Thomas Estley Community College

Year 8 Autumn Term Knowledge Organiser

What are Knowledge Organisers?

A knowledge organiser is an easy way that each subject can summarise the most important information. Each subject section will include key terms, short explanations, glossary words, diagrams etc making it clear to the student as to what is essential to learn. Each grid has an overall theme and these vary according to the subject being taught.
It will be the students responsibility to keep the knowledge organisers safe and refer to them over the whole academic year.

How will these be used at Thomas Estley?

At Key stage 3, you will be given a knowledge organiser each term. You need to keep these safe in your learning packs that you were provided with at the start of the academic year.
Your subject teachers will use these in a variety of ways, for both class work, remote learning opportunities and homework. They will be used to help with revision for class quizzes and retrieval practice activities. They will also be used for flip learning activities, where subject teachers will ask you to learn some information and then go in to it in more detail in class.

Computing Knowledge Organiser - First Steps in Small Basic

Computing Knowledge Organiser - Understanding Computers

Computing Knowledge Organiser - Understanding Computers

Key vocabulary: hardware, software, input, output, process, storage, memory, RAM, ROM, motherboard, CPU, fetch, decode, execute, graphics card, hard disk, data bus, binary, bit, byte, Kb, Mb, Gb, decimal, denary, integer, switch, optical media, CD-ROM, DVD, CD-R, CD RW, Blu-Ray, pits, lands, burn, read, write, data, track

Nutrients

- A balanced diet involves eating the right amount of nutrients for your body to function
- Not eating enough of a nutrient means you have an unbalanced diet, and this can lead to a deficiency

Nutrient	Role in your body
carbohydrates	main source of energy
lipids	fats and oils provide energy
proteins	growth and repair of cells and tissues
vitamins and minerals	essential in small amounts to keep you healthy
water	needed in all cells and body fluids
fibre	provides bulk to food to keep it moving through the gut

Key terms Make sure you can write definitions for these key terms

Amylase Balanced diet Benedict reagent Carbohydrase Carbohydrate Catalyst Deficiency Enzyme Fibre Glucose Iodine Lipid lipase Mineral Nutrient Protease Protein Vitamin

Enzymes

Enzymes are biological catalysts, they speed up the digestion of nutrients

- Each enzyme is specific to each nutrient
- The way the enzyme and nutrient bind with each other is called a lock and key model
- Carbohydrases break carbohydrates down into simple sugars
Proteases break proteins down into amino acids Lipase breaks lipids (fats) down into fatty acids and glycerol

Activate

B3

Animal Nutrition

Knowledge organiser

The digestive system

Knowledge organiser - page 1

Elements and the periodic table

- An element is a substance that only contains one type of atom, it is found on the Periodic Table

Each element has it's own unique chemical symbol which is the same in every language, these are also found on the Periodic Table

- An atom is the smallest part of which an element can be broken down into
- As there are around 100 types of elements that can occur naturally, there are around 100 different atoms

Groups and periods

Groups are the columns in the Periodic Table, they go downwards

Periods are the rows in the Periodic Table, they go sideways
Elements in the same group normally follow the same trends in properties such as melting point, boiling point and reactivity
By placing these elements into these groups, scientists can make predictions about their properties

Compounds

- Compounds are formed when two or moredifferent elements chemically bond together
The compound will have different physical properties to the elements which make up the compound, for example water is a liquid, but it made from oxygen and hydrogen which are both gases
Compounds are hard to separate and need a chemical reaction to do this
- When naming a compound, we always mention the metal first and the non metal second
The name of the metal will not change but the name of the non metal will, for example oxygen can change to oxide
Chemical formulae tells us how many atoms of each element are in the compound in relation to each other

The small number tells us the number of each element which is in front of the number

Chemical reactions

- Word equations can represent a chemical reaction:

- The reactants are on the left side of the arrow and the products are on the right side of the arrow
- We use an arrow instead of an equals sign as it represents that the reactants are changing into a new substance In a reaction, the amount of each type of atom stays the same, however they are rearranged to form a new product

Exothermic and endothermic reactions			
Exothermic reactions involve a transfer of energy from the reactants to the surroundings - As energy is transferred to the surroundings this will show an increase in temperature - Examples of exothermic reactions include combustion, freezing, and condensing		Endothermic reactions involve a transfer of energy from the surroundings to the reactants - As energy is taken into the reactants a decrease in temperature will be shown - Examples of endothermic reactions include thermal decomposition, melting, and boiling	endothermic

Conservation of mass

- In a reaction the mass will be conserved, this means that the total mass of the reactants will be equal to the total mass of the products.
If it appears that some of the mass has been lost, this means that a gas has been produced and escaped, accounting for the lost mass.

