MATHEMATICS

For JEE / IIT ADVANCED / CET

Binomial Theorem

Rankers

Binomial Theorem

$$
\begin{aligned}
& (a+b)^{0}=1 \\
& (a+b)^{1}=(a+b) \\
& (a+b)^{2}=\left(a^{2}+2 a b+b^{2}\right) \\
& (a+b)^{3}=\left(a^{3}+3 a^{2} b+3 a b^{2}+b^{3}\right) \\
& (a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4} \\
& (a+b)^{5}=
\end{aligned}
$$

by Rahul sir

$$
\begin{aligned}
& (a+b)^{17}= \\
& (a+b)^{n}={ }^{n} c_{0} a^{n} b^{0}+{ }^{n} c_{1} a^{n-1} b^{1}+{ }^{n} c_{2} a^{n-2} b^{2}+{ }^{n} c_{3} a^{n-3} b^{3}+\ldots . .+n^{n}{ }^{n} a^{n-n} b^{n}
\end{aligned}
$$

Binomial Theorem
a, b-positive integer.
n - integer
$n_{c_{0}}, n_{c_{1}}, n_{c_{2}} \ldots n_{c_{n}}$ Binomial coefficient.
What is $n_{c_{r}}$?

What is factorial?

$$
{ }^{n} C_{r}=\frac{L n}{\angle r \angle n-r} \quad 8_{c_{3}}=\frac{\angle 8}{\angle 3 L^{5}}=56,
$$

$$
\text { ** } n_{c_{1}}=\frac{L n}{L 1 L^{n-1}}=\frac{n(n-1)(n-2) \ldots 1}{L^{n-1}}
$$

$$
\left.\begin{array}{l}
\left\{\begin{aligned}
5! & =5 \times 4 \times 3 \times 2 \times 1 \\
9! & =9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 \\
9! & =9 \times 8! \\
& =9 \times 8 \times 7! \\
& =9 \times 8 \times 7 \times 6!
\end{aligned}\right. \\
\begin{array}{rl}
4! & =n(n-1)(n-2) \cdots 3 \times 2 \times 1
\end{array} \\
\frac{\times 2 \times 1}{3 \times 2 \times 1}=10
\end{array} \quad \begin{array}{rl}
11 c_{9} & =\frac{L 11}{\angle 9 L 2}
\end{array}\right)=\frac{11 \times 10 \times 49}{49 \times \angle 2} .
$$

$$
=\frac{n \angle(n-1)}{1 L^{n-1}}=n
$$

* $n_{c_{0}}=\frac{L K}{\angle 0 L X}=\frac{\angle n}{1 \cdot \angle n}=1$
$[$ Rem:- $L O=1]$

$$
\begin{aligned}
& \rightarrow{ }^{11} c_{q}=55 \\
& \rightarrow{ }^{11} C_{2}=\frac{\angle 11}{\angle 2 L 9}=\frac{11 \times 10 \times 19}{2 \times 1 \times 49} \\
& =55 \\
& \text { * } n_{c_{r}}={ }^{n_{c} c_{n-r}} \\
& { }^{11} c_{g}={ }^{11} c_{11-9}={ }^{11}{c_{2}}=55
\end{aligned}
$$

$$
\begin{array}{rlrl}
(a+b)^{n} & ={ }^{n} c_{0} a^{n} b^{0}+{ }^{n} c_{1} a^{n-1} b^{1}+\cdots+{ }^{n} c_{n} b^{n} . & \leftarrow \text { Binomial Expansion } \\
(a+b)^{3} & ={ }^{3} c_{0} a^{3} \cdot b^{0}+{ }^{3} c_{1} a^{3-1} \cdot b^{1}+{ }^{3} c_{2} a^{3-2} b^{2}+3 c_{3} a^{3-3} b^{3} & & 3 c_{1}=\frac{\angle 3}{L L^{2}}=3 \\
& =1 \cdot a^{3} \cdot 1+3 \cdot a^{2} \cdot b+3 \cdot a^{1} \cdot b^{2}+1 \cdot 1 b^{3} & { }^{3} c_{2}=\frac{L^{3}}{\angle 2 L^{\prime}}= \\
(a+b)^{3} & =a^{3}+3 a^{2} b+3 a b^{2}+b^{3} & \text { proved from Binomial } &
\end{array}
$$

Few more formulas

$$
n_{C_{r}}=\frac{L n}{\angle r L^{n-r}}
$$

$$
\rightarrow n_{C_{\gamma}}=n_{C_{n-r}}
$$

$$
\begin{aligned}
& { }^{5} c_{c_{3}}=10 \\
& { }^{5} c_{2}=10 \\
& { }^{5} c_{3}={ }^{5} c_{5-3} \\
& { }^{n} c_{c_{2}}=n_{c_{n-2}}
\end{aligned}
$$

$$
\rightarrow n_{c_{\gamma}}+n_{c_{r-1}}={ }^{n+1} c_{c_{\gamma}} w
$$

$$
\begin{array}{ll}
{ }^{5} c_{3}+{ }^{5} c_{2}={ }^{6} c_{3} & { }^{5} c_{3}={ }^{5}{ }_{c_{5-3}} \\
=\frac{L^{5}}{\angle 3 L^{2}}+\frac{\angle 5}{L^{3} L^{2}}=\frac{L^{6}}{L^{3} L^{3}} & { }_{c_{2}}=n_{c_{n-r}} \\
=10+10 & \\
=20 &
\end{array}
$$

verify.

$$
\begin{gathered}
{ }^{1} c_{c_{q}}={ }^{11} c_{c_{2}}=55 \\
n_{c_{X}}=n_{c_{Y}} \\
9+2=11
\end{gathered}
$$

$$
\rightarrow \frac{n_{c_{r}}}{n_{c_{r-1}}}=\frac{\frac{L n}{\angle r \angle n-r}}{\frac{L n}{L(-1) \angle n-r+1}}
$$

$$
=\frac{L^{2}}{L r \angle n-r} * \frac{\angle(r-1) \angle n-r+1}{\angle r}
$$

$$
=\frac{\angle r-1\left[\frac{L n-r+1}{\angle r} \angle n-r\right.}{[\angle L-1)}=\frac{\angle(n-r+1) \angle n-f r}{r \angle r-\gamma}=\frac{n-r+1}{r}
$$

Shortcut

$$
\begin{aligned}
& \text { Sample } \\
& \text { * Expand. ~ }\left(x^{2}+2 y\right)^{5} \text {. } \\
& \rightarrow(a+b)^{n}=n_{c_{0}} a^{n} b^{0}+{ }^{n} c_{1} a^{n-1} b^{1}+\cdots n_{c n} a^{0} b^{n} \text {. } \\
& ={ }^{5} c_{c}\left(x^{2}\right)^{5}(2 y)^{0}+{ }^{5} c_{1}\left(x^{2}\right)^{5-1}(2 y)^{1}+\underbrace{{ }^{5} c_{2}}\left(x^{2}\right)^{5-2} \cdot(2 y)^{2}+{ }^{5} c_{3}\left(x^{2}\right)^{5-3} \cdot(2 y)^{3}+\underbrace{5}{ }^{5} c_{4}\left(x^{2}\right) \cdot(2 y)^{5-4}+\underbrace{\left.{ }^{5} c_{5}\left(x^{2}\right)^{0}(2 y)^{5}\right)} \\
& =\text { i. } x^{10} \cdot 1+5 \cdot x^{8} \cdot 2 y+10 \cdot x^{6} 2^{2} \cdot y^{2}+10 \cdot x^{4} \cdot 2^{3} y^{3}+5 * x^{2} \cdot 2^{4} \cdot y^{4}+1 *(1) * 2^{5} y^{5} . \\
& =x^{10}+10 x^{8} y+40 x^{6} y^{2}+80 x^{4} y^{3}+80 x^{2} y^{4}+32 y^{5} \text { Ans. }
\end{aligned}
$$

$$
\begin{aligned}
& * \quad(x+y)^{n}=n_{c_{0}} x^{n} \cdot y^{0}+n_{c_{1}} x^{n-1} y^{1}+n_{c_{2}} x^{n-2} y^{2}+\cdots \quad+n_{c_{n}} x^{0} y^{n} \\
& * \quad \text { let } x=y=1
\end{aligned}
$$

$$
\text { 米 } \rightarrow 2^{n}=n_{c_{0}}+n_{c_{1}}+n_{c_{2}}+\cdots n_{c_{n}} \notin \leftarrow \text { Formula }
$$

$$
\begin{aligned}
(1+x)^{n} & ={ }^{n} c_{0} 1^{n} \cdot x^{0}+n_{c_{1}} 1^{n-1} \cdot x^{1}+{ }^{n} c_{2} 1^{n-2} \cdot x^{2}+\cdots+{ }^{n}+{ }^{n} c_{n} 1^{0} \cdot x^{n} . \\
& =1+n \cdot x+\frac{L n}{L^{2} L^{n-2}} \cdot x^{2}+\cdots x^{n} \\
& =1+n x+\frac{n \cdot(n-1) L^{n-2}}{L^{2} \cdot L^{n-2}} x^{2}+\cdots+x^{n}
\end{aligned}
$$

$$
\text { * }(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\ldots+x^{n} \text { [Formula] } *
$$

* $(1-x)^{n}=1-n x+\frac{n(n-1)}{2!} x^{2} \ldots+(-x)^{n} \quad$ Formula
sum of 'od places'

$$
* *(x+a)^{n}-(x-a)^{n}=2\left[{ }^{n} c_{1} x^{n-1} \cdot a^{1}+{ }^{n} c_{3} x^{n-3} a^{3}+\cdots\right]
$$

"sum of evenplace"
Find
sum of odd terms

$$
\begin{aligned}
& =2[1.4+6 \cdot 2+1 * 1 * * 1] \\
& =2[4+12+1]=2 * 17=34 \text { Ans }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Q. } \\
& =(\sqrt{2}+1)^{4}+(\sqrt{2}-1)^{4}=? \\
& \begin{array}{l}
\left.=\left({ }^{4} c_{0} \sqrt{2}^{4} 1^{0}+4 c_{1} \sqrt{2}^{3} / 1+4 c_{2} \sqrt{2}^{2} 1^{2}+4 c_{3} \sqrt{2}\right)^{3} 1^{4}+c_{4} \sqrt{2}^{0} 1^{4}\right)+\frac{\left.\overrightarrow{4} c_{0}(\sqrt{2})^{4} \cdot(-1)^{6}+4 c_{1}(\sqrt{2})^{3}\right)(-1)^{1}}{{ }^{4} c_{2}(\sqrt{2})^{2}(-1)^{2}}+4 c_{3}(\sqrt{2})^{1}(-1)^{3}
\end{array} \\
& \left.=2^{6}\left[{ }^{4} c_{0}(\sqrt{2})^{4} \cdot 1^{0}+{ }^{4} c_{2}(\sqrt{2})^{2} \cdot 1^{2}+{ }^{4} c_{4}(\sqrt{2})^{0} 1^{4}\right]\right] \\
& \left.+4 c_{4}(\sqrt{2})^{0}(-1)^{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { * }(x+a)^{n}+\underline{(x-a)^{n}}=\left[{ }^{n} c_{0} x^{n} \cdot a^{0}+{ }^{n} c_{1} x^{n} / \cdot a^{1}+{ }^{n} c_{2} x^{n-2} a^{2}+\cdots{ }^{n} c_{n} x^{0} a^{n}\right] \\
& +[{ }^{n} c_{0} x^{n}(-a)^{0}+\underbrace{n} c_{1} x^{n-1} /(-a)^{1}+\cdots+\cdots \quad+{ }^{n} c_{n}\left(x^{0}\right)(-a)^{n}] \text {. } \\
& \text { * }(x+a)^{n}+(x-a)^{n}=2\left[{ }^{n} c_{0} x^{n}+{ }^{n} c_{2} x^{n-2} a^{2}+n_{c_{4}} x^{n-4}-a^{4}+\cdots\right]
\end{aligned}
$$

$$
(x+y)^{n}={ }^{n} c_{0} x^{n} y^{0}+n_{c_{1}} x^{n-1} y^{1}+n_{c_{2}} x^{n-2} y^{2} \ldots+\quad+n_{c_{n}} x^{0} y^{n} .
$$

G.

$$
\begin{aligned}
& (\sqrt{2}+1)^{6}-(\sqrt{2}-1)^{6} \in \text { Solve This } \\
= & (x+a)^{n}-(n-a)^{n}=2\left[{ }^{n} c_{1} x^{n-1} \cdot a^{\prime}+n_{c_{3}} x^{n-3} a^{3}+\ldots .\right] \\
= & 2[{ }^{6} c_{1}(\sqrt{2})^{6-1} \cdot(1)^{1}+6 c_{3}(\sqrt{2})^{3}(1)^{3}+\underbrace{6} c_{5}(\sqrt{2})^{6-5} \cdot(1)^{5}] . \\
= & 2\left[6 \cdot(\sqrt{2})^{5}+20(\sqrt{2})^{3}+6(\sqrt{2})^{1}\right] \\
= & 2 \sqrt{2}\left[6(\sqrt{2})^{4}+20(\sqrt{2})^{2}+6\right) \\
= & 2 \sqrt{2}[6 * 4+20 * 2+6]=140 \sqrt{2} \text { Ans }
\end{aligned}
$$

General term of Binomial Expansion

$$
\begin{aligned}
& (a+b)^{n}=n_{c_{0}} a^{n}+n_{c_{1}} a^{n-1} b^{1}+n_{c_{2}} a^{n-2} b^{2}+\cdots+n_{c_{n}} a^{0} b^{n} \\
& \text { First term }={ }^{\eta} c_{0} a^{n} \\
& \text { end } \operatorname{term}=n_{c} a^{n-1} b^{1} \\
& \text { ard term }={ }^{n} c_{2} a^{n-2} b^{2} \\
& { }_{q, \pi}^{4 \text { th }} \text { term }={ }_{1}^{n_{c}} a_{1}^{n-3} \uparrow b^{3} \uparrow \\
& \underline{\left.\underline{(r+1)} \text { th term }={ }^{n} c a^{n-\gamma} b^{\gamma} \quad T_{r+1}={ }^{n} c_{c_{r}} a^{n-\gamma} b^{\gamma}\right]}
\end{aligned}
$$

(2) $\left(\frac{x}{3}-34\right)^{7} \times\left(\frac{x}{3}+(-34)^{7}\right.$

Find 5 th term of the expansion.

