
The Zeta Function and Integral Transforms 

The theory of integral transform representations of the Riemann zeta function is 
well established.  What follows is a brief outline of the application of Mellin, 
Laplace, and Fourier sine and cosine transforms to the the Riemann zeta function.   

Let 𝑓𝑀(𝑥) be a real-valued function defined on the positive axis 0 < 𝑥 < ∞.  The 
Mellin transform of 𝑓𝑀(𝑥) is the mapping of function 𝑓𝑀(𝑥) into the complex-valued 
function 𝐹𝑀(𝑠) by 

𝐹𝑀(𝑠)  =  ∫ 𝑥𝑠−1 ∙ 𝑓𝑀(𝑥)
∞

0

𝑑𝑥 

The function 𝐹𝑀(𝑠) is the Mellin transform of function 𝑓𝑀(𝑥).  For most applications 
of the transform, but not including the Riemann zeta function, the Mellin 
transform 𝐹𝑀(𝑠) converges if the function 𝑓𝑀(𝑥) is continuous or piecewise 
continuous, and only in what is known as the fundamental strip, 𝛼 < 𝑅𝑒(𝑠) < 𝛽, 
where 𝛼 and 𝛽 are constants. 

Mellin transforms exhibit the property of linearity 

𝜃 ∙ 𝐹𝑀1(𝑠) + 𝜑 ∙ 𝐹𝑀2(𝑠)  =  ∫ 𝑥𝑠−1 ∙ [𝜃 ∙ 𝑓𝑀1(𝑥) + 𝜑 ∙ 𝑓𝑀2(𝑥)
∞

0

]𝑑𝑥 

where 𝜃 and 𝜑 are constants. 

An example of a Mellin transform is the gamma function, where the complex-
valued gamma function is the Mellin transform of 𝑒−𝑥: 

Γ(𝑠)  =  ∫ 𝑥𝑠−1 ∙ 𝑒−𝑥
∞

0

𝑑𝑥 

where 𝑠 = σ + 𝑖 ∙ 𝑡, and 𝜎 and 𝑡 are real.  The gamma function has no zeros in the 
complex plane and has simple poles at 𝑠 = −1, 𝑠 = −3, 𝑠 = −5, … 

The Riemann zeta function is another example of a Mellin transform.  The infinite 
series representation of the Riemann zeta function is 

𝜁(𝑠) = ∑ 𝑛−s 

∞

𝑛=1

 

It will be shown in this work that, with the exceptions of its roots, the series 
representation of the Riemann zeta function diverges everywhere in the critical 
strip. 



Changing the variable of integration from 𝑥 to (𝑛 ∙ 𝑥) in the Mellin transform for 
Γ(𝑠) above gives 

Γ(𝑠)  =  ∫ (𝑛 ∙ 𝑥)𝑠−1 ∙ 𝑒−𝑛∙𝑥 ∙ 𝑛
∞

0

𝑑𝑥 =  𝑛𝑠 ∙ ∫ 𝑥𝑠−1 ∙ (𝑒−𝑥 )𝑛
∞

0

𝑑𝑥 

Rearranging gives 

𝑛−𝑠  =   
1

Γ(𝑠)
∙ ∫ 𝑥𝑠−1 ∙ (𝑒−𝑥 )𝑛

∞

0

𝑑𝑥 

Summing both sides over all positive integers, exchanging the order of summation 
and integration, and substituting the geometric series 

∑(𝑒−𝑥 )𝑛   = 

∞

𝑛=1

 
1

𝑒𝑥 − 1
         𝑥 > 0 

gives the Mellin transform representation of the Riemann zeta function 

𝜁(𝑠) = ∑ 𝑛−s  =  

∞

𝑛=1

1

Γ(𝑠)
∙ ∫

𝑥 𝑠−1

𝑒𝑥 − 1

∞

0

𝑑𝑥 

which diverges everywhere in the critical strip, except at the roots of the function. 

