
Miniaturized Remote Light 

Saurabh Kwatra Resolve 
 

 

Introduction 
I was recently contacted by a gentleman who was looking for a very small circuit that would 
contain an LED that could be turned on and off with some sort of remote control.  At first I 
responded to him that this project didn't hold much interest for me and that I would not be 
interested in pursuing it.  Before writing it off entirely I asked for more information on his idea, 
specifically the size requirements and what the end use was to be. 

When he responded that it should be no larger than a Tylenol capsule that gave me even more 
reason to pass on it.  As luck would have it, however, his intended end use got my attention.  He 
is a teacher and wants to use these small devices to highlight items on a black board (or more 
likely a white board these days!) so that they would stand out for his students.  Having been a 
classroom teacher and then a technology coordinator I have a soft spot for teachers with 
technology-related ideas.  When I was technology coordinator for my school district I went to 
great lengths to make technology work for my colleagues.  I began to feel the same way about 
this endeavor. 
Design Considerations 
There are a number of issues with trying to design a device that is as small as a Tylenol capsule.   

 Finding a very small battery with sufficient power to work for a reasonable amount of 
time 

 Identifying a way to connect the battery to the circuit 
 Determining the type of remote control receiver that could be used for turning the LED 

on and off 
 Designing a control circuit to make it all happen 
 Writing software so that the unit behaves as envisioned 
 Fabricating the unit so that it will fit into a small space 

Batteries 
The biggest problem is supplying power while meeting the space restrictions.  Small batteries 
like those for hearing aids and wrist watches are the obvious candidates but they don't contain 



very much energy and small battery enclosures to hold them are not readily available.  The only 
battery operated circuits utilizing small batteries that I had experience with were powered by 3.7 
volt 2032 batteries.  These supply a good bit of power (more than 200 mAh) but  are about the 
size of a quarter dollar, decidedly larger than a small capsule.  The most promising size that I 
have found at a reasonable price is part #AG5 which will supply about 50 mAh.  Zinc air 
batteries of similar sizes give much more life but suffer from the fact that once "opened" and 
exposed to air they expire in a few weeks.  Alkaline cells seem to give the best power for the 
price.  Unfortunately they only supply 1.5 volts per cell and we need at least 3 volts to power the 
circuit so two need to be placed in series. 

Battery Connection 
Since we are not starting out with a container into which the battery and circuitry will be housed 
we must find a way to get things connected together.  With non-rechargeable batteries it is not 
practical to solder directly to the battery even though this is the best way to keep size to a 
minimum.  I explored other options and settled on using small rare earth magnets to hold the 
batteries to the circuit.  The problem that this presents is how does one connect wires to the 
magnets? 

One can solder to many rare earth magnets but heat, even for a very brief time, can destroy the 
magnetic domains and render the magnets weak or useless.  I experimented with a number of 
methods of connecting wires to magnets and settled on a two step process.  First I stripped about 
1/2" of insulation from each end of a red and a black stranded wire.  I pressed the wire against 
the small magnet and added a drop of CA (super glue) - while holding the wire in place with the 
edge of a screwdriver I brushed the still wet CA with accelerator.  CA accelerator is a chemical 
that caused super glue to set almost instantly.  See: 
http://sinbadglue.com/shop/Itemdetail.asp?ID=1132 .  Once the CA was dry I tested the 
connection with an ohm meter.  0.2 ohms.... not bad!  I added a coat of 5 minute epoxy to give a 
bit of a strain relief.  I attached the two magnets to either side of a 2032 and measured the 
voltage.... 3.7 volts, just what I had hoped for! 

Using small magnets opens up lots of options for the final design.  I also found that a third small 
magnet can be placed between the two 1.5 volt alkaline cells to join them in series. 

If you want to try your hand at soldering directly to the magnets make sure you use a very hot 
iron and get in and out in no more than a second or two.  Immediately wet the magnet to cool it 
down.  I found it beneficial to clamp the magnet into a vise or other fixture as the magnet will 
likely grab the iron tip on the soldering iron and it may be difficult to pull away if the magnet is 
not fixed to some other object. 

Remote Control 
There are two options that were considered for remote control.  We could use either radio control 
or infrared.  I felt that the infrared option was much simpler and likely to be less expensive and 
consume less power.  I have done a good bit of work with using TV remote controls like this one 
to control various projects and have found them to be reliable and easy to use. 