Balanced symbol equations show the amounts of all of the individual atoms in a reaction. The symbols used are from the Periodic Table. They show: 1 - Formulae of reactants and products.
2 - How the atoms are rearranged.
3 - Relative amounts of reactants and products

Bond energies

Energy must be used to break chemical bonds, meaning that this reaction is endothermic
Energy is given out when chemical bonds are made, meaning that this reaction is exothermic
To see if a reaction is endothermic or exothermic, you must find the difference in the energy needed to break and to make the bonds in the reaction
If the energy needed to break the bonds is less than the energy given out when making the bonds, the reaction is exothermic
If the energy needed to break the bonds is more than the energy released when making the bonds, the reaction is endothermic

Combustion continued

Combustion is the burning of a fuel in oxygen
A fuel is a substance which stores energy in a chemical store Examples of fuels include petrol, diesel, coal and hydrogen When a carbon based fuel undergoes combustion, it will produce water and carbon dioxide
methane + oxygen \rightarrow carbon dioxide + water
Hydrogen can also be used as a fuel, this is much better than traditional fossil fuels as it does not produce carbon dioxide:

$$
\text { hydrogen }+ \text { oxygen } \rightarrow \text { water }
$$

Thermal decomposition

A thermal decomposition reaction is one where the reactants are broken down (decomposition) using heat (thermal energy) An example of this is with metal carbonates

$$
\text { zinc carbonate } \rightarrow \text { zinc oxide + carbon dioxide }
$$

We can test for this carbon dioxide by bubbling the gas through limewater, if the limewater turns cloudy, the gas is carbon dioxide

Group 1

Group 1 elements are also known as the alkali metals They share similar properties with other metals such as: - Being shiny when freshly cut

- Being good conductors of electricity and heat

Group 1 metals are much softer than other metals and also have much lower melting and boiling points
Group 1 elements react with water to form alkali solutions
lithium + water $\boldsymbol{\rightarrow}$ lithium hydroxide + hydrogen metal + water \rightarrow metal hydroxide + hydrogen
The further down the group that the metal is, the more vigorous the reaction will be. This is called a trend Another trend seen in Group 1 is with the boiling and melting points: the further down the group, the lower the boiling and melting points are

Group 0

Group 0 elements are known as the noble gases
They are all non metals with low melting and boiling points, meaning all are gases at room temperature
The boiling point decreases going down the group
All of the group 0 elements are unreactive
When electricity is passed through the gas, they emit a brightly coloured light, this can be seen in neon signs

Group 7

Group 7 elements are also known as the halogens
They share similar properties with other non metals such as:

- Having low melting and boiling points
- Not conducting electricity

Moving down the groups the elements have an increased melting and boiling point
The halogens also react in a similar way to one another, for example with iron:

$$
\begin{aligned}
& \text { iron }+ \text { chlorine } \rightarrow \text { iron chloride } \\
& \text { iron }+ \text { bromine } \boldsymbol{\rightarrow} \text { iron bromide }
\end{aligned}
$$

Halogens can undergo displacement reactions, this is where a more reactive halogen will take the place of a less reactive halogen
The most reactive halogens are at the top of the group, and the least reactive halogens are at the bottom of the group
f the most reactive halogen is on its own, it will take the place of the less reactive halogen in a compound

Energy level diagrams
Energy level diagrams show the values of energy between the reactants and the products in a reaction

If the energy is greater in the reactants than the products then the reaction is exothermic as energy has been given out to the surroundings
If the energy is lower in the reactants than the products then the reaction is endothermic as energy has been taken in from the surroundings

\uparrow Exoth

Halogens

calcium bromide + chlorine \rightarrow calcium chloride + bromine [$\widehat{]}$

Design for maintenance and repair

Advantages of repairable products and those that can be maintained:
Can be updated, to be more efficient, lengthening their useful life time. t is cheaper to repair than replace an entire product.
Repairable products are environmentally friendly
A standard component is a pre-manufactured product that is used in the manufacturing of another product. As well as saving time, using a standard component can ensure a consistent product is produced. Users can remove standard fittings to help them repair or replace parts. Nuts, bolts washers, zips , buttons are just some examples.

CAD - Computer aided design.

2DDesign, Google Sketch-up
Advantages
Easy to make changes
Show clients 3D models of your idea Files can be emailed across the world instantly You can test your idea in a virtual environment Disadvantages

Software can be expensive
You need training

CAD Tools

Input Components

These devices form the crucial control needed for a product to operate. Most input components need to be bought but some can be manufactured especially for a project. For instance, a pressure sensor.

Light dependent resistors (LDRs) are a type of variable resistor whose resistance increases with light.
Switches are simple input devices which allow electrical current to flow when pushed

Motion sensors use infrared to detect changes in the environment to activate the system

Thermistors are a type of variable resistor whose resistance changes when it becomes hot or cold.

Process Components

These devices are used in combinations to turn the signal from the input component into the signal to the output component. Careful designing and a good knowledge of the way

Resistors limit current flow in an electronic circuit and have to be placed before some components to prevent damage.

Integrated circuits (ICs) are manufactured for many different uses and functions. A tiny circuit is encased in silicone (a semiconductor material). logic as simple circuits. Because of their reduced size, smaller products can be achieved as more technology can be made to fit into smaller spaces.

Microcontrollers are tiny integrated circuits used widely in automatically controlled devices such as engine management in cars. These can be combined with drivers to control devices such as motors. Raspberry Pi and BBC micro:bit computers are examples used in schools.

