %2 + y2 and y(1) = 1.5, (Mumbai, 2007)
5. Find y(0.1) and (0.2) using Runge-Kutta 4th order formula, given thaty’ = x2Z—yandy(0)=1. (JN.T.U., 2006)

6. Using 4th order Runge-Kutta method, solve the following equation, taking each step of & = 0.1, given y(0) = 3, dy/dx
= (4x/y — xy). Calculate y for x = 0.1 and 0.2. (Anna, 2007)

7. Use fourth order Runge-Kutta method to find y at x = 0.1, given that g% =3¢ +2y,y(0)=0and h =0.1.

(V.T.U., 2006)
8. Find by Runge-Kutta method an approximate value of y for x = 0.8, given that y = 0.41 when x = 0.4 and dy/dx
-l

= Jx+y). (S.V.T.U., 2007 S)

d L
9. Using Runge-Kutta method of order 4, find y(0.2) for the equation Ey = : ” ': ,¥(0) = 1. Take h = 0.2.

(V.T.U, 2011 S)
10. Given thatdy/dx = (y2-2x)/(3? + x) andy = Latx =0 ; find y forx = 0.1, 0.2, 0.3, 0.4 and 0.5. (Delhi, 2002)

[EEX} PREDICTOR-CORRECTOR METHODS

Ifx; _,and x; be two consecutive mesh points, we havex; =x;_, + h. In the Euler’s method (§ 32.4), we have

Yi=Yi_1+hflg+i-1h,y,_,);i=1,23,.. ..(1)
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The modified Euler’s method (§ 32.5), gives

h -
Yi=Viaat 5 [Ax; 3% )+ A, 1 -(2)

The value of y, is first estimated by using (1), then this value is inserted on the right side of (2), giving a
better approximation of y;. This value of y; is again substituted in (2) to find a still better approximation of y,.
This step is repeated till two consecutive values of y; agree. This technique of refining an initially crude estimate
of y; by means of a more accurate formula is known as predictor-corrector method. The equation (1) is there-
fore called the predictor while (2) serves as a corrector of y,.

In the methods so far explained, to solve a differential equation over an interval (x;, x, , ;) only the value of
y at the beginning of the interval was required. In the predictor-corrector methods, four prior values are required
for finding the value of y at x; _ . A predictor formula is used to predict the value of y at x, , , and then a correetor
formula is applied to improve this value.

We now describe two such methods, namely : Milne’s method and Adams-Bashforth method.

[EX} MILNE’S METHOD

Given dy/ dx=f(x,y) and y =y, x =, ; to find an approximate value of y for x = x, + nh by Milne’s method,
we preceed as Ju.. E
The value y, = y(x,) being given, we compute
¥y =Yg+ h), yo = y(xy + 2h), yg = y(x, + 3h),
by Picard’s or Taylor’s series method.
Next we calculate,
fo=Fleg ¥, Fi=Flxg +h, 3, fo= g+ 2R, 3,), fy = f(x; + 3h, y5)
Then to find y, = ¥(x, + 4h), we substitute Newton’s forward interpolation formula
n(n—1) n(n—1)n - 2)
2 6

flx, ) = f, + nAfy + A%f, + Afp+ ...

. . x5+ 4h
in the relation y, =y, + I [(x, ¥) dx
X

Y +4h n(n_ 1)

~D ey, +.._)dx [Put x = x, + nh, dx = hdnl

vi=vor [ (fo sty +

xqy
n(n-1)
2

=y, +h j: (fo + nAfy + A2fy + ...Jdn

=y,+h (41’0 + 8Af, +%Azfo +§A3fo +)

Neglecting fourth and higher order differences and expressing Af;, A%, and A% in terms of the function
values, we get

W o=y, + %(zfl — 1, + 2f;) which is called a predictor.

Having found y,, we obtain a first approximation to f, = f(x, + 4h, y,).
Then a better value of y, is found by Simpson’s rule (p. 1106) as

vy =y, + g(f2 +4f., + f,) which is called a corrector.

Then an improved value of f, is computed and again the corrector is applied to find a still better value of
¥,- We repeat this step until y, remains unchanged.
Once y, and f; are obtained to desired degree of accuracy, y, = y(x, + 5h) is found from the predictor as

4h
ylsp’ =nt ?(2f2_f3 +2f,)

and f; = f(x, + 5h, y,) is calculated. Then a better approximation to the value of y, is cbtained from the corrector
as
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We repeat this step till y, becomes stationary and we, then proceed to calculate y, as before.

This is Milne’s predictor-corrector method. To ensure greater accuracy, we must first improve the accu-
racy of the starting values and then sub-divide the intervals.

Example 32.17. Apply Milne’s method, to find a selution of the differential equation y* = x —y® in the
range 0 < x < 1 for the boundary conditions y = 0 at x = 0. (V.T.U., 2009, Anne, 2005, Rohtak, 2005)

Solution. Using Picard’s method, we have
y =y(0) + J: f(x, ) dx, where f(x,y) = x — y2.

