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Vector Calculus and Its Applications
| 1. Differentiation of vectors. 2. Curves in space. 3. Velocity and acceleration, Tangential and normal acceleration, |

| scalar point functions—Gradient. 6. Del applied to vector point functions—Divergence and Curl. 7. Physical |

| interpretations of div F and curl F. 8. Del applied twice to point functions. 9. Del applied to products of point |

| functions. 10. Integration of vectors. 11. Line integral—Circulation—Work. 12. Surface integral—Flux. 13. Green's |
theorem in the plane. 14. Stoke's theorem. 15. Volume integral. 16. Divergence theorem. 17. Green's theorem.

| 18. Irrotational and Solenoidal fields. 19. Orthogonal curvilinear coordinates, Del applied to functions in |

| orthogonal curvilinear coordinates. 20. Cylindrical coordinates. 21. Spherical polar coordinates. 22. Objective

| Type of Questions.
L_ypf ____________________________________ ]

IEXY (1) DIFFERENTIATION OF VECTORS

If a vector R varies continuously as a scalar variable f changes, then R is said to be a function of f and is
written as R = F(¢).
Just as in scalar calculus, we define derivative of a vector function R = F(t) as

i BB o witteitas TR or 9F o 168,

50 &t dt dt
(2) General rules of differentiation are similar to those of ordinary calculus provided the order of
factors in vector products is maintained. Thus, if §, F, G, H are scalar and vector functions of a scalar variable ¢,
we have
dF dG dH (i) %(Fq,):FE‘Q dF

dt Tar " ar dt " dt
dG dF

daG | dF v) 4 e
Gt E ) 5 FHCV=F g + g x G
d _|dF dG dH

@) 4 —H)=
v dt(F"'G H)

@i %(F.G)ﬂr.

. d _(dF dG dH
(ULJEEI(FXG)xH]—(ExGJxH+(Fx~Et—)xH+(FxG)x o

As an illustration, let us prove (iv), while the others can be proved similarly :

(F+8F)x (G +8G)-FxG _ Lt F x 8G + 8F x G + OF x 8G

d
E(FXG)_NI:% ot a0 St

Y 6G , oF o, oF o1 o dG  dF .
—&I:!:ul:Fx§+&xG+&x6G:|_det+dt x G [+ 868G —> 0asdt—0]

Obs. 1. FF(®) has a constant magnitude, then F . X =0
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Solution. (i) %(A.B)=A. %J,% B
= (5t%1 + 1 — £3K) . [cos T — (—sin £) F] + (10¢1 + J — 3¢%K) . (sin £I — cos tJ)

=(5t2cost + ¢t sin ) + (10¢ sin £ — cos £) = 5t2 cos t + 11¢ sin £ — cos ¢.

i) & (AxB)=Ax L 9 . g
= (5¢21 + tJ — 3K) x (cos tI + sin tJ) + (10 tI + J — 3t?K) x (sin ¢tI — cos tJ)
=[5t2sintK +rcost (- K)—£3 cos tJ — 3 sin £ (- I)]

+ [~ 10t cos tK + sin t(— K) — 3t2 sin tJ + 3t2 cos ¢ (- I)]
=(3sint—3t2cos ) I -ttt cost + 3sint) J + [(5¢2— 1) sin ¢ — 11¢ cos t] K.

CURVES IN SPACE

(1) Tangent. Let R(2) = x()I + y(¢t)J + z(¢)K be the position vector of a
point P. Then as the scalar parameter ¢ takes different values, the point P
traces out a curve in space (Fig. 8.1). If the neighbouring point @ corresponds to
t + 8t, then 8R = R(¢ + &t) — R(¢) or SR/&t is directed along the chord PQ. As &t —
0, Lt 8R/8¢ becomes the tangent (vector) to the curve at P whenever it exists and
is not zero.
Thus the vector R’ = dR/dt is a tangent to the space curve R = F(¢).
Let P, be a fixed point of this curve corresponding to ¢ = ¢,. If s be the
length of the arc P P, then Fig. 8.1
8 _ 8 |SR|_ arcPQ |§|
& |8R| & chord PQ| &t
As @ — P along the curve QR i.e., & — 0, then arc P@Q/chord PQ — 1 and

ds _| dR
=g | oo 1RO

If R’(¢) is continuous, then arc PP is given by
5= L |R’|de= L V& + P + @) dt
If we take s the parameter in place of ¢ then the magnitude of the tangent vector, i.e., | dR/ds | = 1. Thus
denoting the unit tangent vector by T, we have

_dR
M= = w1}

(2) Principal normal. Since T is a unit vector, we have
dT/ds. T=0

i.e.,dT/ds is perpendicular to T. Or else dT/ds = 0, in which case T is a constant vector w.r.t. the arc length s and
so has a fixed direction, i.e., the curve is a straight line.
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If we denote a unit normal vector to the curve at P by N then 'g
dT/ds is in the direction of N which is known as the principal £
normal to the space curve at P. The plane of T and N is called the Rectifying ‘g i
ifyin ormal plane

osculating plane of the curve at P (Fig. 8.2).

(3) Binormal. A third unit vector B defined by B =T x N, is
called the binormal at P. Since T and N are unit vectors, Bis alsoa
unit vector perpendicular to both T and N and hence normal to the
osculating plane at P.

Thus at each point P of a space curve there are three mutually

perpendicular unit vectors, T, N, B which form a moving trihedral ; Cipg;
such that
T=NxB,N=BxT,B=TxN ...(2) Osculating plane
This moving trihedral determines the following three Fig. 8.2

fundamental planes at each point of the curve :
(i) The osculating plane containing T and N
(ii) The normal plane containing N and B
(i) The rectifying plane containing B and T.
(4) Curvature. The arc rate of turning of the tangent (i.e., the magnitude of dT/ds) is called the curvature
of the curve and is denoted by k.
Since d'T/ds is in the direction of the principal normal N, therefore,
dT
o= EN ..(3)

(5) Torsion. Since B is a unit vector, we have % .B=0

AJsoB.T:O,therefore@.T +B.ﬂ =0.
ds ds

or 9B 1.B.6N)=0, iay B g [~ B.N=0]
ds ds
Hence dB/ds is perpendicular to both B and T and is, therefore, parallel to N.
The arc rate of turning of the binormal (i.e., the magnitude of dB/ds) is called torsion of the curve and is

denoted by t. We may, therefore, write

dB _
T, N ™™N ..(4)
(The negative sign indicates that for © > 0, dB/ds has direction of — N).

Finally to find dN/ds, we differentiate N =B x T.

dN _dB gk ..
E_EXT-FBX T = INxT+B x kN

Using the relation (2), it reduces to Eﬁ - B - kT .5
S5

The equations (3), (4) and (5) constitute the well-known Frenet formulae* for space curves.

Obs. 1. p = 1/k and ¢ = 1/ are respectively called the radii of curvature and torsion.
2. For a plane curve 7= 0.

Example 8.2. Find the angle between the tangents to the curve R = I + 2tJ — t*K at the point t = = 1.
o'y (V.T.U.,, 2010)

Solution. The tangent at any point ¢’ is given by

dR
=ik 21 + 2J - 317K
the tangents T,, T, at ¢ = 1 and ¢ = — 1 are respectively given by

T, =21 +2J -3K; T, = — 21 + 2J - 3K,

* Named after a French mathematician Jean-Frederic Frenet (1816-1900).
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Then the required £6 is given by T\ T,cos 6 =T, . T,=2(-2)+ 2.2 + (- 3)(- 3)
ie., V17 J17 cos©=9 .. 0=cos1(9/17).
Example 8.3. Find the curvature and torsion of the curve x =a cos t, y =a sin t, z = bt.

(This curve is drawn on a circular cylinder cutting its generators at a constant angle and is known as a
circle helix).

Solution. The vector equation of the curve is R = a cos tI + a sin ¢tJ + biK z
dR/dt =—a sin tl + a cos tJ + BK /
[ts arc length from P, (t = 0) to any point P(¢) (Fig. 8.3) is given by i |

o= _E |dR/dt | dt = \[(a® + B2}t
ds _ 2,2
dt—\l(a +b%) |t

[9) -
Then T=dR _ dR ds _—asin tl +a cos td + DK A Y
ds dt J(a2 +b9) X
and dT _ dT /ds _ - alcos ¢I + sin tJ) Finos)
ds  dt/ dt a® + 5%
Thus k= daT =% _ @ and N =—(costI + sin tJ)
ds a” + b
Also B=TxN=(@0 sintl—bcostJ+aK)f\f(a2+b2J
dB _dB /ds i 9 2y _ _ .
T @l a b(cos t1 + sin td)(a? + b?) = — TN = 1(cos ¢I + sin tJ)
b =
Hence T= L ..(2L)
a’ +b?
PROBLEMS 8.1
1. Show that, if R = A sin @ + B cos ¢, where A, B, o are constants, then (i) ‘f;? =—o’R (Bhopal, 2007 S)

L m
(it) R % di =—mAx B

2. Given R =" A + " B, where A, B are constant vectors, show that, if R and d?R/d¢? are parallel vectors, then
m +n=1,unless m = n.

3. P =521+ 3 —tK and Q = 21 sin ¢ — J cos ¢ + 5¢K, find (i) % (P.Q) ;) % (P x Q).

4 If%?- - W x Uand %Y— = W x V, prove that % (UxV)=W x(UxV). (Mumbai, 2009)
B. IfA = 22yzT — 2x23F + x2%K and B = 221 + yJ —#7K, find -2 &xa:y (AxB)at(1,0,-2).
6. HR=(acos?t) I +(asint)d + (at tan o) K, find the value of
2. 2: 3
i v G | R LR IR (Rohtak, 2005)
dt A% g

Also find the unit tangent vector at any point ¢ of the curve.

7. Find the unit tangent vector at any point on the curve x =% 4+ 2,y = 4¢ — 5, z = 2t — 6t, where ¢ is any variable. Also
determine the unit tangent vector at the point ¢ = 2.

8. Find the equation of the tangent line to the curve x =a cos 0, y = a sin 0, z = a0 tan o at 0 = w/4.

9. Find the curvature of the (i) ellipse R(t) = @ cos ¢I + b sin td ; (ii) parabola R(t) = 2¢I + t%J at the point ¢ = 1.
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10. Find the education of the osculating plane and binormal to the curve
(i)x=2cosh (t/2),y=2sinh (t/2),z=2tatt=0; (ii)x=ecost,y=e'sint,z=e‘att=0.

11. A circular helix is given by the equation R(#) = (2 cos t) I + (2 sint) J + K. Find the curvature and torsion of the curve
at any point and show that they are constant.

12. Show that for the curve R = a(3t —t3) I + 3a#?J + a(3t + t*) K, the curvature equals torsion.

IEE] (1) VELOCITY AND ACCELERATION

Let the position of a particle P at time ¢ on a path (curve) C be R (¢). At time £ + &, let the particle be at @
(Fig. 8.1), then 8R = R(¢ + 8t) — R(¢) or 5R/8t is directed along PQ. As @ — P along C, the line P becomes the
tangent at P to C.

R _dR _y
8 -0 & dt

is the tangent vector of C at P which is the velocity (vector) V of the motion and its magnitude is the speed

v = ds/dt, where s is the arc length of P from a fixed point P, (s = 0) on C.

The derivative of the velocity vector V(¢) is called the acceleration (vector) A(¢), which is given by
2
Ap)=9Y _dR
dt  g¢®
(2) Tangential and normal accelerations. It is important to note that the magnitude of acceleration is
not always the rate of change of | V | because A(?) is not always tangential to the path C. Infact

V(t) = dR _dR . ds . where dR/ds is a unit tangent vector of C.
dt ds " di
2 2 42
Alt) = év_zi[és_ @]_ﬂ dR (ﬁ) d’R
dt dt ds?

di ds | g2 ds \dt
Now since dR/dt . d*R/dt? = 0, d?R/dt? is perpendicular to dR/dt. Hence the acceleration A(t) is comprised
of (i) the tangential component d2s/dt? . dR/ds, called the tangential acceleration, and

(if) the normal component (ds/dt)? . d?R/ds?, called the normal acceleration.
Obs. The acceleration is the time rate change of | V | = ds/d¢, if the normal acceleration is zero, for then
2 2
41| 2| | 2 |- |5
dt

ds | 7| a®
(3) Relative velocity and acceleration. Let two particles P, and P, moving

along the curves C, and C, have position vectors R, and R, at time ¢, (Fig. 8.4), so that
Y

R: PIPQ :R2_R‘l

Differentiating w.r.t. {, we get dR _ Ry dR, (D)
dt dt dt
This defines the relative velocity (vector) of P, w.r.t. P, and states that the veloc-
ity (vector) of P, relative to P, = velocity (vector) of P,— velocity (vector) of P;.

2 2 2
Again differentiating (iii), we have ¢ R _ ¢’ Ry d'R, .iv)
dt? dt® dt? Fig. 8.4
i.e., acceleration (vector) of P, relative to P, = acceleration (vector) of P, — acceleration (vector) of P,.

Example 8.4. A particle moves along the curve x =3 + 1, y = t>, z = 2t + 3 where t is the time. Find the
components of its velocity and acceleration at t = 1 in the direction 1 + J + 3K.

Solution. Velocity = % = % (£ + 1) T+ 23 + (2t + 3)K]

=321+ 2tJ +2K=31+2J + 2Katt=1

2
and acceleration = C;—zli =6tI+2J +0K=61+2Jatt=1.
t
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Now unit vector in the direction of 1+ J + 3Kis _3+t9+3K _ 1 4. 5.3K)
JZ+12+3h) 11
component of velocity at ¢ = 1 in the direction I + J + 3K
_ BI+2J +2K).(I+J+ 3K) _ 3+2+6 =J(1_1)

Jan NG

and component of acceleration at ¢ = 1 in the direction

6+2
= Ja1) =
I+J+3K=(06I+2J). X+J+3K)V J(1_1 UHIE

Example 8.5. A particle moves along the curve R = (t° — 4t) I + (2 + 40)J + (8t° - 3t)K where t denotes
time. Find the magnitudes of acceleration along the tangent and normal at time t = 2. (V.T.U., 2003 S)

Solution. Velocity % = (32— )1 + (2t + 4)J + (16t — %K

2
‘Z = 61 + 2J + (16 — 18K
t

at t = 2, velocity V = 81 + 8J — 4K and acceleration A = 121 + 2J — 20K.
Since the velocity is along the tangent to the curve, therefore, the component of A along the tangent

and acceleration

sk <V =(121+2J_20K)_%1K
| V| (64 + 64 +16)
12x8+2x8+(-20)x(—4)

Now the component of A along the normal
= | A —Resolved part of A along the tangent |

12[+2J—20K—16%§ =1 | 41-269- 14K | =27,

Example 8.6. Theposztwn vector of a particle at time t is R = cos (t = 1) I + sinh (t — 1) J + 0f’K. Find the
condition imposed on o by requiring that at time t = 1, the acceleration is normal to the position vector.