 

I also knew that the devices that are used to receive and interpret infrared signals from a TV 
remote are fairly small.  The sensor, a TSOP4038 from Vishay, is easily small enough at 
approximately 6mm on each side.  It also works on as little as 2.7 volts so it will operate from 
two 1.5 volt cells connected in series.  It will, however, cease working as the batteries discharge.  
The good news is that I have tested these devices with voltages as low as 2.1 volts and they 
continue to perform properly. 

 

In addition the use of a TV remote brings the potential for much more customization of the 
devices.  

Microcontroller Control 
To pull it all together we need some sort of circuitry that will receive and act upon infrared 
pulses and turn the LED on or off as needed.  While this could be done with discrete devices like 
transistors, resistors and capacitors it make much more sense to use a very small microcontroller 
to perform these tasks. 

 

The PIC 12F683 is an 8 pin device.  I chose to use the surface mount version, shown above, 



which measures about 5mm x 5mm x 2mm.  It will operate on as little as 2.0 volts, a real plus in 
this application as it will continue to operate even when the batteries are nearly discharged. 

As you can see in the schematic below two of the chip's pins (#1 and #8) are used for power and 
ground while two others (#2 and #3) connect to the LED and IR Receiver.  The connections to 
pins 4, 6 and 7 are only used for programming and debugging and are not needed for the unit 
once it is complete.   

The current limiting resistor, R1, is 100 ohms and keeps the amount of power that the LED pulls 
from the batteries to a minimum.  A larger value resistor will extend battery life but will light the 
LED less brightly. 

Note that two LEDs and current limiting resistors are shown.  You need only install one of them.  
I included two as it might be easier to wire to one pin than the other.  The software will activate 
both pins 3 and 5 when needed. 

  
Software 
The program that resides on the 12F683 is shown below.  It is written in PIC Basic and compiled 
before it is sent to the microcontroller.  It does the following: 

 When first programmed each unit is given a number between 1 and 10.  To simplify 
things each is first named "2". 

 When the IR sensor sees its number the LED goes on and stays on 
 The second time is sees its number it flashes at about 1 Hz (once per second) - note that 

this can increase in speed if exposed to fluorescent lights 
 The third time it sees its number it goes dark. 
 If the "MENU" key on the remote control is pressed and the LED is in flash mode the 

LED flashes its number (i.e. flashes once for "1", twice for "2", etc) - NOTE - MENU 
will NOT work if the LED is not flashing.  This is designed to allow you to work near a 
number of these units and not change them all at once! 



 The unit waits until a number from 1 to 10 (zero button) is pressed.  It assigns that 
number to the unit so that it will only react to its number when pressed on the TV remote 

 That number is written to internal memory so that it will not be lost when power is 
removed. 

 A unit's number can be revealed by pressing the RETURN button.  The LED with flash 
once for "1", twice for "2" and so on 

 The device can be put into a very low power "Sleep" mode by pressing the POWER 
button.  The LED will go from bright to dim indicating it is going to sleep.  Press the 
POWER key again to wake it up 

Giving each unit a unique number allows up to 10 of these devices to be used at the same time. 
'd. bodnar 2-01-2012  Black Board Blinker 
' CHANGES: 
'  DONE hit RETURN to show unit value - always ends in not flashing 
'  DONE press unit # once for solid on, a second time for flashing and a 
third time for off 
'  DONE consider change so that MENU is only recognized if unit is flashing 
(easier... 
'      when working with multiple units) 
'  DONE add routine from Bike Blinker that puts it to sleep when POWER is 
pressed 
'       may need to move LED from pin 3 to pin 5 for PWM dimming / 
brightening 
' FIXED does not come back to mode (solid on) when it wakes up - does do so 
on flash 
' using both pins 3 and 5 for LED - added current limiting resistor, too 
DEFINE PULSIN_MAX  10000 
INTCON = %00001100      '00xx11xx to be CCP1 mode 
ansel = 0          'all inputs digital 
cmcon0 = 7           
INCLUDE "modedefs.bas" 
Serial_out         VAR gpio.0      'pin 7 
irin            VAR gpio.5      'pin 2 
  