To get the first approximation, we put y = 0 in f(x, y),

. 2
x x
ivi =0+ dx ="—
giving Y1 Io x -
To find the second approximation, we put y = x%2 in f(x, ),
% x* x2  xP
g = 2 P S
giving Yy L [x i ] 5 g
Similarly, the third approximation is
2 .52 2 .5 8 11
x x°  x x° x x x :
= Flaal 2| |dee® 2 o % D)
v=; [ (2 20” 2 20 160 4400
Now let us determine the starting values of the Milne’s method from (i), by choosing h = 0.2.
x,=0.0, y = 0.0000, fo = 0.0000
x,=0.2, = 0.020, f; = 0.1996
x, =04, y2 =0.0795, f,=0.3937
x,=0.6, ;= 0.1762, f, = 0.5689

Using the predictor, yL-"J =Y, ? (2f1 fo+2f3)

x=0.8, 3’4 = 0.3049, [, =0.7070
and the corrector, Yo = =y, + (f2 +4f, +f,), yields
ym = 0.3046, [, =0.7072 ...(il)

Again using the corrector, }(“) = 0.3046, which is same as in (i)

P o=y + .5_ (2f2 -f+2f),

Now using the predictor, y

x = 1.0, yP =0.4554, f; = 0.7926
and the corrector, Y =yg+ £ ()“3 +4f, +f,), gives
"" = 0.4555, f; = 0.7925

Again using the corrector,
¢} = (0.4555, a value which is the same as before.
Hence, (1) = 0.4555.

Example 32.18. Given y’ = x(x* + %) =%, 3(0) = 1, find y at x = 0.1, 0.2 and 0.3 by Taylor’s series method
und compuie y(0.4) by Milne’s method. (Anna. 2007)
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Solution. Given y(0)=1 and Ah=0.1
We have VX)) =x (2 +y2) e, y(0)=0
Y x) = [ + 2y2) (—e*) + 3x2 + y2 +x(2y) y'] e *
=e % [~ 2% —xy?+ 8¢ + y? + 2yy'] ; Y(0)=1
y'(x)=—e % [-x3—xy? + 322+ y2 + 2y’ + 322 + yZ + 2xyy’ — 6x — 2yy’ — 2xy"% — 2xyy'] y"(0)=-2

Substitute these values in the Taylor’s series,
72 3
y(x) =¥(0) + Fy(O) + 2,y(0) + 3,3/ ) + ...

¥(0.1) =1+ (0.1X0) + %(0.1)2 (1 + %(0.1)3 (-=2)+ ...

=1+ 0.005-0.0003 = 1.0047 i.e, 1.005
Now taking x=0.1,¥(0.1) = 1.005, A = 0.1
¥(0.1) = 0.092, y“(0.1) = 0.849, y"(0.1) = — 1.247
Substituting these values in the Taylor’s series about x = 0.1,
0.1 (U8 Vg (0.1y°
¥(0.2) = y(0.1) + 1'3:(01)+ 2l y"(0.1) + T

y7(0.1) + ...

= 1.0056 + (0.1)(0.092) + (-1.247) + ...

2 3
(0. 1) (0.849) + (0.31)

= 1.018
Now taking x=0.2,y(0.2)=1.018, h = 0.1
¥(0.2) = 0.176, ¥"(0.2) = 0.77, ¥"(0.2) = 0.819
Substituting these values in the Taylor’s series

2 3
7(0.3) = y(0.2) + ,1 ¥(0.2) + (021) (0.2) + (031,) y(0.2) +

=1.018 + 0.0176 + 0.0039 + 0.0001 = 1.04
Thus the starting values of the Milne’s method with & = 0.1 are

x,=0.0 yo=1 fo=%=0
x,=0.1 y, = 1.0056 f1=0.092

x,=0.2 ¥y, =1.018 f,=0.176

x3=0.3 ys=1.04 f3=0.26

4
Using the predictor, 3 =y + -—;l (2fy —F, + 23)

=1+ @ [2(0.092) - (0.176) + 2(0.26)] = 1.09

x=04 yflp) =1.09 [, =(0.4) = 0.362
Using the corrector, yi‘) =y, + (f2 +4fs+f)
¥ =0.018 + %{0.176 +4(0.26) + 0.362) = 1.071
Hence ¥(0.4)= 1.071.