The conventional approach to the analysis of the singularity and the roots of the 
Riemann zeta function is as follows.  Since the only source of singularity in the 
integral is at 𝑥 = 0, the integral can be decomposed as 

𝜁(𝑠)  =  
1

Γ(𝑠)
∙ ∫

𝑥 𝑠−1

𝑒𝑥 − 1

∞

0

𝑑𝑥 =  [
1

Γ(𝑠)
∙ ∫

𝑥 𝑠−1

𝑒𝑥 − 1

1

0

𝑑𝑥 +  ∫
𝑥 𝑠−1

𝑒𝑥 − 1

∞

1

𝑑𝑥 ] 

Since Γ(𝑠) has no zeros in the complex plane, 1/Γ(𝑠)  has no singularities in the 
complex plane and is an entire function.  The integral 

∫
𝑥  𝑠−1

𝑒𝑥 − 1

∞

1

𝑑𝑥 

has no singularities in the complex plane is also entire.  Therefore, any singularities 
in the Riemann zeta function must be contained in the first integral, 

∫
𝑥 𝑠−1

𝑒𝑥 − 1

1

0

𝑑𝑥 

The Laurent expansion of the integrand is 

1

𝑒𝑥 − 1
  =   

1

𝑥
  −   

1

2
  +  

𝑥

12
  −   

𝑥  3

720
  +  

𝑥5

30240
  −  𝑂(𝑥7 ) 

Since 



∫ 𝑥  𝑠−2
1

0

𝑑𝑥 =  
1

𝑠 − 1
         𝑅𝑒(𝑠) > 1 

∫ 𝑥  𝑠−1
1

0

𝑑𝑥 =    
1

𝑠
            𝑅𝑒(𝑠) > 0 

and 

∫ 𝑥  𝑠−1+𝑚
1

0

𝑑𝑥 =  
1

𝑠 + 𝑚
          𝑅𝑒(𝑠 + 𝑚) > 0        𝑚 = 1, 2, 3, … 

it follows that 

∫
𝑥  𝑠−1

𝑒𝑥 − 1

1

0

𝑑𝑥 =  
1

𝑠 − 1
  −   

1

2
∙

1

𝑠
  +  

1

12
 ∙ (

1

𝑠 + 1
)  −   

1

720
∙ (

1

𝑠 + 3
)  +  

1

30240
∙ (

1

𝑠 + 3
)  −    ∙∙∙   

This series representation of the integral has simple poles at 𝑠 = 1, 𝑠 = 0, and 𝑠 =

−1, 𝑠 = −3, 𝑠 = −5, …  Furthermore, since the gamma function has simple poles at 
all negative integers, or 𝑠 = −1, 𝑠 = −2, 𝑠 = −3, …, and the integral is multiplied by 
1/Γ(𝑠), it follows that the Riemann zeta function has a simple pole at 𝑠 = 1 with 
residue Γ(1) = 1, and is holomorphic everywhere else in the complex plane.  Also, 
since the roots of 1/Γ(𝑠) are not cancelled by the poles of the integral of the Laurent 
expansion, the Riemann zeta function has roots at all negative even integers. 

Similarly, let 𝑓𝐿(𝑥) be a real-valued function defined on the positive axis -∞ < 𝑥 <

∞.  The bi-lateral Laplace transform of 𝑓𝐿(𝑥) is defined by the mapping of function 
𝑓𝐿(𝑥) to the complex-valued function 𝐹𝐿(𝑠) by 

𝐹𝐿(𝑠)  =  ∫ 𝑒−𝑠∙𝑥 ∙ 𝑓𝐿(𝑥)
∞

− ∞

𝑑𝑥 

The function 𝐹𝐿(𝑠) is the bi-lateral Laplace transform of function 𝑓𝐿(𝑥).  Generally, 
the bi-lateral Laplace transform 𝐹𝐿(𝑠) converges absolutely if 𝑓𝐿(𝑥) is continuous or 
piecewise continuous in the strip 𝑎 < 𝑅𝑒(𝑠) < 𝑏, and possibly including the lines 
𝑅𝑒(𝑠) = 𝑎 and 𝑅𝑒(𝑠) = 𝑏, where 𝑎 and 𝑏 are constants.  Bi-lateral Laplace transforms 
exhibit the property of linearity 

𝜃 ∙ 𝐹𝐿1(𝑠) + 𝜑 ∙ 𝐹𝐿2(𝑠)  =  ∫ 𝑥𝑠−1 ∙ [𝜃 ∙ 𝑓𝐿1(𝑥) + 𝜑 ∙ 𝑓𝐿2(𝑥)
∞

0

]𝑑𝑥 

where 𝜃 and 𝜑 are constants. 