Analysing products

When a designer is developing a new design, it is useful to analyse existing products to see how successful they have been and identify any areas in which they could be improved
Solder

Printed circuit board Electronically connect components using copper tracks.

A hazard is any source of potential damage, harm or risk

A precaution is a measure taken to prevent something dangerous or harmful happening

Output Components

The output is the end function of the product. In most cases, the output can be classed as light, sound, motion or a combination of two or more functions.

Light emitting diode (LED) come in different colours and levels of brightness. They have replaced the filament bulb in many everyday uses.

Light bulbs are not as widely used because of LEDs in an everyday context but minilight bulbs do no \dagger require soldering, so can still be useful.

Buzzers use electric current to create their own sound. Used in alarm systems.
Speakers allow a sound signal from a circuit to be amplified.

Motors are magnetic devices and are behind nearly all moving parts in electronic systems.
Exploded
drawings
show how a
product is
assembled.
Each
component is
usually
labelled.

Anthropometrics body and provides categorised data that can be used by designers.

Ergonomics is a consideration that leads to a product being designed in a way to make it easy to use. Size, weight, shape, position of buttons and controls are all aspects that contribute to it being ergonomically designed.

Design movement : A design movement is a group of designers with a common cause view or idea who then produce designs based upon their views or ideas. Memphis Design movement, Art Deco, modernism and Art Nouveau are examples from the $20^{\text {th }}$ century.

Soldering is a permanent addition method for electronic components.
Short-circuit In a circuit, often as the result of a solder bridge, electricity will flow in the shortest path back to the battery.

Insulator A material that does not conduct electricity and can therefore be used as a coating to components, circuit boards and wires. PVC is a example.

Conductor A material which allows heat or electricity to pass through it easily. Copper is an example.

Dance Year 8 - Contemporary Dance

Rudolf Laban (1879-1958)

Born in Austro-Hungary. Laban was a dancer, a choreographer and a dance / movement theoretician. One of the founders of European Modern Dance, his work was extended through his most celebrated collaborators, Mary Wigman, Kurt Jooss and Sigurd Leeder. Through his work, Laban raised the status of dance as an art form, and his explorations into the theory and practice of dance and movement transformed the nature of dance scholarship.

5 Basic Dance Actions - The WHAT

1. Gesture

An action bearing no weight
2. Elevation

An action where the
whole body leave the ground
3. Stillness

An action that is held (balanced) for a moment
4. Travel $从 1 \wedge \lambda$ Locomotion - an action that transport the body from A to B

5. Turn

An action that rotates the body on its own axis
 360 degrees

Dance Dynamics - The HOW

1. Time

The speed at which you move, e.g.,
fast/slow/sudden

2. Weight

The force used to execute an action, e.g., heavy, soft, light.

3. Flow

How continuous an
 action or actions are, whether they have a specific route or destination.

4. Space

The directness of an

Action. Often dictates the overall design or pattern of the action.

Dance Space - The WHEE

1. Size

Small= close to centre/large extended away
2. Pathway

The pattern of the journey, e.g., linear, curved.

3. Direction

Where you face or travel to.

4. Levels

Working on different levels, e.g., on floor, standing, in the air
5. Design

Overall, pattern and shapes used in the body and actions

Dance Relationships - The WHO

1. Contact

One or more parts of the body touching or in-hold.
2. Mirroring

To incline or face

another dancer and perform the actions opposite to them.
3. Canon

To do the same movements one after another.

4. Formation

To create different shapes on the stage, e.g., line, circle, triangle.

Knowledge organiser

Properties of waves

- A wave is an oscillation or vibration which transfers energy from one place to another
- Amplitude - the distance from the middle to the top of bottom of the wave

Wavelength - the distance between a point on the wave to the same point on the next wave

- Trough - The bottom of the wave
- Peak - The top of the wave

- Frequency - How many waves pass a fixed point per second, measured in Hertz (Hz)

There are two main types of waves
Transverse waves, e.g. light

- Travel at 90° direction of energy transfer

Do not need a medium to travel through

Longitudinal waves, e.g. sound

- Travel in the direction of energy transfer
- Need a medium to travel through

\downarrow

Sound waves

- Sound waves are caused by the vibration of particles, sound travels quicker in a solid than a gas as the particles are closer together
- Oscilloscopes display sound waves on a screen

Humans can hear between 20-20 000 hertz (Hz), but other animals have different ranges of hearing
Sound waves above 20000 Hz are known as ultrasound, thesesound waves are too high pitched for humans to hear

Reflection

The law of reflection states that the angle of incidence will be equal to the angle of reflection

For light reflecting off a smooth surface will form an image is called specular reflection
Reflection off of a rough surface will not form an image and is know as diffuse scattering

Refraction

Refraction occurs when a wave passes between two different substances
This happens as the wave will travel at different speeds in the different materials
When the wave passes into a more dense material from a less dense material
it will bend towards the normal, e.g. air into glass When the wave passes into a less dense material from a more dense material it bends away from the normal e.g. glass to air

Light and the eye

- Light entering your eye is refracted by the lens, focusing it on the retina and creating an inverted image
Photoreceptors detect the light hitting your retina and send an electrical impulse to your brain
If the light is not focussed on the retina or the eye, people cannot see properly Long sighted people have the light focus behind the eye, short sighted people have the light focus in front of the retina

Lenses can be used to refract the light in a way in which it will focus on the retina

[^0] colour, refraction, secondary colour, specular reflection, transverse, trough, ultrasound, wave, wavelength

Year 8 Autumn Term Britain 1750-1900

Lesson Content
Introduction + Why did Agriculture need to change?

