
TrustVotes: A Comprehensive,
Multi-Layered, Blockchain-Based
Election System
Version 1

Date: January 3, 2025

Table of Contents (English)
1. Introduction

 1.1 Context & Challenges
 1.2 Why Blockchain Voting?
 1.3 Purpose of This Document

2. System Overview & Architecture
 2.1 Core Objectives
 2.2 Avalanche Subnet Rationale
 2.3 Multi-Layered Security: Biometrics, Photos, and AI

3. Technical Implementation
 3.1 Identity & Zero-Knowledge Proofs
 3.2 Smart Contracts & Sample Code
 3.3 Front-End & UX Considerations
 3.4 Integration with Biometric & Photo Verification

4. AI-Driven Tamper Detection
 4.1 Real-Time Anomaly Detection
 4.2 Image Forensics for Ballot Photos
 4.3 Human Oversight & Audit Trails

5. Sociopolitical & Organizational Strategies
 5.1 Addressing Government Corruption & Resistance
 5.2 Community Alliances & Parallel Elections
 5.3 Legal & Regulatory Considerations

6. Implementation Roadmap
 6.1 Phase 1: MVP & Small-Scale Pilots
 6.2 Phase 2: Parallel Elections & Scaling

 6.3 Phase 3: National or Hybrid Integration

7. Extended Features: Face Scanning & Photo-Based Ballot Verification
 7.1 Face Scan Enrollment & Privacy
 7.2 Photo Comparison for Paper Ballots
 7.3 Limitations & Practical Concerns

8. Ensuring Near-Impossibility of Manipulation
 8.1 Layered Verification & Cross-Checking
 8.2 Decentralized & International Nodes
 8.3 AI as an Early Warning System

9. Conclusion & Future Directions

10. References

11. Appendices
 11.1 Additional Smart Contract Code
 11.2 ZKP Pseudocode & Example
 11.3 Sample Front-End Boilerplate

1. Introduction

1.1 Context & Challenges

In South Korea—renowned for its technological prowess—allegations of corruption and
government interference in elections have led to diminishing trust among voters.
Traditional paper ballots and centralized vote counting can be vulnerable to manipulation,
while officials sometimes resist innovative approaches that might reduce their control. To
address this, TrustVotes merges blockchain technology with multi-layered security
(biometric face scanning, photo-based ballot verification, AI anomaly detection) to make
corruption and vote tampering extremely difficult.

1.2 Why Blockchain Voting?

1. Immutable Ledger: All votes are recorded in a tamper-resistant ledger that
adversaries cannot alter undetected.

2. Decentralized Validation: Multiple validators—including NGOs, academic
institutions, and international observers—prevent a single corrupt entity from taking
over the system.

3. Transparent & Auditable: Real-time dashboards, open APIs, and public observer
nodes allow citizens and watchdogs to verify counts as they happen.

1.3 Purpose of This Document

This white paper (Version 1) provides a comprehensive blueprint covering the technical
architecture, code samples, AI-driven features, biometric integration, and
socio-political strategies needed to deploy TrustVotes under challenging conditions,
including high government resistance.

2. System Overview & Architecture

2.1 Core Objectives

1. Security & Integrity: Make electoral tampering prohibitively difficult.
2. Transparency & Verifiability: Ensure real-time view of tallies, plus cryptographic

proofs of every vote.
3. Inclusivity: Provide a user-friendly process for all citizens, including potential face

scanning at polling stations or remote photo submissions.
4. Resilience: Survive even if government officials attempt censorship or sabotage.

2.2 Avalanche Subnet Rationale

Avalanche offers an EVM-compatible environment with high throughput and low latency,
ideal for large-scale voting. By creating a Permissioned Subnet, we ensure only trusted or
internationally recognized organizations can serve as validator nodes. This curbs infiltration
by corrupt authorities.

2.3 Multi-Layered Security: Biometrics, Photos, and AI

● Biometric Face Scanning: Confirms each voter’s identity without storing raw images
on-chain.

● Ballot Photo Comparison: Voters can photograph their paper ballots to cross-check
official tallies.

● AI Anomaly Detection: Machine learning flags unusual voting patterns or suspicious
ballot images in real time.

3. Technical Implementation

3.1 Identity & Zero-Knowledge Proofs (ZKPs)

● ZKPs allow voters to prove eligibility without exposing personal data.
● Alternate Identity System: In high-corruption scenarios, NGOs or community

groups may handle ID verification independently of state databases.