Let 𝑓𝐹𝑆(𝑥) be a real-valued function defined on the positive axis -∞ < 𝑥 < ∞.  The 
Fourier sine transform of 𝑓𝐹𝑆(𝑥) is defined by the mapping of function 𝑓𝐹𝑆(𝑥) to the 
real-valued function 𝐹𝐹𝑆(𝜎, 𝑡) by 

𝐹𝐹𝑆(𝜎, 𝑡)  =  ∫ 𝑠𝑖𝑛(𝑡 ∙ 𝑥) ∙ 𝑒−𝜎∙𝑥 ∙ 𝑓𝐹𝑆(𝑥)
∞

− ∞

𝑑𝑥 



The function 𝐹𝐹𝑆(𝜎, 𝑡) is the Fourier sine transform of function 𝑓𝐹𝑆(𝑥). 

Similarly, let 𝑓𝐹𝐶(𝑥) be a real-valued function defined on the positive axis -∞ < 𝑥 <

∞.  The Fourier cosine transform of 𝑓𝐹𝐶(𝑥) is defined by the mapping of function 
𝑓𝐹𝐶(𝑥) into the real-valued function 𝐹𝐹𝐶(𝜎, 𝑡) by 

𝐹𝐹𝐶(𝜎, 𝑡)  =  ∫ 𝑐𝑜𝑠(𝑡 ∙ 𝑥) ∙ 𝑒−𝜎∙𝑥 ∙ 𝑓𝐹𝐶(𝑥)
∞

− ∞

𝑑𝑥 

Likewise, the function 𝐹𝐹𝐶(𝜎, 𝑡) is the Fourier cosine transform of function 𝑓𝐹𝐶(𝑥). 

The Fourier sine and cosine transforms in this work are derived directly from bi-
lateral Laplace transforms, and therefore converge under the same conditions as 
the bi-lateral Laplace transforms. 

Fourier sine and cosine transforms also exhibit the property of linearity: 

𝜃 ∙ 𝐹𝐹𝑆1(𝑠) + 𝜑 ∙ 𝐹𝐹𝑆2(𝑠)  =  ∫ 𝑥𝑠−1 ∙ [𝜃 ∙ 𝑓𝐹𝑆1(𝑥) + 𝜑 ∙ 𝑓𝐹𝑆2(𝑥)
∞

− ∞

]𝑑𝑥 

and 

𝜃 ∙ 𝐹𝐹𝐶1(𝑠) + 𝜑 ∙ 𝐹𝐹𝐶2(𝑠)  =  ∫ 𝑥𝑠−1 ∙ [𝜃 ∙ 𝑓𝐹𝐶1(𝑥) + 𝜑 ∙ 𝑓𝐹𝐶2(𝑥)
∞

− ∞

]𝑑𝑥 

where 𝜃 and 𝜑 are constants. 

Every real-valued function 𝑓(𝑥) can be represented as the sum of an odd function 
and an even function: 

𝑓(𝑥) =  𝑓𝑜𝑑𝑑(𝑥) + 𝑓𝑒𝑣𝑒𝑛(𝑥) 

where 

𝑓𝑜𝑑𝑑(𝑥) = (
1

2
) ∙ [𝑓(𝑥) − 𝑓(−𝑥)] 

𝑓𝑒𝑣𝑒𝑛 (𝑥) = (
1

2
) ∙ [𝑓(𝑥) + 𝑓(−𝑥)] 

and 

𝑓𝑜𝑑𝑑(−𝑥)  =  − 𝑓𝑜𝑑𝑑(𝑥) 

𝑓𝑒𝑣𝑒𝑛(−𝑥)  =   𝑓𝑒𝑣𝑒𝑛(𝑥) 

The sum of two odd functions is an odd function and the sum of two even functions 
is an even function. 