How did farming change?
Did everyone like the changes on the farms?

The Domestic System

Life in the factories
How bad was life in the factories?

How do businesses grow?
Who made businesses grow?

Why did coal mining grow?
How dangerous was coal mining?

Changes in transport - Roads
Changes in transport - Canals

Changes in transport - Railways

Changes in transport Impact of the Railways

Key dates	
c1701	Jethro Tull invents the seed drill
1759	Josiah Wedgewood starts his business
1771	Arkwright opens Cromford Mill
1761	Bridgewater Canal completed
1776	James Watt's first steam engine
1804	First steam locomotive made
1821	First Turnpike Act 1825 1829 1830 First railway line opens (Stockton to Darlington)
Locomotive called The Rocket wins the Rainhill Trials	
1837	Liverpool and Manchester line opens, first scheduled passenger line in the world
	Euston railway station opens in London
Standard time adopted across UK	

Key peOple	
Jethro Tull	English agricultural pioneer from Berkshire who helped bring about the British Agricultural Revolution. He perfected a horse-drawn seed drill in 1700 that economically sowed the seeds in neat rows, and he later developed a horse-drawn hoe.
Robert Bakewell	British agriculturalist, now recognized as one of the most important figures in the British Agricultural Revolution. In addition to work in agronomy, Bakewell is particularly notable as the first to implement systematic selective breeding of livestock.
Thomas Coke	known as Coke of Norfolk or Coke of Holkham, was a British politician and agricultural pioneer
Richard Arkwright	English inventor and a leading entrepreneur during the early Industrial Revolution. ... Arkwright's achievement was to combine power, machinery, semi-skilled labour and the new raw material of cotton to create mass-produced yarn.
Josiah Wedgewood	English potter and entrepreneur. ... He developed improved pottery bodies by a long process of systematic experimentation, and was the leader in the industrialisation of the manufacture of European pottery (the Chinese having achieved this long before).
Matthew Boulton	English manufacturer and business partner of Scottish engineer James Watt. ... He then successfully lobbied Parliament to extend Watt's patent for an additional 17 years, enabling the firm to market Watt's steam engine.
James Watt	British engineer and inventor who patented a much improved version of the steam engine (1769) and devised the unit of horsepower. The watt unit of power is named for him.
James Brindley	English engineer. He was born in Tunstead, Derbyshire, and lived much of his life in Leek, Staffordshire, becoming one of the most notable engineers of the 18th century.
Thomas Telford	Scottish civil engineer, architect and stonemason, and road, bridge and canal builder.
James McAdam	Scottish inventor of the macadam road surface, now known as Tarmac
George Stephenson	British civil engineer and mechanical engineer. ... George also built the first public inter-city railway line in the world to use locomotives, the Liverpool and Manchester Railway, which opened in 1830.

Key words - Glossary

agriculture	the science or practice of farming, including cultivation of the soil for the growing of crops and the rearing of animals to provide food, wool, and other products	exploitation	the action or fact of treating someone unfairly in order to benefit from their work.
revolution	As a historical process, "revolution" refers to a movement, often violent, to overthrow an old regime and effect. complete change in the fundamental institutions of society	mineshaft	a deep narrow vertical hole, or sometimes a horizontal tunnel, that gives access to a mine.
mechanisation	the introduction of machines or automatic devices into a process, activity, or place	methane	a colourless, odourless flammable gas which is the main constituent of natural gas.
domestic	relating to the running of a home or to family relations.	navvie	a labourer employed in the excavation and construction of a road, canal, or railway.
factory	a building or group of buildings where goods are manufactured or assembled chiefly by machines	turnpike	a toll gate.
manufacturing	the making of articles on a large scale using machinery; industrial production.	aqueduct	an artificial channel for conveying water, typically in the form of a bridge across a valley or other gap.
entrepreneur	a person who sets up a business or businesses, taking on financial risks in the hope of profit	locomotive	a powered railway vehicle used for pulling trains.
profit	a financial gain, especially the difference between the amount earned and the amount spent in buying, operating, or producing something.	viaduct	a long bridge-like structure, typically a series of arches, carrying a road or railway across a valley or other low ground.