$$
\begin{aligned}
T_{5}=T_{4+1} & ={ }^{7} c_{4}\left(\frac{x}{3}\right)(-3 y)^{7} \quad \text { (General term) } \\
& =\frac{L^{7}}{\angle 4 L^{3}} \cdot\left(\frac{x^{3}}{3^{3}}\right)(-3)^{4} \cdot\left(y^{4}\right. \\
& =\frac{7 \times 6 \times 5 \angle 4}{3 \times 2 \times 1 \times \angle 4} \frac{x^{3}}{3^{3}} \cdot 3^{4} \cdot y^{4} \\
& =35 \cdot x^{3} \cdot y^{4} * 3=\frac{105 x^{3} y^{4}}{\text { coefficient of 5 Th } 105} \text { Ans }
\end{aligned}
$$

$$
(a+b)^{2}=a^{2}+2 a b+b^{2}
$$

Power $2 \longrightarrow$ terms 3. \longrightarrow Power even \cap and. $\left(\frac{n}{2}+1\right)$
Power $3 \longrightarrow$ terms 4
For even Number
Two middle

$$
\frac{7+1}{2}, \frac{7+1}{2}+1
$$

$$
\underbrace{\frac{n+1}{2}, \frac{n+1}{2}}+1 \text { two Middle term }
$$

$$
(x+4)^{20} \rightarrow \text { Middle term } \approx \frac{20}{2}+1 \approx 11 \text { th term }
$$

Q. Find Middle term $\sim(2 x+3 y)^{9}$.

$$
\begin{aligned}
& \text { Sol Power ~g (odd) } \\
& \text { Mild te term }=\frac{9+1}{2}, \frac{9+1}{2}+1 \\
&=5,6 .
\end{aligned}
$$

$$
\begin{aligned}
J_{5}=T_{4+1} & ={ }^{n} C_{\gamma} a^{n-\gamma} b^{\gamma} \\
& ={ }^{9} C_{4}(2 x)^{9-4} \cdot(34)^{4} \\
& =\frac{126}{} 2^{5} x^{5} 3^{4} \cdot y^{4} \\
& =326592 x^{5} y^{4} \text {. Ans } \\
T_{6} & ={ }^{9} C_{5}(2 x)^{4}(34)^{5}=489888 x^{4} y^{5} .
\end{aligned}
$$

Q. Find Middle term $\sim\left(3-\frac{x^{3}}{6}\right)^{6}$.

$$
\begin{aligned}
& \frac{6}{2}+1 \quad \frac{n}{2}+1 \\
& 3+1
\end{aligned}
$$

Sol Middle term Th

$$
\begin{aligned}
9_{c_{y}} & = \\
& =\frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2 \times 1} \\
{ }^{12} c_{3} & =\frac{12 \times 11 \times 10}{3 \times 2 \times 1}
\end{aligned}
$$

$$
\begin{aligned}
T_{4}=T_{3+1} & ={ }^{{ }^{n} c_{r}} a^{n-2} b^{r} \\
& ={ }^{6} c_{3}(3)^{6-3} \cdot\left(-\frac{x^{3}}{6}\right)^{3} \\
& =\frac{6 \times 5 \times 4}{3 \times 2 \times 1}(3)^{3} \cdot(-1)^{3} \cdot \frac{x^{9}}{6^{3}}=-\underbrace{\frac{5}{2} \cdot x^{9}}
\end{aligned}
$$

$$
\begin{aligned}
& W(a+b)^{6}=x \times \frac{6}{2}+1 \quad\left(\frac{n}{2}+1\right) \text { Middle } \\
& \text { th }
\end{aligned}
$$

Q
$x^{(32)}$ in the expansion of $\left(x^{4}-\frac{1}{x^{3}}\right)^{15}$
lets find general term

$$
\begin{align*}
& T_{r+1}={ }^{n} c_{r} a^{n-r} b^{r} \\
& ={ }^{15} c_{\gamma}\left(x^{4}\right)^{15-\gamma} \cdot\left(-\frac{1}{x^{3}}\right)^{\gamma} \\
& ={ }^{15} c_{\gamma} x^{60-4 \gamma} \cdot(-1)^{\gamma} \cdot \frac{1}{x^{3 \gamma}} \tag{32}\\
& ={ }^{1} S_{C_{\gamma}} x^{60-4 \gamma-3 \gamma}(-1)^{\gamma}=(-1)^{\gamma} \cdot S_{C_{\gamma}} \cdot x^{60} \\
& 60-7 r=32 \\
& 60-32=7 r \\
& r=4 \\
& T_{4+1}=T_{5}\left(5 T h \text { term will } \rightarrow \text { us } x^{32}\right) \\
& \text { coefficient }=(-1)^{\gamma} 15 \mathrm{cr} \\
& =(-1)^{4} 1 \mathrm{CC}_{4} \\
& ={ }^{15} \mathrm{Cu} \approx 1365 \text { Ans }
\end{align*}
$$

* Type ~ 2 (Find term independent of variable)
Q. Find the term independent of $x \sim\left(2 x-\frac{1}{x}\right)$

$$
\begin{aligned}
T_{r+1} & ={ }^{n} C_{r} a^{n-r} b^{r} \\
& ={ }^{10} C_{r}(2 x)^{10-r} \cdot\left(-\frac{1}{x}\right)^{\gamma} \\
& ={ }^{10} C_{r} 2^{10-\gamma} x^{10-\gamma}(-1)^{\gamma} \cdot \frac{1}{x^{\gamma}} \\
& ={ }^{10} c_{\gamma} 2^{10-\gamma} \cdot x^{10-\gamma-\gamma}(-1)^{\gamma}={ }^{10} C_{r} 2^{10-\gamma} x^{10-2 \gamma}(-1)^{\gamma}
\end{aligned}
$$

lets assume $T_{\gamma+1}$ is independent of x

$$
\begin{aligned}
& 10-2 \gamma=0 \\
& 10=2 \gamma \quad \gamma=5
\end{aligned}
$$

T6 th term is independent of x

$$
\begin{aligned}
L T_{6}=T_{5+1} & ={ }^{10} C_{5} 2^{10-5} \cdot x^{10-2 * 5}(-1)^{5} \\
& ={ }^{10} C_{5} 2^{5} \cdot x^{0}(-1)^{5} \\
& =-8064 \text { Ans }
\end{aligned}
$$

Show that the middle term in the expansion

$$
(1+x)^{2 n} \sim \text { is ~ } \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{n!} 2^{n} \cdot x^{n} \cdot\left[n \text {-integer } \begin{array}{c}
\text { Give }
\end{array}\right.
$$

$$
\begin{aligned}
& (1+x)^{2 n} \xrightarrow{\substack{\text { Nliddle } \\
\text { tern }}}\left[\frac{2 n}{r}+1\right]=(n+1) \text { th term } \\
& T_{n+1}={ }^{n} c_{r} a^{n-r} b^{r} \\
& ={ }^{2 n_{c}} c_{n}(\underbrace{2 n-n}(x)^{n} \\
& =\frac{\angle 2 n}{\angle n \angle n!} x^{n} \\
& =\frac{[(2 n)(2 n-1) \cdot(2 n-2)(2 n-3) \cdots}{4 \cdot 3 \cdot 2 \cdot 1]} x^{n} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{[1 \cdot 3 \cdot 5 \quad(2 n-1)] \cdot\left[\frac{1}{2 \cdot 4 \cdot 6 \cdot \cdots(2 n-2) 2 n}\right]}{(2 n)^{2}} x^{n} \\
& =\frac{[1.3 .5 \cdots(2 n-1)]\left[\begin{array}{c}
1 \\
{[2 \times 1 *(2+2) *(2 * 3) \cdots} \\
(2 \times n)^{1}
\end{array} x^{n}\right]}{(2 n} \\
& =\frac{\left[1.3 .5 \cdots(2 n-1) 2^{n}[1.2 .3 \ldots n]\right.}{\left(L^{n}\right)^{2}} \cdot x^{n} \\
& =\frac{\left(1.3 .5 \cdots(2 n-1) 2^{n} \cdot[L n]\right.}{(L n)^{2}} * x^{n} \\
& =\left\{\frac{(1.3 \cdot 5 \cdots 2 n-1) 2^{n}}{\operatorname{Ln}}\right\} x^{n} \quad \text { proved }
\end{aligned}
$$

Find the constant term in the expansion

$$
\left(x-\frac{1}{x}\right)^{10}
$$

So ln Cons $=$ independent of x

$$
\begin{aligned}
T_{r+1} & ={ }^{n} C_{\gamma} a^{n-\gamma} b^{\gamma} \\
& ={ }^{10} C_{\gamma}(x)^{10-\gamma}\left(-\frac{1}{x}\right)^{\gamma} \\
& ={ }^{10} C_{\gamma} x x^{10-\gamma}(-1)^{\gamma} \cdot \frac{1}{n^{\gamma}}={ }^{10} C_{\gamma} x^{10-2 \gamma}(-1)^{\gamma} \\
& 10-2 \gamma=0 \quad \gamma=5
\end{aligned}
$$

$T_{6}=T_{5+1} \sim$ is independent of x

$$
\begin{aligned}
T_{6}=r_{5+1} & ={ }^{10} c_{5} x^{10-2 * 5}(-1)^{5} \\
& =-10 c_{5}=-252 \quad A_{2}
\end{aligned}
$$

Q. Find a positive value of m for which the coefficient of x^{2} in the expansion $(1+x)^{m}$ is 6
fol ${ }^{n} \mathrm{~g}_{\mathrm{o}}$

$$
\begin{aligned}
& T_{r+1}={ }^{n}{ }_{C_{r}} a^{n-r} b^{r} \\
&={ }^{m_{C_{r}}} a^{m-r} \cdot \underbrace{r})^{\gamma} \\
& T_{3}=T_{2+1}=\underbrace{{ }^{m}{ }_{C_{2}}(1)^{m-2} x^{2}}_{\text {coefficient }} \\
&{ }^{m_{C_{2}}}=6(\text { given }) \\
& \frac{m \times(m-1)}{2 \times 1}=6 \\
& m(m-1)=12 \\
& m(m-1)=4 \times 3 \\
& m=4 \text { sol }
\end{aligned}
$$

1)

The sum of the coefficient of all odd degree terms in the expansion of $\left(x+\sqrt{x^{3}-1}\right)^{5}+\left(x-\sqrt{x^{3}-1}\right)^{5}(x>1) \quad$ is
(a) 1
(b) 2
(c) -1
(d) 0

$$
\begin{align*}
& =\left(x+\sqrt{x^{3}-1}\right)^{5}+\left(x-\sqrt{x^{3}-1}\right)^{5} \\
& =(x+a)^{5}+(x-a)^{5} \tag{2018}\\
& =2\left[{ }^{5} c_{0}(x)^{5}+{ }^{5} c_{2} x^{5-2}\left(\sqrt{x^{3}-1}\right)^{2}+{ }_{c}^{5} c_{4}{ }^{5-4} \cdot\left(\sqrt{x^{3}-1}\right)\right.
\end{align*}
$$

$$
=2\left[1 . x^{5}+10 x^{3}\left(x^{3}-1\right)+5 x\left(x^{3}-1\right)^{2}\right]
$$

$$
=2\left[x^{5}+10\left(x^{6}-x^{3}\right)+5 x\left[x^{6}+1-2 . x^{3}\right]\right]
$$

$$
\begin{aligned}
& =2\left[x^{5}+10 x^{6}-10 x^{3}+5 x^{7}+5 x-10 x^{4}\right] \\
& =2 x^{5}+20 x^{6}-20 x^{3}+10 x^{7}+10 x^{1}-20 x^{4} \\
& \text { in of coefl of odd degree terms. }
\end{aligned}
$$

Sum of coefl of odd degree terms.

$$
=2-20+10+10=2 \text { Ans. }
$$

2)

In the binomial expansion of $(a-b)^{n}, n \geq 5$, the sum of the $5^{\text {th }}$ and $6^{\text {th }}$ terms is zero. Then $\frac{a}{b}$ is equal to
(a) $\frac{1}{6}(n-5)$
(b) $\frac{1}{5}(n-4)$

$$
n \geq 5
$$

$$
\begin{aligned}
(a-b)^{n}= & { }^{n} c_{0} a^{n}+n_{c} a^{n-1}(-b)^{1} \\
& +{ }^{n} c_{2} a^{n-2}(-b)^{2}+n_{c_{3}} a^{n-3}(-b)^{3} \\
& +\cdots \\
& \cdots n_{c} a^{n-n} b^{n}
\end{aligned}
$$

(c) $\frac{5}{(n-4)}$
(d) $\frac{6}{(n-5)}$

$$
T_{s}=T_{4+1}
$$

$$
T_{6}=T_{5+1}
$$

or, $T_{5}+T_{6}=0$

$$
={ }^{n} c_{\gamma} a^{n-\gamma} b^{\gamma}
$$

$$
={ }^{n} c_{5} a^{n-5} \cdot(-b)^{5}
$$

or, $n_{c_{4}} a^{n-4} b^{4}+n_{c_{5}} a^{n-5}(-b)^{5}=0$

$$
={ }^{n} c_{4} a^{n-4}(-b)^{4}
$$

or, $n_{c_{4}} a^{n-4} b^{4}=n_{c_{5}} a^{n-5} b^{5}$
or, $\frac{a^{n-4} \cdot b^{4}}{a^{n-5} b^{5}}=\frac{n_{c s}}{n_{c}}$

$$
\text { or, } \frac{a}{b}=\frac{n_{5}}{n_{c y}}=\frac{n-5+1}{5}=\frac{n-4}{5} \text { Ans }
$$

(3)

The coefficient of x^{7} in the expansion of $\left(1-x-x^{2}+x^{3}\right)^{6}$ is
(a) 144
(b) -132
(c) -144
(d) 132

$$
\begin{aligned}
& =\left\{(1-x)-x^{2}(1-x)\right\}^{6} \\
& =(1-x)^{6}\left(1-x^{2}\right)^{6} \\
& =\left({ }^{6} c_{0}-{ }^{6} c_{1} x^{1}+{ }^{6} c_{2} x^{2}-{ }^{6} c_{3} x^{3}+6 c_{4} x^{4}-{ }^{6} c_{5} x^{5}+{ }^{6} c_{6} x^{6}\right){ }^{6} \\
& \quad\left({ }^{6} c_{0}-{ }^{6} c_{1} x^{2}+{ }^{6} c_{2} x^{4}-{ }^{6} c_{3} x^{6}+{ }^{6} c_{4} x^{8}\right. \\
&
\end{aligned}
$$

$$
\begin{aligned}
& =+{ }^{6} c_{1} *{ }^{6} c_{3}-{ }^{6} c_{3} *{ }^{6}{ }_{c_{2}}+{ }^{6}{ }_{c_{5}} *{ }^{6} c_{1} \\
& =6 * 20-20 * 15+6 * 6=156-300=-144 \text { Ans }
\end{aligned}
$$

