Prof Jeffrey Harris UNSW Meniere's Presentation – 8 February 2023

New insights on the etiopathogenesis of Meniere's Disease Zoom Session

Gary was the host:

• Stated that Meniere's is one of the most profound and disabling conditions of the inner ear

• UNSW is doing some outstanding research

Next speaker:

Prof Jeffrey Harris

Bio –

Jeffrey P Harris, MD, PhD, is Distinguished Professor and Chief of the Department of Otolaryngology / Head and Neck Surgery at the University of California, San Diego and Staff Surgeon at the VA Healthcare System. He is the Past President of the American Otological Society and the Association for Research in Otolaryngology. During his career he has focused his practice on microsurgery of the ear and skull base. He has written and lectured extensively on autoimmune inner ear disease, Meniere's disease and otosclerosis. He is cofounder of Otonomy, Inc and serves as a consultant. He has authored five textbooks and over 250 articles.

In talking on Zoom:

- Has no answers about MD, yet, but can share what they think is going on.
- MD was named 161 years ago

- They don't know what starts MD, or what is the tipping point.
- You can have MD with or without vertigo, and then is it migraine or the inner ear?
- Stated that when a person is in an active meniere's episode, it is like someone who is 6 days before death.

• If you have gone bi-lateral in the first 8 years of having MD, you probably won't go bi-lateral

Histopathology of MD

- Too much endolymphatic fluid. But why?
- MD is either too much secretion, or too little reabsorption
- Why do MD ears have too much endolymph fluid?
- One hypothesis is that they have decreased resorption
- Rupture theory causes attacks of vertigo, but it doesn't explain things
- Too much fluid the endolymphatic sac takes on is of importance

• Polygenetic traits often have an environmental trigger

• Endolymphatic sac surgery has been found not to be effective. If the pa-tient had jour-neyed with the MD, they would be a the same place after 8 years as having the surgery

- Gene mutations
- Multipfactorial causes of MD (same slide Dr Daniel Brown showed)
- Injuries to the ear can cause MD
- ION channel is Prof Jeffrey Harris's interest the APT2B2 calcium channel came up in Rick Friedman's study

Prof Jeffrey Harris recommends as initial treatment when you are diagnosed:

- Diuretic
- Low salt
- Steroid shots to the inner ear

All Meniere's cases have endolymphatic hydrops bu all ears with endolymphatic hydrops have Meniere'

5 00 1

• Rauch SD, Merchant SN, Thedinger BA. Meniere's Syndrome and Endolymphatic Hydrops: Double-Blind Temporal Bone Study. Annals of Otology, Rhinology & Laryngology. 1989;98(11):873-883

(This is Prof Bill Gibson's research)

(This is Dr Daniel Brown's)

Next speaker (Zoom to the USA):

Rick Friedman Bio:

Dr. Rick Friedman received his Medical Degree in 1988 and completed his Doctoral Degree in 1994 at the University of California, San Diego. While earning his P.h.D., Friedman served as a resident in the Division of Otolaryngology at the UCSD Medical Center. In 1995, Dr. Friedman came to the House Clinic as a clinical fellow and then joined the group as an Associate. Dr. Friedman also serves as research section chief of Hereditary Ear Disorders in the House Ear Institute's Department of Cell and Molecular Biology. The focus of his laboratory is the identification and analysis of genes and networks contributing to complex traits involving hearing and balance in humans and mice [Presbycusis (ARHI), Meniere's Disease (MD), and Noise-Induced Hearing Loss (NIHL)]. We identified and association between ARHI and SNP variation within the GRM7 gene. We have collected the largest sample to date of individuals with Meniere's disease and seek to identify associated genes and pathways. We are incorporating a systems-based genetic approach consisting of the integration of natural genetic variation in inbred strains and molecular phenotypes (cochlear eQTL) to study ARHI and NIHL in mice. In collaboration with A. Jake Lusis, Ph.D. we are adapting the Hybrid Mouse Diversity Panel as a resource for studying complex traits in the mouse (ARHI, NIHL, and vestibular function).

Rick Friedman, in talking on Zoom:

- Is mapping the genome of MD analysis of the whole human genome
- 21 genes explain 95.3% of cases
- Defect in the ion transport protein
- CRISPR for direct targeted treatment for MD
- Changes in genetic structure
- Retinal cells (eyes) mimic hair cells in the inner ear