Key resources:

 www.tecchistoryks3.blogspot.comKey Assessment:
50 minute assessment based on skills from Paper 1+3 GCSE History Questions 1-4or5

Year 8 - Nutrients

Food safety and hygiene is about protecting people and reducing the risk of food poisoning.

https://www.youtube.com/watch?v=zEOypKtFuWQ

The Eatwell Guide shows the types and proportions of foods people need for a healthy and well-balanced diet.

https://www.youtube.com/watch?v=7MIE4G8ntss https://www.nhs.uk/live-well/eat-well/the-eatwell-guide/ https://www.youtube.com/watch?v=8aWqZd9RScQ

Carbohydrates are macronutrients

The main function is to provide energy to the body.

2 main types = starchy (complex) and sugary (simple)

Complex = long lasting energy;
Simple = short burst of energy

Proteins are macronutrients.

They're used by the body for growth, repair and maintenance of muscle and tissue.

2 main types = HBV (high biological value) and LBV (low biological value)

HBV = contain all 9 essential amino acids;

LBV = contain some but not all 9 essential amino acids
https://www.youtube.com/watch?v=61Lelea02ao https://www.youtube.com/watch?v=KSKPgaSGSYA
https://www.youtube.com/watch?v=PByM12M1n3A https://www.youtube.com/watch?v=Xto8ZqCYDvY

Key vocabulary

 safety / hygiene nutrients / sources / function carbohydrates / protein / amino acids HBV / LBV / protein complementation fibre / vitamins / minerals / fat / water deficiency / excess convection / conduction / radiation

https://www.youtube.com/watch?v=K5pW7rpMTQw https://www.youtube.com/watch?v=kteZneJm1EI https://www.youtube.com/watch?v=1u5HOURq7kQ

Year 8 - Cooking skills

Skills and Processes

Key word	Meaning
Gluten	The protein found in wheat, which is responsible for the elastic texture of dough.
Kneading	Working bread dough with the hands to stretch the gluten so it is elastic (helps the yeast to make bread rise).
Gelatinisation	When liquid is added to starch grains making them swell. Used to thicken sauces eg. cheese.
Simmering	When water or food in a saucepan bubbles gently (stays below boiling point).
Vegan	Don't eat or use ANY animal products.

Independent skills I need to learn in Year 8

Use the bridge hold and claw grip to cut food safely and accurately.
Use a range of other preparation techniques eg. peeling, chopping, slicing, dicing, grating etc.

Organise all my ingredients and follow a recipe.
Use the cooker (eg. hob and oven) safely.
Temperature control know when to turn heat up and down accordingly.

Food safety

Using colour coded chopping boards and equipment prevents bacteria spreading and causing food poisoning.

PREVENT CROSS
CONTAMINATION
USE CORRECT COLOUR CODED
CHOPPING BOARDS $\&$ KNIVES

RAW MEAT
RAW FISH
COOKED MEATS
SALAD \& FRUITS
VEGETABLES
DAIRY PRODUCTS

SHAKESPEARE TODAY

Circa 1585-1613.

William Shakespeare was a poet, playwright and actor. His body of writing is considered the most influential and important of the modern world.
His plays are sectioned into three categories: Histories, Tragedies and Comedies.
Shakespeare also expanded the English Language vastly, adding hundreds of words to our rich language during his time as a writer.

His work straddled the Elizabethan and Jacobean periods; this means he was writing when Queen Elizabeth I was on the throne, and when King James I (VI of Scotland) ruled England. This historical backdrop is important to note when studying his works as the monarchy had a lot more power over the country than they do in modern England.

King James $1^{\text {st }}$ of England ($6^{\text {th }}$ of Scotland)

Queen Elizabeth $1^{\text {st }}$ of England

Key terminology:

lambic pentameter - ten syllables in a line
Sonnet - a form of poetry with 14 lines and a strong rhyme scheme
Hamartia - a character's fatal flaw leading to his/her downfall
Hubris - a character's huge amount of pride or self-confidence
Thee/Thou - A middle English way of saying "you"
Patriarchy - a system of society or government in which men hold the power and women are largely excluded from it
Jacobean Period - 24 Mar 1603-27 Mar 1625

Relevance - the quality or state of being closely connected or appropriate.

Complementary colours are opposite each other on the colour wheel.

A boomerang is a curved flat piece of wood that can be thrown so that it will return to the thrower, . long deep sound.

Clapping sticks are a traditional
percussion percussion
instrument used during ceremonies and
songs. traditionally used by Australian Aborigines as a hunting weapon.

Symbols are used to tell the stories of the Dreamtime.

The Bull-roarer is a sacred object used in Aboriginal religious ceremonies, consisting of a piece of wood attached to a string, whirled round to produce a roaring noise.

| Media | Best practice |
| :--- | :--- | :--- |
| Coloured Pencils | Apply using a soft circular motion
 Start with the lightert colours and build up colour/tone
 Harmonious colours add depth
 Complimentary colours add definition |
| | A sharp pencil will create a crisp finish
 Avoid applying a thick stripy line of tone around the edge of shapes, blur it by applying
 soft pressure on the edge |
| Watercolour | Mix your own variations of colour instead of using them straight out of the palette to
 make your work look more individual |
| Papier Mache | Avoid adding too much water to your paint or the paper will start to bobble/wave
 Apply colour in layers to build up tone
 To blend colours on the page work quickly and place wet next to wet |
| When you want colour to stay separate make sure you don't apply wet next to wet | |
| Consider layering mark-making on top of dry layers to add interest | |
| Change your water regularly to avoid cross contamination | |

The Dreamtime is the

 Aborigines belief of how the world and its creation began. Aboriginal culture includes ceremonies, body art, music, art and story telling.