Solution. Velocity dd_R =—sin(t—1) I +cosh (t — 1) J + 302K
Acceleration ﬂ =—cos(t—1)I+sinh(t—-1)J+6ctK=—I+60K att=1.
dt’

AlsoR=I+o0Katt=1.
If R and acceleration at ¢ = 1 are normal, then their scalar product is zero.
(-I+60K).I+0K) =0 or —1+602=0

or 02=1/6 or o=1/6.

Example 8.7. Find the radial and transverse acceleration of a particle moving in a plane curve.
(Kurukshetra, 2006 ; Rajasthan, 2006)

Solution. At any time ¢, let the position vector of the moving particle P(r, 6) be R (Fig. 8.5) so that
R =rR = r(cos 6l + sin 8J)

- Y \"
its velocity = AR drg . 08 -(2) E
) dt dt dt i P(r, )
As R = cos 61 + sin 6J i
dR _(_ e N =
and = = (—sin 61 + cos 6J) P (0] X



DOWNLOADED FROM www.CivilEnggForAll.com

‘Vector CaLcuLus AND ITs APPLICATIONS m
ﬁJ.Rand W , ..e., if U is a unit vector 1 R, then
dt dt | dt’
dR de y
dt ~ dt
; _dra de 5
(i) becomes, V= = R+r = =U ...(i1)

Thus the radial and transverse components of the velocity are dr/dt and r d6/dt.
Also A=dV_d’rp drdR drde.. . d2 oy, ,dodu

dt g2 T at de Tdt di Tdt dt
_|d% _ (a0’ | g [, dr de d2a\ " mwu o dU__dBp
—[?'r(a) ]R LQEE+ d—zJU [ U-—sxnel-rcosﬂngvesE*—aR]

Thus the radial and transverse components of the acceleration are

d%r (@) and 297 40 d%
a2 \dt didt g
Example 8.8. A person going eastwards with a velocity of 4 km per hour, finds that the wind appears to
blow directly from the north. He doubles his speed and the wind seems to come from north-east. Find the actual
velocity of the wind.

Solution. Let the actual velocity of the wind be xI + ydJ, where I, J represent velocities of 1 km per hour
towards the east and north respectively. As the person is going eastwards with a velocity of 4 km per hour, his
actual velocity is 41.

Then the velocity of the wind relative to the man is (xI + yJ) — 41, which is parallel to — J, as it appears to
blow from the north. Hence x = 4. (D)

When the velocity of the person becomes 8I, the velocity of the wind relative to man is (xI + ydJ) — 81. But
this is parallel to—(I+d).

(x — 8)/y = 1, which by (i) gives y = — 4.
Hence the actual velocity of the wind is 4(1 — J), i.e., 42 km. per hour towards the south-east.,

PROBLEMS 8.2

1. A particle moves along a curve x =¢ %,y = 2 cos 3t, z = 2 sin 3¢, where ¢ is the time variable. Determine its velocity

and acceleration vectors and also the magnitudes of velocity and acceleration at ¢ = 0.
(P.T.U., 2003 ; V.T.U., 2003 S)

2. The position vector of & particle at time ¢ is R = cos (¢ — 1) I + sinh (¢ — 1) J + a#*K. Find the condition imposed on a
by requiring that at time ¢ = 1, the acceleration is normal to the position vector.

3. A particle moves on the curve x = 2¢%, y = t?— 4¢, z = 3t — 5, where t is the time. Find the components of velocity and
acceleration at time ¢ = 1 in the direction I — 3J + 2K. (V.T.U., 2008)

4. A particle moves so that its position vector is given by R = I cos et + J sin «. Show that the veloeity V of the particle
is perpendicular to R and R x V is a constant vector.

5. A particle (position vector R) is moving in a circle with constant angular velocity w. Show by vector methods, that
the acceleration is equal to — @’R.

|6. (a) Find the tangential and normal accelerations of a point moving in a plane curve. (Rajasthan, 2005)
' (b) The position vector of a moving particle at a time ¢ is R = 3 cos ¢tI + 3 sin tJ + 4tK. Find the tangent and normal
components of its acceleration at ¢ = 1. (Marathwada, 2008)

7. The velocity of a boat relative to water is represented by 3I + 4« and that of wate relative to earth is I — 3J. What
is the velocity of the boat relative to the earth if I and J represent one km an hour east and north respectively.

8. Avessel A is sailing with a velocity of 11 knots per hour in the direction S.E. and a second vessel B is sailing with
a velocity of 13 knots per hour in a direction 30°E of N. Find the velocity of A relative to B.

9. A person travelling towards the north-east with a velocity of 6 km per hour finds that the wind appears to blow
from the north, but when he doubles his speed it seems to come from a direction inclined at an angle tan! 2 to the
north of east. Show that the actual veloeity of the wind is 32 km per hour towards the cast.
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[EEJ} SCALAR AND VECTOR POINT FUNCTIONS

(1) If to each point P(R) of a region E in space there corresponds a definite scalar denoted by f (R), then f(R)
is called a scalar point function in E. The region E so defined is called a scalar field.

The temperature at any instant, density of a body and potential due to gravitational matter are all
examples of scalar point functions.

(2) If to each point P(R) of a region E in space there corresponds a definite vector denoted by F(R), then it
is called the vector point function in E. The region E so defined is called a vector field.

The velocity of a moving fluid at any instant, the gravitational intensity of force are examples of vector
point functions.

Differentiation of vector point functions follows the same rules as those of ordinary calculus. Thus if
Fix, y, z) be a vector point function, then

dF _JF de JF dy OF dz (See (iii) p. 203]

g hd el o dG P
nd dF = 9F 4. OF oF , _ [i 9 4,90 ] F (D)
a Bxdx ayd +Bzd axdx+aydy+azdz

(3) Vector operator del. The operator on the right side of the equation (i) is in the form of a scalar

pmductofxa%”%J,K% and Idx + Idy + Kdz.

o g By B 2 ’
If V (read as del) be defined by the equation V = 1 3t J 5 +K % ..(i0)

then () may be written as dF = (V . dR) F for when R = xI + yJ + zK, dR = Idx + Jdy + Kdz.

DEL APPLIED TO SCALAR POINT FUNCTIONS—GRADIENT

(1) Def. The vector function Vf is defined as the grudient of the scalar point
function f and is written as grad f.

Thus gradf=Vf=1 gﬁ“’a};*Kaf

(2) Geometrical interpretation. Consider the scalar point function f(R),
where R = xI + yJ + zK.

If a surface f(x, y, z) = ¢ be drawn through any point P(R) such that at each point
on it, the function has the same value as at P, then such a surface is called a level
surface of the function f through P, e.g., equipotential or isothermal surface (Fig. 8.6).

Let P’ (R + 8R) be a point on a neighbouring level surface f + &f. Then

Fig. 8.6
Vf.BRz[ g£+J$+K3£].(IEx+J6y+Kﬁz)
s s s
_3;&4-&);8"”-&82 of.

Now if P’ lies on the same level surface as P, then &§f = 0, t.e., Vf. 8R = 0. This means that Vf is
perpendlcu]ar to every S8R lying on this surface. Thus Vfis normal to the surface f (x,y, 2) = c.
Vf=|VfIN
where N is a unit vector normal to this surface. If the perpendicular distance PM between the surfaces through
P and P’ be &n, then the rate of change of f normal to the surface through P

- & _ 3R
e L L =

=1vr) g Ry, [+ N.8R=| R | cos0=8nl

Hence the magnitude of Vf = dffon.

Thus grad fis a vector normal to the surface f = constant and has a magnitude equal to the rate of change
of falong this normal.
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(3) Directional derivative. If 6r denotes the length PP’ and N’ is a unit vector in the direction PP’, then
the limiting value of 8f/6r as 6r — 0 (i.e., offdr) is known as the directional derivative of f at P along the direction
PP’

Since &r = dnfeos e =dn/N . N’

L [N N'sf] -N. ¥ N=N.vVF

o &-—0 on
Thus the directional derivation of f in the direction of N’ is the resolved part of Vfin the direction N".
Since VF.N'=| Vf| cosa< | VF|

It follows that Vf gives the maximum rate of change of f.

Example 8.9. Prove that Vr" = nr'" 2 R, where R + xI + yJ + zK.
(Bhopal, 2007 ; Anna, 2003 S ; V.T.U., 2000)

Solution. We have flx,y, 2) = r' = (x% + y? + 22)"2

Bf (x2+y +22yY2-1 9% = pxr" —2. Similarly, ?}_); =nyr*~2 and % =nzr" -2
Thus Vr":Ii‘l-Jy—q-Ki = a2 L+ 93 + 2K) = -2 R,

ox dy 0z
_ Otherwise : The level surfaces for f = constant, i.e., I = constant are concentric spheres with centre O and
hence unit normal N to the level surface through P is along the radius R

ie., N=R.
v-i N=%f{=nr”—1fl [+ f=r
r
= nr" L(R/r) = nr"—2R.
Example 8.10. If Vu = 2r* R, find u. (Mumbai, 2008)
Solution. We have Vu = 2(x% + y2 + 222 R [ r=+JG*+ y2 +29)]
=2(x2 + y2 + 2202 (I + ydJ + zK) ()
But Vu —a—l %‘J+§K (i)
Comparing (i) and (ii), we get
du du 2
= = 20(x® + 9% + 2207, SX = 2y(x2 + 3% + 2% ; U = 22(x? + 32 + 2%)
B +y 5 Dy : y
Also ditl, 3, 2) = —dx+%’dy+ g" dz =202+ 5%+ 22 (e + yidy + 2d2)

=92 2 L takingx?+y2+22=t and 2(xdx+ydy +zdz)=dt
lntegratingbot.hsides,uzjt?dt +c=%t3+c=%(12+y2+z2)3+c
Hence u—_r3’2+c

Example 8.11. Ifu =x +y +z, v =22 + y? + 2%, w = yz + 2x + xy, prove that grad u, grad v and grad w are
coplanar. © (UT.U, 2010 ; U.P.T.U., 2002)
Solution. gradu:(li+J—a-+K ](x+y+z) I+d+K
ox dy dz
gradv=2xI+2yJ + 22K, gradw =y +2) I+ z+0)J+z+ 20 K
We know that three vectors are coplanar if their scalar triple product is zero.
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Here [grad u, grad v, grad w]
1 1 1
— 2x 2_}’ 22
y+2 zZ+x x+y
1 1 1 1 1 1
=2| x y z |=2|x+y+z y+z+x z+x+y [Operate R, + R,]
y+z z+x x+y y+z zZ+x x+y
1 1 1
=2x+y+2) 1 1 1 =0.
y+z Z2+x x+y

Hence grad u, grad v and grad w are coplanar.
Example 8.12. Find a unit vector normal to the surface xy3z? = 4 at the point (- 1, — 1, 2).
(Mumbai, 2008)
Solution. A vector normal to the given surface is V (xy%z?)
= I% (xy322) + J % (xy32?) + K% (xy%22) = I(y3 22) + J(3xy%2?) + K(2xy32)
=—41 - 12J + 4K at the point (- 1,1, 2).
Hence the desired unit normal to the surface

= —M-12d+4K 1 4,35-K)
J[(—4)2+(—12)2+421 Vi1

Example B.13. Find the directional derivative of flx, y, 2) = o5+ yz-".at the point (2,1, 1) in_the-di‘mcﬁon
of vector I + 2J + 2K. (Bhopal, 2008 ; Kurukshetra, 2006 ; Rohtak, 2003)

Solution. Here Vf=1(y?) + J(2xy + z3) + K(3yz?) = I — 3J — 3K at the point (2, -1, 1).
directional derivative of fin the direction I + 2J + 2K

= (I -3J - 3K). A+ IR :(1.1-3.2-3.2)/3=-3§.
1% + 2% + 2%

Example 8.14. Find the directional derivative of f = 22 — 7 + 22° at the point P (1, 2, 3) in the direction of
the line PQ where @ is the point (5, 0, 4). Also calculate the magnitude of the maximum directional derivative.

Solution. We have: ‘Vf= (1 % +d % +K %] (2 — 32 + 2:2) = 200 — 2y + 42K
=21-4J + 12K at P(1, 2, 3)
Also PQ = 0Q — OP = (51 + 0J + 4K) — (I + 2J + 3K) = 41 — 2J + K = A (say)
A 41-2J+K 41+2J+K

it vector of A= A== = =
unit vector o a J(]_6+4+1) -\/ﬁ

Thus the directional derivative of f in the direction of I;)Q
Vf. A = (21 - 4J + 12K) . (41 — 2J + K)/\/21
=(8 + 8+ 12)/V21 =28//21
The directional derivative of its maximum in the direction of the normal to the surfacei.e., in the direction

of V.
Hence maximum value of this directional derivative

=|Vf|=]21-49 + 12K | = (4 + 16 + 144) = /164 .
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Example 8.15. Find the directional derivative of ¢ = 5x%y — 5y°z + 2.52%x at the point P(1, 1, 1) in the

direction of the line ¥ Iy 3’_‘23 =z (Bhopal, 2008 ; U.P.T.U., 2004)
) 0
Solution. We have Vo=1— o +J W + K— ~

=(10xy + 2.52) I + (522 — 10yz) J + (- 5y2 + 5z2x) K
=125I-5J at P(1, 1, 1)

Also direction of the given line is A= w

Hence the required directional derivative
=Vo. A =(1251-5J). (21-2J + KV3 = (25 + 10¥3=112.

