Example 28. A rod AB of weizht W is movable about a point A and to B is attached a
string whose other end is tied to a ring. The ring slides along c¢ smooth horizontal wire passing
through A. Prove that the horizontal force necessary to keep the ring at rest is M,

23sin(o+p)
where o and [ are the inclination of the rod and the string to the horizontal.

Sol. The rod AB is movable about the hinge at A
and B is attached with the ring at C. Let P be the force =~ '- M c_JF
i
L]
L]

required to keep the ring at rest. Let ZBAC = o and
ZACB =[i. Consider the sraall vertical displacement such
that lengths AB and BC are unchanged and angles «
and P change.

The equation of virtual work is

Wd(GL) + Pd(AC)=0 1) W B
Now, GL=AGsino=a sin o, AB=2z, BC=1 _
AC = AM + MC = 2a cos o + [ cos p Fig. 30

Putting GL and AC in (1), we get
Wedla sin o) + Pd(2a cos ot + [ cos ) = 0
Wa cos xdo — P(2a sin ada + [ sin fdB) =0

a(W cos ot — 2P sin a)d o = Pl sin B df .(2)
But BM=2asina=1[sinf
2a cos aodo = [ cos [} dP .A3)

Dividing (2) by (3), we get
Weosa-2Psina _ Psinfs

2 cos o cos [}
or W cos o cos B - 2P sin o cos § = 2P sin  cos o
or 2P(sin o cos § + cos o sin ) = W cos o cos B
p W cosacosP
or =2 sin(@+p)’
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Example 36. A heavy elcstic string of natural length
2a is placed round a smooth cone whose axis is vertical
and whose semi vertical angle is o If W be the weight and
A be the modulus of elasticity, prove that it will be in equi-
librium when in the form of a circle its radius is

0[1+Wcota]
2. |

Sol. Refer figure 36.
Proceeding exactly as in Ex. 34, we have

T = W cot o/2x
But by Hooke’s Law

Te x(l-a) =A(2"—2M)
a 2ra
where natural length is 2ra and extended length is 2nr.
Comparing (1) and (2)
Weota A (r-a)
2r a
_aWcota
©2m\

i [1"’ Weo. a]
or r= ~5i &
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Example 37. One end of a uniform rod AB, of length 2a and weight W, is attached by a
frictionless joint to a smooth vertical wall and the other end B is smoothly joined to an equal
rod BC. The middle points of the rods are joined by an elastic string of natural length a and
modulus of elasticity 4W. Prove that the system can rest in equilibrium in a vertical plane with

C in contact with the wall below A and the angle between the rods is 2 sin~'(3/4).

Sol. Let T be the tension in the string DE, join- A
ing middle points of rods AB and BC. 2W is the weight
of the rods acting at G. D

Let ZABL =8
A is fixed, therefore the distances are meas-

T
ured from A, L G
Let the system be given a small virtual displace- . w
ment such that 8 changes to 8 + 58.
Equation of virtual work is
2Wd(AL) - Td(DE)=0 A1)
AL=2asin@ v AB=2a c

Fig. 38

DE=%AC=AL=2asin9

Putting in (1), we get

2Wd(2a sin 8) — Td(2a sin 8) = 0
T=2W
But by Hooke’s Law

T=12 (DE-a)

a
T = 4W (2a sin 6 - a)
a

Comparing (3) and (4), we get
2W=4W (2sin0-1)

6W=8Wsin® or sin0=%

0 = sin™! (é)
4
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Example 3. The extremities of a heavy uniform string of length 2| and weight 2lw are
attached to two small rings which can slide on a fixed horizontal wire. Each ring is acted on by

a horizontal force lw. Show that the distance between the rings is 21 log (1++J2).

Sol. Let weight/length = ® R R
A and B are the rings where the string is attached. T R% T
AC=1. I < » lo
Considering the whole system and resolving B A
vertically
R+R =20 = R=lo. &S
~ Tension at A is the resultant of R and lw. Ify X - NY
8 the angle which the tangent makes with X-axis then B c =
Tcosy=lo 0 "X
Tsiny =R .
Fig. 6
= tany = —= 1 1
l lo
X
"4
Also, s=ctany
AtA, s=l . z-ctan§ = c=l
Distance between the rings AB = 2x

a-%log(mv+mv)=mlog(m§+m-}) =2 log(1++2).