Aborigines are the original inhabitants of Australia.

Topic	Key fact	Hegarty maths clip number
Expanding single brackets	$2(y-3)=2 x y-2 x 3=2 y-6 \sqrt{ }$	160-161
Plotting linear graphs using a table of values	- Need minimum 3 pairs of coordinates. - Start at $\mathrm{x}=0$. - Do the positive x co-ordinates first. - X co-ordinate: along the corridor - Y co-ordinate: up the stairs. $-Y=m x+c$ will be a straight line.	206
Identifying gradient and \mathbf{y} intercept	The number in front of x is called the gradient and tells us how many up $(+)$ or down (-) the graph goes for every 1 across (right).	207
Calculating with Decimals	Addition and subtraction: line up the decimal point. Multiplication: Change to whole numbers and remember to put the point in at the end. Division: If dividing by a decimal times both numbers by 10,100 or 1000. Do not put decimal back in.	47-51
Four Operations with Fractions	To add and subtract fractions you need to write all fractions in a sum with the same denominator by writing equivalent fractions. Multiplying: Cancel down whenever possible, then multiply the numerators together and multiply the denominators together. Dividing fractions: KFC (Keep the first, Flip the second and Change the sign to x)	65-78
Sharing in a given ratio	Always find 1 part	332 to 334
Ratio problems	Set out in columns and put information below the appropriate column	335 to 338
Proportion	Direct proportion: as one quantity increases so does the other Inverse proportion: as one quantity increases the other decreases	339 to 342
Mean, Median, Mode and Range (recap averages)	Mean: Add up all the numbers and then divide by the number of items. Median: Put in order and then find the middle. If two middle values then add the two middle numbers and divide by 2. Mode: The number that appears the most. There can be more than one mode. Range: The difference between the largest and smallest numbers.	$\begin{gathered} 404-410 \\ \text { And } \\ 419-421 \end{gathered}$

Multi-step Angle Reasoning	Angles on a straight line add up to 180°. Angles in a triangle add up to 180°. Angles in a quadrilateral add up to 360°. Vertically opposite angles are equal. Angles around a point add up to 360°.	$\begin{aligned} & 477-480, \\ & 484-491, \\ & 812-815 \end{aligned}$
Pie Charts	- Find the angle for each category: - $360^{\circ} \div$ total frequency $=$ the number of degrees per piece of data - To work out each category's associated angle we multiply the number of degrees per piece of Top Tip: Always draw each angle clockwise, using the previous line drown to start.	427-429

Key Vocabulary

- Numerator - the top number in a fraction.
- Denominator - the bottom number in a fraction.
- Mixed number - a number consisting of an integer and a proper fraction.
- Improper fraction - an improper fraction is a fraction where the top number (numerator) is greater than or equal to the bottom number (denominator): it is top-heavy.
- Direct proportion - one quantity increases at the same rate as the other quantity increases.
- Inverse proportion - one quantity increases at the same rate as the other quantity decreases.
- Rate - a price or charge set according to a scale or standard hotel rates.
- Quantity - the amount of something.
- Expand - to multiply the term before bracket by the terms in the bracket.
- Expression - collection of terms. E.g $4 x+8 p$.
- Gradient - the steepness of a curve
- Linear Graph - straight line graph $y=m x+c$
- Y-intercept - where the graph crosses the y axis

The Basic Principles of Handball

- Handball is a team sport based on "fair play" principles.
- On court there are two male or female teams playing against each other, - On court there are two male or female tea
both trying to score goals with a handball.
- The team that has scored the most goals when the playing time is over is

Technical Facilities

- Different ball sizes are used for different age groups/genders.
- The goal height is 2 metres, the goal width 3 metres.
- The playing time can be varied and is up to 2×30 minutes in
official games.
- Each team consists of up to 14 players.
On court a team has 6 field players and
- Within each team the players are interchangeable during the game.
- All field players of a team wear identical, coloured uniforms
field players
- Players are not permitted to wear objects that could be dangerous
- Up to 4 team officials are responsible for coaching
- 2 referees officiate the game on court in cooperation
with the judges' table (timekeeper, scorekeeper). 18. with the judges' table (timekeeper, scorekeeper).