Example 8.16. Find the angle between the surfaces x° + y? + 22 =9 and z = x* + y°— 3 at the poini (2, - 1, 2).
(V.T.U., 2010 ; Kottayam, 2005 ; U.P.T.U., 2003)

Solution. Let fi=x2*+y>+2°-9=0andf,=22+3*-2-3=0
Then N, =Vf at(2,—1,2) = (20 + 2d + 22K) at (2, — 1, 2) = 41 - 2J + 4K
and N,=Vf,at(2,—1,2) = (2 + 25d ~K) at (2,— 1,2) = 41— 2T — K

Since the angle 6 between the two surfaces at a point is the angle between their normals at that point and
N, N, are the normals at (2, — 1, 2) to the given surfaces, therefore

N,.N, (4I-2J +4K).(4I-2J -K)
mny  J(16+4+16) (16 +4 +1)
_MD+(-2)=2)+4(-1) 16

cos 0 =

6v21 621
Hence the required angle 6 = cos™1 (L) y
321
Example 8.17. Find the values of a and b such that the surface ax® - byz = (a + 2) x and 4x%y + 2° = 4 cut
orthogonally at (1, - 1, 2). (Madras, 2004)
Solution. Let fi= ax-byz—(a+2) x=0 ..(@)
and f2= 4y + 28 —4=0 ...(#1)
Then Vfi=(2ax-a—-2)I - 42d —-byK=(a - 2) I - 2bJ + bK at (1,1, 2).

Vf, = 8xyl + 4x%J + 32°K=—8I + 4J + 12K at(1,-1,2).
The surfaces (i) and (if) will cut orthogonally if Vf, . Vf, =0, i.e., —8 (¢ —2) - 8b + 12b =0
or —204+b+4=0 ...(tE)
Also since the point (1, — 1, 2) lies on () and (if),
i a+2b-(a+2)=0 or b=1
From (ii7), —-22+5=0 or a=52.
Hence a=52and b=1.

PROBLEMS 8.3

1. () Find V4, it =Tog (2 + 72+ #2). (b) Show that grad (14) = - R/,

2. Find a unit vector normal to the surface x® + ¥3 + 3xyz = 3 at the point (1, 2, — 1). (P.T.U, 1999)

3. Find the directional derivative Dfl.]l =x%yz + 4x2? at the point (1, — 2, 1) in the direction of the vector 2I - J — 2K.
(V.T.U., 2007 ; Rohtak 2006 S ; IN.T.U., 2006 ; UP.T.U, 2006)

4, What is the directional derivative of & = xy? + yz3 at the point (2, — 1, 1) in the direction of the normal to the surface
xlogz—y? =—4at(-1,2,1)? (S.V.T.UL., 2009)
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IEX3) DEL APPLIED TO VECTOR POINT FUNCTIONS

(1) Divergence. The divergence of a continuously differentiable vector point function F is denoted by div F
and is defined by the equation

" 1% g F g oF
divF=V.F=1. ax+J ay-rK 3%
If F=fI+¢J+yK
sl @ @ 9 9%, oy
then divF=V.F= (lax+Jay+K ) (FI+¢d + yK) = %t ay *
(2) Curl. The curl of a continuously differentiable vector point function F is defined by the equation

dF oF
curl F=VxF = Ixax+Jny+Kxaz

: Ik
IfF = = S0
fI+¢J+yKthencurl F=VxF = [ ax+be+Kaz 1+ od + yK)

e 2 ]

Solution. (7)) V.R= — (x) + —(y) + H-Lz)

G VxR= é 2, A&, =1(£_Q)_J(&_ﬁ]+x(ay g)

=H0-0)-J(0-0)+K(0-0)=0.
[Remember :div R =3 ; curl R =0]
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! weﬁ.w.ﬁnddwi‘aad\curll? wher F =grad (% + ¥ +2° = 3xye). AT VT A
ks 1 ) TR (VéTU. 2008 ; Kumks&tgé,géosﬁﬁuﬁzﬂfﬁgt
Solution. If u =x3+y3+z3—-3xyz then
F= Vu—]gu+Ja_”+Kaz = 1(3x2 - 3yz) + J(3y? — 32x) + K(322 — 3xy)

dy
. _ 0 » a 2 _ i 2 _ e
divF = a(31:2 3yz) + Oy(3y 3zx) + a‘_5(32 3xy) = 6(x +y + z)
I J K
2 2 a
curl F= 3% 5 %

3(x% - yz) 3(;;12 — 2x) 3(22 —xy)
=I(-3x+3x)-J(-3y+3y) + K(-3z+32)=0

(1) PHYSICAL INTERPRETATION OF DIVERGENCE

Consider the motion of the fluid having velocity V=v I+v J +v Kata Z) c A
point P(x, y, z). Consider a small parallelopiped with edges &x, &y, &z parallel g
to the axes in the mass of fluid, with one of its corners at P (Fig. 8.7). 162

the amount of fluid entering the face PB’ in unit time = v, 8z8x and B i P Uit
the amount of fluid leaving the face P’B in unit time RS bi-—1—un
UJ' /" &y
St [ Xy ayJ 8z6x nearl A
= = + =0 near -
U.}’ + 8y v ay y /l Cr
the net decrease of the amount of fluid due to flow across these two 0 Y
dv X
e ¥y

faces = gﬁrﬁyﬁz Fig. 8.7

Finding similarly the contributions of other two pairs of faces, we have the total decrease of amount of

sxe o . v dv, v, v
fluid inside the parallelopiped per unit time = | —% 4+ —= + —Z% | 8adydz.
dx dy oz
Thus the rate of loss of fluid per unit volume
a du, v,
Vs e o W + g =div V.

Hence div V gives the rate at wh:ch fluid is originating at a point per unit volume.

Similarly, if V represents an electric flux, div V is the amount of flux which diverges per unit volume in
unit time. If V represents heat flux, div V is the rate at which heat is issuing from a point per unit volume. In
general, the divergence of a vector point function representing any physical quantity gives at each point, the rate
per unit volume at which the physical quantity is issuing from that point. This explains the justification for the
name divergence of a vector point function.

If the fluid is incompressible, there can be no gain or loss in the volume element. Hence div V = 0, which
is known in Hydrodynamics as the equation of continuity for incompressible fluids.

Def. If the flux entering any element of space is the same as that leaving it, i.e., div V = 0 everywhere then
such a point function is called a solenoidal vector function.

(2) Physical interpretation of curl. Consider the motion of a rigid body rotating about a fixed axis
through O. IfQ be its angular velocity, then the velocity V of any particle P(R) of the body is given by V= x R.

[See p. 91]
If Q=ol+0,J+wK and R=xl+yd +zK
I 4 K
then V=QxR= |0 0 03] =Iwz—-wy)+dw,x -0z + Cloy - nx)

x y z
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J K
2 2
dy oz
0,2 — 03Y, OzX — 2, O — 0%
=I(o; + o)) + J(@, + ©,) + K(w; + ) [

=20l + 0, d + 0,K)=2Q. Hence Q= % curl V

®,, 0,, ®; are constants.]

Thus the angular velocity of rotation at any point is equal to half the curl of the velocity vector which
justifies the name rotation used for curl.

In general, the curl of any vector point function gives the measure of the angular velocity at any point of the vector
field.

Def. Any motion in which the curl of the velocity vector is zero is said to be irrotational, otherwise rotational.

Example 8.20. Prove that div (r"'R) = (n + 3) r. Hence show that R/r? is solenoidal.
(V.T.U., 2006 ; UPTU 2006 PTU 2@0{5)3

Solution. Wehave R =xI +yd + zK and r= (x% + % + 2%)
div (M"R) = V. (x2 + y2 + 222 (xI + yd + zK)

Il

a%:. [x(x? + y2 + 22)"?] 4+ % [y(x2 + y2 + 222 + % [z(x2 + y2 + 222

; B
b {1.(_%Z Jonl gy +x.%(12 +y2 4242 . 2:{]

n_
=%+ n a2 (2 + 37 + 2%)? L o3y -2
Thusdiv (r"R)=(n+3) r*

When n=-3,div (R/r¥)=0 i.e., R/r?is solenoidal.

Example 8.21. Show that rR is any irrotational vector for any value of o. but is solenoidal if o+ 3 = 0
where R = xI + yJ + zK and r is the magnitude of R. (V.T.U., 2006 ; Kottayam, 2005)

Solution. Let A = r°R = (x% + y2 + 222 (x + yI + zK) = Ex (x? + y2 + 22)*2 1

I J
curl A =

¥l X

9 9
ox dy
x(x2+y2 +z?)(1f2 y(x2 +y2 +zz)ﬂ12 z(x2+y2+22)&f2
e ZI{—(I +y + 2z )lez l(zy) aj’(x2+y2+zz)l!f2—l‘2z] =0

Hence A is irrotational for any value of o.
But divA=V.(r*R)=(o.+3) r*
which is zero for oo + 3 = 0, i.e., A is solenoidal if ot + 3 = 0.

DEL APPLIED TWICE TO POINT FUNCTIONS

Vfand V x F being vector point functions, we can form their divergence and curl whereas V. F being a
scalar point function, we can have its gradients only. Thus we have the following five formulae :

(1) divgrad f=V%= af Bf 8£
o E}y 0z

(2) curlgradf =V xVf=0

3) diveurlF=V.VxF=0
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(4) curl curl F=grad div F — V?F, ie, Vx(VxF)=V(V.F)-VZF
(5) grad div F = curl curl F + V2F, ie., V(V.F)=V x(VxF) + V?F.
of  yof af]
2£_ - a a9
Pmofs.(l)Vf-V.Vf-V.[ 6x+J3y+KBz
=1(§£) [ﬂ@(i} L PLL AT 9’ 2\f
o) T y\y) Te\a) T Tt B2ByazJ
2 2
Ve= % ;fy + — is called the Laplacian operator and Vf = 0 is called the Laplace’s equation.
I J K p 5
_ F g Qij_iii_ S
(2)Vfo—Vx( +Jay+Kaz == ¥ 3 =21 o aedy =0 (V.T.U., 2007)
oF o o
Jx dy oz
. = (512).[1x°F oF JF
3) Vv VXF_(ZIE) (1 ax+J>< F L Kx :
2 2 2
=ZI-[I><2£—F+JX£+K aFJ

*F a’F BZFJ ( PF . 2° ]_
(le 0 +Ixd- Bxay+]XK o | K BxBy_J az) =

II

4) Vx(VxF)= (u%) [ngwx%u( %f)

_ O°F O°F azF]
= ¥ x [Ix—+Jxaray+K P

Al gy
A5

: F I°F I*F
]‘“{ axaz}K]‘zaf

2 2 2
aax;“y} +{(1-%] -a- K)HH

3x3:V
JF oF BF] °F
= e uE 2 2 =V(V:-F)-V2F. Madras, 2006
Zlax(laxJayKaz Eax ( ) (Madras, )
(8) is just another way of writing (4) above.
Obw. Interpretation of V as a vector according to rules of vector products leads to correct results so far so the repeated

application of V is concerned.

eg, 1. V.Vf=V% (-« V.V=V2
2. VxVf=0 (- VxY¥Y=0
3. V.VxF=0 (- [VVFI=0)

4. V x(V xF)=V(V.F)-V?F by expanding it as a vector triple product.

[EE] DEL APPLIED TO PRODUCTS OF POINT FUNCTIONS

To prove that

(1) grad (fg) = f(grad g) + g(grad f) i.e. Vifg)=fVeg +gVf.

(2) div(fG)=(grad ) . G+f(divG) ie V{FG)=VF.G+fV.G

(3) curl (fG)=(grad H x G+ fleurl G) ie. Vx(fG)=VfxG+fVxG
(4) grad F.GQ)=F.V)G+(G.VIF+Fxcurl G+ G x curl F

L.e., VF.G)=F.V)G+(G.V)F+Fx(VxG)+Gx(VxF)
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B)div(FxG=G.(curl F)-F . (curl G) ie, V. Fx@F)=G.(VxF)-F.(VxG)
®6) curl Fx G =Fdiv ) -GUdivF)+(G.V)F-(F.V)G
e, Vx(Fx@)=FV.G-G(V.F)+ G.VYF-F.V)G

st B e % o
Proofs (1) V(fg]—ZI.a(fg)~EI[fax+g j

o
3 J
=fI 5 +g 30 af =fVe +gVf

_ ) - o 9G
) V.(fG)-EI.E(fG)—EI.(axG+fax]

=(Zla—f) .G+f(zl,@) =Vf.G+fV.G (V.T.U., 2011)
ox { ox
= 9 . G o )
(3) V x (fG) = ZI x ax(fG)-EIx(fax+axG
=f3Ix f%_Gq.):I.g.f_ch =fVxG+Vfx G (V.T.U. 2008)
i
? oF 3G) _ o F 3G .
4) V(F.G) =3I E(F.G)=ZI(E-G+F-g)‘ﬂax-G+ﬂ(F'ax) )
F) ( OF) ¢ oF
Nowa(IXEJ_(G_E)I ©.p&
oF) 1 JoF oF
or {G'EJI Gx(lxax] +(G.D o
z(G.%)[=Gxﬂxg+z(G.l)%=Gx(VxF)+(G.V)F i
. _ (o oG
nterchanging F and G, ELF.E I=Fx(Vx®+F.V)G ...(ii1)

Substituting in (f) from (ii) and (iii), we get
VF.G)=F.V)G+(G.VIF+Fx(VxQG)+Gx(VxF)

D Y _gy F g (2

(5) V.(FxG)_EI.g(FxG)—El[axxG+Fxax)_}:l.axxG EI.(axxF)
» JF _ G - Vi
-E(Ixax).G E(Ixax].F [+ A.BxC)=(AxB).Cl
—G.(VxF)_F.(VxG)
_ d - oF 9G

(6 Vx(FxG)—}:lxg(FKG)—ﬂx[axxG-l—Fxax)
=z[(1 G)@-[I @)G]n:[(l E)F-(I.F)a—c']

T o o

=260 -6z & par 5. 28
B G OF oF G
_F(ZI.E:—)—GE(I.g) +2@G.D 5 -zF.p %

=F(V.G) -GIV.F)+(G.VYF-(F.V)G
Rule to reproduce the above formulae easily :
(i) Treating each of the fuctors as constants separately, expresss the results of V-operation as a sum of the
two terms.

(ii) Transform each of the two terms, noting that V elways appears before a function and keeping in mind whether the
result of operation is a scalar or a vector. To carry out the simplification, we may sometimes, employ the properties of triple
products.