Example 4. If tension at point A of a catenary is n times at the vertex then the

2l
span of the catenary ACB is e log (n 4 Yn® —1). Where 2l is the length of the

n —
catenary. o (K.U. 2004)
Sol. Let length of the catenary ACB = 2!.
Tension at A=T
and TensionatC=T, T
T =nT, B A
T=nTcosy

1
cos Y = —
n

J’—1
" Sy = "1 2 IV,

Ao-'

n
secy=T . Fig. 76)

Also at A, g=ctan y

I=c-.fn1-—1 n JF

RAM PRAKASH /Statics Page 4



[in=-1)

Sag y—c=csecy—c= >
n* =1

s Span 2:=2c1ng[tmv+mv}-T?e—log{“‘nz—1+n}.
n- -1

Example 18, The end links of o uniform chain slide along a fixed rough haricontal rod.

(1+u?
FProve that the ratio of the maximum span to the length of the chain is p log |:.I‘+ I+ ]'
B

where W iz the cogfficient of friction.

Sol. Let the chain ACB is of length 2 hanging in ]
the form of a catenery with C as the vertex. The end links
of the chain slide on the rod AB.

Forces acting at A are :
(i) Tension T acting along the tangent AD,

(i} Reaction R acting perpendicular to AR,

(£if) Friction foree iR acting along BA.
Resolving the forces horizontally and vertically

T cos w=pR
Tii-nst
Eliminating T, we get
1 2
tnnv=; ancw-.hq.m* - 1+i=. 1:“
I
Now, gmgtany
3:&:{
i-c.—l = o=y
M
Now span AB = 2x = 2 log (sec y + tan y)
2 2
.ﬂ,.l.,g{_ﬁﬂul],uw[l'f_ﬁ v-‘lﬂl]
K B [T
1-|-.,,||1-|-|.L'i
Maxinum & AB W hg B 'i 2
—pll;l—— -"’IW L!'j.-_“._ .
Length of chain =~ 2 aj "
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Ex. 24. A uniform smooth rod passes through a ring at the
focus of a fixed parabola whose axis is vertical and vertex below the
focus, and rests with one end on the parabola. Prove that the rod
will be in equilibrium if it makes with the vertical an angle 8 given by
the equation

cos* 40=a/2c
where 4a is the latus rectum and-2c the length of the rod. Investigate
also the stahility of equilibrium in this position. [Lucknow 81
Sol. Let the equation of the para- X :
hola be yi=4dax,

Let AB be the rod of length 2¢ with
its end A4 on the parabola and passing
through a ring at the focus S. Let the
coordinates of 4 be (ar?, 2at) ; the co-
ordinates of the focus Sare (a, 0). If
the rod 4B makes an angle @ with the
vertical O.X, then

tan f=the gradient of the line A8 Y

2at—0 2t =2
Tar?—g =1 11—
] 2 tan 46 2 (—t

. I—tanziﬁtl'—'—{‘—f;i-‘ or tan iﬂ:-—f.

Let z be the height of the centrejof gravity G of the rod AB
above the fixed horizontal line YOY’, Then
2=0M+HG=0M+AG cos
=at?<4-c cos f
['"  OM=x-coordinate of A and AG=}A4B|
=a tan? }8+c cos . :
<o dz/d0=2a (tan 36 sec? }0).4—c sin 6
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=a tan }0 sec? }0—c.2 sin $0 cos 30
=sin § [a sec? }0—2¢ cos 40).
For the equilibrium of the rod, we must have d=/df =0
Le., sin 46 (a sec? 47 —2¢ cos § 6)=0.
S, either sin $0=0 je., 6=0,
which gives the vertical position of equilibrium,

or asec® }30—2ccos §0 =0 ia., asec? }0=2c cos §0
ie., cos* §6=a/2c, which gives the inclined position of rest
of the rod.
Now
dz

a?-z::g cos 38 {a sec? $A—2¢ cos $0)

+sin 40[;_3 sec §6 tan 36-+c sin ga]

=} cos 19 [a sec? $0—2¢ cos 30] +-sin? 16 [Ja sec* 36-+-¢],
which is >0 when cos* 4—=a/2¢c
ie., when a sec? §6—2¢ cos 40==0.

Ex. 2. An isosceles triangular lamina, with its plane vertical rests with its vertex
downwards, between two smooth pegs in the same horizontal line. Show that there will
be equilibrium if the base makes an angle sin™! (cos® o) with the vertical, 2 0. being
the vertical angle of the lamina and the length of the base being three times the distance
berween the pegs. (Meerut 1994)

Sol. ABC is an isosceles triangular lamina in which AB = AC. The sides AB and
AC rest on two smooth pegs P and (0 which are in the same horizontal line.