Playing court
$40 \times 20 \mathrm{~m}$
Goals: $3 \times 2 \mathrm{~m}$

Warm ups

should be

* activity spe-
cific
* Pulse raising
* Prepare you
properly for the activity

UNIT 8

Saying what jobs people do, why they like/dislike then and where they work

UNIT 11: Talking about food Likes/dislikes and why [Part 1]

Singular J'adore [I love] J'aime beaucoup [I like a lot] J'aime [I like] J'aime un peu [I like a bit] Je n'aime pas [I don't like] Je déteste [I hate] Je préfère [I prefer]	le café [coffee] MASC le chocolat [chocolate] le fromage [cheese] le jus de fruits [fruit juice] le lait [milk] le miel [honey] le pain [bread] le poisson [fish] le poulet rôti [roast chicken] le riz [rice] la salade verte [green salad] la viande [meat]	parce que c'est [because it is]	dégoûtant [disgusting] délicieux [delicious] dur [tough] épicé [spicy] gras [oily, greasy] juteux [juicy] malsain [unhealthy] rafraîchissant [refreshing] sain [healthy] savoureux [tasty] sucré [sweet]
Plural	l'eau [water] (I' + vowel) MASC		
J'adore [I love] J'aime beaucoup [I like a lot] J'aime [I like] J'aime un peu [I like a bit] Je n'aime pas [I don't like] Je déteste [I hate] Je préfère [I prefer]	les chocolats [chocolates] les fruits [fruit] les hamburgers [burgers] les légumes [vegetables] les œufs [eggs] FEM les bananes [bananas] les fraises [strawberries] les crevettes [prawns] les oranges [oranges] les pommes [apples] les tomates [tomatoes]	parce qu'ils/elles sont [because they are]	dégoûtant(e)s [disgusting] délicieux/euses [delicious] dur(e)s [tough] épicé(e)s [spicy] gras(se)s [oily, greasy] juteux/euses [juicy] malsain(e)s [unhealthy] rafraîchissant(e)s [refreshing] sain(e)s [healthy] savoureux/euses [tasty] sucré(e)s [sweet]
PLEASE NOTE [1] after "c'est" an adj Ex. J'aime la viande, c' [2] however, in the sec Ex. J'aime les œufs par Ex. J'aime les tomates	is always in its masculine singula licieux. ection after "ils sont" or "elles son ils sont sains. qu'elles sont saines.	m djectives agr	h in gender and number

UNIT 9

Comparing people's appearance and personality

Él [he] Ella [she] Mi abuela [my gran] Mi abuelo [my grandad] Mi amigo/a [my friend] Mi gato [my cat] Mi hermana [my sister] Mi hermano [my brother] Mi madre [my mum] Mi mejor amigo/a [my best friend] Mi padre [my dad] Mi perro [dog] Mi primo/a [my cousin] Mi tía [my aunt] Mi tío [my uncle] Mis abuelos [my grandparents] Mi novio [boyfriend] Mi novia [girlfriend] Mis padres [my parents]	es [is] son [are]	más [more] menos [less] \tan [as]	```aburrido/a [boring] alto/a [tall] amable [kind] antipático/a [unfriendly] bajo/a [short] cariñoso/a [affectionate] débil [weak] delgado/a [slim] deportista [sporty] divertido/a [funny] feo/a [ugly] fuerte [strong] gordo/a [fat] guapo/a [good-looking] hablador(a) [talkative] inteligente [intelligent] joven [young] perezoso/a [lazy] ruidoso/a [noisy] serio/a [serious] simpático/a [friendly] trabajador(a) [hard-working] tranquilo/a [relaxed] tonto/a [stupid] viejo/a [old]```	que [than] como [as]	él ella mi abuela mi abuelo mi amiga Ana mi amigo Paco mi gato mi hermana mi hermano mi hijo mi hija mi madre mi mejor amiga mi mejor amigo nosotros [us] mi padre mis padres mi pato mi perro mi prima mi primo mi tortuga mi tía mi tío mis abuelos mis hermanas mis hermanos mis primos mis tíos yo

Autor's note: Add an 'S' at the end of your adjectives for plurals (when describing more than one person). E.g. Mis padres son más TRANQUILOS que mis tíos.

Unit 12
 Talking about food: Likes/dislikes [Part 2]

Meals	du chocolat [chocolate]	car c'est [because it is]	aigre [acidic , sour] amer [bitter]
Au petit-déjeuner, je prends [At breakfast I have]	du café [coffee] du fromage [cheese] du jus de fruits [fruit juice]		bon [good] dégoûtant [disgusting] délicieux [delicious]
Au déjeuner, je mange [At lunch I eat]	du lait [milk] du miel [honey] du poisson [fish]		dur [tough] épicé [spicy] fade [bland]
Au goûter, je prends [At tea time I have]	du poulet rôti [roast chicken]	et je trouve cela [and I find this]	gras [oily, greasy] juteux [juicy]
Au dîner, je mange [At dinner I eat]	du riz [rice]		léger [light]
	du saumon [salmon]		malsain [unhealthy]
Je bois [I drink]	du thon [tuna] FEM		rafraîchissant [refreshing]
	de l'eau [water] de la pizza [pizza]		riche en vitamines [rich in vitamins]
	de la salade verte [green salad] de la viande [meat]		sain [healthy] savoureux[tasty] sucré [sweet]
What I like/dislike	PLURAL MASC	car ils/elles sont [because they are]	
	les fruits [fruit]		aigres [acidic, sour]
J'adore [I love]	les hamburgers [burgers]		amers/ères [bitter]
	les légumes [vegetables]		bons/bonnes [good]
J'aime beaucoup [I like a lot]	les sandwiches au fromage [cheese sandwiches]		dégoûtant(e)s [disgusting]
J'aime [I like]	PLURAL FEM		délicieux/euses
J'aime un peu [I like a bit]	les bananes [bananas] les crevettes [prawns]		[delicious] dur(e)s [tough]
Je n'aime pas [I don't like]	les oranges [oranges]		sucré(e)s [sweet] etc...
	les pêches [peaches]		
Je déteste [I hate]	les pommes [apples]		
	les saucisses [sausages]		
	les tomates [tomatoes]		