(iii) Restore the change of treating the functions as constants.
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Let us illustrate the application of this rule to (2), (4) and (6) above :

(2) V.(&=V.{[{,G+fG)=fV.G+G,.Vf=fV.G+G.Vf

) VIF.G)=V(F,.G)+V(F.G)
=[F, x(VxG)+(F, . V)G] + [G, x(VxF)+(G, . V)F]
=Fx(VxG)+F.V)IG+Gx(VxF)+(G.V)F

B) VxFxG=VxF, x@+VxFxG)=[V.GF,~(F,..V)Gl +(G,.V)F-V.FG]
=FV.GQ)-(F.V)G+(G.VIF-G(V.F).

Example 8.22. Show that V() = n(n + 1)r" -2 (8.V.T.U, 2006 ; JN.T.U., 2006 ; UP.T.U, 2005)
Solution. V=V . (VrY)

=V. (nrn—l %) =nV.@" ?R)=nl(Vr"-2.R+r-2(V.R) [By § 8.9 (2)]
= [(n 2)rn=3 1} R4+r2 (3)] [Using Ex. 8.18 ()]
=nln-2""4 (D +3r"Y=nn+1)r-2 [+ R.R=r?
2, n 2¢ n 2¢ n
Otherwise : V()= 20 9, () By § 88 (1] ..())
x| | oz
") i I el B e % = R
Now T-nr" a_x—nr" ~=nrttx [- r2=x2 492427
2. n
—aa(:z - [r“fz +(n—-2r"3 gx—rxil = n[r"“2 +(n— 2)r"'3% x]
=n [r"_z +(n-2r"* x2:| ..(id)
2¢ N
Similasly, a&(); don[r" 2 4 -2r" 7] . Gid)
2, N
aa; )on [r"_2 +(n—-2r"* 22] Aiv)

Adding (i), (ii) and (iv), (i) gives
VAr) =nl3r* 2+ (n-2r" 4 (% +y% +22)]
=n[3r2+(m-2)""*r? =nn+1)r"2
In particular VA(1/r) = 0. (U.P.T.U., 2003 ; P.T.U., 2003)

Elhmple_ 8.23. If uF = Vv, where u, v are scalar fields and F is a vector ﬁdd, s};ow' that F. éu]t;'l-F =0. i

Solution. Since F= % Vv . curlF=Vx (—% VU)
or curlF:V%x Vu + %Vx(Vu) [By § 8.9 (3)]
:V%XVU [ VxVv=0

Hence F.curl F= 1vy . (V.l_ X V;,-) = 0, for it is a scalar triple product in which two factors are equal.
u u

Example 8.24. If r and R have their usual meanings and A is a constant vector, prove that

v x-['A:. ::R) = -2;;"' A “‘fn ;P R. : (Mumbai, 2009 ; Kurukshetra, 2006 ; J.N.T.U., 2005)
Solution. Vx [r*(AxR)l=r"[Vx(AxR)] + Vr'* x (A x R)] [By § 8.9 (3)]

=r"(V.R)A-(A.V)R] + (-nr ®*VR/r) x (Ax R)
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=" (3A-A)—nr "+ PR x (Ax R) [~ V.R=3,(A.V)R=Al
= 2Ar" —pr @+ 2 [(R.R)A—(A.R)R]
=2A_r 25 A RRI=27, AR g

r r'H rt n+2

Example 8.25. If r is the distance of a point (%, y, 2) from the origin, prove that curl (K x gmd%) +grad

(K E gmd%) = 0, where K is the unit vector in the direction OZ. (U.P.T.U., 2001)
Solution. grad = 1 [Ii+Ji+K ] (x2 + y2 + 2212 [ r= (x2+y2+z2)]
r 0: oy oz

= ~2~(:vc2+_-y2+22)‘3"'2 (221 + 2yd + 2zK)
— (% + y2 + 22732 (I + yd + zK)

curl (K X gmd}l—J =V x [- (2% + % + 22732 (xJ — y1)]

I J K

. 9 9 9
B ox &y dz
ylx? + 92+ 257 i+ 2+ 222 0

] x d y
=12 L S S
az{(x2 o +22)3,,2}+J 5 {(xz i +22)332}

Jd x d 3’
-K i 3| P,
{ [(x +y +2° )3f2]+3y[(x +y + 22 )3’2]}

_ —3xzl —3yzd + (x2 + y2 — 222)K @
- (x2 +y2 +22)5.r2

3/2

(I + yJ + zK)
(.ac2 -+ y2 + 22]

grad (K.grad%)=V{—K.

(12,92 i) —2
"(Iax+Jay+Kaz {(x2+y2+22)3!2}

3sz 3yzd z (3% -2’ -y -2)K

2\5/2 (x2 +y2 +z2)5!2 (x'z +y2 +z2)512

(x +y +2°)

_ 3xzI + 3yzd — (% + _'y2 - 22K @ii)
= = y2 o I (17

Adding (i) and (ii), we get
1 1) _
curl (K x grad ;) + grad [K .grad ;) =0.

Example 8.26. In electromagnetic theory, we have V. D=p,V . H=0,VxD =~ l%i .

VxH-= —(pV+@J Prove that

1 9°D e 4 OH _ 1
(t)VZ’D—;uE;u =Vp + 28! (pV) (u)V-H—C -————»——chpV



DOWNLOADED FROM www.CivilEnggForAll.com

VEecToR CALCULUS AND ITS APPLICATIONS 333

2
Solution. (i) We have CL2 {5; D. %(pv)} =t [B_D i pV)

£ AN
~1d = Lo AR » _1( @J
= om O *RRoer [ FEH=g Y g
) b)) [ v,q%-%%]
=—[V(V.D)-V2D] [Using § 8.8 (4)]
=-Vp+ VD
1D _g,, 19

Hence V2D T Vp + o (pV)

i _yey_ LOH _ L o3

(i1) L.H.S. = V2H Z o2 VZH ]
_vr . 19 o __10H
=vH+ 13 wxp) [ vxp=-1&
vty 1(7x2D) - att=1p+20)
—V"'H+c ant [ VxH-c pV+at
=VZH + V x (VXH+%pV) =V2H+Vx(VxH)—%Vx(pV)
=V?H + V(V.H) - V2H - %Vx(PV), [Using § 8.9 (4)]
=V(V.H)—%Vx(pV) [+ V.H=0]
=—%prV:R.H.S.

1. Ewvaluate div F fmd curl F at the point (1, 2, 3) given (i) F = 2?21 + xy%d + xy2°K. (B.P.T 1., 2005)
(ii) F = 3x%1 + Bay2J + baxyz°K. (S.V.T.U., 2009)
(iﬁ}F:grad[xTy+y3z+z%r—xzyzz’Z] (V.T.U., 2007)

2. IfV=(xI+yJ +2K1¢'1f(x2+ 3% +2°), show that V.V = 2/ /(x® + y° + 2%) and Vx V = 0. (Osmania, 2002)

8. fF=(x+y+1)I+J—(x+y)K, show that F. curl F = 0. (V.T.U., 2000 S)

4. Find the value of @ if the vector (ax? + y2) I + (xy%—x2%) J + (2xyz — 2x%?) K has zero divergence. Find the curl of the

above vector which has zero divergence.
5. Show that each of following vectors are solenoidal :

(@) (~22 +32) I + (dy —220) J + (2xz — 42) K (Delhi, 2002)
(ii) 3y122 + 4x322J + 3x%’K (zzi) Vi x V.
6. If A and B are irrotational, prove that A x B is solenoidal. (Madras, 2003 ; V.T.U., 2001)
7. Hu=x2+y%4+22 and V =21 + yJ + 2K, show that div (uV) = 5u.
8. IfR =21 + yJ + zK and r # 0, show that (i) VA1/r?) = - 2R/r* ; V . (R/r?) = 1/r?
(ii) div (" R) = (n + 3)r" ; curl (™" R) = 0 | (P.T.U., 2006 ; Kottayam, 2005)
(i) gra (div B) =— Al (V.L.U., 2010 S)
9. If'V, and V,, be the vectors joining the fixed points (x,, y,, ;) and (x,, y,, z,) respectively to a variable point (x, y, 2),
prove tbat
(@) div (V, x V) =0, (it) grad (V, . V) =V, + V,,

i) eurl (V; x V) = 2(V, - V,)
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E i)

INTEGRATION OF VECTORS

If two vector functions F(¢) and G(¢) be such that
dG(‘) =F(),
then G(¢) is called an mtegral of F(¢) with respect to the scalar variable ¢t and we write

[ Fwat = Ga.
If C be an arbitrary constant vector, we have

F() = @*— [G(¢) + C] then IF(t) dt =Git)+ C
This is called the indefinite integml of F(t) and its definite integral is
f F(t)dt =|G(#) + C]z = G(b) - Gla).

2 2
Solution. di(R @) dR dR+Rde=Rde

*dt) T ae “dt dt? Frea
d’R)
J (RxLR]ar-rx 2R
= (3121 + tJ - °K) x (6¢1 + J — 3t2K)
1 J K
=[322 t —f |=—213T+ 34T - 3K
6t 1 -3t

Thus ]:[R ‘f;‘]dz | -2’1+ 3649 - 3:2K|0
=-21+3J-3K
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(1) LINE INTEGRAL

Consider a continuous vector function F(R) which is defined at each point of curve C in
space. Divide C into n parts at the points A = Py, P,, ..., P, _,, P, ..., P, = B (Fig. 8.8). Let their
position vectors be R, R, ..., R; _,, R;, ..., R, . Let U,, be the position vector of any point on the arc
P, .P.

Now consider the sum S = F(U,).8R,, wheredR, =R, -R,_,.

n
i=0
The limit of this sum as n — < in such ¢ way that | oR; | — 0, provided it exists, is called the
tangential line integral of F(R) along C and is symbolically written as

J'C F(R).dR or L F.%dt.

When the path of integration is a closed curve, this fact is denoted by using § in place of I "

If FR) =If (x,y, 2) + J(x, y, 2) + Kylx, y, 2)
and dR = Idx + Jdy + Kdz
then _[C F(R). dR = IC (Fdx + ¢dy + ydz).

Two other types of line integrals are L F xdR and L fdR which are both vectors.

(2) Circulation. If F represents the velocity of a fluid particle then the line integral J-C F.dR is called the

circulation of F around the curve. When the circulation of F around every closed curve in a region E vanishes, F is said to
be irrotational in E.

(3) Work. If F represents the force acting on a particle moving along an arc AB then the work done during the small
displacement R = F . 6R.

the total work done by F during the displacement from A to B is given by the line integral E F.dR.

Solution. Since the particle moves in the xy-plane (z = 0), we take R = xI + yJ. Then L F.dR | where
C is the parabola y = 2>
= IC Bxyl — y23) . (dxI + dyd) = j'c (Bxydx — y*dy) Q)
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Substituting y = 2x2, where x goes from 0 to 1, () becomes

[ [x2) dx - @2Pd@dl = [ 6~ 1609 de =7

Otherwise, let x = t in y = 2x2. Then the parametric equation of C are x = ¢, y = 2t2. The points (0, 0) and
(1, 2) correspond to t = 0 and ¢ = 1 respectively. Then (i) becomes

L . . [3t(2¢2) dt — (2622 d(2t?)] = _Ll 6£° —166%) dt =— /6.

Example 8.29. A vector ﬁ'eld is given by F = sin yI + x(1 + cos y) J. Evaluate the line integral over a
circular path given by x% +y* = a% z = 0. (Rohtak, 2006 8 ; P.T.U., 2003)

Solution. As the particle moves in xy-plane (z = 0), let R = xI + yJ so that dR = dx1I + dyd. Also the circular
pathisx =a cos t,y = a sin £, 2 = 0 where ¢ varies from 0 to 2n.

§ F.dR={ [sinyl+x(1+cosy)d]. (dal +dyd)

c
=£ [sinydx+x(1+cosy)dy]=§c [(sin y dx + x cos y dy) + xdy]
=§ [dx siny) + x dy] = f‘ [d{a cos t sin (a sin #)} + ¢ cos® t dt]

sin 2¢ [*
2

2

t+ =Tma“.

2 2
= |acostsin(asint) |§“+ﬂ?fTt (1+c052t)dt=a?

0

Example 8.30. Find the work done in moving a particle in the force field F = 3x1 + (2xz—y) J + zK, along
(a) the straight line from (0, 0, 0) to (2, 1, 3). (S.V.T.U, 2007 ; J.N.T.U., 2002)
(b) the curve defined by x° = 4y, 3x° = 8z from x = O to x = 2. (Delhi, 2002)

Solution. jc F.dR= IC (3221 + (2xz — y)J + zK]. (dxI + dyd + dzK)

= _L Bx2dx + (2xz — y)dy + zdz] ()

(a) The equations of the straight line from (0, 0, 0) to (2, 1, 3) are x/2 = y/1 = z/3 = t (say)
x =2t,y =1,z = 3t are its parametric equations. The points (0, 0, 0) and (2, 1, 3) correspond to ¢ = 0 and
t = 1, respectively

work done = L F.dR = E [3(2t)” 2dt + {(4£)(3t) — t)dt + (3t) 3dt]

1
= _L (3612 + 8t) dt = 16.
(b) Let x =t in x2 = 4y, 3x° = 8z. Then the parametric equations of C are x =t,y = t%/4, z = 3t%/8 and t varies

from O to 2.
Gk dotie = J' F.dR = I 32 gr 4l 3|l g[ £ 3* 3 (8t
W = 8| % 4 8
. 51 £
= .[o {3‘ B Ted ]dt

1. Evaluate the line integral L ® + o)dx + (22 + yz)dyl where C is the square formed by the linesy =+ landx=+*1.
(Delhi, 2002)

=16.
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2. IfF = (5xy — 6221 + (2 — 4x)J, evaluate J'c F.dR along the curve C in the xy-plane, y = x? from the point (1, 1) to
(2, 8). .N.T.U., 2006)

3. Compute the line integral Ic (yzd.x - xzdy) about the triangle whose vertices are (1, 0), (0, 1) and (- 1, 0).

4. TEA = (322 + 69)1 - 14y2J + 20x27K, evaluate I A.dR from (0,0, 0) to (1, 1, 1) along the path x = t, y =¢% 2 = 15,
(V.T.U., 2001)
5. Evaluate J-C (xy + 2%) ds where C is the arc of the helix x = cos ¢, y = sin £, z = ¢ which joins the pomts (1,0, 0) and

(-1, 0, m).
6. Find the total work done by the force F = 3xyl — yJ + 224K in moving a particle around the circle »* + y* = 4.
. (V.T.U, 2010)
7. Find the total work done in moving a particle in a force field given by F = 3xyI — 5zJ + 10xK along the curve

x=2+1,y=2t%2, 2= fromt=1tot=2. (Bhopal, 2008)
8. Using the line integral, compute the work done by the force F = (2y + 3)I + x2J + (yz —x)K when it moves a pnrticle-
from the point (0, 0, 0) to the point (2, 1, 1) along the curve x = 2¢%, y = ¢, z = 3, (Madras, 2000)

9. Evaluate L F.dR, where F = [22, x, —y] and C is R = [cos ¢, sin ¢, 2¢] from (1, 0, 0) to (1, 0, 4%). (B.P.T.U., 2006)

10. IfF = 2yl — zJ + zK, evaluate IC FxdR along the curvex =cost,y=sint,z=2cost from¢=0tot = /2.

IEE¥A (1) SURFACES

As seen in § 5.8, a surface S may be represented by F(x, y, z) = 0.
The paremetric representation of S is of the form R (i, v) = x (u, v) I + y(u, v) J + 2(u, v)K and the
continuous functions & = §(t) and v = y(¢) of a real parameter f represent a curve C on this surface S.
For example, the parametric representation of the circular cylinder x? + ¥2=a?,— 1 <2 <1, (radius ¢ and height 2), is
R(u, v) =a cos ul + a sin ud + vK
where the parameters u and v vary in the rectangle 0 <u < 2nand — 1 <v <1. Also u =t, v = bt represent a circular helix (Fig.
8.3) on this circular cylinder. The equation of the circular helix is R = a cos I + a sin tJ + btK.

e e dR_JR du JR dv

Differentiating R = R (i, v), w.r.t. {, we get 3t - ou dr o0 dt

The vectors oR/du and oR/dv are tangential to S at P and determine the tangent plane of S at
P. N = oR/0u x dR/dv (2 0) gives a normal vector N of S at P.