3.2 Smart Contracts & Sample Code

Below is an illustrative (non-audited) Solidity snippet:

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;

contract TrustVotesVoting {
 struct Candidate {
 uint256 id;
 string name;
 uint256 voteCount;
 }

 mapping(uint256 => Candidate) public candidates;
 mapping(address => bool) public hasVoted;
 uint256 public totalCandidates;
 bool public votingActive;
 address public admin;

 constructor() {
 admin = msg.sender;
 }

 function startVotingSession() external {
 require(msg.sender == admin, "Only admin can start");
 votingActive = true;
 }

 function endVotingSession() external {
 require(msg.sender == admin, "Only admin can end");
 votingActive = false;
 }

 function registerCandidate(string memory _name) external {
 require(msg.sender == admin, "Only admin can register candidates");
 require(!votingActive, "Voting is active, can't add candidates");
 totalCandidates++;
 candidates[totalCandidates] = Candidate(totalCandidates, _name, 0);
 }

 function castVote(uint256 _candidateId) external {
 require(votingActive, "Voting not active");
 require(!hasVoted[msg.sender], "Already voted");
 require(_candidateId > 0 && _candidateId <= totalCandidates, "Invalid candidate");

 hasVoted[msg.sender] = true;
 candidates[_candidateId].voteCount += 1;
 }
}

3.3 Front-End & UX Considerations

● Mobile/Browser Apps: Must be intuitive, ideally with embedded camera features
for face scanning or ballot photography.

● Accessibility: Clear step-by-step instructions, large fonts, and offline or kiosk-based
options for areas with poor connectivity.

3.4 Integration with Biometric & Photo Verification

1. Biometric Enrollment: User’s face scan is converted into a cryptographic hash,
stored off-chain.

2. On Voting Day: System re-checks the live scan, matching it with the stored hash.
3. Photo Upload: If using a paper ballot, voters photograph it with a unique ID or QR

code. The image is hashed and uploaded, ensuring the final recorded vote matches
the physical ballot.

4. AI-Driven Tamper Detection

4.1 Real-Time Anomaly Detection

● Machine Learning Model: Monitors incoming votes to detect unusual spikes or
patterns that suggest fraud.

● Regional Patterns: If a region surpasses historical turnout by a large margin within
minutes, the system flags it for investigation.

4.2 Image Forensics for Ballot Photos

● AI-Based OCR: Compares the text/marks on the ballot image against the official
database.

● Deepfake/Manipulation Checks: Detects suspicious artifacts in the photo to counter
attempts at forging or altering ballot images.

4.3 Human Oversight & Audit Trails

● Transparency Logs: All AI “red flag” events are posted for NGOs or observers to
review.

● Manual Review: Teams of independent auditors examine flagged cases, ensuring no
single authority can silence a legitimate anomaly.

5. Sociopolitical & Organizational Strategies

5.1 Addressing Government Corruption & Resistance

1. International Validators: Host critical nodes abroad, making it harder for local
authorities to seize control.

2. NGO & Academic Partnerships: Partnerships with respected domestic
organizations legitimize the platform from the grassroots level.

3. Parallel Elections: Offer “shadow” tallies that can highlight discrepancies if official
results are manipulated.

5.2 Community Alliances & Parallel Elections

● Expat Communities: Korean citizens living abroad can vote on the blockchain if
local avenues are blocked.

● Media Collaboration: National and global press serve as observer nodes,
broadcasting real-time tallies.

5.3 Legal & Regulatory Considerations

● Compliance: Align with the Public Official Election Act (공직선거법) where possible,
or clarify legal status if running parallel “unofficial” elections.

● Data Privacy: Use Zero-Knowledge Proofs and hashed biometric data to remain
consistent with PIPA and related data protection laws.

● Potential Government Pushback: Prepare legal defenses and diplomatic outreach
to mitigate attempts at suppression.

6. Implementation Roadmap

6.1 Phase 1: MVP & Small-Scale Pilots (6–12 Months)

● Develop & Audit Core Contracts: Launch a minimal prototype on a local test
environment.

● University or NGO Elections: Demonstrate real-world feasibility with smaller-scale
adoption.

6.2 Phase 2: Parallel Elections & Scaling (12–24 Months)

● Shadow Elections: Provide an optional blockchain-based method for citizens to
verify or cross-check official results.