The product of an odd function and an even function is an odd function.  Also, the 
product of two odd functions is an even function and the product of two even 
functions is an even function. 

The integral of an odd function 𝑓𝑜𝑑𝑑(𝑥) over the domain − ∞ < 𝑥 < ∞ is zero: 



∫ 𝑓𝑜𝑑𝑑(𝑥)
∞

− ∞

𝑑𝑥 =  0 

and the integral of an even function 𝑓𝑒𝑣𝑒𝑛 (𝑥) over the domain − ∞ < 𝑥 < ∞ is: 

∫ 𝑓𝑒𝑣𝑒𝑛 (𝑥)
∞

− ∞

𝑑𝑥 =  2 ∙ ∫ 𝑓𝑒𝑣𝑒𝑛 (𝑥)
∞

0

𝑑𝑥  

Therefore, the Fourier sine integral of an even function 𝑓𝑒𝑣𝑒𝑛(𝑥)  is zero: 

∫ 𝑠𝑖𝑛(𝑥) ∙ 𝑓𝑒𝑣𝑒𝑛(𝑥)
∞

− ∞

𝑑𝑥 =  0 

and the Fourier cosine integral of an odd function 𝑓𝑜𝑑𝑑(𝑥)  is also zero: 

∫ 𝑐𝑜𝑠(𝑥) ∙ 𝑓𝑜𝑑𝑑(𝑥)
∞

− ∞

𝑑𝑥 =  0 

If the variable of integration of the Mellin transform representation of the Riemann 
zeta function 

𝜁(𝑠) = ∑ 𝑛−s  =  

∞

𝑛=1

1

Γ(𝑠)
∙ ∫

𝑥 𝑠−1

𝑒𝑥 − 1

∞

0

𝑑𝑥 

is changed from 𝑥 to 𝑦 = − log (𝑥), where 𝑥 = 𝑒−𝑦, and d𝑥 = − 𝑒−𝑦𝑑𝑦, then the zeta 
function can be represented by the bi-lateral Laplace transform 

𝜁(𝑠) = ∑ 𝑛−s  =  

∞

𝑛=1

1

Γ(𝑠)
∙ ∫  

𝑒−𝑠∙𝑥

𝑒𝑒−𝑥
−  1

∞

−∞

𝑑𝑥 

Furthermore, if the bilateral Laplace transform is separated into its real and 
complex components, then the real and complex components of the Riemann zeta 
function are given by: 

𝑅𝑒{𝜁(𝑠)}  =  𝑅𝑒 {∑ 𝑛−s

∞

𝑛=1

}  = ∫ 𝑅𝑒 {
𝑒−𝑠∙𝑥

Γ(𝑠)
} ∙ (

1

𝑒𝑒−𝑥
−  1

)
∞

−∞

𝑑𝑥 

and 

𝐼𝑚{𝜁(𝑠)}  =  𝐼𝑚 {∑ 𝑛−s

∞

𝑛=1

}  = ∫ 𝐼𝑚 {
𝑒−𝑠∙𝑥

Γ(𝑠)
} ∙ (

1

𝑒𝑒−𝑥
−  1

)
∞

−∞

𝑑𝑥 

Note that 

𝑅𝑒 {
𝑒−𝑠∙𝑥

Γ(𝑠)
} =  [

1

𝑅𝑒Γ(𝑠)2 + 𝐼𝑚Γ(𝑠)2
] ∙ [𝑅𝑒Γ(𝑠) ∙ 𝑐𝑜𝑠(𝑡 ∙ 𝑥) ∙ 𝑒−𝜎∙𝑥  −  𝐼𝑚Γ(𝑠) ∙ 𝑠𝑖𝑛(𝑡 ∙ 𝑥) ∙ 𝑒−𝜎∙𝑥] 

and 

𝐼𝑚 {
𝑒−𝑠∙𝑥

Γ(𝑠)
} =  [

1

𝑅𝑒Γ(𝑠)2 + 𝐼𝑚Γ(𝑠)2
] ∙ [ − 𝐼𝑚Γ(𝑠) ∙ 𝑐𝑜𝑠(𝑡 ∙ 𝑥) ∙ 𝑒−𝜎∙𝑥  −  𝑅𝑒Γ(𝑠) ∙ 𝑠𝑖𝑛(𝑡 ∙ 𝑥) ∙ 𝑒−𝜎∙𝑥] 



