
Introduction & A Two-Page Outline 

The Riemann hypothesis is a conjecture first proposed by Professor Georg 
Friedrich Bernhard Riemann of Göttingen University and submitted in a brief 
paper (1859) to the Berlin Academy of Sciences, celebrating his recent admittance 
as a corresponding member of the Academy.  With his paper and its conjecture, 
Riemann completely revolutionized our approach and understanding of the 
distribution of the primes. 

Although it was not necessary for the results of his paper, Riemann conjectured - 
but was unable to prove - that all the roots of what is known today as the zeta 
function in the so-called critical strip have real part equal to ½.  In the 165 or so 
years since publication of the paper, the hypothesis has neither been proved nor 
disproved.  In fact, the Riemann hypothesis is perhaps the most important 
unresolved problem in pure mathematics today. 

A resolution of the Riemann hypothesis would have very important consequences 
- not only regarding the distribution of the primes, but also for a myriad of 
hypothesis-dependent results in number theory, as well as potentially for quantum 
physics and encryption technologies. 

The infinite series representation of the Riemann zeta function, 𝜁(𝑠), is 

𝜁(𝑠) ≡∑ 𝑛−s  =  1 + 2−s
∞

𝑛=1

+ 3−s +⋯ 

where the argument 𝑠 = σ + 𝑖 ∙ 𝑡, 𝑖 = √−1, and 𝜎 and 𝑡 are real.  

It has long been accepted that the infinite series representation of the zeta function 
diverges everywhere in the critical strip, where 0 < 𝜎 < 1, and therefore the series 
representation is inapplicable for a resolution of the hypothesis. 

What if this is wrong?  What if the infinite series representation of the Riemann 
zeta function converges at its roots in the critical strip in a very unusual way but 
diverges everywhere else?   This website investigates this question and provides 
answers. 

In the event that you, dear reader, are short of time and perhaps skeptical of the 
foregoing introduction and the premise of this work, please consider the following 
page. 



a root of the Riemann zeta function 

 𝜎 = 1/2, t = 25.0108…, and m = 51 (arbitrary) 

 
𝑥 

 

Blue Vertical Lines 

𝑥 ≈  6.0292 =  
(𝑚 − 3) ∙ 𝜋

𝑡
    ⟹     𝑡 ≈  

(51 − 3) ∙ 𝜋

6.0292
 ≈  25.0108 

 

Red Vertical Lines 

𝑥 ≈  6.0920 =
 (2 ∙ 𝑚 − 5) ∙ 𝜋

2 ∙ 𝑡
    ⟹     𝑡 ≈  

(2 ∙ 51 − 5) ∙ 𝜋

2 ∙ 6.0920
 ≈  25.0108 

 

The value of 𝑡 from the literature for the root of the Riemann zeta function is 
approximately 25.010857…  

There are no co-incidences in mathematics.  The graph above and the 
calculations based on the graph are not co-incidences. 
 
 



It has often been said that if an author cannot explain his or her work on a single 
page of paper - or on two pages in the present case - then the author cannot 
explain his or her work at all. 

In that spirit, the author’s work is explained on the two pages below.  Of course, 
details of the mathematics are slightly abridged and are left for further discussion 
here on this website and in the three referenced books. 

 

 

 

Turn to the next page… 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A Two-Page Outline 

The roots of the series representation of the Riemann zeta function occur when 

𝜁(𝑠) ≡∑ 𝑛−s  =  1 + 2−s
∞

𝑛=1

+ 3−s + ⋯ = 0 

Since we are considering only roots of the function in the critical strip, this is 
perfectly equivalent to: 

𝑅𝑒{𝜁(𝑠)}  = lim
𝑁→∞

{𝑅𝑒 [∑  𝑛−𝑠
𝑁

𝑛=1

]}    →   0       𝑠𝑢𝑚𝑚𝑎𝑏𝑙𝑒 

and 

𝐼𝑚{𝜁(𝑠)}  =  lim
𝑁→∞

{𝐼𝑚 [∑  𝑛−𝑠
𝑁

𝑛=1

]}    →   0       𝑠𝑢𝑚𝑚𝑎𝑏𝑙𝑒 

where both series are, in a sense, “summable”. 

Similarly, these relationships are also equivalent to: 

𝑅𝑒{𝜁(𝑠)}  =  lim
𝑚→∞

{
 
 

 
 

𝑅𝑒

[
 
 
 
 
 

∑  𝑛−𝑠

⌊𝑒
(𝑚−1)∙𝜋

𝑡 ⌋

𝑛=1

]
 
 
 
 
 

}
 
 

 
 

   →   0       𝑠𝑢𝑚𝑚𝑎𝑏𝑙𝑒 

and 

𝐼𝑚{𝜁(𝑠)}   ~   lim
𝑚→∞

{
 
 

 
 

𝐼𝑚

[
 
 
 
 
 

∑  𝑛−𝑠

⌊𝑒
(2∙𝑚−1)∙𝜋

2∙𝑡 ⌋

𝑛=1

]
 
 
 
 
 

}
 
 

 
 

   →   0       𝑠𝑢𝑚𝑚𝑎𝑏𝑙𝑒 

It will become clear later-on why it is convenient to replace integer 𝑁 in the first 
pair of series with integer 𝑚 in the second pair of series. 