4) The coefficient of $\stackrel{t}{24}_{\sim}^{\sim}$ in the expansion of $\left(1+t^{2}\right)^{12}\left(1+t^{12}\right)\left(1+t^{24}\right)$ is
(a) ${ }^{12} C_{6}+2$
(b) ${ }^{12} C_{5}$
(c) ${ }^{12} C_{6}$
(d) ${ }^{12} C_{7}$

$$
\begin{aligned}
= & \left(1+t^{2}\right)^{12} \cdot\left(1+t^{24}+t^{12}+t^{36}\right) \\
= & \left({ }^{12} c_{0}+{ }^{12} c_{1} t^{2}+{ }^{12} c_{2} t^{4}+\cdots \quad{ }^{12} c_{4} t^{8}+{ }^{12} c_{6} t^{12}+\cdots\right. \\
& \left.+{ }^{12} c_{10} t^{20}+{ }^{12} c_{11} t^{22}+{ }^{12} c_{12}{ }^{24}\right)
\end{aligned}
$$

Coeff.

$$
=\left[12 c_{12}+12 c_{0}+12 c_{6}\right] \underbrace{t^{24}}
$$

Coeft of t^{24} are

$$
\begin{equation*}
=1+1+{ }^{12} c_{6}=1{ }^{12} c_{c}+2 \tag{a}
\end{equation*}
$$

5)

$$
\begin{aligned}
& \text { If the coefficients of } p^{\text {th }},(p+1)^{\text {th }} \text { and }(p+2)^{\text {th }} \text { terms in the sol }{ }^{n} \quad(1+x)^{n} \\
& \text { expansion of }(1+x)^{n} \text { are in A.P., then [2005] } \\
& \text { (a) } n^{2}-2 n p+4 p^{2}=0 \\
& \text { (b) } n^{2}-n(4 p+1)+4 p^{2}-2=0 \quad \vee \\
& \text { (c) } n^{2}-n(4 p+1)+4 p^{2}=0 \checkmark \\
& \text { (d) None of these } \\
& \text { Given, } \\
& { }^{n} c_{p-1},{ }^{n} c_{p},{ }^{n_{c}}{ }_{p+1} \text { rein } A P . \\
& \checkmark_{T_{p+2}}=T_{(p+1)+1}=n_{c_{p+1}} x^{p+1} \\
& \begin{array}{l}
\text { General. Term } \\
{ }^{n} T_{p}=T_{(p-1)+1}=n_{c_{p-1}} x^{p-1}
\end{array} \\
& T_{p+1}=n_{c p} x^{p} . \\
& \Rightarrow 2 n_{c_{p}}=n_{c_{p-1}}+n_{c}{ }_{p+1} \leftrightarrows\left[\begin{array}{l}
a, \dot{b}, c \\
b-a=c-b \\
2 b=a+c
\end{array} \begin{array}{l}
A P \\
k a \\
\text { property }
\end{array}\right.
\end{aligned}
$$

- let $P=1$

$$
\begin{aligned}
& \Rightarrow 2 n^{n} c_{1}={ }^{n} c_{0}+{ }^{n} c_{2} \\
& \Rightarrow 2 \cdot n=1+\frac{n(n-1)}{2} \\
& \Rightarrow 4 n=2+n^{2}-n \\
& \Rightarrow \quad n^{2}-5 n+2=0
\end{aligned}
$$

6)

If the expansion in powers of x of the function $\frac{1}{(1-a x)(1-b x)}$
is $a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots$, then ${\underset{m}{n}}^{n_{n}}$ is
[2006]
(a) $\frac{b^{n}-a^{n}}{b-a}$
(b) $\frac{a^{n}-b^{n}}{b-a}$
(c) $\frac{a^{n+1}-b^{n+1}}{b-a}$
(d) $\frac{b^{n+1}-a^{n+1}}{b-a}$

Check options
pat $p=1$
(b) $n^{2}-n(5)+2=0$

$$
\underbrace{\frac{1}{(1-a x)(1-b x)}}_{L}=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

Find coeft of \underline{x}^{n}
clef of $x^{n} \rightarrow$

$$
=\left[b^{n}+a \cdot b^{n-1}+a^{2} b^{n-2}+\cdots+a^{n}\right]
$$

check $n=2\}$ check option

$$
\begin{aligned}
& =b^{2}+a \cdot b+a^{2} \cdot b^{0} \\
& =b^{2}+a b+a^{2}
\end{aligned}
$$

$\begin{aligned}(d) & =\frac{b^{n+1}-a^{n+1}}{b-a} \\ & =\frac{b^{3}-a^{3}}{}\end{aligned}$

$$
=\frac{b^{3}-a^{3}}{b-a}
$$

7)

coefficient

$$
\begin{aligned}
& =\frac{(b-a)\left(b^{2}+a b+b^{2}\right)}{b-r} \\
& =\frac{a^{2}+a b+b^{2}}{} \\
n_{c_{2}} & =n_{c_{n}-r} \\
n_{c_{n-1}} & =n_{c_{n}-n+1} \\
& \Rightarrow n_{c_{1}=n}
\end{aligned}
$$

$$
\underbrace{n_{C_{n}(1)^{n-n}} \cdot(-x)^{n}}
$$

$$
n_{c_{n-1}}(1)^{n-n+1}(-x)^{n-1}
$$

Resultant coff $\sim{ }^{n_{C_{n}}(-1)^{n}}+{ }^{n_{C_{n-1}}(-1)^{n-1}}$ Meed to add both

$$
\begin{aligned}
& =n_{c n}(-1)^{n}+\frac{n \cdot(-1)^{n}}{-1} \\
& =(-1)^{n}[1-n] d_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { The coefficient of } x^{n} \text { in expansion of }(1+x)(1-x)^{n} \text { is [2004] } \\
& \text { (a) }(-1)^{n-1} n \\
& \text { (4) }(-1)^{n}(1-n) \\
& \text { c) }(-1)^{n-1}(n-1)^{2} \\
& \text { (d) }(n-1) \\
& =(1+x)(1-x)^{n} \\
& =\underbrace{1(1-x}_{x^{n}})^{n}+\underbrace{x}_{1} \underbrace{1-x)^{n}}_{x^{n-1}} \\
& n_{c_{n-1}}={ }^{n} c_{n-n+1} \\
& \Rightarrow n_{c_{1}}=n
\end{aligned}
$$

$$
\begin{aligned}
& =(1-a x)^{-1}(1-b x)^{-1} \\
& \rightarrow(1+x)=1+n x+\frac{n(n-1)}{2} x^{2}+\cdots- \\
& \text { put } n=-1
\end{aligned}
$$

8)

If for positive integers $r>1, n>2$ the coefficient of the $(3 r)^{\text {th }}$

(c) $n=2 r+1$
(d) None of these

Given.

$$
{ }^{2 n} c_{3 \gamma}={ }^{2 n} c_{\gamma+2}
$$

or $3 r+r+2=2 n$
$\infty \quad 4 r+2=2 n$
d $2 \gamma+1=n$
g)

$$
\begin{aligned}
& \text { The coefficient of the term independent of } x \text { in the expansion } \\
& \text { of }\left[\frac{(x+1)}{x^{2 / 3}-x^{1 / 3}+1}-\frac{(x-1)}{x-x^{1 / 2}}\right]^{10} \text { is } \\
& \text { (a) } 210 \\
& \text { (b) } 105 \\
& \text { (d) } 112 \\
& =\left[\frac{x+1}{\left(x^{2 / 3}-x^{1 / 3}+1\right)}-\frac{(x-1)}{x-x^{1 / 2}}\right]^{10} \\
& =\left[\frac{\left(x^{1 / 3}\right)^{3}+1}{\left(x^{2 / 3}-x^{1 / 3}+1\right)}-\frac{\left(x^{1 / 2}\right)^{2}-1}{x-x^{1 / 2}}\right]^{10} \\
& =\left[\frac{\left(x^{1 / 3}+1\right)\left(x^{213}-x^{1 / 3}+1\right)}{\left(x^{213}-x^{1 / 13}+1\right)}-\frac{\left(x^{12}+1\right)\left(x^{112} /-1\right)}{x^{1 / 2}\left(x^{112}-1\right)}\right]^{10}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\left(x^{1 / 3}+1\right)-\frac{\left(x^{1 / 2}+1\right)}{x^{112}}\right]^{10} \\
& =\left[x^{1 / 3}+\not-L-x^{-1 / 2}\right]^{10}=\left[x^{1 / 3}-x^{-1 / 2}\right]^{10}
\end{aligned}
$$

Now we have to find the term independent of x.

$$
\begin{aligned}
& T_{r+1}=\text { General term }={ }^{n_{c_{\gamma}} a^{n-\gamma} x^{\gamma}} \\
&={ }^{10} c_{\gamma}\left(x^{1 / 3}\right)^{10-\gamma}\left(-x^{-11 / 2}\right)^{\gamma} \\
&=(-1)^{\gamma}{ }^{10} c_{\gamma} x^{10-\gamma} \cdot x^{-\frac{r}{2}} \\
&=(-1)^{\gamma}{ }^{10} c_{\gamma} \cdot\left(\frac{10-\gamma}{3}-\frac{\gamma}{2}\right) \\
& \frac{10-r}{3}-\frac{\gamma}{2}=0 \\
& \frac{20-2 \gamma-3 r}{6}=0 \quad \therefore \quad \text { corf }=(-1)^{4} \cdot{ }^{10} c_{4} \\
& \frac{r=4}{} .
\end{aligned}
$$

The term independent of x in the binomial expansion of $\left(1-\frac{1}{x}+3 x^{5}\right)\left(2 x^{2}-\frac{1}{x}\right)^{8}$ is
(b) 496
(c) -400
(d) -496

Genera term $\sim T_{r+1}^{\gamma}={ }^{8}{ }_{c_{\gamma}}\left(2 x^{\gamma}\right)^{8-\gamma} \cdot\left(-\frac{1}{x}\right)^{\gamma}$

$$
\begin{aligned}
& ={ }^{8} C_{\gamma} \quad 2^{8-\gamma} \cdot x^{16-2 \gamma}(-1)^{\gamma} \cdot x^{-\gamma} \\
T_{\gamma+1} & ={ }^{8} C_{\gamma} \quad 2^{8-\gamma} x^{16-3 \gamma}(-1)^{2 \gamma}
\end{aligned}
$$

$$
\begin{aligned}
& \left(1-\frac{1}{x}+\frac{3 x^{5}}{5}\right)\left(2 x^{2}-\frac{1}{x}\right)^{8} \\
& =1 * \underbrace{\left(2 x^{2}-\frac{1}{x}\right.}_{\text {General term }})^{8} \Theta \frac{1}{x}(\underbrace{\left(2 x^{2}-\frac{1}{x}\right.}_{\text {Heed to }})^{8}+(3 x^{5} \underbrace{\left(2 x^{2}-\frac{1}{x}\right.}_{\text {Meed to find }})^{8} \text { term of } \\
& { }^{8} C_{r} 2^{8-r} x^{16-3 \gamma}(-1)^{\gamma} \\
& 16-3 r=0 \\
& r=16 / 3 w \\
& \text { NiP } \\
& \text { Theterm } \\
& \text { independ } \\
& \text { of } x \text { is } \\
& =\left[-{ }^{8} c_{5} 2^{8-5}(-1)^{5}+3 *{ }^{8} c_{7} 2^{1} \cdot(-1)^{7}\right] \\
& =+56 * 8+3 * 8 * 2(-1) \\
& =56 \times 8-3 * 8 * 2 \\
& =400 \text { An }
\end{aligned}
$$

II)

The coefficient of the middle term in the binomial expansion in powers of x of $(1+\infty \alpha)^{4}$ and of $(1-\alpha \alpha)^{6}$ is the same if α equals
(a) $\frac{3}{5}$
(b) $\frac{10}{3}$
(c) $\frac{-3}{10}$
(d) $\frac{+3}{10}$

$$
\begin{aligned}
T_{3} & =T_{2+1}={ }^{4} C_{2}(1)^{4-2}(\alpha n)^{2} \\
& =T_{r+1}
\end{aligned}
$$

Given coefficients are same.
or) ${ }^{4} C_{2} \alpha^{2}={ }^{6} C_{3}(-\alpha)^{3}$.
o, $\frac{4 c_{2}}{6 c_{3}}=-\alpha$
12)

$$
\begin{aligned}
& \text { The sum of the series } \\
& \text { [2007] } \\
& \text { (a) }-{ }^{20} C_{10} \\
& \text { Vb) } \frac{1}{2}{ }^{20} C_{10} \\
& \text { (c) } 0 \\
& \text { (d) }{ }^{20} C_{10} \\
& { }^{20} c_{0}-{ }^{20} c_{1}+{ }^{20} c_{2}-{ }^{20} c_{3}-\cdots c_{10}=\text {. } \\
& \xrightarrow[\text { Put } \longrightarrow{ }^{(1+x)^{20}}{ }^{20}{ }^{20} c_{0}+{ }^{20} c_{1} x+2{ }^{20} c_{2} x^{2}+\cdots \quad{ }^{20} c_{20} x^{20}]{ } \\
& 0={ }^{20} c_{0}-{ }^{20} c_{1}+2{ }^{0} c_{2}-{ }^{20} c_{3}+\cdots+{ }^{20} c_{20} \\
& 0={ }^{20} c_{0}-{ }^{20} c_{1}+{ }^{20} c_{2}-\cdots-{ }^{20} c_{9}+\underbrace{20} c_{10}-\underbrace{20} c_{11}+\cdots+{ }^{20} c_{20} \\
& {\left[\begin{array}{l}
{ }^{2}{ }^{\circ} c_{11}=2{ }^{20} c_{9} \\
2{ }^{20} c_{12}=2{ }^{20} c_{8} \\
2{ }^{0} c_{13}=2 c_{7} \\
2{ }^{2} c_{14}=20^{2} c_{6} \\
20{ }^{20} c_{20}=2 c_{0}
\end{array}\right]} \\
& 0=2\left({ }^{20} c_{0}-20_{1}+2{ }^{20} c_{2}-.-2{ }^{0} c_{9}\right)+2{ }^{20} c_{10} \\
& -20 c_{10}=2\left(20 c_{0}-20 c_{1}+\cdots \quad-20^{0} c_{9}\right) \\
& \frac{1}{2}\left(-20 c_{10}\right)=20 c_{0}-20 c_{1} \ldots-20 c_{9} .
\end{aligned}
$$

$$
\begin{aligned}
& 20 c_{10}-\frac{1}{2}{ }^{20} c_{10}={ }^{20} c_{0}-{ }^{20} c_{1} \ldots{ }^{20} c_{a}+{ }^{20} c_{10} \\
& \frac{1}{20} c_{10}={ }^{20}{ }^{20} c_{0}-20 c_{10} \ldots . .
\end{aligned}
$$

Ans
13)

If x is positive, the first negative term in the expansion of $(1+x)^{27 / 5}$ is
[2003]
(a) $7^{\text {th }}$ term
(b) $5^{\text {th }}$ term

$$
\eta=\frac{27}{5}
$$

(d) $6^{\text {th }}$ term

$$
=5.4
$$

General $T_{\gamma+1}=r_{r} a^{n-\gamma} x^{\gamma}$ term,

$$
T_{r+1} \text { th term }=T_{8}
$$

8 th term

$$
\begin{aligned}
& \frac{\ln -}{\operatorname{Lr}(n-r} \leq 0 \quad \infty \quad \\
& \text { or } \frac{n(n-1)(n-2) \cdots(n-r+1) \angle n-\gamma}{\angle \gamma}<0 \\
& \text { or } \frac{n(n-1)(n-2) \cdots \overline{(n-r+1)}}{L^{r}}<0 \\
& \text { g } n-\gamma+1<0 \\
& \text { or } \frac{27}{5}+1<r \\
& \text { or } \frac{27+5}{5}<r \\
& \text { or } \frac{32}{5}<r \quad 6.4<r \quad r=7
\end{aligned}
$$