Example 32.19. Using Runge-Kutta method of order 4, find y for x = 0.1, 0.2, 0.3 given that dy/dx= ne :
¥2 y(0) = 1. Continue the solution at x = 0.4 using Milne’s method. 3
(V.T.U., 2008 ; S.V.T.U., 2007 ; Madras, 2

Solution. We have  f(x,y) = xy + y2
To find ¥(0.1) :
Here %,=0,y,=1,h=0.1.
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ky=h f(xy, y) = (0.1) £(0.1) =0.1000
iy = hf(xo + %h, o %kl) = (0.1) £(0.05, 1.05) = 0.1155
ky= hf{xo + %h, Yo + %kz] =(0.1) £(0.05, 1.0577) =0.1172
ky=hf(xy+ h, y,+ kg) = (0.1) £(0.1, 1.1172) =0.13598

s —;—(kl+2k2+2k3+k4)

= %(0.1 +0.231 + 0.2348 + 0.13598) =0.11687
Thus y(0.1) =y, =y, + k = 1.1169.
To find ¥(0.2) :
Here x, =0.1,y, = 1.1169, h = 0.1
k, = hf(x,,y,) = (0.1)f(0.1, 1.1169) =0.1359
k, = hf(xI + %h, y o+ %kl) - (0.1) £(0.15,1.1848)  =0.1581
1 1
ky=hf (xl +ohn+ Ek‘z] =(0.1) £(0.15, 1.1959) =0.1609
ky = hf(x, + h, y, + ky) = (0.1) £(0.2, 1.2778) = 0.1888
1
k= E(k1+2k2+2k3+k4) =0.1605
Thusy(0.2) =y, =y, + k = 1.2773.
To find y(0.3) :
Here x,=0.2,y,=1.2773, h = 0.1.
k= hfl(xy, v,) = (0.1) £(0.2, 1.2773) = 0.1887
k= hf[xz +}2-h, vy + %li =(0.1)£(0.25, 1.3716) = 0.2224
ky = hf [xg ¥ %h, Yy + %sz = (0.1) (0.25, 1.3885) = 0.2275
ky = hf o+ b, v, + ky) = (0.1) £(0.3, 1.5048) = 0.2716
k= %(.re1 + 2k, + 2k, + ) = 0.2267

Thus y(0.3) =y, =y, + k = 1.504.
Now the starting values of the Milne’s method are :

%, = 0.0 ¥, = 1.0000 f, = 1.0000
x, =0.1 y, = 1.1169 f, =1.3591
%y = 0.2 ¥, = 1.2773 f, = 1.8869
x, =03 ¥, = 1.5049 fy=2.7132
Using the predictor,
4h
VP =yo+ ?(2)“1 —fa+2fy)
x,=0.4 yP =1.8344 f, = 4.0988

and the corrector,
h :
YO =y, + 2 (5 + 4f, + f) yields

Y =1.2773 + 0—31 [1.8869 + 4 (2.7132) + 4.098]

= 1.8386 f,=4.1159
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Again using the corrector,
YO =1.2773 + % [1.8869 + 4 (2.7132) + 4.1159]
=1.8391 fy=4.1182 @)
Again using the corrector
Y =1.2773 + 0—: [1.8869 + 4 (2.7132) + 4.1182]
= 1.8392 which is same as (i).

Hence v (0.4) = 1.8392.

ADAMS-BASHFORTH METHOD

dy

Given T =f(x,y) and y, = y(x,), we compute

Y_1 =¥y~ h),y _y=yx,—2h),y_5=y(x,— 3h)
by Taylor’s series of Euler’s method or Runge-Kutta method.
Next we calculate f_| = f(x, -_h,y _f_o=flg—2h,y _,),f 3=f(x,~3h,y_5)
Then to find y,, we substitute Newton’s backward interpolation formula

fl,y) =f+n Vf, Jf@vﬂfﬂ +wvaﬁ)+...
in Y=Y+ E’”’f{x, ¥) dx )
Yy =+ L‘(f,, +nvfy + 2D g2 +] dx [Put x = x, + nh, dx = hdn]
=gtk I:(fo +nVy + ”"‘2“’ v?f, +] dn

" o X 5 O
=yo+h[ﬁi"EVﬁ"f‘Eszo‘ngafh-}“']
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Neglecting fourth and higher order differences and expressing Vf,, v? fo and V3 f, in terms of function
values, we get

#WP =y, + % (55f, —59f _,+ 37 ,~9f_,) -(2)

This is called Adams-Bashforth predictor formula.

Having found y,, we find £} = f (x, + hy, ¥,).

Then to find a better value of y,, we derive a corrector formula by substituting Newton’s backward
formula at f] ie.,

nin+1)

Fey)=fi+ nVh+ ISV,

WV3f‘l +--- in(].).

nin + 1)

Y=Y+ J:(f] +nVf + Vify +) dx [Putx=x,+unh,dx = hdn]

nn+1)

0
=y,+ [l(ﬁ +nVf, + V2f1+-—-] dn

1 1 1
=¥y +h [fl _Evfl —1—2V2f1—ﬁv3fl—---)

Neglecting fourth and higher order differences and expressing Vf,, v?f, and V?f, in terms of function

values, we obtain
$O =y, + _2{;_ (9f, + 19f, = 5f _, +[_p) ..(3)

which is called a Adams-Moulton corrector formula.
Then an improved value of f; is calculated and again the corrector (3) is applied to find a still better value
of ¥,. This step is repeated till y, remains unchanged and then proceed to calculate y, as above.

Obs. To apply both Milne and Adams-Bashforth methods, we require four starting values of y which are calculated
by means of Picard’s method or Taylor’s series method or Euler’s method or Runge-Kutta method. In practice, the Adams
formulae (2) and (3) above together with fourth order Runge-Kutta formulae have been found to be most useful.

