Borel Integral Summation Method

There are several variations of what is generally referred to as Emil Borel’s integral

summation method.

Consider the infinite series
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where B, are the Bernoulli numbers:
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and where {(n) is the zeta function for n =0,1,2,..., and the polynomials (s)¢, are
the binomial, or falling, polynomials:
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This series diverges everywhere in the critical strip. However, the Borel integral
summation method can be used to obtain a closed-form expression representing
the series. Note that
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is the gamma function. Therefore, s®"~1 can be represented as the ratio of the
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Substituting these formulae in the series above gives

z 2n_, (=S)@n-1) = — 2n Ty f StIn-=2. g=Xdx Re(s +2n) > 1
0

Reversing the order of summation and integration and gives
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Further note the Mellin transform representation of the Riemann zeta function

i(s) = — dx Re(s) > 1 and the roots of {(s) in the critical strip

Substituting and simpiifying gives
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In summary, the Borel integral summation method was used to represent the

divergent infinite series
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Euler-Maclaurin Summation Formula

The formula known as the Euler-Maclaurin summation formula was derived by
Leonhard Euler and Colin Maclaurin in about 1735. The general formula is
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Function f(x) is summable, integrable and continuously differentiable. The

quantity R, is a remainder term, By are the Bernoulli numbers, B,(x) are the
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Bernoulli polynomials, and
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is the ceiling of , or the least integer greater

The Euler-Maclaurin summation formula relating partial sums of the Riemann zeta
function to integrals of the summand of the zeta function is:
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where the remainder term has been incorporated in the sum on the right—hand

side of the formula.

The derivatives on the right-hand side are
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where, as before, s, are the binomial polynomials
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For arbitrarily large values of integer N,
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Note that although the series
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diverges, the Borel integral summation method gives:
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Substituting this sum and
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in the Euler-Maclaurin summation formula and sirnplifying gives the asymptotic
relationship relating the Riemann zeta function to its partial sums.
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Cauchy Residue Theorem

Augustin-Louis Cauchy’s residue theorem (1831) states that the integral of an
analytic function along a closed path in the complex plane is entirely dependent
on the behavior of the function at its singularities in the interior of the path.

Real analytic and complex analytic, or holomorphic, functions can be represented
locally by convergent power series and are therefore infinitely differentiable. A
complex function is holomorphic on region R if and only if it is complex
differentiable at every point in region R.

Suppose that complex function f(z) is holomorphic and that y is a simple, closed
curve in the complex plane where f(z) exists. Further suppose that a finite
number of points of singularity, or poles, of function f(z) are located inside curve
Y.

Poles are classified according to order. A pole of order 1 at point p is called simple
if the function f(z) can be written in the form
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and if the smallest value of integer n satisfying this relationship is 1. It is also
assumed that complex function g(z) is holomorphic. Note that all the poles of the
holomorphic function considered in this work are simple.

The residues of complex function f(z) at its simple poles are defined by
Res(f.p;) = lim{(z—p))-f(2)}

Cauchy’s residue theorem states that the contour integral of a real analytic
function or a holomorphic function along a closed path in the complex plane is
equal to the constant 27i multiplied by the sum of the residues of the function at
its singularities inside the path, or
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Consider partial sums of the infinite series representation of the Riemann zeta
function. Lets =o+i-tand z=x+i-ywhereo, t, xand y are real. The residues

of the holomorphic function
- cot (m- z)
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at its simple poles, p;, are given by

lim {(z—p]) [TL’ COt(TL’ z)]} = p
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where p; =1,2,3,...,N.

Let y be the counterclockwise, nearly semi-circular, closed path in the complex
plane connecting points a + i+ (N + %) and a — i - (N + %) with a line, and returning
to point a+i- (N + %) along the circular arc K, defined by

lz| = N + %

where 0 <a <1 and N=1,23,... All poles, p;, at z=1,2,3,...,N are located
inside closed path y.

Cauchy’s residue theorem gives
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and therefore, partial sums of the infinite series representation of the Riemann

zeta function are
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The first integral in the main formula above can be decomposed into two integrals
as

1 (e EONHA) cor(rr - 2) 1 eV ot - 7) 1 (PN cot( - 2)
[ , oy L [T eED,

—_— VA —_— — —az + —_
20 zS 21 zS 20

N
a Z

a+i-(N+¥%) a

Note the identities:
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Similarly, fory < 0: z=—i-y, dz = —i-dy, z7* = e™/2- y~5 and
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Substituting these formulae into the right-hand side of the equation above, and
applying the limit a - 0 gives
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and changing the variable of integration in the second integral above from y to x,
where x = 2ny, and y = x/2n, dy = dx/2m, y~5 = (2m)S - x5, it follows that
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Also note that the Mellin transform representation of the Riemann zeta function

is
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Substituting these results into the first integral of the main formula above gives
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This relationship is valid everywhere in the critical strip for arbitrarily large values
of integer N.

The second integral in the main formula above, or

1 f “ cot (m-2)
—2d

EYR Z
20 zS

Kp

can be decomposed into two integrals as

e f::cot(rr-z)d ~ f%(l L1 )orsar 4 f" (1 L1 ) s
and |2i Kk, Z° 27 )T o) 2\2 " epmiz_q1) "
2

Again note the identities:
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and rearranging gives
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Substituting (N + %) for r and noting that
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Further noting that
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The first integral,
on the right—hand side of the equation above can be simplified as follows. Changing

the variable of integration from 6 to x, where 6 = —i-Log [i-x/2m- (N +%)] and
df = —i-(dx/x), gives
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can also be simplified. Changing the variable of integration from 6 tox, where
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Substituting these formulae into
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For very large values of integer N, N +% =~ N, so that
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Furthermore, the last term on the right-hand side is independent of integer N and

is relatively small in comparison with the terms
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for all values of argument s everywhere in the critical strip, including at the roots

of the Riemann zeta function. Therefore, for large values of integer N and
everywhere in the critical strip:
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Similarly, partial sums of the infinite series representation of the Riemann zeta
function with complex conjugate argument, § = o —i-t, are given by
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This final relationship is also valid for arbitrarily large, finite values of integer N,

everywhere in the critical strip.



In summary, Cauchy’s residue theorem was used to derive an asymptotic
relationship between the partial sums of the Riemann zeta function and the zeta
function for arbitrarily large, finite values of integer N, as well as an analogous
relationship for the complex conjugate value of the argument:
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Adding and subtracting the relationships above, and multiplying by 1/2 and i/2,
respectively, gives the identical results derived using Borel’s integral summation
method and the Euler-Maclaurin summation formula:
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These relationships are valid for arbitrarily large, finite values of integer N,
everywhere in the critical strip.