14)

The coefficient of t^{4} in the expansion of $\left(\frac{1-t^{6}}{1-t}\right)^{3}$ is
[2019]
(a) 12
(b) 14
(c) 10
(1) 15

$$
\begin{aligned}
& =\left(1-t^{6}\right)^{3}(1-t)^{-3} \\
& =\left(1-3 \cdot t^{6}+3 t^{12}-t^{18}\right)(1-t)^{-3}
\end{aligned}
$$

$$
\begin{aligned}
&(1+x)^{n}=1+n x+\frac{n(n-1)}{2} x^{2}+\ldots . \\
&(1-x)^{-n}=1+n x+\frac{n(n-1)}{2} \tilde{x}_{i}^{2}+\cdots x^{3}+\quad x^{4} \\
&-3
\end{aligned}
$$

$(1-t)^{-3}=$ we coll not get t^{-2}, t^{-8}, t^{-14} lide

$$
\begin{aligned}
(1-t)^{-3}=1+3 t+\frac{-3(-3-1)}{2!} & (-t)^{2}+\frac{(-3)(-3-1)(-3-2)}{3!}(-t)^{3} \\
& +\underbrace{\frac{(-3)(-3-1)(-3-2)(-3-3)}{4!}} \underbrace{(-t)^{4}}
\end{aligned}
$$

$$
\operatorname{coff}=\frac{(-3)(-4)(-5)(-6)}{6!}=\frac{3 \times 4 \times 5 \times 6}{4!}=15 \mathrm{An}
$$

15)
14. The number of terms in the expansion of $(a+b+c)^{n}$, where $n \in N$ is
(a) $\frac{(n+1)(n+2)}{2}$
(b) $n+1$
(c) $n+2$
(d) $(n+1) n / 2$

Soln

$$
\begin{aligned}
& =(a+b+c)^{n} \\
& =[a+(b+c)]^{n}
\end{aligned}
$$

$$
\begin{aligned}
\text { sumof total term } & =1+2+3+4+\cdots(n+1) \\
& =\frac{(n+1)(n+1+1)}{2}=\frac{(n+1)(n+2)}{} \text { Ans }
\end{aligned}
$$

16)
15. If $\left(1-x+x^{2}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{2 n} 2^{2 n}$, then
$a_{0}+a_{2}+a_{4}+\ldots+a_{2 n}$ equals
(a) $\frac{3^{n}+1}{2}$
(b) $\frac{3^{n}-1}{2}$
(c) $\frac{1-3^{n}}{2}$
(d) $3^{n}+\frac{1}{2}$

$$
0,2,4^{1} 5
$$

$$
\left[\begin{array}{l}
\left(1-x+x^{2}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots a_{2 n} x^{2 n} . \\
\quad x=0,1,-1, \ldots . \\
\rightarrow x=1 \text { put in } e \varepsilon^{n} .
\end{array}\right.
$$

$$
(1-1+1)^{n}=a_{0}+a_{1}+a_{2}+a_{2 n}
$$

$$
1=a_{0}+a_{1}+a_{2} \ldots+a_{2 n}
$$

$x=-1$

$$
\begin{align*}
& (1+1+1)^{n}=a_{0}-a_{1}+a_{2}-a_{3} \ldots+a_{2 n} \\
& 3^{n}=a_{0}-a_{1}+a_{2}-a_{3} \ldots a_{2 n} \tag{2}
\end{align*}
$$

Add (1) + (2)

$$
\begin{aligned}
& \left.1+3^{n}=2 a_{0}+2 a_{2}+2 a_{4} \cdots a_{2 n}\right)+2 a_{2 n} \\
& 1+3^{n}=\left\{\left(a_{0}+a_{2}+a_{4} \ldots a_{2}+a_{4} \ldots a_{2 n}=\frac{3^{n}+1}{2}\right.\right. \text { Ans }
\end{aligned}
$$

17)

$$
\begin{aligned}
& \text { 16. If }\left(2 x^{2}-x-1\right)^{5}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{10} x^{10} \text {, then, } \\
& a_{2}+a_{4}+a_{6}+a_{8}+a_{10}= \\
& \begin{array}{llll}
\text { (a) } 15 & \text { (b) } 30 & \text { (c) } 16 & \text { (d) } 17
\end{array}
\end{aligned}
$$

(d) 17

$$
\begin{aligned}
& {\left[\begin{array}{l}
\left(2 x^{2}-x-1\right)^{5}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{10} x^{10} . \\
x=1 \\
0=a_{0}+a_{1}+a_{2} \ldots+a_{10}-1 \\
x=-1 \\
(2 * 1+1-x)=a_{0}-a_{1}+a_{2}-a_{3} \ldots+a_{10} \\
32=a_{0}-a_{1}+a_{2} \ldots \\
+a_{10}
\end{array}\right.}
\end{aligned}
$$

(*) Pat $x=0-1=a_{0}$
(1) + (2)

$$
\begin{aligned}
& 32=2\left(a_{0}\right)+2\left[a_{2}+a_{4}+a_{6} \ldots a_{10}\right] \\
& 32=\underbrace{2 *-1}+2\left[a_{2}+a_{4}+\cdots a_{10}\right] \\
& 34=+2\left[a_{2}+a_{4} \ldots a_{10}\right] \\
& a_{2}+a_{4}+\cdots \quad a_{10}=17 \text { Avs }
\end{aligned}
$$

18)
19. The sum of the series
$1+\frac{1}{3^{2}}+\frac{1 \cdot 4}{1 \cdot 2} \cdot \frac{1}{3^{4}}+\frac{1 \cdot 4 \cdot 7}{1 \cdot 2 \cdot 3} * \frac{1}{3^{6}}+\ldots$ is
$\begin{array}{lll}\text { (a) } \sqrt{\frac{3}{2}} & \text { f(b) }\left(\frac{3}{2}\right)^{1 / 3}\end{array}$
(c) $\sqrt{\frac{1}{3}}$
(d) $\sqrt[3]{\frac{2}{3}}$

$$
\begin{equation*}
=\frac{1}{1}+\underbrace{\frac{1}{3^{2}}}+\frac{1 \cdot 4}{1 \cdot 2} \cdot \frac{1}{3^{4}}+\frac{1 \cdot 4 \cdot 7}{1 \cdot 2 \cdot 3} \frac{1}{3^{6}} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
(1+x)^{n}=1+n x+\frac{n(n-1)}{2} x^{2}+\ldots \ldots \tag{2}
\end{equation*}
$$

compare (1) \& (2)

$$
\begin{aligned}
& n x=\frac{1}{9} ; \frac{n(n-1)}{2} \cdot x^{2}=\frac{1 \cdot 4}{1 \cdot 2} * \frac{1}{3^{4}} . \\
& \text { or, } \frac{(n x)(n x-x)}{2}=\frac{4}{2} \frac{1}{3^{4}} . \\
& \text { or, } \frac{\frac{1}{9} \cdot\left(\frac{1}{9}-x\right)}{2}=\frac{4}{2} \cdot \frac{1}{3^{4}} \Rightarrow x=-1 / 3 \\
& n=n=-\frac{1}{3} .
\end{aligned}
$$

or. $(1+x)^{n}=\left(1-\frac{1}{3}\right)^{-1 / 3}=\left(\frac{2}{3}\right)^{-1 / 3}=\left(\frac{3}{2}\right)^{1 / 3}$.
19)
20. The last four digits of the natural number 3^{100} are
(a) 7231
(b) 1231
(c) 3451
(d) 2001

$$
\begin{aligned}
& \Rightarrow 3^{100} \\
& \Rightarrow 9^{50} \\
& =(1-10)^{50} \\
& =1-50 \times 10+\frac{50 \cdot(49)}{2} \cdot 10^{2}-\frac{\sim_{0} \cdot 49.48}{6 \cdot 10^{3}} \\
& =\underbrace{1-500+122500}+(\ldots) \times 1000+() 10000 \\
& = \\
& =
\end{aligned}
$$

Last four digit ~ 200
22. The digit at the units place in the number $19^{2005}+11^{2005}-9^{2005}$ is
(a) 2
(b) 1
(c) 0
(d) 8

So digits at unit place. :~

$$
9+1-9 \approx 1
$$

21)
24. The value of ${ }^{14} C_{1}+{ }^{14} C_{3}+{ }^{14} C_{5}+\ldots . .+{ }^{14} C_{11}$ is
(a) $2^{14}-1$
(b) $2^{14}-14$ (c) 2^{12}
(1) $2^{13}-14$

$$
{ }^{14} C_{1}+{ }^{14} C_{3}+{ }^{14} C_{5} \ldots{ }^{14} C_{11}
$$

$$
\begin{aligned}
& (x+y)^{n}+(x-y)^{n}=2\left[{ }^{n} c_{0} x^{n}+n_{c_{2}} x^{n-2} y^{2}+\cdots \cdots\right] \\
& (n+y)^{n}-(n-y)^{n}=2\left[{ }^{n} c_{1} x^{n}+n_{c_{3}} x^{n-3} y^{3}+\cdots . .\right]=(2) \\
& x=1, y=1
\end{aligned}
$$

$$
\neq\left\{\begin{array}{l}
2^{n}-0=2\left[{ }^{n} c_{1}+{ }^{n} c_{3}+\cdots\right. \\
2^{14}=2\left[{ }^{14} c_{1}+{ }^{14} c_{3}+{ }^{14} c_{5}+{ }^{14} c_{7}+{ }^{14} c_{9}+{ }^{14} c_{11}+{ }^{14} c_{13}\right] \\
2^{13}=\left[{ }^{14} c_{1}+{ }^{14} c_{3}+\ldots\right.
\end{array}\right.
$$

$$
\begin{aligned}
& 2^{13}-14 c_{13}=14 c_{1}+14 c_{3}+\ldots \quad 14 c_{11} \\
& \underbrace{2^{13}-14}={ }^{14} c_{1}+\ldots+{ }^{14} c_{11}
\end{aligned}
$$

22)
26. If n is a positive integer, then $5^{2 n+2}-24 n-25$ is divisible by
(a) 574
(b) 575
$\begin{array}{ll}\text { (c) } 675 & \text { /(d) } 576\end{array}$
Shortcht

$$
\begin{aligned}
& =5^{2 n+2}-24 n-25 \text { remove } \\
& =\left(5^{2}\right)^{n+1}-24 n-25 \\
& =25.25^{n}-24 n-25 \\
& =25 \cdot(1+24)^{n}-24 n-25 \\
& =25\left[1^{n}+{ }^{n} c_{1} 24+{ }^{n} c_{2} 24^{2}+\cdots n_{c_{n}} 24^{n}\right]-24 n-25 . \\
& =25\left[1+n-24+{ }^{n} c_{2} 24^{2}+\cdots \quad n_{c_{n} 2 u^{n}}\right]-24 n-25 \\
& =25+n .25 .24+25\left[{ }^{n} c_{2} 24^{2}+\cdots n_{c_{n} 24^{n}}\right]-24 n-25 \\
& =n \cdot 24.24+25\left[{ }^{n} c_{2} 24^{2}+\cdots 24^{n}\right] \text {. } \\
& =\underbrace{24 * 24}\left[n+25\left[{ }^{n} c_{2}+n c_{3} \cdot 24 \cdots 24^{n-2}\right]\right. \\
& =\underbrace{576}[n+25(\ldots)] \\
& \text { Leqn can be divided by } 576
\end{aligned}
$$

28. For all $n \in N, 2^{3 n+3}-7 n-8$ is divisible by
(a) 49
(b) 17
(c) 343
(d) 81

Shortcut $\rightarrow 2^{3 n+3}-7 n-8 \rightarrow \eta=1 \rightarrow 49$
Soln

$$
\begin{aligned}
& =2^{3 n+3}-7 n-8 \\
& =\left(2^{3}\right)^{n+1}-7 n-8 \\
& =8^{n} \cdot 8-7 n-8 \\
& =8(1+7)^{n}-7 n-8 \\
& =8\left[1+7 n+\frac{n(n-1)}{2} \cdot 7^{2}+\cdots\right]-7 n-8 \\
& =\left[8 \cdot+8 \cdot 7 \cdot n+8 \cdot \frac{n \cdot(n-1)}{2} \cdot 7^{2}+\cdots\right]-7 n-8 \\
& =7 \cdot 7 \cdot n+8 \cdot \frac{n(n-1)}{2} \cdot 7^{2}+8 \cdot \frac{n(n-1)(n-2)}{3!} 7^{3}+\cdots \\
& =49\left[n+\frac{8(n)(n-1)}{2}+8 \cdot \frac{(n)(n-1)(n-2)}{3!} \cdot 7+\cdots\right]
\end{aligned}
$$

Divisible by 49 Aus
29. The remainder when 23^{23} is divided by 53 , is
(a) 17
(b) 21
(c) 30
(d) 43
(x) $-x$

$$
\begin{aligned}
\frac{2^{23}}{53}=\frac{(23)^{2+1}}{53}=\frac{23(23)^{22}}{53} & =\frac{23(23)^{2 \times 11}}{53} \\
& =\frac{23(529)^{11}}{53}
\end{aligned}
$$