Therefore, 

            𝑅𝑒{𝜁(𝑠)}  =  𝑅𝑒 {∑ 𝑛−s

∞

𝑛=1

}  =  [
1

𝑅𝑒Γ(𝑠)2 + 𝐼𝑚Γ(𝑠)2
] 

                          ∙ {𝑅𝑒Γ(𝑠) ∙ ∫ 𝑐𝑜𝑠(𝑡 ∙ 𝑥) ∙ (
𝑒−𝜎∙𝑥

𝑒𝑒−𝑥
−  1

)
∞

−∞

𝑑𝑥 −  𝐼𝑚Γ(𝑠)

∙ ∫ 𝑠𝑖𝑛(𝑡 ∙ 𝑥) ∙ 𝑒−𝜎∙𝑥 ∙ (
𝑒−𝜎∙𝑥

𝑒𝑒−𝑥
−  1

)
∞

−∞

𝑑𝑥} 

and 

           𝐼𝑚{𝜁(𝑠)}  =  𝑅𝑒 {∑ 𝑛−s

∞

𝑛=1

}  =  [
1

𝑅𝑒Γ(𝑠)2 + 𝐼𝑚Γ(𝑠)2
] 

                      ∙ {− 𝐼𝑚Γ(𝑠) ∙ ∫ 𝑐𝑜𝑠(𝑡 ∙ 𝑥) ∙ (
𝑒−𝜎∙𝑥

𝑒𝑒−𝑥
−  1

)
∞

−∞

𝑑𝑥 −  𝑅𝑒Γ(𝑠)

∙ ∫ 𝑠𝑖𝑛(𝑡 ∙ 𝑥) ∙ 𝑒−𝜎∙𝑥 ∙ (
𝑒−𝜎∙𝑥

𝑒𝑒−𝑥
−  1

)
∞

−∞

𝑑𝑥} 

Note again that changing the variable of integration from 𝑥 to (𝑛 ∙ 𝑥) in the Mellin 
transform for Γ(𝑠) above gives 

Γ(𝑠)  =  ∫ (𝑛 ∙ 𝑥)𝑠−1 ∙ 𝑒−𝑛∙𝑥 ∙ 𝑛
∞

0

𝑑𝑥 =  𝑛𝑠 ∙ ∫ 𝑥𝑠−1 ∙ (𝑒−𝑥 )𝑛
∞

0

𝑑𝑥 

and 

𝑛−𝑠  =   
1

Γ(𝑠)
∙ ∫ 𝑥𝑠−1 ∙ (𝑒−𝑥 )𝑛

∞

0

𝑑𝑥 

Summing both sides over the positive integers from 1 to 𝑁, exchanging the order 
of summation and integration, and substituting 

∑(𝑒−𝑥 )𝑛   = 

𝑁

𝑛=1

 
1 − 𝑒−𝑁∙𝑥 

𝑒𝑥 − 1
         𝑥 > 0 

gives the Mellin transform representation of the partial sums of the Riemann zeta 
function 

∑ 𝑛−s  =  

𝑁

𝑛=1

1

Γ(𝑠)
∙ ∫ 𝑥  𝑠−1 ∙ (

1 − 𝑒−𝑁∙𝑥 

𝑒𝑥 − 1
)

∞

0

𝑑𝑥 

which converges everywhere in the critical strip, including at the roots of the zeta 
function. 

If the variable of integration is changed from 𝑥 to 𝑦 = − 𝑙𝑜𝑔 (𝑥), where 𝑥 = 𝑒−𝑦, and 

dx = − 𝑒−𝑦𝑑𝑦, then partial sums of the zeta function are given by the bi-lateral 
Laplace transform as 



∑ 𝑛−s  =  

𝑁

𝑛=1

1

Γ(𝑠)
∙ ∫  𝑒−𝑠∙𝑥 ∙ (

1 − 𝑒𝑒−𝑁∙𝑥

𝑒𝑒−𝑥
− 1

)
∞

−∞

𝑑𝑥 

which converges everywhere in the critical strip, including at the roots of the zeta 
function. 