Example 32.20. Given % =22(1+y) and y(1) = 1, y(1.1) = 1.233, y(1.2) = 1.548, v(1.3) = 1.979, evaluate
y(1.4) by Adams-Bashforth method. (V.T.U,, 2010 ; J.N.T.U., 2009 ; Anna, 2004)

Solution. Here f(x, y) =22 (1 +y).

Starting values of the Adams-Bashforth method with i = 0.1, are
x=1.0,y_45=1.000,f 5 = (1.0)* (1 + 1.000) = 2.000
-=11,5,=1233,f,=2702
=12,y =1.548,f = 3.669

= 1.3,y,= 1979, f, = 5.035

Using th
" (551, 59f |+ 3Tf ,—F )
73, f, = 7.004
U:
g+ fa)

19 x 5.035 — 5 x 3.669 + 2.702) = 2.575

'Ul

Hence |
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To find 0.1:

To find y(0.4) by Adam’s method, the starting values with k = 0.1 are

x=0.0 y_3=2.4 f_3=

x=0.1 ¥ =2.473 f,="5467

x=0.2 y_,=3129 [, ="7643

x=0.3 ¥o = 4.059 fo=10.956
Using the predictor formula

NP =y, + 2—’; (55f, — 59f , + 37f ,— 9f 5)

=4.059 + 9211- (65 x 10.957 — 59 x 7.643 + 37 x 5.467 - 9 x 4)

=5.383
Nowz=04  y =5383 f, =24 (5.383) = 16.061
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Using the corrector formula,

h
y;-(') =y0+ a (Qf‘l + 19f(]_5f—l+f—2)

= 4.0586 + % (9 x 6.061 + 19 x 10.956 — 5 x 7.643 + 5.467) = 5.392
Hence y(0.4) = 5.392.

Example 82.22. Solve the initial value problem dy/dx =x - y° y(0) = 1 to find y(0.4) by Adam’s method.
Starting solutions required are to be obtained using Runge-Kutta method of order 4 using step value h = 0.1.

(P.T.U., 2003)
Solution. We have f (x, y) = x — y2.
To find ¥y (0.1) :
Herex,=0,y,=1,h=0.1
: k, = hf (x5, ¥,) = (0.1) (0, 1) =-0.1000
k, = hf {xo 4 % b, yo + % li =(0.1)f(0.05,0.95)  =-0.08525
ky=hf {xo e k”} =(0.1) £(0.05, 0.9574) = —0.0867
2 2
R, = hf (xg + b, 3y + kg) = (0.1) £(0.1, 0.9137) =—0.07341
k:% (e, + 2k, + 2hy + k) =—0.0883
Thus $(0.1) =y, =y, +k=1-0.0883 = 0.9117
To find y(0.2) :
Herex, =0.1,y, =0.9117, h = 0.1.
: Ry = hf (x5, ;) = (0.1) (0.1, 0.9117) = -0.0731
ky = hf (xl + % h, 3 + % li =(0.1)£(0.15,0.8751)  =-0.0616
ky = hf (xl +% h, v +-;- sz =(0.1)£(0.15,0.8809) = — 0.0626
k, = hf (&, + by, + kg) = (0.1) (0.2, 0.8491) =—0.0521
A
k= E(kl+2k2+2k3+k4) =-0.0623
Thus $(0.2) =y, =y, + k= 0.8494.
To find y (0.3) :
Here x, = 0.2,y,=0.8494,y = 0.1
ky = hf (x,,y,) = (0.1) £ (0.2, 0.8494) = -0.0521
k2 =hf (xz + % h, v, + % kl) =(0.1)f(0.25,0.8233) =-0.0428
ky = hf {xg + % R, y, + -;- kg) =(0.1)£(0.25,0.828)  =-0.0436
ky=hf(xo+ h,y, + ks) =(0.1) (0.3, 0.8058) =-0.0349
1
k= E(kl + 2y, + 2k; + k) =—0.0438
Thus y(0.3)=y; =y, + k =0.8061
Now the starting values of Adam’s method with 2 = 0.1 are :
x=0.0 .4 = 1.0000 f5=0.0-(102 =—1.0000
x=0.1 y_,=09117 fo=0.1-(0.9117) =-1.7312
x=0.2 y_, =0.8494 f=0.2—(0.8494) =-0.5215

x=03 ¥, = 0.8061 fo=0.3 - (0.8061)* =-0.3498
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Using the predictor,

x=0.4 P =0.8061 + % [55 (— 0.3498) — 59 (- 0.5215) + 37 (- 0.7312) - 9 (- 1)]

=0.7789 f, =—0.2067
Using the corrector,

yid =y0+ 2—’1 (9fl+ 19f0—5f_1+f_2)

¥ =0.8061 + % [9 (- 0.2067) + 19 (- 0.3498) — 5 (— 0.5215) — 0.7312] = 0.7785

Hence y (0.4) = 0.7785.