Def. If S has a unique normal at each of its points whose direction depends continuously on the points of S,
then the surface S is called a smooth surface. If S is not smooth but can be divided into finitely many smooth
portions, then it is called a piecewise smooth surface.

For instance, the surface of a sphere is smooth while the surface of a cube is piecewise smooth.

Def. A surface S is said to be orientable or two sided if the positive normal direction at any point P of S
can be continued in a unique and continuous way to the entire surface. If the positive direction of the normal is
reversed as we move around a curve on S passing through P, then the surface is non-orientable (i.e., one-

sided). A B
An example of a non-orientable surface is the Mobius strip*. If we take a long A

rectangular strip of paper and giving a half-twist join the shorter sides so that the two C

points A and the two points B in Fig. 8.9 coincide, then the surface generated is non- B A

orientable. Such a surface is a model of a Mobius strip. Fig. 8.9

(2) Surface integral. Consider a continuous function F(R) and a surface S. Divide S into a finite number
of sub-surfaces. Let the surface element surrounding any point P(R) be 8S which can be regarded as a vector ; its
magnitude being the area and its direction that of the outward normal to the element.

*Named after a German mathematician August Ferdinand Mébius (1790-1868) who was a student of Gauss and professor of
astronomy at Leipzig. His important contributions are in projective geometry, theory of surfaces and mechanics.
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Consider the sum ZF(R) . 88, where the summation extends over all the sub-surfaces. The limit of this sum
as the number of sub-surfaces tends to infinity and the area of each sub-surface tends to zero, is called the normal
surface integral of F(R) over S and is denoted by

Is F.dS or _[S F . Nds where N is a unit outward normal at P to S.

Other types of surface integrals are Ig F xdS and L f dS which are both vectors.

Notation : Only one integrals sign is used when there is one differential (say dR or dS) and two (or three)
signs when there are two (or three) differentials.
(3) Flux across a surface. If F represent the velocity of a fluid particle then the total outward flux of F

across a closed surface S is the surface integral -L F.ds.

When the flux of F across every closed surface S in a region E vanishes, F is said to be a solenoidal vector
point function in E.

It may be noted that F could equally well be taken as any other physical quantity e.g., gravitational force,
electric force and magnetic force.

" MpleB.l!l.Eudluate LF Nds wheré F = 2a - ﬁq+mmsmmmmofw
r@wnmtheﬁrstocmntboundedbythecyhnderyg+z‘9 9 and the planes x =0, x = 2,y= Otmdz 03

Solution. The given closed surface S is piecewise smooth and is
comprised of S, — the rectangular face OAEB in xy-plane ; S,—the rectangular
face OADC in xz-plane ; S,—the circular quadrant ABC in yz-plane, S,~the
circular quadrant AED and S_-the curved surface BCDE of the cylinder in the
first octant (Fig. 8.10).

L F.Nds = j's F.Nds+-|lsz F.Nds+jSS F.Nds

+[ F.Nds+ [ F.Nds @)
k J
Now L F.Nds=j 22y - y2J + 4x2°K) . (- K) ds
1 Sl
2
:—4,[31"2 ds=0 [ 2=0in thexy-plane]
Similarly, LF_Nds:U and [ F.Nds =0
2 SS

_[5 F.Nds:L @xyl - y2 J + 4x22 K). 1 ds
4 4

e N

To find N in S, we note that V(32 + 22) = 2yJ + 2:K
2yd + 22K yd + 2K

N= [ y?2+2%2=9]
\/(4y2 + 42%) 3
and IN.K | =2/3 so that ds = dxdy/z/3)
23 (- y° +4x2®) 2o -y s
Thus .[;5 F.Nds= J'o J'o =L 2T dydal(z/9) = L jo —+ 4x” | dydx

Put y=3sin6,2=3cos ©
dy=3cos 6d6

2 12 | — in3 2
> j r —278n 0 | wii0008” 0| 8o e dodi = _[ [+27x3+108xx3]dx =108
3cos O o 3 3

Hence (i) gives LF.Nds —0+0+0+72+ 108 = 180.
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PROBLEMS 8.7

1. If velocity vector is F = yI + 2J + x2K m/sec., show that the flux of water through the parabolic cylinder y = x2,
0<x<3,0<z<2is 69 m¥sec.

2. Evaluate L F.dS where F =l + (22 - 2x) J — 2yK and S is the triangular surface with vertices (2, 0, 0), (0, 2, 0)
and (0, 0, 4). ! |

3. Evaluate L F.N ds where F = 6z — 4J + yK and S is the portion of the plane 2x + 3y + 6z = 12 intheﬁ:stqctant.._

4. IfF = 2y1 - 3J + x> K and S is the surface of the parabolic cylinder y2 = 8« in the ﬁrstoctantbmmdédbytimphnes
y =4 and z = 6, show that J’S F.Nds =132.

GREEN’S THEOREM IN THE PLANE*

If o(x, ), y(x, ), 9, and vy, be continuous in a region E of the xy-plane  y

bounded by a closed curve C, then a
'
[, @dx+yan= [ [Bx ay]dxdy (1) - =

Consider the region E bounded by a single closed curve C which is cut " "
by any line parallel to the axes at the most in two points. 1

Let E be bounded by x = a, y = £ (x), x = b and y = n(x), wheren 2&,s0 %

Fig. 8.11

that C is divided into curves C, and C, (Fig. 8.11).

ff, Sasdy= [ ax| [ Say]- [ axlo]
- L [o(x, ) — o(x, E)] dx = — Iq o, ) dx — IC; ox, ) dx

. j'c o(x, y) dx .A2)
Similarly, it can be shown that

I %dxdy = [ v nay A3)

On subtracting (2) from (3), we get (1).

This result can be extended to regions which may be divided into a finite number of sub-regions such that
the boundary of each is cut at the most in two points by any line parallel to either axis. Applying (1) to each of
these sub-regions and adding the results, the surface integrals combine into an integral over the whole region ;
the line integrals over the common boundaries cancel (for each is covered twice but in opposite directions),
whereas the remaining line integrals combine into the line integral over the external curve C.

Obs. This theorem converts a line integral around a closed curve into a double integral and is a special case of
Stoke’s theorem. (See Cor. p. 342) ;

Example 8.32. Verify Green’s theorem for Ic [(xy + %) dx + x°dy], where C is bounded by y=xandy=x%
(V.T.U.,, 2011 ; SV.T.U., 2009 ; Rohtak, 2003)

Solution. Here O =xy +y% and y = x2

ey, o,

*Named after the English mathematician George Green (1793-1841) who taught at Cambridge and is known for his work on
potential theory in connection with waves, vibrations, elasticity, electricity and magnetism.
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Along C,, y = x* and x varies from 0 to 1 (Fig. 8.12) Y
1
[ = [ e + o*Pnde+ x%d6 y=x_ 0,1
= [ aud pids g 19 G, iy
.[] (Bx" +x )dx—20 c,
Along C,, y = x and x varies from 1 to 0.
[ =[ twsePras = [ sdac=-1. 0 X
2 Fig. 8.12
219 ,__ 1 :
Thus [ (Gde+ydp=g5 -1=- & )
2 sy [[ [ 261~ L4
o |[. [ dady = [ [ax(x )- 5, I+ )]dxdy
» = 27" = b _ 86 1 ”
,L Ez(2xkx—2y)dydx—-[’ [xy—y dex—.[‘(x —x)dx:—% -.(if)

Hence, Green theorem is verified from the equality of (i) and (7).

Example 8.33. If C is a simple closed curve in the xy-plane not enclosing the origin, show that
I-=xd

L F.dR =0, where F= 255 _ (P.T.U., 2005)
x4y \
Solution. [ F. dR = L - 'x': (dx1 + dyd) [ R=xl+yd]
+y
dx — xd o
= Ly y L(¢dx+\ydy) where ¢ = Y LY = 2x2
2+ y o+ y2 xy
= .” [a“’ Btb) [By Green’s theorem]

H (x® Ey )::(2x)ﬁ(x +2y ) 2y2(2y) _—
(x* +y°) (x® +¥°)

2 .2 2 _,2
H e MRS dxdy = 0.
(% +y2)? (a2 + %)

Example 8.34. Using Green’s theorem, evaluate L [(y = sin x) dx + cos x dy] where C is the plane

triangle enclosed by the lines y =0, x = W2 and y = %x. J.N.T.U, 2005 ; Anna, 2003)

Solution. Here ¢ =y — sin x and y = cos x.

By Green’s theorem J.c [(y — sin x) dx + cos x dy]

- [, (G- 5 asas

=n/2 py=2xl
= r " r ) (-sinx—-1)dydx = -[;l (sm:m:+1)|y|2’“th
x y

=0 =0

——2E x(smx+l)dx——%{|x(—cosx+x)|”2 E 1.(—cosx+a:)dx}
/2

_ 2 n’ z _ T 2 ) _ (. 2
“'::[4 }‘ g ral Y g)" (4+n)

sin x + =
2

0
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Solution. By Green’s theorem
L [(2x? - y?)dx + (x2 + y2)dy]

= 9 2 d o2 .2
= I-[‘ll}a;(x +y2)—5(2x = )]dxdy

=92 [L (x +y) dxdy, where A is the region of Fig. 8.14

a pn .
=2I I r (cos 0 + sin 6) - rd0 dr
0 Jo
[Changing to polar coordinates (r, 8), r varies from 0 to ¢ and @ varies from 0 to 7]

3 3
g e 1R : _9.% qip2e
2Lr drjo (cos O+ sin 0)do = 2- %A+ D="—.

] P o W2
PROBLEMS 8.8

STOKE’S THEOREM* (Relation between line and surface integrals)

If S be an open surface bounded by a closed curve C and F = f,I + f,d + f,K be any continuously
differentiable vector point function, then

[ FaR = [ curtF-Nas
c s
where N = cos ol + cos BJ + cos YK is a unit external normal at any point of S.

* Named after an Irish mathematician Sir George Gabriel Stokes (1819-1903) who became professor in Cambridge. His
important contributions are to infinite series, geodesy and theory of viscous fluids.
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Writing dR = dxI + dyJ + dzK, it may be reduced to the form
- s _df {3f1 s J (31"2 of J
Ic (fidx + fudy + fydz) = L[[ay az}cosa+ 3 cos P+ x 3 cos Y |ds ..(1)
Let us first prove that
§ frdx = L % cos B — % cos ¥ |ds .-(2)
" Ay

Let z = g(x, y) be the equation of the surface S whose
projection on the xy-plane is the region E. Then the projection of
C on the xy-plane is the curve C’ enclosing region E.

IC filx, ¥, 2)dx = _L filx, y, g(x, y)ldx

i _”E 'i filx, y, g)dxdy, by Green’s theorem

IL {g’; +%’2 ay]d.xd )

The direction cosines of the normal to the surface z = @ 4
g(x, ¥) are given by i
WO 0D Y e T @) % \
—oglx -ogly 1 P \\ \\\
Moreover
dxdy = projection of ds on the xy-plane (e e
=ds cos v, L.e., ds = dxdylcos y. ERE
right side of (2)
ofy cos P af] afl cos}  og
2 dxd dxd —=—=by(4
H {Bz cos Y e -U dy az ay ? cos Y & 3k

= Left side of (2), by (3).
Thus we have proved (2). Similarly, we can prove the other corresponding relations for f, and f;. Adding
these three results, we get (1).

Cor. Green’s theorem in a plane as a special case of Stokes theorem. Let F = ¢I + yJ be a vector function
which is continuously differentiable in a region S of the xy-plane bounded by a closed curve C. Then

IF.dR:j (¢I+wJ)-(de+dyJ)=j (o +ydy)
& C C

I J K
and curl F-N=|9/0x 9/dy 0 -K=%-%
¢ v O

Hence Stoke’s theorem takes the form IC (bdx +y dy)= j [ﬂ - %J dxdy which is Green’s theorem in a plane.