Let PO =a so that BC =3a.

If D is the middle point of BC, then the centre of

gravity (s of the lamina lies on the median AD and is such
that

AG=§A&

The weight W of the lamina acts verticaily

downwards at G. We have
LZBAD = £ CAD =

Suppose in equilibrium the base BC of the lamina
makes an angle 0 with the vertical. Since the angle between
two lines is equal to the angle between their perpendicular
lines, therefore £ DAN = 8. [Note that DA is perpendicular
to BC and AN is perpendicular to the vertical line NMG].

Now ZQPA=/ZPAN=0-a, and £ JAL=7m-(0+a)
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Give the lamina a small displacemeut in which 8 changes to 8+ 58. The line

PQ joining the pegs remains fixed and the distances will be measured from this line.
The angle o remains fixed. The only force contributing to the sum of virtual works is
the weight W of the lamina acting at G. We have, the height of G above the fixed line
PQ

=MG=NG-NM=NG-L(Q

=AG sin 0 - AQ sin (- (0 + o)}

=§AD sin© — AQ sin (0 + o).

Now AD=CD cota=%a cotot. Also from the AAQP, by the sine theorem of
trigonometry, we have

AQ _ PQ o MY @
sinAPQ sinPAQ " sin(0-u) sin2a
[ T
AQ-sinZasm(O-a).
MG=—2--§aootasin9- g sin (6 — o) sin (0 + o)
3 2 sin2a
y a g :
-acotasma-2m2a28m(9—a)sm(9+a)
= a cot & sin @ — ————— (cos 2 & — cos 2 6)
4 sin o cos &
. acos 2o acos26
=acot «sin 6~

4sinctcosa 4 sinocos o

The equation of virtual work is
- W8MG)=0, or 8MG)=0
acos2o acos20 ]
dsinctcosa 4 sin otcos o l.
2asin20 :
4smumsa}3ﬂnu : '
44a?mﬂcnsﬂ-=ﬂ [ 80%0]
sin ot cos o
or acusﬂ[cota-—-——. sin 0 =0.
8in oL CO8 Ot

or S|lacotasin® -

ot [acutumsﬂ—

or a cot ot cos B -

.~ either cos =0 ie, 0= ;—t » giving one position of equilibrium in which the
lamina rests symmetrically ou the pegs

or cota-—29__0 ic, sin0=cos?a
sin ot cos o
ie., 0 =sin™! (cos? o), giving the other position of equilibrium.
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Ex. 3. A square of side 2 a is placed with its plane vertical between two smooth
pegs which are in the same horizontal line ar a distance ¢ apart ; show that it will be
in equilibrium when the inclination of one of its edges to the horizon is either

n 1 at- cJ]

= = ein—1
4 or z.ﬂﬂ [ 2

(Meerut 1988; Gorakhpur 86; Jiwaji 92; Garhwal 93)
Sol. The sides AB and AD of the square lamina A”"") rest on two smooth pegs
P and Q which are in the same horizontal line. It is givci that PQ=¢ and AB=2a.
The weight W of the lamina acts at G, the middle point of the diagonal AC.
Suppose in the position of equilibrium the side AB of the lamina makes an angle 6
with the horizontal so that
ZPAM=0=/Z0PA.

We have ABAC=%n=consmnt

Give the lamina a small displacement in which
0 changes to 0 +86. The line PQ joining the pegs
remains fixed. The only force contributing to the sum
of virtual works is the weight W of the lamina acting
at G. We have, the height of G above the fixed line
PQ
=LG=NG~-NL=NG - MP

=AGsin[§u+e}-APsine

=a,12sin[%u+e]-PQeosesine

[ AG=%AC=%2a\f2=a\j2. and AP = PQ cos 0]
=a42[sin-:-ncose+cos%nsin9 ~ccos0sin®
=a (cos 0 + sin 0) — ¢ cos O sin 6.
The equation of virtual work is

-W8(LG)=0, or 3(LG)=0

or & [a (cos O+ 5in 0) — c cos Bsin 0] =0

or [a (- sin © + cos B) - ¢ (cos? B —sin? 8)] 86 =0

or a (cos 8 - sin 0) - ¢ (cos? © - 5in? 0) =0 [~ 80=0]
or (cos O ~sin 8) [a - ¢ (cos B +8in 0)] = 0.