Fi	equency/z-	sco	re (top 3	80 genes) compar	ed to	population contro
	1 query 2 ENSG00 3 ENSG00	0001591	entrezgen symbol 2618 GART 54715 RBFOX1	name 2 phosphoribosylglycinamide formyltransferase• RNA binding fox-1 homolog 1	z 22.419542814 22.197271424	Ifdr freq 3.79043165445E-14 0.29601518 5.1147615417E-14 0.548387097
	4 ENSG00 5 ENSG00	0001602	2539 G6PD 3123 HLA-DRB1	glucose-6-phosphate dehydrogenase major histocompatibility complex, class II, DP	18.352734678 17.749137256	6.65486546374E-09 0.356736243 3.10661769538E-08 0.434535104
	6 ENSG00	0000050	292 SLC25A5	solute carrier family 25 member 5	17.645778687	3.87843260173E-08 0.352941176
	7 ENSGOO	0001120	56940 DUSP22	dual specificity phosphatase 22	16.446413356	5.92875084228E-07 0.461100569 1.14584705949E-06 0.375711575
	8 ENSG00	0001707	23331 TTC28	tetratriconentide repeat domain 28	15 195832587	6.73272920152E+06.0.366223909
	10 ENSGOO	0001972	5265 SERPINA1	serpin family A member 1	14.348816983	3.06065249994E-05 0.24288425
	11 ENSG00	0000351	84908 FAM136A	family with sequence similarity 136 member A	13.676128798	9.21640849299E-05 0.39658444
	12 ENSG00	0001964	9612 NCOR2	nuclear receptor corepressor 2	13.517330602	0.0001167142 0.159392789
	13 ENSG00	0001667	5479 PPIB	peptidylprolyl isomerase B	12.961964544	0.0002760987 0.187855787
	14 ENSG00	0001109	506 ATP5F18	Alle synthase F1 subunit beta	12.040940005	0.0003245088 0.149905123
	15 ENSGOO	0001512	203404 GATLIT	clathrin beavy chain like 1	11 960186507	0.0011574336 0.151802657
	17 ENS600	0001973	3064 HTT	huntingtin	11.839207898	0.0013557816 0.132827324
	18 ENSG00	0001987	10497 UNC13B	unc-13 homolog B	11.622085307	0.0018150627 0.193548387
	19 ENSG00	0001059	4967 OGDH	oxoglutarate dehydrogenase	11.583367864	0.001896962 0.174573055
	20 ENSG00	0001393	6996 TDG	thymine DNA glycosylase	11.564100596	0.0019377182 0.210626186
	21 ENSG00	0001154	2335 FN1	noronecon 1 cyclin & associated kinase	11 346919932	0.0025992448.0.110056926
	22 ENSG00	0001643	51752 ERAP1	endoplasmic reticulum aminopeptidase 1	11.311872825	0.0027091031 0.185958254
	23 ENS600	0001570	491 ATP2B2	ATPase plasma membrane Ca2+ transporting	11.126138648	0.0034107933 0.134724858
	25 ENS600	0001329	10207 PATJ	PATJ crumbs cell polarity complex componen	10.980361237	0.0040739209 0.132827324
	26 ENSG00	0001311	5119 CHMP1A	charged multivesicular body protein 1A	10.883760276	0.0045133494 0.170777989
	27 ENSG00	0000044	204 AK2	adenylate kinase 2	10.589534817	0.0063989197 0.15370019
	28 ENSG00	0001230	29994 BAZ2B	bromodomain adjacent to zinc ringer domain >	10.574457927	0.0067822297 0.111954459
	29 ENSG00	0002579	1523 CUX1	WPN belicase interacting protein 1	10 490641141	0.0071648768 0.170777989
	THECOD	0001245	56897 WRNIP1	WRN helicase interacting protein 1	10.490641141	0.00/1648/68 0.1/0///969

	FDR 0.0014179	P Value 1.3127e-7	Talking: rickfried
Over-	Gene Set Size 480	Expected Value 5.6281	Overlap Enrichment Ratio 21 3.7313
representation	User ID 🛧	Gene Symbol	Gene Name
analyzia	АКАРЯ	акаря	A-kinase anchoring protein 9
analysis:	AP3S1	AP351	adaptor related protein complex 3 subunit sigma 1
microtubule-based	ATXN7	ATXN7	ataxin 7
Interotabare based	C2CD3	C2CD3	C2 calcium dependent domain containing 3
processes	CEP350	CEP350	centrosomal protein 350
	CHMP1A	CHMP1A	charged multivesicular body protein 1A
	CUL9	CUL9	cutin 9 donain sentemal haven chain 14
	DNHD1	DNHD1	dynein beavy chain domain 1
• These 21 genes	DYNC1H1	DYNC1H1	dynein cytoplasmic 1 heavy chain 1
"must in " OF 20% of oppos	FLNA	FLNA	Filamin A
"explain" 95.3% of cases	FMN2	FMN2	formin 2
	HTT	HTT	huntingtin
	HYDIN	HYDIN	HYDIN, axonemal central pair apparatus protein
	KATNAL2	KATNALZ	katanin catalytic subunit A1 like 2
	KIFAP3	KIFAP3	kinesin associated protein 3
	MAP2	MAP2	microtubule associated protein 2
	NEFH	NEFH	neurofilament heavy
	OBSL1	OBSL1	obscurin like 1
	PCMT	FON	SOM ONA history protein
	SON	SUN	SUR UNA billion process

				Talking:			
	Gene set: GO:0034329 🗹 cell junction assembly ±						
Over-representation	FDR 0.044281	P Value 0.000024598 Expected Value 1.9581	Overlap 10	Enrichment Ratio 5.1070			
analysis: cell junction assembly	Gene Set Size 167						
	User ID 🛧	Gene Symbol		Gene Name			
 These 10 genes 	ANK2	ANK2		ankyrin 2			
"explain" 77.2% of cases	DUSP22	DUSP22		dual specificity phosphatase 22			
	EPHA2	EPHA2		EPH receptor A2			
	FLNA	FLNA		filamin A			
	FMN1	FMN1		formin 1			
	FN1	FN1		fibronectin 1			
	ITGB4	ITGB4		integrin subunit beta 4			
	KDR	KDR		kinase insert domain receptor			
	RUNX1	RUNX1		runt related transcription factor 1			
	TNS1	TNS1		tensin 1			

Next speaker:

Robert from Cochlear Australia:

- Could one therapy cure all tinnitus, vertigo, hearing loss
- Are cochlear hydrops, vestibular hydrops and tinnitus 3 separate issues?
- Any damage to the inner ear can cause tinnitus

Prof Jeffrey Harris:

- Ruptured membranes in the inner ear can scar up
- Inheritance of MD is very low