Example 8.36. Verify Stoke’s theorem for F = (x? + y*)I - 2xyd taken around the rectangle bounded by the
linesx=+a,y=0,y=b. (Bhopal, 2008 S ; V.T.U., 2007 ; J.N.T.U., 2003 ; U.P.T.U., 2003)

Solution. Let ABCD be the given rectangle as shown in Fig. 8.16.
LB F-dR-_-J' F-dR+J' F-dR+_[ F-dR+j' F-dR
cD AR BC cp DA

and F - dR = [(x? + y?)I — 2xyd] - (Idx + Jdy) = (x? + y2)dx — 2xydy
Along AB, x = a (i.e., dx = 0) and y varies from 0 to b.

b b2
F-dR = — = s ISR -8
l 2aJ.nydy 2a ab
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Similarly, LCF-dR= I- (x2+b2)dx=—%—2ab2-

. — = — 2
JCDFdR 2aI:ydy ab

3
and F-dR = [° 2qx=20". \
LA '[ﬂ x dx 3 A = .I
Thus I F-dR =-4ab? (D) Fig. 8.16
ABCD
Also since curl F = — 4Ky

_LcurlF-Nds = I: j_: —4Ky-dedy=—4J: fa v dxdy

2 b
y? = _4qb? ...(tL)

b
=-4 L |x[‘_'aydy=—8a
0

Hence Stoke’s theorem is verified from the equality of (i) and (i).

Solution. The projection of the upper half of given sphere on the xy-plane (z = 0) is the circle c[x? + y? = 1]
(Fig. 8.17).

i F.dll:iT [(2x—y)dx—yz2dy—y22dz]=§c (2¢ — y)dx [z = 0 in the xy-plane]
= 92:0(20083—sin9)(_3in9d9) [Putting x = cos 6, y = sin 0]
= (f" (—sin26+siu20)d9=xo+4fg!2 sin?6 do = . D)
| J K
Now curl F = -a% % %

-y -y -yl

=2z +2y2) I+ 0J+ K=K

dxdy
. Jeurl F.Nds= [ K.Nds= [ K. TR

where A is the projection of S on xy-plane and ds = dxdy/N . K
= dedy = area of circle C = ..(if)

Hence, the Stokes theorem is verified from the equabty of () and (iz).

Solution. Here F= (x+y)I+(2x z)J+(y+z)K

1 J K
d ad )
curl F = ™ 5 % =2I+K

x+y 2x-z y+z
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Also equation of the plane through A, B, C (Fig. 8.18) is

ol (EC 6
st3te = or3x+2y+z=

Vector N normal to this plane is
V@Bx+2y+z-6)=31+2J+K

o 3l+2J +K
S Jovd+) v

Hence IC [(x +y)dx + (2x —2)dy + (y + 2)dz] = IC F.dR

B3I+ 2J + K)

. 2.
= IS curl F. Nds where S is the triangle ABC Fig. 8.18

3I+2J+K 1
= 2A+K).|——|ds = —
[S( + )[ w71 ] J1_4(6+1)Lds

7 7
= —— (Area of AABC)= =21,

\ﬂ( eao = .3J14
:r ? Emmp]am IfF =3yl - sz+yz’-'Kandstthesurfac&ofthe,pmboIozd22 xg-i-yzboundeﬂby’
z=2 evaluaﬁe _[L (VxF). dS using Stoke’s theorem. .

Solution. By Stokes theorem, I = IL (VxF).dS= |jc F.dR
where S is the surface 2z = x? + y2 bounded by z = 2.

I=§c F.dR=§C (8yI — xzJ + y2°K) . (dxl + dydJ + dzK)

- S=x?+y%=4,2=2
=§C (3ydx — xzdy + yz2dz) - Putx=2cos6,y=2sin0
C=x>+y>=4,0=0to2n

_ J-Ozn [6 sin O (— 2 cos 8 dB) — 4 cos 0 (2 cos 6 dB) + 8 sin 6 (0)]

2 .
=—4 _[On (12 sinZ B + 8 cos? 0) dO

1n b9
R 0|l % s L ;
4[ 22 +8. 2 2) 207

Example 8.40. Apply Stohe’s theorem to evaluate _L (vx + zdy + xdz) whem Cis the curve of
“intersection of 22 +y’+2’°=d’andx +z=a. ' (Bhopal 2008)

Solution. The curve C is evidently a circle lying in the plane x + z = a, and
having A(a, 0, 0), B(0, 0, a) as the extremities of the diameter (Fig. 8.19).

jc (ydx+zdy +xdz) = jc (I +2zd + xK) . dR

= _[g curl (yI + zd + xK) . Nds

1
where S is the circle on AB as diameter and N = %I + TK

= [ ~A+I+K). (1 —f J

T 2 Fig. 8.19

a

2 2
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Solution. Cut open the surface S by any plane and let S|, S, denote its upper and lower portions. Let C be
the common curve bounding both these portions.

[conF.as= [ contF.as+ [ conF.as= [ ¥.ar- [ F.ar=0,

on applying Stoke’s theorem. The second integral is negative because it is traversed in a direction opposite to
that of the first.

VOLUME INTEGRAL

Consider a continuous vector function F(R) and surface S enclosing the region E. Divide E into finite
number of sub-regions E,, E,, ..., E,. Let 8v; be the volume of the sub-region E; enclosing any point whose
position vector is R,.

n
Consider the sum V= ZF(R;‘) dv;
i=1
The limit of this sum as n — o in such a way that dv;, — 0, is called the volume integral of F(R) over E and
is symbolically written as IE Fdu.

IFFR)=f(x,y,2)I + ¢lx, y, 2)J + ylx, y, z)K so that dv = dxdydz, then

dv=1 +dJ vdydz + K dxdydz,

[pev=t [[Lptstrite+3 [[f gantpas+ [{f etea
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GAUSS DIVERGENCE THEOREM* (Relation between surface and volume integrals)

IfF is a continuously differentiable vector function in the region
E bounded by the closed surface S, then

LF. Nds = IEdiv F dv VA

where N is the unit external normal vector.
IFFR) = f(x, 5, 2)I + d(x, y, 2)J + ylx, y, 2)K
then it is required to prove that

I (fdydz + ¢dzdx + ydxdy) o
¥
- (L4242 iy et
Firstly consider such a surface S that a line parallel to z-axis 5%

cuts it in two points; say P (x, ¥, z,) and P, (x, y, z,) (z, <z,) (Fig. 8.20).
If S projects into the area A, on the xy-plane, then

1] % dudydz = [[ dxdy [ % dz

= ILZ (x, y, 2,) — W(x, ¥, )] dxdy = HAJ W(x, ¥, z,) dady — HA, W(x, y, z;) dxdy .(2)

Let S;, S, be the lower and upper parts of the surface S corresponding to the points P, and P, respectively
and N be the unit external normal vector at any point of S. As the external normal at any point of S, makes an
acute angle with the positive direction of z-axis and that at any point of S, an obtuse angle, therefore

IL W(x, y, z,) dxdy = IS,; yN.Kds (3)
J'Lz ‘P(x, Y, Zl) dxdy = _-[5'1 lPN . Kds (4)
Using (3) and (4), (2) now becomes
HL%dxdydz=szN.de+Lin.de:LwN.de (5)
Similarly, we have
11, 5 duye = [ N s 6
HI 2 dudydz = | ON. Ids A7)

Addition of (5), (6) and (7) gives

IIIE ( gxf gj: 31" )dxdydz L (f X + ¢J + yK). Nds which is same as (1).

Secondly, consider a general region E. Assume that it can be split up into a finite number of sub-regions
each of which is met by a line parallel to any axis in only two points. Applying (1) to each of these sub-regions and
adding the results, the volume integrals will combine to give the volume integral over the whole region E. Also
the surface integrals over the common boundaries of two sub-regions cancel because each occurs twice and
having corresponding normals in opposite directions whereas the remaining surface integrals combine to give
the surface integral over the entire surface S.

Finally consider a region E bounded by two closed surfaces S,, S, (S, being within S,). Noting that out-
ward normal at points of S, is directed inwards (i.e., away from S,) and introducing an additional surface cutting
S,, S, so that all parts of E are bounded by a single closed surface, the truth of the theorem follows as before.
Thus theorem also holds for regions enclosed by several surfaces.

Hence the theorem is completely established.

*See footnote p. 37.
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Example 8.42. Verify Divergence theorem for F = (x* — y2)I + (¥ — zx)d + (22 — xy)K taken over the

rectangular parallelepiped 0 < x < a, 0<y<b,0<z<c. (Rohtak, 2006 S ; Madras, 2000 S)
Solution. As  divF =215 = )42 (P - 20) +-2- (% — a9)
o Y % C A
=2x+y+2)
: e b pa
j'Rddeu=zj'o j'ﬂ jo(x+y+z)dxdydz & P
f o \ h B
_ e b a I (9]
—2jodzjo dy —+ya+zaJ .
2
—2_[ (—b+—+abz) A C
Fig. 8.21
[a2b ab? CZJ
= —c+—c+ab—
2 2 =
=abcla+b+c) (1)
Also .LF.Nds=LlF.Nds+LF.Nds+...+L6F.Nds
2

where S, in the face OAC'B, S, the face CB’PA’, S, the face OBA’C, S, the face AC’PB’, S, the face OCB’A and S
the face BAP'C’ (Fig. 8.21).

a’b?
4

Now _[SF.Nds:jS F.(—K)ds:—ﬁ j:(o—xy)dxdy=

2b2

ISzF.Nds= ISEF Kds = J';’ I:(cz—xy)dxdyzabcz =

e . b%c* 95 bPe
Similarly, J‘Ss F.Nds==", IS‘ F. Nds = a’bc -,
2.2 2. 2
F.Nds=%% and j F. Nds = ab% - £2
S Se
Thus ISF.Nds =abcla + b +¢) id)

Hence the theorem is verified from the equality of (z) and (ii).

Example 8.43. Evaluate L F.ds where F = 4x1 - 223 + 2K and S is the surface bounding the region
PZ+y?=4z2=0andz=3. (S.V.T.U., 2007 S ; Mumbai, 2006 ; J.N.T.U., 2006)

Solution. By divergence theorem,
Z z=3

ISF.ds=jvdidev ‘W@

- 9 9 0.2y, 9 (.2
- J‘V[ax(4x)+ay( 2y )+az (2 )]du

= J‘j’ ((4 — 4y + 22) dxdydz

j (“2[3(44 92) dedydx
e g TR 242 =4l e s
(41 z=0
> ke X
o I e e |
Fig. 8.22

I j‘“e (12 - 12y + 9) dydx
Jamm
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2
= I_2 |21y—6y2|_J“__ledx
2
=42I_22J(4—x2_}dx=84.[: e et A Ao

2 2 2

W aliL § g +
Solution. The surface of the region V: OABC is piecewise smooth (Fig. 8.23)
and is comprised of four surfaces (i) S, — circular quadrant OBC in the yz-plane,
(i) S, — circular quadrant OCA in the zx-plane,
(i) 8, — circular quadrant OAB in the xy-plane,
and (iv) S—surface ABC of the sphere in the first octant.
Also F =yzI + zad + xyK
By Divergence theorem,

Ldidev= LF.dS+LZF.dS+ LF.dS+LF.dS A1)

L]

0
Ew (zx)+§(xy) =0.

Now divF = %(yz) +
For the surface S,,x =0

(a®-3*) (a® - 3*) at
ISIF.dS=E “‘ (y2l) . (- dydz]) = — _[: |” yedyds ==~

4
Thus (1) becomes 0=~ 3% " ISF.dSwhenoe _[SF.dS = 3a¥/8.

-5) =P e diree cosines of _'" orm 1 to th
Solution. The parametric equations of the sphere arex =a + psin@cos¢, y=b +psin6sing,z=c +
p cos 6 and to cover the whole sphere, r varies from 0 to p, 6 varies from 0 to & and ¢ from 0 to 2%

IS (Ix? + my2 +nz?)ds= j's (%1 + sz +2°K) . Nds

= J.V div (221 + y2J + 2°K)dv = 2 IV (x+y+2)dv

2n
=2 _[0 j:j: [la + b +¢) + p(sin 6 cos ¢ + sin O sin ¢ + cos 0)] x p? sin 0 drd6d¢

3
8
=2a+b+c) %|—ms9|:. 21t=?n (a+b+ec)pd

—1=0,V ¢ = 2ax] + 2byd + 22K

. Unit vector normal to the ellipsoid = fy = V¢ __ a1 +byd +czK
Vol J(azxz +b%y? + c?2%)

Since F. N = (a%? + b%? + ¢%2)2, - F . (axl+byd +czK)=1

{85

Solution. Taking ¢ = ax? + by? + cz?
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Obviously F=a +yJ +zK [ ax® + by +ec22=1
. By Divergence theorem,

. d J d
IS F.dS= IV div Fdv = le [g(x)+5(y)+§(z)}dp_3 IV dv=3V

=3. o ﬂ [ Vol. of ellipsoid = e
3 J(abc) \}(abc) 3 \f(abc

Example 8.47. If the position uector of any point (x, y, z) within a closed surfacaS be R measuredrﬁnm
an origin O, then show that e ir
Bt O,ifQHesoutsideS- Jh Al N
Hs f ~ |4n, if O lies inside S [ LY

Solution. (a) When O is outside S. Here F = R/r? is continuously differentiable
throughout the volume V enclosed by S. Hence by Divergence theorem, we have

LR Naon [[f a(B)av-o  [raw(5)-0

(b) When O is inside S. Hence F = R/r? has a point of discontinuity at O and as
such Divergence theorem cannot be applied to the region V enclosed by S. To remove
this point of discontinuity, we enclose O by a small sphere S’ of radius p. Fig. 8.24

Now F is continuously differentiable throughout the region V’ enclosed between S and S’. Therefore
applying Divergence theorem to region V’, we get

[[ 5 [ B war [ aw((B) av=c - ()
I[ %.Nds=-J'L %.Nds' D)

Now the outward normal N on the sphere S’ is directed towards the centre O. Therefore N = — R/p on §*

(Fig. 8.24).
= ”:g — Nds’'= IL [ ] ds’ [-onS', r=p]
= J-L ;—4ds'= IL s—jds’=pi2 IL ds’:plz-41tp2=4n
Hence from (i), I—[s %.Nds=4n-
r

GREEN’S THEOREM*

If ¢ and y are scalar point functions possessing continuous derivatives of first and second orders, then

20 — wV26)d = o _ N (1)
L(d}Vq{ \pV@J)dU-L[(JJEm q!an)ds (

where d/on denotes differentiation in the direction of the external normal to the bounding surface S enclosing the
region E.