o either cosB—sinf=0
ie., sinO=cos® ie, tanO=1 ie, a-%-.-:,

giving one position of equilibrium in which the lamina rests symmetrically on the pegs
or a-c(cosB+gin@)=0

ie, c2(cos O +sinB)y2 =a? ie, c2(l+sin260)=a’
ie, mzu=§~1=i‘%‘zﬁ ie., a=%si,.-l(ff_c?z_'~f].

giving the other position of equilibrium.
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Example 4. A heavy hemispherical shell of radius r has a particle attached to a point
on its rim and rests on a rough sphere of radius R at the highest point. If their curved surfaces
are in contact then equilibrium is stable if g- >V5 -1

Sol. Let the weight hemispherical shell be W acting at C.G. G’

O'G = -’2; where O’ is the centre of the shell. Let m be the weight of the particle

attached at the rim. Let G be the C.G. of the hemisphere after attaching the weight at A.
The resultant of these two parallel forces lies on AG’ at G.
Let C the point of contact of hemisphere and sphere. Let ZO’'AG’ =0
oG 1
T "3

1
sinf=—
’ Jg

ol

Let height of G above C = A
g 1
h=0C-0G=r-rsinb=r-r.
J5
The equilibrium is stable
r 1 S |
g > r'R

if h< 7R

or re—m < £
J6 r+R

. r rR

or if >r—
?g r+R
1 R

if 1 -
or :E} r+R

or if r}ER:-rq-R-R

+R
z — > J5 = % >J5-1
»  The result is independent of the weight attached at the rim.
Therefore, the equilibrium is stable for any weight attached.
Example 5. A body consists of a cone and a hemisphere on the same base, rests on a
rough horizontal table with curved surface of hemisphere in contact with the table. Show that

greatest height of the cone so that the equilibrium may be stable is 3 times the radius of
hemisphere.

or if
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Sol. Let H and r be the height and radius of base of the cone respectively. If C.G. of

hemisphere is at G, and C.G. of cone is at G, then

ar H
oG, = -é-.OG,- e

C.G. of the combined body is given by
. ) +WoXy
Wy +wy
Height of C.G. from the fixed plane A

) §- (et

h=
%v’+%v’ﬂ

5r? H?

T+Hr+T 5r% + 4rH + H?

The equilibrium is stable if

4(H+2r) 1

* 5r?+4rH+H? 7
if 4Hr + 8r2>5r + 4rH + H?
if H2 < 3r2

H<r3

2r+H = 4H+2)

A
|
o] <« E— B *
H i
¢G, {
2 \ 4
D
Fig. 13

Hence the greatest height of the cone consistent with the stable equilibrium is

V3 times the radius of the hemisphere.
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Example 7. A solid hemisphere rests on a plane inclined to the horizon at an angle

3
sin™! (E] The plane is rough enough to prevent sliding. Find the position of equilibrium and

show that it is stable.
Sol. Let O and G be the centre and C.G. of the A
hemisphere of radius r
OC=0D=r
m}-%’
Let o be the inclination of the plane with horizontal
. 3
sina= 2
Z0CG=0, Let ZCGD=8
From AOGC Fig. 15
oG oG -  __r
sinet  gin(n-8) 8sina  sin®
sin @ = g sin o (1)
sinB<1 = Equilibrium is possible if
gsinu.-zl
3 (3
or smt:-r:i or a<sin™|g ol 2)
For stability of equilibrium we find height of C.G. above the point of contact.
Let CG=h
Fromaoge 28 _ G
gina sin(8-a)
ar h Jrsin (6 -a)
Ssina _sm@-@ ~ '°  Bsina -8
1 1 1 1
- 1 2.4 e
For stability, R > [Pl p,] pow Py
1 1
= I:'rmr.: F"l,m‘r
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— h<reosa
Putting the value of & from (3), we have
drsin(0-o)
8sin o
= 3 sin (B — o) < 8 sin ¢ cos o
= J[sinBcosau—-cosOsinal <8sinucosa

B . 64 . o .
= 3 Emnuu:u.m— 1-?5111 SN | . gginacos o Using (1)

= -E.JB-Msin’u.ainuﬂﬂ = sin®a(9-64sin*a)>0

<rCos

= 64sin’a<9 = sina< %
. a

= o < sin~? [E)
which is true for equilibrium from (2).

Hence the equilibrium is stable.