NotUsed1           VAR gpio.1      'pin 6 
LED                VAR gpio.4      'pin 3  NOTE - must use INTOSIO in 
programmer 
LED2               VAR gpio.2      'pin 5 
trisio           = %00100000        ' 
gpio             = %00100000 
 
one                 CON 128 
two                 CON 129 
three               CON 130 
four                CON 131 
five                CON 132 
six                 CON 133 
seven               CON 134 
eight               CON 135 
nine                CON 136 
zero                CON 137 
 
channelUP           CON 144 



channelDOWN         CON 145 
volumeUP            CON 146 
volumeDOWN          CON 147 
OK                  CON 148    'Mute 
Menu                CON 224 
ENTER               CON 139 
RETRN               CON 187 
Power               CON 149 
Temp                VAR BYTE 
Temp2               VAR BYTE 
WhichLED            VAR BYTE 
FlashRate           VAR BYTE    'higher = slower 
IRpulse_length      VAR WORD(13) 
xx                  VAR BYTE 
y                   VAR BYTE 
Command             VAR BYTE 
LEDFLag             VAR BYTE(11)    'go to 11 since we need 0-10 (11 
elements) 
SEROUT Serial_out,n9600,[13,10,13,10,13,10,"d. bodnar  ver 1.9 IR Sensor to 
control",13,10] 
SEROUT Serial_out,n9600,[13,10,"Black Board Blinker- 02-01-12",13,10] 
 
DATA @0,2,200                     'start with LED reacting to #1 on remote 
READ 0, WhichLED                'remember which it is programmed to be 
READ 1, FlashRate               'not currently being used 
FOR Temp=0 TO 10:LEDFLag(Temp)=0:NEXT Temp ' clear array 
Top: 
IF LEDFLag(WhichLED)=2 THEN 
    TOGGLE LED:TOGGLE LED2 
ENDIF 
Command=0 
GOSUB GetIR  
IF Command=Power THEN GoToSleep: 
IF Command = RETRN THEN ' show unit # 
    LOW LED:LOW LED2:PAUSE 400 
       SEROUT Serial_out,n9600,["Blinking # ",#WhichLED,13,10]     
       FOR Temp=1 TO WhichLED 
        HIGH LED:HIGH LED2:PAUSE 200:LOW LED:LOW LED2:PAUSE 200 
       NEXT Temp 
       PAUSE 500 
       IF LEDFLag(WhichLED)=1 THEN HIGH LED:HIGH LED2 
ENDIF 
IF Command = Menu AND LEDFLag(WhichLED)=2 THEN  'LED must be flashing to 
change # 
     SEROUT Serial_out,n9600,["@ Change #",13,10] 
     LOW LED:LOW LED2:PAUSE 400 
       FOR Temp=1 TO WhichLED 
        HIGH LED:HIGH LED2:PAUSE 200:LOW LED:PAUSE 200 
       NEXT Temp 
       PAUSE 500 
      StayHereTillRightNumberHit: 
     GOSUB GetIR 
     Temp2=Command-127 
     SEROUT Serial_out,n9600,[ "new number is ",#Temp2,10,13 ] 
     IF Temp2<11 AND Temp2>0 THEN 
        WhichLED=Temp2 



        SEROUT Serial_out,n9600,[ "WhichLED= ",#WhichLED,10,13 ]         
        WRITE 0, WhichLED 
         FOR Temp=1 TO WhichLED 
           HIGH LED:HIGH LED2:PAUSE 200:LOW LED:LOW LED2:PAUSE 200 
         NEXT Temp 
         LEDFLag(WhichLED)=0    'start with led off 
         PAUSE 200 
         GOTO Top: 
     ELSE 
     GOTO StayHereTillRightNumberHit 
    ENDIF 
ENDIF 
Temp2=Command-127   'convert to which number 
SEROUT Serial_out,n9600,["T2,wled, arry ",#Temp2," ",#WhichLED," 
",#LEDFLag(Temp2)," ",#LEDFLag(WhichLED),10,13] 
IF Temp2 = WhichLED THEN 
    LEDFLag(Temp2)=LEDFLag(Temp2)+1 
    IF LEDFLag(Temp2)=3 THEN  
        LEDFLag(Temp2)=0 
        LOW LED:LOW LED2 
        PAUSE 200 
    ELSE 
        HIGH LED:HIGH LED2 
        PAUSE 200 
    ENDIF 
    SEROUT Serial_out,n9600,[10,13, "Got It ledflag() 
",#LEDFLag(Temp2),10,13,10,13 ] 
ENDIF     
GOTO Top 
 