Furthermore, if the bilateral Laplace transform is separated into its real and 
complex components, then the real and complex components of the partial sums 
of the Riemann zeta function are given by: 

 𝑅𝑒 {∑ 𝑛−s

𝑁

𝑛=1

}  = ∫ 𝑅𝑒 {
𝑒−𝑠∙𝑥

Γ(𝑠)
} ∙ (

1 − 𝑒𝑒−𝑁∙𝑥

𝑒𝑒−𝑥
− 1

)
∞

−∞

𝑑𝑥 

and 

 𝐼𝑚 {∑ 𝑛−s

𝑁

𝑛=1

}  = ∫ 𝐼𝑚 {
𝑒−𝑠∙𝑥

Γ(𝑠)
} ∙ (

1 − 𝑒𝑒−𝑁∙𝑥

𝑒𝑒−𝑥
− 1

)
∞

−∞

𝑑𝑥 

Note again that 

𝑅𝑒 {
𝑒−𝑠∙𝑥

Γ(𝑠)
} =  [

1

𝑅𝑒Γ(𝑠)2 + 𝐼𝑚Γ(𝑠)2
] ∙ [𝑅𝑒Γ(𝑠) ∙ 𝑐𝑜𝑠(𝑡 ∙ 𝑥) ∙ 𝑒−𝜎∙𝑥  −  𝐼𝑚Γ(𝑠) ∙ 𝑠𝑖𝑛(𝑡 ∙ 𝑥) ∙ 𝑒−𝜎∙𝑥] 

and 

𝐼𝑚 {
𝑒−𝑠∙𝑥

Γ(𝑠)
} =  [

1

𝑅𝑒Γ(𝑠)2 + 𝐼𝑚Γ(𝑠)2
] ∙ [ − 𝐼𝑚Γ(𝑠) ∙ 𝑐𝑜𝑠(𝑡 ∙ 𝑥) ∙ 𝑒−𝜎∙𝑥  −  𝑅𝑒Γ(𝑠) ∙ 𝑠𝑖𝑛(𝑡 ∙ 𝑥) ∙ 𝑒−𝜎∙𝑥] 

and therefore, 

            𝑅𝑒 {∑ 𝑛−s

𝑁

𝑛=1

}  =  [
1

𝑅𝑒Γ(𝑠)2 + 𝐼𝑚Γ(𝑠)2
] 

                          ∙ {𝑅𝑒Γ(𝑠) ∙ ∫ 𝑐𝑜𝑠(𝑡 ∙ 𝑥) ∙ 𝑒−𝜎∙𝑥 ∙ (
1 − 𝑒𝑒−𝑁∙𝑥

𝑒𝑒−𝑥
−  1

)
∞

−∞

𝑑𝑥 −  𝐼𝑚Γ(𝑠)

∙ ∫ 𝑠𝑖𝑛(𝑡 ∙ 𝑥) ∙ 𝑒−𝜎∙𝑥 ∙ (
1 − 𝑒𝑒−𝑁∙𝑥

𝑒𝑒−𝑥
−  1

)
∞

−∞

𝑑𝑥} 

and 

           𝐼𝑚 {∑ 𝑛−s

𝑁

𝑛=1

}  =  [
1

𝑅𝑒Γ(𝑠)2 + 𝐼𝑚Γ(𝑠)2
] 

                      ∙ {− 𝐼𝑚Γ(𝑠) ∙ ∫ 𝑐𝑜𝑠(𝑡 ∙ 𝑥) ∙ 𝑒−𝜎∙𝑥 ∙ (
1 − 𝑒𝑒−𝑁∙𝑥

𝑒𝑒−𝑥
−  1

)
∞

−∞

𝑑𝑥 −  𝑅𝑒Γ(𝑠)

∙ ∫ 𝑠𝑖𝑛(𝑡 ∙ 𝑥) ∙ 𝑒−𝜎∙𝑥 ∙ (
1 − 𝑒𝑒−𝑁∙𝑥

𝑒𝑒−𝑥
−  1

)
∞

−∞

𝑑𝑥} 

 