● AI Monitoring: Integrate real-time anomaly detection and face-scanning features at
pilot scale.

6.3 Phase 3: National or Hybrid Integration (24–36 Months)

● Formal Collaboration (if possible): Seek partial or full adoption by the National
Election Commission (NEC).

● Expanding Node Validator Network: Invite more NGOs, diaspora groups, and
academic institutions to secure the network.

7. Extended Features: Face Scanning & Photo-Based
Ballot Verification

7.1 Face Scan Enrollment & Privacy

● Hash-Based Storage: Only cryptographic hashes of faces are stored; raw images
never appear on-chain.

● On-Site vs. Remote: Face scanning can happen at official polling sites or user’s
smartphone app, but requires robust anti-spoofing measures.

7.2 Photo Comparison for Paper Ballots

● Secure Photo Upload: Each ballot contains a unique ID; voters snap a photo as
proof of how they marked it.

● Cross-Verification: If official tallies conflict with user-uploaded ballot data, the
system flags the discrepancy for public audit.

7.3 Limitations & Practical Concerns

● Legal Issues: Some jurisdictions ban photographing ballots.
● Technical Complexity: Maintaining a biometric + photo system is expensive and

requires reliable hardware.

8. Ensuring Near-Impossibility of Manipulation

8.1 Layered Verification & Cross-Checking

Each layer (blockchain records, face scanning, ballot photos, AI detection) compensates for
potential failures in the others—making large-scale fraud extremely difficult without
detection.

8.2 Decentralized & International Nodes

Validator nodes distributed across multiple geographies limit the impact of local government
crackdowns.

8.3 AI as an Early Warning System

Real-time detection of outliers and digital forensics on images give immediate signals of
manipulation, enabling human auditors and watchdogs to intervene.

9. Conclusion & Future Directions
TrustVotes represents a holistic approach to election integrity in a potentially hostile
environment. By combining advanced blockchain features, AI-based tampering
detection, biometric authentication, and community-led oversight, this platform
drastically raises the cost and complexity of manipulation—thus restoring confidence in the
democratic process.

Future iterations may include:

● Fully Homomorphic Encryption for vote counting.
● Further AI Enhancements to detect deepfakes or large-scale conspiracies.
● Cross-Border Collaboration with international democratic alliances for further

legitimization.

We invite developers, NGOs, institutions, and global observers to contribute to or pilot
this initiative, helping South Korea—and potentially other nations—achieve fair,
transparent, and tamper-resistant elections.

10. References
1. Avalanche Documentation
2. Public Official Election Act (공직선거법)
3. Personal Information Protection Act (PIPA)
4. ISO/IEC 27001 - Information Security
5. Zcash Technology (ZK Proof Overview)
6. OpenZeppelin Contracts

11. Appendices

11.1 Additional Smart Contract Code
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;

/**
 * @title Governance
 * @dev Simple governance contract allowing proposals and on-chain voting.
 */
contract Governance {
 struct Proposal {
 uint256 id;
 address proposer;

https://docs.avax.network/
https://www.law.go.kr/lsInfoP.do?lsiSeq=239952
https://www.law.go.kr/lsInfoP.do?lsiSeq=246216
https://www.iso.org/isoiec-27001-information-security.html
https://z.cash/technology
https://github.com/OpenZeppelin/openzeppelin-contracts

 string description;
 uint256 votesFor;
 uint256 votesAgainst;
 bool open;
 }

 uint256 public proposalCount;
 mapping(uint256 => Proposal) public proposals;
 mapping(uint256 => mapping(address => bool)) public voted;

 event ProposalCreated(uint256 id, address proposer, string desc);
 event Voted(uint256 proposalId, address voter, bool support);
 event ProposalClosed(uint256 proposalId, bool passed);

 function createProposal(string memory _desc) external {
 proposalCount++;
 proposals[proposalCount] = Proposal({
 id: proposalCount,
 proposer: msg.sender,
 description: _desc,
 votesFor: 0,
 votesAgainst: 0,
 open: true
 });
 emit ProposalCreated(proposalCount, msg.sender, _desc);
 }

 function voteOnProposal(uint256 _proposalId, bool _support) external {
 require(_proposalId > 0 && _proposalId <= proposalCount, "Invalid proposal");
 require(proposals[_proposalId].open, "Proposal closed");
 require(!voted[_proposalId][msg.sender], "Already voted");