2ROBLEM

SIMULTANEOUS FIRST ORDER DIFFERENTIAL EQUATIONS
The simultaneous differential equations of the type

dy
T = f (x, ¥, z) (1)
and % =6 (x, ¥ 2) .(2)

with initial conditions y(x,) = y, and z(x,) = 2, can be solved by the methods discussed in the preceding sections,
especially by Picard’s or Runge-Kutta methods.

(i) Picard’s method gives
Yi=Yo + If(x,yo,zo)dr.zl=zg+ I¢(x,yu.zﬂ)dx
Yo=Y+ _[f(x,y1.z1)dx,zg=zo + I¢(x.y1,21)¢x

Y=Y+ If (x, ¥2, 25) dx, 23 =29 + _[tb‘(x. Y2, 2p) dx
and so on.

(ét) Taylor’s series method is used as follows :
If h be the step-size, y, = y (x, + k) and z, = z (x, + h). Then Taylor’s algorithm for (1) and (2) gives
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L
Y=Y+ Ry + X — Y% +a e ...(3)
2 h3

zy=zo+hz) + — +z" +. ...(4)

2170 *31
Differentiating (1) and (2) successively, we get y”, 2", etc. So the values y,’, y,", ¥,"".--
known. Substituting these in (3) and (4), we obtain y, z, for the next step.
Similarly, we have the algorithms

’ ” nr
and z,2,",2,”... are

h? B®
Yo=Yy +hy + Tl y1"+§ ¥ ...(5)
2 h3
z,=2,+h2+ 2] 1”+§ 2, % s ...(6)

Since y, and z, are known, we can calculate y,’, y,%, ... and z,’, z,” ... . Substituting these in (5) and (6), we
gety, and z,,.

Proceeding further, we can calculate the other values of y and z step by step.

(i1t) Runge-Kutta method is applied as follows :

Starting at (x,, y,,, 2,) and taking the step-sizes for x, y, z to be , &, I respectively, the Runge-Kutta method
gives,

ky = hf (%, Yo 2o) Ly =ho Gy 5o 20)
1 1 1 1 1 1
k2=hf(xo+§h,yo+5k1’zo+5llJ 12=h¢(x0+§h,y0+§kl,zo+§llj
1 1 1 1 1 1
=hf[xo+§hsyn+§k2.fﬂ+azzj 53=h¢(xu+5h.yo+§kz,zo+§lz)
k4=hf(x0+h Yo+ b2y + 1) Li=ho(xy+ h,y,+ kg, 25 + 1)
Hence y,= (k + 2k, + 2k, + k) and 2, =2+ %(114; 20, + 21, +1,)

To compute y, and z,, we simply replace x,, ¥, z, by x;, ¥;, 2, in the above formulae.

Example 32.23. Using Picard’s method find approximate values of y and z corresponding to x = 0. J
given that y(0) = 2, 2(0) = 1 and dy/dx = x + z, dz/dx = x — 32 3

Solution. Here x; = 0,y,=2,2,= 1,

Y dz 5
Z:f{I,J’,Z):X'I-Z; and a‘:(’)(x,y,z):x_y

Y=y, + I;f(x,yz)dx and z=zy+ I;tb(x,yz)dx.

First approximations  y; =y, + II¢(x,y0,z0)dx=2+ I:(x+1)dx:2+x+%x2
xg

- "o ydr=1+ [((x-4)dr=1-4x+1s?
z2y=2,+ an) X, ¥g» 2 = +ID x - =1- x+-2—x

X X 1
Second approximations y, =y, + I fx,y,z)dx=2+ Io (x+1-4x+§x2]dx
o

3 2 .‘.\‘.'3
= - —x +—
242 2 6

X
Z,=25+ Lﬂcp(x, Y1, 21) dx

=1+J:)[x—[2+x+%x]:|dx 1- 4s+3:2 g‘....’r__;_:;.
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Third approximations y,=y,+ I ; [ (x, ¥9,25) dx
%

=2+x—§x2—lx3—lx4—ix5——l—x6
2 2 4 20 120

x
Z,=20+ Lulii(x.yz,zz)dx

sl-tg-S e 2t Lp Bl L g
2" 3 127 60 127 252

and so on.
When x=0.1,
¥, =2.105, y, = 2.08517, y, = 2.08447
z,=0.605, 2, = 0.58397, z, = 0.58672.
Hence ¥(0.1) = 2.0845, 2(0.1) = 0.5867
correct to four decimal places.

Example 32.24. Solve the differential equations
%-=1+m,g—=—xyforx=0.3, _ ' | . .

using fourth order Runge;ffutm method. Initial values arex =0,y =0, z=1.