Furthermore, either (1.) the Borel integral summation method and the Euler-
Maclaurin summation formula, or (2.) Cauchy’s residue theorem, or (3.) possibly 
other approaches, can be used to show that the sums above are asymptotically 
equivalent to 

𝑅𝑒

[
 
 
 
 
 

∑ 𝑛−𝑠

⌊𝑒
(𝑚−1)∙𝜋

𝑡 ⌋

𝑛=1

]
 
 
 
 
 

   ~   𝑅𝑒

[
 
 
 
 
 

∫  𝑥−𝑠 𝑑𝑥

⌊𝑒
(𝑚−1)∙𝜋

𝑡 ⌋

0

]
 
 
 
 
 

 

and 



𝐼𝑚

[
 
 
 
 
 

∑ 𝑛−𝑠

⌊𝑒
(2∙𝑚−1)∙𝜋

2∙𝑡 ⌋

𝑛=1

]
 
 
 
 
 

   ~   𝐼𝑚

[
 
 
 
 
 

∫  𝑥−𝑠 𝑑𝑥

⌊𝑒
(2∙𝑚−1)∙𝜋

2∙𝑡 ⌋

0

]
 
 
 
 
 

 

at the roots of the Riemann zeta function, for arbitrarily large values of 𝑚 = 1, 2, 3,…  

Moreover, since partial sums of the zeta function can be represented everywhere 
in the critical strip with the bi-lateral integral transform 

∑𝑛−s
𝑁

𝑛=1

 = ∫
𝑒−𝑠∙𝑥

Γ(𝑠)
∙ (
1 − 𝑒𝑒

−𝑁∙𝑥

𝑒𝑒
−𝑥
− 1

)
∞

−∞

𝑑𝑥 

it follows that 

𝑅𝑒

{
 
 

 
 

∑ 𝑛−s

⌊𝑒
(𝑚−1)∙𝜋

𝑡 ⌋

𝑛=1

}
 
 

 
 

 = ∫ 𝑅𝑒 {
𝑒−𝑠∙𝑥

Γ(𝑠)
} ∙

(

 
 1 − 𝑒𝑒

−𝑥∙⌊𝑒

(𝑚−1)∙𝜋
𝑡 ⌋

𝑒𝑒
−𝑥
− 1

)

 
 ∞

−∞

𝑑𝑥 

and 

𝐼𝑚

{
 
 

 
 

∑ 𝑛−s

⌊𝑒
(2∙𝑚−1)∙𝜋

2∙𝑡 ⌋

𝑛=1

}
 
 

 
 

 = ∫ 𝐼𝑚 {
𝑒−𝑠∙𝑥

Γ(𝑠)
} ∙

(

 
 1 − 𝑒𝑒

−𝑥∙⌊𝑒

(2∙𝑚−1)∙𝜋
2∙𝑡 ⌋

𝑒𝑒
−𝑥
− 1

)

 
 ∞

−∞

𝑑𝑥 

Combining these formulae and incorporating some basic analysis gives one of two 
dependent asymptotic relationships that define the roots of the Riemann zeta 
function: 

∫ 𝑠𝑖𝑛(𝑡 ∙ 𝑥) ∙
 

∞

−∞

 

          {(
𝑒−𝜎∙𝑥

𝑒𝑒
−𝑥
− 1

) ∙ [𝑅𝑒[Γ(𝑠)] ∙ (1 − 𝑒
−⌊𝑒

(2∙𝑚−1)∙𝜋
2∙𝑡 ⌋∙𝑒−𝑥

) + 𝑒  
𝜋∙(1−𝜎)
2∙𝑡 ∙ 𝐼𝑚[Γ(𝑠)] ∙ (1 − 𝑒

−⌊𝑒
(𝑚−1)∙𝜋

𝑡 ⌋∙𝑒−𝑥

)]}𝑑𝑥  ~  0 

This integral vanishes only when the function in the integrand, or 

(
𝑒−𝜎∙𝑥

𝑒𝑒
−𝑥
− 1

) ∙ [𝑅𝑒[Γ(𝑠)] ∙ (1 − 𝑒
−⌊𝑒

(2∙𝑚−1)∙𝜋
2∙𝑡 ⌋∙𝑒−𝑥

)+ 𝑒  
𝜋∙(1−𝜎)
2∙𝑡 ∙ 𝐼𝑚[Γ(𝑠)] ∙ (1 − 𝑒

−⌊𝑒
(𝑚−1)∙𝜋

𝑡 ⌋∙𝑒−𝑥

)] 

most closely approximates an even function of the variable of integration.  This 
occurs only when 𝜎 = 1/2.  Therefore, the roots of the Riemann zeta function in 
the critical strip all must have real part equal to ½ and the Riemann hypothesis is 
correct.  That’s two pages – exactly two pages. 


