Hearing and the Brain:

Making Sense of Sound and Hearing Loss

David K. Ryugo, PhD

Garvan Institute of Medical Research Sydney, NSW, Australia

School of Medical Sciences University of New South Wales Sydney, NSW, Australia

The Miracle of Hearing

Sound = Vibrations in air

А

440 Hz = "A"

Middle C

Middle C

High Frequency

Low Frequency

Time ——

Sound is analyzed by its frequency composition, and this is shown by a spectrogram.

vowel sounds = low frequencies

Frequency and Conversational Speech

Meniere's Hearing Loss

Most Speech, esp Vowels

Treble: consonants, the "ssss" sounds

Sound has Energy or Loudness

Softest sound heard0 dBWhisper in library30 dBNormal conversation60-70 dBTelephone dial tone80 dBSydney train arriving at station90 dBiPod, 80% maximum loudness95 dBPower mower100 dBChain saw, motorcycle110 dBPain begins120 dB

} Danger

Sound has important timing features

(onset, offset, duration, change)

Sound in the real world

Sound in the real world

Spectrogram of Common Words

Different Sounds are made of different frequency combinations

SH OO C A T

Spoken in quiet

Spoken in noise

Tips of outer hair cells

Tips of inner hair cells

Normal Sensory Cells

Damaged Sensory Cells

Normal

IHCs

Auditory Nerve

Hearing Loss

Changes in Auditory Nerve Input after Hearing Loss

Normal Hearing

Hearing Loss

Normal

Pixelated

Loss of sharpness Loss of detail

Summary

Three Components of Sound

• Frequency

Different sounds are composed of different combinations of frequencies

• Loudness

Sound pressure varies from very low to extremely high Sound exposure is cumulative like radiation – too much is harmful

• Timing

Sound has onset, offset, duration, rhythm

Symptoms of Hearing loss

(caused by brain changes)

- Difficulty understanding speech in noise
- Appearance of phantom sounds (tinnitus)
- Distortions of loudness (hyperacusis)

"Use it or Lose it"

If you think you have hearing loss, go to your audiologist and have your hearing tested. If you have hearing loss and don't attend to it, the loss will get worse and you risk social isolation and cognitive loss.

Hearing Research Laboratory—Garvan Institute

Bella Williams Kiera Grierson Tan Pongstaporn David Ryugo Anastasia Filimontseva