Solution. Here fix, ¥, 2) =1 +x2, ¢ (x, y, 2) = —xy
%,=0,y,=0,2,=1. Let us take 1 = 0.3.
ky=hf(xg, 92, =03£0,0,1)=0.3(1+0)=03
lLi=ho¢x,y,2)=03-0x0)=0

1 1 1
bo=hf (50 + S hyo+ 3 huzo+ 34
=(0.3) f0.15,0.15,1) = 0.3 (1 + 0.15) = 0.345

1 1 1
Z2=h¢l (xo +§h,y0 +_2_k1le+E‘I'1J
= 0.3 [-(0.15) (0.15)] = — 0.00675.

k3=hf(xo +%a3‘0 +%-Zo ""l;—]

= (0.3) f0.15, 0.1725, 0.996625)

=0.3 [1 + 0.996625 x 0.15] = 0.34485
ly=h¢ (Io +%,y0 +%—,z0 +%J

= 0.3 [-(0.15) (0.1725)] = - 0.007762
ky=hflg+h y,+ks,2zo+1,)

=(0.3) (0.3, 0.34485, 0.99224) = 0.3893
lLi=holxy+h,y,+ ka2 +13)

= 0.3 [-(0.3) (0.34485)] = — 0.03104

1
Hence Yxg+h) =y, + 7 (ky + 2k, + 2k, + R,)
1
ie., 703)=0+ = [0.3 +2(0.345) + 2 (0.34485) + 0.3893] = 0.34483
and z(x0+h):zo+%(ll+2lz+2l3+l4)

ie., 2(03)=1+ % [0 + 2 + (— 0.00675) + 2 (— 0.0077625) + (— 0.03104)] = 0.98999
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Ey A8l SECOND ORDER DIFFERENTIAL EQUATIONS

2
Consider the second order differential equation 'd_.z" = f[x, v, El)
dx

dx
By writing dy/dx = z, it can be reduced to two first order simultaneous differential equations
dy dz
—=2z, e
dx a5 flx, y,2)

These equations can be solved as explained above.

Example 32.25. Using Runge-Kutta method, solve y” = xy” - y2 for x = 0.2 correct to 4 decimal places.
Initial conditionsarex =0,y =1,y = 0. (Delhi, 2002)

Solution. Let dy/dx = z = flx, y, z). Then dz/dx = x2% — y? = (x, y, 2)
Wehavex,=0,y,=1,2,=0,h=0.2.
Using ky, k,, ... for flix, y,z) and 1, 1, ... for ¢(x, ¥, z), Runge-Kutta formulae become

k, = hfixg, vy, 2) L = ho(xy, ¥or 2,)
=02(0)=0 =02(-1)=-0.2

ky=hflx,+ 3h,y, + 3k, 2o+ 3 1) Iy=hoGe,+ L h,y, + Lk, 2o+ 31)
=0.2(-0.1)=-0.02 =0.2(-0.999) = - 0.1998

ky=hfxg + Sh,y,+ she 2o+ 31,) ly=hoxg + Sh,yo+ Ske 2o + 51,)
= 0.2 (- 0.0999) = - 0.02 =0.2(- 0.9791) = - 0.1958

ky=hflxg+h,y, + kg 2, +15) L =hlx, + h,y,+ kg, 2 + 1)
=0.2 (- 0.1958) = — 0.0392 = 0.2(0.9527) = - 0.1905

k=t +2ky+ 2k, + k,) I=3, +2l,+2l,+2l,)
=-0.0199 =-0.1970

Hence at x = 0.2,
y=y,+k=1-0.0199 = 0.9801
and ¥y =z=2,+1=0-0.1970 = - 0.1970.

Example 32.26. Given y” + xy" +y = 0, y(0) = 1, y10) = 0, obtain y for x = 0(0.1) 0.3 by any method.
Further, continue the solution by Milne’s method to calculate y(0.4). (Anna, 2004; Madras, 2003 S)

Solution. Putting y” = z, the given equation reduces to the simultaneous equations

Z+xz+y=0,y =z ()]
We employ Taylor’s series method to find y.
Differentiating the given equation n times, we get

YnsgtWne1 t 1Y, +5,=0

At x=0,0,,9)=—0+1)0,),
¥(0) =1, gives y,(0) = - 1,5,(0) = 82,y (0)=-5x 3, ...
and ¥,(0) = 0 yields y,(0) = y, (0) = ... = 0.

Expanding y(x) by Taylor’s series, we have
2 3

y(x) = y(0) + xy, (0) + % ¥,(0) + % y4(0) + ...

2
x 3 5x3
yix)=1- 21 +E % —?xrﬂ ..(iD)
14 1 .
and Zx)=yx)=—x+ 2% 8 M= =—xy ...(ii1)
From (ii), we have
0.1 1
yon=1-" ? +5 (01— .. = 0985
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0.2° (0.2
¥(0.2)=1- W2 o ... = 0.9802
9 8
0.32% (03" (0.3°
y(0.3)=1- 5t g+ =0.956

From (iii), we have

2(0.1) =—0.0995, 2(0.2) = — 0.196, z (0.3) = — 0.2863.
Also from (i), 2’(x) = — (xz +y) . 2(0.1)=0.985,2(.2) = - 0.941, 2'(0.3) = - 0.87.
Applying Milne’s predictor formula, first to z and then to y, we obtain