UNIT 13
Talking about clothes

Quand il fait chaud [when it is hot]	je porte [I wear]	une casquette FEM	blanche [white]
Quand il fait froid [when it is cold]		une chemise [a shirt] une ceinture [a belt]	grise [grey]
Quand je sors avec mon ami/amie [when I go out with my friend]		une cravate [a tie] une écharpe [a scarf] une jupe [a skirt] une montre [a watch]	jaune [yellow] marron [brown] noire [black]
Quand je sors avec mes amis [when I go out with my friends]		une robe [a dress] une veste [a jacket] une veste de sport [a sports jacket]	orange [orange] rouge [red] verte [green]
Quand je joue au foot [when I play football]	il/elle porte [he/she wears]		
		un chapeau [a hat] MASC un collier [a necklace] un costume [a suit] un gilet [a waistcoast]	blanc [white] bleu [blue] gris [grey]
A la maison [at home]		un haut [a top] un jean [jeans]	jaune [yellow]
En discothèque [at the nightclub]		un maillot de bain	marron [brown] noir [black]
Au collège [at school]		un manteau [a coat] un pantalon [trousers]	orange [orange]
Au gymnase [at the gym]		un pull [jumper] un short [shorts]	vert [green]
A la plage [at the beach]		un survêtement [a tracksuit] un tee-shirt [a tee-shirt] un tee-shirt sans manches [tank top / vest] un uniforme [a uniform]	
Normalement [normally] En général [in general] Souvent [often]		PLURAL FE	blanches [whit
		des bottes [boots] des boucles d'oreilles [earrings] des chaussettes [socks] des chaussures [shoes] des chaussures à talons hauts [high heel shoes] des chaussures de sport [sports shoes] des pantoufles [slippers] des sandales [sandals]	bleues [blue] grises [grey] jaunes [yellow] marron [brown] noires [black] orange [orange] rouges [red] vertes [green]

The Design Process
THE DESIGN PROCESS

IDENTIFY PROBLEM | "The design process |
| :--- |
| involves continually |
| evaluating and |
| redesigning to develop |
| ideas" |

Primary and secondary data

Primary sources of information are gathered by the designer and used to help improve their designs.
Secondary sources of information use data already found by other people or organisations that are relevant.

User centred design.

User centred design consider who the target market will be and thinks about their needs and wants. Examples of this could be:

- designing fastenings for small children to use
- creating products for the partially sighted, which might include bright colours or large buttons
- redesigning products using the ergonomic data of a wheelchair user

Year 8 - Textiles Design and Technology

Fabric Construction		
Woven	Knitted	Non- Woven
(a)	(b)	(c)
Strong, non stretch, different weaves: plain, twill, satin. Use for shirts, jeans, bed linen	Cheaper to produce, stretch due to loop structure, can snag and cause runs. Used for sportswear, tights and jumpers	Very cheap, not strong (unless bonded), can be easily torn. Use for disposable products e.g. jay clothes, disposable hats, felt.

Cotton V's Polyester		
Material	Source of origin	Sustainable?
Cotton		More sustainable than Polyester, because the plants can continually grow. Uses a large amount of water to grow, clean and process the fibres. Pesticides and dyes can be poisonous and cause pollution. Organic cotton is produced more
Polyester		Made from a fossil fuel (coal/oil) so not sustainable. Can be recycled though. Each time polyester is washed microfibre are release which is polluting the oceans and getting into the eco system.

The 6Rs

Rethink	Do we make too many products? Design in a way that considers people and the environment.	
Refuse	Don't use a materials or buy a product if you don't need it or if it's bad for people or the environment	
Reduce	Cut down the amount of material and energy you use as much as you can.	Use a product to make something else with all or parts of it.
Recycle	Reprocess a material or product and make something else.	
Repair	When a product breaks down or doesn't work properly, fix it.	

The Impact Of Fast Fashion

Textile production
produces harmful
emissions and other
pollution from

chemicals and dyes. \quad| Poor-quality clothing |
| :---: |
| leads to more textile |
| waste. Plastic based |
| fibers release harmful |
| gases in landfills. |

Key Terms:

Fast Fashion-clothes that are made quickly and cheaply to meet everchanging fashion trends. Often linked to poor working conditions.

Sustainability - when materials or products can be
made without damage to people of the environment. E.g. Organic

cotton and Bamboo

Fairtrade - trade between companies in developed countries and producers in developing countries in which fair prices are paid to the producers

[^0]: Key terms Make sure you can write definitions for these key terms.