Example 25. A heavy uniform rod is in equilibrium s
with one end resting against a smooth vertical wall and the 2 \
other end against a smooth plane inclined to the wall at an E 0 R
angle 8. If o be the inclination of the rod to the horizontal Bg o 90 — BI;
then 2 tan o = tan 8, E

Sol. Rod AB is in equilibrium under three concurrent G0 @
forces. E

(£) Reaction R at B 1L wall E A

(ii) Reaction S at A L inclined plane. ;

(iii) Weight W at G vertically downwards. o
Forces are concurrent at O z w
ZABO =a, ZACB =0 ’c
Applying m : n theorem in AOAB
(1 + 1) cot (90 + &) = 1 cot 90 — 1 cot (90 — 0) Fig. 26
-2tana=-tan 6

or 2 tan o = tan 6.
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13. A ladder AB whose C.G. G divides it into two portion of length GA =
a and GB = b, rests with end A on a rough horizontal floor and the other end B
against a rough vertical wall. If the co-efficient of friction at the floor and the
wall he 4 and u’" respectively, show that the inclination of the ladder-to the floor

e . T -1 (ﬂ-—-b }

when it is in equilibrium, tan { @b } [C.H., 2004]
Solution : The ladder AB is with its ' #,S“

one end on the rough horizontal floor and

other against a rough vertical plane. The

reactions at A is R and 4R and at B be g

S & u’S as shown in the figure. and AG

=a, GB = b. :

If W be the weight of the ladder and
@ be the inclination to the floor then we R4
can write for equilibrium, 4’'S + R =W
and yR =S .. (1)

Also taking moment about G, we get A

'S b cos@ + S.b'sinf - R.a cosf + uR.a sinf = 0
sinf@ (S.b + uR.a) = cos@(Ra - 1/Sh)

o]
i

(=]

T

P21 I, N ——
L

Using (1),
- ang = R 4(Sh _ Ra—jGuRb _ a=bur
(a+b)uR (a+b)u.R (a+b)u
i.e., tanf = a_—-b&li.
H(a+b)

. B = san-1) (@=buyr)
s @ = tan {{a+b}p }

14. Two equal uniform ladder are joined at one end and stand with other
ends on a rough horizontal plane. A man whose weight is equal to that of a ladder
ascends on one of them. Prove that the other ladder will slip first. It begins to
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slip when he has ascended a distance d, prove that the coefficient of friction is

l+d
20+d

with vertical. [C.H., 2001]

Solution : Let M be the position of of the man on the ladder AB at any
instant when BM = d, R, R’ the normal reactions of the ground, and F, F' the
magnitudes of frictions at the instant at B and C respectively. Let W be the weight
of the ladder.

Now considering the two ladders
AB and AC as forming one system,
action and reaction at A on the two
neutralise each other.

) tane, | being the length of each ladder and ‘@’ then angle each makes

Hence resolving horizontally and
vertically and taking moments about B,
for the equilibrium of the combined
system, we get

F=F ..(D
R+R =3W ..(2

R’.2! sina = W% sing + Wd sing + wﬂ sina ... (3)

Again considering the equilibrium of the ladder AC separately taking
moments about A, we get

F'.l cosar = R'.l sin - W.i sin ... (4)

From 3) R = W 2.4 and from ) R = W 4=4

2 21
Hence F = F' = t 20+d W) _ itd
ancx(w 3 9 =W tana—— T
. F_d+l F _ l+d
"R A=g @ and — =31 d tanar
Now dl -d-2l+d)=2-2d>0 vd<l
F’

R" t'c-r all values of d.

One of the ladders will slip when either % or % is equal to the co-efficient

*

of friction g and as % is greater it will attain the value g first and gy =

F_ [+d

R =20+d %
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18. A uniform ladder is in equilibrium with one end resting on the ground
and the other against a vertical wall; if the ground and the wall be both rough,
the coefficients of friction being u and u’ respectively and if the ladder be at the
point of slipping at both ends, show that the inclination & of the ladder to the

horizon is given by tané = 1_‘2%&

Solution : Let AB be the ladder, of length 2/ and weight W, whose one end
A rests on the rough horizontal ground AC and the other end B rests against a
vertical wall BC. Let AB makes an angle & with the horizontal ground. Let the
normal reactions at A and B be R and R’. Also weight of the ladder is acting
vertically down wards through G which is middle point of the ladder AB.
Frictional forces at A and B are shown in figure. Let S and S’ be the resultant of
the normal reaction and friction at A and B respectively.