Applying Divergence theorem : js F.Nds= -'-s V. Fdv to the function ¢Vy, we get
L oVy . Nds = .[s.: V. Vy)dv= IE (Vo . Vy + ¢V3y)dv [By (2) page 329]

2
s J'E Vo. Vydv + _[E OV2ydv (2

#*See footnote p. 339.
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Interchanging ¢ and v, (if) gives
_Lqu¢.Nds= [ Vv vodv+ _vazq;du

Subtracting (3) from (2), we have L (6Vy — V). Nds = L (0V2y — yV20)dv

But Vy . N = dy/on the directional de:iv-at_ive of y along the external normal at any point of S. Hence

L (¢ﬂ -y @) ds = L (0V2y — yV20) dv which is the required result (1).

s\ on on
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RN . EE
EREN (1) IRROTATIONAL FIELDS
An irrotational field F is characterised by any one of the following conditions :
@)AxF=0. (if) Circulation IF . dR along every closed surface is zero.

(iii) F = Ag, if the domain is simply connected.*
If V x F = 0, then by Stoke’s theorem,

ICF .dR= ISV X F.dS =0, i.e., the circulation along every closed surface is zero.

Again since V x V¢ =0
- in an irrotational field for which A x F = 0, the vector F can always be expressed as
the gradient of a scalar function ¢ provided the domain is simply connected. Thus
F=Vo.
Such a scalar function ¢ is called the potential. In a rotational field, F cannot be
expressed as the gradient of a scalar potential.

(2) Solenoidal fields. A solenoidal field F is characterised by any one of the following conditions :
OV.F=0. @)flux IF . N ds across every closed surface is zero. (iii) F =V x V.
If V. F = 0 then by the Divergence theorem,

LF . Nds = _[,V .Fdv =0, i.e., the flux across every closed surface is zero.

Again since V.V x V = 0.
~ in a solenoidal field for which V . F = 0, the vector F can always be expressed as the curl of a vector
function V; thus F=V x V.

*A domain D is said to be simply connected if every closed curve in D can be shrunk to any point within D.
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| J K
s R I
Solution. Since Vx F = ™ % %l = 0

-y +x —Cxy+y) 0
this field is irrotational and the vector F can be expressed as the gradient of a scalar potential,

ie,(x?—y2+2)I—(20y +y)J = Vo = %I+@J

dx oy
whence ox =x% —y2 4 x (@)
oWy = — (2xy +y) (i)
2
Integrating (i) w.r.t. x, keeping y constant, we get ¢ = % - y%x +%+ ) ...(Eit)
2
Similarly integrating (ii) w.r.t. y, keeping x constant, we obtain ¢ = —xy% — 3’? +g(x) iv)
. T & xs 2 12 2 y2
Equahng(m)and(w_),weget?—y x+?+f(y)=_xy __E+g{x)
2 2 a2
g G = &
f)= 5 and g(x) o
3 2
H e B
ence (o] 3 xy+2 2
Since the field is irrotational,
1 1 8 4 1 1
F.dR from (1, 2)to (2, 1) = - S| oIt | = SN = | =TT
J fa= e (3 T3 2) [3 Ty 2] "3

N — [=11-1)-J(1-1)+K(1-1)=0.

Solution. We have VxV =

y+2z z+x x+y
this motion is irrotational and if ¢ is the velocity potential then V = V¢. [§ 20.6]

. _ %y, %y %
ie., b+ +z+x+x+y)K= axl+ayJ+aaK

L ey ey N
E:hc-;y+z,ay =z+x, = =x+y
Integrating these, we get o=@ +2k+fi(y,2) ...(@)
0 =(z +x)y + fylz, x) (7))
and 0= (x+y)z +fylx, ) ... (iii)
Equality of (i), (iz) and (ii7), requires that
fily, 2) = yz, (2, x) = 2x, fy(x, y) = xy.
Hence O =yz +zx + xy.
(b) The fluid motion is possible if V satisfies the equation of continuity which for an incompressible fluid
isV.V=0. [See § 8.7 (1)



DOWNLOADED FROM www.CivilEnggForAll.com

Here V. V= %(y+z)+%=(z+x)+%(x+y)=0.

Hence, the fluid motion is possible.

- Solution. The line inagr of F is independent of i)ath of
IC [2xy2? L+ (x%2" + z cos y2)d + (2x%yz +y cos y2)K] . (Idx + Idy + Kdz) = IC F.dR

.é""\!’.'.
integration if Vx F = 0.

1 J K
d ) d
and VxF= 5 g g

2xyz? x%2% +zcos yz 2x%yz + y cos yz

I [2x%2 + cos yz — yz sin yz — (2x% + cos yz — yz sin y2)]
— Jldxyz — 4xyz] + K[2x22 — 2¢22] = 0
the given integral is independent of the path C.

Now let F = V¢
ie., (2xy22)I + (%222 + 2 cos y2)J + (2x%yz + y cos yz) K = I%+J%+K%
2xyz? = %,xzzz-rzcusyz: %,29:232+yc05y2= %

Integrating first w.r.t. x partially, we get

0=x%%%+ ¥, (3,2) (D)
Integrating second w.r.t. ¥ partially, we get

¢ = x%y2? + sin yz + W,(z, x) ..(fQ)
Integrating third w.r.t. z partially, we get

¢ = x2%y22 + sin yz + W,(x, y) ...(3i0)

Comparing (), (ii), (iii), we have
¥,(y, 2) = terms in ¢ independent of x = sin yz
¥,(2, x) = terms in ¢ independent of y = 0
¥,(z, x) = terms in ¢ independent ofz = 0
Thus 0 = 2%22 + sin yz

Hence the value of the given integral = |¢|::',?t':;_n

=(0+0)-(0+sinw2)=-1.

A%

Solution. F is a conservative vector field when curl F = 0. Here

I J K
Curl=F= o 9 2
ox ay dz

y?cosx+2° 2ysinx-4 3x2®+2

=1(0 - 0) — J(322 — 322) + K(2y cos x — 2y cos x) = 0
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F is a conservative field.
Now let F = V¢
" 3 & _ 2 - @ ﬂ ; ﬂ
ie., (2 cosx +2%) I+ (2y sinx—4)J + (3xz +2)K—I&x +J&)1+Kaz
y?cosx +23= %,'2)' sinx —4 = %,3&2+2= %
Integrating first w.r.t. x partially, we get
O =y%sinx +x2® + y, (v, 2) A1)
Integrating second w.r.t. y partially, we get
O =y?sinx — 4y + ¥,(z, x) (i3]
Integrating third w.r.t. z partially, we obtain
0 =x2% + 22 + ¥y(x, y) ... (i)

Comparing (i), (i), (iii), we get
¥,(, 2) = terms in ¢ independent of x = — 4y + 2z
¥,(z, x) = terms in ¢ independent of y = x2® + 22
¥,(z, x) = terms in ¢ independent of z = y? sin x — 4y

Thus d=x2% +y2sinx — 4y + 22

In a conservative field, the work done = ¢ — 0,

=il (g,-l,z)_q,(o, i1
=(@n+1+4+4) - (-4-2)=4n+15.

PROBLEMS 8.11
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IEEE] (1) ORTHOGONAL CURVILINEAR COORDINATES

Let the rectangular coordinates (x, y, z) of any point be expressed as functions of i, v, w so that

x=xlu, v, w),y =yu, v, w), z =2z(u, v, w) (1)
Suppose that (1) can be solved for u, v, w in terms of %, ¥, 2, so that
u=ulx,y, 2),v=uvy,2), w=wk,y,2) «(2)

We assume that the functions in (1) and (2) are single-valued and have continuous partial derivatives so
that the correspondence between (x, y, z) and (%, v, w) is unique. Then (i, v, w) are called curvilinear coordinates
of (x, y, 2).

Each of u, v, w has a level surface through an arbitrary point. The surfaces u = ug, v = vy, w = w are called
coordinate surfaces through P(u,, vy, w,). Each pair of these coordinate surfaces intersect in curves called the
coordinate curves. The curve of intersection of u = u, and v = v, will be called the w-curve, for only w changes
along this curve. Similarly we define u and v-curves.

In vector notation, (1) can be written as R = x(u, v, w)I + y(u, v, w)d + z(u, v, w)K

dR =B g, B 5, , R 4, -3
Ju ov Jw
Then dR/du is a tangent vector to the u-curve at P. If T, is a
unit vector at P in this direction, then dR/du = h,T, where
h, = |0R/u|.
Similarly if T, and T,, be unit tangent vectors to v- and
w-curves at P, then

%: h,T, and %=h3Tw
where h, = |0R/0v| and h, = |0R/Qw |. [k, h,, h, are called scalar
factors.]
Then (3) can be written as
dR=hduT, +h,dvT, +h,dwT, ...(4)
Since Vu is normal to the surface u = 1 at P, therefore, a o

unit vector in this direction is given by N, = % :

Similarly, the unit vectors N = Vo and N = N are X Fi
£ v |VU| w |Vw| 1B 8.26
normal to the surfaces v = v, and w = w,, at P respectively. Thus at each point P of a curvilinear coordinate
system there exist two triads of unit vectors: T, T,, T, tangents tou, v, w-curvesand N,,, N, N, normals to the
co-ordinates surfaces (Fig. 8.26).

In particular, when the coordinate surfaces intersect a right angles, the three coordinate curves are also
mutually orthogonal and u, v, w are called the orthogonal curvilinear coordinates. In this case T,, T,, T, and N,
N,, N, are mutually perpendicular unit vector triads and hence become identical. Henceforth, we shall refer to
orthogonal curvilinear coordinates only.

Multiplying (3) scalarly by Vu, we get
Vu.dR=du= (Vu.a—R)du+(Vu.%)du +(vu.@)dw

ou Jw
whence Vu.é]':i:l,\?’u.@:O,Vu.a—R:O
du ou ow
e oR _ oR _ dR _
Similarly, VU.E—O,VU.BU —I,Vv.aw =0
R _ v R_o g R _
and Vw.E—O,Vw.avAO,Vw.aw =1.

These relations show that the sets dR/du, dR/dv, JR/0w and Vu, Vv, Vw constitute reciprocal system of
vectors.
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«9R
Vi = - au “ow T x(RT,)
[B_R R BR:I (A T,).(hT,) x (AT,
Ju’ dv  Jw
hohy T, xT, T, e .
" T LT, Ty e
or T,=h, Vu

Similarly T,=h,Vvand T, = h, Vw} .(5)
Also =T, x T, = hyhg Vv x Vw
Similarly T, = hsh, Vw x Vu and T, = h h, Vu x Vu} ...(6)

Arc, area and volume elements
(Z) Arc element. The element of arc length ds is determined from (4).
ds?=dR .dR = hjdu® + hidv”® + hidw® k)

The arc length ds, along u-curve at P is h,du for v and w are constants.
Therefore the vector arc element along the u-curve is du = h,duT,. Similarly
vector arc elements along v and w curves at P are dv = h,dv T, and dw =
h,dw T, . The arc element ds therefore corresponds to the length of the diagonal of
the rectangular parallelopiped of Fig. 8.27.

(ii) Area elements. The area of the parallelogram formed by du and dv is
called the area element on the uv surface which is perpendicular to w-curve and
we denote it by dS . Hence, dS, = |du x dv| = h h,dudv. Similarly, dS, = h,h,
dvdw, dS, = hsh dwdu.

(iit) Volume element is the volume of the parallelopiped formed by du, dv,

dw.
dV = [h,duT,) . (h,dvT,) x (hdwT,)] —
= hyhohy dudvdw (8 [+ [T,T,T,] =
This can also be written as
dv=B R ‘m Jiiddvidus = 2008 g, (9
ou av T u, v, w)

where d(x, ¥, 2)/d(u, v, w) is called the Jacobmn of the transformation from (x, y, z) to (x, v, w) coordinates.

(2) Del applied to Functions in Orthogonal Curvilinear coordinates
To proue that

F T, o T, o
‘”Vf-ra— h o Ty ow
@V F= b [ L hh) o 2t + o ()|
TIJ Tw
Fohs Ty Th,
@) VxF= % 2 2| where F=£T, +;T, +£;T,
hfy hofy hofy

(1) Let f (i, v, w) be any scalar point function in terms of u, v, w, the orthogonal curvilinear coordinates.
Taking u, v, w as functions of x, y, z, we have

of _of ou o dv of ow N0

R A e .(if)

and Tt ...(2it)
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Multiplying (i) by L, (i) by J, (iii) by K and adding, we have
Vf= Bf Vu + 9 Vv +— af ...(iv)
% aw
= af T, of T, of
=Cu 80 . el [By (5) p. 356]
By O Ty 0 Ty G0 L
which is the required result.
(2) Let F(u, v, w) be a vector point function such that
F=fT, +f,T, +f;T, = Zfihhs Vv x Vw [By (6) p. 356]
V.F =2V . ((fihh )XVv x Vw)}
= Zl(fihohy) V . (Vu x Vw) + (Vv x Vw) V(fihoho)l V)
Now V. (Vv x Vw)=Vw . Vx (Vo) = Vo .V x (Vw) = [By (5) p. 330]
J( )
and V(fihohy) = B(ﬁ;!fh@) Vu + fl;j hy a(fla}::hs) [By (iv) above]

(v) now becomes

V.F= Z(Vu x Vw). { Kfihahs) Vu + A frhshs) Vv + Afihohs) Vw}
Ju du dw

Vol 3 3(f1hah3) 1 I frhghs)

= [Vu, Vv, h1h2h3 Z au

which is the required result.

Cor. Laplacian. V2f=V . (Vf)
T T T, of ) 1 of
[hl w h w hw)” hlhghgz u Lh hz’”J
(3) Let F(u, v, w) be a vector point function such that

F=fT, +f,T, + ;T = fih,Vu + f,h,Vv + fh, Vw [By (5) p. 356]
V xF=2XV x (fh,Vu) [Using (3) p. 329]
=3IV(fhy) x Vu+ fih, . VxVul= Y [ a‘gjl) Vu + a(g:h) Vo + a‘g;"l) Vw}xvu

P®

o« [3hR) (T XT,) . afik) (T, xT,

‘Z[ w [ Iy J* w ( hohy ]]

_Ahh) Ty k) T, Aoy T, | Xfhy) T,  Afshy) T, | fshy) T,
W Ty dw hghy  dw hphy | du Mh, | du Tl 0 hyh

= E [MVUKVI¢+—8(§T’H)VLUXVLLJ

= }:‘;7,3 [a(fgj’s) — a(l;i?):l + two similar terms, whence follows the required result.