GoToSleep: 
SEROUT Serial_out,n9600,[10,13,"@Sleep",10,13] 
FOR y= 255 TO 0 STEP -3  'dim showing going to sleep 
    PWM LED, y,3 
    PWM LED2,y,3 
NEXT y 
SkipDim: 
LOW LED:LOW LED2 
LongSleep: 
SEROUT Serial_out, n9600, ["Z", 10,13] 
PAUSE 1000 
INTCON.0 = 0 'Reset the  Port change bit 
gpio.5=0        'reset switch pin 
IOC = %00100000 'enable INTERRUPT ON CHANGE on gpio 5  
SLEEP 65000  'in seconds 
IF intcon.0=0 THEN GOTO LongSleep 
INTCON.0 = 0 'Reset the  Port change bit    
IOC=0 
PAUSE 100  
redo: 
Command = 0:GOSUB GetIR 
IF Command=0 THEN redo 
SEROUT Serial_out, n9600, ["key = ",#Command, 10,13]  
IF Command <> Power THEN 
    SEROUT Serial_out, n9600, ["Not Power", 10,13]   
    PAUSE 200 



    GOTO SkipDim ' stay asleep unless Power hit again 
ENDIF 
FOR y= 0 TO 255 STEP 3  'brighten LED to show waking up 
    PWM LED, y,3 
    PWM LED2,y,3 
NEXT y    
IF LEDFLag(WhichLED)=1 THEN HIGH LED:HIGH LED2 
SEROUT Serial_out, n9600, ["xZ", 10,13]  
INTCON.0 = 0 'Reset the  Port change bit    
PAUSE 1000 
GOTO Top: 
 
'NOTE - numbers seem to vary with IR receivers - this set (240 / 120) seems 
'  OK with all three receivers that I have 
GetIR: 
 
PULSIN irin ,0, IRpulse_length(0) 
IF IRpulse_length(0) < 240 THEN RETURN 
 
FOR xx=1 TO 12 
    PULSIN irin,0,IRpulse_length(xx) 
NEXT xx 
 
displaybits: 
IF IRpulse_length(1) < 120 THEN  
    Command.BIT0 = 0  
    ELSE  
    Command.BIT0 = 1 
ENDIF 
IF IRpulse_length(2) < 120 THEN 
    Command.BIT1 = 0 
    ELSE 
    Command.BIT1 = 1 
ENDIF 
IF IRpulse_length(3) < 120 THEN 
    Command.BIT2 = 0 
    ELSE 
    Command.BIT2 = 1 
ENDIF 
IF IRpulse_length(4) < 120 THEN 
    Command.BIT3 = 0 
    ELSE 
    Command.BIT3 = 1 
ENDIF 
IF IRpulse_length(5) < 120 THEN 
    Command.BIT4 = 0 
    ELSE 
    Command.BIT4 = 1 
ENDIF 
IF IRpulse_length(6) < 120 THEN 
    Command.BIT5 = 0 
    ELSE 
    Command.BIT5 = 1 
ENDIF 
IF IRpulse_length(7) < 120 THEN 
    Command.BIT6 = 0 



    ELSE 
    Command.BIT6 = 1 
ENDIF 
IF IRpulse_length(8) < 120 THEN 
    Command.BIT7 = 0 
    ELSE 
    Command.BIT7 = 1 
ENDIF 
IF Command.BIT7 = 0 THEN 'Bit 7 is one of the device bits 
    Command = Command + 1 
ENDIF 
IF Command = 10 THEN 
    Command = 0 
ENDIF 
RETURN  

Power Management 
Since this device is operating from a very small power supply power management is important if 
you want  to avoid replacing batteries very often.  This can be done in several ways.  The first is 
to use the LED in flash mode as often as possible.  As the table below shows when the LED is 
full on the device draws about 10 ma at 3 volts.  When it flashes that power demand drops to half 
of that amount. 

The second thing that can be done is to put the device into "sleep" mode when it is not in 
operation.  With the LED off but with the unit still operating it draws 0.8 ma.  This is a very 
small amount of current, but that can be cut in half by putting the microcontroller into sleep 
more. 