Now taking moments about A, we get

- W.l cos@ + R".2I sinf + u'R’.2l cos@ = 0 0

: S wr
or, 2R".tanf = W - 24’ R’ ... (1) N

Also for equilibrium

R'=uyRand R+ y'R" =W
Eliminating R, R" + gu'R’ = p W

or, R(1 + uu’) = uywW

C
,=_L‘
R l+;u,u’w
) u.W "y =
"me{l}21+yjf (tan@ + u') = W
nr,tan6'+y’=!—15‘£ nr,tan9=l—tﬂ£-g’=l__5£
2u 2u 24
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19. A uniform ladder of weight W, inclined to the horizon at 45°, rests with
its upper extremity against a rough vertical wall and its lower extremity on the
rough horizontal ground. Prove that the least horizontal force which will move

the lower end towards the wall is just greater than %—-‘U—Ei‘il +?_;,
where g and y’ are the coefficients of friction at the lower and upper end

respectively.

Solution : Let AB be the ladder R’ B
of length 2! which makes angle 45°
with the horizon and P be the
horizontal force in the position when
A is just on the point of slipping
towards C along AC. Let R and R’ be
the normal reactions at the ends A
and B. Since A is on the point of <
slipping towards C, yR acts in the
direction of CA, and since B is on the
point of slipping up, 'R’ acts in the

direction BC. Weight of the ladder is acting at G which is middle point of AB.

FFEJ L'

Now for equilibrium,

P=R +uRand R=W + /R’ .. ()

Taking moments about A, we get

- W.Il cos 45° — ('R’.2] cos45° + R’.2l sind5° = 0

] ’ 1 ’ l ’
.- W, - R’ 2. + R’.2. =0 - 2R’(1 - =W
06N = BB 2 N/} SGAR(L- )

. (N
= - (2)

Form (1) P=R’+ uR =R’ + uW + uu’R’
or, P=R'(1 + uu’) + uyW
or, P = %—“f_/ bW = o A2 2l

2" (=7 :
cp= W 1+2u-wl
T =

%5 . o
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20. A solid homogeneou. hemisphere rests on a rough horizontal plane and
against a rough vertical wall, the coefficients of friction being g and u’
respectively. Show that the least angle that the base of the hemisphere can make

with the vertical is cos™! _E _—&
31+l )

Solution : Let ABCD be the solid homogeneous hemisphere rests on a rough
horizontal plane and against a rough vertical wall.

Let a be the radius of the hemisphere. Now weight of the hemisphere is

acting at G, where OG = %a and OG is always perpendicular to the diameter

AD. Now reactions and frictions at B and C are as shown in figure.
Now for equilibrium, R+ yR =
and R’ = uR

When hemisphere is in limiting equilibrium, let the line OG makes & with
the horizontal direction.

. (1)

Now taking moments about 0, we get  xr’4 ~
A N
W.%a-.cdse - URa-u'R'a=0 :
3 8 0O R
or, 7.cos0.W = uR + 'R’ ... (2) G
From (1), R" + yu'R’ = uyW W D
R = W . E mC
L+
’ = Wu
From (2), 5 cos9W R" + u'R (]+‘u)l+,u;{
o 3 cosg = HU+H)
3 cos@ = T+l
. Least angle the plane face can make with the vertical
= @ = cos”! —E ALy o
N )
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Ex. 3. A lamina in the form of an isosceles triangle, whose vertical angle is
o, is placed on a sphere, of radius r, so that its plane is vertical and one of its equal
sides is in contact with the sphere; show that, if the triangle be slightly displaced in
its own plane, the equilibrium is stable if sin o <3r/a, where a is one of the equal
sides of the triangle.

Sol. DAB is an isosceles triangular lamina in which

_ ~ DA=DB=a and ZADB=o.

The centre of gravity G of the lamina lies on
its median DE which is perpendicular to AB and
also bisects the angle ADB. We have

DG=-§-DE=§-¢IC°S%G.
The lamina rests on a fixed sphere whose
centre is O and radius r. Their point of contact is
C. For equilibrium the line OCG must be vertical. D
If h be the height of the C.G. of the lamina
above the point of contact C, then

h=Gc=DGsiu-;-a

- lasinloa=Lagsi
=Facosyasinzo=gasinw

Here p, = the radius of curvature of the upper body at the point of contact C

and p, = the radius of curvature of the lower fixed body at the point C=r.
The equilibrium will be stable if
T 1 N I T 1.1
h>pl +p2 ie., h>oo+ - ie., h>r
ie., h<r ie., %asina<r
ie., sinax<3r/a.
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Example 14. :Il un'iform rod AB movable about a hinge at A, rests with the other end
against a smooth vertical wall. If o be the inclination of the rod to the vertical, prove that the

1
magnitude of the reaction of the hinge is 5 w J4+tan® a.