 voted[_proposalId][msg.sender] = true;
 if (_support) {
 proposals[_proposalId].votesFor++;
 } else {
 proposals[_proposalId].votesAgainst++;
 }

 emit Voted(_proposalId, msg.sender, _support);
 }

 function closeProposal(uint256 _proposalId) external {
 require(_proposalId > 0 && _proposalId <= proposalCount, "Invalid proposal");
 require(proposals[_proposalId].open, "Already closed");

 proposals[_proposalId].open = false;
 bool passed = proposals[_proposalId].votesFor > proposals[_proposalId].votesAgainst;

 emit ProposalClosed(_proposalId, passed);
 }
}

11.2 ZKP Pseudocode & Example
function generateZKProof(userInfo, privateKey) returns (proof) {
 // 1. Derive a unique commitment from user data
 // 2. Use zero-knowledge library (e.g., SnarkJS, Semaphore)
 // 3. Return proof object
}

function verifyZKProofOnChain(proof) returns (bool) {
 // 1. Validate proof
 // 2. Check if it was already used (to prevent double voting)
 // 3. Return true if valid
}

11.3 Sample Front-End Boilerplate (React/Next.js)
// frontend/pages/index.js
import React, { useState, useEffect } from 'react';
import { ethers } from 'ethers';
import VotingArtifact from '../artifacts/contracts/TrustVotesVoting.sol/TrustVotesVoting.json';

const CONTRACT_ADDRESS = "0xYourDeployedContract";

export default function Home() {
 const [candidates, setCandidates] = useState([]);
 const [account, setAccount] = useState('');

 useEffect(() => {
 (async () => {
 if (window.ethereum) {
 const [acct] = await window.ethereum.request({ method: 'eth_requestAccounts' });
 setAccount(acct);
 await fetchCandidates();
 }
 })();
 }, []);

 async function fetchCandidates() {
 // ...
 }

 async function castVote(candidateId) {
 // ...

 }

 return (
 <div>
 <h1>TrustVotes Dashboard</h1>
 <p>Connected as: {account}</p>
 {candidates.map((c) => (
 <div key={c.id}>
 {c.name} - Votes: {c.voteCount}
 <button onClick={() => castVote(c.id)}>Vote</button>
 </div>
))}
 </div>
);
}

Version 1 — End of Document

	TrustVotes: A Comprehensive, Multi-Layered, Blockchain-Based Election System
	Version 1
	Table of Contents (English)
	1. Introduction
	1.1 Context & Challenges
	1.2 Why Blockchain Voting?
	1.3 Purpose of This Document

	2. System Overview & Architecture
	2.1 Core Objectives
	2.2 Avalanche Subnet Rationale
	2.3 Multi-Layered Security: Biometrics, Photos, and AI

	3. Technical Implementation
	3.1 Identity & Zero-Knowledge Proofs (ZKPs)
	3.2 Smart Contracts & Sample Code
	3.3 Front-End & UX Considerations
	3.4 Integration with Biometric & Photo Verification

	4. AI-Driven Tamper Detection
	4.1 Real-Time Anomaly Detection
	4.2 Image Forensics for Ballot Photos
	4.3 Human Oversight & Audit Trails

	5. Sociopolitical & Organizational Strategies
	5.1 Addressing Government Corruption & Resistance
	5.2 Community Alliances & Parallel Elections
	5.3 Legal & Regulatory Considerations

	6. Implementation Roadmap
	6.1 Phase 1: MVP & Small-Scale Pilots (6–12 Months)
	6.2 Phase 2: Parallel Elections & Scaling (12–24 Months)
	6.3 Phase 3: National or Hybrid Integration (24–36 Months)

	7. Extended Features: Face Scanning & Photo-Based Ballot Verification
	7.1 Face Scan Enrollment & Privacy
	7.2 Photo Comparison for Paper Ballots
	7.3 Limitations & Practical Concerns

	8. Ensuring Near-Impossibility of Manipulation
	8.1 Layered Verification & Cross-Checking
	8.2 Decentralized & International Nodes
	8.3 AI as an Early Warning System

	9. Conclusion & Future Directions
	10. References
	11. Appendices
	11.1 Additional Smart Contract Code
	11.2 ZKP Pseudocode & Example
	11.3 Sample Front-End Boilerplate (React/Next.js)