LED 
Status 

Current 
@ 3 v. 

LED off 0.8 ma 
LED on 
full bright 10 ma 

LED 
blinking 

about 5 
ma 

Sleep 
Mode 0.4 ma 

If a battery's mAh rating is known is it easy to estimate how long the unit will operate with it.  
Just divide the mAh rating by the current in whatever mode you are using.  The  time of 
operation, in hours, is the result.  For example, if you use a 50 mAh battery and operate the unit 
with the LED full on the computation is 50 / 10 = 5 hours.  Increasing the size of the battery or 
decreasing the current consumption will increase the run time. 
This photos show the completed unit.  It is not housed in a capsule, per se, but could easily be so 
enclosed.  The rare earth magnets that hold the batteries to the unit do a nice job of keeping the 
unit in one piece.  The LED, microcontroller and IR sensor have been  glued together after 
soldering with 5 minute epoxy. 



  

From left to right the parts that make up the complete device are 

1. rare earth magnet with orange wire attached 
2. two 1.5 volt cells with a small rare earth magnet between them 
3. a larger magnet that is glued to the items to the right.  It is also connected to the negative 

terminal on the microcontroller. 
4. 3mm red LED 
5. 12F683 microcontroller - it is only 2mm thick and can barely be seen to the right of the 

LED 
6. Infrared sensor.  Its dome is the part that must "see" the IR pulses. 

You will note that the LED and IR sensor both face to the side so that the unit can be affixed to 
the black board on its side.  If a vertical mounting is preferred the LED could be placed at the top 
facing up. 

\  

  



 

  

Here the LED is circled.  The microcontroller has a rectangular box around it and the IR sensor 
is shown with a larger rectangle around it. 

 

  

This image shows the three components wired together and sitting on a penny. 



 

This view shows the same devices from the other side. 

 

Note that the positive wire goes to 12F683 pin 1 and the negative goes to pin 8. 

 



 

  
  
Vertical Design 
These photos show a different way that the components can be arranged to put the LED at the 
top of a vertically oriented unit.  The batteries will be attached to the end opposite the LED.  The 
small set of machined pins to the right are what the LED is inserted in.  This allows you to easily 
change LEDs as the leads are not soldered.  The machined pin socket is sandwiched between the 
IR sensor and the 12F683 and does not add any length to the unit. 

 

This close-up shows the socket that is used to hold the 3mm LED.  LEDs do need to be inserted 
with the right polarity.  Fortunately they are not harmed if inserted backwards so, if it doesn't 
work when put in one way just try the other! 



 

  

This view clearly shows the 12F683 microcontroller with the LED socket sandwiched between it 
and the IR sensor.  The magnet for the negative terminal of the battery will be glued to the right 
end. 

 

This photo shows a non-surface mount 12F683 next to the surface mount version.  You can also 
see the IR sensor and a string of the socket connectors that hold the LED's leads. 



 

I was able to find empty gelatin capsules on eBay.  The circuit is shown inside of one of the 
capsules.  To its right is an empty capsule top and bottom.  The ones I used are from eBay.  They 
are size "000" and are made from gelatin.  This means that they are water soluble so they must be 
kept dry or you need to coat them with clear paint or varnish.  They are about 9mm in diameter 
and about 26mm long.  When inserting into the capsule make sure the two cells are aligned 
evenly with the magnets. 

 

Note that there is a magnet between the two cells (batteries) - that magnet must be aligned so that 
it will stick to the other magnets.  If it is put in upside down the magnets will not adhere very 
well.  It is also VERY important that the positive ends of the cells point to the red wire and that 
the smaller terminal (negative) goes towards the circuitry.  This can be seen clearly in this photo.  



 
Battery graph - 10 second readings (2200 points = a bit over 6 hours) - worked throughout this 
test - LED solid on except for peaks where remote was used to change mode to see if it was still 
active 

still working @ 2 volts but batteries failing fast at that point.  IR remote stopped working at 1.94 
volts - quite a bit below its rated minimum. 

  

 

  



After completing a number of the surface mount versions of this circuit it occurred to me that 
some folks don't need the device to fit into a small capsule and might want to try working with 
somewhat larger components. 

 

  

 

  



 

 

 



  

  

  
 