$-23+53 \sim 30$ eminder
37. Find the term independent of x in the expansion of $\left(\sqrt[3]{x}+\frac{1}{2 \sqrt[3]{x}}\right)^{18}, x>0$
(a) ${ }^{18} C_{9} \frac{1}{2^{9}}$
(b) ${ }^{18} C_{8} \frac{1}{2^{8}}$
(c) ${ }^{18} C_{7} \frac{1}{2^{7}}$
(d) None of these

$$
\begin{array}{rlr}
T_{\gamma+1} & ={ }^{n} c_{\gamma} a^{n-\gamma} x^{\gamma} & \\
& ={ }^{18} c_{\gamma} \cdot(\sqrt[3]{x})^{18-\gamma} \cdot\left(\frac{1}{2 \sqrt[3]{r}}\right)^{\gamma} & \\
& ={ }^{18} c_{\gamma} x^{\frac{18-\gamma}{3}} \cdot \frac{1}{2^{2}=x^{-1}} \cdot \underbrace{x^{\gamma / 3}} & \\
& ={ }^{18} c_{\gamma} x^{\frac{18-\gamma}{3}} \cdot \underbrace{x^{\frac{\gamma}{3}}} \cdot \frac{1}{2^{\gamma}} & \\
& ={ }^{18} c_{\gamma} x^{\frac{18-2 \gamma}{3}} \cdot \frac{1}{2^{\gamma}} & T_{9+1} 7
\end{array}
$$

$$
\begin{equation*}
\frac{18-3 \gamma}{3}=0 \tag{10}
\end{equation*}
$$

$$
\gamma=9
$$

$$
\begin{aligned}
& \frac{23 \cdot(530-1)^{11}}{53 .} \\
& \frac{23\left[{ }^{11} C_{0} 530^{11}+{ }^{11} c_{1}(530)^{10}(-1)+{ }^{11} c_{2}(530)^{9}(-1)^{2}+\ldots(-1)^{11}\right]}{53} \\
& =\frac{23 .\left[530^{11}-{ }^{11} c_{1}(530)^{10}+\cdots+{ }^{11} c_{10}(530)^{1 .}(-1)^{10}+(-1)^{11}\right]}{53} \\
& =\frac{\left[23 \cdot(530)^{11}-\cdots+23.16_{10} 530\right]-23}{53}
\end{aligned}
$$

$$
T_{10}=T_{9+1}={ }^{18} C_{9} \cdot \frac{1}{29} \text { Ans }
$$

independentotr $=$
$26)$
46. Find numerically the greatest term in the expansion of $(2+3 x)^{9}$, where $x=\frac{3}{2}$.
(a) $\frac{\left(7 \times 13^{3}\right)}{2}$
(b) $\frac{\left(7 \times 3^{2}\right)}{2}$
fl) $\frac{\left(7 \times 3^{13}\right)}{2}$
(d) None of these

$$
\begin{aligned}
& \text { Sol }{ }^{n} \\
& (2+3 n)^{9}=2^{9}(\underbrace{1+\frac{\overline{3}}{2}} x)^{9} . \\
& \rightarrow \frac{T_{r+1}}{T_{\gamma}} \geqslant 1 \\
& T_{r-1+1} \\
& \frac{{ }^{9} c_{r}}{{ }^{c_{r-1}}}=\frac{n-r+1}{r} .
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{9 c_{r}}{a_{c_{r-1}}} * \frac{\frac{z^{f}}{L^{r}} \cdot x^{y}}{\frac{3^{\gamma}}{2^{\gamma}} \cdot \frac{3^{-1}}{2^{-1}} \cdot x \cdot x^{-1}} \\
& =\frac{9-r+1}{r} \cdot \frac{3 x}{2} \\
& =\frac{10-\gamma}{\gamma} \cdot \frac{9}{4} \text {. } \\
& \frac{T_{\gamma+1}}{T_{\gamma}} \geqslant 1 \\
& \frac{10-\gamma}{r} * \frac{9}{4} \geqslant 1 \\
& 96-9 r \geqslant 4 r \\
& r \leqslant \frac{90}{13} . r \leqslant 6.9 \quad r \approx 6 \\
& \text { Maximum }
\end{aligned}
$$

$$
\begin{aligned}
T_{7}=T_{6+1} & =2 \cdot 9 \cdot c_{6}\left(\frac{9}{4}\right)^{6} \cdot[n=312] \quad 2^{9}\left(1+\frac{3}{2} n\right)^{9} . \\
& =\frac{7 \times 3^{13}}{2} \text { Ans }
\end{aligned}
$$

49. The coefficient of x^{p} and $x^{q}(p$ and q are positive integers) in the expansion of $(1+x)^{p+q}$ are
(a) equal
(b) equal with opposite signs
(c) reciprocal of each other
(d) none of these

$$
\begin{aligned}
& \text { Sol } \\
& =(1+x)^{p+q} \\
& V \underbrace{p+1}{ }^{p+\varepsilon_{C}}{ }_{p} \cdot{ }^{p+q-p} \cdot(n)^{p-}\left[\text { conf }=p+\varepsilon_{c_{p}}\right] \\
& T_{q+1}={ }^{p+q_{C}} c_{q}(1)^{p+\varepsilon-q}(x)^{q} \quad\left[\cos 1=p+q_{c q}\right] \\
& p+\varepsilon_{c_{p}}=p+\varepsilon_{c_{q}} w \quad \text { a) } \\
& n_{c_{r}}=n_{c_{n-r}} \uparrow
\end{aligned}
$$

51. The sixth term in the expansion of

$$
[\underbrace{2^{\log _{2} \sqrt{9^{x-1}}+7}}+\frac{1}{2^{\frac{1}{5} \log _{2}\left(3^{x-1}+1\right)}}]^{7} \text { is } 84 .
$$

Property.

$$
\log _{2} x=x
$$

Then the number of values of x is
(a) 0
(b) 1
(c) 2
(d) 3

$$
\underbrace{\log x^{n}=n \log x}
$$

$$
\begin{aligned}
& 2^{\log _{2} \sqrt{9^{x-1}+7}}=\sqrt{9^{x-1}+7} \text {. } \\
& 2^{\frac{1}{5} \log _{2}\left(3^{x-1}+1\right)=2^{\log _{2}\left(3^{x-1}+1\right)^{1 / 5}}=\left(3^{x-1}+1\right)^{1 / 5} .} \\
& T_{6}=T_{5+1}=\left[\sqrt{9^{x-1}+7}+\frac{1}{\left(3^{x-1}+1\right)^{1 / 5}}\right]^{z}=84 \\
& { }_{x-1}^{7} C_{5} \sqrt{\left(q^{x-1}+7\right)^{7-5}} \cdot\left[\frac{1}{\left(3^{x-1}+1\right)^{15}}\right]^{5}=84 . \\
& \text { or } \frac{9^{x-1}+7}{3^{x-1}+1}=\frac{84}{21} \\
& \text { or } \frac{3^{2 x-2}+7}{3^{x-1}+1}=\frac{84}{4} \quad 3^{x-1}=t \\
& \text { or } \frac{t^{2}+7}{t+1}=\frac{84}{4} \stackrel{\text { Solve }}{\equiv}[z=3 \text {. and } 1] \\
& 3^{x-1}=3 \rightarrow x=2
\end{aligned}
$$

$x=1$ and $n=2\left\{\begin{array}{l}3^{n-1}=1 \\ x-1=0 \\ x=1\end{array}\right\}$
(C)
29)
58. The greatest value of the term independent of x in the expansion of $\left(x \sin \alpha+\frac{\cos \alpha}{x}\right)^{10}$ is
(a) 25
(b) $\binom{10}{5}$
(c) $\binom{10}{5} \frac{1}{2^{5}}$
(d) 2^{10}

Soln

$$
\begin{aligned}
& \text { s1 }^{n} \\
&\left(\underline{x \sin \alpha}+\frac{\cos \alpha}{n}\right)^{10} \cdot \\
&={ }^{10} c_{\gamma} \cdot(x \sin \alpha)^{10-\gamma} \cdot\left(\frac{\cos \alpha}{x}\right)^{\gamma} \\
&={ }^{10} c_{\gamma} \cdot x^{10-\gamma} \cdot \frac{\sin ^{10-\gamma}}{x^{10 \gamma}} \cos ^{\gamma} \alpha \\
&={ }^{10} c_{\gamma} x^{10-2 \gamma} \cdot \sin ^{10-\gamma} \cos ^{\gamma} \cdot \alpha
\end{aligned}
$$

Indeperdent of $x \quad 10-2 \gamma=0 \quad \gamma=5$

$$
\begin{aligned}
T_{S+1}=T_{6} & ={ }^{10} C_{5} x^{0} \cdot \sin ^{5} \alpha \cos ^{5} \alpha \\
& ={ }^{10} C_{5} \frac{1}{2^{5}} \quad i^{5} \sin ^{5} \alpha \cos ^{5} \alpha-\text { Trigo }
\end{aligned}
$$

$$
\begin{aligned}
& ={ }^{10} C_{5} \frac{1}{2^{5}}\left[\frac{2 \sin \alpha \cos \alpha}{5}\right] \\
& ={ }^{10} C_{5} \frac{1}{2^{5}} \cdot\left[\frac{\sin 2 \alpha]}{\pi}\right.
\end{aligned}
$$

$T_{5+1} \sim$ Max value
$30)$

$$
{ }^{10} c_{5} \frac{1}{2_{2}^{5}} \cdot \text { An }
$$

$$
\binom{10}{5} \frac{1}{25} A
$$

64. If the sum of the coefficients in the expansion of $(p+q)^{n}$ is 1024 , then the greatest coefficient in the expansion is,
off ${ }^{10} C_{5}$
(b) ${ }^{10} C_{4}$
(c) ${ }^{10} C_{2}$
(d) ${ }^{10} C_{9}$

$$
(x+y)^{n}=n_{c_{0}} x^{n}+n_{c_{1}} x^{n-1} y+\ldots n_{c_{n}} x^{0} y^{n}
$$

put.

$$
\begin{aligned}
& x=1 \quad y=1 \\
& \sim_{1}^{2^{n}}=\underbrace{n_{c_{0}}+n_{c_{1}}+n_{c_{2}} \ldots}_{n=10} \cdot{ }_{n}^{n} \ldots n_{c_{n}} \\
& \text { sum of } \\
& \therefore \quad 2^{n}=1024 \\
& \text { coefficients }
\end{aligned}
$$

$n=10$ even.
middle term

$$
{ }^{10} C_{5} \text { Ans }{ }^{n_{C_{1 / 2}} \times{ }^{10} C_{5}}
$$

$31)$
84. In the expansion of $(1+x)^{n}$, $\frac{C_{1}}{C_{0}}+2 \frac{C_{2}}{C_{1}}+3 \frac{C_{3}}{C_{2}}+\ldots+n \frac{C_{n}}{C_{n-1}}$ is equal to
(a) $\frac{(n+1)}{2}$
(b) $\frac{n}{2}$
(c) $\frac{n(n+1)}{2}$
(d) $3 n(n+1)$
 (1) $c_{0}+\frac{c_{1}}{2}+\frac{c_{2}}{3}+\frac{c_{t}}{n+1} \frac{=2 m-1}{n+1}$
(1) $C_{-}-\frac{c_{1}}{2}+\frac{c_{1}}{3}-\frac{c_{9}}{4}+\frac{+(-1) c_{1}-c_{1}}{n+1}=\frac{1}{n+1}$ (e) $\mathrm{C}_{0}+\mathrm{C}_{1}+\mathrm{C}_{2}+\ldots \ldots=\mathrm{C}_{n}=2^{n}$ (f) $\mathrm{C}_{0}+\mathrm{C}_{2}+\mathrm{C}_{4}+\ldots \ldots=\mathrm{C}_{1}+\mathrm{C}_{3}+\mathrm{C}_{5}+\ldots \ldots=2^{m 1}$ (g) $\mathrm{C}_{0}{ }^{2}+\mathrm{C}_{1}{ }^{2}+\mathrm{C}_{2}{ }^{2}+\ldots .+\mathrm{C}_{n}{ }^{2}={ }^{2}{ }^{2} \mathrm{C}_{n}=\frac{(2 n)!}{n!n!}$ (h) $C_{0} \cdot C_{1}+C_{1} \cdot C_{r+1}+C_{2} \cdot C_{n+2}+\ldots \ldots+C_{n+1} C_{n}=\frac{(2 n)!}{(n+r)!(n-r)!}$ Remember: $:(2 n)!=2^{n} \cdot n![1.3 .5 \ldots \ldots .(2 n-1)]$

$$
\approx \frac{c_{1}}{c_{0}}+2 \frac{c_{2}}{c_{1}}+3 \frac{c_{3}}{c_{2}}+\cdots \frac{n}{c_{n}}
$$

$$
\frac{h_{c_{\gamma}}}{h_{c_{\gamma-1}}}=\frac{n-\gamma+1}{\gamma}
$$

$$
\frac{{ }^{n} c_{1}}{{ }^{n} c_{0}}=\frac{n-x+x}{1}=n
$$

$$
\text { or } \frac{c_{2}}{c_{1}}=\frac{n-2+1}{2}=\frac{n-1}{2}
$$

$$
\begin{aligned}
& =\frac{c_{1}}{c_{0}}+2 \frac{c_{2}}{c_{1}}+3 \frac{c_{3}}{c_{2}}+\cdots \frac{c_{3}}{c_{2}}=\frac{n-3+1}{3}=\frac{n-2}{3} \cdot \\
& =\eta+2 \cdot \frac{n-1}{c_{n-1}}+\frac{\beta \cdot(n-2)}{3}+\cdots \quad x_{1} \frac{n-\overline{(n-1)}}{2} \\
& =n+(n-1)+(n-2)+\cdots 3+2+1 \text { (n) Reverse }
\end{aligned}
$$

$$
n(n+1)
$$

32)
85. $\left(C_{0}+C_{1}\right)\left(C_{1}+C_{2}\right) \ldots\left(C_{n-1}+C_{n}\right)$ is equal to
(a) $\left(C_{0} C_{1} C_{2} \ldots C_{n-1}\right)(n+1)$ (b) $\left(C_{0} C_{1} C_{2} \ldots C_{n-1}\right)(n+1)^{n}$

$$
\frac{\left(C_{0} C_{1} C_{2} \ldots C_{n-1}\right)(n+1)^{n}}{n!}
$$

(d) None of these

$$
\begin{aligned}
& =\left(c_{0}+c_{1}\right)\left(c_{1}+c_{2}\right) \cdots\left(\tilde{c}_{n-1}+c_{n}\right) \\
& =c_{0}\left(1+\frac{c_{1}}{c_{0}}\right) c_{1}\left(1+\frac{c_{2}}{c_{1}}\right) \cdots c_{n-1}\left(1+\frac{c_{n}}{c_{n-1}}\right) \\
& =\left(c_{n-1}^{c_{0} c_{1} c_{2} \cdots\left(1+\frac{c_{1}}{c_{0}}\right)\left(1+\frac{c_{2}}{c_{1}}\right) \cdots\left(1+\frac{1}{n}\right)}\right. \\
& =\left(c_{0} c_{1} c_{2} \ldots c_{n-1}\right)(1+n)\left(1+\frac{n-1}{2}\right) \cdots\left(\frac{n+1)}{n}\right. \\
& =\left(c_{0} c_{1} \cdots c_{n-1}\right) \frac{(1+n)}{1} \cdot \frac{(n+1)}{2} \cdots \cdots \cdots \cdots \\
& =\frac{\left(c_{0} c_{1} \cdots \cdots\right)(1+n)^{n}}{n!} \text { Ans }
\end{aligned}
$$