2(0.4) = 2(0) + %(0.1){25(0.1) —2(0.2) + 22(0.3))
0.4
o [?) (= 1.79 + 0.941 — 1.74]} = — 0.3692
4
and ¥0.4)=50) + 5 (0. {2y (0.1) - ¥'(0.2) + 2y’ (0.3)

4 .
=0+ (0?]{— 0.199 + 0.196 — 0.5736} = 0.9231 [y =2]

Also 2'(0.4) = — {x(0.4)z (0.4) + y (0.4)} = [0.4(- 0.3692) + 0.9231} = — 0.7754.
Now applying Milne’s corrector formula, we get

2(0.4) =2 (0.2) + g [z’ (0.2) + 427 (0.3) + 2’ (0.4)}

1
=-0.196 + [23_] {—0.941 — 3.48 - 0.7754] = — 0.3692

and y(0.4) =y (0.2) + -g {(y"(0.2) + 4y" (0.3) + y"(0.4)}

0.1
=0.9802 + [?} {—0.196 — 1.1452 — 0.3692] = 0.9232
Hence 3(0.4) = 0.9232 and 2(0.4) = — 0.3692.

PROBLEMS 32.6

1. Apply Picard’s method to find the third approximation to the values of y and z, given that dy/dx = z,

1
=3 (y+z),giveny=1,z= Ewh&nx:().
2. Solve the following differential equations using Taylor series method of the 4th order, for x = 0.1 and

dy dz
—_—=Xxz+ 1, — 3 = = 1.
ax & xy;¥(0)=0and2(0)=1
3. Find y(0.1), 2(0.1), (0.2) and 2(0.2) from the system of equations y’ = x + 2,2’ =x — y% given ¥(0) = 0, 2(0) = 1 umlf«‘
Runge-Kutta of 4th order. (J.N.T.U., 2009,
4. Using Picard’s method, obtain the second approximation to the solution of ;|
2 1 i
%:ﬁ% +xY sothat3(0) = 1,y(0) = . 1:
S O 2 ! d’y dy dy A
6. Use Picard’s method to approximate y when x = 0.1, given that -c;';{ + 2:—&; +y=0andy=0.5, F o 0.1, wher
x =0 &

6. Using Runge-Kutta method of order four, solve y” =y + xy’, y(0) = 1, ¥(0) = 0 to find ¥(0.2) and y(0.2).
7. Consider the second order value problem y” — 2y" + 2y = ¢ gin ¢ with ¥(0) = ~ 0.4 and y'(0) = - 0.6. Using the fourth
order Runge-Kutta method, find y(0.2). (Anna, ml
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8. The angular displacement 8 of a simple pendulum is given by the equation

.@.pg_ in@=0
a2 1 smd=

where [ = 98 cm and g = 980 cm/sec?. If 6 = 0 and d6/dt = 4.472 at t = 0, use Runge-Kutta method to find 6 and d6/di
when ¢ = 0.2 sec.

EPAEl BOUNDARY VALUE PROBLEMS

Such a problem requires the solution of a differential equation in a region R subject to the various condi-
tions on the boundary of R. Practical applications give rise to many such problems. We shall discuss two-point
linear boundary value problems of the following types :

2
@) % + Alx) % + W(x)y = Y(x) with the conditions y(x,) = a, y(x,) = b.

4
(i7) jx—z + Mx)y = p(x) with the conditions y(x,) = ¥'(x,) = @ and y(x,) = y'(x,) = b.

While there exist many numerical methods for solving such boundary value problems, the method of
finite-differences is most commonly used. We shall explain this method in the next section.

[EEXYY FINITE-DIFFERENCE METHOD

In this method, the derivatives appearing in the differential equation and the boundary conditions are
replaced by their finite-difference approximations and the resulting linear system of equations are solved by any
standard procedure. These roots are the values of the required solution at the pivotal points.

The finite-difference approximations to the various derivatives are derived as under :
If y(x) and its derivatives are single-valued continuous functions of x then by Taylor’s expansion, we have

h? h?
yix +h) =yx) + by’ (x) + Ey" (x) + gy”’ (x) + ... (1)

h? r®
and y(x—h)=yx) - hy'(x) + 21 ¥ (x) — gy”’ (x) + ... ’ ...(2)
’ . 1. h
Equation (1) gives y'(x) = A [y(x + h) —y(x)] — 2 ¥(x)— ...

1
Le., yix) = 7 [y(x + k) = y(x)] + O(h)
which is the forward difference approximation of y'(x) with an error of the order A.
Similarly (2) gives y'(x) = % y(x) — y(x — )] + OCh)

which is the backward difference approximation of y'(x) with an error of the order A.
Subtracting (2) from (1), we obtain

y(x) = 51;1— by + h) = y(x — h)] + O(h?)

which is the central-difference approximation of y'(x) with an error of the order 22. Clearly this central difference
approximation to y'(x) is better than the forward or backward difference approximations and hence should be
preferred.