Sol. Let w be the weight of the rod acting vertically down-
wards through G, the mid-pt. of AB.
Let R be the normal reaction of the wall.

Let the line of action of w and R meet in Q. Then S, the
reaction of the hinge at A must also pass through O and act

along AO.
Let ZAOG =0 and Z0GB=o«
By “m-n theorem” in AAOB
(@a+a)cotoo=acotB—acot90° = Z2cota=cotB
ta.nﬂ:%tanu ...(1)
By Lami's Theorem to forces at O, we have
s w

sin90°  sin (90°+6)
$=¢:E:wmﬂ=w1f1+tanﬂa=w1’1+%tan’u |+ of (1)
w
__;_' r4l+tan’u I:orin.,ll3+nacxa:|

Example 7. Two weights P and Q are suspended from a fixed point O by strings OA, OB
and are kept apart by a light rod AB. If the strings make angles o and P with the rod, show that

P+
the angle 8 which the rod makes with the vertical is given by tan 0 = Pcata4gmtﬁ .

Sol. Let T, T, be the tensions in the strings AO and BO respectively. The thrust S of the
rod at A will be equal and opposite to that at B in directions as shown in the figure.

Forces T,, S, P acting at A are in equilibrium.
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or

or

or

or

or

By Lami’s Theorem, we have
T, S _ P
sin® ~ sin (180°-8+0a) sin (180° - )
L WO SO (1)
sin® sin(@-a) sina
Forces T,, S, Q acting at B are in equilibrium. Ty
By Lami’s Theorem, we have s
Ty B i 2 \A_s
sin (180°—0)  sin(8+P) sin (180°-B) .
180°- 0
L T L
sin® ~ sin(@+P) sinp Q P
Psin (6 -a)
sin o
Qsin (6 +p)
sin p
Psin(86-a) Qsin(®+f)
sine  sinP

From (1), S=

From (2), S=

p sinOcosa-oosOsinagQ sin 0 cos  + cos O sin
' sin o ' sin B
P[sin 6 cot & — cos 0] = Q[sin 6 cot B + cos 6]
Dividing both sides by cos 6,
Ptan 0 cot @ — 1] = Q [tan 0 cot p + 1]
tanB[Pcota-Qeot Bl=P +Q
P+Q
Pcoto-Qeotf °

tan@ =
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Example 8. (i) A sguare board ABCD, the length of whose side is ‘a’ is fixed in a vertical
plane with two of its sides horizontal. An endless string of length I [> 4a] passes over four pegs
at the angles of the board and through a ring of weight W which is hanging vertically. Show

Wi - 3a)
2,2 - 6la + 8a?

(ii) A fine light string AOB of length | is passed at O through a small smooth ring of no

appreciable weight and is attached at its extremities to two fixed points A and B at a distance ¢

apart. A given force P is applied to the ring in a direction making an angle o. with BA. Show
that in the position of equilibrium, the two parts of the string are inclined to each other at an

le 2 sin-t csinu]_
angle 2 sin [_I

Show also that the tension of the string is

that tension of the string is

2J1% = ¢? gin? «

Sol. (i) Let OADCBO be the string of length [.
Draw ON L on AB, then OA = OB.

D [+
AN:NB:%
I=0A+AD+DC+CB+BO
=0A+a+a+a+0A=20A+3a Al—N__JB
_ TB T
oA= =32 6
2
W

" an? 2
ON = JOA? - AN? = ”—f‘”—-%-
2 22
=J’ Sal+%s g =§1,p‘13-6az+aa2

4
Also, ON bisects ZAOB.

ON 34I®-6al+8a® |i*-6al+8a®
OA~  3(U-3a) l-3a :

Let T be the tension in the parts OA and OB of the string. The tensions in the two parts
are equal because the line of action of W bisects the ZAOB.