The sum of the coefficients of the first 50 terms in the binomial expansion of $(1-x)^{100}$, is equal to
(a) ${ }^{101} C_{50}$
(b) $-{ }^{99} \mathrm{C}_{49}$.
(c) $-{ }^{101} C_{50}$
(d) ${ }^{99} \mathrm{C}_{49}$
(12 ${ }^{\text {th }}$ April ${ }^{\text {st }}$ Shift 2023)

$$
\begin{aligned}
& (1-x)^{100}={ }^{100} c_{0}-{ }^{100} c_{1} x+{ }^{100} c_{2} x^{2}-100 c_{3} x^{3} \cdots+{ }^{100} c_{100} x^{n} \\
& (1-x)^{100}=c_{0}-c_{1} x+c_{2} x^{2}-c_{3} x^{3} \cdots \quad+c_{100} x^{2} \\
& x=1 \\
& 0^{100}=c_{0}-c_{1}+c_{2}-c_{3} \ldots+c_{100} \\
& 0=c_{0}-c_{1}+c_{2} \cdots+c_{50}-c_{51}+\cdots+c_{100} \\
& =c_{0}-c_{1}+c_{2} \cdots+c_{50}-c_{59}+c_{48} \cdots+c_{0} \\
& =2\left[c_{0}-c_{1}+c_{2}-c_{49}\right]+\left[c_{0}-c_{1} \ldots+c_{49}\right]+c_{50} \\
& c_{0}-c_{1}+c_{2} \ldots-c_{49}=-\frac{c_{50}}{2} \\
& \text { (b) }=-\frac{1}{2} \frac{1001}{50!50!}=-\frac{99!}{50!49!}
\end{aligned}
$$

34
Fractional part of the number $\frac{4^{2022}}{15}$ is equal to
(a) $\frac{1}{15}$
(b) $\frac{4}{15}$
(c) $\frac{14}{15}$
(d) $\frac{8}{15}$
(13 ${ }^{\text {th }}$ April $1^{\text {st }}$ Shift 2023)

$$
\begin{aligned}
\frac{4^{2022}}{15}=\left(4^{2}\right)^{1011} & =\frac{(16)^{1011}}{15}=\frac{(1+15)^{1011}}{15} \\
& =\frac{1+{ }^{1011} c_{1} 15+1011 c_{2} 15^{2}+\cdots}{15}
\end{aligned}
$$

$35)$
The value of $\frac{1}{1!50!}+\frac{1}{3!48!}+\frac{1}{5!46!}+\ldots+\frac{1}{49!2!}+\frac{1}{51!1!}$ is
(a) $\frac{2^{51}}{50!}$
(b) $\frac{2^{50}}{50!}$
(c) $\frac{2^{51}}{51!}$
(d) $\frac{2^{50}}{51!}$
($1^{s t}$ Feb $1^{\text {st }}$ Shift 2023)

$$
\begin{aligned}
& =\frac{1}{1!50!}+\frac{1}{3!48!}+\frac{1}{5!46!}+\cdots+\frac{1}{51!1!} \\
& =\frac{1}{5!!}\left[\frac{51!}{1!50!}+\frac{51!}{3!48!}+\cdots+\frac{51!}{51!1!}\right] \\
& =\frac{1}{51!}\left[{ }^{51} c_{1}+{ }^{51} c_{3}+\cdots\right. \\
& =\frac{1}{51}\left[2^{51-1}\right]=2^{50} / L 51
\end{aligned}
$$

36
The remainder when $(11)^{1011}+(1011)^{11}$ is divided by 9 is
(a) 1
(b) 4
(c) 6
(d) 8
($25^{\text {th }}$ July $2^{\text {nd }}$ Shift 2022)

$$
=(11)^{1011}+(1011)^{11}
$$

$$
\begin{aligned}
& =(1)+(1011) \\
& =(9+2)^{1011}+(1008+3)^{11}
\end{aligned}
$$

$$
\begin{aligned}
& =(9+2)^{1011}+(1008+3)^{11} \\
& =\underbrace{\left(9^{1011}+n_{c_{1}} 9^{1010} \cdot 2+\cdots+2^{011}\right)}+\underbrace{\left.1008^{11}+n_{c_{1}} \cdot 1008^{10} \cdot 3+\cdots+3^{11}\right)}_{\text {opmainder } 3^{11}}
\end{aligned}
$$

if we devide by 9
Remainder 3^{11}

$$
2^{1011}+3^{11}
$$

$=$

$$
\begin{aligned}
& =(8)^{337}+\underbrace{311} \\
& =(9-1)^{37}+\left(3^{9} \cdot 5^{2}\right)
\end{aligned}
$$

$=(a-1)^{3^{3 t}}+\{a\}$ remainder
remainder $=-1$ ind actual $-1+a^{-8}$

The remainder when $(2021)^{2022}+(2022)^{2021}$ is divided by 7 is
(a) 0
(b) 1
(c) 2
(d) 6
(27 ${ }^{\text {th }}$ July $1^{\text {st }}$ Shift 2022)

$$
\begin{aligned}
& (2021)+(2022) \\
= & (2023-2)^{2022}+(2023-1)^{2021}
\end{aligned}
$$

$$
\begin{aligned}
& =(2023-2)^{2022}+(2003-1) \\
& =\left\{(2023)^{2022}+2021(2023)^{1}(-2)+\cdots \cdots 2020\right.
\end{aligned}
$$

$$
-\left\{(2023)^{2021}+2021 c_{1}(2023)^{2020} \cdot(-1)+\cdots \cdot(-1)^{2021}\right\}
$$

$$
=7 \lambda+(2)^{2022}+7 \beta-1
$$

$$
=7 \lambda+(8)^{674}+7 \beta-1
$$

$$
\begin{aligned}
& =7 \lambda+(z+1)^{674}+7 \beta^{3-1} \\
& =7 \lambda+\left(7^{674}+{ }^{674} c_{1} 7^{673} \cdot 1+\cdots+1\right)+7 \beta-1 \\
& =7 \lambda+78+A+7 \beta-\lambda
\end{aligned}
$$

r remainders zero

38
The remainder when 3^{2022} is divided by 5 is
(a) 1
(b) 2
(c) 3
(d) 4

$$
\begin{aligned}
& \frac{3^{2022}}{5}=\frac{\left(3^{2}\right)^{1011}}{5}=\frac{9^{1011}}{5}=\frac{(10-1)^{1011}}{5}=\frac{10+^{1011} 101 c, 10 \cdot(-1)+\ldots(-1)^{101}}{5} \\
& =10 \beta-1 \\
& =5 \cdot(2 \beta)-1 \\
& =5(8)-1 \\
& =5\left(8^{\prime}\right)+4 \text {. }
\end{aligned}
$$

(39)
$\sum_{k=0}^{20}\left({ }^{20} C_{k}\right)^{2}$ is equal to
(a) ${ }^{40} \mathrm{C}_{21}$
(b) ${ }^{41} C_{20}$
(c) ${ }^{40} \mathrm{C}_{20}$
(d) ${ }^{40} \mathrm{C}_{19}$ (27 $7^{\text {th }}$ Aug $1^{1{ }^{\text {t }} \text { Shift 2021) }}$

$$
\begin{array}{ll}
(1+x)^{n}=n_{c_{0}}+n_{c_{1}} x+n_{c_{2}} x^{2}+\cdots & n_{c_{n} x^{n}} \\
(x+1)^{n}=n_{c_{0}} x^{n}+n_{c_{1}} x^{n-1}+\cdots & +n_{c_{n}} 1^{n}
\end{array}
$$

Multiply
comparing coefficients of x^{n} to both sides.

$$
\begin{aligned}
{ }^{2 n} c_{n} & =n_{c_{0}^{2}}+{ }^{n} c_{1}^{2}+\cdots{ }_{c_{n}}^{2} \\
= & \sum_{r=0}^{n}\left(n_{c_{r}}\right)^{2 n}={ }^{2 n} \\
& \sum_{r=0}^{20}\left({ }^{20} c_{k}\right)^{2}=4 c_{20}
\end{aligned}
$$

The value of $\sum_{r=0}^{6}\left({ }^{6} C_{r} \cdot{ }^{6} C_{6-r}\right)$ is equal to
(a) 1324
(b) 1124
(c) 1024
(d) 924

$$
\begin{aligned}
& ={ }^{6} C_{0}{ }^{6} C_{6}+{ }^{6} c_{1}{ }^{6} c_{5}+{ }^{6} c_{c_{2}}{ }^{6} c_{4}+{ }^{6} c_{3}{ }^{6} C_{3}+{ }^{6} c_{4}{ }^{6} C_{2}+{ }^{6} c_{5}{ }^{6} c_{1} \\
& =2\left({ }^{6} c_{0}{ }^{6} c_{6}+{ }^{6} c_{1}{ }^{6} c_{5}+{ }^{6} c_{2}{ }^{6}{ }^{6} c_{4} c_{0}\right. \\
& \left.=2\left[\left({ }^{6} c_{3}\right]^{2} c_{0}\right)^{2}+\left({ }^{6} c_{1}\right)^{2}+\left({ }^{6} c_{2}\right)^{2}\right]+\left[{ }^{6} c_{3}\right]^{2} \\
& =2\left[1+6^{2}+(15)^{2}\right]+[20]^{2} \\
& =2[1+36+225]+400=924
\end{aligned}
$$

41)

If $\{p\}$ denotes the fractional part of the number p, then $\left\{\frac{3^{200}}{8}\right\}$, is equal to
(a) $\frac{5}{8}$
(b) $\frac{7}{8}$
(c) $\frac{3}{8}$
(d) $\frac{1}{8}$

$$
\begin{aligned}
\frac{3^{200}}{8}=\frac{\left(3^{2}\right)^{100}}{8}=\frac{9^{100}}{8}=\frac{(1+8)^{100}}{8} & =\frac{1+{ }^{100} c_{1} 8+\ldots{ }^{100} c_{100} 8^{100}}{8} \\
& =\frac{1+8 \lambda}{8}=8 \lambda^{\prime}+1 / 8
\end{aligned}
$$

\therefore Remainder 118
(42)

$$
\begin{aligned}
& \text { If }{ }^{20} C_{1}+\left(2^{2}\right){ }^{20} C_{2}+\left(3^{2}\right){ }^{20} C_{3}+\ldots .+\left(20^{2}\right){ }^{20} C_{20} \\
& =A\left(2^{\beta}\right) \text {, then the ordered pair }(A, \beta) \text { is equal to } \\
& \begin{array}{ll}
\text { (a) }(420,19) & \text { (b) }(420,18) \\
\text { (c) }(380,19) & \text { (d) }(380,18) \\
\text { (12 th April } 2^{\text {nd }} \text { Shift 2019) }
\end{array} \\
& (1+x)^{n}=n_{C_{0}}+n_{C_{1}} x+n_{C_{2}} x^{2}+\ldots+{ }_{C_{C_{n}}} x^{n}
\end{aligned}
$$

Differentiating both sides.

$$
n(1+x)^{n-1}=n_{c_{1}}+n c_{2}(2 x)+n_{c_{3}} 3 x^{2}+n_{c_{n}} n x^{n-1}
$$

multiply both side by x,

$$
n x(1+x)^{n-1}=n c_{1} x+n_{c_{2}} 2 x^{2}+n_{c_{3}} 3 x^{3}+\cdots{ }^{n} c_{n} n x^{n}
$$

Again Differentiating writ to x.

$$
\begin{aligned}
n \cdot(1+x)^{n-1}+n x \cdot(n-1)(1+x)^{n-2}= & n c_{1}+n_{c} 2^{2} \cdot x+n_{c_{3}}{ }^{2} x^{2} \\
& +\ldots n_{c_{n}} n^{2} x^{n-1}
\end{aligned}
$$

Let $x=1$

$$
n(2)^{n-1}+n(n-1) 2^{n-2}=n_{c_{1}}+n_{c_{2}} 2^{2}+n_{c_{3}}{ }^{2}+\cdots \cdot n_{c_{n}}{ }^{2}
$$

let put $n=20$

$$
\begin{aligned}
{ }^{20} C_{1}+2{ }^{0} C_{2} 2^{2}+\cdots 2{ }^{0} C_{20} 20^{2} & =20 \cdot 2^{19}+20 \cdot 19 \cdot 2^{18} \\
& =2^{18}\{40+20 \cdot 19\} \\
& =2^{18\{420\}} \quad \begin{aligned}
A & =420 \\
B & =18 .
\end{aligned}
\end{aligned}
$$

43

$$
\begin{aligned}
& \begin{array}{l}
\text { Let }(x+10)^{50}+(x-10)^{50}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+ \\
a_{50} x^{50}, \text { for all } x \in R \text {; then } \frac{a_{2}}{a_{0}} \text { is equal to } \\
\begin{array}{lll}
\text { (a) } 12.00 & \text { (b) } 12.75 & \text { Ce) } \\
12.25 & \text { (d) } 12.50 \\
\left(11^{\text {th } \text { Jan } 2^{n d} \text { Shift 2019) }}\right.
\end{array} \\
(x+10)^{50}+(x-10)^{50}=a_{0}+a_{1} x+a_{2} x^{2}-\cdots+a_{50} x^{50} \\
2\left[{ }^{50} c_{0} x^{50}+50 c_{2} x^{48} \cdot 10^{2}+\cdots+50 c_{50} 10^{50}\right] \\
\\
=a_{0}+a_{1} x+\cdots+a_{50} x^{50}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& (x+10)^{50}+(x-10)^{50}=a_{0}+a_{1} x+a_{2} x^{2}-\cdots+a_{50} x^{50} \\
& 2\left[{ }^{50} c_{0} x^{50}+{ }^{50} c_{2} x^{48} \cdot 10^{2}+\cdots+{ }^{50} c_{50} 10^{50}\right] \\
& \\
& =a_{0}+a_{1} x+\cdots+a_{50} x^{50} \\
& a_{0}=2.10^{50} \\
& a_{2}=2 .{ }^{50} c_{48}^{10} \quad \frac{a_{2}}{a_{2}}=\frac{5^{40} c 48}{10^{2}}=12.25
\end{aligned}
$$

44)

The value of $\left({ }^{21} C_{1}-{ }^{10} C_{1}\right)+\left({ }^{21} C_{2}-{ }^{10} C_{2}\right)+$

$$
\left({ }^{21} C_{3}-{ }^{10} C_{3}\right)+\left({ }^{21} C_{4}-{ }^{10} C_{4}\right)+\ldots \ldots . . .+\left({ }^{21} C_{10}-{ }^{10} C_{10}\right) \text { is }
$$

(a) $2^{21}-2^{10}$
(b) $2^{20}-2^{9}$.
(c) $2^{20}-2^{10}$
(d) $2^{21}-2^{11}$
(2017)

$$
\begin{aligned}
& =\underbrace{{ }^{11} c_{1}+{ }^{21} c_{2} \cdots}+{ }^{2{ }^{1} c_{10}})-(\underbrace{\left.{ }^{10} c_{1}+{ }^{10} c_{2} \cdots{ }^{10} c_{10}\right)} \\
& =(1+x)^{21}={ }^{21} c_{0}+{ }^{21} c_{1} x+{ }^{21} c_{2} x^{2} \cdots \quad \quad 21 c_{21} x^{21} \\
& 2^{21}=(1)+\left[{ }^{21} c_{1} \ldots \quad{ }^{21} c_{10}+{ }^{21 c_{10}}+{ }^{21} c_{9} \cdots{ }^{21} c_{20}+{ }^{21} c_{21}\right] \\
& 2+2\left[{ }^{21} c_{1}+\ldots+{ }^{21} c_{10}\right]=2^{21} \quad \therefore 21 c_{1}+\ldots \quad 21 c_{10}=\frac{2^{21}}{2}-1
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2^{21}}{2}-1-\left[2^{10}-1\right] \\
& =\frac{2^{21}}{2}-2^{10}=2^{20}-2^{10}
\end{aligned}
$$