TWO SPECIAL CURVILINEAR SYSTEMS

[EET] (1) CYLINDRICAL COORDINATES

Any point P(x, y, 2) whose projection on the xy-plane is @(x, y) has the cylindrical coordinates (p, ¢, z),
where p = 0Q, ¢ = ZXOQ and z = QP.

The level surfaces p = p,, ¢ = ¢, z = 2, are respectively cylinders about the Z-axis; planes through the
Z-axis and planes perpendicular to the Z-axis.

The coordinate curves for p are rays perpendicular to the Z-axis; for ¢, horizontal circles with centres on
the Z-axis; for z, lines parallel to the Z-axis.

From Fig. 8.28, we have

x=pcosd,y=psing,z=z2
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(i) Arc element.
(ds)? = (dx)? + (dy)? + (dz)? = (dp)? + p? (d9)? + (dz)?
so that the scale factors are h; =1, h, =p, hy= 1.

(@) Area elements dS | = pd¢dz ds, dzdp, dS, = pdpd¢ where
dS is the area element L to p- dlrectmn etc

(iti) Volume element dV = pdpdddz.
(2) Cylindrical co-ordinate system is orthogonal
At any point P, we havex=pcos ¢,y =psinp,z =z,
so that R = p cos ¢I + p sin ¢J + zK
If T, T, T, be the unit vectors at P in the directions of the
tangents to the Ps ¢. z-curves respectively, then
OR/dp  cos ¢l +sin ¢J

°~ [oR/0p| J(cosz ¢ + sin” ¢)

= cos ¢I + sin ¢J

T, - oR /0 _ —psin I + p cos ¢J = — sin ¢I + cos ¢J
|OR/90] [i(—p sin ¢)* + (p cos 0)°]
R/ %
md L= omrag — K

Now T, . T, = (cos ¢I + sin ¢J) . (— sin ¢I + cos ¢J) = —cos ¢ sin ¢ + sin ¢ cos ¢ =0,
T¢.TZ=(—sin¢I+cos¢J).K=O,ande.Tp=K.(cos¢I+sin¢J)=
Hence the cylindrical coordinate system is orthogonal.
Also T, x T, = (cos ¢I + sin ¢J) x (—sin ¢I + cos ¢J) = (cos? ¢ + sin2 ) IxIJ=K=T,
T, x T, = (-sin ¢I + cos ¢J) x K = sin ¢J + cos I =T
T, x T, = K x (cos ¢I + sin ¢J) = cos ¢J — sin ¢I = T
These conditions satisfied by Tp, T¢, and T, show that the cylindrical coordinates system is a right handed
orthogonal coordinate system. (V.T.U., 2008)
(3) Del applied to functions in Cylindrical coordinates
Wehaveu=p,v=¢,w=zandh, =1, h,=p, h;=1.
Let Tp, Tw, T, be the unit vectors in the directions of the tangents to the p, ¢, z curves.
(i) Expression for grad f.
T, of T, of o  Tw Tw of

Since Vf= h1 e —+ T % o =
af 1 of of
il L
Vf= p % T, + %
(if) Expression for div F where F = flTu +f,T, +f,T,
: of
S V.F= ( f) + ( hyfo) + —( f5) ]
ince e | o (s + 3 (o) + 5 O
Iy }
V.F=—<—(pfi)+="+ —( )
p { Ph)* 29 * 3 e
(iii) Expression for curl F where F =f|T +f,T +f.T,
T, T, T,
hohg  hghy by | |To/p T, T./p
Since VxF-= 9 9 9 = 9 9 9

u du  ow dp db oz
iy hofs hsfs i ofe 3

=T, (1% 9f2] (%_%)
(pat; = +T, % 9 +T,

[%_1%]
P p
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(iv) Expression for V*f
— hlhgha{ (o i) 55 3 30 ) 5 [hlﬁgi"l"ﬂ]}
v2f=1{_( Bf]+ [1af) a(paf]}:ﬂ 1o, 19 FF
p Bp W\ pod) oz a2 pop p2 % %*
Example 8.52. Express the vector zI - 2xJ + yK in eylindrical coordinates. ' (V.T.U., 2010)

Solution. We havex=pcos ¢,y =p sin ¢ and z = z.
so that R =xI + yJ + zK = p cos ¢I + p sin ¢J + 2K

If Tp. T‘, T, be the unit vectors along the tangents to p, ¢ and z curves respectively, then
dR/0p  cos oI+ sin ¢J

= = = cos ¢I + sin ¢
* |aR/dp| J(cos2¢+sin2 ¢)
T, = i ___—pein ¢l +poosied = — sin ¢I + cos ¢J
[OR/90] fi(— p sin 6)? + (p cos ¢)%]
. dR/&E
=7 |oR/ %]
Let the expression for F = zI — 2xJ + yK in cylindrical coordinates be
F=fT, +[,T,+f3T, ()
Then fl=F.Tp=zcos¢—2xsin¢
fo=F.T,=—-zsin¢—2xcos ¢
f,=F.T =y

Substituting the values of f}, £, f; in (i), we get

={zcos¢—2xsin¢)Tp—(z sin ¢ + 2xcos¢)T¢+yTz

e - . 2 -

=(z cos ¢ — p sin 29) T, —(zsin ¢+ 2p cos* ) T, + psin ¢ T,
Example 8.53. Show that V (log p) and V ¢, p #0, ¢ # 0 are solenoidal vectors.
Solution. () f = log p is a function of p only. We have to prove that V . (Vf), i.e., V=0

2 2 2
V2fe Pf 1 1 PF PF ig(logp)+ la(logp)+0+0=_i2 —15 "
2 pappa¢2 22  op P op P° P
Hence V(log p ) is a solencidal vector.

(i) f= V¢ is a function of ¢ only. We have to show that V . (Vf), i.e., Vif = 0.

2 2 2 2
2 2 P ap p2 a¢2 822 p a¢
Hence the result.

(1) SPHERICAL POLAR COORDINATES

Let P(x, y, 2) be any point whose projection on the XY-plane is @(x, y). Then the spherical polar co-
ordinates of P are (r, 6, ¢) such that r = OP, 6 = ZZOP and ¢ = ZX0Q.

The level surfaces r=r,, 8 = 8;, ¢ = ¢, are respectively spheres about O, cones about the Z-axis with vertex
at O and planes through the Z-axis.

The co-ordinate curves for r are rays from the origin; for 0, vertical circles with centre at O (called
meridians); for ¢, horizontal circles with centres on the Z-axis
From Fig. 8.29, we have
x = 0@Q cos § = OP cos (90° — 8) cos ¢ = r sin 6 cos ¢,
y=0@ sin ¢ = r sin B sin ¢; z = r cos 6.
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(i) Arc element
(ds)? = (dx)? + (dy)? + (dz)? = (dr)? + r? (d6)? + (r sin 6)? (d¢)?
so that the scale factors are
hy=1,h,=r,h;=rsin6.
(ii) Area elements
dS,=r?* sin 0 d6d¢, dSq = r sin 6d¢dr, dS, = rdrd®
where dS, is the area element perpendicular to the r-direction, etc.
(iii) Volume element dV = r? sin 8 drd6d¢.
(2) Spherical polar coordinate system is orthogonal
At any point P, we have x = r sin 6 cos ¢,y = r sin 0 sin ¢,z =r cos 6,
so that R = r sin 6 cos ¢I + r sin 0 sin ¢J + r cos 6K
If T, Ty, T, be the unit vectors at P in the directions of the tangents x y Q
to the r, 6, ¢ curves respectively, then Fig. 8.29
_ OoR/dr _  sin 0 cos ¢l + sin 0 sin ¢J + cosOK
" |9R/or| \/(sin2 0 cos” ¢ + sin® @ sin” ¢ + cos® 0)
= sin 0 cos ¢I + sin 0 sin ¢« + cos OK
_ 0R/d®  rcos@cos ¢l +r cos B sin ¢J — r sin6K
¢ [oR/06] J(msz 0 cos® ¢ + cos? @ sin? ¢ + sin® 0)
= cos 6 cos oI + cos 6 sin ¢J — sin 6K
- T,= JR /3 =—rsin95in¢l.+rsinecus¢J -
|oR/ %] rsin @
Now T, . T, = sin 6 cos 6 cos? ¢ + sin B cos 6 sin? ¢ — sin 6 cos 6 = 0
Ty. Ty=—-cos®cossind+cosBsindcosp=0
T¢.Tr=fsinﬁcos¢sin¢+sinBsin¢cos¢=0
Also T, x Ty = sin 6 cos ¢ cos 6 sin K + sin® 6 cos ¢J — sin 8 sin ¢ cos 6 cos $K
— sin? 0 sin ¢I + cos? 6 cos ¢J — cos? O sin ¢I
=—sin ¢I + cos pJ =T,
Ty x T¢= cos 6 cos? K + sin? ¢ cos 0K + sin 0 sin ¢J + sin 6 cos ¢I =T,

— sin ¢I + cos ¢J

and T, x T, = - sin 0 sin® ¢K + sin ¢ cos 6J — sin 6 cos” ¢K + cos ¢ cos 61 =T
The above conditions satisfied by T,, Ty, and Tq, show that the spherical polar coordinate system is a right
handed orthogonal coordinate system. (V.T.U., 2008)

(3) Del applied to functions in spherical polar coordinates
Wehaveu=r,v=6,w=¢andh;=1,h,=r,h,;=rsin 6.
LetT,, T, T¢ be the unit vectors in the directions of the tangents to the r, 6, ¢-curves.
(i) Expression for grad f
; Lo Tof T,
Since V= e % N, 3
1of 1 of
Vf = f T +——T, + — T
f= ro0 ° rsin0adp °
(iz) Expression for div F where F=AT, +f,T,+f,T,

, 1
Since ( )+ ( h )-I-—( ]
= | ahafi) 4 5 (taf) + e O
1
V.F= rzslne[ (r? 31n9fi)+ae(rsm9f2)+—(rf§ ]
=l23(fr2)+ . —(fzsm9)+ L 25

P n 6 08 in@
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(iii) Expression for curl F where F = f|T, + f,T, + f,T,
Tu TU Tw
hohy  hahy  hyhy
Since VxF= 9 9 9
ou v dw
hfy  hofy hafs
T, T, T
r’sin® rsin® r
vxF=| & 2 2
or a0 b
f rfy r sin 6f;
T, d d T, (o 9
g~ r {g(rsmefa —ﬁ(rfz)} :‘:1 9{—(r51n8f3 ’; }+T¢{a—r(rf2 -%}
T, of| Te| 1 of 9 T { ofy }
— i %] + — L SR —
rsinﬁ{ Upiein ) } r smﬁad) or ) r (rf2) -
(iv) Expression for V.
" 1 9 (hyhg of hshy of |, 0 (Mhy of
S V2f = — = | =
e VY hlhzhs{au[hl au] (h2 ) aw| hy ow
1 d of d (rsin@ of J r df
= — ] — —|+—= i
i sin 0 [ar[r i 3r}+88( r aﬂ]+a¢(rsin93¢)}
_ 1 a[ af] 1 a( af] 1 %
ol i Lo ) [ 0 UL - i i
r2 or\ or +r sin 6 00 sin 00/ r? sin? 6 99
*f 1 82)" 1 azf 2 Bf cot 6 of
= —=+— o +Z
o? r2 30 rlsin’@ B¢2 r ar' r? 00
- Example 8.54. Express the vector field 2y1 - 2J + 3xK in spherical polar coordinate system.
Sﬁlution. We have x=rsinBcos,y=rsinBsin¢,z=rcos O -
so that R =r sin 6 cos ¢I + r sin 6 sin ¢J + r cos K.
If T, T, T, be the unit vectors along the tangents tor, 6, §, curves respectively, then
" JdR/or - sin 0 cos ¢I + sin 0 sin ¢J + cos 6K
" |9R/or| \{[(sin 0 cos ¢)° + (sin 0 sin )* + cos® 6]
= sin 0 cos ¢I + sin 0 sin ¢J + cos 6K
JdR/d0 r cos 0 cos ¢X + rcos 0 sin ¢J — rsin K
i [oR /08| J[(r cos 6 cos §)? + (r cos 0 sin ¢)? + (~r sin 8)?]
= cos 0 cos ¢I + cos 0 sin §J — sin 6K
_ O0R/d9p _ —rsin@sin ¢I + rsin 6 cos ¢J s il s coedd
¢ |[oR /99| J[(-r sin @ sin ¢)? + (r sin 0 cos ¢)°]
Let the expression for F = 2yI — zJ + 3xK in spherical polar coordinates be
..(f)

F=AT, +f,T,+£;T,
Then f;=F.T, =(2rsin 0 sin ¢I -r cos 6J + 3r sin 0 cos ¢K) . (sin 6 cos ¢I + sin 6 sin ¢J + cos 6K)

= 2r sin® @ sin ¢ cos ¢ — r sin 6 cos 8 sin ¢ + 37 sin 6 cos 0 cos ¢
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fo =F . Ty =(2r sin 0 sin ¢I —r cos 6J + 3r sin 6 cos ¢K) . (cos 6 cos ¢I + cos 0 sin ¢eJ — sin 6K)
= 2r sin 0 cos 6 sin ¢ cos ¢ —r cos? B sin ¢ — 3r sin? 6 cos ¢.
and fy=F .T,=(2r sin 6 sin K — r cos 8J + 3r sin 0 cos ¢K). (-sin ¢I + cos ¢J)
=— 2r sin 0 sin® ¢ — r cos O cos ¢
Substituting the values of f:- fz,fsm (i), we get the desired expression.

Solution. In spherical polar m‘ordinates,
Vf= ¢ T + Lo Te :

rsmﬁath’
| :
V(cose)=;—(ms9>Te=-—sm9Ta 0
Vo = I (74
¢ r rsmﬁ ‘ L
_9 __L
and \'% [r]_ar ™ )T, = = T,

Now from (i) and (iz), we get

V(cos8)xVo=—

No| =
2
x
e

Solution. In spherical coordinates,

'I:,lr sin® T,/rsin® T,/r

0 d 0
h rfo r sin 6f3

Here f, =1%cos ®, f, =— 1/, f, = Ur sin 6.
T, rTy, rsin®T,
curl F = 2 Ll il 2 =rsin 6T,
r? sin © or 20 a0
r®cos® -1 1

1

FxcurlF:[rﬂmsaTr_%n_,_ 6'1"] x(rsinﬂTJ:-(rssiansﬂTa+sinﬂTr).

a 419
= 0.l
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