Let ZAON = 6, then cos 6 =
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Also, for equilibrium at O, W must balance the resultant of equal forces T, T inclined at
an angle AOB = 26.
W=2Tcos 6
T w . ] _ W(l - 3a)
~ 2 088 " 5 /12 _glg+8a%
(i1) As the string passes through a small smooth ring at O, therefore, tension in both the
parts is the same, say T.
Also, for equilibrium at O, the resultant of two equal forces T, T must be balanced by P.
= Line of action P must bisect ZAOB.
Let ZAOM = ZMOB =6
Then, P=2Tcos 6 (1)
; gin AMO sin®
Now in AOAM, T
sin (180°~a) _sin®
0OA  AM
sin®  AM
sin® - OA

=

-(2)

sint sin®
AR 0B " MB

sin8 MB

dnc ™ OB .(3)
sn® AM MB AM+MB
sin. - OA ~ OB OA+OB

AB
I

From (2) and (3),

~| 0

csin o
l

sin 6 = "i”]

= gin-1
,e-sm[ i

csina]
l
P P
" 2c0s0 21 gin%0
P _ Pl
_czsinza B 2le ~c?sinla
=

AAOB=20=2sin“|:

From (1), T

2,11
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Ex. 6. A uniform chain of length | hangs between two points A and B which
are af a horizontal distance a from one another, with B at a vertical distance b above
A. Prove thar the parameter of the caienary is given by

2c sinh (a/2¢) = V(2 - b7).
Prove also thas, if the tensions at A and B are T, and T, respectively,

T, +T, =w‘\’[1 +;iz]

and T,-T,=Wb/l,

where W is the weight of the chain. (Rohilkhand 1982)
Sol. A uniform chain of length | and weight W hangs between two poinis A and

B. Let C be the vertex, OX the directrix, OY the axis and ¢ the parameter of the catenary

in which the chain hangs. Let (x;, ;) and (x,,y,) be the coordinates of the points A

and B respectively and let arc CA=3s,; and arc CB=3s,.
We have 5 +s5,=1 s

Since the horizontal distance

between A and B is a, therefore % |
X + Xa=4d. L‘l-?l}-ﬁl -------- a

Again since the vertical distance 5y
of B above A is b, therefore
2=y =b
Let w be the weight per unit length
of the chain. Then o0
W=lw, or w=W/L
By the formula s = ¢ sinh (x/c), we have
sy =csinh (x;/¢) and s, =c sinh (x,/c)
I= S, +5=c [sinh (x,/c) + sinh (x,/€)]. A1)
Again by the formula y = ¢ cosh (x/¢), we have
¥y = c cosh (x;/c) and y, =c cosh (x,/¢c).
b=y, =y, =c[cosh (x,/¢) — cosh (x;/¢)]. )
Squaring and subtracting (1) and (2), we have
12 - b? = ¢ [~ {cosh? (x;/c) - sinh? (x,/¢)} — {cosh? (xp/c) — sinh? (x,/c)}
+ 2 {cosh (x,/c) cosh (x,/c) + sinh (x;/c) sinh (x,/¢)}]
= ¢2 [-1-1 + 2 cosh (x, /¢ + x,/c)]
= ¢2 [-2 + 2 cosh {(x; + x,)/c}]

=2c={mf-1}=2cﬂ [1+Isinh2%-I] :

B (x3.2)

L

=4c23inh2%~ ' .(3)
& ¢ is given by
2 ¢ sinh (a/2¢) = (2 - 7). [Remember that

cosh (& + B) = cosh ot cosh p + sinh ct sinh f, and cosh 2ot = 1 + 2 sinh? ]
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Now let T; and T, be the tensions at the points A and B respectively. Then by
the formula T = wy, we have
Ty =wy,, T =wy;.
Ty = Ty =w (3 = yy) = wb = (W/T) b = Wb/l
nhth
5+ 5,
¢ cosh (x,/¢c) + ¢ cosh (x,/c)
¢ sinh (x,/c) + ¢ sinh (x,/c)
cosh (x;/c) + cosh (x,/c)
= " sinh (x,/¢) + sinh (x,/¢)
2 cosh 2 (x)/c + x,/) cosh 3 (x,/e — x,/¢)

w
Also T=+T1=w[yl+}t:)=T[:.rl+1r2)=W

—

2 ginh % (x)/¢c + xy/c) msh% [x,/c = xy/€)

o I a
=Wwih[—£--]=“7mﬂ1§;
=W‘J[l+mhz-§;] [ - coth? =1+ cosech?
<
W ‘\/[1 t
substituting for cosech? (a/2¢) from (3).
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