Adding (1) and (2), we get

1
y(x) = Xl Iy(x + k) — 2y(x) + y(x — k)] + O(h?)

which is the central difference approximation of y"(x). Similarly we can derive central difference approximations
to higher derivatives.
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Hence the working expressions for the central difference approximations to the first four derivatives of y;
are as under :

Y= %(m 1Yot -A3)
Y= hlz(y.-+1—2yi+y,-_,) .(4)
¥i= #(}’“2—23’“1*-23'-*1—3@2) .(5)
ol 1'}714(?’“2"43’“1*Q”i‘4yt_+1+3’i-2) -~ (6)

Solution. We divide the interval (0, 1) into four sub-intervals so that 4 = 1/4 and the pivot points are
=0,x,=1/4,x,=1/2,x,=38/4 andx, = 1.
The differential equation is approximated as
1
X2 Wiv i =2 +y;_d=x+y;
or 16y,, ,—33y,+ 16y, _,=x,i1=1,2,3.
Using y, =y, = 0, we get the system of equations

16y, - 33y, = —

l-lrhl-l

16y, — 33y, + 16y, = =
3
= 333,r3 + 16y2 =

Their solution gives .
¥y =—0.03488, y, = — 0.05632, y, = — 0.05003.

Solutlon. Here h =1/3 and the plvotal pomts are xo =0,x, = 1/3,x, = 2/3, xa = 1 The cnrmspondmg ¥-
values are y (= 0), y,, ¥,, ¥ (= 0).
Replacing y** by its central difference approximation, the differential equation becomes

1
h_“(y"‘fﬂ_{yin"" 6y; — 47,y +¥;_5) + 81y; = 81x]
o Yieo~ Vi1t Vi~ 1+ Y 0= % ,i=1,2
Ati:lr ya_4y2+7y1_4y0+y_‘1=1!9
Ati = 2! y4._ 43’3 + 7y2_4y1 +J’0 24!9
Uﬂingyo=y3=0,weget —”2+7y2+y_1=1f9 .“(i)

Yo+ Ty, —4y, =49 ...(i1)
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Regarding the conditions ¥”, = »”; = 0, we know that

A |
% =h_2(3’£+1_23’£+3’£—1)

Ati=0, Yo=90; -2y, +y _,)
or Y_1=-¥ [+ yo=3,"=01 ..GK0)
Ati=3, ¥s =90, — 2y, +,)
R ) [ Ya =y§=0] ...(tv)
Using (iii), the equation (i) becomes
-4y, +6y,=1/9 (V)
Using (iv), the equation (ii) reduces to
6y, — 4y, = 4/9 ..(vi)

Solving (v) and (vi), we obtain
¥y, =11/90 and y,, = 7/45.
Hence ¥(1/3) = 0.1222 and y(2/3) = 0.1556.

Example 32.29. The deflection of a beam 1s governed by the equation
4

d
-dT‘: + 81y = ¢(x)
where O(x) 7+ “fven by the table
- : 1/3 243 I
o)) §: 81 162 243,

and boundary condition ¥(0) = y'(0) = y"(1) =y"'(1) = 0. Evaluate the deflection at the pivotal points of the beam
using three sub-intervals.

Solution. Here 2 = 1/8 and the pivotal points are x, = 0, x, = 1/3, x, = 2/3, x; = 1. The corresponding
y-values are y,(= 0), ¥,, ¥5, ¥g-
The given differential equation is approximated to

1
h—4(3’5+2—4ys+1 +6y;— 4y, +Y;_ o)+ 8ly; = 0lx)
Ati=1, V3= 4y, + Ty -4y +y_,=1 )
Ati=2, Yy~ Ay + Ty, — 4y, +y,=2 L)
Ati=3, Vs— 4y, + Ty, -4y, +y,=3 ...(fit)
We have ¥o=0 .-(tv)
. .
Since Yi= E(yn 1= Y1)
; 7 1 3
. fori=0, 0=y0=§;l-(yl—y_l);.e.y_1=y1 ..(v)
: -
Since J’i=h72 (3",'+1_23’5*3';_1)
, »_ 1 : ;
fori=3, 0= y; =?(y4—2y3+y2), ey, =2y,-5, ...(vi)
-
Also J’i=E£§‘(Yi+2—2yi+12yi—1'yi~2)
: 1
fori=3, 0= y§=ﬁ(}’5"23’4+2y2“3’1)
Vs =2, 2+, ..(vii)
Using (iv) and (v), the equation (z) reduces to
Y3—4y, +8y,=1 ..(viii)

Using (iv) and (vi), the equation (if) becomes
—J’3+3J’2—2y1= 1 ...(ix)
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- Honen Encnesan MaTiEMATICS.
Using (vi) and (vii), the equation (iii) reduces to
3y, — 4y, + 2y, =3 (x)
Solving (viii), (ix) and (x), we get
¥, = 8/13, y, = 22/13, y, = 37/13.
Hence ¥(1/3) = 0.6154, y (2/3) = 1.6923, (1) = 2.8462.

x PR‘(-)B-LE MS 32.

X ?
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