45
The remainder left out when $8^{2 n}-(62)^{2 n+1}$ is divided by 9 is
(a) 2
(b) 7
(c) 8
(d) 0 (2009)

$$
\begin{array}{rl}
\left(8^{2}\right)^{n}-62^{2 n+1} & =64^{n}-62^{2 n+1} \\
& =(1+63)^{n}-(63-1)^{2 n+1} . \\
=\left[1+{ }^{n} c_{1} 63+{ }^{n} c_{2} 63^{2} \cdots 63^{n}\right]+[1-63]^{2 n+1} \\
=\left[1+{ }^{n} c_{1} 63 \cdots+63^{n}\right]+\left[1-{ }^{2 n+1} c_{1} 63+\cdots(-)^{2 n} c(63)^{2 n+1}\right] \\
K & 2+63 k \quad \therefore \text { Remainder } 2
\end{array}
$$

46
Let the sum of the coefficients of the first three terms
in the expansion of $\left(x-\frac{3}{x^{2}}\right)^{n}, x \neq 0, n \in N$, be 376 .
Then the coefficient of x^{4} is \qquad . ${ }^{\text {nd }}$

$$
\begin{gathered}
{ }^{n} c_{0}-n_{c_{1}} 3+{ }^{n} c_{c_{2}} 3^{2}=376 \\
1-n 3+\frac{n(n-1)}{2} 9=376 \\
3 n^{2}-5 n-250=0 \\
n=10
\end{gathered}
$$

$$
\begin{aligned}
& T_{r+1}={ }^{10} c_{r} x^{10-r} \cdot\left(\frac{-3}{x^{2}}\right) \\
&={ }^{10} c_{r}(-3)^{r} \\
& x^{10-3 \gamma} \\
&={ }^{10} c_{r}(-3)^{r} x^{10-3 r}
\end{aligned}
$$

$$
\begin{aligned}
& 10-3 r=4 \\
& r=2
\end{aligned}
$$

\therefore coff of $x^{4}=\operatorname{loc}_{2}(-3)^{2}$

$$
=405
$$

47)

Divisible by 35

$$
\text { Remainder }-7^{2023}
$$

$$
=-7 \times 7^{2022}
$$

$$
\begin{aligned}
& =-7 \times 7 \\
& =-7(49)^{1011} 1011
\end{aligned}
$$

$$
\begin{aligned}
& =7(571011 \\
& =-7(50-1)^{1}
\end{aligned}
$$

$$
\begin{aligned}
& =-7(50-1) \\
& =-7\left[{ }^{1011} c_{0} 50^{1011}-{ }^{11} c_{1} 50^{1010} \cdots-^{1011} c_{1011}\right]
\end{aligned}
$$

$$
=-7\left[\begin{array}{ll}
5 \lambda & -1
\end{array}\right]
$$

$$
=-35 \lambda+7
$$

$$
\begin{aligned}
& \text { The remainder when }(2023)^{2023} \text { is divided by } 35 \text { is } \\
& \text { (} 25^{\text {th }} \text { Jan } 2^{\text {nd }} \text { Shift 2023) } \\
& 2023 \\
& =\frac{(2023)}{35} \\
& 2023^{2023}=(2030-7)^{2023} \\
& =(35 k-7)^{2023} \\
& =\left[(35 k)^{2023}+2023 c_{1}(35 k)^{2022} \cdot(-7)+\cdots+(-7)^{2023}\right] \\
& =\sim^{35} \lambda-7^{2023}
\end{aligned}
$$

48

$$
1+\left(2+{ }^{49} c_{1} \cdots+{ }^{49} c_{49}\right) *\left({ }^{50} c_{2}+{ }^{50} c_{4} .{ }^{50} c_{50}\right)
$$

If $1+\left(2+{ }^{49} C_{1}+{ }^{49} C_{2}+\ldots+{ }^{49} C_{49}\right)\left({ }^{50} C_{2}+{ }^{50} C_{4}+\ldots+{ }^{50} C_{50}\right)$ is equal to $2^{n} \times m$, where m is odd, then $n+m$ is equal to \qquad ($28^{\text {th }}$ July $2^{\text {nd }}$ Shift 2022)

$$
\begin{aligned}
& =1+\left(2+2^{49}-1\right) *\left[\frac{2^{50}}{2}-1\right] \\
& =1+\left(1+2^{49}\right)\left(\frac{2^{50}}{2}-1\right)=1+2^{98}-1=2^{98}
\end{aligned}
$$

49
If $\sum_{k=1}^{10} k^{2}\left({ }^{10} C_{k}\right)^{2}=22000 L$, then L is equal to \qquad (29 th July $2^{\text {nd }}$ Shift 2022)

$$
\begin{aligned}
& \sum_{k=1}^{10} k^{2}\left({ }^{10} c_{k}\right)^{2}=22000 L \\
& { }^{n} c_{\gamma}=\frac{n}{r} \cdot{ }^{n-1} c_{\gamma-1} \\
& \text { r. }{ }^{n} c_{r}=n^{n-1} c_{r-1} \\
& \sum_{k=1}^{10} k^{2}\left({ }^{10} c_{k}\right)^{2}=\sum_{k=1}^{10}(\underbrace{k{ }^{10} c_{k}})^{2} . \\
& =\sum_{k=1}^{10}\left(0^{9} c_{k-1}\right)^{2} \\
& =100 \cdot{ }^{18} \mathrm{C}_{q}=486200 \\
& \therefore L=221
\end{aligned}
$$

(a) ${ }^{n} C_{x}={ }^{n} C_{y} \Rightarrow x=y$ or $x+y=n$
(b) ${ }^{n} C_{r-1}+{ }^{n} C_{r}={ }^{n+1} C_{r}$
${ }^{n} C_{\gamma}=\frac{n}{r}^{n-1} C_{\gamma-1}$

$$
\text { (c) } \mathrm{C}_{0}+\frac{C_{1}}{2}+\frac{C_{2}}{3}+\ldots \ldots \cdot \frac{C_{n}}{n+1}=\frac{2^{n+1}-1}{n+1}
$$

$$
\text { (d) } \mathrm{C}_{0}-\frac{\mathrm{C}_{1}}{2}+\frac{\mathrm{C}_{2}}{3}-\frac{\mathrm{C}_{3}}{4} \ldots \ldots+\frac{(-1)^{n} \mathrm{C}_{\mathrm{n}}}{\mathrm{n}+1}=\frac{1}{\mathrm{n}+1}
$$

$$
\begin{aligned}
r{ }^{n} c_{r} & =n^{n-1} c_{r-1} \\
\sum r^{n} c_{r} & =n \sum^{n-1} c_{r-1}
\end{aligned}
$$

(e) $C_{0}+C_{1}+C_{2}+\ldots \ldots=C_{n}=2^{n}$
(f) $\mathrm{C}_{0}+\mathrm{C}_{2}+\mathrm{C}_{4}+\ldots \ldots=\mathrm{C}_{1}+\mathrm{C}_{3}+\mathrm{C}_{5}+\ldots \ldots=2^{n-1}$
(g) $\mathrm{C}_{0}{ }^{2}+\mathrm{C}_{1}{ }^{2}+\mathrm{C}_{2}{ }^{2}+\ldots \ldots+\mathrm{C}_{\mathrm{n}}{ }^{2}={ }^{2 n} \mathrm{C}_{\mathrm{n}}=\frac{(2 \mathrm{n})!}{\mathrm{n}!\mathrm{n}!}$

$$
\begin{aligned}
\sum_{r=1}^{n} r^{n} c_{r} & =n \sum_{r=1}^{n}{ }^{n-1} c_{r-1} \\
& =n\left[{ }^{n-1} c_{d}+{ }^{n-1} c_{1}+\cdots{ }^{n-1} c_{n-1}\right.
\end{aligned}
$$

$$
\text { (n) } \mathrm{C}_{0} \cdot \mathrm{C}_{1}+\mathrm{C}_{1} \cdot \mathrm{C}_{n+1}+\mathrm{C}_{2} \cdot \mathrm{C}_{n+2}+\ldots \ldots+\mathrm{C}_{m} \mathrm{C}_{n}=\frac{(2 n)!}{(n+r)!(n-r)!}
$$

Remember : $\left\{(2 n)!=2^{n} \cdot n![1.3 .5 \ldots \ldots(2 n-1)]\right.$

$$
\left\{\sum_{r=0}^{n} r^{n} c_{r}=n \cdot 2^{n-1}\right\}
$$

$50)$
The remainder on dividing $1+3+3^{2}+3^{3}+\ldots .+3^{2021}$
\qquad (24 ${ }^{\text {th }}$ June $2^{\text {nd }}$. Shift 2022)

$$
\begin{aligned}
& G P=1+3+3^{2}+3^{3} \ldots+3^{2021} \\
& S=1 \cdot \frac{3^{2022}-1}{2}=\frac{\left(3^{2}\right)^{1011}-1}{2}=\frac{(10-1)^{1011}-1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{100(\lambda)+1011 \times 10-2}{2} \\
& =\frac{100 \lambda+10108}{2}=50 \lambda+5054 \\
& =50 \lambda+50 \lambda^{\prime}+(4)
\end{aligned}
$$

51)

Let $n \in N$ and $[x]$ denote the greatest integer less than or equal to x. If the sum of $(n+1)$ terms ${ }^{n} C_{0}, 3 \cdot{ }^{n} C_{1}, 5 \cdot{ }^{n} C_{2}, 7 \cdot{ }^{n} C_{3}, \ldots$. is equal to $2^{100} \cdot 101$, then $2\left[\frac{n-1}{2}\right]$ is equal to $\longrightarrow \cdot\left(25^{\text {th }}\right.$ July $2^{\text {nd }}$ Shift 2021$)$

$$
\begin{aligned}
& { }^{n} c_{0}+3 \cdot{ }^{n} c_{1}+5 \cdot{ }^{n} c_{2} \cdots+(2 n+1){ }^{n} c_{n}=2^{100} \cdot 101 . \\
& T_{r}=(2 r+1)^{n} c_{r} \\
& \sum_{r=0}^{n} T_{r}=\sum(2 r+1)^{n} c_{r}
\end{aligned}=\sum_{r=0}^{n} 2 r_{0}^{n} c_{r}+\sum_{r=0}^{n}{ }^{n} c_{r} .
$$

dup

$$
\left\{\sum_{r=0}^{n} r \cdot{ }^{n} c_{r}=n 2^{n-1}\right.
$$

52
If $(2021)^{3762}$ is divided by 17 , then the remainder is ($17^{\text {th }}$ March $1^{\text {st }}$ Shift 2021)

$$
\begin{aligned}
\frac{(2021)^{3782}}{17} & =(2023-2)^{3762} \\
& =17 k+\underbrace{2^{3762}}_{\text {Remainder }}
\end{aligned}
$$

$\frac{2^{3762}}{17} \leftarrow$ Find Remainder

$$
\begin{aligned}
2^{3762} & =4.16^{940} 940 \\
& =4(17-1) \\
& =4\left(17 k+(1)^{40}\right)
\end{aligned}
$$

53

$$
\begin{aligned}
& =4(17 k+(1) \\
& =17.4 k+(4)-\text { Remainder }
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } C_{r} \equiv^{25} C_{r} \text { and } C_{0}+5 C_{1}+9 C_{2}+\ldots+(101) \cdot C_{25}=2^{25} \cdot k, \\
& \text { then } k \text { is equal to } \quad . \quad\left(9^{\text {th }} \text { Jan } 2^{n d}\right. \text { Shift 2020) }
\end{aligned}
$$

$$
\begin{aligned}
& c_{0}+5 c_{1}+9 c_{2}+\cdots+101 c_{25} \\
= & \sum_{r=0}^{25}(4 r+1) c_{r} \\
= & 4 \sum_{r=0}^{25} r^{25} c_{r}+\sum_{r=0}^{25} 2 c_{r} \\
= & 4\left[25 \cdot 2^{24}\right]+2^{25} \\
= & 2^{25} \cdot 51=2^{25} \cdot K \quad k=51
\end{aligned}
$$

(54)
If the coefficients of x^{7} in $\left(a x^{2}+\frac{1}{2 b x}\right)^{11}$ and x^{-7} in $\left(a x-\frac{1}{3 b x^{2}}\right)^{11}$ are equal, then
(a) $64 a b=243$
(b) $729 a b=32$
(c) $32 a b=729$
(d) $243 a b=64$
($6^{\text {th }}$ April $2^{\text {nd }}$ Shift 2023)

$$
\begin{aligned}
T_{\gamma+1} & ={ }^{11} c_{\gamma}\left(a x^{2}\right)^{11-\gamma} \cdot\left(\frac{1}{2 b x}\right)^{\gamma} \\
& ={ }^{11} c_{\gamma} \frac{a^{11-\gamma}}{(2 b)^{\gamma}} \cdot x^{22-3 \gamma}
\end{aligned}
$$

$\operatorname{cose} f x^{z} \Rightarrow 22-3 \gamma=r \quad \gamma=5$

$$
T_{6}={ }^{11} C_{5} \frac{a^{6}}{2^{5} b^{5}} x^{7}
$$

Similarly

$$
\begin{aligned}
T_{\gamma+1} & ={ }^{11} c_{\gamma}(a x)^{11-\gamma}\left(\frac{-1}{3 b x^{2}}\right)^{\gamma} \\
& ={ }^{11} c_{\gamma} \frac{a{ }^{11-\gamma}}{(-3 b)^{\gamma}} x^{11-3 \gamma}
\end{aligned}
$$

coepf of $x^{-7} \quad 11-3 r=-7$

$$
\begin{aligned}
& T_{z}={ }^{11} c_{6} \frac{a^{5}}{3^{6} b^{6}} x^{-7} \\
& \\
& { }^{11} c_{5} \frac{a^{6}}{2^{5} b^{5}}={ }^{11} c_{6} \frac{a^{5}}{3^{6} \cdot b^{6}} \Rightarrow 729 a b=32
\end{aligned}
$$

If the coefficients of three consecutive terms in the expansion of $(1+x)^{n}$ are in the ratio $1: 5: 20$, then the coefficient of the fourth term is
(a) 1827
(b) 5481
(c) 2436
(d) 3654 (8th April $1^{\text {st }}$ Shift 2023)

$$
\begin{array}{l|l}
{ }^{n} c_{r-1} & { }^{n} c_{r}:{ }^{n}{ }_{(r \gamma 1}=1: 5: 20 \\
\frac{n_{c r-1}}{n_{c r}}=\frac{1}{5} & \frac{n_{c r}}{n_{c r+1}}=\frac{5}{20} . \\
\frac{n_{c r+1}}{n-r+1}=\frac{1}{5} \Rightarrow 5 r=n-r+1 & n=5 r+4
\end{array}
$$

Solve

$$
\begin{aligned}
& 6 r-1=5 r+4 \\
& r=5 \quad \therefore \eta=29 .
\end{aligned}
$$

coefficient of 4 th term $=29 c_{3}=3654$.
(56)

If the coefficients of x and x^{2} in $(1+x)^{p}(1-x)^{q}$ are 4 and -5 respectively, then $2 p+3 q$ is equal to
(a) 66
(b) 60
(c) 63
(d) 69 ($10^{\text {th }}$ April $2^{\text {nd }}$ Shift 2023)

$$
\begin{aligned}
& =(1+x)^{p}(1-x)^{q} \\
& =\left[1+p x+\frac{p(p-1)}{2} x^{2}+\cdots\right]\left[1-q x+\frac{q(q-1)}{2} x^{2}+\cdots\right]
\end{aligned}
$$

coefficient of $x=p-q=4$

$$
\begin{aligned}
& \text { coeft of } x^{2}= \frac{q(q-1)}{2}-p q+\frac{p(p-1)}{2}=-5 \\
&(p-q)^{2}-(p+q)=-10 \\
& p-q=26
\end{aligned} \quad \therefore 2 p+3 q=63 .
$$

57
The sum of the coefficients of three consecutive terms in the binomial expansion of $(1+x)^{n+2}$, which are in the ratio $1: 3: 5$, is equal to
(a). 41
(b) 92
(c) 25
(d) 63

$$
\begin{aligned}
& { }^{n+2} C_{n-1}:{ }^{n+2} C_{r}:{ }^{n+2} C_{r+1} \\
& =1: 3: 5
\end{aligned}
$$

$$
\frac{{ }^{n+2} c_{\gamma}-1}{n+2 c_{\gamma}}=\frac{1}{2}
$$

solve $\sim[m=4 r-3]$

$$
\frac{n+2 c r}{n+2 c_{r+1}}=\frac{3}{5}
$$

$$
8 r-1=3 n
$$

$$
\begin{aligned}
4 r-3 & =\frac{8 r-1}{3} \\
r & =2 \text { and } \eta=5 \\
\text { Required sum } & ={ }^{7} c_{1}+{ }^{7} c_{2}+{ }^{7} c_{3} \\
& =63 .
\end{aligned}
$$

(58)

The coefficient of x^{5} in the expansion of $\left(2 x^{3}-\frac{1}{3 x^{2}}\right)^{5}$
is
(a) $\frac{26}{3}$
(b) 9
(c) 8
(d) $\frac{80}{9}$
($13^{\text {th }}$ April $2^{\text {nd }}$ Shift 2023)

$$
\begin{aligned}
& T_{r+1}={ }^{5} C_{r}\left(2 x^{3}\right)^{5-\gamma} \cdot\left(-\frac{1}{3 x^{2}}\right)^{\gamma} \\
&={ }^{5} C_{r} 2^{5-\gamma}\left(-\frac{1}{3}\right)^{r} x^{15-3 r-2 r} \\
& 15-5 \gamma=5 \therefore r=2 \\
& \text { coeff } \Rightarrow \quad 5 c_{2} 2^{3} \cdot(-1 / 3)^{2}=80 / 9
\end{aligned}
$$

(59)

> The coefficient of x^{301} in $(1+x)^{500}+x(1+x)^{499}+x^{2}(1+x)^{498}+\ldots+$ n 500 is $\begin{array}{lll}\text { (a) }{ }^{500} C_{301} & \text { (b) }{ }^{501} C_{200} & \text { (c) }{ }^{500} C_{300} \\ \text { (d) }{ }^{501} C_{302} \\ & \text { (30 } 0^{\text {th }} \text { Jan } 1^{s t} \text { Shift 2023) }\end{array}$

$$
\begin{aligned}
& \sim(1+x)^{500}+x(1+x)^{499}+x^{2}(1+x)^{498}+\cdots x^{500} \\
& \text { coff of } \\
& x^{500}={ }^{500} c_{301}+{ }^{499} c_{300}+{ }^{498} c_{299}+\cdots c_{0} \\
& \approx{ }^{500} c_{199}+{ }^{499} c_{199}+{ }^{498} c_{199}+\cdots+{ }^{199} c_{199}
\end{aligned}
$$

Forming

$$
\begin{aligned}
& \left\{\begin{array}{l}
{ }^{n} c_{r}+{ }^{n-1} c_{r}+{ }^{n-2} c_{r} \cdots
\end{array} \begin{array}{l}
{ }^{r}{ }^{r} c_{r}={ }^{n+1} c_{r+1} \\
{ }^{n} c_{r}={ }^{n+1} c_{r+1}
\end{array}\right\} \\
& ={ }^{501} c_{200}
\end{aligned}
$$

(60)

The term independent of x in the expansion of

$$
\left(1-x^{2}+3 x^{3}\right)\left(\frac{5}{2} x^{3}-\frac{1}{5 x^{2}}\right)^{11}, x \neq 0 \text { is: }
$$

(a) $\frac{7}{40}$
(b) $\frac{33}{200}$
(c) $\frac{39}{200}$
(d) $\frac{11}{50}$
(28 ${ }^{\text {th }}$ June $2^{\text {nd }}$ Shift 2022)

$$
\begin{aligned}
& =\left(1-x^{2}+3 x^{3}\right)\left(\left(\frac{5}{2} x^{3}-\frac{1}{5 x^{2}}\right)^{11}\right. \\
& =\underbrace{\left(\frac{5}{2} x^{3}-\frac{1}{x^{2}}\right.})^{\prime \prime}-x^{2}\left(\left(\frac{5}{2} x^{3}-\frac{1}{5 x^{2}}\right)^{\prime \prime}+3 x^{3}\left(\frac{5}{2} x^{3}-\frac{1}{5 x^{2}}\right)^{\prime \prime}\right. \\
& T_{r+1}={ }^{\prime \prime} c_{r}\left(\frac{5}{2} x^{3}\right)^{r} \cdot\left(-\frac{1}{5 x^{2}}\right) ; \text { For independent } \\
& { }^{11} c_{r}\left(\frac{8}{2}\right)^{r}\left(-\frac{1}{5}\right)^{11-r} x^{5 r-22}: \begin{array}{l}
5 r-22=-2 \\
\\
\\
5 r=20
\end{array} \\
& 5 r-22=-3 \\
& 5 r=22-3 \\
& 5 r=18 \\
& 5 r-22=0 \\
& r=22 / 5 \text { fraction } \\
& \text { NiP } \\
& r=20 / 5 \\
& r=1815 \\
& T_{\gamma+1}=-{ }^{11} c_{4}\left(\frac{5}{2}\right)^{4}\left(-\frac{1}{5}\right)^{11-4} \text {. } \\
& \stackrel{\left(11 C_{4}\left(\frac{5}{2}\right)^{4}(-)^{7} \cdot\left(\frac{1}{5}\right)^{7}=33 / 200\right.}{ }
\end{aligned}
$$

The sum of all those terms which are rational numbers in the expansion of $\left(2^{1 / 3}+3^{1 / 4}\right)^{12}$ is
(a) 27
(b) 89
(c) 35
(d) 43
($25^{\text {th }}$ July $2^{\text {nd }}$ Shift 2021)

$$
\begin{aligned}
T_{r+1} & ={ }^{12} c_{r}\left(2^{113}\right)^{12-\gamma}\left(3^{1 / 4}\right)^{\gamma} \\
& ={ }^{12} c_{r} \quad 2^{4} \cdot 2^{-r / 3} \cdot 3^{r / 4}
\end{aligned}
$$

T_{r+1} will be rational if $r=0,12$.

$$
\therefore T_{1}+T_{13}=16+27=43
$$

If n is the number of irrational terms in the expansion
of $\left(3^{\frac{1}{4}}+5^{\frac{1}{8}}\right)^{60}$, then $(n-1)$ is divisible by
(a) 26
(b) 7
(c) 8
(d) 30
($16^{\text {th }}$ March $1^{\text {st }}$ Shift 2021)

$$
\begin{aligned}
T_{r+1} & ={ }^{60} c_{\gamma}\left(3^{114}\right)^{60-\gamma} \cdot\left(5^{1 / 8}\right)^{\gamma} \\
& ={ }^{60} c_{\gamma} 3^{\frac{60-\gamma}{4}} \cdot 5^{\gamma / 8}
\end{aligned}
$$

For rational terms, γ should be a multiple of 8 and less than $\eta 60$.

$$
r-0,8,16, \ldots 56
$$

Number of irrational terms $61-8=53$

$$
\eta=53 . \quad n-1=52 \text { which is } \begin{aligned}
& \text { divisible by }
\end{aligned}
$$

$$
26
$$

If the fourth term in the expansion of $\left(x^{4}+x^{\log _{2} x}\right)^{7}$ is 4480 , then the value of x where $x \in N$ is equal to
(a) 3
(b) 4
(e) 2
(d) 1
($17^{\text {th }}$ March $1^{\text {st }}$ Shift 2021)

$$
\begin{gathered}
T_{4}={ }^{7} C_{3} x^{4} \cdot\left(x^{\log x}\right)^{3}=4480 \\
35 x^{4} x^{3 \log x}=4480 \\
x^{4+3 \log _{2} x}=2^{7} \\
x=2 .
\end{gathered}
$$

$$
T_{r+1}={ }^{10} c_{r}\left(t x^{1 / 5}\right)^{10-\gamma}\left(\frac{(1-x)^{1 / 10}}{t}\right)^{r}
$$

(a) $\frac{2 \cdot 10!}{3(5!)^{2}}$
(b) $\frac{10!}{\sqrt{3}(5!)^{2}}$
(c) $\frac{2 \cdot 10!}{3 \sqrt{3}(5!)^{2}}$
(d) $\frac{10!}{3(5!)^{2}}$
(26 $6^{\text {th }} \mathrm{Feb}^{\text {st }}$ Shift 2021)
independent of t.

$$
\begin{gathered}
10-r-r=0 \\
r=5
\end{gathered}
$$

$$
\frac{d}{d x}\left(\pi_{6}\right)={ }^{10} c_{5}\left[(1-x)^{1 / 2}-\frac{x}{2 \sqrt{1-x}}\right]=0
$$

$$
\begin{gathered}
r=5 \\
T_{6}={ }^{10} C_{5} x(1-x)^{1 / 2}
\end{gathered}
$$

$$
2(1-x)-x=0
$$

$$
2-3 x=0 \quad x=2 / 3
$$

$$
T_{6}={ }^{10} C_{5}\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)^{1 / 2}=\frac{2 \times 10!}{3 \sqrt{3}(5!)^{2}}
$$

If the term independent of x in the expansion of $\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}$ is k, then $18 k$ is equal to
(a) 5
(b) 9
(c) 7
(d) 11
($3^{\text {rd }}$ Sept $2^{\text {nd }}$ Shift 2020)

$$
T_{r+1}={ }^{9} C_{r}\left(\frac{3}{2} x^{2}\right)^{9-r} \cdot\left(-\frac{1}{3 x}\right)^{r}
$$

Independent of x.

$$
\left.\begin{array}{rl}
\left(x^{2}\right)^{9-r} x^{-r} & =x^{0} \therefore T_{2}
\end{array}={ }^{9} c_{6}\left(\frac{3}{2}\right)^{3}\left(-\frac{1}{3}\right)^{6}\right) ~=84 \cdot \frac{27}{8} \cdot \frac{1}{129}=\frac{z}{18}
$$

66
The total number of irrational terms in the binomial expansion of $\left(7^{1 / 5}-3^{1 / 10}\right)^{60}$ is
(a) 55
(b) 54
(c) 48
(d) 49
(12 $2^{\text {th }} \operatorname{Jan} 2^{\text {nd }}$ Shift 2019)

$$
T_{r+1}=(-1)^{\gamma} \cdot{ }^{60} C_{r} \cdot 7 \frac{60-\gamma}{5} \cdot 3^{\gamma / 10}
$$

for rational terms, $r=0,10,20,30,40,50,60$ So, number of rational terms $=Z$

Number of irrational terms $=61-7$

$$
=54
$$

Multinominal Theorem
MULTINOMIAL THEOREM
Concepts And Questions Solving Techniques
JEE (MAINS \& ADVANCED)

$$
\begin{aligned}
& \left(x_{1}+x_{2}+x_{3}+\ldots . . x_{n}\right)^{n} \\
& =\sum \frac{n!\quad \alpha_{1} \alpha_{1} \alpha_{2} \ldots \ldots x_{n}}{\alpha_{n}} \frac{x_{2}}{\left(\alpha_{1}\right)!\left(\alpha_{2}\right)!\ldots\left(\alpha_{n}\right)!} \\
& \alpha_{1}+\alpha_{2}+\alpha_{3} \ldots+\alpha_{n}=n
\end{aligned}
$$

67
The constant term in the expansion of $\left(2 x+\frac{1}{x^{7}}+3 x^{2}\right)^{5}$ is \qquad (25 ${ }^{\text {th }}$ Jan $1^{\text {st }}$ Shift 2023)

$$
\begin{aligned}
\text { General term } & =\frac{5!}{r_{1}!r_{2}!r_{3}!}\left(2 x^{r_{1}}\left(\frac{1}{x^{7}}\right)^{r_{2}}\left(3 x^{r}\right)^{r_{3}}\right. \\
& =\frac{5!}{r_{1}!r_{2}!r_{3} \mid} 2^{r_{1}} 3^{r_{3}} x^{r_{1}-7 r_{2}+2 r_{3}}
\end{aligned}
$$

for constant

$$
\begin{aligned}
& \text { ant } r_{1}-7 r_{2}+2 r_{3}=0 \\
& r_{1}+r_{2}+r_{3}=5 \\
& \text { Hit \& +rial, } r_{1}=1 \quad r=1 \quad r_{3}=3
\end{aligned}
$$

constant term

$$
\frac{5!}{1!1!3!} 2^{1} 3^{3}=1080
$$

The coefficient of x^{7} in $\left(1-x+2 x^{3}\right)^{10}$ is \qquad .
jee main 2023

General term $=\frac{10!}{r_{1}!\cdot r_{2}!\cdot r_{3}!}(-1)^{r_{2}} \cdot(2)^{r_{3}} x^{r_{2}+3 r_{3}}$
where $r_{1}+r_{2}+r_{3}=10$ and $r_{2}+3 r_{3}=7$

r_{1}	r_{2}	r_{3}
3	7	0
5	4	1
7	1	2

Required coefficient
$=\frac{10!}{3!.7!}(-1)^{7}+\frac{10!}{5!.4!}(-1)^{4}(2)+\frac{10!}{7!.2!}(-1)^{1}(2)^{2}$
$=-120+2520-1440=960$

